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ABSTRACT
Scalable join processing in a parallel shared-nothing environ-
ment requires a partitioning policy that evenly distributes
the processing load while minimizing the size of state main-
tained and number of messages communicated. Previous
research proposes static partitioning schemes that require
statistics beforehand. In an online or streaming environ-
ment in which no statistics about the workload are known,
traditional static approaches perform poorly.

This paper presents a novel parallel online dataflow join
operator that supports arbitrary join predicates. The pro-
posed operator continuously adjusts itself to the data dy-
namics through adaptive dataflow routing and state repar-
titioning. The operator is resilient to data skew, maintains
high throughput rates, avoids blocking behavior during state
repartitioning, takes an eventual consistency approach for
maintaining its local state, and behaves strongly consistently
as a black-box dataflow operator. We prove that the opera-
tor ensures a constant competitive ratio 3.75 in data distri-
bution optimality and that the cost of processing an input
tuple is amortized constant, taking into account adaptivity
costs. Our evaluation demonstrates that our operator out-
performs the state-of-the-art static partitioning schemes in
resource utilization, throughput, and execution time.

1. INTRODUCTION
To evaluate joins with arbitrary predicates on very large

volumes of data, previous works [35, 28] propose efficient
partitioning schemes for offline theta-join processing in par-
allel environments. The goal is to find a scheme that achieves
load balancing while minimizing duplicate data storage and
network traffic. Offline approaches require that all data is
available beforehand and accordingly perform optimization
statically before query execution.

However, online and responsive analysis of fresh data is
necessary for an increasing number of applications. Busi-
nesses, engineers and scientists are pushing data analytics
engines earlier in their workflows for rapid decision making.
For example, in algorithmic trading, strategy designers run
online analytical queries on real-time order book data. Or-
der books consist of frequently changing orders waiting to
be executed at a stock exchange. Some orders may stay
in the order book relatively long before they are executed
or revoked. Orders are executed through a matching engine
that matches between buyer and seller trades using sophisti-
cated matching rules. A broad range of applications, includ-
ing fraud-detection mining algorithms, interactive scientific
simulations, and intelligence analysis are characterized as
follows: They (i) perform joins on large volumes of data
with complex predicates; (ii) require operating in real-time

while preserving efficiency and fast response times; (iii) and
maintain large state, which potentially depend on the com-
plete history of previously processed tuples [10, 6].

Previous work on stream processing has received consid-
erable attention [3, 5], but is geared towards window-based
relational stream models, in which state typically only de-
pends on a recent window of tuples [10]. Although this sim-
plifies the architecture of the stream processing engine, it
is ineffective for emerging application demands that require
maintaining large historical states. Only recently, has this
concern been acknowledged and interest been raised in de-
vising scalable stateful operators for stream processing [10].

This motivates our work towards full-history theta-join
processing in an online scalable manner. In this context,
the traditional optimize-then-execute strategy is ineffective
due to lack of statistics such as cardinality information. For
pipelined queries, cardinality estimation of intermediate re-
sults is challenging because of the possible correlations be-
tween predicates [24, 36] and the generality of the join con-
ditions. Moreover, statistics are not known beforehand in
streaming scenarios, where data is fed in from remote data
sources [14]. Therefore, the online setting requires a ver-
satile dataflow operator that adapts to the data dynamics.
Adaptivity ensures low latency, high throughput, and effi-
cient resource utilization throughout the entire execution.

This paper presents a novel design for an intra-adaptive
dataflow operator for stateful online join processing. The
operator supports arbitrary join-predicates and is resilient
to data skew. It encapsulates adaptive state partitioning
and dataflow routing. The authors of [18] point out the
necessity of investigating systematic adaptive techniques as
current ones lack theoretical guarantees about their behav-
ior and instead rely on heuristic-based solutions. Therefore,
to design a provably-efficient operator we need to charac-
terize the optimality measures and the adaptivity costs of
the operator. This requires theoretical analysis and address-
ing several systems design challenges which we discuss while
outlining our main contributions.
1. Adapting the partitioning scheme requires state relo-
cation which incurs additional network traffic costs. Our
design employs a locality-aware migration mechanism that
incurs minimal state relocation overhead.
2. We present an online algorithm that efficiently decides
when to explore and trigger new partitioning schemes. An
aggressively adaptive approach has excessive migration over-
heads, whereas a conservative approach does not adapt well
to data dynamics which results in poor performance and
resource utilization. Our presented algorithm balances be-
tween maintaining optimal data distribution and adaptation
costs. It ensures a constant competitive ratio (3.75) in data
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distribution optimality and amortized linear communication
cost (including adaptivity costs).
3. Previous adaptive techniques [34, 26, 31] follow a gen-
eral blocking-approach for state relocation that quiesces in-
put streams until relocation ends. Blocking approaches are
not suitable for online operators that maintain large states
because they incur lengthy stalls. Our design adopts a non-
blocking protocol for migrations that seamlessly integrates
state relocation with on-the-fly processing of new tuples
while ensuring eventual consistency and result correctness.
4. Statistics are crucial for optimizing the partitioning scheme.
The operator must gather them on-the-fly and constantly
maintain them up-to-date. Traditionally, adaptive solutions
delegate this to a centralized entity [34, 26, 20, 43] which
may be a bottleneck if the volume of feedback is high [18].
Our approach for computing global statistics is decentralized
requiring no communication or synchronization overhead.

Next we discuss related work; §3 introduces the back-
ground and concepts used throughout the rest of the paper
and it outlines the problem and the optimization criteria; §4
presents the adaptive data-flow operator and its design in
detail; §5 evaluates performance and validates the presented
theoretical guarantees; and §6 concludes.

2. RELATED WORK
Parallel Join Processing. In the past decades, much ef-
fort has been put into designing distributed and parallel
join algorithms to cope with the rapid growth of data sets.
Graefe gives an overview of such algorithms in [19]. Schnei-
der et al. [33] describe and evaluate several parallel equi-
join algorithms that adopt a symmetric partitioning method
which partitions input on the join attributes, whereas Sta-
mos et al. [35] present the symmetric fragment-and-replicate
method to support parallel theta-joins. This method relies
on replicating data to ensure result completeness and on a
heuristic model to minimize total communication cost.
MapReduce Joins. MapReduce [12, 1] has emerged as one
of the most popular paradigms for parallel computation that
facilitates parallel processing of large data and scalability.
There has been much work done towards devising efficient
join algorithms using this framework. Previous work focuses
primarily on equi-join implementations [4, 9, 30, 32, 44] by
partitioning the input on the join key, whereas Map-Reduce-
Merge [44] supports other join predicates as well. However,
the latter requires explicit user knowledge and modifications
to the MapReduce model. Recently, Okcan et al. [28] pro-
posed techniques that supports theta-join processing with-
out changes to the model. Finally, Zhang et al. [45] extend
Okcan’s work to evaluate multi-way joins.

All of the aforementioned algorithms are offline. They
have a blocking behavior that is attributed either to their
design or to the nature of the MapReduce framework (the
reduce phase cannot commence before the map phase has
completed). In contrast, this paper sets out to build an
online operator that supports scalable processing of theta-
joins which allows for early results and rich interactivity.
Online Join Algorithms. There has been great interest
in designing non-blocking join algorithms. The symmetric
hash join Shj [42] is one of the first along those lines to sup-
port equi-joins. It extends the traditional hash join algo-
rithm to support pipelining. However, the Shj requires that
relations fit in memory. Xjoin [40] and Dphj [25] extend
the Shj with overflow resolution schemes that allow parts
of the hash tables to be spilled out to disk for later pro-

cessing. Similarly, Rpj [37] uses a statistics-based flushing
strategy that tries to keep tuples that are more likely to join
in memory. Dittrich et al. present Pmj [15, 16] which is a
sorting-based online join algorithm that supports inequality
predicates as well. Mokbel et al. present Hmj [27] that com-
bines the advantages of the two state-of-the-art non-blocking
algorithms, namely Xjoin and Pmj. Finally, The family of
ripple joins [21] generalize block nested loop join, index loop
join, and hash join to their online counterparts. Ripple joins
automatically adapt their behavior to provide approximate
running aggregates defined within confidence intervals. All
the previous algorithms are local online join algorithms, and
thus, are orthogonal to our data-flow operator. In the pre-
sented parallel operator, each machine can freely adopt any
flavor of the aforementioned non-blocking algorithms to per-
form joins locally on its assigned data partition.
Stream Processing Engines. Distributed stream proces-
sors such as Borealis [3] and Stream [5] focus on designing
efficient operators for continuous queries. They assume that
data streams are processed in several sites, each of which
holds some of the operators. They are optimized to handle
unbounded streams of data by dropping tuples (load shed-
ding) or having window semantics. In contrast, this paper
is concerned with the design of a scalable operator, as op-
posed to a centralized approach. And along the same lines
of [10], it targets stateful streaming queries which maintain
large states, potentially full historical data. Castro et al. [10]
introduce a scale-out mechanism for stateful operators, how-
ever they are limited to stream models with key attributes.
Adaptive Query Processing. Adaptive query processing
Aqp techniques cope their behavior, at run-time, to data
characteristics. There has been a great deal of work on cen-
tralized Aqp [8, 14, 22, 17] over the last few years. For
parallel environments, [18] presents a detailed survey. The
Flux operator [34] is the closest to our work. Flux is a
general adaptive operator that encloses adaptive state par-
titioning and routing. The operator is content-sensitive and
suitable for look-up based operators. Although the authors
focus on single-input aggregate operators [26], it can support
a restricted class of join predicates, e.g. equi-join. Flux
supports equi-joins under skewed data settings but requires
explicit user knowledge about partitions before execution.
In [20, 41], the authors present techniques to support multi-
way non equi-joins. All these approaches are mainly applied
to data streaming scenarios with window semantics. On the
other hand, this paper presents an adaptive dataflow opera-
tor for general joins. It advances the state of the art in online
equi-join processing in the presence of data skew. Most im-
portantly, along the lines of [14, 17, 22], the operator runs on
long running full-history queries without window semantics,
load shedding, and data arrival order restrictions.
Eddies. Eddies [7, 13] are among the first adaptive tech-
niques known for query processing. Eddies act as a tuple
router that is placed at the center of a dataflow, intercept-
ing all incoming and outgoing tuples between operators in
the flow. Eddies observe the rates of all the operators and
accordingly make decisions about the order at which new
tuples will visit the operators. In principal, eddies are able
to choose different operator orderings for each tuple within
the query processing engine to adapt to the current infor-
mation about the environment and data. Compared to our
work, this direction seeks adaptations at an orthogonal hier-
archical level, it is concerned with inter-operator adaptivity
as opposed to our work on intra-operator adaptivity. More-
over, the original eddies architecture is centralized and can-
not be applied to a distributed setting in a straightforward
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Figure 1: (a) R ./ S join-matrix example, gray cells satisfy the 6= predicate. (b) a (2,4)-mapping scheme using J = 8 machines.
(c) the theta-join operator structure. J reshuffler and J joiner tasks where each physical machine is assigned one from each.
One of the reshuffler tasks is designated the additional role of a controller.

