CODIMENSION ONE STABILITY OF THE CATENOID UNDER THE

VANISHING MEAN CURVATURE FLOW IN MINKOWSKI SPACE

ROLAND DONNINGER, JOACHIM KRIEGER, JEREMIE SZEFTEL, AND WILLIE WONG

AssTrACT. We study time-like hypersurfaces with vanishing mean curvature in
the (3 + 1) dimensional Minkowski space, which are the hyperbolic counterparts
to minimal embeddings of Riemannian manifolds. The catenoid is a stationary
solution of the associated Cauchy problem. This solution is linearly unstable,
and we show that this instability is the only obstruction to the global nonlin-
ear stability of the catenoid. More precisely, we prove in a certain symmetry
class the existence, in the neighborhood of the catenoid initial data, of a co-
dimension 1 Lipschitz manifold transverse to the unstable mode consisting of
initial data whose solutions exist globally in time and converge asymptotically
to the catenoid.
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1. INTRODUCTION

We study here extremal hypersurfaces embedded in the (1 + 3)-dimensional
Minkowski space R'3. More precisely, we consider for a three-dimensional smooth
manifold M the embeddings ® : M — R'3 such that ®(M) has vanishing mean
curvature, and such that the pull-back metric has Lorentzian signatureﬂ We will
consider the associated Cauchy problem. Given a two-dimensional smooth mani-
fold X and two maps @ : £ — R3 and @ : £ — R3, we can ask for the existence
and uniqueness of an interval I = (To,T;) 3 0 and amap @ : [ x X — R"3 such
that ®(I x ) has vanishing mean curvature, ® : {t} x £ — {r} x R?, and the ini-
tial conditions ®|¢g) 5 = (0, o) and 0,®[(pyxx = (1, ®1) are satisfied. Observe
that with the knowledge of @, @, it is possible to compute the pullback metric of
I x ¥ along {0} x X. As it turns out, as long as the pullback metric is Lorentzian,
the quasilinear system of equations for the extremal hypersurface is second order
regularly hyperbolic [7,31]], and local well-posedness for smooth initial data holds
(see [18]]). It is then natural to consider the large time behavior of the flow.

Note that global existence does not hold in general since there exists explicit
finite time blow up solutions. For example, under the assumption of spherical
symmetry, so that the initial embedding is that of the round sphere in R with 0
velocity, the equations of motion reduce to an ordinary differential equation for the
radius of the sphere

RR" =2(—1+ (R')?)
which we can integrate to get
iR = -1+ (R)?.

The requirement that the pullback metric is Lorentzian implies that ¢; < 0. The
equation can then be explicitly solved in terms of the Jacobi elliptic functions,
which allows one to check that the radius R must collapse in finite time, forming a
singularity. Another example is known in the case where X is topologically S! x R.
Let the initial data be given by ®p(x,y) = (®((x),y) and ®; = 0, where @ :
S! — R? is any embedding. The result of Nguyen-Tian [26] implies that a regular
solution cannot exist for all timeﬂ By finite speed of propagation this means that
there are compactly supported initial data for which the solution blows up in finite
timef]

A particular class of initial data which admits global solutions are those for
which @y : ¥ — R3 is the embedding for a minimal surface, and ®; = 0. It
is easily checked that the map ®(¢, p) = (1, ®o(p)) embeds R x ¥ into R!* with
zero mean curvature, and 0, = (1,0,0,0) implies that the pullback metric is

ITn the case the metric has Riemannian signature, the surface M is usually called a space-like
maximal hypersurface.

20ne can see this explicitly in the case @} is the standard unit circle in R2, in which case the
equation of motion reduces to an ODE and the radius of the cylinder is seen to be given by cos(r)
thus collapsing in finite time.

3This is analogous to the blow-up solutions to the focussing semilinear wave equation with power
nonlinearity Ou = —|u|?~'u that are derived from the ODE blow-up mechanism.
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Lorentzian. We consider in this paper the problem of stability of these stationary
solutions. The first consideration of a problem of this sort is due to Brendle (in
higher dimensions) [[6] and Lindblad [21]. They consider small perturbations of
the stationary solution given by a flat hyperplane. One can then write the solution
as a graph over the stationary background, and reduce the problem to the small data
problem for a scalar quasilinear wave equation satisfying both the quadratic and
cubic null conditionﬂ (following the terminology introduced by Klainerman [|16])).

In this paper we will consider the problem of stability for a non trivial stationary
background. Our work is in the spirit of recent studies of asymptotic stability of
solitary waves for semilinear wave equations (see for example [3}/4,/19,24,25]]; see
also [[131/231[27,29] for finite time blow up regimes which correspond to asymptotic
stability in suitable rescaled variables), but in a quasilinear setting. The back-
ground solution we choose is the catenoid, which is an embedded minimal surface
in R?, and is a surface of revolution with topology S' x R. The induced Riemannian
metric on X at a fixed time for this stationary solution is asymptotically flat (with
two ends). This fact is important in our analysis. Indeed, as it is clear from the
study by Brendle and Lindblad, to prove any sort of global existence statement we
need to exploit the dispersive decay of solutions to the linearized equation on our
background manifold. In [21]] the linearized equation is exactly the linear wave
equation on R'2, and the dispersive decay utilized is the classical one. In our case,
the linearized equation is a geometric wave equation on the curved background X
with a potential term. The asymptotic flatness of X thus plays an important role in
establishing a dispersion mechanism.

As mentioned above, a significant difference with the small data cases consid-
ered by Lindblad and Brendle is thalE] the linearized equation is no longer the linear
wave equation on the background manifold R x ¥; it also contains a potential ternﬁ
In addition to introducing complications when applying the vector-field method to
obtain decay, the potential term turns out to have the “wrong sign”. That is to say,
the linearized equation admits an exponentially growing mode. As observed by
Krieger-Lindblad [[18]], if one isolates the perturbation away from the “collar re-
gion” (see Figure [I)), one can verify that the solution exists “up to the time when
the collar begins to move” (due to finite speed of propagation). One should inter-
pret this restriction as when the exponentially growing mode (which is very small
initially) overtakes the dispersive parts of the perturbation in size. In view of this
exponentially growing mode, we cannot obtain stability for arbitrary perturbations.

4Note that in the R case studied by Lindblad [21]], this reduction gives rise to a quasilinear wave
equation in 2 spatial dimensions, and hence the cubic null condition [1}[2] also plays a role.

>While we consider the case of embedding a hypersurface in R"3, the method should easily carry
over to the case where the ambient Minkowski space has higher dimensions, as linear dispersive
estimates (Section[2.3) improve in higher dimensions, making the nonlinear analysis (Section[2.2.T)
simpler. Furthermore the spectral properties of the linearized operators (Section are qualita-
tively the same independently of the dimension.

OThis is related to the fact that the plane is the only complete stable minimal surface in R* [12];
the stability here is in the variational sense: there exists small, compactly supported perturbations of
the catenoid that further reduces the area locally.
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Ficure 1. The catenoid surface with the “collar” (thinnest part of
the surface of revolution) marked out. In the transparent portion
we can see the level sets of the angular coordinate w as well as the
“radial” coordinate y.

Similar to the analysis of Krieger-Schlag for the semilinear wave equation, we
will show that for any sufficiently small initial perturbation, by adding a suitable
multiple of the unstable mode to the @y component of the initial data, we obtain a
new initial data which leads to a global solution converging asymptotically to the
catenoid’|

This paper is organized as follows. In Section[2] we introduce the equation which
we will study, discuss some of its main features, describe the linear theory, and
state our main theorem. In Section [3] we describe the bootstrap argument which
will be used to prove our main theorem. In Sections [4] through [6] we improve on
our bootstrap assumptions under the assumption that the projection of our solution

"The result in relies on a fixed point argument to solve the problem from infinity. Here we
follow instead the approach initiated in [9] (see also [I3]])) which consists in directly following the
flow for any initial data and then using a continuity argument to exhibit the existence of a suitable
perturbation of the initial data in the unstable direction such that the unstable mode is extinct for the
corresponding solution.
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on the unstable mode is under control. In Section [/|we improve our control of the
unstable mode. Finally, we prove our main theorem in Section

2. MaiN Resurrs

2.1. Formulation of the problem. As mentioned above, we consider perturba-
tions of the stationary catenoid solution to the extremal surface equation. The
catenoid as a surface of revolution can be parametrized by (see also Figure|I])

R x S's (y,w) — <r: A/1+4 2,z =sinhy, =a)> eRy xR xS, 2.1

where we use the standard cylindrical coordinates system on R>. Throughout we
use the notation {y) = /1 + y2. The parametrization here exposes the catenoid,
a surface of revolution, as a warped product manifold with base R and fibre S; the
coordinate y is chosen to be orthogonal to the fibers and to have unit length (note
that the parametrization is “by arc length” if we “mod” out the rotational degree of
freedom). In this coordinate system we see that the induced Riemannian metric on
the catenoid has the line element
dy? + () der?

and that (y) / |y| — 1 asy — +oo captures the asymptotic flatness of this manifold.

In addition to the rotational symmetry, the catenoid also has a reflection symme-
try about the plane z = O; in terms of the intrinsic coordinates, this is the mapping
y — —y. For simplicity, we will consider only perturbations that preserve both
symmetries. More precisely, we will consider the case where the perturbed solu-
tion is still, at any instance of time, a surface of revolution that is symmetric about
the plane z = 0. Note that since the induced Riemannian metric on X is asymptoti-
cally flat with two ends, the Hamiltonian flow on R x X using the pullback metric
exhibits trapping, which is manifest in the closed geodesic at the “collar” of X (see
Figure[I). The rotational symmetry reduces our scenario to the “zero angular mo-
mentum case”, and hence issues associated with the trapping of the geodesic flow
do not appear in our analysis. A treatment of the full problem, without rotational
symmetry, will most likely require detailed study of the trapping phenomenon,
which usually induces a loss of derivatives. On the other hand, the reflection sym-
metry is only used to simplify the analysis by effectively fixing the centre of mass;
we do not expect there to be obstructions in removing this assumption given finite
speed of propagation for nonlinear wave equations.

Given the geometric nature of our problem, there are many different ways of
parametrizing our solution manifold M (or equivalently, fixing the time parameter
t, parametrizing the time slices). To cast the problem as a concrete system of
partial differential equations requires choosing a gauge (in other words, fixing a
preferred parametrization; this problem is typical for geometric equations such as
the Ricci flow or Einstein equations). Given the assumed symmetries one may be
tempted into a geometric gauge choice via intrinsic quantities: for example, the
rotational symmetry means that naturally w is a good candidate coordinate, and
we may want to choose the other coordinate y of X to be orthogonal to w and
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Ficure 2. The local coordinate system induced by the normal bun-
dle of the catenoid. We show here the cross section for a fixed w.

of unit length, similar to our parametrization of the catenoid. This choice turns
out to be not suitable for studying the stability problem as the equation for the
difference between our perturbed solution and the stationary catenoid becomes a
complicated equation for a vector-valued function with a compatibility constraint
(coming from the “unit-length” requirement). By using the compatibility constraint
one can convert this to a scalar non-local integro-differential equation.

Since we are interested in the stability problem in the rotationally symmetric
case, instead we will consider our perturbed solution as a graph over the catenoid.
More precisely, there is a natura]ﬂ smooth surjection from the normal bundle of the
catenoid to R3, given by (see Figure

= 2 — sinh ™! _ =w
(y, w, ) (r—<y>+<y>,z sinh™"y <y>,9 ) ) (2.2)

80bserve that the vector &) (8, — y.) is the outward pointing unit normal to the catenoid.
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By considering the radius of curvature for the constant w level curves, we see
that restricted to |¢| < (y)* this mapping is regular and injectiveﬂ Since we are
interested in perturbations of the ¢ = 0 level set, we make the assumption that our
perturbed solution can be written as a graph over {¢ = 0} in this coordinate system.
That is to say, we will study the small data problem for ¢ = ¢(t,y). Note that our
assumption of reflection symmetry implies that ¢ will be an even function in y, and
the lack of w dependence indicates that the graph is a surface of revolution.

Under this parametrization, we can derive the equation of motion for the ex-
tremal surface by formally writing down the Euler-Lagrange equations for the La-
grangian given by the induced volume form on the graph associated to ¢(z, y); this
computation is carried out in Appendix [A] We find that the equation of motion can
be written as a quasilinear wave equation with potential for ¢ in the coordinates

t,y:

—63,¢+a§y¢+<y?ay¢+ ——0 =00+ 03+ 04+S2+53+84, (23)
y

»

where the quasilinear terms Q.. and semilinear terms S .. are split into those qua-
dratic, cubic, and quartic-or-more in ¢ and its derivatives:

2¢2

O = tt¢ (2.4a)
o)

2
0; = <i>4 26+ (092056 — 20000020 + (0,0)2029, (2.4b)

_C (2 o) 2+ 2000000 — (008
Q4 - <y>4 <y>2 - <y>4 - ( y¢) tt¢ + y¢ f¢ [y¢ - ( I¢) yy¢ s
(2.40)

2 2
S, — 4¢ n 4)’¢ay¢ _ (a)'¢) (2.52)

"t o

g ¥ _2¢>3_(3¢ y5y¢> e (2_¢ @) .
o or o T ) G )

(2.5b)
Si=- (“y—"’ + ‘*’2> 2008 - (‘ii - 2@) () 250
SO SORRC)
We denote by F this nonlinearity
F(y,¢,V$,V°¢) = Qs + Q3 + Qs + S2 + 53+ S4. (2.6)

90n the other hand, at ¢ = (y)” the mapping is singular, while at ¢ = — (y)” the mapping is not
injective (for all w this maps to the origin).
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2.2. A first look at the structure of the equation. Let us point out some of the
main features of the equations (2.3)), (2:4), and (2.3). That our argument can control
the nonlinear terms using dispersive estimates is largely due to two special struc-
tures: the terms are either localized or they exhibit a null condition. We comment
on these structures in Section The linear evolution introduces additional dif-
ficulties, as it is not purely dispersive: there is an exponentially growing mode.
This is discussed in Section[2.2.2]

2.2.1. Nonlinearities. The reason that we separated the quadratic, cubic, and quartic-
and-higher nonlinearities is that we intend to make use of the dispersive effects of
the wave equation on a (2+1) dimensional, asymptotically flat space-time to gain
decay in the “wave zone”, the region where y and r are comparable. The experience
with small-data, quasilinear wave equations on R2, see [[1,2,21], indicates that the
most dangerous terms are those which are quadratic and cubic in the nonlinearities,
due to the expected linear dispersive decay rate of 1/+/ for wave equations in 2
spatial dimensions (see also Section [2.3).

