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Abstract
In recent years, the advancements of wireless technologies have led to rapid developments

in the field of telecommunication, power delivery and bio-medical applications. During

the evolution of a wireless technology, the electromagnetic compatibility (EMC) between

a radiating source (e.g., an antenna) and nearby active or passive elements (e.g., a closely

integrated electronic component or a human body) often introduces challenging design

requirements.

This thesis focuses on the applications of state-of-the-art computational electromagnetic

compatibility (CEMC) techniques in multidisciplinary engineering design tasks, with an em-

phasis on computational bio-electromagnetic compatibility (CBEMC). The analyses reported

in this thesis span practical applications from power frequency (Hz) to radio frequency (GHz),

providing research outcomes which significantly benefit the understandings of low-frequency

human body exposure safety and radio-frequency antenna integration and optimization. The

research aspect of the thesis is initiated with a thorough review of the existing low-frequency

exposure safety guidelines recommended by international regulatory committees. The sub-

sequent analyses suggest essential scientific basis for the update and revision of the existing

exposure limits. Practical exposure scenarios (e.g., magnetic resonant wireless power transfer)

are investigated with novel assessment techniques. Subsequently, a computer-aided optimiza-

tion scheme based on network-distributed genetic algorithms is applied to highly detailed

numerical mobile phone model and human body phantoms. The investigated optimization

technique is proven to be superior than traditional empirical approaches. Finally, the CEMC

techniques are applied in the context of non-dosimetry related engineering design environ-

ment by investigating the integration of a miniature loudspeaker (acoustic component) and a

mobile device antenna (radio frequency component). Based on simulation and measurement

data, the coupling mechanisms are determined to establish the fundamental design guidelines

for optimum antenna-speaker co-existence and performance.

In summary, this thesis details several novel applications of CEMC in the most stringent and

complex industrial design environments. The presented research findings serve as indispens-

able basis for future research oriented towards the exposure-compliant and electromagnetic-

compatible designs for novel wireless technologies.

i



Abstract

Keywords: low frequency exposure, wireless power transfer, magnetic induction, high-voltage

detector, exposure limit, specific absorption rate, quasi-static approximation, antenna opti-

mization, genetic algorithms, speaker integration, coupling, radiation loss.

ii



Résumé
Ces dernières années, l’évolution des technologies sans fil ont permis des développements

rapides dans les domaines des télécommunications, transmission de puissance et applications

en biomédecine. En cette évolution, la compatibilité électromagnétique (EMC, par son

acronyme en anglais) entre une source de rayonnement (par exemple, une antenne) et un

élément passif ou actif (par exemple, un composant électronique intégré ou le corps humain)

introduit souvent des exigences de conception difficiles.

Cette thèse se centre sur l’applications de techniques de compatibilité électromagnétique com-

putationnelle avancées (CEMC en anglais) dans des tâches d’ingénierie multidisciplinaires,

avec une emphase sur la compatibilité bio-électromagnétique computationnelle (CBEMC

en anglais). Les analyses présentées dans cette thèse couvrent des applications pratiques

allant des fréquences typiques du réseau électrique (quelques Hz) aux hyperfréquences (GHz)

et mènent à des résultats qui bénéficieront de manière significative la compréhension de la

sûreté de l’exposition de basse fréquence sur le corps humain et l’intégration de l’antenne

radiofréquence. La thèse commence par une révision compréhensive des consignes de sécu-

rité d’exposition aux basses fréquences recommandées par les comités de réglementation

internationaux. L’analyse subséquente suggère une base scientifique pour mettre à jour et

réviser les limites d’exposition existantes. Scénarios d’exposition pratiques (par exemple, le

transfert d’énergie sans fil par résonance magnétique) sont étudiés avec les nouvelles tech-

niques d’évaluation. Par la suite, un schéma d’optimisation assisté par ordinateur et basé

sur des algorithmes génétiques distribués en réseau est appliqué à un modèle de téléphone

mobile numérique très détaillée, qui incorpore des "human body phantoms". La technique

d’optimisation s’est avérée supérieure aux approches empiriques traditionnelles. Enfin, les

techniques CEMC sont appliquées dans des contextes de d’ingénierie non liés à la dosimétrie

en étudiant l’intégration d’un haut-parleur miniature (composant acoustique) e d’une antenne

de téléphone mobile (composant radiofréquence). A partir des simulations et des données de

mesure, les mécanismes de couplage ont pu être déterminés et ont servi à établir les lignes

directrices de conception fondamentale pour optimiser la coexistence entre l’antenne et les

haut-parleurs. En résumé, cette thèse détaille plusieurs nouvelles applications de la CEMC

dans les environnements les plus rigoureux et complexes du design industriel. Les résultats

de recherche présentés servent comme base indispensable pour de futures recherches ori-

entées vers les limites d’exposition conformes et vers les technologies sans fil novatrices et

compatibles du point de vue électromagnétique.
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1 Introduction

This chapter outlines the research objectives, analysis procedures and original contributions

of this thesis. Based on the operating frequency range of the investigated wireless applications,

the research work is organized into three sections: (1) low frequency exposure assessment,

(2) mobile device antenna optimization with network-distributed genetic algorithms and (3)

analysis of cross-frequency component integration (i.e., antenna-speaker assembly). Detailed

literature reviews, analysis and research outcomes are presented in the respective chapters.

1.1 Low Frequency Exposure Dosimetry Assessment

Public concern over possible biological effects due to the exposure to low frequency elec-

tric (E) field and magnetic (B) field emerged in the 1960s with the introduction of ultra high

voltage (UHV) transmission line systems. At low frequency, artificial B-fields are frequently

encountered in many aspects of daily life, e.g., near power lines, electronic article surveil-

lance gate, wireless charging and therapeutic/medical treatment (see Figure 1.1). With the

advancements of wireless technology, more low frequency exposure sources are emerging.

To prevent acute and adverse biological effects due to the exposure to electromagnetic fields,

various international committees have published exposure guidelines: e.g., ICNIRP-1998 [1]
and ICNIRP-2010 [2] by the International Commission on Non-Ionizing Radiation Protection

(ICNIRP), and IEEE Std. C95.6-2002 [3], IEEE Std. C95.1-1992 [4] and IEEE Std. C95.1-2005 [5]
by the Institute of Electrical and Electronics Engineers (IEEE).