manner [18]. However, the work in [38] leverages the eddies
design to a distributing setting but assumes window seman-
tics; tolerates loss of information; and neglects adaptations
on operators that hold internal state.

3. PRELIMINARIES
This section defines notations and conventions used through-

out the rest of this paper. It describes the data partitioning
scheme used by the dataflow operator, outlines the opera-
tor’s structure, and defines the optimization criteria.

3.1 Join Partitioning Scheme
We adopt and extend the join-matrix model [28, 35] to the

data streaming scenario. A join between two data streams R
and S is modeled as a join-matrixM. For row i and column
j, the matrix cellM(i , j ) represents a potential otput result.
M(i , j ) is true if and only if the tuples ri and sj satisfy the
join predicate. The result of any join is a subset of the cross-
product. Hence, the join-matrix model can represent any
join condition. Fig. 1a shows an example of a join-matrix
with the predicate 6=.

We assume a shared-nothing cluster architecture. J phys-
ical machines are dedicated to a single join operator. A
partitioning scheme maps matrix cells to machines for eval-
uation such that each cell is assigned to exactly one machine.
This ensures result completeness and avoids expensive post
processing or duplicate elimination. There are many pos-
sible mappings [28], however, we present a grid-layout par-
titioning scheme which (i) ensures minimum join work dis-
tribution among all machines, (ii) incurs minimal storage
and communication costs, (iii) and has a symmetric struc-
ture that lends itself to adaptivity. We refer the interested
reader to [?] for bounds, proofs, and comparison with previ-
ous partitioning approaches [28]. The scheme can be briefly
described as follows: to achieve load balance such that each
machine is assigned the same number of cells to evaluate,
the join-matrix M is divided into J regions of equal area
and each machine is assigned a single region. As illustrated
in Fig. 1b, the relations are split into equally sized partitions
R1, R2, . . . , Rn and S1, S2, . . . , Sm where n ·m = J . For ev-
ery pair 1 ≤ i ≤ n and 1 ≤ j ≤ m, there is exactly one
machine storing both partitions Ri and Sj . Accordingly,

each machine evaluates the corresponding Ri ./θ Sj inde-
pendently. We refer to this as the (n,m)-mapping scheme.

3.2 Operator Structure
As illustrated in Fig. 1c, the operator is composed of two

sets of tasks. The first set consists of joiner tasks that do
the actual join computation whereas the reshufflers set is
responsible for distributing and routing the tuples to the
appropriate joiner tasks. An incoming tuple to the operator
is randomly routed to a reshuffler task. One task among
the reshufflers, referred to as the controller, is assigned the
additional responsibility of monitoring global data statistics
and triggering adaptivity changes. Each of the J machines
run one joiner task and one resuffler task.

The reshufflers randomly divide incoming tuples uniformly
among partitions. Under an (n,m)-mapping scheme, for an
incoming r(s) tuple, it is assigned a randomly chosen parti-
tion Ri(Sj). This routing policy ensures load balance and
resilience to data skew, i.e., content-insensitivity. For a large
number of input tuples, the numbers in each partition are
roughly equal. Thus, all bounds, later discussed, are meant
to approximately hold in expectation with high probability.

Exactly m joiners are assigned partition Ri and exactly
n joiners are assigned partition Sj . Therefore, whenever a
reshuffler receives a new R(S) tuple and decides that it be-
longs to partition Ri(Sj), the tuple is forwarded to m(n) dis-
tinct joiner tasks. Any flavor of non-blocking join algorithm,
e.g., [42, 40, 37, 15, 21], can be independently adopted at
each joiner task. Local non-blocking join algorithms tradi-
tionally operate as follows: when a joiner task receives a
new tuple, it is stored for later use and joined with stored
tuples of the opposite relation.

3.3 Input-Load Factor
Theta-join processing cost, in the presented model, is de-

termined by the costs of joiners receiving input tuples, com-
puting the join, and outputting the result. Under the pre-
sented grid-scheme, the join matrix is divided into congruent
rectangular regions. Therefore, the costs are the same for
every joiner. Since all joiners operate in parallel, we restrict
our attention to analyzing one joiner.

The join computation and its output size on a single joiner
are independent of the chosen mapping. This holds because
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both quantities are proportional to the area of a single re-
gion, which is |R| · |S| /J . This is independent of n and m.
However, the input size corresponds to the semi-perimeter
of one region and is equal to sizeR · |R| /n + sizeS · |S| /m,
where sizeR(sizeS) is the size of a tuple of R(S). This also
represents the storage required by every joiner since each
received tuple is eventually stored. We refer to this value as
the input-load factor (ILF). This is the only performance
metric that depends on the chosen mapping. An optimal
mapping covers the entire join matrix with minimum ILF.
Minimizing the ILF maximizes performance and resource
utilization. This is extensively validated in our experiments
(§5) and is attributed to the following reasons: (i) there is a
monotonically increasing overhead for processing input tu-
ples per machine. The overhead includes demarshalling the
message; appending the tuple to its corresponding storage
and index; probing the indexes of the other relation; sorting
the input in case of sort-based online join algorithms [15, 27],
etc. Minimizing machine input size results in higher local
throughput and better performance. (ii) Minimizing stor-
age size per machine is also necessary, because performance
deteriorates when a machine runs out of main memory and
begins to spill to disk. Local non-blocking algorithms per-
form efficiently when they operate within the memory capac-
ity, however they employ overflow resolution strategies that
prevent blocking, but persist to experience performance hits
and long delayed join evaluation [14]. (iii) Overall, minimiz-
ing the ILF results in minimum global duplicate storage and
replicated messages (J · ILF ). This maximizes overall op-
erator performance and increases global resource utilization
by minimizing total storage and network traffic and thus
preventing congestion. This is essential for cloud infrastruc-
tures which typically follow pay-as-you-go policies.

Fig. 2 compares between two different mappings for a join-
matrix with dimensions 1GB and 64GB for streams R and
S respectively. Given 64 machines, an (8, 8)-mapping re-
sults in an (8 1

8 )GB ILF and a total of 520GB of replicated
storage and messages. Whereas a (1, 64)-mapping results in
a 2GB ILF and a sum of 128GB of replicated data. Since
stream sizes are not known in advance, maintaining an op-
timal (n,m)-mapping throughout execution requires adap-
tation and mapping changes.

3.4 Grid-Layout Partitioning Scheme
The partitioning scheme used throughout the paper is in-

spired, but greatly differs from that of [28]. Initially, the
number of joiners will be restricted to powers of two. This
allows the derivation of bounds (including most notably the
input-load factor). Later this assumption will be relaxed.

In this subsection, we give some theoretical justification of
using this grid-layout scheme with a power of two number of
joiners. In the previous work of Okcan et al., the join matrix
is divided into square regions with some of the machines left
unused. The authors prove that the region semi-perimeter
and area are within twice and four times that of the opti-
mal lower bound, respectively.

Theorem 3.1. (Okcan et al. [28]) Under the map-
ping scheme discussed in [28], the region semi-perimeter
is at most 4 ·

√
|R| |S| /J and the region area is at most

4RS/J with the optimal lower bounds being respectively 2 ·√
|R| |S| /J and |R| |S| /J .

Under the grid-layout mapping scheme, allowing rectan-
gular regions rather than restrictive square regions, the bounds
derived can be substantially improved.

Theorem 3.2. Under the grid-layout mapping scheme,
the region semi-perimeter is at most 1.07 times the opti-
mal and the region area is exactly |R| |S| /J attaining the
optimum lower bound.