On the other hand, in (2.4) and (2.5)), almost all the nonlinear terms, in particular
all the quadratic ones, gain an additional boost in decay from the coefficients of
the form <y>7k — in the wave zone this term contributes a decay rate of % which
vastly improves the situation. The term (5, for example, has the form O(FS/ 2).02¢
with a coefficient which is much better than the integrability threshold of O(r~1),
if we assume an expected linear decay rate. As we shall see in the analysis, this
localization of some of the most dangerous nonlinearities plays a crucial role in
allowing us to close our decay estimates.

The only exception to this boost in decay occurs in the term Q3: there we have
a non-linearity of the form

(019)20%0 — 20,100,005 + (0y0)* 0 2.7)

which is unweighted. However, as was observed in [21]] for the perturbation of
the trivial solution, this term carries a null structure. One can see this purely at
an algebraic level: in terms of the asymptotically null coordinates u = t + y and
v = t —y, the nonlinearity takes the form

4(0,0)*0n, b + 4(0u) 0 — 801001, 0

and hence asymptoticallym verifies the cubic, quasilinear null condition |1]]. The
null condition exhibits in particular a hidden divergence/gradient structure: in the
context of elliptic theory it appears in the proof of Wente’s inequality [30]]; and in
the context of wave equations it drives the null form estimates of Klainerman and
Machedon [17]]. For our explicit nonlinearity above, one can check easily that the

101n fact, geometrically if we incorporate the higher order terms we can show that the cubic
quasilinear null condition relative to the Lorentzian metric on R x X, where X is the catenoid with the
induced Riemannian metric is satisfied exactly. That the null condition is always satisfied, even for
perturbations of large data backgrounds, actually characterizes the extremal surface equation among
Lagrangian field theories for scalar fields with certain isotropy assumptions [8, pps.33, 90].
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following identity holds

(09)° 05,6 — 2040400, + (0,9)* 00
= a[(09)’] —20,[0,6(0:6)*] + 0,[(0,8)* i) + 3(0:9)* (05,6 — Orngp).-
The first three terms of the right-hand side exhibit the hidden divergence structure,
while for the last term, we may replace —02¢ + 8)2,y¢ using our original equation

(2.3) and hence obtain terms which are cubic with sufficient weights together with
quartic and higher terms which have better decay properties.

2.2.2. Linear spectral analysis. Having described the difficulties that arise from
the “right hand side” of (2.3]), we turn our attention to the “left hand side”. The
linear operator

— 050+ 0;

6+ @%ay(p (2.8)

is in fact the coordinate-invariant wave operator Oy ¢ on the background R x X.
Indeed, the induced Lorentzian metric on the stationary catenoid solution, as an
embedded hypersurface of R"3, is

—d? + dy? + ()Y de? ,

and its corresponding Laplace-Beltrami operator can be computed to be exactly
(2.8). However, since we are considering the perturbation of a non trivial solution,
there is also a lower order correction term generated by the linearization, namely
the potential term 2 <y>_4 ¢ on the left hand side of (2.3)). Note that the coefficient
2 <y>_4 has a positive sign, which indicates that it is an attractive potential, and
opens up the possibility of the existence of a negative energy ground state. This
is related to the variational instability of the catenoid as a minimal surface [12].
Any corresponding eigenfunction of the linearized operator will generate either
non-decaying or exponentially growing modes; clearly this will complicate our
estimates based on expectation of linear dispersive decay.

Now, the natural space on which to study our linear operator is the L space
adapted to the geometry; that is to say, we should be looking at L>(X) where X is
the catenoid. In the intrinsic coordinates (y, w) this is L?({(y)dy dw). Since we are
working with rotationally symmetric functions, we find it convenient to absorb the
weight (y) onto the function ¢ instead, and work with L?(dy). In other words we
introduce the notation 1

$:=0)2 ¢
and we obtain in place of (2.3) the following equation:
6 +y°

4(yy*

Thus, we are now working with the standard L?(dy) space and on this space the
relevant linear operator

— 2+ 2%+ = O F(9,V9,V29). 2.9)

2
Lo 8%y (2.10)

YAy
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is a short-range perturbation of the Laplacian. Since the potential term is a bounded
multiplier which decays to 0 as |y| — oo, the operator £ is self-adjoint on L*(dy)
with domain {6)2,y f € L*(dy)}, and its essential spectrum is exactly [0, o0) (this

result is classical, see e.g. [14, Sections 13.1 and 14.3]). Due to the O((y)~?) decay
of the potential term, the solutions to the ordinary differential equation (£L—2A)n,; =
0 for A > 0 are given by the Jost solutions [28, Theorem XI.57], and hence there
are no L? eigenfunctions with positive eigenvalue.

In the case 4 = 0, the equation L1y = 0 can be solved explicitly: this is sim-
ply due to the fact that £ is the natural linearized operator for the minimal surface
embedding problem, and that after fixing rotational symmetry, the catenoid solu-
tions form a two parameter family due to the freedoms for scaling and translating
(along the axis). To be more precise, the standard catenoid we choose in (2.1)) is
the element of the family

(y,w) = (r=ala'yy,z=b+asinh ' (a"'y),0 = w) , (2.11)

parametrized by (a,b) € Ry x R, witha = 1 and b = 0. The two linearly
independent solutions to L9 = 0 correspond to infinitesimal motions in a and b
of the above. From this consideration it is clear that the movement in b corresponds
to an odd solution (and so ruled out by our symmetry assumptions) with a unique
root at y = 0, while movement in a corresponds to an even solution with two roots.
We can easily obtain the explicit form of these two solutions by formally taking
derivatives relative to a, b after expressing (2.11) in the coordinates (2.2). This
yields

&—> sinh ™'y —1 (scaling symmetry in a),
y

o = (&)? - { (2.12)

One sees easily from the asymptotic behavior that neither of these functions belong
to L*(dy).

) (translation symmetry in b).

Remark 2.1. The fact that the solutions 779 do not belong to L*(dy) implies that
we do not have to modulate. In other words, the individual elements of our two
parameter family (2.11)) are “infinitely far” from one another (this can be seen
from their asymptotic behavior) and we do not need to track the “motion along the
soliton manifold” for our analysis.

We lastly consider the possible discrete spectrum below 0. By testing with bump
functions we easily see that there must be a negative eigenvalue. By the Sturm-
Picone comparison theorem [5, Section 10.6] and the explicit solutions (2.12)
above, we see that the eigenvalue is unique, and its eigenfunction is nowhere van-
ishing (it is the ground state). We call this eigenfunction g,(y) and its associated
eigenvalueﬂ —kﬁ. Note that g, is smooth, and decays exponentially as |y| — oo.

In the sequel we let P; denote the projection onto the ground state g4, and P,
the projection onto the continuous spectrum. Noting that g, contributes an expo-
nentially growing mode to the linear evolution, we cannot expect to have stability

UErom numerics sz, ~ —0.5857.
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for any perturbation. Instead, we will show that given a sufficiently small initial
perturbation ¢, we can adjust its projection to the ground state P;é while keep-
ing P.$ unchanged so as to guarantee global existence and asymptotic vanishing
of the solution. In the analysis we will treat the continuous part and the discrete
part of the spectrum separately. We will describe the linear dispersive estimates
for the continuous part of the solution in Section This will be combined with
the analysis of the nonlinear terms (in the spirit of Section[2.2.1)) to derive a priori
estimates assuming that the discrete part of the solution is well behaved. Finally
we will close the argument in Section [/| by showing that such a good choice of
initial P;¢ is possible.

2.3. Dispersive estimates for L. For the sequel, we shall use the following key
energy and dispersive bounds associated with the evolution of the operator £,
which is proved in [[11]]. Recall that we take P. = 1 — P4 to be the projection
to the continuous part of the spectrum of L. In the sequel, we shall frequently use
the notations (as well as variations thereof)

[<Vey) s s [KVe)* T s

for various norms | - |s. By these expressions we shall understand the quantities

MoVEwls. Y Vs,

0<|B<a 0<|Bl<a 0<F<K

S

Here I stands for either one of the vector fields I'j = ¢0, + y0;, I'y = t0; + y0,.

Proposition 2.1. For any multi-index @ = (a1, ;) € N2 we have

=0
Vi Pee™VEf Lz, 5 14001 £l iz, (2.13)

with constant depending on |a| = a| + ay. Moreover, denoting the scaling vector
field
I := 10, + yoy,

we have for any @ € N>, B € Nio the weighted energy bounds
IVisT5 Pee™ % iz < 1)@ 3 (2.14)

For the sine evolution, we have the following bounds for |a| > 1

sin(r VL)

IViyP T —— [l = [Kayyle= 1fHL2 + 1L ooy (2.15)
as well as
a K (\/>) a|— K K
Ve sPe— 7= fluz, < KO Flgy, + KTy, - 2:16)

As for dispersive bounds, we have the following:
e Unweighted dispersive bound.:

[~z P eV < <) 1[Iy Flg, + [y £ Iy, ]
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o Weighted dispersive bound:
I3 Pee™Zfliz 5 7 1)1y, + 1031y ]

o Similarly, we get

jor 4 g < oL el

)P S‘“%)gnL <710l

The preceding bounds are still too crude to handle the unweighted cubic inter-
action terms that shows up in Q3 of (2.4)), and so we complement them with the
following.

Proposition 2.2. For any multi-index @ = (a1, ;) € N a| = 1, we have

V7, P Sl“%)uf)m K@Y £z @17)
P U PR T

as well as for the inhomogeneous evolution
IViyPe f W(aﬂ iz, [V Fllpyrz,  (219)
e [ I @ <[ Ly @20

In order to handle the local terms in (2.3, we need a local energy decay result.
This is given by the following

Proposition 2.3. We have the space-time bounds
sin(t /L)

[~ VTS cos(t VL) Pef] 2, + [(ylogy)™ V?,yFSTchHLgy

< !\<0y>|a|<F>KfHL§y + H<ay>‘“|_l<F>KgHL§y>l+

The inhomogeneous version with source terms of gradient structure is as follows:

"sin(t — s

e | <T)m<as,ym|% < (T eI Fly
Remark 2.2. Recall that the vectorfields associated to —0? + é’y2 are the Lorentz
boost generator I'y = 10,+y0; and the generator of scaling symmetry I'; = 10,+y0,.
While we will proceed with a variation of the vector field method in order to con-
trol the nonlinear terms, our weighted linear estimates are derived differently from
those commonly used for the small data problem in quasilinear wave equations. In
particular, we do not directly estimate the vector field I'j, but rely instead on the
estimates for I, the structure of the equation and the behavior of the solution in



CODIMENSION ONE STABILITY OF THE CATENOID 13

the space-time regions y « fand y > r (see Lemma[.2). Furthermore, for the
vector field I';, our estimate does not follow from commuting against the equation;
note that I, does not commute with the linearized operator £. We instead obtain
bounds on I'; by studying its analogue under a distorted Fourier transform. This
method, introduced in [11]], can be applied to large families of potentials.

2.4. Main Theorem. The unstable mode associated with £ should lead in general
to exponentially growing solutions for (2.9), even for arbitrarily small initial data.
Nonetheless, it is natural to expect the existence of a suitable co-dimension one set
of small initial data corresponding to solutions which exist globally in forward time
and decay toward zero, i. e. the evolved surface converges to the static catenoid.
This is proved in the following theorem which is our main result.

Theorem 2.4 (Codimension one stability of the catenoid). Let us be given a pair of
even functions (¢1, ¢r) € WNoL(R) n WNo2(R) satisfying the smallness condition

H¢~HX0 = “<)’>N0 / 1<ay>N0 / l‘ﬁj”LlnL? < 9
dy dy
j=12

for 69 > O sufficiently small, and Ny sufficiently large. Then there exists a param-
eter a € R which depends Lipschitz continuously on ¢y, with respect to Xo such
that the solution ¢ of [2.9) corresponding to the initial data

(#(0.-).0:4(0.-)) = (¢1 + aga. ¢2)

exists globally in forward time t > 0. Moreover, ¢ = <y>*l/ 2¢ decays toward zero:
1
|6(, )| s <072

To our knowledge, this theorem is the first result of asymptotic stability of a non
trivial stationary state in the quasilinear setting. It is worth mentioning that there
has been recently much interest toward questions on stability of non trivial station-
ary solutions to quasilinear wave equations, especially in the context of the black
hole stability problem. In a recent work Holzegel [|15]] was able to prove decay es-
timates for the full nonlinear Einstein vacuum equation on the so-called ultimately
Schwarzschildean backgrounds; the estimates proven, however, are not sufficient to
yield stability. Subsequently, Dafermos, Holzegel, and Rodnianski showed [10] the
existence of solutions satisfying the ultimately Schwarzschildean condition. Their
construction, based on scattering theory, actually implies the existence of small
perturbations of Schwarzschild (and even Kerr) which are forward stable. The so-
lutions which they constructed are however not expected to be generic [[10, Section
1.3.2] based on the observed decay rates. This stands in contrastE| to our generic
construction which is optimal (in terms of the size of the stable manifold) given the
linear instability.