To gain a better understanding of the interactions between electromagnetic fields and a human

body, it is critical to obtain information pertaining to both the magnitude and distribution of

the induced fields. Dosimetry, the process of determining the induced fields in body tissues

through measurement or numerical techniques, becomes indispensable in the process of

wireless technology development. As a human body is composed of highly inhomogeneous

biological tissues, the measurement of the induced fields in such a complex environment

is limited by the existing phantom modelling and sensor technology. As a result, numerical

dosimetry is often employed when detail in situ field information are required.
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Chapter 1. Introduction

Figure 1.1: Low frequency exposure scenarios: (a) high-voltage power lines, (b) electronic
article surveillance gate, (c) wireless power and (d) transcranial magnetic stimulation.

Considerable research efforts [6–41] have been invested in the field of numerical dosimetry for

low frequency electric and magnetic field inductions. By numerically determining the induced

field distribution and peak magnitude inside a human body, the conversion factors between

the ex situ fields and in situ fields can be established. As the low frequency exposure limits

suggested by the aforementioned guidelines and standards [1–5] are often based on the results

of numerical dosimetry, realistic modelling and computational accuracy play important roles.

Based on quasi-static approximation, several numerical techniques, e.g., Boundary Element

Method (BEM) [41], Finite Difference Time Domain (FDTD) method [14] and Scalar Potential

Finite Difference (SPFD) method [6]were proposed to compute the induced fields (i.e., current

density and electric field) inside a human body.

Previously published numerical dosimetry studies are often based on pre-voxellized anatomi-

cally realistic models. The typical grid resolutions employed in the past studies are in the range

of 2 to 5 mm, which are coarse and inadequate in view of the current computational capability.

To advance the knowledge of low frequency numerical dosimetry, research work is conducted
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in this thesis with novel applications of an up-to-date low frequency numerical technique.

Exposure scenarios involving uniform and non-uniform incident low frequency fields are

investigated with canonical models and statistical approach. By applying state-of-the-art

computational techniques, the research objectives of this study are to examine the validity of

the existing exposure limits [1–5] and investigate the exposure safety of various complex low

frequency electromagnetic sources (e.g., wireless power transfer and high-voltage power-line

detector).

1.2 Mobile Device Antenna Optimization with Genetic Algorithms

In this section, the application of computational techniques on mobile device antenna op-

timization is investigated. With the increasing demands for portable devices (e.g., mobile

phone and tablet computer), product engineers have to realize a wireless design in a short

time frame while achieving high performance requirements including compliance with Over

The Air (OTA), Specific Absorption Rate (SAR) and Hearing Aid Compatibility (HAC) product

standards. Following the trend of slimmer and smaller form factor, the available space for

antenna design shrinks. Inevitably, engineers face great difficulty implementing multi-band

antenna for a mobile device with small chassis and limited antenna volume. Without proper

optimization, a poorly designed antenna could cause shorter battery life, inadequate signal

coverage and frequent call drops.

A typical mobile device antenna design cycle consists of initial concept validation, prototyping

and numerous optimization iterations based on the mechanical and electrical design changes.

The traditional optimization process relies on empirical tuning, e.g., iteratively tweaking

an antenna structure to improve bandwidth and radiation performance. Such approach

demands engineering expertise, measurement equipments (e.g., vector network analyzer

and anechoic chamber) and time-consuming measurement iterations. In light of the ever

shortening product design cycle, a computer-aided automatic antenna optimization approach

is highly valued as an important complement to the traditional empirical method.

In recent years, emphasis has been placed on computer-aided antenna optimization using

numerical techniques [42–44]. Optimization algorithms such as the Genetic Algorithms (GAs)

have been widely applied to antenna optimizations [45–47]. Complex antenna optimization

task should benefit from the advancements in computer hardware architecture (e.g., memory

and processing speed), electromagnetic numerical modelling technique and optimization

algorithms. The research objective of the current study is to investigate the practicability of a

numerical-based antenna optimization scheme which is capable of completing an optimiza-

tion task within the shortest possible time. To this aim, an antenna optimization analysis,

utilizing a Finite-Difference Time-Domain (FDTD) based computational platform [48] and

network-distributed GAs, is conducted. A mobile phone structure is accurately represented by

a detail computer-aided-design (CAD) phone model. In addition, realistic operating condition

is considered with anatomical phantoms (see Figure 1.2).
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Figure 1.2: The numerical modelling of a mobile phone with a head phantom and a posable
hand phantom which depicts a realistic device-in-use condition.

1.3 Analysis and Design of Antenna-Speaker Integration

The design of an audio-radio component integration for wireless device is investigated in this

section. In the development of a wireless device, removing unwanted coupling and interfer-

ence sources is a critical design requirement. The presence of electronic components, e.g.,

speaker, vibrator and camera, can significantly influence the antenna radiation performance.

When these components are placed in close vicinity to an antenna element, electromagnetic

near-field coupling could lead to radiation efficiency deterioration when certain amount of

input power is “absorbed” by the components instead of radiated out [49]. With the trend of

smaller and slimmer device form factor, components are forced to be packed closer together

in order to maximize the use of available device volume. This inevitably leads to severe electro-

magnetic compatibility and interference (EMC and EMI) issues. To overcome such problems,

proper electromagnetic screening is required to achieve optimum performance. The research

objective of this section focuses on understanding and improving the performance of an

antenna-speaker assembly (i.e., a typical cross-frequency component integration).

