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ABSTRACT  

We have developed a CMOS-compatible Silicon-on-Insulator photonic platform featuring active components such as p-
i-n and photoconductive (MIM) Ge-on-Si detectors, p-i-n ring and Mach-Zehnder modulators, and traveling-wave 
modulators based on a p-n junction driven by an RF transmission line. We have characterized the yield and uniformity 
of the performance through automated cross-wafer testing, demonstrating that our process is reliable and scalable. The 
entire platform is capable of more than 40 GB/s data rate. Fabricated at the IME/A-STAR foundry in Singapore, it is 
available to the worldwide community through OpSIS, a successful multi-project wafer service based at the University 
of Delaware.  
After exposing the design, fabrication and performance of the most advanced platform components, we present our 
newest results obtained after the first public run. These include low loss passives (Y-junctions: 0.28 dB; waveguide 
crossings: 0.18 dB and cross-talk -41±2 dB; non-uniform grating couplers: 3.2±0.2 dB). All these components were 
tested across full 8” wafers and exhibited remarkable uniformity. The active devices were improved from the previous 
design kit to exhibit 3dB bandwidths ranging from 30 GHz (modulators) to 58 GHz (detectors). We also present new 
packaging services available to OpSIS users: vertical fiber coupling and edge coupling. 
 
Keywords: Silicon integrated photonics, modulator, photodetector, ring resonator, travelling-wave, Mach-Zehnder, 
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1. INTRODUCTION 
 
The semiconductor industry has recently reached a level at which fundamental limits in the scaling down of transistors 
become a significant roadblock. One major issue is power dissipation in electrical connection driven at very high 
frequencies. The continuing of exponential scaling of computing capabilities will require the development of massively 
parallel architectures, for which optical interconnects are widely recognized as an enabling technology. At a higher 
level, the demand for increased communication bandwidth in large data centers has grown through the past decades, 
driven by the rise of the Internet and the entry in the age of “big data”.  Unfortunately, the high cost of discrete optical 
components used in standard communication links, and their assembly into functioning systems, are important 
challenges to continued bandwidth scaling.  Moreover, for on-chip interconnects, seamless integration next to the 
central processing units is a prerequisite to high-speed operation.  
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One proposed solution for the two above challenges that has attracted remarkable attention in recent years, from both 
industry and academia, is to build integrated photonic circuits on a silicon platform.  Leveraging the investments made 
in complementary metal-oxide-semiconductor (CMOS) fabrication, it is possible to build low-cost, high-complexity 
systems in silicon that achieve close integration between electronics and photonics. Recent efforts have shown that such 
platforms can achieve impressive performance with the promise of very low costs and high yield.  Luxtera has 
developed a 25 Gb/s platform, the first one that is fully integrated with CMOS electronics.1 Kim et al. have 
demonstrated both modulators and detectors working at speeds of 30 Gb/s.2 Just recently, IMEC announced the 
upcoming launch of a fully integrated 25 Gb/s platform via the ePIXfab MPW.3 
In this paper, we present the performance of the OpSIS-IME silicon photonics platform. This platform features a host of 
optimized passive elements such as low-loss grating couplers and waveguides, as well as high-speed active elements 
including 58 GHz gain-peaked Ge photodetectors, 45 GHz, high-tunability silicon ring modulators and 30 GHz 
traveling wave Mach-Zehnder modulators. The high bandwidth of the modulators and photodetectors enable the 
platform to support a data rate of 50 Gb/s per channel and potentially higher.  The platform is available to the research 
community and to private developers as part of the OpSIS-IME multi-project-wafer (MPW) foundry service, in which a 
reticle is split between users as shown schematically in Fig. 1. 
 

 
 

2. FABRICATION 
 
The silicon photonic circuits were fabricated at the Institute of Microelectronics (IME), a research institute of the 
Agency for Science, Technology and Research (A*STAR).4 Silicon-on-Insulator (SOI) wafers from Soitec, 8 inches in 
diameter, with a 220 nm device layer and a 2um buried oxide (BOX) layer were used as a substrate. Three anisotropic 
etch steps were employed to define silicon heights of 0, 90 nm, 160 nm and 220 nm, which were used to build the 
grating couplers, rib waveguides and ridge waveguides. Six separate ion implantation steps (p++, p+, p, n++, n+, n) 
allowed for the design of the modulators and an additional p-type implant in germanium was used to define the anode of 
the Ge photodetectors. The implants were followed by a rapid thermal anneal (RTA) of 1030 °C for 5 seconds to 
activate the dopants. Epitaxial germanium-on-silicon was then selectively grown in regions defined by an SiO2 mask 
layer up to a height of 500 nm, with a thin buffer layer to avoid excessive dislocations. Ion implantation in the 
Germanium was followed by annealing at 500 °C for 5 minutes.  Finally, contact vias and two levels of Aluminum 
interconnects were fabricated. A schematic platform cross-section is show in Fig. 2.  
 