120f course, the difficulty faced, even at the level of the linearized problem, in Einstein vacuum
equations is very different from those considered here.
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An interesting open problem is the description of the flow in the neighborhood
of the codimension 1 manifold of Theorem[2.4] and in particular whether this man-
ifold is a threshold between two different types of stable regimes. An analogous
problem has been studied in [22] in the case of the L? critical nonlinear Schrodinger
equation. The initial data corresponding to Bourgain-Wang solutionﬂ are shown
to lie at the boundary between solutions blowing up in finite time in the log-log
regime and solutions scattering to 0 (note that both are known to be stable regimes
for that equation). Numerical simulations for the extremal surface equation suggest
that a similar behavior might take place here. Indeed, the codimension 1 manifold
of Theorem [2.4]seems to be the threshold between two types of regimes: one lead-
ing to a collapse of the collal{ﬂ and another leading to the accelerated widening of
the collar region"}

3. SETTING UP THE ANALYSIS

The aim of this section is to set up the bootstrap argument.

3.1. Spectral decomposition of the solution. We decompose our solution ¢ as

¢ = h(t)ga + ¥
so that ¢ satisfies
(b, 8a) = 0.

Thus, we have
Pd& = h(t)gd’ Pc& = &
In particular, i satisfies in view of (2.9)

—0N + 0N+ h e zw Pe((1+ )i F(¢,V9,V29)), 3.1
$(0,.) = Ped1, 05(0,.) = Ped.
We derive a formula for 4(¢) in the following lemma.
Lemma 3.1. A(t) is given by
h(z)

1

= 1 <a+<¢1, 8d) + <¢2’fd> kdf< )AF(¢, Vo, V2 ¢)(s), gd>ek‘”ds> hat

1 i
v 5 (e ] KRSCUIIAT) V20)(5) ga)eds ) e,

13\which are expected to form a co-dimension one manifold, see [20].

4More precisely, ¢ — — (y)” for some |y| « 1. The solution ceases to be a manifold there (see
Footnote E])

5Due to the coordinate singularity at ¢ = <y>2 (see Footnote E]), the long-time behavior in this
case is not clear from the simulations.
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Proof. h(r) satisfies in view of (2.9) and the fact that g, is en eigenvector of £, with
eigenvalue —kfi:

—H(1) + IZR() = (1 + Y)) 1 F(6,Y,V°0), ga)-

Using the variation of constant methods, we deduce

h) = (Al o J ((1+y1)iF(4,V9, V2¢)(s)agd>ekdst> k!

<A2 + — J< (1 +y )iF (¢, Vo,V ¢)(s),gd>ek”ds> ekt

Since we have

h(0) = a +{1,84), I (0) = {2, 8a)

we deduce
1 . b2, 1 :
A = 3 <a+<¢>1,gd>+<¢nk—gd>> and Ay = — <a+<¢1, d>_<¢2 gd>)
d kq
This concludes the proof of the lemma. O

3.2. Setting up the bootstrap. Consider a time 7 > 0 such that the following
bootstrap assumptions hold on [0, T'):

[ViyViydlz <&, 0 < || <Ny, (3.2)
1 N]
A Wl < &)™, 0<[B] < 5 +t6 (3.3)
1 N
15495 glg <ot o< lpl < S G4

L
12y Vi T30z < ey 0 g <Ny =y, 0<y<2,  (35)

Ii v
[(vlog )™ (VL2812 (o.ry) < ()= DI,

Ly"2 (3.6)
0<[BI<T+N —70<y<2,

Mo 1Ph(n)] < sy,
BN +1

S 1) ()] < eI e 1,2y, 3.7)
B+k<N1+1

,3

> aayn),,  <em I e q1,2)

B+K<Ni+1 o1

Our claim is that the above regime is trapped.

Proposition 3.2 (Improvement of the bootstrap assumptions). There exists an N;
sufficiently large, such that the following holds: there is Ny sufficiently large, such
that if Ny » C = 10 and givene > 0, 1 » 61 » v » ¢, there is 69 = 6o(g,Np) > 0
sufficiently small (as in Theorem[2.4) and

ac [—8%, 8%]
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such that ¢ satisfies the following bounds

~ 3
Hvl,yvgy(pHLﬁ? < (60 +&2)(8)", 0 < [af < Ny, (3.3)
N
V2,8l < (G0 +23)(H)72, 0 < |B| < S +C (3.9)
N
1)~ V% e < (60 ey 10 0 < |B] < 71 +C (3.10)
|V y Vi, T 28l < ( 5o+82)<t> R0 o Bl <Ni—y,0<y<2, 3.11)
- 3 ~o[ 28]+ 1)107
[{ylog y) (nyrg¢)’|L§).([o,T]) < (30 + &3 (Tl 1F D1 G.12)
0<IB|<1+N —vy,0<y<2,
S 1Ph0)] < (S0 + £3)) 1,
BN +1
2|8 «
10)*h(1)| < (60 + &> WOUTIDIOY e 61 2y,
AN 0 (3.13)
BHk<N;+1 ’
Ii "
S| Vil < @ + e (IO e 1,23,
B+k<Ni+1

The rest of the paper is as follows. In section [ we prove the energy bounds

(3.8) and (3.11). In section [5] we prove the local energy decay (3.12). In section
[l we prove the dispersive estimates (3.9) and (3.10). In section [7, we prove the

existence of a such that (3.13)) holds which concludes the proof of Proposition [3.2]
Finally, we prove Theorem [2.4]in section [§]

4. ENERGY BOUNDS
The goal of this section is to prove the estimates (3.8) and (3.TT).
4.1. The proof of the estimate (3.8). In view of (3.1I), we have

b = cos(t VL) PGy + Sm%) B + LIMPC(G(S,-))CZS @.1)

where
Gls.) = (1 +37) F(9. V9. V9).

In order to derive the desired energy bounds, we can use Proposition for the
weighted terms without maximum order derivatives, and Proposition for the
pure cubic terms, as we shall see. In order to deal with the maximum order deriv-
ative terms, we have to use a direct integration by parts argument. To begin with,
we reveal the gradient structure in the top order cubic terms. One can check easily
that the following identity holds

o @7wn] — 205[dydu] + O3] + 67 Wy — War) + 2(Byy — bur) ity
= idyy — 205bily + B (42)
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Denote
X:y(Ve, Vi) = 5t[¢125t¢] — 20, [¢y¢t5t¢] + 0 [¢§5t¢]-

In order to recover the bounds for i, we then distinguish between the following
three cases:

(1): First order derivatives. Write the equation for ¢ as

2
3+%$
(1+y%)?
1 ~ -

= > P[(1+Y))Fi(¢. V9, V?)|. w[0] = (Pcd1. Pcedhn)

k=12

~ |
—53(&4—(3}21#4-5

where we define

(1+32)7F1 (8,98, 92¢) = (1 + )1 F(¢,V,V?) — X,,(V, V).

Then we apply Proposition [2.1] Proposition[2.2]to the source terms Fj, F», respec-
tively. The conclusion is that

sup ||V, ¢ < KV O + ||@ + |F
te[O,I;] ” t,yw”Lfiy H< y>¢l”L§y ”¢2HL§>'HLéy>E*dy H 1|L}L%yﬂyerlLiw%“‘*4)'[0]]
3
+ Z HAkHL}L?IV[O,T] (4.3)
k=1 ;
where

Al = (at¢)25t¢3, Ay = 8y¢6,¢6,q3, Az = (ay¢)25z¢~5-

(From our assumptions on (251,2, we have

[TBilis, + 1Baliz e < 6o, @4

GyFkdy

Next, the contributions from the terms Ay are rather straightforward to control.
Using the bootstrap assumptions (3.2)) and (3.3)), we have

[(V128) 1381312 f0.1 -
< H<I>V‘Vt,y¢|2 L}LZ‘;[O,T] H<t>*"vt,y$”Lf’oL§y
< vIENTY < XTY.

It remains to deal with the more complicated source terms F1, which we do via a
separate lemma.

Lemma 4.1. Under the preceding assumptions, we have

w

S E2.

[}

HFIHL1L2 ALIL [0.7] (4-0)

T yydy” Tt 1
GHI Ty
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Proof. Observe that by definition of <y>%F 1, this term comprises in addition to the

first 4 lines of the right hand side in (2.3)) multiplied by <y>% also the following
ones:

By :=(1 +y2)5($)2xt,y(v¢’ Vé),

By := (0i¢)’0(¢), 0 = &; — 7,

B3 1= 20,¢0¢0;9,

By := (1+%)5 ((0) ¢y — 20,0006 + (8,0)°n)
B ((a@)z&yy - 2‘9)’¢at¢§~bty + (ayqﬁ)z‘}ﬂ)'

(a): Contribution of B;. We can write schematically

_(? » < Y 24
B = (1 X0 (V.9) + ) H s P (V00
Using the bootstrap assumptions (3.2)) and (3.3), we conclude that
B < 3I¢r <
Bl oo <10, <

(b): Contribution of B,. Here we take advantage of the equation satisfied by ¢.
We obtain the crude bound

881 < 5072 (18] + (Vi) *¢lV1y)*B1) + [Viy @I’ V7,8,
Then, using the bootstrap assumptions (3.2)) and (3.3)), we easily infer

) < 83H<t>vf% 3

HL,' se.

1(72 1
LHLGOLY ey,

(c): Contribution of Bs. This is handled like B;, but using the equation satisfied
by ¢ instead.

(d): Contribution of B4. This term can be schematically written in the form

_3 14
By = (Viyd)* (0720 + )7'4y).
Using the bootstrap assumptions (3.2), (3.3 and (3.4)), we obtain

s
HB4HLII(L§'ymLéy>S*dy) <& “<I>V—71—1”L[1 < &

(e): Contribution of the first 4 lines of the right hand side in (2.3)). Tt is easily
verified that this contribution Bs is bounded in absolute value by

_3 2 2
1Bs| s )72 [[(Viye|” + (Vi) []
and so the bootstrap assumption (3.4) provides the bound

3
|Bs HL,‘(lejylews* s &2 Ty e

This concludes the proof of the lemma. O
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Finally, the estimates (&.3)-(4.6) imply

sup |V, 2, S o+ &2 + XTY. 4.7)
€[0,T]

(2): Higher order derivatives of degree strictly less than Ni. Here we use induc-
tion on the degree of the derivatives, assuming the bound (4.7). Write the equation
for i schematically in the form

2
. .1 3+5 .
2 2 2
*5z'//+5yl/’+ Eml’b = P.G.

Applying 8? with 1 < < Nj — 1, and integrating against 8B HJ/ we easily infer

([ Speran + e -
[ [ wtortsaa

Recall that we have

|3B'ﬁ| ]dJ’)’o
( ) 4.8)

G = (1 +)")5F(4,V9.V29).
Note that we have the crude bound

|(}fG| < 2 |<Vt,)’>za[31 ¢| ‘<Vt’y>25t32$| .

142

2
>ooT] IVey (Vi@ 9| |Viy (Ve G|

Bi+B2=p Bi+B2+p3=p j=1

where we may assume 83 > > > B;. We use the energy bound (3.2), the local
energy decay (3.6) (with y = 0), as well as the dispersive bounds (3.3)),(3-4), the
latter in order to deal with the logarithmic degeneracy in (3.6)). It then follows that
(usingB+2 <Ny + 1)

T
1y fo wacaﬁ*G)af*‘&dzdw

< H<z>%+<y>f%<v,,y>¥¢uLgo,<T> H< -

HL2 [0.77]) H<t> V&BH‘/’HLOOH ([0,17)

T O/ ¢|\Loo [ (V1y

4
&

T
v

([o,71) H<t> V‘}BH'/’HLOOLZ ([o,r7)

This recovers the desired bound (3.8) for & 7. To get control over HVf Wl 2>

1 < |B] < Ny, one uses the pure 7-derivative bounds, the equation, and induction
on the number of y-derivatives.

(3): Top order derivatives Here we need to perform integration by parts in
the top order derivative contributions. Again it suffices to bound the expression
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ﬁNl Hl,// as the remaining derivatives are controlled directly from the equation. Us-

ing (@.8) with B8 = N, write schematically
(P2 G)OM g = (290N VL, T + (Viyg)? 0N V7,600 1 + Lot

where the contribution of the lower order terms is treated as in (2) above. We
conclude that

T
[ [rsronersas
0 JR
! - 7 =T
K
1 5 =
+(+ ) JR(Vt,y‘f’)z\ﬁivl Vi, i) dy) |;:g +lot.

