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We study the dynamics of successive slip events at a frictional interface with finite-element simulations.

Because of the viscous properties of the material, the stress concentrations created by the arrest of

precursory slip are not erased by the propagation of the following rupture but reappear with the relaxation

of the material. We show that the amplitude of the stress concentrations follows an exponential decay,

which is controlled by the bulk material properties. These results highlight the importance of viscosity in

the heterogeneous stress state of a frictional interface and reveal the ‘‘memory effect’’ that affects

successive ruptures.
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Understanding how the stress state at a frictional inter-
face evolves and leads to global sliding is critical in several
fields from engineering to earthquake science. Sliding
along a frictional interface is often characterized by
stick-slip behavior, modeled by local static �s and kinetic
�k friction coefficients. When successive slip events take
place, each rupture will be affected by the state of stress of
the interface left by the preceding event.

Laboratory friction experiments allow us to study the
dynamics of friction at an interface [1–5]. It has been
shown that when the shear load is applied on the side of
the system, precursors to global sliding occur [1,6]. Slip
precursors correspond to slip events that initiate at the
trailing edge of the sample, at shear stresses below the
macroscopic friction coefficient, and stop before propagat-
ing through the entire interface. These precursor events
create stress singularities at the tip of the arrested rupture
[7]. This mechanism is analog to earthquakes ruptures [8],
for which stress concentrations exist at the edges of the
ruptured area. Both in laboratory earthquakes and on natu-
ral faults the arrest of slip fronts dynamically generates
heterogeneous stress distributions along the sliding inter-
face, which have been shown to significantly affect rupture
propagation and arrest [3,9–11].

Previous analysis of these precursor events studied how
the loading conditions influence the precursor lengths
[6,12,13] or the macroscopic static friction coefficient
[14]. Up to now, no numerical study has analyzed the
evolution of interface stresses with successive ruptures
using constitutive laws describing viscoelastic material
properties. Yet, to understand this evolution, numerical
simulations are necessary to overcome the limitations of
experimental recordings.

The simulated system, schematically shown in Fig. 1(a),
consists of a two-dimensional rectangular viscoelastic

solid (dimensions w ¼ 200 mm and h ¼ 100 mm) in con-
tact with a rigid plane, in plane-stress approximation. The
deformable solid is discretized in quadrilateral elements,
and the corners of the plate are rounded to avoid stress
singularities at the edges. Friction at the interface is con-
trolled by a linear slip weakening friction law. The value of
the friction coefficient linearly evolves from a value of
�s ¼ 0:7 to �k ¼ 0:45 over a slip weakening distance
dc ¼ 1� 10�6 m and remains constant beyond this point.
Instantaneous restrengthening to the value �s occurs upon
the termination of slip. Regularization in the frictional
strength �s response to normal stress � variations is added
using a simplified form of the Prakash-Clifton law [15].
The frictional strength �s evolution is described by
_�s ¼ �1=t�ð�s ���Þ, similar to the one proposed in
Refs. [16,17]. The characteristic time scale of the regulari-
zation t� is small compared to the duration of slip events ts
(t� ¼ 5� 10�5 s<<ts � 1� 10�3 s). This regulariza-
tion was shown to address the ill-posedness of ruptures
on bimaterial interfaces [18] and to reduce high-frequency
oscillations [19]. We use the finite-element code AKANTU

[20], with an explicit Newmark-� integration scheme and
the traction-at-split-node technique [21] at the interface.
We apply a constant pressure FN (6250 N) to a rigid

plate in contact with the top surface. After reaching
equilibrium, a tangential loading force FT ¼ Kðx1 � x0Þ
is applied to the trailing edge (x ¼ 0 at the onset of
calculation) via a spring of stiffness K (6� 106 N=m)
through a rigid pusher of width wp ¼ 0:01 m, located at

a distance hp ¼ 0:01 m from the interface. x1 ¼ Vx t is the

position of the left end of the spring, Vx (2:5� 10�3 m=s)
corresponds to the constant driving velocity, and x0 is the
position of the pusher along the x axis.
In this study, the viscoelastic behavior of PMMA [22,23]