For a wireless device, a common design practice is to place a miniature speaker within the

antenna volume so that the same volume can serve both as acoustic resonant chamber and

antenna carrier [50–53] (see Figure 1.3). A poorly integrated loudspeaker can interact with the

near fields of an antenna and give rise to non-radiative resonances. In addition to antenna

radiation efficiency degradation, harmonic signals produced by the speaker can be coupled

through the antenna to the radio frequency (RF) receiver which leads to receiver de-sense (i.e.,

increased receiver noise level). It is therefore critical for an antenna-speaker assembly design

to adapt an effective decoupling scheme.
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Nevertheless, the complexity of a speaker structure has made electromagnetic modelling of

coupling mechanisms difficult and therefore nearly impossible to optimize using numerical

approach [54]. As a result, in the previously published antenna studies [55–59], speakers are

often modelled as simplified metal blocks (i.e., either isolated or grounded to the printed

circuit board). To address complex coupling mechanisms and determine the best available

design approach, the RF resonance characteristics of highly realistic speaker models are

investigated in the current study. The research aims to derive a set of design guidelines

through a combination of hardware prototyping and numerical simulations using realistic

speaker models. By achieving an in-depth understanding of the coupling characteristics, the

optimization cycle and design cost of such cross-frequency component integration can be

significantly improved.

Figure 1.3: (a) A typical antenna-speaker assembly module and (b) miniature speakers to be
integrated.

1.4 Outline and Original Contributions

This section illustrates the contents and original contributions of individual chapters. Each

chapter includes introduction, research progress, discussion and conclusion.

Chapter 2: Low Frequency Exposure and Dosimetry Techniques

Description: A literature review on low frequency electric and magnetic exposure is presented

in this chapter. The interaction of biological systems with low frequency fields and the

associated biological effects are discussed to establish the significance of exposure limits

and numerical dosimetry. The methods and materials (e.g., anatomical models, measurement

and numerical techniques) for low frequency dosimetry assessment are reviewed, followed by

an introduction of the computational techniques employed in this study. The applied solver is

validated with analytical solutions to establish the basis for subsequent analyses.
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Original contribution: The Scalar Potential Finite Element (SPFE) solver is introduced for

the first time to illustrate the specific numerical approach employed in this thesis. The

discussions of the existing exposure guidelines (ICNIRP and IEEE) establish the motivations

for the extensive low frequency exposure research work subsequently conducted in the thesis.

Chapters 3 and 4: Low Frequency Magnetic Field Exposure Analysis

Description: These chapters illustrate the exposure analysis of low frequency B-field induc-

tion. First, the spatial averaging and percentile filtering approaches recommended by the

exposure guidelines and standards [1–3, 5] are interpreted and implemented. Next, the effects

of the averaging and filtering techniques on the induced peak E-field in an exposed body

are investigated with respect to numerical artefacts such as stair-casing errors and field sin-

gularities. Following that, in-depth analyses of the human brain and whole body exposure

are conducted for uniform B-field exposure scenarios. Compliance assessments with the

published exposure limits are conducted to verify the validity of these limits. Practical low

frequency B-field exposure sources, e.g., wireless power transfer (WPT), are also analyzed to

demonstrate the industrial applications of the applied techniques.

Original contribution: The brain exposure analysis leads to the identification of ill-defined

exposure limits due to erroneous assumptions of frequency scaling and tissue homogeneity.

In the whole body exposure analysis, the modelling of a multi-layer skin model is investigated

for the first time for low frequency B-field induction. The results suggest that a single-layer

homogeneous skin layer can be employed to estimate the worst-case E-field in a multi-layer

skin model for a limb-non-touching posture. The research results lead to an up-to-date

reference for the revisions of low frequency B-field induction exposure limits.

The analyses conducted for wireless power transfer (WPT) exposure provide crucial infor-

mations for the implementation of an exposure-compliant wireless power system. Both

close-range localized exposure and mid-range whole-body exposure scenarios are considered.

The compliance assessment of a practical 100 kHz close-range WPT prototype is investigated

for the first time to reveal the exposure safety of such wireless power system and establish the

design parameters (e.g., optimum operating frequency range and effects of coil design) for

improved exposure compliance. Furthermore, by estimating the maximum power obtainable

through WPT without exceeding exposure limits in a room-size environment, a theoretical

assessment for the power budget of loosely-coupled magnetic resonant WPT based on human

body exposure limits is presented.

Chapter 5: Low Frequency Electric Field Exposure Analysis

Description: In this chapter, the application of numerical techniques is extended to the

exposure analysis of low frequency E-field induction and contact current scenarios. A grounded

human body exposed to uniform E-field and a practical exposure scenario of a person operat-

ing a high voltage detector below a power distribution line are investigated.
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Original contribution: The computational results provide up-to-date estimation of the spa-

tially averaged induced peak E-field in the human brain, heart and body due to uniform E-field

induction. With reference to the published exposure guidelines, revision is suggested for the

non-conservative exposure limits. From the high-voltage detector exposure assessment, the

computational results of several body postures reveal no tangible exposure safety concerns

towards the operation of a high-voltage detector, provided that the device exhibits a proper

safety operating resistance.

Chapter 6: Mobile Device Antenna Optimization with Genetic Algorithms

Description: A numerical-based antenna optimization approach is demonstrated in this chap-

ter. The research objective is to investigate the practicability of a fully automated computer-

aided optimization for the antenna design of a commercial mobile device. A highly detail

physical mobile phone model is imported to simulate a complex design environment which

is typical for modern telecommunication device development. Three multiple-resonance

internal antenna designs are optimized by employing a simulation platform which utilizes

genetic algorithms, network cluster distribution and a finite difference time domain solver.

The optimization task aims to achieve simultaneous optimum antenna radiation performance

(OTA), minimum RF energy absorption in a user’s head (SAR) and reduced interference with

hearing aid devices (HAC).

Original contribution: The research work presented in this chapter provides the frame work

of a novel antenna optimization scheme. The complexity of a detail mobile phone structure is

for the first time modelled with up-to-date computational capability. The variety of internal

antenna designs investigated in this study provides insightful information pertaining to the

near-field and far-field performance characteristics. This information allows an antenna

designer to determine the most suitable antenna structure based on the targeted device form

factor. The individual antenna performance, with respect to the achievable bandwidth, total

radiated power (TRP), specific absorption rate (SAR) and hearing aid compatibility (HAC)

performance, is investigated by considering realistic operating conditions, e.g., placed next

to a human head phantom and held by a hand grip phantom. Based on the optimization

requirements (e.g., hardware resource and iteration time) and optimization results, it is demon-

strated that a fully automated computer-aided antenna optimization process is superior to

the traditional empirical approach and can significantly improve a mobile device antenna

development cycle.