T
+ fo fR [6)72% + (Viy9)] (8" ViyPad) 07" dyar

where the terms “’l.0.t” can be bounded like in (2). As the first two integral expres-
sions on the right can be bounded by

1 . _ 1
(3 fR<y>‘2¢!6?“‘Vt,wady)|ﬁ_§ +(£= J (Vey)2 10N Vey 2 dy) |12,

~ 12
< 0" Visd| e 2 0.1y

[\)

It remains to bound the last integral expression, for which we need to control
oM Vtz’de&. We recall that

Pyd = h(t)ga(y) with h(t) = (¢, ga)
so that
ONVEPp = —0NTPVE Py (D) — OV TPV Py (29)
= V2 Py(0f) + 0 V2 ((0yd. ga)ga)

where we integrated by parts in y in the second term on the right-hand side. In
view of the bootstrap assumption (3.4)), the equation for 0@ and the decay and
smoothness of g4, we obtain the crude bound

M *2h(1)| < s(ry"7 0.
Using the dispersive bounds (3.3)), we then infer
T
| fo JR (0720 + (V1)) (0 V2, Pad) 07" dyel]
3 Ni+172
se +elo)” (//HLfOLf,([O,T])‘

Combining the preceding bounds, one easily infers the improved estimate

Hvﬁ}ﬁﬁ\/lleLfOL)%([O,T]) S 6o+ &,
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The remaining (mixed) derivative terms V[z y&, |B] = N; + 1, are bounded by in-
duction on the number of y-derivatives, using the equation for . This completes

the proof of (3.8).

4.2. The proof of the estimate (3.11). We next turn to the weighted energy esti-
mates, of the form (3.11)). Here we use the weighted bounds in Propositions[2.1} [2.2]
The key to control the quadratic nonlinear terms shall be the local energy bounds
(3.6). To deal with the cubic terms, we start with the following lemma, which
will also be useful later on. It ensures that we get control over the Lorentz boost
generator I'y = 10, + y0;.

Lemma 4.2. Let T’y := 10, + y0;. Then, we can infer the bounds

v, 7% Tz = < O30 w4 B < Ny, ke (1,2}

])IOV

v, yvtyrlrzlp”L2 < e (1415 L2418 <

Proof. We start with the first bound of the lemma with xk = 1.

(1): Proof of the first inequality with k = 1. Observe that
(C1) ey — (Cadh)ey = O(|(t = )VE,d]) + O(|Viyib). (4.9)

Further, note

(ToY); = thy + ylZzy + U, (lez)y = “Zzy + )"Zyy + &y- (4.10)
We can replace yyy, by yy, by using the equation

3+%

Wy = Wi — %m—yi)zdf +yP.G
We infer
o Tl = y(Tad)y =y =y (- Y ooha + yPG)
(t—y)u = Ty , (4.11)
N )’(leZ)t - I(FZ‘Z/)y + Wi — t‘Zy - t( - %(f:},%z@ + yPcG)
(t =Yy = P (4.12)

Using the bootstrap assumption (3.2)), we have for |8| + 1 < N,

3 y -
¥ 0Pt g + 19515 7y g, < 0™

Together with (.11, (#.12) and the bootstrap assumptions (3.2) and (3.3), we
obtain

+[2EL)10v

H(t - y)v‘tg,y&l‘l”léy + ||(f - thyHLz < 3<f> % , Bl +1< N (413)
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It remains to bound
|t~ y)nykZ’yyHchh, Bl + 1< Ni

Here we directly use the equation satisfied by ¢. Let ¢; , be a fundamental system
associated with £, with ¢; given by

—/1+y? +ysmh
(1 +?)

Note in particular that |¢; 2(y)| < y% logy as y — oo. Then we have the formula

J(ty) = baly >f 313 [Fu(1.5) + PG(1.5)] 5

— 1) L $2(5)[Fa(1.5) + PG(1.5)] d5 (4.14)

a()d1(y),

and the improved local dispersive decay (3.4) implies
‘&Ba 1| < &lty” 200 ,B < —+C

But then (4.13) as well as the precise form of G 1mply that restricting toy < t, we
have

1_ N
”(t_ ww HL2 y<t) ~ 8<t>2 61 13’ 7 +C,
while the bound
[%])wv

”(I_ y)V zyWyy H[} (y>1) ~ 3<t> 1+ (4.15)

follows directly from the equation satisfied by ¢. In fact, replacing yy, by ¢y the
bound follows from @.11]), and we can absorb the factor (# — y) in the potential
for the linear term (in the region y > f), while this factor is easily absorbed by the
nonlinearity as in the inequality after (4.12)). The missing bounds with |3| > % +C
are easily obtained directly from the equation (inductively). Together with (4.9),
(4.13)) and the bootstrap assumption (3.3), we deduce

Hvt,yvﬁyrl‘/?HLj, S ‘9<f>%_61, L+l <N

(2): Proof of the first inequality of the lemma with k = 2. Observe that
(0} = T3) = (7 — ) Py — Pu),
(a): inner region, y < t. We get

~ i ¥
“Vﬁy[(tz_yz)‘/’ft(f")]HLg)_(yq <oy TUHWDI g 1 <y,

on account of (4.13)). Using @.14)), we have
7 3
Hny[(tz _y2>"b)’y]HLZy(y<t) & Bl + 1< Ny,
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provided V'f: y = &‘f : &fz with 81 < % + C, and the remaining cases are obtained
using induction and the equation for . It then follows that we have the bounds

~ 3_
Vo Yoy (T =T33 1 877" 1B + 2 < Na.

(b) For the outer cone region 'y > t, we use

(7 =) = (7 = y*) (PG — 5
Then use the bound (for suitable 6 > 0)
_3 2 1 B
PG| s (72 ’<Vt,y>2¢| + (y)2 \Vt,),¢|2Viy¢ + ge oI,

It remains to verify that the weight > — y?> may be absorbed in the cubic terms.
Note that for |8| < N; — 1, we have by the Sobolev embedding H' (R) < L*(R)
and bootstrap assumption (3.2)
1 \
(OB AT RO
while from (4.15]), we know that

N
Hw—wwmmwtaw%W<g

It then follows that for any |3| < N; — 1, we have

IV (2 = )02 (V0 V2s0) |2 oy 5 6500
Finally, bootstrap assumption (3.2)) yields

9,50, - ﬂﬁiw @18l < M -2
ty Viy y ) (l +y L2 (y>t) <& 1

It now follows that for |8| + 2 < Nj, we have

|V, 92, (1}~ 13) OOt

) ||L2 (y>t

The estimates in (a), (b) complete the proof of the first estimate of the lemma for
k=2

(3): Proof of the second inequality of the lemma. We have the following identity
[\ =5 = (1 =)0 — (1 =920 + (ty = ¥*)(&] — &) + T — Iz,
Note that
(FZIZ’)y - (FZJ/)t - ‘Zy + '/7t - Y(J/yy - ‘I/tt)
r—y
Then, usmg simple variations of the estimates above, in particular the structure of
Yy — Y, one concludes that

thy - tht =

i
|¥8,((rir, —13) <y TIHRDIY 5 g 11 <y,

)HL2 (yst) S
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which in light of the a priori bound on FZJ/ implies the second estimate of the
lemma in the region y < ¢. In the region y » 7, one uses Lemma [B.1] to estimate
|(t — y)? V[’yl//H [2(y»r) directly. Note that the proof of the latter actually allows us

estimate ||(# — )’)ZviyleLZ(y»;) also in the region y ~ . mi
Remark 4.1. The preceding proof reveals that for [ any product of at most two of
the vector fields I';, I'», we have
K [2E11)100
Vi Vo0 2y < OV ] 4| < Vi e {1.2).
Lemma 4.3. We can split Ty = (T14); + (T1)2, where we have
_ ~ 1_
[<log )™ Vi (1)1 1 gy 5 0027
provided have 0 < |B| < % + C, while we have
~ 1+[227)100

|90V 1), < £ 151 12 <

Moreover; there is a splitting T30 = (I + (T3),, with
Ny
10w~ 94,0303 < 500 0 < g <
as well as
(1+[327)100

HVU’ ty(r%l// 2HL2 (y«r) S 8<t> N Y ‘ﬁ| + 2
Finally, there is a splitting T1To = (T1T0%)1 + (T Tath)o, with

- = 1+(1+

H<10gy> IV[Zy(FIFZlﬁ)l \|L§(y<<,) < &ty (

as well as

2181
D o < 18] < N7 +C,

1
HV”Vﬂ (Ti)2 2pact) S e Bl +2 < N

Proof. In fact, using (#.14), we get

I =T (ga(y f 1 (9)[¥u(1.9) + P.G(1,5)] d5)

D) f B2(3)[Fa(t,5) + PeG(1,5)] )
+Ti(a()d1(y)).

(=)

Here we have
d'(1) = 044(1,0) =t 'Toi(1,0), a”" (1) = 01 (1,0) = t2(T3) — Tagh)(2,0),
and so using the bound (B.3) (proved independently below), we get
- 1+ 100v
V390 (00 (081 [ 3,y 5 0TV B 4 2 <

while we have

|Clog yy~"ta(1) (v)

)
2y S DT
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Further, write
Y
Iy (3200) f B15)[Iu(t.5) + P.G(1.5)] )

—I4 ¢1 J ¢2 lﬂ,,(l y) + PG(t, y)] dj’)

= 1+1I,
where
I =1y f ) [Gu(t.5) + PG(1,5)] dy
f )[Ju(t,5) + P.G(1,5)] 5,
11 = ydo(y j lﬁm 1,y) (PcG)t(t’i’)] dy

- y¢1<y>f0 B [Fult.5) + (PG)i(1,5)] .

In view of Lemma [B.T] we have

1)) 1000
H y'vbmHLz (v<t) < g<t> (1+[ N ])100v—2

It then follows that

VeV oz

ﬁ'

(1+[5])100
<) R ‘9<t> I LBl +2< N

For the term 11 above, observe that
y
= 08)0) [ B0 B(0.9) + (2:G)0.9)]

()’¢1 j ¢2 'ﬁttt(t ¥) + (PG)(t, )’)] dy

which can be estimated just like /;. Finally, we have
y
1= 68)0) [ 316)[Fus(1) + (PeG)ul0.5)] a5

J ¢2 lﬁmz 13) (PcG)zz(t’j’ﬂ dy

Then use the equation to write Yy = Wyyy+ Vi +Lo.t.. Performing an integration
by parts, this allows us to write

I, = ()@2)()’) foy _‘13/1 (?)lﬁny(t,?) + ‘51()7) [V(y)&n + (PCG>IZ([=5))] dy

— (yh1)(y) L ' — 5 ()us (1,5) + () [V )i + (PeG)u(t,5)] dy
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Using
~ (1+[2E]) 100v—2
vawaWHL%(y«t 8<t> g " Bl +2 <N,
(see Lemma B.T)) as well as the identity
Ju = (2 =) 130 — 2y,Tof + 290,00 — T2gf + y* 0 ]
one gets

i

VeVt 3y < 6O g1 2 < vy,

(y«i)
Next, consider 1"%1} Recall the identity
I A =1
This yields for |3| + 1 < N

Vi (1} = 13)

2\

PIVE (VD)2 + Lot

()30,

where we used in particular bootstrap assumption (3.4). Together with the boot-
strap assumption (3.3), we conclude that we can split

I = (T79)1 + (T79)2

)HL2 (y«t)

A

with the desired properties.
The proof of the last assertion of the lemma follows from (3) in the preceding
proof. O

We now continue with the proof of (3.11]), our main tools being Proposition [2.1]
Proposition Write the equation for ¢ as before in the form

)’2
—&&+%&+%§f§¢&—ma
where
G = (1+))1F(,V,V9).
We decompose G into its weighted part G (terms with weights at least (y)~2), as
well as the pure cubic part G,

G =G|+ Gy
Use the bound
Vﬁl FKl ¢V/32 FK2¢
VﬁyrgGl‘ S Z | ’

K| +K2<K (1 +y )
81+1B821<B]+2
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According to (2.16)), we need to bound the right-hand side in |- | L Start

mLé Sedy )

with the case of less than top-level derivatives, |3 + k < N; — 1. When x = 1, in
view of bootstrap assumptions (3.4) and (3.6)), the above expression is bounded by

H ’ HL} (Lfiylewg *dy)([O,T]) (4.16)
Ny
(Viy)2 ¢ _ .
H <ty>1_ |‘L,2L§?0H<y10g)’> 1<Vt,y>N1<F2>¢HL§J([0,T])
+ 2 [010gn ™ VM8 2 g0 [0 10T VT 2 0.y
Ba< 21
2111, ,
s ORI L2ty
< 2<T> (1+ N—ﬁ‘])mv

as required.

The case k = 2 is estimated, in view of bootstrap assumptions (3.4) and (3.6)),
as follows

|- ”Ll (L3,nL} )([0.7]) 4.17)

FEdy
Tt

OE

+ Z [102) " <Ve)™ 182, 0.7 [ 02 )™ 1Vﬁ2<Fz>2¢HLz 0.7

B2<7*1

+ 2 T 100en Vi o,

\ﬂ1|+|/32|<N1 1/=12

2<T> 1+ )IOOV 82<T>101V]l

| 200 [<y1ogy) ™ (Vi) =1 (T2) g 22,([0.7])

(3 ])10v

A

ga>ty + (1)

2<T> (1+ N—ﬁ'])100v

A

>

as required.

The case of top level derivatives |8 + k = Nj is treated as in (3) of Lemma4.1]
via integration by parts and induction on the number of y-derivatives, and omitted.