is modeled using the standard linear solid model [24] on
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the deviatoric part of the strain tensor (see Ref. [25] for
details). The material’s density � is 1200 kg=m3, and the
Poisson’s ratio � equals 0.37. The Young moduli are chosen
using consistent experimental measurements on PMMA
[22,26]. The static elastic modulus (E1 ¼ 3 GPa) is rele-
vant for material deformation and the dynamic modulus
(E0 ¼ Ev þ E1 ¼ 5:6 GPa, where Ev is the viscous
modulus) is relevant for the wave propagations. The effec-
tive elastic modulus E evolves from E0 to E1 over the
relaxation time tv ¼ 1:7� 10�3 s. Because of the higher
loading rate used in the simulation compared to that of the
experiments, tv in the simulations is significantly shorter
than the one measured experimentally [23]. However, this
does not affect the accuracy of our results because (i) tv is
sufficiently large so that variations in the effective E are
small during events and (ii) the ratio between tv and the
interevent time is similar between simulations and experi-
ments. We checked that we obtained similar results when
varying both tv and the interevent time (by changing Vx).

We first analyze the evolution of slip at the interface
when the shear load is increased. The loading curve
[Fig. 1(b), ratio of global shear force FT over normal
loading FN] increases almost linearly with time, from an
initial zero loading. Each stress drop in the curve (vertical
colored line) is associated with a slip event. As observed
experimentally [1,6], these slip events always initiate at the
trailing edge and show increasing lengths with increasing
load [Fig. 1(c)]. Precursor lengths increase linearly up to
half the sample length and then increase faster to reach the
leading edge (x ¼ 0:2 m), causing global sliding. This
behavior is due to friction-frustrated Poisson expansion.
The first slip precursor has a longer duration and a slower
propagation speed compared to the following events and is
similar to the quasistatic precursor described in Ref. [14].

The propagation speed vc of the slip front for the 7th
to 10th precursors (Fig. 2) reveals an accelerating phase,

from 0 to 0.04m, followed by a slow decrease of vc. During
this second phase, peaks corresponding to sudden acceler-
ations of the front can be identified. For each precursor, the
last peak before rupture arrest has a large amplitude and is
located at the position where the previous precursor
stopped (gray bars in Fig. 2). The arrest of precursor n
will lead to a strong acceleration of precursor nþ 1 and
will also create smaller accelerations of precursors nþ 2,
nþ 3. It has been shown [3,27] that vc is generally linked
to the ratio of local shear to normal stresses �=� along the
interface. These accelerations are thus due to stress con-
centrations created by the arrest of previous slip precursors.
Therefore, persisting peaks of vc over several cycles of slip
events indicate that the propagation of a single rupture front
does not erase all stress concentrations at the interface.
Lines from blue to gray in Fig. 3(a) show �=� at the

interface just prior to each slip event (shifted along the
y axis for clarity). The arrest location of precursor i
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FIG. 2 (color online). Propagation speed of the front (averaged
over 5 mm) for precursors 7 (top) to 10 (bottom). Gray bars
highlight acceleration of the front related to the location of
arrested precursors.
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FIG. 1 (color online). (a) Two-dimensional model setup: a rectangular plate with rounded corners in contact with a rigid plane. The
system is loaded on the top with a constant force FN and from the side with a constant velocity VxðtÞ applied to a rigid pusher via a
spring. (b) Evolution of the global forces with time. Time of slip events (precursors and global sliding) is marked with vertical bars.
Precursor events are color coded from blue to red, and global sliding events are in gray. (c) Location of slipping regions along the
interface over time. Slip precursors of increasing length are observed. (inset) Local slip velocities (m=s) along the interface for the 6th
precursor. The white line shows the position of the rupture front.
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(position xi, thin vertical lines) is marked by a peak of
decreasing amplitude in the stress profile of the following
precursors. We define the amplitude of a stress concentra-
tion �ið�n=�nÞ as the peak in �=� created by the arrest of
the ith precursor. �ið�n=�nÞ is measured before each slip
event n and is defined for n > i as

�i

�
�n
�n

�
¼ �nðxiÞ

�nðxiÞ �
�nðx0iÞ
�nðx0iÞ

: (1)

xi is the position of the arrest of the ith precursor, and x
0
i 2½xi�1; xi� is the position of the local minimum in �ðxÞ=�ðxÞ.