 
Fig. 1: Concept of Multi-Project-Wafer (MPW) service. Anchor users are 
typically companies buying large areas over several runs for long-term projects  

Proc. of SPIE Vol. 8767  87670G-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/06/2013 Terms of Use: http://spiedl.org/terms



Grating
Coupler

'"""'"'!UU///Dl

Germanium
Photodetector

2Nm

1.5Nm

750 nm / a
600 nm ï

60 nm
500 nm Ge 220 nm _ 130nmT

SOZ

Channel
Waveguide

Si Modulator
or Rib Waveguide

750 nm

+j600nm

Si substrate

góó0áó 0p0
0000000ooa000aooaaa00000a000o000a000000o00ao0aca

8 °ES
ö00aooaou

R0000800000 0a00a00
002223023

 

 
 
 

3. PHOTONIC DEVICE LIBRARY 
 
The OpSIS-IME device library features a large variety of passive and active devices, of which we select a few to present 
here. All these devices are building blocks available to OpSIS users for their own system design. Extensive wafer-scale 
testing has been conducted to characterize their performances (see Video 1).  Due to the requirements of testing at high 
speeds, some measurements were done on a smaller set of devices.  The average and standard deviation measurements 
that follow are from cross-wafer testing. 
 

 

 
Fig. 2: Schematics of the layers cross-section and the key components of the platform. 

 
 

Video 1: Overview of one of many test dies used to characterize active and passive 
library elements using a wafer-scale setup: http://dx.doi.org/doi.10.1117/12.2017053.1 
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3.1 Passive Devices 
 
High performance passive components are essential for building large-scale photonic systems.  Grating couplers are 
used extensively on our platform to couple light on and off chip, in particular because they enable efficient wafer-scale 
testing.  The library grating coupler uses a single, shallow silicon etch of 60 nm (leaving a 160 nm thick silicon layer). 
We fabricated and tested non-uniform gratings to better match the diffracted profile with single mode optical fibers. We 
achieve a cross-wafer average insertion loss of 3.1 dB at 1550 nm with a 1.5 dB bandwidth of 50 nm. 
Low-loss waveguides were also demonstrated on our platform.  The standard routing waveguide consisting of a 1.2 µm 
wide rectangular channel was measured to have an average propagation loss of 0.27±0.06 dB/cm.  Rib waveguides with 
0.5 µm width and 90 nm slab thickness had an average loss of 1.5±0.6 dB/cm. 

3.2 Photodetector 

 
The platform photodetectors were built using evanescently coupled, Germanium, p-i-n diodes with a 11 µm long section 
of germanium grown on top of a silicon waveguide (black rectangle in Fig. 3). Cross-wafer testing yielded an average 
responsivity of 0.74±0.13 A/W and a dark current of 4.0±0.9 µA at 2 V reverse bias. Inductive gain peaking based on a 
spiral metal inductor placed in series with the diode (see Fig. 4a) was successfully implemented to enhance the detector 
bandwidth.5 The RF performance of the detector was characterized using a Vector Network Analyzer (VNA) driving a 
high-speed Lithium Niobate modulator and detecting the electrical response from the photodetector. The frequency 
response of the modulator was calibrated using an ultrafast (70 GHz) commercial photodetector (u2t) and was 
normalized out of the platform photodetector measurement.  The resultant 3dB bandwidth was measured to be 58 GHz, 
as shown in Fig. 4b. 
 