This leads us to the problem of bounding the contribution of the pure cubic terms
G». By using the inherent gradient structure (#.2)), as well as the estimates (2.16),
(2:18) and (2.20), we reduce to bounding the schematic expressions

H <r2>K (¢ty¢t) HL L2 4 <y> 1<r2>KV (¢t2,y$f) HLt1 mL] )’

G dy
H<y>§<r2>l(vt,y (¢t (¢yy bu )“Ll (L3,nL) )

Pk dy
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We shall only consider the case of non-top order derivatives, i. e. |8| + k < Nj,
since the remaining case is again handled via the energy identity and the integra-
tion by parts trick to reduce to the case of lower order derivatives. We treat the
above terms separately:

(1): the bound for |V5 <2y (¢2,)| L2 oy Start with the case k= 1,
18| < % We have
| V05T (#7,1) HL}LZV([O,T]) S D VT, V6,V ;¢’HL1L2 ([0.71)
' 2Bj=B

+ D) HV'BI¢t>Vﬁ2¢t>Vﬁ3<r2>¢tHL 2 (jo.1])
2.Bi=p

DI LA SR AT ¢t”L1L2 ([0.7])
2Bi<B

+ Z H<)’> 1VBI<F2>¢sz¢ty ;‘/’ZHL L2 ([o,t)"
2Bi<B
(4.18)

We estimate the first term in the right-hand side of (4.18)). Using the bootstrap
assumptions (3.3 and (3.5)), we have

2 Hvﬁl<r2>¢tyvﬂ2¢tyvﬁ3¢tHL1Lz ([0.17)
2.Bi<B

Z H<t>_lovvﬁl<r2>¢tYHL°CL2 [0,17) H<t>lovv ¢I)Vﬁ3¢’HL1L°° ([o,T])
2Bi<B

3
< 8_<T>10v < 82<T>10V.
%
To estimate the second term in (.18)), we use the local energy bound (3.6). Write
[Visgal = [Vis(0)730)] + V03 (0)24y)

Z ”<y> ZVB2¢’—|—‘<y> 2V52¢y’] 4.19)
B21<Ba|

and so
H<y>‘1Vf}<Fz><Z>V ‘f’t) y¢’HL L2 ([o,T])
< [logy)~ 1V€;7<F2>¢|‘Lz),([O,T])( ) > ko~ V<Vy>V€§’¢”L0°L"3 (1)
B2I<B2|+1
[y tog ¥y T2V i 120
< S(THY,

where we used the bootstrap assumption for the first term, the bootstrap as-
sumption (3.4) and interpolation for the last term, and the embedding H'(R) <
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L*(R) and the bootstrap assumption (3.2)) for the middle term.

We continue with the case k = 1, |8 > % Again using (4.18)), there may now
be terms where only one of the three factors may be bounded in LZ‘;. Start with
the first term, and assume |3;| > % (as we may by symmetry and since else we
can argue as in the previous bounds). Then distinguish between the following two
situations:

(a): y < t. Here the trick is to use the identities

. M —yig . Mg —ylho
¢ = tz_yz >y tz_yz
which imply
~ _ 1
V200 < )3+ Y vy, (4.20)
1B21< B2
r=r,

To estimate the term
we get

, we observe I'1¢(¢,0) = 0, whence using Lemma

[VIAT18(6.9)] 5 )02,
We also have (see Lemma |[B.2))

(28110
V2 150 (1,y) < eI D000 18l 4 < Ny

The previous observations imply that
‘V ¢ty‘ S ) W + e < Stf%f‘s', y <L,

with a similar bound applying to V’B y¢:. But then we easily get

||Vfly<F2>g$,ny§,¢,y ;¢f”L1L2 (y«1)

< H<t>7lovvz,ly<r2>¢t,yHL;>cL}2, “<I>IOVV€§J¢W“Lﬂ@”(y«t “V y¢’“L2L°O(y<<t)
< 8—3 <&
AT T R

The remaining term in {.18) is treated similarly.

(b): y z t. Here we may of course assume y ~ t, since the case y » t is handled
just like (a). Note that from (@.19), we get using also the Sobolev embedding
Hy1 dy (R) < L*(R) and the bootstrap assumption (3.2)

V2| s e 2y ~1, 4.21)
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and so the a priori bounds imply

B O v B
H V,,;,<F2>¢t,ythfﬁt,yv,;fﬁr H LL] (y~1),1€[0.T]

&

S HVIIB,;’<F2>$WHL?CL§[O,T]HVIIB,;¢’JVIIB,§7¢’HL}L)‘?C‘([O,T] S 7<T>“V < X

which is the required bound.
For the second term in {.18)), again assuming that |3;| > % we get using (4.21)
and the bootstrap assumptions (3.3) and (3.6)(and restricting to y ~ 1)
H N : Vf,;<r2>&vfi¢t,y ij'qu HL} LZ}_ ([0.7])
< |[<log »nT! V€§r<r2>‘5 HLgy([o,T]) |<log y>V’f§¢,,y HL;)_g “Vf,;@ ’|L,2L§0([0,T])
< &3 log T>%T“V,
which is much better than the bound £(T)?*” we need.

This completes the case k = 1 for (/). For the case xk = 2, one proceeds
analogously, but now also encounters terms of the form

Vf,;<r2>¢t,yvﬁjv<r2>¢t,yV€;<Z’t,
In the region y « tor y » t, we can proceed for it like in (a) above, applied to the
factor Vf’: ;Ebt In the region y ~ ¢, one uses

HV‘,Z<F2>¢L),V€;¢,HL}LSC([O,T]) < eXTYV;

We omit the simple details.

. -1 B (42 % 172
(2): the bound for |{y) TV, (q)t’yq),) I L@, ) ([07) The L, Lj-norm
corresponds exactly to the second term in (4.18) (if k = 1, and analogous with

k = 2), and is easier than the L'-type bound. Thus consider now the (modified)
Lclly—norm. From ({.20) and a straightforward modification, we get

‘ V;B,§<F2 >¢t,y ‘
< OO + (max{ry}) 1oy Y VR, y < rory » 1,
B21<B2|
=l
while from (4.19) we get
VR, < Y [0 VRS + [0 VET)E,]

|B21<Ba|
which is useful in the region y ~ 7. Using Lemma4.3]and the bootstrap assumption
(3-3), we infer

218l
[Qog y) (0 H#* VETo)y | < iy R
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If we now write (as usual « € {1,2})

N <r2>KV€,y (¢tz,yq~jt)
= > O VT2 0y (VI D22 0, ) (VD) )

D Kkj=k, ky<min{1,k}

2.Bj=B

thenif k3 = 1,k = 1, we get

e .. ory

Viidry V(T2

5H<y>€*+%<10gy>vﬁly<r2>¢f’y”q§([O,T])H ><> ”L [0.7] ||<y><10gy>HL [0,7])

3
< 5_<T>s*+42v < eX(THI00
v

which is as desired; we have used the preceding considerations to bound the first
factor. On the other hand, when x3 = 2, we obtain the bound

H “L}Ll 5o dy ([o,77)

l‘y< 2>2¢l

< [ 2 log Ve Vb2 o 5oy o

< 83<T>(1+ N—ﬁ])moV'

The remaining combinations are handled similarly and this completes the estimate

(2).

(3): the bound for H<y>%<FZ>KVﬁ (67 (dyy — St )HU (13, - Here we use

ypFekdy
the equation for ¢. This produces a term just like in (2), as well as a further linear

term of the form
OV (479).
This term is handled like in (2) if we note that
[0)7" 8]z, = [6)7'8O) 2 + (10071 80) = 2Oz
S179O),s + [ s e

This then allows us to reduce the above expression to the following crude schematic
form
1 _
H<y>2 <F2>Kv't8,y (¢t2 [<y> 2¢2 + ¢ ) HLI L2 mLé 55 dy )

which is straightforward to estimate by < &*.

This concludes the proof of (3.T1).
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5. LoCAL ENERGY DECAY

The goal of this section is to prove the local energy decay (3.12)) for which we
use Proposition This follows essentially along the same lines as the proof of
the estimate (3.11]), except in the case of top level derivatives, which have to be
treated differently.

(1): derivatives below top degree: |B| +y < Nj (referring to (3.12)). We follow

the same pattern as in the preceding proof, except that now the ’bad norm’ Léy>‘ dy

is replaced by L Using the equation for ¢ as in the preceding proof and

2
o Gl tdy”
splitting the source into

G =G+ Gy,

we see that in order to control the contribution from G, we have to bound

VBI I‘Kl ¢Vﬁ2 FKZ

Z “ Ly 2 Ly" 2

3
K| +K2 <K (1 +y2)1
1B1+1821<[B]+2

HL} L§y>l +dy'

. . . . 1
In fact, note that in (4.16)) we obtain L;y—control by sacrificing one factor (y)~z,

and so the L§y>l + gy-nOrm of the above expressions is bounded exactly by @.16),
(corresponding to xk = 1,2). The same comment applies to the non-gradient

terms constituting G,, which can hence be estimated just like in (/) - (3) of the
proof of (3.11) above.

(2): derivatives of top degree: |B|+vy = Ni + 1 (referring to (3.12))). The idea is
to again use an inductive argument to reduce to the case of lower order derivatives.
This time a simple integration by parts argument seems to no longer work, and we
instead use an approximate parametrix to express the top order derivative terms.
Specifically, assume 8 4y = N, and consider the expression @B FZ;Z This satisfies
the following equation

~ 1 3+% i
—H (T + 03@5%&) + Em((f@ ) (5.1)
= ITY(P.G) + /[0, T5)0 + Y V5o Th

y<vy

where the potentials Vj are of the schematic form

Our goal is to derive an a priori bound for

[<logy)™ )1V, T50 2 0.1y (5.2)
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To this end, we shall express 0? FZ& via an approximate representation formula (a
parametrix) based on the method of characteristics (as we are essentially in 1 + 1-
dimensions), faking the smaller top order terms in &tB F;(PCG) into account. To
start with, write

Ty (P.G) = &T}(G) — TY(PuG),

where the error term &IB I“g(PdG) is effectively a lower order term. Then collecting
all the top order derivative terms contained in

xry(G),

we re-cast the equation (5.1)) in the form (we normalize the first coefficient to be
equal to 1, thereby introducing the factor «(z, y) on the right)

— (TG + g1(8, V)2 (FTID) + g2(6, V)2 (FTID) = k(t,y)H, (5.3)
with

342 ] ;
- e T~ ATPG) + (FT(G) + T
+ 2, V30T

y<ry

where ((?tﬁ FZ(G)) denotes all non-top order terms, while the top order terms (i. e.
when (9,3 FZ falls on a second derivative term in G) have been moved to the left.
Note in particular that

¢ ¢

81(8:96) = 1+ O(1— 5 + [Vudl’). £2(6.Y9) = O(— + [Vud]").
¢
K(t,y) =1+ O(Tyz +[Viyg]?)

Then we approximately factorize the left hand side of (5.3)) as follows:

— 070 + 81(8, Vo) O30 + g2(¢, V) Ol
= (_at - hl (¢’ V¢)ay)(at - h2(¢’ V¢)ay)l/~/ - hl (¢’ V¢)ay(h2(¢’ V¢))ay&
— 0(ha(, V) Oy

where the functions £ , are chosen to satisfy

—hy + hy = g2(¢, V), hihy = g1(¢, V)

whence

hip =1+ 0(% + [Viy8]%).

Hence we obtain from (5.3)) the relation
(=0r = h1(¢,V$)0)) (01 — o (9, V) Oy)d

- - 5.4
(6. 98) (a6, V)b + (O (.V)oNd + H = Hy O
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This is the equation we solve approximately via the method of characteristics. Pre-
cisely, introduce the functions A; 2 (s; #,y) via the ODEs

dsi(s;t,y) = (¢, Vo) (s, li(s:t,y)), 4(:1,y) =, (5.5)

Osa(s5t,y) = —ha (¢, VP) (5, 12(s31,y)), Aa(t;t,y) = y. (5.6)
Note that from our a priori bounds, we get the crude asymptotic
Dia(s:63) =y F (1= 5) + O(e(t — 5)27)

Then we introduce the following approximate parametrix for the problem associ-

ated with (5.4):

Lemma 5.1. Let f, g and H three given scalar functions. Let S[f, g, I-1] be defined
by

o

S[f.8.Hl(ty) = S[F(0(0:2.9) + f(A2(0:1.y)]

A2 (052,y) S
g(¥) -
d
+Llo,y (h1+h2)(¢ V) (0.5) “

/12 sty
_ H(sy)
dyds.
JJ (s;t.y) h1+h2)( )
Then, we have

S[f.e.H])0,y) = f(y),
S, HI0,y) = ((ha—h)(,V9))(0,9)f () + &),

and

(=01 — h(8,V9)2,) (0 — ha(¢,V9)2,)S [ f. & H](t,y) = H + E[f, g, H](1,),
where the error term E[f, g, ﬁl] (t,y) is given by

E[f. g. H](t.)
= (Oha (¢, V) — hi (¢, V) Oyha (8, V) + ho (¢, V) Oyhi (4, V) (1.)
x 0y (f(A1(0;1,y)))
. (02 (¢, V$) — i (¢, V) yha (6, V) + ha($, V) Oy (6, V) (1, y)
(h1 + h2)(9, V)(1, 1 (0;1,y))
x0yA1(0;1,y)g(1(0;1,))
+(0ha2(¢. V) — hi (¢, V) 0yha (6. V) + ho (9, V) Oy (6. V) (1.y)
H(s. A1 (s:1.9))
J (S Y) G G (55 13)
Proof. First, we trivially have

S[f.& H](0,y) = f(y),

as well as

oS [f. 8 H](0,y) = %((Ml + 0:42)(0;0,y) ' (v) + g(y)s
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where we have exploited the fact that

(0r + 11 (8, V) (1,)0y) i (s51,y) = 0, (0 — ha(¢, V)(2,y)0y) Aa(s32,y) = 0.
Together with the fact that

S0+ 2)(0:0.)7'6) = (U2 = )6 FH)ONS D), G
we deduce
0m(0,y) = ((ha — 1)(4.V9)) (0.)f (v) + 8(»)-

Finally, the statement is done by direct check on the definition of S[f, g, I-1] This
concludes the proof of the lemma. O

Next, we estimate S [f, g, I-NI] and E[f, g, I-1]

Lemma 5.2. Assume that {y)(f’,g) € L, and the decomposition

H=HY + 4)2H®?
with

sup <t>*2'lok"“!|fl(l)(f,’)HLg + sup <t>72-1ow
1€[0,7] © te[0,T]

—177(2)
{ylogy)" H HLﬁy([O,t]) =t

Then, we have the following estimate for S [f, g, ﬁ]

sup ()21 [(vlogy) 'S [f.. H]| 12 o)
[0.T] "

1 ‘o
S O @)l + 5 sup (7= AN @)
V tef0,1]

+ sup (01 [vog ) HP 12 0)-
1€[0.7] "

Furthermore, E|f, g, I-1] satisfies the following decomposition

E[f.¢. H) = EV[f, g H) + &) EP|[f, ¢ H),
where EV[f, g, ]andE )f. g ]satisfy

sup (61 THED[f, g H] (1) 12
€[0,T]

+ sup (7| logy) T EP 8. H]| 12 0
[0.7] S

el &)l + Ve sup O HD (1, 12

1€[0,T]
+/E s &1 [ 1ogy) ™ HP 12 10,9,
t€[0,T

A
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Proof. We start by proving the first bound of the lemma. Compute

ViyS[f.e. H Z Viydi(0:£,9) £ (4,03 1,y))
] 1,2
S(4,(0:1,3)
+Z VA0 G V0 )

H(s, A(s:1,y))
s f Ve (50 G T 6. (5. Ay (i)

j=1.2
=:A+B+C

In order to estimate these terms, we need pointwise bounds on V,,1;(s;t,y). By
definition, we have the equation

OrsA (531, y) .
m = +0,[h(¢, V$)](s, 4 (s:1,¥)).