Chapter 7: Analysis and Design of Mobile Device Antenna-Speaker Assembly

Description: The mutual coupling between an antenna and a closely integrated moving-

coil speaker is investigated in this chapter. The analysis focuses on the speaker voice coil

radio-frequency harmonic resonance characteristics and the antenna radiation efficiency

degradation due to the presence of a speaker. Antenna structures with a simplified speaker

model are first employed to assess the impacts of design parameters, e.g., speaker resonance,

antenna shape and speaker location, on the antenna radiation performance. Subsequently,
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practical antenna-speaker assemblies are investigated with respect to variable speaker location

and voice coil design through numerical simulations and hardware prototyping.

Original contribution: The speaker high frequency harmonic resonance and potential cou-

pling mechanisms are first illustrated with an equivalent circuit to outline the sensitive design

parameters. Next, with simplified speaker models, the fundamental coupling characteris-

tics between an antenna element and a closely integrated speaker are determined through

numerical simulations. The simulation results indicate that the degradation of antenna ra-

diation efficiency is associated with the non-radiative energy stored in a conductively or

capacitively coupled resonant speaker. The trend of coupling characteristics is then analyzed

with highly complex numerical speaker models and verified with hardware prototype mea-

surements. Based on the research outcomes, practical design guidelines are proposed to

achieve cost-effectiveness, antenna-speaker co-existence and optimum antenna radiation

efficiency even under the most stringent industrial design constraints.

Chapter 8: Conclusions and Future Work

Summary and general assessment of the work achieved in this thesis are presented in this

chapter. Based on the research findings, possible future research directions are discussed.
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2 Review of LF Exposure and Dosimetry
Techniques

2.1 Introduction

In contemporary society, the tremendous growth in the use of electrical energy inevitably

results in an increase in the intensity of electric and magnetic fields in both rural and urban

environments. Electro-smog could originate from various sources, e.g., power grids, base

stations, radio and television broadcast stations, cellular phones and domestic electrical

appliances. The likelihood and level of exposure to biological systems from man-made elec-

tromagnetic fields has increased by orders of magnitude over the past century. Based on the

oscillating frequency, electromagnetic radiation can be classified as non-ionizing or ionizing.

The distinction is generally drawn at the wavelength of around 1 nm in the ultraviolet (UV)

region. Non-ionizing radiation refers to the electromagnetic radiation that does not carry

sufficient energy to cause ionization in living systems. Natural sources of non-ionizing radia-

tion are, for instance, solar radiation from the Sun, cosmic radiation from distant stars and

terrestrial activities, e.g., lightning. Compared to the intensity of the man-made electromag-

netic fields, the natural sources are in general much weaker. The non-ionizing part of the

electromagnetic spectrum can be further divided into the following categories: low frequency,

radio wave, microwave, infra-red (IR) and visible light.

First part of the research in this thesis focuses on the exposure of a human body in the lower

frequency (LF) range, covering a spectrum from 10 Hz up to 100 kHz. It should be noted that

the range of low frequency spectrum is not strictly defined. It depends on specific applica-

tion and the wavelength-to-domain ratio. In the context of radio communication, the low

frequency spectrum is defined from 30 kHz to 300 kHz. In the past decades, studies have

been conducted in defining the physical interactions of LF electric (E) and magnetic (B) fields

with living organisms and describing the biological effects emerged from these interactions.

Particular interest has been focused on the E-fields and B-fields at power frequencies (i.e. 50

and 60 Hz) since the strongest man-made LF E-field and B-field are often found near electric

power facilities (e.g., over-head and underground power lines). The terms magnetic field,

magnetic flux density and B-field are used interchangeably in this thesis with the assumption
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of constant permeability (µ). In this chapter, the LF E-field and B-field exposure and the

associated biological effects, dosimetry assessment techniques and published exposure limits

are reviewed. The content is organized as follows: an overview of the LF E-field and B-field

exposure to the human body, with an emphasis on the published exposure limits [1–5], is

introduced to provide a theoretical background for the forthcoming investigations. Following

that, various existing measurement and numerical dosimetry techniques are reviewed. A LF

numerical solver based on the electromagnetic quasi-static approximation and the Finite

Element Method (FEM) is introduced. This LF solver is validated with respect to its compu-

tational accuracy through a comparison with analytical solutions and alternative numerical

solutions of an electromagnetic full-wave solver [48]. The upper frequency limit of the electro-

magnetic quasi-static approximation for a full-body LF exposure scenario is derived based on

the reported human body tissue dielectric property values [60] and tissue composition data

[61]. The numerical uncertainties of the LF solver, when applied to a frequency up to 10 MHz,

are investigated through a comparison study with a full-wave FDTD solver [48].

2.2 Biological System Interaction with Low Frequency Fields

The sensory and regulatory organs in a human body function as sophisticated electrical

systems. The human body itself produces subtle electromagnetic fields. The associated

electrical signals are responsible for the control of biological processes and the transportation

of information from one part of the body to another. Some of the biological field quantities

can be measured directly. For instance, the electrical activity along the scalp can be captured

on an electroencephalography (EEG). When exposed to a LF E-field or B-field, in situ E-fields

(current flow) are induced inside a human body. If the induced E-field strength is high enough

to affect the body’s natural E-fields, the stimulation of nerves and muscles would occur. This

could trigger numerous biological effects on the electrical activities of the human body, e.g.,

visual phosphenes (i.e., visible flashing light) and peripheral nerve stimulation (i.e., sensation)

[62]. Based on the nature of induction, two types of interaction can be classified: direct field

induction and indirect contact induction.

2.2.1 Electric and Magnetic Induction

Based on the electromagnetic quasi-static approximation (to be discussed in details in Section

2.6.1), the interaction between a human body and LF fields can be interpreted separately for

the external E-fields and B-fields.