Proof. The area bound is straightforward. Since there
are J regions each with exactly the same area, covering the
join matrix, the area is exactly |R| |S| /J . It remains to show
the semi-perimeter bound. If the ratio of the relation sizes is
J or more, the grid-layout mapping is either (1, J) or (J, 1),
being exactly optimal. Otherwise, let the ratio R/S be ρ
where 1/J < ρ < J . Since n and m are powers of two, it
holds that 1

2ρ ≤ n/m = n2/J ≤ 2ρ. The semi-perimeter is
R/n + S/m = ρS/n + Sn/J . The maximum value of the
semi-perimeter is ( 1√

2 +
√

2)S
√
ρ/J and is attained at n

being either
√

2ρJ or
√
ρJ/2. This is at most 1.07 times

the optimal lower bound.

4. INTRA-OPERATOR ADAPTIVITY
We present an intra-adaptive operator that modifies its

mapping configurations as data flows in. The goal of adap-
tive processing is, generally, dynamic recalibration to imme-
diately react to the frequent changes in data and statistics.
Adaptive solutions supplement regular execution with a con-
trol system that monitors performance, explores alternative
configurations and triggers changes. These stages are de-
fined within a cycle called the Adaptivity Loop. This section
presents the design of an adaptive dataflow theta-join oper-
ator that continuously modifies its (n,m)-mapping scheme
to reflect the optimal data assignment and routing policy.
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Algorithm 1 Controller Algorithm.
Input: Tuple t
Initialize: |R|, |S|, |∆R|, |∆S| ← 0;
1: function Update State(t)
2: if t ∈ R then
3: |∆R| ← |∆R|+ J . Scaled Increment.
4: else
5: |∆S| ← |∆S|+ J

6: MigrationDecision(|R|, |S|, |∆R|, |∆S|)
7: Route t according to the current (n,m)-scheme.
8: end function

We follow a discussion flow that adopts a common frame-
work [14] that decomposes the adaptivity loop into three
stages: (i) The monitoring stage that involves measuring
data characteristics like cardinalities. (ii) The analysis and
planning stage that analyzes the performance of the cur-
rent (n,m)-mapping scheme and explores alternative lay-
outs. (iii) The actuation stage that corresponds to migrating
from one scheme to another with careful state relocation.

4.1 Monitoring Statistics
In this stage, the operator continuously gathers and main-

tains online cardinality information of the incoming data.
Traditional adaptive techniques in a distributed environ-
ment [34, 26, 20, 43] either rely on a centralized controller
that periodically gathers statistics or on exchanging statis-
tics among peers [38, 46]. This may become a bottleneck
if the number of participating machines and/or the volume
of feedback collected is high [18]. In contrast, we follow a
decentralized approach, where reshufflers gather statistics
on-the-fly while routing the data to joiners. Since reshuf-
flers receive data that is randomly shuffled from the previ-
ous stages, the received local samples can be scaled by J
to construct global cardinality estimates (Alg 1 lines 3,5).
These estimates can be reinforced with statistical estimation
theory tools [23] to provide confidence bounds. The advan-
tages of this design are three-fold: a) A centralized entity
for gathering statistics is no longer required, removing a
source of potential bottlenecks. Additionally, it precludes
any exchange communication or synchronization overheads.
b) This model can be easily extended to monitor other data
statistics, e.g., frequency histograms. c) The design sup-
ports fault tolerance and state reconstruction. When a reshuf-
fler or a controller task fails, any other task can take over.

4.2 Analysis and Planning
Given that global statistics are constructed in Alg. 1, the

controller is capable of analyzing the efficiency of the current
mapping scheme, and thus, determining the overall perfor-
mance of the operator. Furthermore, it checks for alterna-
tive (n,m)-mapping schemes that minimize the ILF (Alg 1
line 6). If it finds a better one, it triggers the new scheme.
This affects the route of new tuples and impacts machine
state. Adopting this dynamic strategy reveals three chal-
lenges that need careful examination: a) Since the controller
is additionally a reshuffler task, it has the main duty of
routing tuples in parallel to exploring alternative mappings.
Thus, it has to balance between the ability to quickly react
to new cardinality information against the ability to pro-
cess new tuples rapidly (the classic exploration-exploitation
dilemma). b) Migrating to a new mapping scheme requires
careful state maintenance and transfer between machines.

This incurs non-negligible overhead due to data transmis-
sion over the network. The associated costs of migration
might outweigh the benefits if handled näıvely. c) An aggres-
sively adaptive control system suffers from excessive migra-
tion overheads while a conservative system does not adapt
well to data dynamics. Adaptivity thrashing might incur
quadratic migration costs. Thus, the controller should be
alert in choosing the moments for triggering migrations.

In this section, we describe a constant-competitive algo-
rithm that decides when to explore and trigger new schemes
such that the total cost of communication, including adap-
tation, is amortized linear.

4.2.1 1.25-Competitive Online Algorithm
Alg. 2 decides the time points that explore and trigger

migration decisions. Right after an optimal migration, the
system has |R| and |S| tuples from the respective relations.
The algorithm maintains two counts |∆R| and |∆S|, de-
noting the newly arriving tuples on both relations respec-
tively after the last migration. If either |∆R| reaches |R| or
|∆S| reaches |S|, the algorithm explores alternative mapping
schemes and performs a migration, if necessary.

The two metrics of interest here are the ILF and the mi-
gration overhead. The aim of this section is to demonstrate
the following key result.

Theorem 4.1. Assume that the number of joiners J is
a power of two, the sizes for |R| and |S| are no more than
a factor of J apart, and that tuples from R and S have the
same size. For a system applying Alg. 2, the following holds:
1. The ILF is at most 1.25 times that of the optimal mapping
at any point in time. ILF ≤ 1.25 · ILF∗, where ILF∗ is
the input-load factor under the optimal mapping. Thus, the
algorithm is 1.25-competitive.
2. The total communication overhead of migration is amor-
tized, i.e., the cost of routing a new input tuple, including
its migration overhead, is O(1).

Input-Load Factor. We hereby analyze the behavior of
the ILF under the proposed algorithm. Since we assume
that size(r) = size(s), it follows that minimizing the ILF is
equivalent to minimizing (|R| /n+ |S| /m).

Lemma 4.1. If J is a power of two and it holds that 1/J ≤
|R| / |S| ≤ J , then under an optimal mapping (n,m),

1
2
|S|
m
≤ |R|

n
≤ 2 |S|

m
and 1

2
|R|
n
≤ |S|

m
≤ 2 |R|

n
.

Proof. An optimal mapping minimizes |R| /n+ |S| /m,
under the restriction that n · m = J . This happens when
|R| /n and |S| /m are closest to each other. Since J is a
power of two, by assumption, (and also n and m), it follows
that under the optimal mapping |R| /n ≤ 2 |S| /m. Assume
it were not the case, then |R| /n > 2 |S| /m. Under the map-
ping (2n,m/2), both |R| /n and |S| /m are closer, yielding
a lower input-load factor, contradicting the optimality of
(n,m). Choosing such a mapping is possible, assuming that
1/J ≤ |R| / |S| ≤ J . The other inequality is symmetric.

This lemma is useful in proving all subsequent results.
The first important result is that the ILF is within a con-
stant factor from that of the optimal scheme. This is due to
the fact that Alg. 2 does not allow the operator to receive
many tuples without deciding to recalibrate. The following
theorem formalizes this intuition.
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Algorithm 2 Migration Decision Algorithm.
Input: |R|, |S|, |∆R|, |∆S|
1: function MigrationDecision(|R|, |S|, |∆R|, |∆S|)
2: if |∆R| ≥ |R| or |∆S| ≥ |S| then
3: Choose mapping (n,m) minimizing |R|

n
+ |S|

m
4: Decide a migration to (n,m)
5: |R| ← |R|+ |∆R| ; |S| ← |S|+ |∆S|
6: |∆R| ← 0; |∆S| ← 0
7: end function

Lemma 4.2. If |∆R| ≤ |R| and |∆S| ≤ |S| and (n,m)
is the optimal mapping for (|R| , |S|) tuples, then the opti-
mal mapping for (|R| + |∆R| , |S| + |∆S|) is one of (n,m),
(n/2, 2m), and (2n,m/2).

Proof. Without loss of generality, assume that |∆S| ≥
|∆R|. It must be that an optimal mapping will not decrease
m (since |S| grew relative to |R|). Therefore, the optimal is
one of (n,m), (n/2, 2m), (n/4, 4m), . . . , etc. To prove that
the optimum is either (n,m) or (n/2, 2m), it is sufficient to
prove the following inequality
|R|+ |∆R|

n/2 + |S|+ |∆S|2m ≤ |R|+ |∆R|
n/4 + |S|+ |∆S|4m

|S|+ |∆S|
m

≤ 8(|R|+ |∆R|)
n

which means that the ILF under an (n/2, 2m)-mapping is
smaller than that under an (n/4, 4m)-mapping. This holds
because |S| /m ≤ 2 |R| /n (lemma 4.1), even if |∆S| = |S|
and |∆R| = 0. The case |∆R| ≥ |∆S| is symmetric.

Alg. 2 decides migration once |∆R| = |R| or |∆S| = |S|.
Therefore, lemma 4.2 implies that while the system is oper-
ating with the mapping (n,m), the optimum is one of (n,m),
(n/2, 2m), and (2n,m/2). This implies the following.