Also, we recall the schematic relation
¢
oy[h(, V)] = 0(9y(ry2) + 0y([Viye]®)).

We need to check the absolute integrability of this expression with respect to s.
First, it is readily verified (since ds4; ~ +1) that

! ¢
|| 1l sty ds <.

The expression 0,[V,,¢]? is a bit more delicate to control, since it fails logarithmi-
cally to be time integrable. In fact, we get

t
t
[ a1 s < 210e( )
and so we obtain the bound
<t> <t> Ce?

- \Y (s;t,y -— . (5.8)

(<s>) ‘ ty )‘ (<S>)
Then using the bound

£/ (45(0;2,3)] + [2(2;(0:1,)| 32<y+t+ O~ )OS, 8) 12,

it is immediately verified that
H<10gy>“<y>‘1AHLgy([o,r]) + H<10gy>‘1<y>“BIIL,z_yqo,r]) S [ &)z
For the term C, first decompose C as
c=cW 4 c®

according to the decomposition H=HD ¢ )y~ 2H®) . We first estimate C().
Write Aj(s;t,y) = Aj(s;t,y) if s < t and

Aj(sity) =yF(t—s), =12 s>t
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Then we get (fort < T)

1)’< Z J ‘Vty Sly H SA(s'ty))

d
&, h+h2 ¢V¢)(sA(sty))| s

and by a simple change of variables argument and Minkowski’s inequality, one
obtains

B _ r <T> 202 ~
[<logy)™ ) ™'CW2 oy S fo (@) [HD s, )]z
2106
< & sup <t>_2'10KV+IHFI(1)(l,')“LZ-
Vo eor] '

Next, we estimate C(?). Using the Cauchy-Schwarz inequality, we get

|C(2)

T > - 1
(t,y) < (L (%)m (log Aj(s; t,y)) T (Aj(s:1,)) 2 (HP (5, Aj(s531,7)) ds)?

provided 7 € [0, T']. Using Fubini and a simple change of variables, we conclude

1020~ €2 101

T 2Cs — —2/17
< f<y10gy> f j <<s>> (log Aj(s;1,y)) (A j(s;1,y)) 2(H(Z)(s,Aj(s;t,y))za’sa’t)a’y
105y _ 2105 1502
< (T (J<ylogy> 2dy) sup ([ (vlogy) T HP 2 0
y 1€[0,T] Py
< <T>2~]0KV sup <t>—2-10/<vHﬁ(2)(t7.)||Liy([0’[]).

t€[0,T]

as desired. This establishes the first bound of the lemma.

Next, we consider the error term E[f, g, H]. As we did for V,,S[f, g, H], we
decompose E[f, g, H| in view of its definition as

E[f,g,ﬁ] —A+B+CcV 1 c@

where A, B, C (M and c@ correspond respectively to the contribution of f, g, HD
and H® . For A and B, we use the bound

/(405 2,3)| + [8(4;(052,9)] 5 82<y+t+ O~ [N (f 8) -
Then we infer

41+ 18] £l (¥ (75 >z )+ 17sli)) Do £ 1+ O ) ON(F ) |
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which together with the bootstrap assumption (3.3) for ¢, yields

1Al + |B’HL,%,( 7))
s W2+ )Y+ 0 0 iz, o IO ) e
T
s el(f,8) e

Next, we consider the contributions of C (1) and C®. We have

1)\ cs
P10 5 (Ml < >2 )|+ [Viy(87,)]) Z J ési C [HY (5, Aj(s:1,))| ds
j=12
and
€910 = (Tl )|+ T@)) 3 [ ()10 0 (sl
j=1.2

(a): Contribution of C1"). First, consider the contribution of ’V,,y(¢%y) | Estimating
this factor by < &2(¢)~! and using a straightforward change of variables (using

(3.8))), we obtain

G

<t> Ca s/l s; )| ds 2

<82<t> f <t> 2¢e? HH(l)(s

<& sup 7AW, 12
1€[0,7] i

.0 HL(% ds

which is as desired. For the contribution of Vt,y(&), we estimate

o)~ 0(00) [ (21O 5,550 sl o)
< og) 00000 [ () A5l oy

I RGN PN
<|5 g |, G It g
< \/{:‘<T>2'10Kv sup <t>72-10'<v+1|‘[_~1(1)(t,')HL%,

€[0,T]

again as required.
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(b): Contribution of C®). For the contribution of |V, (¢7,)|.

¥ ] () 10 s .90 o
<Im @l [ <§§§>2“2» o Ray,

X! @3@2 0 _1~(2)s 2 s%
<7 ([ (20 otogy B9 s, s

where we used Cauchy-Schwartz and a change of variable in y. Integrating by parts
in s so that the s derivative falls on {s)~3C¢" we deduce

”’Vz} ¢ty ’J <t> “« [y >721‘~1(2)(s’/lj(5;t’y))|dsHLﬁy

< 8<t>2 104v—1 sup <t>72-10’<v
€[0,T]

(rlogyy 'H?| 22,([0.4])°

Finally, for the contribution of V, ,,( we estimate

®
(s

< oz~ [

¢
<y>2 )’

Ce?
)T *H®) ’)|ds|‘Lz},([O,T])

@)zcs | H® (s5,4,(s;1,y)) 2
(s (log(4;(s;2,y))X4j(s;1,¥))

(e AV ), :
(f Jy 7 A sty d””)
& ' @ 3ce? o) —17@ s 2 s :

where we used Cauchy-Schwartz, Fubini, and a change of variable in . Integrating
by parts in s so that the s derivative falls on <s>*3c‘92, we deduce

H<logy>l<y>1¢(t,y)f0 (%)CSZKWZFI(Z)(&)I sz (o

< \/E<T>2-10Kv sup <t>72-10’(v
t€[0,T]

\<10gy>_1<y>‘1¢(t,y)f (=<

S) : H 2,([0.77)

C15HQ)
{(ylogy)"'H HL,%y([o,t])

which is again as desired. This completes the proof of the lemma. O
We are now in position to derive the desired bound for (5.2)). Let
fiy) = 2730(0.5). 81(y) = A0 v3u(0.y). |8 +y = N+ 1,

fi) =07 =2,gi(y) = —((ha = 1) (. V9)) (0,9)f;_; (¥): j = 2,
H, is defined by (5.4), and

Hj(t,y) = —E[fj-1.8j-1. Hji-1](t,y), j = 2.
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Note first that f; and g; satisfy in view of the assumptions on the initial data of ¢

I (f1s81) L < o
Also, H, is defined by (5.4) satisfies

H = H" + () 2H?,

where H fl) and Hfz), in view of the bootstrap assumptions on ¢ and the proof of
for the case of non top order derivatives (i.e. + ¥ < Ny), verif
P y

—2.10¢ 1 _92.10¢
sup (O 21 HD (1) 2+ sup () 21O
1€[0.7] T el0,T]

—1,0) 2
(vlogy)™"H, ”L,%y([O,t]) s e

This is clear except for the second term amid the five terms constituting H, and
for this it will be an easy consequence of the estimates below used to prove (3.13).
Next, we deduce in view of Lemma5.2]that for j > 1, that

=t
[0 (f} 8l < Gos™ 2, j = 1.
Furthermore, we have a decomposition
1 —2,42) .
Hy=H" + )72, j=1,

where HJ(.I) and Hj(.z)

—2.10¢ 1 _7.10K
sup (1D (2, ) 5+ sup (5710
€[0,T] €[0,T]

verify

j—1

—144(2) 2
(ylogy) Hj ‘|Lg),([o,,]) et

Finally, we have the following estimate for S[f;, g;, H;]
2.
—2.10% - e7\ -1,
sup {6~ [y logy) TS [fj g5 Hill 2 o,y S (G0 + = )&=, j > 1.
1€[0,T] Ly )4
We deduce that the sum
=1
converges and satisfies
—2.10¢ - 3
sup (1)~ 21|y logy) M ucs| 2 (1o ) S €2
1€[0,7] A
Furthermore, in view of Lemma/[5.1] we have
MOO(O’y) = 5?7’;&(0,)’)’ aﬂ/loo(O,)’) = at&tﬁy;&’ (O’y)’ |ﬁ| + Y = Nl + 1
and
(=0r = h1(6,V$)0y) (0 — ha(¢, V) 0y Jucr (1, y) = Hi(t,y).
By uniqueness, we deduce
un = V0. 1Bl +y = N1+ 1
and hence

—_2.10¢ _ ~ 3
S[lép]<t> 2-10 VH<y10gy> laf’yglﬁy |,8| + )/HLtzy([oJ]) < &2, |ﬁ| + Y = N] + 1.
te(0,T 5
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This is the desired bound for the top order derivatives, which concludes the proof

of (3.12).

6. DISPERSIVE BOUNDS

The goal of this section is to prove the dispersive estimates (3.9) and (3.10). Our
key tool shall be Proposition[2.1] As usual, our point of departure is the schematic
equation for ¢

2
N 1 3+%
—0X) + 2P + ~———==J = PG,
t'vb+ )¢+2(1+y2)2¢ C

G = (1+)%)iF(¢,V8,V%9).

Using Proposition [2.T]and interpolation, it follows that we need to bound the norms
1iyop Ny
H<y>z+7vt,yGHLt1L;, 18] < 5+ C

for some y > 0 which is sufficiently small but can be chosen independently of v.
Then 6; = 6;(y) will be determined via interpolation from Proposition We
can write schematically
B B2 5
1 1 |Vt,y¢’ |Vt,y¢|
PTG s e
B1|+B21<|B|+2

i< B>

Liy
+ ()7 > %
B1]+821<|B]+2

BI<t
+(NC(¢, Vo, V20)

where C(¢, Vg, V2¢) denotes the cubic nonlinear terms. The first term on the right
is straightforward to estimate. Write

V2011V (6.1)

Ly V0l V72|
[ Z T”L}L},
1] +62]<|B]+2
Bi|< 5 18] >1

VindlIVi 9|

1
< <y>§+7 Doyl
H |:Bl+|[§<|,8|+2 <y>2 HL/L)’()«I) (62)
BiI<EL. B2 >1
B2 %
i V0V
’ H<y>2+y Z %HLIU .
1B1]+1821<|8]+2 ) + Ly (y21)

N
1Bi1|<5E, B2]>1
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For the first term on the right, use thaton y « ¢
~ _‘l R ~
Vadls > v
|B2|<B2]

with I" comprising both T’y 5. Then splitting ' ¢ = (T'1$)1+ (1), asin Lemma
we have

” Z til‘vlté,;(rli)] H‘Lz(y«t) S 8<t>’%*61_
1821 <2
Furthermore, we get (using also bootstrap assumption (3.3)))
|20 OVl ey + 1 X O VT 2y 5 60
B2] <2 |B2|<B2]

Then, using also bootstrap assumption (3.6), we estimate the first term on the right

of (6.2) by

Vi8IV

1
H<y>2+7 Z T”L}L}‘,(y«t,te[o,ﬂ)
B +Bl<lpl2 Y
Bi| <, B2 =1
a0y, (Vi)' _ B e
S Z Z <5 ZVti—HL,Z ([0,T])H<t> 000y 1V€;F¢||LOOL2,()'<<Z)
B+ B<IB1+2 Thrag Tid), xlog )T }
B1I< L. B2 > 1B
% Ht—1+y+102v+H ,
Lt
0y, (Viy)P'é ~ By s
Ty +|l;<|,6’|+2 07 7 dogyy I qomp I V@Dl e
1 VARSS
Bi|< L. B2 > |52
82

([0}

< — < .
Syri02y S °

For the last term in (6.2)) , we estimate it by

VoIV
H<Y>2 Z Oy HL,] Ly (yz1)
1B11+1B821<|B]+2
BiI< 3L, 182 =1

S Z ||<t>’1*7*\lVf§<$(t,‘)I\Lgl\Vf‘ycb(t,-)HL;ﬂHL;
181]+1B82|<|B]+2
i<, g1

< &
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The second term on the right in (6.1]) can be handled as follows:

V20l
[optr ST R,
PR TSR
\/31|<ﬂ
ﬁ‘ B2
Viy® V,)¢
s 0 @ty il 0™ g ol
181 +1B2]<18]+2 <>] 2y (log y){y) "Fiy
Brl<
<82.