E-field Induction

As a human body exhibits high and finite conductivity (σ) at low frequency, two phenomenons

arise when a human body is placed in a slowly time-varying E-field: (1) the human body

perturbs the external E-field significantly and (2) a relatively small amount of E-field (typically
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5 to 6 orders of magnitude lower than the external E-field at 50-60 Hz) is induced in the body

due to the surface charges introduced on the body by the external E-field. The external E-field

perturbation can be explained as follows: a conductive human body leads to a small E-field

inside the body due to direct E-field induction. As a boundary condition requirement, the

tangential components of the E-field must be equal at the air-body interface. Since the in situ

E-field is small, the tangential E-field in the air on the body surface must be small as well. This

implies that the external E-field on the body surface is predominantly aligned vertically to

the surface. It follows that the E-field vectors can be “crowded-in” based on the contour of

the body shape. Hence, the magnitude of the external perturbed E-field can be much greater

with the presence of the body. The degree of E-field enhancement depends on the shape of

the body and body posture. For a slender and pointy shape, the concentration of the external

E-field is greater. The oscillating electric charges on the surface of an exposed human body

lead to current flow inside the body. The strongest E-field induction occurs when a human

body is standing straight with grounded feet in a vertically oriented external E-field (i.e., E-field

lines are aligned parallel to the principal body height axis) as shown in Figure 2.1(a). It should

be noted that this worst-case claim ignores the effect of body posture.

Figure 2.1: The external E-field, B-field and in situ E-field distributions for (a) vertically aligned
E-field and (b) vertically and horizontally aligned B-field, copyright Reilly 1998 pp.346 [70].

B-field Induction

For the exposure to a slowly time-varying B-field, according to Faraday’s law of induction,

E-fields and hence currents will be induced in a conductive body. Such currents are known as

eddy currents, and they circulate in closed loops which tend to lie in the planes normal to the

direction of the applied B-field (see Figure 2.1(b)). The induced currents are the smallest at

the center of the perpendicular plane and gradually increase with ascending distance from

the center. Higher induced E-field is expected in larger object since the peripheral conduction
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loops are larger. In contrast to the E-field induction case, a human body causes virtually no

perturbation to an external B-field at low frequency. This is mainly because most of the living

tissues are non-magnetic (i.e., exhibit weak susceptibility to a B-field). As a LF B-field can

not be effectively shielded by conventional conductive screening techniques, the prevention

of B-field induction in a human body received more attention than the E-field induction

case. To conclude, the exposure to LF E-field or B-field results in induced E-fields (current

flow) in a human body. The magnitude and distribution of the induced E-field depend on the

orientation, distribution, magnitude of the external field and the shape, size and posture of

the exposed body. The induction of E-field due to the exposure to external E-fields or B-fields

is considered as a direct effect of LF exposure and is referred to as direct induction.

2.2.2 Contact Current Induction

A conductive object, when placed in a LF E-field, experiences induced electric charges on it.

The exposed object carries electrical energy which is stored in the form of capacitance. When

two conductive objects at different electric potentials are brought into contact with each other,

two phenomenons arise: (1) Right before making physical contact, when the two objects are

extremely close to each other, a capacitive discharge occurs in which transient pulses pass

between the two objects in order to equalize the potential difference between them. If the

potential difference is large enough, the discharge could trigger sparks at the point of contact.

This discharge is commonly referred to as spark discharge. (2) Once physical contact is made, a

steady-state current with the same frequency as the external E-field starts to flow between the

objects. This current is known as contact current and it can be triggered when a human body

comes into contact with a conductive object at a different electric potential level. For instance,

in the vicinity of an electric power facility where intensive E-fields are present, a grounded

human body (i.e., at the Earth potential) touching a large ungrounded charged conductive

object (e.g. the metal frame of a vehicle with dry tires) could result in a short-circuit current

(i.e., the current that would flow through a short-circuit path into the ground). If such current

is strong enough, it can produce perception, muscular tetanus and cardiac fibrillation. The

let-go threshold is defined as the largest amount of current that is allowed to pass through

a person’s hand without causing muscular contraction severe enough such that the person

loses his or her ability to let go of the current-conducting object. Currents exceeding this

threshold are potentially fatal and should be avoided at all cost. The induction of contact

current is considered as an indirect effect of LF E-field exposure and is often referred to as

indirect induction.

2.2.3 Protective Measures against Low Frequency Exposure

The protection against LF E-field exposure can be readily achieved through conductive shield-

ing. At low frequency, virtually any conductive surface will provide substantial shielding effect

against E-field exposure. One practical example is for personnels working in high-voltage
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power line areas, protective suits known as the Faraday suit which are made from electrically

conductive materials are often worn by workers. On the contrary, there is no convenient

way to achieve effective shielding against the exposure of LF B-field. Ferromagnetic coating

is sometimes applied on high-current power lines. The most practical approach for B-field

exposure protection is to limit the access to the areas with intensive B-field or limit the strength

of B-field under a certain threshold level. For the protection against contact current, the most

common and effective protective measure is to bring the conductive objects to the same

electric potential level. For instance, during a “hot-wire” operation on a high-voltage power

line, the worker will bring his body potential to the same level as the energized power line.

This lowers the danger of electrocution due to spark discharge or contact current.

2.2.4 Biological Effects due to Low Frequency Exposure

The fact that LF E-field and B-field exposures are classified as non-ionizing implies that these

fields generally transfer minute amounts of energy to a biological cell when compared to

ionizing radiation. As a result, the induced E-fields are unable to disrupt the chemical bonds

in a cell. In addition, all the cells in a human body maintain large natural E-fields across

their outer membranes, hence weakly induced E-fields are often passed on as noise without

significant impact. Nevertheless, studies over the past few decades have demonstrated that

under certain circumstances, the membranes of cells can be sensitive to even fairly weak

externally imposed fields: extremely small signal changes can trigger major bio-chemical

responses critical to the functioning of a cell [63]. The biological effects triggered by LF exposure

have been observed in a large number of in vitro experiments inside culture medium. Human

volunteer experiments also provided substantial evidence for exposure-induced stimulation.