x0i is defined for the first event n ¼ iþ 1 and is kept
constant for the following events. A zoom around the arrest
location of the 8th position [inset of Fig. 3(a)] shows how
�ið�n=�nÞ is evaluated. In the following, we consider An

i ,
the difference between the amplitude of the stress concen-
tration �ið�n=�nÞ and �ref

i , which is the remaining stress
when all stress concentrations are erased, before the last
slip event �ref

i ¼ �ið�14=�14Þ. An
i is normalized such that

the first value Aiþ1
i ¼ 1,

An
i ¼

�ið�n�n
Þ � �ref

i

�ið�iþ1

�iþ1
Þ � �ref

i

: (2)

The evolution of the An
i with successive passing fronts

presents the same exponential decrease rate, for all pre-
cursor arrest positions xi [dots in Fig. 3(b) and inset].

We will show that these stress concentrations appear due
to viscoelasticity of the bulk material. The friction law
used implies that �=� is close to �k when slip terminates.
Thus, just after the propagation of a slip event, all previous
stress concentrations are erased, and a peak only exists at

the tip of the arrested rupture [dark blue line in Fig. 3(c)].
With time, the bulk relaxes and the stress concentrations
reappear before the next event [dark red line in Fig. 3(c)].
Figure 3(d) shows the time evolution of � at a given
position x7. Three slip events can be identified in the figure
(peaks and drops in �). During the interevent time, �
increases due to the relaxation of the bulk following the
drop and to the external shear loading. In the following, we
model this evolution. Assuming, at equilibrium, an instan-
taneous stress drop��nðxÞ due to the slip event n occurring
at time tn, the relaxation in � can be described by

�ðx; tÞ ¼ �ðx; tn þ �Þ þ p�ðxÞðt� tnÞ
þ Ev

E0

��nðxÞf1� exp½�ðt� tnÞ=tv�g; (3)

where �ðx; tn þ �Þ is the shear stress immediately after the
slip event and p�ðxÞ is the shear loading rate in x. Since in
our calculations the slip at the interface is larger than dc,
�ðx; tn þ �Þ ¼ �k�ðx; tn þ �Þ. Considering the normal
loading rate p�ðxÞ, and neglecting the viscous effect on �,
the normal stress just before event nþ 1 is �nþ1ðxÞ ¼
�ðx; tn þ �Þ þ p�ðxÞðtnþ1 � tnÞ.Moreover, the shear stress
drop due to event n is ��nðxÞ ¼ �f�nðxÞ ��k½�nþ1ðxÞ �
p�ðxÞðtnþ1 � tnÞ�g. The factor � (0<�< 1) accounts for
the time history of the drop. For an instantaneous drop
� ¼ 1 and in real cases, because of the drop’s duration,
� < 1.
If the relaxation time tv is considerably shorter than the

interevent time tnþ1 � tn, almost complete relaxation
occurs and the exponential in Eq. (3) can be neglected.
The shear stress just before event nþ 1 will thus have the
following expression:
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FIG. 3 (color online). (a) Local �=� ratio along the interface just prior to each slip event. Colors from blue to gray correspond to
successive slip events (see Fig. 1 for color code). Lines are shifted along the y axis for clarity. Continuous and dashed vertical lines
correspond, respectively, to the positions xi and x0i. (inset) Zoom around the position x8; �ið�n=�nÞ is the variation in �=� between x8
and x08. Simplified notations correspond to V1 ¼ �8ð�9=�9Þ, V2 ¼ �8ð�10=�10Þ, and Vref ¼ �8ð�14=�14Þ and highlight the decreasing

amplitude of stress concentrations An
i [Eq. (2)]. (b) Normalized amplitude of stress concentration An

i as a function of the number of slip
events after event i. Colors correspond to different positions xi. Dotted and continuous blue lines correspond to a decrease rate of
�ðEv=E0Þ with � ¼ 1 and � ¼ 0:83, respectively. (inset) Same data points with An

i in log scale reveal the exponential decay of stress
concentration. (c) Lines show the time evolution of �=� from blue (just after the 8th event) to red (just before the 9th event).
The horizontal black line shows x7, for which time evolution is shown in (d). (d) Time evolution of �ðx7Þ [position of black line in (c)]
during two slip event cycles. The modeled behavior [dashed cyan line, Eq. (3)] closely matches the data (thin black line). The
amplitude between the two red lines is ���n with � ¼ 0:83.
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�nþ1ðxÞ¼�k�nþ1ðxÞþ�
Ev