~

It then suffices to consider the pure cubic terms, which we write schematically
in the form

OO ((019)2 03¢ — 20,600,005 + (0y0)*079). (6.3)

This time, we shall have to take advantage of the full inherent null-structure, i.
e. cancellations between the various terms. We start by absorbing weights by the
factors, i. e. by replacing ¢ by ¢. Note that schematically

(0,6)%02¢ ~ ()73 (09)2%F + )3 (019)20h + O (). (64)

We claim that the contribution of the second and third term are straightforward to
handle. In fact, for the second term, write

‘<y>l+y<Y>7%(at€Z)25y$‘ < \Xy<<t<y>7% @ y¢‘ + LYy>t<t> 2+y(a ¢) ¢‘

We immediately get (assuming || + |B2| < Nl + )

Poary VA GBVE0B y < 1O IV 08121936081 2]

< 83.

For the first term above, write

. ¢ — 1
Xy«tPr = Xy«[W

The term involving I'; being easier, we focus on the one involving I'j. According
to Lemmal4.3] we can decompose

[1¢ = (T14)1 + (T19)2,
with
15, Ny
[V 1)1 (1) 2y S €O 1Bl < 5+ €,
while we also get

[3£)100v

92,0112, 3y < TRV 1 < g <y -2
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Then we reduce to estimating the terms

H/\/y<<Z<)’>7 AP (T19)s at&ayéHLrl Ly
< [ Do Tdnl 2l 10D~ 0l 2,

< el TNl o 0,

<€

~ >

Py (018)2000,8 11

< Do) 2201 (010)10,8 10

+ Py HT16)2(T19) 25y¢||L1L1
< |20 @l | (1@ 21082,

2
S L P e P IO (F1¢)2\|LooH5y¢HL2HL'
< 33Ht’7*5‘+20“

3

+83Hl 2+y+201vHL1 <&
1

Iy

The estimates with derivatives are analogous and omitted.
The last term in (6.4) is handled similarly, thanks to the fact that

(CONIPEO%

The remaining terms in (6.3) are treated similarly, and so we now reduce to esti-
mating the following expression

[0~ ((2:8)202¢ — 20,$0,8%F + (0,6)2% Mo, (6.5)

In fact, if one uses the equation for ¢ to switch ¢y, ¢y, and thereby generating
error terms at most as bad as the last term in (6.4) (whose contribution we already
bounded), it suffices to consider

[0Y~247 ((0,6)%0% — 20,80,80% + (0,8)202% My, (6.6)
Write

(0:4)*07¢ — 25y¢5t¢azy¢+( ) 2&
- Doglady —T1gT1d; - Toglady — F1¢F1¢y (6.7)

= 72— y2 -y 2 —y2

Then we treat a number of different regions, beginning with
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(1): interior of the light cone, y « t. We exploit that the preceding expression is
in effect a 'nested double null-structure’. Indeed we can write

- Togla¢, —T1901d, . Toglagy — 19119,
Z 22 P 2_y
_ r2$$z(rz<7)); - &;(Fﬂz)y g%(ﬁt(rl(ﬁ) <Z>y(l"1q7>)y
==y —y?
B — $,P
_1"2¢ 3 _y; Y
_T2p(139) —T1gT1T2¢ _ _Toglalid —T14T39
= 1"2 [t2 — y2]2 — 11 [l‘2 — y2]2
-T2gl2¢ —T'19T'1¢
—T2¢ [ — 2

. .. (T19)°T23 . .
Consider the worst term, which is % Our task is to estimate

(6.8)

,,ﬂ, B (r 1¢)2 2¢

Dy ™2 ym LBl< = LtC

The most delicate occurs when |3| = 0, which we deal with here, the other case
being similar but simpler. Using Lemma 4.3} we have to estimate the expressions

J16(0 I2¢)
HXy<<z<)’> 1¢[(t21¢)yg] 19); HLI i, je {1,2}.

Observe that we have by that same lemma
Xyt D18 < Xy (T1)1] + Xyer|(T10)2|
<pal T + o ([ 10.TdsFay)’
< S<t>%+1001/.

Then when j = 2, we get

1 Tig(Tid)i(T _ (F39)2
Deyeary ™37 HLI < |3 IT Bl | C1d)ill e |2
(12 —y?]? p
< 83HleJrSOOer)/HLI1 < 83.
On the other hand, if j = 1, then we obtain
_1,N10(019)i(T79) ~ N i i
beyr 2t l[t; o7 oy % [T O [Tz
< 83Ht—%+y+200v—51 HLI <&,

The remaining terms above are more of the same.
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(I1): the region near the light cone; y ~ t. We split this into two terms, one
restricted to the region very close to the light cone, i. e. [y — t| < ()7, the other
away from the light cone |y — #| > (t)~°2. Here §; » y > 0 is a small constant to
be determined. We start with the latter case

(lla): The estimate away from the light cone, |y — t| > {t)7%. We further
distinguish between a small frequency and a large frequency case. Specifically,
writ

3 TogTad, — 1901, - Toglady — 1911y

t

t2 _ y2 y t2 _ y2
= F2¢~5P<1_53 (FQ(;S,) — F1$P<t—53 (1"16),)
= o
- D2@P_ s, (Tadpy) —T19P_ 5 (T19y)
— 3, 2 (6.9)
~ rzépgt—éa (FZQEt) - 1"1<?>P;,—63 (rlét)
+ & P
~ Fzépzfés (szzy') - Fl‘z’szﬁa (Flfiy)
-y 22

where 03 » 0,. We have

L~ F(,;SP —d3 (rg’t,y)
HX oy ft—y| =% )2 +y¢’t,y t<2t_—y2 H L,

— ~ _ 1~ ~
S [ 10g 1l ey Doy e T2 TRl Iyt P s (Fy) 1| 1

where we have used the factor ( — y)~! to control the L;-integral. Also, I stands
for either I'y or I';. On account of Remark [4.1] we have

1~
ey~ 20| 1 < £

On the other hand, from Bernstein’s inequality, we get

e _%
Dey~iP <03 (Try) 1o < &(t) ™2 +100v
It follows that

1 - F&P —d3 (Fist,y)
H/Vt~y,\tfy\>z—5z )2 +y¢”>’ ;Zt——yz HL’I'V

S83Ht_1+7+20]v_67310gt“L1 <&
t

This reduces things to the large frequency case, i. e. the last two expressions in
(6.9). Here the idea is to again invoke the ’double null-structure’ as in the right-
hand side of (6.8). This causes one technical complication as we need to commute

16Here the projection operators P, and P are the standard Littlewood-Paley projectors in the
spatial variable y, defined via a smooth cut-off function using the standard Fourier transform. They
are not to be confused with P. and P, which are defined relative to the distorted Fourier transform.
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frequency localizers and vector fields. Note that
T2, P S0 ]
acts boundedly in the Lfly-sense. Also, we have
H L1, P>t—53]§7’”L§ <1 H‘IBZHL\2

It follows that in order to bound the last two terms in (6.9) with respect to || -
H< S drgy We need to bound the following expressions:
y

) F¢P 526
HXt~y|t sz )2 hT ﬁ”u

T35 (TP),
HXz~y =yl XN +yr¢ 2 (y “L1 ’

(6.10)

where I represents either I'; or I';. For the first expression, one writes formally
P, 512 5 190,17

Keeping in mind the physical localization due to the cutoff x;,, >, as well
as Remark 4.1} and the bound

DeydDBl e ety
we bound the first term in (6.10) by

1 TGP, 5179
HXt~y,|t—y|>t*”2<J’> 2T ¢ﬁ”u

_3 ~ ~
S 72 0 108 (6) TG e Iy i T Bl |

< 83Ht—%+y+6z+63+300v 10g(t)||L1 <&
t

The second term in (6.10)) is handled similarly.

(IIb): The estimate near the light cone, |y — t| < {(t)~°2. Here we work again
with the intermediate null-fom expansion’ as in the first line of (6.9). Noting that
schematically

(T1 = T2)¢ ~ (1 = )y,

we get
- Daflog, —T1@l1 g - Tadlady — 1911y

t B
t2 2 y [2 )
By 4 6.11)
: GryLry L I¢v? y¢
ity oray

We then easily get the bound

’W\y—t\<t*52<y>i%+yHL} ~ 3Ht Ak 62+102VHL}’

which is admissible since we may arrange max{y, v} <« ds.
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(111): exterior of the light cone, y » t. This is handled analogously to (I).

This finally completes the proof of estimates (3.9) and (3.10).

7. CONTROL OVER THE UNSTABLE MODE

To complete the proof of Proposition we need to prove the existence of a
such that the estimates (3.13)) are satisfied.

Lemma 7.1. Let ¢ be any extension to t € [0, +0) of ¢ which satisfies the boot-
strap assumptions (3:2)-(3.6) on t € [O o). Let b € R given by

{¢2,8a4) l <( )%F(?’ 2 Vz@(s), gd>ekdsds) ekt

b B
(a +{¢1,84) + X %2 Jo

Then, there exists a € [fs%, s%] such that
b < £2¢T)2.

Proof. Note in view of the assumptions on the initial data, the bootstrap assump-
tions for ¢ and the exponential decay of g, that

, 1 [+ 1 ks
<¢2 gd> o E ) <(1 +y2)4F(?,V?,V2?)(s),gd>e k,/sds

(b1,84) +

< (50-1-8.

We infer
[be %" —a| < 6 + & (7.1)

Let us now consider the subsets 7 1 of [—g%, 8%] defined by

I, = {ac[-&, &]/b>2e3(T)72,

I_ = {ace [—8%, 8%] /b < —28%<T>72}.
In view of (7.1)) and the fact that we may always assume that T satisfies
T'> i1y,

. . 3 o
we immediately see that +¢2 € 7. Furthermore, by the continuity of the flow,
I are clearly open. Thus, J 4 are two open, nonempty and disjoint subsets of

[—s%, &2]. Hence, there exists a € [—s%, &2] such that
ae[—e, eI\(I, uT).
This concludes the proof of the lemma. O

For a given by Lemma([7.1] we now prove (3.13)). In view of the formula for 4
of Lemma [3.1]and the definition of b, we have

h(t) = b+ % ( ((1+y?)TF (9, V9, V2$)(s), gd>e_k"sds> ekt

1 ~ ) —kat
b 3 (o @rsn - B L [ ) 650,900, g0 ) e



CODIMENSION ONE STABILITY OF THE CATENOID 49

Let h given by

b0 = 1)~ b= 5 (a+ Grga) -

<$2’ gd>> e—kdl‘
kq '

Then, A can be also written as

1 oo 1
h(r) = 2—kd< <(1+y2>4F<¢_>,V@V@)(s%g@e"‘”ds) M (1.2)

+% <J 1+ yZ)%F(qs, Vo, V2¢)(S),gd>ekdsds> okat
d \JO

Remark7.1. The point of introducing an extension ¢ of ¢ to ¢ € [0, +00) is to avoid

boundary terms at # = T when we will integrate by parts below in the formula (7.2)
for h.

In view of Lemmal|/.1|and the assumptions on the initial data, it suffices to prove
(3.13) with A replaced with A. Using that

[F(6,V,V?¢)| < 00 2 KViy)* > + [Viyo|* |V}, 0]

one immediately infers from (7.2) that
PR 5 D7 B+ 1< .

For the weighted derivatives, we first have

+00
1l (1) = %‘f""’f (1 + ) F (9.9, 9°)(s. ). 8a) ds
t

t
— eTh fo (1 +)7) F(9.99.9°9) (5.).8) ds

+o0 !
_ rlide"f" f (=00 (e )(1 + ) F (¢, Vo, VZ9) (. ), ga) ds
t

_ %e"“”f O ()L + ) F (6, V9, V°)(5.). 8a) ds
d 0

+00
%ekd’ f e M0 (1+ )i F (6,99, V) (5. ). 8a) ds
d t

t
n % e f 50 ((1+ Y2 F (6,98, 929) (s, ), ga) ds.
d 0
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Continuing in this vein, we get
) +00 1
—(10)%h + 1l (1) = S f e MO +57) F(9.99.9°9) (5. ). 8a) ds
t

2 t

_ %e_kgllL ekdsas<(1 + yz)‘l‘F((b, V¢, V2¢)(S, ')’ gd> ds
2 +00 ]

= zt—kdek"’f (—=05) (e )0 ((1 + y*) 1 F (¢, Vb, V) (5, ), ga) dss

2 t
; %e_kd[ J 05()0,((1 + )T F(¢,V9, V29 (5. ). ga) ds
d 0

and performing the integration by parts, we obtain

t2 +00
—(t0)h + 1h (1) = Z_kdekdtf eMTH (1 + ) F (6, V9, 979) (s, ), ga) ds
t
tz t
e fo R+ ) F(9.V9.V°)(s. ). 8a) ds.
Then note that
t2

+00
ﬁekﬂf R+ ) (0,99, 9°9)(s. ). 8a) ds
d t

+0
_ %ekﬁ f (L2670 202((1 + ) F(6. V6, V20) (5. ). ga) ds.
d t s

2 t
Lt f fUT(1+ V)T F(9, Y6, V)5, ), ga) ds
2kq 0

t
- %e_kdtf (£)26h0 2021 +12) L F (6,6, V) (s, ), ga) ds.
d (O

Further, we have the identity
705G, g4) = (I3G — I'2G — 2y0\,T2G + y*3;G + 20,G. ga)-
The bounds (3.13)) are now a straightforward consequence of the structure of
F(9.V9.V?¢)

and the bounds (3:2) - (3.7) for ¢. This concludes the proof of (3.13)), and hence of
Proposition

8. ProoF oF THEOREM [2.4]

We are now in a position to conclude the proof of Theorem [2.4] In view of the
choice of the initial data and by the continuity of the flow, note that the bootstrap
assumptions are satisfied for some small 7 > 0 and for any

ae [—8%, s%]
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Then, as a consequence of Proposition[3.2] we have that for any 7 > 0, there exists
& > 0 small enough and al) e [—s%, s%] such that the following estimates are
satisfied on z € [0,7T)

_1 N1
IVi#liz s 72 0< Bl < — +C. (8.1)
_1_ N
[6)7 20 lez s )70 0< B < 5 +C. (8.2)

By compactness, we may extract a sequence (7, a,) such that
(ty)n>0 is increasing ,f, — +00, and @, — a as n — +0.