Lemma 4.3. If |∆R| ≤ |R| and |∆S| ≤ |S| and (n,m) is
the optimal mapping for (|R| , |S|) tuples, then under Alg. 2,
the input-load factor ILF never exceeds 1.25 · ILF∗. In other
words, the algorithm is 1.25-competitive.

Proof. By lemma 4.2, the optimal mapping is either
(n,m), (n/2, 2m) or (2n,m/2). If the optimal mapping

is (n,m) then ILF = ILF∗. Otherwise, the ratio can be
bounded as follows. Without loss of generality, assume that
the optimum is (n/2, 2m) then

ILF
ILF∗ ≤

(|R|+ |∆R|)/n+ (|S|+ |∆S|)/m
(|R|+ |∆R|)/(n/2) + (|S|+ |∆S|)/(2m)

where the constraints |∆R| /n ≤ |R| /n, |∆S| /m ≤ |S| /m
and those in lemma 4.1 must hold. All cardinalities are non-
negative. Consider the ratio as a function of the variables
|R| /n, |S| /m, |∆R| /n and |∆S| /m. The maximum value
of the ratio of linear functions in a simplex (defined by the
linear constraints) is attained at a simplex vertex. By ex-
haustion, the maximum occurs when |∆R| = 0, |∆S| = |S|
and |S| /m = 2 |R| /n. Substituting gives 1.25.

Migration Overhead. It remains to show that, under the
described algorithm, the migration overhead is amortized.
This requires showing that the migration process can be
done efficiently and that when a migration is triggered, enough
tuples are received to “pay” for this migration cost.

The migration of interest is the change from the (n,m)
to (n/2, 2m)-mapping (symmetrically, (n,m) to (2n,m/2)).
Migration can be done näıvely by repartitioning all previ-
ous states around the joiners according to the new scheme.
This approach unnecessarily congests the network and is
expensive. In contrast, we present a locality-aware migra-
tion mechanism that minimizes state transfer overhead. To
illustrate the procedure, we walk through an example. Con-
sider a migration from a (8, 2) to a (4, 4)-mapping scheme
(J = 16) as depicted in Fig. 3. Before the migration, each
joiner stores about an eighth of R and half of S. After the
migration, each joiner stores a quarter of R and only one
quarter of S. To adapt, joiners can efficiently and deter-
ministically discard a quarter of S (half of what they store).
However, tuples of R must be exchanged. In Fig. 3, join-
ers 1 and 2 store the “first” eighth of R while joiners 3 and
4 store the “second” eighth of R. Joiners 1 and 3 can ex-
change their tuples and joiners 2 and 4 can do the same
in parallel. Joiners 5 and 7, 6 and 8, and so forth operate
similarly in parallel. This incurs a total overhead of |R| /4
time units which is the bi-directional communication cost of
|R| /8. This idea can be generalized, yielding bounds on the
migration overhead.
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Lemma 4.4. Migration from (n,m) to (n/2, 2m)-mapping
can be done with a communication cost of 2 |R| /n time units.
Similarly, migrating to (2n,m/2) incurs a cost of 2 |S| /m.

Proof. Without loss of generality, consider the migra-
tion to (n/2, 2m). No exchange of S state is necessary. On
the other hand, tuples of R have to be exchanged among
joiners. Before migration each of the J joiners had |R| /n
tuples from R, while after the migration, each must have
2 |R| /n. Consider one group of n joiners sharing the same
tuples from S (corresponding to a “column” in Fig. 3). These
joiners, collectively, contain the entire state of R. They can
communicate in parallel with the other m−1 groups. There-
fore, we analyze the state relocation for one such group and
it follows that all groups behave similarly in parallel.

Divide the group into two subgroups of n/2 joiners. Num-
ber the joiners in each group 1, 2, . . . , n/2. Joiner pairs la-
beled i should exchange their tuples together. It is clear that
each pair of joiners labeled i ends up with a distinct set of
2 |R| /n tuples. Fig. 3 describes this exchange process. Each
of the pairs labeled i can communicate completely in paral-
lel. Therefore, the total migration overhead is 2 |R| /n, since
each joiner in the pair sends |R| /n tuples to the other.

Lemma 4.5. The cost of routing tuples and data migra-
tion is linear. The amortized cost of an input tuple is O(1).

Proof. Since all joiners are symmetrical and operate si-
multaneously in parallel, it suffices to analyze cost at one
joiner. Therefore, after receiving |∆R| and |∆S| tuples,
the operator spends at least max(|∆R| /n, |∆S| /m) units
of time processing these tuples at the appropriate joiners.
By assigning a sufficient amortized cost per time unit, the
received tuples pay for the later migration.

By lemma 4.2, the optimal mapping is (n,m), (n/2, 2m)
or (2n,m/2). If the optimal mapping is (n,m), then there
is no migration. Without loss of generality, assume that
|∆S| ≥ |∆R| and that the optimal mapping is (n/2, 2m).
Between migrations, max(|∆R| /n, |∆S| /m) time units elapse,
each is charged 7 units. One unit is used to pay for routing
and 6 are reserved for the next migration. The cost of mi-
gration by lemma 4.4 is 2(|R|+|∆R|)/n. The amortized cost
reserved for migration is 6 max(|∆R| /n, |∆S| /m). Since a
migration was triggered, either |∆R| = |R| or |∆S| = |S|. In

either case, it should hold that the reserved cost is at least
the migration cost, that is,

6 max(|∆R| /n, |∆S| /m) ≥ 2(|R|+ |∆R|)/n.

If |∆R| = R, then by substituting, the left hand side is
6 max(|∆R| /n, |∆S| /m) ≥ 6 |R| /n and the right hand side
is 2(|R| + |∆R|)/n = 4 |R| /n. Therefore, the inequality
holds. If |∆S| = S, then the left hand side is

6 max(|∆R| /n, |∆S| /m) ≥ 2 |∆R| /n+ 4 |S| /m.

Therefore, the left hand side is not smaller than the right
hand side, since 2 |S| /m ≥ |R| /n (by lemma 4.1). Thus, the
inequality holds in both cases. The cases, when |∆R| ≥ |∆S|
or when the optimal is (2n,m/2), are symmetric.

Lemmas 4.3 and 4.5 directly imply Theorem 4.1.

4.2.2 Generalization and Discussion
In the previous section, the analysis was based upon three

assumptions: the cardinality ratio of the larger relation to
the smaller relation does not exceed J ; the number of join-
ers is a power of two; and tuples from R and S have the
same size. In this section we outline how to relax these
assumptions and show that the algorithm remains constant-
competitive and the migration overhead persists to be amor-
tized and linear to the number of input tuples.
Relation cardinality ratio. Without loss of generality, as-
sume that |R| > |S|. The analysis in the previous section
assumed that |R| ≤ J |S|. This can be relaxed by contin-
uously padding the smaller relation with dummy tuples to
maintain the ratio less than J . This requires padding the
relation S with at most |R| /J ≤ T/J tuples, where T is
the total number of tuples |R| + |S|. Therefore, the total
number of tuples the operator handles, including dummy
tuples, is at most T + T/J = (1 + 1/J)T tuples. The ratio
of the relation sizes still respects the assumption. There-
fore, the analysis in the previous section holds except that
the ILF now gets multiplied by a factor of 1 + 1/J . This
factor is at most 1.5 (since J ≥ 2). This factor tends to
one as the number of joiners increases. Therefore, the algo-
rithm is still constant-competitive, with the constant being
1.25 · 1.5 = 1.875. Similarly, adding the dummy tuples mul-
tiplies the migration overhead by at most 1.5. Therefore,
the communication overhead remains linear.
Number of joiners. Assume that J ∈ N+, then J has
a unique decomposition into a sum of powers of two. Let
J = J1 + J2 + . . . + Jc where each Ji is a power of two.
Accordingly, the machines are broken down into c groups,
where group i has Ji machines. There can be at most dlog Je
of such groups. Finally, each group operates exactly as de-
scribed in the previous section. Fig. 4a illustrates an exam-
ple, given a pool of J = 22 machines, it is clustered into
three groups of sizes 16, 4 and 2 which operate indepen-
dently. An incoming tuple is sent to all c groups to be joined
with all stored tuples. Only one group stores this tuple for
joining with future tuples. The group that stores this tuple
is determined by computing a pseudo-random hash whose
ranges are proportional to the group sizes. The probability
that group i is chosen is equal to Pi = Ji/J . With high
probability, after T tuples have been received, the number
of tuples stored in group i is close to (Ji/J)T .

It is essential that if a pair of tuples are sent to two ma-
chines, each belonging to different groups, that this pair of
tuples is received in the same order by both machines. With
very high probability (after a small number of tuples has
been received), the mappings of two groups will be similar.
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More specifically, for two groups with sizes J1 < J2, it will
hold that n2 (m2) is divisible by n1 (m1). Blocks of ma-
chines in the bigger group correspond to a single machine in
the smaller group (see figure 4). In each such block, a single
machine does the task of forwarding all tuples to machines
within that block as well as the machine in the smaller group
(see the same figure). This ensures that machines get tuples
in the same order at the cost of tuple latency proportional
to log J , since tuples have to be propagated serially among
log J groups of machines.

Let the biggest group be L with size J ′ which is at least
half of J . The storage is bounded by that of L (receiving the
entire input). The optimal storage is at most half that of L
(since J ′ is at least half of J). Therefore, the competitive
ratio of storage is at most doubled (3.75). Since groups oper-
ate independently, migrations are performed asynchronously
and completely in parallel. Therefore, only tuple routing
gets multiplied by a log J factor, since every tuple is broad-
cast to at most log J groups. Therefore, the total routing
cost, including migrations, is O(T log J).