As a result, the accumulated findings warrant further research in identifying the mechanisms

and effects of LF E-field and B-field exposure.

Based on the reported findings, some biological effects due to LF exposure are well quantified

and understood while some remain unclear and debatable. A generally accepted mechanism

of interaction between LF field and biological tissues is the direct stimulation of excitable

cells [64]. This phenomenon occurs when an electric potential, known as the action potential,

is induced across the membranes of excitable cells. One of such phenomenon is peripheral

nerve stimulation in which nerve excitation is triggered by the field-induced depolarization of

the neural membrane. This activates the voltage-gated ion channels, which in term produces

a propagating action potential down the length of the neuron. As a consequence, sensation

can be perceived. Another important interaction is cardiac excitation which is associated

with the stimulation of a contraction (systole). It is associated with ventricular fibrillation,

a symptom that could lead to a life-threatening condition. Considerable debate was raised

in the past decades over the question of whether LF exposure may be linked to an elevation

in the risk of cancer. In particular, the risk of childhood leukaemia, nervous tissue tumours

and breast cancer [65–68]. Due to the lack of convincing evidence and the identification

of biologically plausible mechanism, it is believed that if LF exposure is indeed associated
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with the development of cancer, it only acts as an agent of promotion instead of cause [68].
On the one hand, the established biological effects indicate a need to restrict or limit the

exposure of LF E-field and B-field to prevent unintentional nerve stimulation. On the other

hand, diagnostic and therapeutic medical treatment techniques, e.g., neuromuscular electrical

stimulation and transcranial magnetic stimulation, have been developed based on the neuron

and synaptic stimulation phenomenon due to LF induction.

2.3 ICNIRP-2010 and IEEE Std. C95.6-2002 Exposure Limits

To prevent acute and adverse biological effects, international committees, e.g., the Institute

of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-

Ionizing Radiation Protection (ICNIRP) have published low frequency exposure guidelines and

standards [1–5] based on numerical and experimental dosimetry data. The purpose of these

guidelines and standards is to recommend exposure assessment procedures and to suggest

field intensity limits for the external E-field and B-field such that the induced E-field in the

human body is below the threshold levels that could trigger the known biological effects. In

the low frequency range, the interactions of E-field and B-field with the human body through

direct induction are mostly of non-thermal nature. As a result, the stimulation effect due to the

induced E-fields are generally investigated for LF exposure instead of the heating effect, i.e., the

Specific Absorption Rate (SAR). This section discusses the rationales behind the derivations of

the ICNIRP-2010 [2] and IEEE Std. C95.6-2002 [3] low frequency exposure limits.

2.3.1 Basis of the Exposure Limits

Definition of Field Quantity

Two types of exposure limit are employed in the exposure guidelines and standards: basic

restriction and reference level (known as maximum permissible exposure in the IEEE standards).

The basic restriction (BR) refers to the threshold level of the internal E-field strength. The

in situ E-field is generally accepted to be the field quantity that directly affects nerve cells

and other electrically sensitive cells, instead of the current density (J) which is employed in

earlier exposure guidelines [69]. The rationales for employing the induced E-field instead of

the induced current density for the BR field quantity are given as follows: (1) the fundamental

force responsible for electro-stimulation effects is the in situ E-field rather than the induced

current density [70, 71]; (2) the current density can be expressed in terms of the E-field (E)

asσE whereσ is the conductivity of the medium, therefore basing an exposure standard on

current density introduces an additional parameter with uncertainty [3]. The basic restriction

levels are determined through numerical nerve models such as the Spatially Extended Non-

linear Node (SENN) model [71] or experimental data from human volunteers. The reference

level (RL) refers to the threshold level of the external unperturbed E-field and B-field strength.

The reference levels are provided for practical exposure assessment purposes since the internal
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E-field strength is relatively difficult to be determined. Most reference levels are derived from

the relevant basic restrictions using measurement or computational techniques. For certain

biological effects, e.g., magneto-phosphenes (i.e., the perception of faint flickering light in the

periphery of the visual field due to the exposure to LF B-field), the threshold of the external

B-field is first determined through experiments and then the basic restriction is derived

numerically from human body models.

General Public and Occupational Exposure

Based on the exposed population, two categories of exposure limits are defined: general

public and occupational (known as controlled environment in the IEEE standard) exposure.

In IEEE Std. C95.6-2002, the definition of controlled environment is given as: an area that is

accessible to those who are aware of the potential for exposure as a concomitant of employment,

to individuals cognizant of exposure and potential adverse effects, or where exposure is the

incidental result of passage through areas posted with warnings, or where the environment

is not accessible to the general public and those individuals having access are aware of the

potential for adverse effects. The definition of general public in IEEE Std. C95.6-2002 is: all

individuals who may experience exposure, except those in controlled environments. In ICNIRP-

2002, the occupational environment is described as: occupational circumstances in which,

with appropriate advice and training, it is reasonable for workers voluntarily and knowingly

to experience transient effects such as retinal phosphenes and possible minor changes in some

brain functions. The definition of general public in ICNIRP-2010 refers simply to members of

the general public.

Exposure Assessment Procedure

The procedures to perform a LF exposure assessment are recommended by the exposure

guidelines and standards as follows: (1) determine the external field intensity (e.g., through

field measurements); (2) if the external field intensity is below the RL (MPE) level, compliance

with the exposure limits is achieved; (3) if the external field intensity exceeds the RL (MPE)

level, dosimetry technique should be applied to assess the induced E-field; (4) If the induced

E-field is below the BR level, compliance is achieved, otherwise non-compliance is declared.