Then, let us call ¢, the solution corresponding to a, and ¢ the solution correspond-
ing to a. Since the ¢, satisfy (8.1)) and (8.2) on [0, #,) with the constants in < being
uniform in n, and since we have chosen (#,),>¢ increasing with 7, — +00, we
deduce that ¢ is a global solution satisfying (8.1)) and (8.2)) on [0, +00) and hence:

6(1,.)] < )77

This concludes the existence part of the proof of Theorem [2.4]

Consider now the question of the Lipschitz continuity of a with respect to the
initial data. Let ¢!) and ¢ two solutions corresponding respectively to param-
eters a!) and a® and initial data (qﬁil), ¢§1)) (¢(2) ¢(2)) and let V) and h(?)
the corresponding projections on g;. Let us also denote

Aa=aV) —a®, (Ap1.Apy) = (81 — 01,65 — o).
and
Ap = ¢ — @ Ap =n) — @),
¢D) and ¢ are obtained through the existence part of Theorem and are thus
global and satisfy estimates (3.8)-(3.13) on 7 € [0, +0c0). Using these bounds to-
gether with the linear estimates of Propositions and we derive the
following estimate for the difference Ag:

[(Viy)?86(1,.)| < |Aal + [(Ad1, Ao) x5 1 € [0, +0). (8.3)
Furthermore, we have in view of Lemma [3.1]
Ah(t)

e t

= 5 (B0 b+ S L )8R 0,960,901 (9. a0 s )
d d Jo
e t

b5 (B0 by - SEEL L L [ ) ar(0.96.520)(0). g0 ds ) e,
d d Jo

where

AF(¢.99.9%¢) = F(¢'), V¢ 1. 9210) — F(9®. Vg2, v292).
Together with the estimates for ¢(!), ¢(2) and (8-3), we deduce
|Aa| < (|Aal + |\(A¢1,A¢2)on)e‘kdf+ [(Ad1, Ad2)|x, + (|Aal + [(Ad1, Ada) [x,)*.
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We let t — +00 which yields

|Ad| < [|(Ad1. A)|x, + (|Ad] + [[(Ad1. A)x,)°
and hence
|Aal < [[(Ag1, Ada)llx,

which implies the Lipschitz continuity of a with respect to the initial data.

This concludes proof of Theorem 2.4]

APPENDIX A. DERIVATION OF THE EQUATION OF MOTION

As discussed in the beginning of Section[2.1| we consider the mapping depend-
ing on a scalar function ¢(z,y) satisfying ¢(t,y) = ¢(z, —y):

$(1,y) a1y — 2 o
(t,y,w) (t,<y>+ oy S h™y <y>¢(t,y), )

and we ask that this mapping has vanishing mean curvature. We remind our readers
that we use the Japanese bracket notation (y) = /1 + y2. Using that the mean
curvature is the first variation of the volume form, we can derive the equation
of motion by considering formally the Euler-Lagrange equation associated to the
volume density of the pull-back metric. An elementary computation shows that for
the mapping above, the pull-back metric is

2¢ ¢ 2\ 4.2
— (1 —¢7)de* + (1——+—+¢,> dy
’ G oyt

2
+ 26¢,4,dedy + (1 +y? +2¢ + ¢—2> do? (A.D)

o

whose associated volume element is
<<y>+%) \/(1—¢,2)(1—i2)2+¢§ dy dt dw . (A.2)
y o)
32

Using L = A \/ B2(1 — ¢7) + ¢} as the Lagrangian density, we obtain the Euler-

Lagrange equations:
oL _ 0 (8LY 0 (oL
5¢ Ot \ 6¢; dy \ 6y )

K =B(1—¢7) + 4.

Let
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We have
¢ L1
A=)+ —, A= —,
o o o
B=1- iz B = —iz,
o) o)
§,A = A/ff)z, (9,3 = B/¢z,
2y¢
DA = Alg,+ 2 — 20 0,B = B¢y + 22
’ oy ’ Ry
= A'¢, + yA'B, = B'¢, +2yB'(B—1),
and also

K' = 2BB' — 2BB'¢?,
a,K = 2¢y¢ly + 2BalB - 235,3([),2 - 2Bz¢t¢ﬂ,
OyK = 2¢y¢yy + 2BO,B — 2B0,By; — 2By ¢yy.

The Euler-Lagrange equations become

K’ 0 [AB%*¢ 0 [Ae
AVE + A :__[ f}+—[—y}
2VK ot VK | VK
which implies
30 | A 30 ABZ(Z)
ABB'[1 — (¢,)? K+A’K2:Kz—[—y]—1<z—[ ’]
[+ =) v T

= K [0,Ady + Adyy| — %A@@K - %Aqubt&tK
— K [0,AB*¢, + 2AB0,B¢, + AB* ¢,
= K [A(9y)° + yA'Bgy + Adyy| — A(9)) ¢yy
— ABOyBéy + ABayB¢y(¢t)2 + 2A32¢y¢t¢ty
+ AB%0,Bp; — AB*0,B(¢,)° — AB*(¢,) s
— KB[AB¢, + A'B(¢,)* + 2AB (¢,)?] .
So we arrive at
KABB' + A'K [(¢y)* + B> — B*(¢,)?]
= KA'(¢y)* + KyA'Bpy + KApy, — KAB ¢, — KA'B*(¢,)*  (A3)
— KABB'(¢:)° — A(¢y) ¢y + 2AB°¢,¢161, — AB*(¢1) ¢u
+ ABB [ 23(B = 1)(#,)(®)* — (6,)* = (B~ )8

(@))% + B(9)* — B0 |

~—

K(0:¢)?
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and hence
KABB' + KA'B* = yKA'Bg, + KApy,, — KAB ¢y,
— A(9y) by + 2AB°$yudry — ABY (1) ¢ (A4)
+ABB' [2y(B — 1)(4,)(4:)* — (¢,)> — 29(B — 1)¢,] .
We deduce, after replacing K by its definition
[(¢y)> + B> — B*(4,)*| [ABB' + A'B> — yA'Bp, — Adyy + AB*¢,]
= —A(9y) ¢y + 2AB*6,pidry — AB*(#1)*6u
+ABB'[2y(B — 1)(¢,)(¢)* — (¢)* = 2y(B—1),] .

This we can regroup, after collecting all terms depending on the second derivatives,
to get

A32 [_¢yy + (¢I)2¢yy + (¢y)2¢tt + Bz¢tt - 2¢y¢z¢ty]
= A'B(ygy — B) [(4y)* + B* — B*(¢)’]

+ ABB [(Bz - zlngy) ((¢)>—1) — 2(¢y)2]
»

from which we divide through by {y) B to obtain

2
(1 - %) [ =y + (60) By + (¢y) ¢ + By — 2¢ybibry |
y

}’¢y [(¢y) + Bz(l - (¢t)2)] - iz [(¢y)2 + B2(1 - (¢t)2)]

o7 o

_ 1 ¢ y¢ tz_BZI— t2—2 2]'
(<y>2 + <y>4> [<y>2 ¢y (1= (¢1)%) (1= (¢:)7) — 2(¢y)

The left hand side we see is precisely

¢tt_¢yy+Q2+Q3+Q4

where Q. are defined in (2.4). The right hand side exhibits some cancellations, and
can be rewritten as

20 [(0% + B (1 — (6)7)]

1| 2ye 2\ N2
e o7 [ o >2¢>( —(#1)°) — (¢y) ]
¢ lzyaﬁ

RS ¢y (1—(¢)%) —2(B> = 1) =2+ 2B*(¢1)* — 3(¢y)2] -

Reorganizing a little bit and picking out the terms, we see that the above expression
is equal to
y
——¢y + ¢ S2—83—84
2
w '

where the semilinear terms S . are defined in (2.5). With this we obtain (2.3).
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APPENDIX B. TECHNICAL LEMMAS
Lemma B.1. We have
B = B~ (1+[3EL7) 100v—2
”Vt,ymeL_ﬁ(y«t) + Hvt,yw”yHLf(y«t 8<t> % Bl +2Z< M

One also gets the bound

H<y>2vﬁ V3y‘”HL2 o) S 8<l> 1+ lOOv

Proof. To prove this, write the equation for i as usual in the form

< N

- . 13
—000 + 05 + 5—3
Compute
T30 = P + Yy + 200y + 1, + Yy
2
3+%
2 2N\ .7, 2 2 7
= (r P.G— -—
(& + 5" )u + Y[ Pe 2T +y2)2¢]
+ ZIyQZ[y + FZIZ/

By differentiating this equation, we obtain

2
1 3+% .

(fZ + yz)lzm + 2090y = ( zlﬁ) [P G — Em‘ﬂz (B.1)

— 20y — 2)"»;@- — (Doy) =2 A,

2 2\ 7 T (2T (2 LTy
(t +y )wtty + Zty‘ﬁtyy - (F2¢)y (y [PCG 9 (1 + yz)zw])y (Bz)
- 2)’&11 - 2t§Zty - (FZ&)y =
We can turn this into a linear system for the variables /. 1/7,ty by observing that
1 3+% i
2{r e

In order to prove the observation above, it now suffices to show that

[V,

Starting with A, the only delicate term is y*[P.G];, and here we may easily omit
the P.(as the weight y? gets absorbed by g, otherwise). Then the bound

2tyl/~/tyy - 2ty‘r/~/ttt = 2ty[PcG -

21g|
< 8<t>(1+[T1])100v, Bl+2<N

+ HV'ZB,yBHU(

5 (<)

+[vi,C

5 (<) 5 (y<t)

292Gl 5 oy R

is clear for all the weighted terms (with weight at least (y)~2). For the pure cubic
terms, we reduce to

y (¢t212’yy) P y* (¢y¢t&ty) P Y (¢§';&ﬂ),
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as well as their derivatives. In each of these we gain one factor t~! by placing
(¢1,)?* into L™, and an extra factor #~! by using

H‘ZrtHLf(y«t) + |}l/~’fY||L%()v<<t) S t_lHVf’)’<F2>&HL}2'

Finally, the factor i/, may be replaced by i/, up to easily controllable errors, using
the equation for .
The same reasoning applies to the term B, except that now we also have the terms

Wi, tJ’yt,
which are controlled by
Hylz””Lf,(y«t) + ”t&y’”L)Z,(y«t) S HV’»)’<F2>(ZHL§’
For term C, the new feature is the expression
o1 3+%
STV =Y e
2(1+y?) 2(1+y%)
Then, in view of Lemma[B.2] we obtain

Vi 05

2
2

2ty (T2 — yiy).

13+’

2y2 (F21/~/) ) H L2(y«1)

A

138y 10, —L
N TRl 1O ] TPV

i
s<t> (1+[5 100w

2\

To obtain the second inequality of the lemma, the only new feature is the control
of the weighted cubic terms above,

)’2 (¢t295yy) o )72 (¢y¢t§z’ty) o yz (¢§l/~/n) P
in the region y >» t. But we can schematically write
b2 (@70 | < O Vi) TH Vi)
where I' = I'1 5, and so we get
”y2 (qjtzl'ZW)zHLz (y»t) = H<y>_1<vf’y>rq3HL°0 (y»1) H(z’HLOO H<Vt5y>rl/~/”yHL2(y>>t)
< 83<l‘>21v

The estimate for higher derivatives is similar. This concludes the proof of the
lemma. O

Lemma B.2. We have
(2817 10¢
(t.y) s RGN g4 k< Ny,

Proof. This follows immediately from the embedding H'(R) < L*(R)(without
the factor (y)?), provided 8| > 0. Hence assume now |8| = 0. Then the estimate
follows from the fundamental theorem of calculus and Cauchy-Schwarz, provided
we get a bound of the form

V2 50

50 (2, y4)| < 8" (B.3)
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for some y, = O(1). For this, consider the wave equation satisfied by F’éz/?, which

1S

2
3+5
———_T50 + Lo.t. = T5(P.G),

K T, K 7, 1
— ;TS0 + ;T + T

where we have (pointwise bound)

tors 3} [6)7I39] + PG
0<k| <k
By a simple calculation, we have
HFS(PCG) HL2 <e€ Z ||<y>_21—‘§(;§||L2 + 8<I>IOKV_
dy iy
’ R<K )

Also, in view of the bootstrap assumption (3.5)), we have
}|é’,2,yF’2fg7/||L{2h < 8<t>10’<v.

Thus, using the previous bound and the wave equation satisfied by Fg&, we deduce

DT, 1 3+ b .
H<y> 2F§¢HL5y < ”5—(1_’_3);)21_‘;(&‘&%
< rsd]s + D5(PG)| 2 + Lo
< &) [ s gt PO

K<k

Using induction on , we obtain the bound

[0)72r50 ] 2 s &1 (B4)

1

This implies the existence of a y, as in (B.3), proving the lemma. o
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