It remains to show that the described distribution of data
does not affect the original configuration that all joiners per-
form an equal amount of join work. Without loss of general-
ity, consider two tuples tR and tS where tR arrives to the sys-
tem before tS (the other case is symmetric). We show that
the probability a specific joiner j computes {tR} ./ {tS}
is 1/J , implying directly that the work gets equally dis-
tributed. For joiner j to perform the join, tR has to be stored
on j. The probability of this happening is (Jg/J) · (1/ng)
where Jg is the group size of group g containing joiner j and
ng is the number of rows in the mapping of this group. tS
gets communicated to all groups. The probability that tS is
sent to j is exactly 1/mg where mg is the number of columns
in the mapping of group g. Multiplying both probabilities
and noticing that ng ·mg = Jg gives exactly 1/J .
Optimality-Communication tradeoff. It is possible to
modify Alg. 2 to tradeoff the mapping optimality with the
communication overhead. The algorithm checks for the pos-
sibility of performing migration whenever either |∆R| = |R|
or |∆S| = |S|. By modifying these conditions to be |∆R| =
ε |R| or |∆S| = ε |S|, where 0 < ε ≤ 1, we directly get a
tradeoff between optimality and communication cost.

Theorem 4.2. Under modified Alg. 2 (parameterized by
ε), the competitive ratio of the ILF becomes 3+2ε

3+ε and the
amortized communication cost becomes 8

ε
= O( 1

ε
).

Proof. The proof is exactly following the lemmas of sub-
section 4.2.1 and replacing the conditions |∆R| ≤ |R| and
|∆S| ≤ |S| by |∆R| ≤ ε |R| and |∆S| ≤ ε |S|, respectively.
The competitive ratio is given by the following expression:

ILF
ILF∗ ≤

(|R|+ |∆R|)/n+ (|S|+ |∆S|)/m
(|R|+ |∆R|)/(n/2) + (|S|+ |∆S|)/(2m)

This attains its maximum value 3+2ε
3+ε at |∆R| = 0, |∆S| =

ε |S| and |S| /m = 2 |R| /n.
For every input tuple, an amortized cost of 3 + 4/ε is

given. Between migrations, at least max(|∆R| /n, |∆S| /m)
are received. Without loss of generality, the migration cost
is 2 |R|+|∆R|

n
. If |∆R| = ε |R|, substituting shows that the

amortized cost exceeds the migration cost. In the case of
|∆S| = ε |S|, substituting and noting that S

m
≥ R

2m (by
lemma 4.1), it also holds that the total migration cost is less
than the amortized cost. The theorem statement immedi-
ately follows.

Notice that by setting ε = 1, the proven bounds are re-
covered as a special case of this theorem.
Elasticity. In the context of online query processing, the
query planner may be unable to a-priori determine the num-
ber of machines J to be dedicated to a join operator. It is
thus desirable to allocate as few joiners as possible to the
operator while ensuring that the stored state on each ma-
chine is reasonably maintained to prevent disk spills and
performance degradation. We hereby present a scheme that
allows the join operator to elastically expand using more
machines, as needed, while maintaining all the theoretical
bounds described (merely constant changes in the commu-
nication cost).

For joiners, designate a maximum number M of tuples
(ILF) per joiner. At migration checkpoints (following theo-
rem 4.2 when |∆R| = ε |R| or |∆S| = ε |S|), after migration,
if each joiner stores a number of tuples exceeding M/2, the
system expands by splitting every joiner into 4 joiners. Ev-
ery joiner communicates its tuples to three new joiners as
described in Fig. 5. This can be done with a total commu-
nication cost equal to twice the number of tuples stored on
that joiner prior to expansion.

Under this scheme, it is obvious that the competitive ratio
of the ILFis unaffected, since splitting every machine to four
machines does not change the ratio of n to m. It remains to
show that the amortized cost of communication is not much
affected.

Theorem 4.3. Under modified Alg. 2 (parameterized by
ε), the described expansion has an amortized cost of 8

ε
=

O(1/ε).

Proof. After receiving |∆R| and |∆S| tuples, the opera-
tor spends at least max(|∆R| /n, |∆S| /m) units of time pro-
cessing these tuples at the appropriate joiners. Each is as-
signed an amortized cost of 4 + 4/ε ≤ 8/ε. The communica-
tion cost due to expansion is at most 2( |R|+|∆R|

n
+ |S|+|∆S|

m
).

4 max(|∆R| /n, |∆S| /m) is used to account for 2 |∆R| /n+
|∆S| /m. It remains to notice that 4

ε
max(|∆R| /n, |∆S| /m) ≥

2(|R| /n + |S| /m) since either |∆R| = ε |R| or |∆S| = ε |S|
and since 1

2
|R|
n
≤ |S|

m
≤ 2 |R|

n
(by lemma 4.1).

Relative tuple sizes. Let the sizes of an R tuple and an
S tuple be τR and τS respectively. An input R tuple can be
viewed as the reception of τR “unit” tuples. Similarly an S
tuple is τS unit tuples. The previous analysis holds except
that migration decisions can be slightly delayed. For exam-
ple, if the migration decision is supposed to happen after the
reception of 5 unit tuples and a tuple of size 1000 units is re-
ceived, then the migration decision is delayed by 995 units.
Therefore, the ILF is increased by at most an additive factor
of max(τR, τS), i.e., ILF ≤ K · ILF∗ + max(τR, τS).

4.3 Actuation
The previous section provides a high-level conceptual de-

scription of the algorithm. Migration decision points are
specified to guarantee a close-to-optimal ILF and linear amor-
tized adaptivity cost. This section describes the system-level
implementation of the migration process.

Previous work on designing adaptive operators [34, 26,
31] follow a general theme for state relocation. The follow-
ing steps give a brief description of the process: (i) Stall
the input to the machines that contain state to be repar-
titioned. The new input tuples are buffered at the data
sources. (ii) Machines wait for all in-flight tuples to arrive
and be processed. (iii) Relocate state. (iv) Finally, online
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Figure 5: This figure illustrates the expansion of the system.
Each machine state is distributed to 4 joiners. Each joiner
communicates the appropriate portions of its state to the
three new joiners. For example, joiner 1 sends the second
half of its S tuples to joiners 5 and 7. It sends the second
half of its R tuples to 6 and 7. It also sends the first half of
R to 5 and the first half of S to 6.

processing resumes. Buffered tuples are redirected to their
new location to be processed. This protocol is not suitable
for stateful operators. Its blocking behavior causes lengthy
stalls during online processing until state relocation ends.

4.3.1 Eventually Consistent Protocol
It is essential for the operator to continue processing tu-

ples on-the-fly while performing adaptations. Achieving this
presents new challenges to the correctness of the results.
When the operator migrates from one partitioning scheme
Mi to another Mi+1 it undergoes a state relocation pro-
cess. During this, the state of each machine, within the
operator, does not represent a state that is consistent with
eitherMi orMi+1. Hence, it becomes hard to reason about
how new tuples entering the system should be joined. This
section presents a non-blocking protocol that allows con-
tinuous processing of new tuples during state relocation by
reasoning about the state of any tuple circulating the system
with the help of epochs. This ensures that the system (i) is
consistent at all times except during migration, (ii) even-
tually converges to the consistent target state Mi+1, and
(iii) produces correct and complete join results in a contin-
uous manner. The operation of the system is divided into
epochs. Initially, the system is in epoch zero. Whenever the
controller decides a mapping change, the system enters a
new epoch with incremented index. For example, if the sys-
tem starts with the mapping (8, 8), later migrates to (16, 4)
and finally migrates to (32, 2), the system went through ex-
actly three epochs. All tuples arriving between the first and
the second migration decision belong to epoch 1. All tu-
ples arriving after the last mapping-change decision belong
to epoch 2. Reshufflers and joiners are not instantaneously
aware of the epoch change, but continue to process tuples
normally until they receive an epoch change signal along
with the new mapping. Whenever a reshuffler routes a tuple
to joiners, it tags it with the latest epoch number it is aware
of. It is crucial for the correctness of the scheme described
shortly to guarantee that all machines are at most one epoch
behind the controller. That is, all machines operate on, at

most, two different epochs. This is, however, guaranteed
theoretically and formalized later in Theorem 4.6.

The migration starts by the controller making the deci-
sion. The controller broadcasts to all reshufflers the map-
ping change signal. When a reshuffler receives this signal,
it notifies all joiners and immediately starts sending tuples
in accordance to the new mapping. Joiners continuously
join incoming tuples and start exchanging migration tuples.
Once a joiner has received epoch change signals from all
reshufflers, it is guaranteed that it will receive no further
tuples tagged with the old epoch index. At that point, the
joiner proceeds to finalize the migration and notifies the con-
troller once it is done. The controller can only start a new
migration once all joiners notify it that they finished the
data migration. The subsequent discussion shows how join-
ers continue processing tuples while guaranteeing consistent
state and correct output.