If should be noted that due to the inclusion of conservative safety factors, non-compliance of

the exposure limits does not immediately warrant nerve stimulation in an actual exposure

scenario. It is stated in ICNIRP-2010 that the reference levels are calculated for the condition

of maximum coupling of the field to the exposed individual, thereby providing maximum

protection. A similar statement can be found in IEEE Std. C95.6-2002: compliance with

the maximum permissible exposure level ensures compliance with the basic restrictions. It is

therefore clear that the conversion between the basic restriction and the reference level, which

relies on numerical computations, plays a critical role in achieving scientifically sound and

effective exposure limits for stimulation prevention.
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2.3.2 Basic Restrictions and Reference Levels

In this section, the basic restrictions and reference levels suggested in ICNIRP-2010 [2] and

IEEE Std. C95.6-2002 [3] are presented in tabular and graphic forms. For the IEEE exposure

limits above 3 kHz, the BR and RL values are adopted from IEEE Std. C95.1-2005 [5]. It can be

observed that the exposure limits are inconsistent between the two standardization commit-

tees. The main differences are: the definition of exposed tissue group, the conversion factors

between the external field and the induced field, and the safety factors which are applied to

account for scientific uncertainties. In ICNIRP-2010, the exposed tissues are grouped into the

central nervous system (CNS) and the peripheral nerve system (PNS). It should be noted that

the CNS tissues defined in ICNIRP-2010 include the brain and retina only (i.e., excluding the

spinal cord). The PNS tissues defined in ICNIRP-2010 include all tissues of head and body,

with the skin suggested to be the worst-case target tissue. In IEEE Std. C95.6-2002, the exposed

tissues are grouped as brain, heart, extremities (i.e., hands, wrists, feet and ankles) and other

tissue. The rationales behind the derivations of the basic restrictions will be discussed in

Section 2.3.3 and the conversion factors will be discussed in Section 2.3.5.

ICNIRP-2010

The basic restrictions and reference levels of ICNIRP-2010 are presented in Tables 2.1, 2.2 and

2.3. The graphic representations are shown in Figures 2.2, 2.4 and 2.5. The field quantities are

expressed in terms of rms values.

Table 2.1: Basic restrictions for the human body exposure to low frequency f (Hz) electric and
magnetic field in ICNIRP-2010.

Exposure characteristic Frequency range Internal electric field (V/m)

Occupational exposure
CNS tissue of the head 1 Hz -10 Hz 0.5/ f

10 Hz - 25 Hz 0.05
25 Hz - 400 Hz 2×10−3 f
400 Hz - 3 kHz 0.8
3 kHz - 10 MHz 2.7×10−4 f

All tissues of head and body 1 Hz - 3 kHz 0.8
3 kHz - 10 MHz 2.7×10−4 f

General public exposure
CNS tissue of the head 1 Hz -10 Hz 0.1/ f

10 Hz - 25 Hz 0.01
25 Hz - 1 kHz 4×10−4 f
1 kHz - 3 kHz 0.4

3 kHz - 10 MHz 1.35×10−4 f
All tissues of head and body 1 Hz - 3 kHz 0.4

3 kHz - 10 MHz 1.35×10−4 f
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Table 2.2: Reference levels for the human body exposure to low frequency f (Hz) electric and
magnetic field in ICNIRP-2010.

Frequency range Electric field (kV/m) Magnetic flux density (T)

Occupational exposure
1 Hz - 8 Hz 20 0.2/ f 2

8 Hz - 25 Hz 20 2.5×10−2/ f
25 Hz - 300 Hz 5×102/ f 1×10−3

300 Hz - 3 kHz 5×102/ f 0.3/ f
3 kHz - 10 MHz 0.17 1×10−4

General public exposure
1 Hz - 8 Hz 5 4×10−2/ f 2

8 Hz - 25 Hz 5 5×10−3/ f
25 Hz - 50 Hz 5 2×10−4

50 Hz - 400 Hz 2.5×102/ f 2×10−4

400 Hz - 3 kHz 2.5×102/ f 8×10−2/ f
3 kHz - 10 MHz 8.3×10−2 2.7×10−5

Table 2.3: Reference levels for low frequency f (kHz) contact current from conductive objects
in ICNIRP-2010.

Frequency range Contact current (mA)

Occupational exposure up to 2.5 kHz 1.0
2.5 - 100 kHz 0.4 f

100 kHz - 10 MHz 40
General exposure up to 2.5 kHz 0.5

2.5 - 100 kHz 0.2 f
100 kHz - 10 MHz 20

IEEE Std. C95.6-2002

The basic restrictions and maximum permissible exposure levels of IEEE Std. C95.6-2002 are

presented in Tables 2.4, 2.6 and 2.5. The graphic representations are shown in Figures 2.3, 2.4

and 2.5. The field quantities are expressed in terms of rms values. To determine the basic

restriction value (Ei ) at a frequency f (Hz), Table 2.4 is interpreted as follows:

Ei = Eo for f ≤ f e (2.1)

Ei = Eo
f

f e
for f ≥ f e (2.2)
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Table 2.4: Basic restriction, Eo (V/m), for the human body exposure to low frequency f (Hz)
electric and magnetic field in IEEE Std. C95.6-2002.

Exposed tissue f e (Hz) General public Controlled environment

Brain 20 5.89×103 1.77×10−2

Hear 167 0.943 0.943
Extremities 3350 2.1 2.1
Other tissue 3350 0.701 2.1

Table 2.5: Maximum permissible exposure levels for the human body exposure to low fre-
quency f (Hz) electric and magnetic field in IEEE Std. C95.6-2002.

Frequency range (Hz) General public Controlled environment

Magnetic flux density (mT)
< 0.153 118 353

0.153 - 20 18.1/ f 54.3/ f
20 - 759 0.904 2.71

759 - 3350 687/ f 2060/ f
3350 - 100000 0.205 0.615

Electric field (kV/m)
1 - 368 5 -

368 - 3000 1.84×103/ f -
3000 - 100000 0.614 -

1 - 272 - 20
272 - 3000 - 5.44×103/ f

3000 - 100000 - 1.813

Table 2.6: Maximum permissible exposure levels for 0 kHz to 3 kHz induced and contact
current for continuous sinusoidal waveforms in IEEE Std. C95.6-2002.