E0

½�nðxÞ��k�nþ1ðxÞ�

þ
�
p�ðxÞþ�kp�ðxÞ

�
�
Ev

E0

�1

��
ðtnþ1� tnÞ: (4)

In the following, we assume that variations in � are neg-
ligible. We can now express An

i using Eq. (4). The loading-
dependent terms (p� and p�) appear in both�ið�n=�nÞ and
�ref

i , and thus cancel out. If we consider an elastic medium
with no viscosity (Ev ¼ 0), then An

i ¼ 0 after the propa-
gation of a slip event at the position xi, i.e., for n� i > 1.
Thus, in the elastic case, stress concentrations are erased by
slip and no survival of heterogeneous stress distribution
exists.

For a viscoelastic material, An
i evolves with successive

ruptures following:

An
i ¼

�
�
Ev

E0

�
n�i�1

: (5)

As shown in Fig. 3(b), � ¼ 1 overpredicts the decrease
rate of stress concentrations. A best-fit curve is obtained
with � ¼ 0:83, which integrates the duration of the drop in
�. This value gives a good prediction of the observed
behavior, both in Fig. 3(b) and in the time evolution of �
in Fig. 3(d). The relation in Eq. (5) is valid when the
viscoelastic material has sufficient time to relax between
two events, which is the case in the present simulations
where tnþ1 � tn � 2� 10�2 s � tv. When tnþ1 � tn <
3tv, the relaxation is not fully accomplished and An

i

decreases faster. If tnþ1 � tn < 0:01tv, less than 1% of
the stress concentration reappears before the event nþ 1,
and heterogeneous stress distributions do not survive. A
more complex model for PMMAviscoelasticity, including
several time scales, could be considered. In this case, the
same relation between each time scale and tnþ1 � tn
applies.

The results of the present finite-element simulation
showed that the dynamics of a slip event is strongly influ-
enced by the history of slip at the interface. Stress concen-
trations are created by the arrest of precursory slip events.
After the propagation of a slip front, they reappear due to
the viscoelastic relaxation and, thus, survive the propaga-
tion of several successive slip fronts. All stress concentra-
tions follow a similar exponential decrease rate, controlled
by �Ev=E0 ¼ 0:44. Equation (5) and Fig. 3(b) show that
for the parameters selected here, the stress concentration is
only 1.6% of its initial value after the propagation of five
slip events.

The viscous relaxation is seen by the change of slope in
Fig. 1(b), where just after a slip event the loading increases
faster and then slows down towards a linear rate. The same
behavior seems to be observed in the experimental mea-
surements (Fig. 1a in Ref. [1]), and we suggest this may
also come from the viscoelasticity. Other evidences of this
effect have not yet been observed experimentally and may

be related to the difficulty in obtaining dense measure-
ments of interfaces stresses.
The decrease rate of the stress concentrations is con-

trolled by the ratio between Ev and E0 and the ratio
between the relaxation time tv and the interevent time. In
the present study, complete relaxation occurs between slip
events. The incorporation of a rate-dependent friction law,
or aging effects, would create heterogeneous frictional
strength at the interface. The resulting complexity in the
stress field would add to the stress concentrations studied
here.
Recent laboratory friction experiments highlight the

importance of viscoelastic properties in the size distribu-
tion of slip events and the importance of the loading rate
(which controls the interevent time) [28]. At a larger scale,
seismologic and geodetic observations reveal, among other
mechanisms, the role of viscous relaxation in postseismic
stress transfer and its importance for seismic hazard as-
sessment [29–31]. The present study highlights the impor-
tance of viscous relaxation mechanisms in the survival of
heterogeneous stress states along frictional interfaces.
Over different time scales, similar mechanisms could exist
around geological faults and help in the understanding of
the importance of the previous slip history in earthquake
ruptures.
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