The timestamp of the migration decision at the controller
partitions the tuples into several sets. During a migration,
τ is the set of all tuples received before the migration de-
cision. µ is the set of all tuples that are sent from one
joiner to another (due to migration). The set of new tu-
ples received after the migration decision timestamp are ei-
ther tagged with the old epoch index, referred to as ∆, or
with the new epoch index, referred to as ∆′. Notice that
µ ⊂ (τ ∪ ∆). To simplify notation, no distinction is made
between tuples of R or S. For example, writing ∆ ./ ∆′
refers to (∆R ./ ∆′S)∪ (∆S ./ ∆′R), where σR (σS) refers to
the tuples of R(S) in the set σ.

During the migration, joiners have tuples tagged with the
old epoch and the new epoch. Those tuples tagged with
the new epoch are already on the correct machines since the
reshuffler sent them according to the new mapping. Joiners
should redistribute the tuples tagged with old labels accord-
ing to the new mapping. The set of tuples tagged with the
old label is exactly τ ∪ ∆. Joiners discard portions and
communicate other portions to the other machines. The
discarded tuples are referred to as Discard(τ ∪ ∆). For
convenience, (τ ∪ ∆) − Discard(τ ∪ ∆) is referred to as
Keep(τ ∪ ∆). The migrated tuples are Migrated(τ ∪ ∆)
which coincides exactly with µ. Keep(τ) refers to tuples in
Keep(τ ∪∆) ∩ τ . The same holds for Discard, Migrated
and the set ∆.

Definition 4.4. A migration algorithm is said to be cor-
rect if right after the completion of a migration, the output
of the system is exactly (τ ∪∆ ∪∆′) ./ (τ ∪∆ ∪∆′).

During the migration, the output may be incomplete.
Therefore, completeness and consistency are defined only
upon the completion of the migration. The complete out-
put is the join of all tuples that arrived to the system before
(τ) and after the migration decision (∆ ∪ ∆′). Alg. 3 de-
scribes the joiner algorithm. The output of the algorithm is
provably correct. For the proof of correctness, an alternative
characterization of the correct output is needed.

Lemma 4.6.

(τ ∪∆ ∪∆′) ./ (τ ∪∆ ∪∆′)

is equivalent to the union of (1) τ ./ τ , (2) ∆ ./ ∆, (3) τ ./
∆, (4) ∆′ ./ µ, (5) ∆′ ./ Keep(∆), (6) ∆′ ./ Keep(τ), and
(7) ∆′ ./ ∆′.

Proof. Since set union distributes over join, the result
can be rewritten as,

(τ ./ τ)∪(τ ./ ∆)∪(τ ./ ∆′)∪(∆ ./ ∆)∪(∆ ./ ∆′)∪(∆′ ./ ∆′).
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Algorithm 3 Joiner-Epoch Algorithm.
Input: s signal
Initialize: Use HandleTuple1 to handle incoming tuples.
1: procedure Main(s)
2: if First Reshuffler Signal Received then
3: Send τ for migration.
4: else if All Reshuffler Signals Received then
5: Use HandleTuple2 to handle incoming tuples.
6: else if Migration Ended then
7: Run FinalizeMigration.
8: Use HandleTuple1 to handle incoming tuples.

Input: t an incoming tuple
9: procedure HandleTuple1(t)

10: if t ∈ µ then Output
11: {t} 1 ∆′; µ← µ ∪ {t}
12: else if t ∈ ∆′ then
13: Output {t} 1 (µ ∪∆′); ∆′ ← ∆′ ∪ {t}
14: Output {t} 1 Keep(τ ∪∆)
15: else if t ∈ ∆ then
16: Output {t} 1 (τ ∪∆); ∆← ∆ ∪ {t}
17: if t ∈ Keep(∆) then
18: Output {t} 1 ∆′

19: if t ∈Migrated(∆) then
20: Send {t} for migration

Input: t an incoming tuple
21: procedure HandleTuple2(t)
22: if t ∈ µ then
23: Output {t} 1 ∆′; µ← µ ∪ {t}
24: else if t ∈ ∆′ then
25: Output {t} 1 (µ ∪∆′); ∆′ ← ∆′ ∪ {t}
26: Output{t} 1 Keep(τ ∪∆)

27: procedure FinalizeMigration
28: Send(Ack) signal to coordinator
29: τ ← Keep(τ ∪∆) ∪ µ ∪∆′
30: ∆← ∅; ∆′ ← ∅; µ← ∅

Subsets (1), (2), (3) and (7) appear directly in the expres-
sion. It remains to argue that ∆′ ./ (τ ∪ ∆) is equal to
∆′ ./ (µ∪Keep(τ ∪∆)). This follows directly from the cor-
rectness of the migration. τ ∪∆ is the set of tuples labeled
with the old epoch, while (µ ∪ Keep(τ ∪ ∆)) is the same
set distributed differently between the machines according
to the new mapping.

Alg. 3 exploits this equivalence to continue processing tu-
ples throughout migration. Informally, parts (1), (2) and
(3) are continuously computed in HandleTuple1 whereas,
(4), (5), (6) and (7) are continuously computed in both
HandleTuple1 and HandleTuple2.

Theorem 4.5. Alg. 3 produces the correct and complete
output and ensures eventually consistent state for all joiners.

Proof. First, it is easy to see that the data migration
is performed correctly. τ is sent immediately at the very
beginning (line 3). Tuples of ∆ are sent as they are received
(line 20). Finally, the discards are done once the migration
is over (line 29). By lemma 4.6, the result is the union of:
1. τ ./ τ . This is computed prior to the start of migration.
2. (∆ ./ ∆)∪(τ ./ ∆). ∆ is initially empty. Tuples are only
added to it in line 16. Every added tuple gets joined with

all previously added tuples to ∆ and to all tuples in τ (also
in line 16). It follows that this part of the join is computed.
τ never changes until the migration is finalized.
3. ∆′ ./ (µ ∪Keep(τ ∪∆)). Whenever a tuple is added to
∆′ (in lines 13 and 25), it gets joined with µ∪Keep(τ ∪∆)
(lines 13, 14, 25 and 26). Whenever a tuple is added to
µ (lines 11 and 23), it gets joined with ∆′. Furthermore,
tuples added to ∆ are joined with ∆′ if they are in Keep(∆)
(line 18). τ never changes until the migration ends.
4. ∆′ ./ ∆′. Initially ∆′ is empty. Tuples get added to it in
lines 13 and 25. Whenever a tuple gets added, it gets joined
with all previously added tuples (lines 13 and 25).

Therefore, all parts are computed by the algorithm (com-
pleteness). Since the analysis covers all the lines that per-
form a join, it follows that each of the 4 parts of the result is
output exactly once (correctness). Thus, the result of the al-
gorithm is correct right after migration is complete. Tuples
tagged with the old epoch (τ and ∆) are migrated correctly.
Tuples tagged with the new epoch (∆′) are immediately sent
to machines according to the new scheme. Therefore, at the
end of migration, the state of all joiners is consistent with
the new mapping.

4.3.2 Theoretical Guarantees Revisited
The guarantees given in Theorem 4.1 assume a blocking

operator. During migration, it is required that no tuples
are received or processed. However, Alg. 3 continuously
processes new tuples while adapting. We set the joiners to
process migrated tuples at twice the rate of processing new
incoming tuples. We show that, under these settings, the
proven guarantees hold. It is clear that the amortized cost
is unchanged and remains linear because incoming tuples
continue to “pay” for future migration costs. The results for
competitiveness, on the other hand, need to be verified.

Theorem 4.6. With the non-blocking scheme Alg. 3, the
competitive ratio ensured by Theorem 4.1 remains 1.251.

Proof. We prove that the numbers of tuples, received
during migration, |∆R| and |∆S|, are bounded by |R| and
|S|, respectively. 1.25-competitiveness follows immediately
(by lemma 4.3).

Consider a migration decision after the system has re-
ceived |R| and |S| tuples from R and S. Let the current
mapping be (n,m). Lemma 4.2 asserts that the optimal
mapping is one of (n,m), (n/2, 2m) and (2n,m/2). This is
trivially true for the first migration. Since we prove below
that |∆R| and |∆S| are bounded by |R| and |S|, this also
holds for all subsequent migrations, inductively. Without
loss of generality, let the chosen optimal mapping for a sub-
sequent migration be (n/2, 2m). The migration process lasts
for 2 |R| /n time units (by lemma 4.4). Alg. 3 processes new
tuples at half the rate of processing migrated tuples. Thus,
during migration, the operator receives at most 1/2 · (n/2)
new tuples from R and 1/2 · (2m) from S per time unit.
Hence, it holds that,

|∆R| ≤ 2|R|
n
· n4 < |R| and |∆S| ≤ 2|R|

n
·m ≤ |S|

m
·m = |S|

where the last inequality holds by lemma 4.1 (with the
optimal being (n/2, 2m) instead of (n,m)).

1Notice that Theorem 4.6 is based on the assumptions made
in Theorem 4.1. However, it naturally follows, that if any of
the assumptions are relaxed the competitive ratio is changed
accordingly as described in §4.2.2.

10



Query Join Predicate
EQ5 (R1N1S)1L Equi-join
EQ7 (S1N)1L Equi-join
BNCI L1L Band-join
BCI L1L Band-join

Table 1: R, N, S, and L correspond to the relations Region,
Nation, Supplier, and Lineitem respectively as defined in
the TPC-H benchmark.