 
 

Fig. 3: Micrograph of a basic Germanium photodetector without inductor for gain-peaking (500x, real colors) 
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3.3 Traveling Wave Modulator 
 
Traveling wave Mach-Zehnder modulators were built with 3 mm active length, lateral PN junction phase shifters and 
metal GS transmission line electrodes of 33Ω impedance.6 Use of intermediate p+ and n+ doping reduced the parasitic 
resistance of the slab.  The net insertion loss of the device, excluding routing and coupling, was measured to be 7 dB.  
The arms of the modulator are intentionally unbalanced by 100 µm to provide a convenient method of setting the bias 
point. By applying a DC bias voltage and measuring the spectrum shift, the small signal Vπ was found to be 7V around 
0V bias. The bandwidth of each arm was measured individually by driving the arm with the VNA and terminating with 
a 25Ω resistor (Fig 5c). The 3dB bandwidths of both arms were measured to be over 30 GHz with less than 1V bias. 
The eye diagram at 40GB/s with 0.25V bias and 2.5 Vpp driving voltage is shown in Fig. 5b. Under these conditions 
5.1dB extinction ratio was achieved with excess loss (due to modulator biasing) of 1.7dB. Note that the drive voltage 
listed above is measured at the output of a 50Ω instrument; actual voltages on the device are slightly lower (voltage 
intake is 67% for a 25Ω termination at low frequencies).  

 

 

Fig. 4: a) Image of gain-peaked photodetector. b) EO response of photodetector showing 
58 GHz bandwidth. 

 

 

Fig. 5: a) Image of 3mm traveling wave modulator. b) Eye-diagrams at 40Gb/s under differential-drive with 0.25V bias 
and 2.5Vpp drive voltage. c) RF performance at 1V bias.  The amplitude shows a 3 dB bandwidth of 30 GHz. 
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3.4 Ring Modulator 
 

 
 
Ring modulators with a 12 µm radius were built using 0.5 µm wide rib waveguides and a 90 nm slab thickness (see Fig. 
6).  A heavily doped p-n junction was used to increase the tuning efficiency.  Typical loaded quality factor of 2,800 and 
free spectral range of 7.65 nm were observed. The small signal tunability was measured to be 28 pm/V by analyzing the 
spectrum shift as a function of bias voltage (Fig. 7a).  The 3 dB bandwidth was measured by a VNA to be 45 GHz at 0V 
bias (Fig. 7b), enabling a 50 Gb/s data rate. It is estimated that these rings will achieve 5dB extinction ratio when driven 
by a 2.4Vpp signal and when the ‘1’ bit is biased to have 7dB modulation loss. 
 

 
 

CONCLUSIONS 
 
We show in table 1 a summary of the improved performances in active devices and passive components from version 1 
to version 2 of the PDK. 
  

 
 

Fig. 6: Micrograph of a ring modulator (500x, real colors) 

 

Fig. 7: a) Ring resonance shift at different bias voltages. b) EO response at 0 V bias showing a 3 dB bandwidth of 45 
GHz. 
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Table 1: Summary of the improvements in performances of key passive and active devices following the release of version 
2 of the PDK in January 2013. IL: insertion loss; PD: photodetector; MZ: Mach-Zehnder; WG: waveguide. 

OpSIS-IME PDK V2 Opsis-IME  PDK V1 

Modulators And Detectors 

Inductive Peaking Ge PD 0.7 A/W, 58 GHz  0.54A/W, 20GHz 

Ring Modulator  28 pm/V, 45 GHz  11pm/V, 19GHz 

Traveling Wave MZ 7V Vπ, 30 GHz  7V Vπ, 15.8GHz 

Passive Components  

New Y-junction 0.3 dB IL 1.3 dB IL 

WG Crossing 0.18 dB IL  

Nonuniform Grating Coupler 3.1 dB IL 3.7dB IL 

1.2um Wide Channel WG 0.4 dB/cm  

500nm Rib WG 2.0 dB/cm 2.4dB/cm 

 
To conclude, we present another significant development in the scope of services offered by OpSIS to its users in the 
form of optical packaging of silicon chips coupled to polarization-maintaining (PM) optical fibers. Working with two 
different partner companies, we offer two types of coupling: vertical incidence through grating couplers (with PLC 
Connections, MA), or edge-coupling into waveguide tapers (with Chiral Photonics). Figure 8 shows a picture of the 
packaged chip using PM fiber with tapered spot-size-converters on each side to achieve a 1/e2 mode field diameter of 
about 2 µm, with insertion loss of 2dB per facet and polarization extinction ratio > 20 dB. The package has been tested 
at cryogenic temperature with unchanged performance, as well as after dropping it on the floor, demonstrating good 
robustness for a wide range of applications and environments.  
 

 

 
 

Fig. 8: Photograph of a silicon chip in its optical package to polarization-maintaining fibers. Edge coupling to 
tapered silicon waveguide is achieved with a spot-size-converters in the fibers. 
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