4.3.3 Towards Fault-tolerance
Although fault tolerance is orthogonal to the scope of

this paper, this section outlines how to extend the pre-
sented dataflow operator to provide fault-tolerance using
existing techniques. For topologies with arbitrary operators,
FTOpt’s [39] fault-tolerance protocol guarantees exactly-once
semantics (no lost or duplicate tuples). We can easily ex-
tend our operator to follow the protocol such that the entire
query plan provides end-to-end fault-tolerance. The pro-
tocol is established between any two communicating nodes
(producer/consumer pairs) in the query plan by splitting
the fault-tolerance responsibilities between them. When a
consumer takes responsibility of a received tuple, it sends an
acknowledgment to the producer. This frees the producer
from replaying acknowledged tuples on failures. The con-
sumer can fulfill its responsibility by checkpointing to stable
storage. On the other hand, the producer is responsible for
replaying unacknowledged tuples on failure. This protocol
supports many-to-many producer/consumer relationships.

At a high level, when a node fails, it first recovers its
state from the latest checkpoint. Because some tuples may
have been processed successfully on a consumer, but their
acknowledgment may not have reached the producer before
its failure, the recovered node then communicates with the
downstream and upstream nodes to identify which tuples to
replay. For every communication pair, the consumer pro-
vides information about the last seen tuple, and the pro-
ducer has to replay only the missing portion of the stream.
This protocol can provide fault-tolerance during migration
as well. The only additional consideration is that communi-
cation pairs may vary due to the different migrations, and
hence, this information also needs to be preserved.

5. EVALUATION
Environment. Our experimental platform consists of an
Oracle Blade 6000 Chassis with 10 Oracle X6270 M2 blade
servers. Each blade has two Intel Xeon X5675 CPUs run-
ning at 3GHz, each with 6 cores and 2 hardware threads
per core, 72GB of DDR3 RAM, 4 SATA 3 hard disks of
500GB each, and a 1Gbit Ethernet interface. All blades run
Solaris 10, which offers Solaris Zones, a native resource man-
agement and containment solution. Overall, there are 220
virtual machines available exclusively for our experiments,
each with its own CPU hardware thread and dedicated mem-
ory resources. There are 10 · 2 separate hardware threads
for running instances of the host operating system.
Datasets. For the evaluation setup, we use the TPC-H
benchmark [2]. We employ the TPC-H generator proposed
by [11] to generate databases with different degrees of skew
under the Zipf distribution. The degree of skew is adjusted
by choosing a value for the Zipf skew parameter z. We
experiment on five different skew settings Z0, Z1, Z2, Z3, Z4
which correspond to z = 0, z = 0.25, z = 0.5, z = 0.75 and

z = 1.0 respectively. We build eight databases with sizes
8, 10, 20, 40, 80, 160, 320, and 640GB.
Queries. We experiment on four join queries, namely, two
equi-joins from the TPC-H benchmark and two synthetic
band-joins. The equi-joins, EQ5 and EQ7 , represent the
most expensive join operation in queries Q5 and Q7 respec-
tively from the benchmark. All intermediate results are ma-
terialized before online processing. Moreover, the two band-
joins depict two different workload settings. a) BCI is a
high-selectivity join query that represents a computation-
intensive workload, and b) BNCI is a low-selectivity join
query that corresponds to a non-computation-intensive work-
load. The output of BCI is three orders of magnitude bigger
than its input size, whereas the output of BNCI is an order
of magnitude smaller. Both join queries are described below
and all query characteristics are summarized in Table 1.

B
C

I

SELECT *
FROM LINEITEM L1, LINEITEM L2
WHERE ABS(L1.shipdate - L2.shipdate) <= 1
AND (L1.shipmode=’TRUCK’ AND L2.shipmode!=’TRUCK’)
AND L1.Quantity>45

B
N

C
I

SELECT *
FROM LINEITEM L1, LINEITEM L2
WHERE ABS(L1.orderkey - L2.orderkey) <= 1
AND (L1.shipmode=’TRUCK’ AND L2.shipinstruct=’NONE’)
AND L1.Quantity>48

Operators. To run the testbed, we implement Squall2, a
distributed online query processing engine built on Storm3,
Twitter’s backend engine for data analytics. The engine is
based on Java and runs on JRE v1.7. Throughout the dis-
cussion, we use four different dataflow operators: (i) Stat-
icMid, a static operator with a fixed (

√
J,
√
J)-mapping.

This scheme assumes that both input streams have the same
size and lies in the center of the (n,m)-mapping spectrum.
(ii) Dynamic, our adaptive operator, initialized with the
(
√
J,
√
J)-mapping scheme. (iii) StaticOpt, another static

operator with a fixed optimal mapping scheme. This re-
quires knowledge about the input stream sizes before ex-
ecution, which is practically unattainable in an online set-
ting. (iv) SHJ, the parallel symmetric hash-join operator de-
scribed in [19]. This operator can only be used for equi-join
predicates and it is content-sensitive as it partitions data on
the join key. StaticMid, assumes as a best guess, that the
streams are equal in size; hence it has a square grid partition-
ing scheme, i.e., (

√
J,
√
J). Comparing against StaticOpt

shows that our operator does not perform much worse than
an omniscient operator with oracle knowledge about stream
sizes, which are unknown beforehand. Joiners perform the
local join in memory, but if it runs out of memory it begins
spilling to disk. For this purpose, we integrated the oper-
ators with the back-end storage engine BerkeleyDB [29].
We first experimentally verify that, in case of overflow to
disk, machines suffer from long delayed join evaluation and
performance hits. Then, for a more fair comparison, we in-
troduce more memory resources, such that all operations fit
in memory if possible. The heap size of each joiner is set to
2GB. As indexes, joiners use balanced binary trees for band
joins and hashmaps for equi-joins. Input data rates are set
such that joiners are fully utilized.

5.1 Skew Resilience
Table 2 shows results for running joins EQ5 and EQ7 with

different skew settings of the 10G dataset. It compares the
2https://github.com/epfldata/squall/wiki
3https://github.com/nathanmarz/storm
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EQ5 EQ7
Zipf SHJ Dynamic StaticMid SHJ Dynamic StaticMid
Z = 0 79 168 838∗ 98 192 210
Z = 1 79 176 851∗ 159 183 301
Z = 2 2742∗ 158 1425∗ 191 369 462
Z = 3 4268∗ 212 2367∗ 5462∗ 334 2610∗
Z = 4 5704∗ 203 2849∗ 6385∗ 415 3502∗

Note: [*] Overflow to disk.

Table 2: Runtime in secs.
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Figure 6

performance of our Dynamic operator against the SHJ op-
erator using 16 machines. We report the final execution
time. We observe that SHJ performs well under non-skewed
settings as it evenly partitions data among machines and
does not replicate data. On the other hand, the Dynamic
operator, distributes workload fairly between machines, but
pays for the unnecessary overhead of replicating data. As
data gets skewed, SHJ begins to suffer from poor parti-
tioning and unbalanced distribution of data among joiners.
Thus, the progress of join execution is dominated by a few
overwhelmed workers, while the remaining starve for more
data. The busy workers are congested with input data and
must overflow to disk, hindering the performance severely.
In contrast, the Dynamic operator is resilient to data skew
and persists to partition data equally among joiners.

5.2 Performance Evaluation
We analyze in detail the performance of static dataflow

operators against their adaptive counterpart. We report the
results for EQ5 and EQ7 on a Z4 10G dataset and of BNCI
and BCI on a uniform (Z0) 10G dataset. We start by com-
paring performance using 16 machines. As illustrated in

Table 2, Dynamic operates efficiently, whereas StaticMid
consistently performs worse. For skewed data, the latter
suffers from very high values of ILF, and thus, overflows to
disk, hindering the performance drastically. For a fair com-
parison, we increase the number of machines to 64 such that
StaticMid is given enough resources. Under this setting,
StaticMid has a fixed (8, 8)-mapping scheme, whereas the
optimal mapping scheme for all joins is (1, 64). Our results
show that Dynamic behaves roughly the same as Stati-
cOpt. This is attributed to the fact that Dynamic migrates
to the optimal mapping scheme at early stages. For com-
pleteness, we also include the results for EQ5 and EQ7 using
Shj. The operator overflows to disk due to high data skew.
Input-Load Factor. As described in §3.3, different map-
pings incur different values for the input-load factor. Exam-
ining the average input-load factor for each operator shows
that the growth rate of the ILF is linear over time. Due
to the lack of space, we illustrate this behavior for EQ5
only. Fig. 6a plots the maximum size of ILF per machine
against the percentage of total input stream processed. Shj
and StaticMid suffer from a larger growth rate than Dy-
namic. Specifically, their rates are 27, 14 and 2MB per 1%
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Figure 7

input stream processed, respectively. The graphs depicted
in Fig. 6b report on the final average ILF per machine for
all the join queries. StaticMid is consistently accompanied
with larger ILF values. Its ILF is about 3 to 7 times that of
Dynamic. The optimal mapping (1, 64) lies at one end of
the mapping spectrum and is far from that of StaticMid.
And Shj is up to 13 times that of the other operators.
§3.3 also emphasizes the fact that minimizing the ILF

maximizes resource utilization and performance. This is due
to the fact that higher ILF values also imply (i) unnecessary
replicated data stored around the cluster, (ii) more dupli-
cate messages sent congesting the network, and (iii) addi-
tional overhead for processing and housekeeping replicated
data at each joiner. In what follows, we measure the impact
of ILF on overall operator performance.
Resource Utilization. Fig. 6b also shows the total clus-
ter storage consumption (GB), as shown on the right axis.
StaticMid’s fixed partitioning scheme misuses allocated re-
sources as it unnecessarily consumes more storage and net-
work bandwidth to spread the data. Moreover, it requires
four times more machines (64) than Dynamic to operate
fully in memory (16 machines used in Table 2). Shj could
not fully operate in memory even with 64 machines. Dy-
namic performs efficiently in terms of resource utilization.
This is essential for cloud infrastructures which typically fol-
low pay-as-you-go policies.
Execution Time. Fig. 6c shows the execution time to pro-
cess the input stream for query EQ5 . The other join queries
are similar in behavior and we omit them due to the lack
of space. Fig. 6d shows the total execution time for all the
join queries. We observe that execution time is linear in the
percentage of input stream processed. The ILF has a deci-
sive effect on processing time. The rigid assignment (8, 8) of

StaticMid yields high ILF values and leads to consistently
worse performance. As ILF grows, the amount of data to
process, and hence, processing time increases. However, this
performance gap is not large when the join operation is com-
putationally intensive, i.e., BCI in Fig. 6d. The execution
time for SHJ, shown at the right axis of Fig. 6c, is two
orders of magnitude more, illustrating that poor resource
utilization may push the operator to disk spills, hindering
the performance severely. In all cases, the adaptivity of Dy-
namic allows it to perform very close to StaticOpt.
Average Throughput and Latency. Fig. 7a shows global
operator throughput. For all queries, the throughputs of
Dynamic and StaticOpt are close. They are at least twice
that of StaticMid, and two orders of magnitude more than
that of Shj, except for BCI where the difference is slight.
This validates the fact that the ILF has a direct effect on
throughput, and that the effect is magnified when overflow
occurs. The throughput gap between operators depends on
the amount of join computation a machine has to perform
(e.g. compare BCI and BNCI). Fig 7b shows average tuple
latencies. We define latency as the difference between the
time an output tuple t is emitted and the time at which the
(more recent) corresponding source input tuple arrives to the
operator. The figure shows that the operator latency is not
greatly affected by its adaptivity. During state migration,
an additional network hop increases the tuple latency. Dy-
namic achieves average latency close to that of StaticMid
while attaining much better throughput.
Different Optimal Mappings. So far, the join queries we
experiment on capture the interesting case of an optimal
mapping that is far from the (

√
J,
√
J) scheme. As illus-

trated in Figs. 7c, 7d, we compare performance under vari-
ous optimal mapping settings. We achieve this by increasing
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the size of the smaller input stream. In all cases, Dynamic
adjusts itself to the optimal mapping at early stages. Fig. 7c
shows how the input-load factor gap between Dynamic and
StaticMid decreases as the optimal mapping gets closer
to the (

√
J,
√
J)-mapping scheme. Similarly, Fig. 7d illus-

trates how the performance gap decreases between the two
operators. This validates the fact that the input-load factor
has a decisive effect on performance. In case of the opti-
mal (

√
J,
√
J)-mapping scheme, StaticOpt has the same

mapping as StaticMid, whereas Dynamic does not devi-
ate from its initial mapping scheme. However, it performs
slightly worse because adaptivity comes with a small cost.

5.3 Scalability Results
We evaluate the scalability of Dynamic. Specifically, we

measure operator execution time and throughput as both
the data-size and parallelism configurations grow. We eval-
uate weak scalability on 10GB/16 joiners, 20GB/32 joiners,
and so forth as illustrated in the in-memory computation
graphs of Figs. 8a, 8b. Ideally, while increasing the data-
size/joiners configuration, the input-load factor and the out-
put size should remain constant per joiner. However, the
input-load factor grows, preventing the operator to achieve
perfect scalability (same execution time and double aver-
age throughput as the data-size/joiners double). For exam-
ple, for BNCI , under the 20GB/32 configuration, the input
stream sizes are 0.68M (million) and 30M tuples, respec-
tively, yielding a (1, 32) optimal mapping scheme with an
ILF of 0.68M+30M/32 = 1.61M ·sizetuple per joiner. How-
ever, under the 40GB/64 configuration, the input stream
sizes are 1.36M and 60M, respectively, yielding a (1, 64) op-
timal mapping scheme with an ILF of 1.36M + 60M/64 =
2.29M ·sizetuple. In both cases, the output size per joiner is
the same (64K tuples). However, the ILF differs by 42% be-
cause of the replication of the smaller relation. The ILF for
the other two joins does not grow more than 9%. Accord-
ingly, the execution time (Fig. 8a) and the average through-
put (Fig. 8b) graphs show that EQ5 and EQ7 achieve almost
perfect scalability. In case of BNCI , a joiner processes more
input tuples as data grows. Overall, the operator achieves
very good scalability taking into account the increase in ILF.
Secondary storage. Out-of-core computation in Figs. 8a, 8b
illustrates performance under weak scalability with secondary

storage support. As before, all the queries achieve ideal scal-
ability, taking into account the increase in ILF. This vali-
dates the fact that our system can scale with large volumes
of data, and that it works well regardless of the local join
algorithm. However, compared to the in-memory results
(Fig. 8a), the performance drops by an order of magnitude.
This validates our conclusion that secondary storage is not
perfectly suited for high-performance online processing.

5.4 Data Dynamics
In order to validate the proven theoretical guarantees, we

evaluate the performance of Dynamic under severe fluctu-
ations in data arrival rates. We simulate a scenario where
the cardinality aspect ratios keep on alternating between
k and 1/k where k is the fluctuation rate. Data from the
first relation is streamed into the operator until its cardinal-
ity is k times that of the second one. Then, the roles are
swapped, by quiescing the first input stream and allowing
data to stream in from the second until its cardinality is k
times that of the first. This fluctuation continues until the
streams are finished. We experiment on an 8G dataset us-
ing the Fluct-Join query defined below on 64 machines. We
run the query under various fluctuation factor, specifically,
k = 2, k = 4, k = 6 and k = 8. We set the operator to
begin adapting after it has received at least 500K tuples,
corresponding to less than 1% of the total input.

F
lu

ct
-J

oi
n SELECT *

FROM ORDER O, LINEITEM L
WHERE O.orderkey=L.orderkey
AND O.shippriority !=‘5-LOW’ AND O.shippriority !=‘1-URGENT’

Analysis. The first metric of interest is the ILF com-
petitive ratio of Dynamic in comparison to an oracle that
assigns the optimal mapping, and thus optimal ILF*, in-
stantly at all times. Fig. 8c plots both the |R| / |S|, on the
left axis, and the ILF/ILF* ratio, on the right axis, through-
out query execution. In the graph, migration durations are
depicted by the shaded regions. We observe that the ratio
never exceeds 1.25 at all times which validates the result
of Theorem 4.6. Even under severe fluctuations, the opera-
tor is well advised in choosing the right moments to adapt.
Fig. 8d shows the execution time progress under different
fluctuation factors. Although Dynamic undergoes many
migrations, it persists to progress linearly showing that all
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Figure 8: (a)-(b) Weak scalability. (c)-(d) Performance under fluctuations.

migration costs are amortized. This verifies the results of
Lemma 4.5 and Theorem 4.1.

5.5 Summary
Experiments show that our adaptive operator outperforms

practical static schemes in every performance measure with-
out sacrificing low latency. They emphasize the effect of ILF
on resource utilization and performance. This validates the
optimization goal of minimizing ILF as a direct performance
measure. Our operator ensures efficient resource utilization
in storage consumption and network bandwidth that is up
to 7 times less than non-adaptive theta-join counterparts.
Non-adaptivity causes misuse of allocated resources leading
to overflows. Even when provided enough resources, the
adaptive operator completes the join up to 4 times faster
with an average throughput of up to 4 times more. Adap-
tivity is achieved at the cost of slight increase in tuple la-
tency (by as little as 5ms and at most 20ms). Experiments
also show that our operator is scalable. Under severe data
fluctuations, the operator adapts to data dynamics with the
ILF remaining within the proven bounds from the optimum
and with amortized linear migration costs. Additionally, the
operator, being content-insensitive, is resilient to data skew
while content-sensitive operators suffer from overflows, hin-
dering performance by up to two orders of magnitude.

6. CONCLUSION AND FUTURE WORK
This paper provides a novel adaptive solution to com-

puting joins with general predicates in an online setting.
Unlike previous offline approaches, the adaptive operator
presented does not require any prior knowledge about the
input data. This is essential when statistics about input
data are not known in advance or are difficult to estimate.
The operator is highly scalable and continuously processes
input streams even during adaptation. Theoretical analy-
sis proves that our algorithm maintains a close-to-optimal
state, under an experimentally validated performance mea-
sure that captures resource utilization. Furthermore, cost of
adaptation is provably minimum. Experiments validate the
theoretical guarantees and show that the operator outper-
forms static approaches; is highly adaptive; and is resilient
to data skew. It is also very efficient in resource consump-
tion and maintains high throughput and low tuple latency.
Evaluation suggests that there is room for optimization for
a special class of joins like equi and band joins. In such low-
selectivity joins, the join matrix contains large regions where

the join condition never holds. These regions need not be as-
signed joiners. This motivates designing a content-sensitive
theta-join operator. Such an operator shares many common
features with our operator, but its design poses additional
challenges. We leave this for future work.

7. REFERENCES
[1] The Apache Hadoop project. http://hadoop.apache.org.
[2] The TPC-H benchmark. http://www.tpc.org/tpch/.
[3] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
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