Condition General public (mA) Controlled environment (mA)

Both feet 2.70 6.0
Each feet 1.35 3.0

Contact, grasp - 3.0
Contact, touch 0.50 1.5

2.3.3 Rationales for the Basic Restrictions

ICNIRP-2010

In ICNIRP-2010, the perception of surface electric charge, the direct stimulation of nerve and

muscle tissue and the induction of retinal phosphenes are quoted as the well established

biological effects which serve as a basis for the recommended basic restrictions. Based on the

results of human volunteer experiments, the external E-field thresholds for direct perception

by the most sensitive 10% of volunteers at 50–60 Hz are found to be in a range between 2
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Figure 2.2: The basic restriction levels for the central nervous system (CNS) and peripheral
nerve system (PNS), under the general public and occupational exposure conditions, recom-
mended in ICNIRP-2010.

Figure 2.3: The basic restriction levels for the brain, heart, other tissue and extremities, under
the general public and controlled exposure conditions, recommended in IEEE Std. C95.6-2002.

kV/m and 5 kV/m and 5% found 15 kV/m to 20 kV/m annoying. Based on a numerical nerve

model [70, 71], myelinated nerve fibres of the human peripheral nervous system (PNS) have

been estimated to have a minimum threshold value of induced E-field at around 6 V/m (non-

rms peak). Experimental results obtained from volunteers exposed to the switched gradient

B-fields of magnetic resonance (MR) systems suggest that the threshold for perception may

be as low as about 2 V/m (based on the computational results of a homogeneous human
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Figure 2.4: The magnetic flux density reference levels (maximum permissible exposure),
under the general public and occupational (controlled environment) exposure conditions,
recommended in ICNIRP-2010 and IEEE Std. C95.6-2002.

Figure 2.5: The electric field reference levels (maximum permissible exposure), under the gen-
eral public and occupational (controlled environment) exposure conditions, recommended in
ICNIRP-2010 and IEEE Std. C95.6-2002.

model) and 4 V/m to 6 V/m (based on the computational results of a heterogeneous human

model). Another basis is that the myelinated nerve fibres of the central nervous system (CNS)

was found to be stimulated by the E-fields induced during transcranial magnetic stimulation

(TMS). Based on the experimental B-field strength, theoretical calculation suggests that the

minimum stimulation threshold values may be close to 10 V/m (non-rms peak).

20



Chapter 2. Review of LF Exposure and Dosimetry Techniques

The stimulation thresholds rise above around 1 kHz to 3 kHz due to the progressively shorter

time available for the accumulation of electric charge on the nerve membrane (this explains

the frequency-dependent ascend of ICNIRP basic restriction above 3 kHz) and below about

10 Hz due to the accommodation of a nerve to a slowly depolarizing stimulus. Note that this

accommodation effect is not considered in the IEEE Std. C95.6-2002 standard, this explains

the shape difference between the basic restriction curves in Figure 2.2 and Figure 2.3 for

frequencies below 10 Hz. Below the threshold for direct nerve or muscle excitation, a well

established effect of induced E-field is the induction of magnetic phosphenes in the retinas of

volunteers exposed to LF B-fields. The minimum threshold magnetic flux density is found to be

around 5 mT at 20 Hz, rising at higher and lower frequencies. Based on this experimental data,

the threshold for induced E-field strengths in the retina was estimated to be between about 50

mV/m to 100 mV/m at 20 Hz. As the retina is considered as part of the CNS (together with

the brain), the magnetic phosphenes threshold is employed as a basis for the basic restriction

of the CNS in ICNIRP-2010. As shown in Table 2.1, the value 50 mV/m is employed as the

occupational exposure basic restriction value for the CNS tissues at a frequency from 10 Hz to

25 Hz. The magnetic phosphene thresholds rise rapidly at higher frequencies, intersecting

with the thresholds for peripheral and central myelinated nerve stimulation at 400 Hz. The

threshold on peripheral nerve stimulation for all parts of the body is determined based on

the threshold for perception (i.e., 4 V/m) obtained from the switched gradient magnetic field

experiment. A reduction factor of 5 is applied to the 4 V/m threshold, this gives rise to the basic

restriction of 0.8 V/m for all tissues of head and body up to 3 kHz in occupational exposure

scenario. In order to be conservative, additional reduction factors of 2 (for all tissues of head

and body) and 5 (for the CNS tissues) are applied for the general public exposure.

IEEE Std. C95.6-2002

In IEEE Std. C95.6-2002, it is stated that the maximum exposure limits are based on the avoid-

ance of the following biological effects: aversive or painful stimulation of sensory neurons,

muscle excitation, direct alteration of synaptic activity within the brain, cardiac excitation and

adverse effects associated with induced forces on rapidly moving charges within the body. As

the threshold of excitation is known to be inversely proportional to the diameter of a nerve

axon, it is assumed in the IEEE standard that the nerve fibre diameter is at the outer limit

of the distribution of fibre sizes found in humans. Accordingly, a maximum diameter of 20

µm is assumed for a peripheral nerve and 10 µm for a CNS neuron. Based on a theoretical

model of myelinated nerve [70, 71] and experimental data, the median in situ E-field threshold

(non-rms peak) is estimated to be 0.075 V/m for synapse activity alteration in the brain at 20

Hz (based on the experimental data from magnetic phosphenes due to gradient coil of MR

systems), 12.3 V/m for 10-µm brain nerve excitation at 3350 Hz, 6.15 V/m for 20-µm body

nerve excitation at 3350 Hz and 12 V/m for cardiac excitation at 167 Hz. These threshold

values serve as a basis for the IEEE basic restriction levels. As shown in Table 2.4, the exposure

tissues in IEEE Std. C95.6-2002 are classified as brain, heart, extremities (i.e., hands, wrists,

feet and ankles) and other tissue. The aforementioned median threshold values are converted
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to the actual basic restriction values (rms) by applying multipliers such as the safety factor

(e.g., a reduction factor of 3 for the brain and other tissue in general public exposure) , prob-

ability factor and median-to-adverse threshold conversion factor. A comparison between

Table 2.1 and Table 2.4 reveals that the fundamental differences between the ICNIRP and IEEE

basic restrictions are: (1) the variation in safety factor and threshold conversion factors (only

applicable in the IEEE standard), (2) the classification of the exposed tissue group, (3) the

assumption of accommodation effect (only applicable in the ICNIRP guidelines) and (4) the

frequency-dependent transition points.

2.3.4 Spatial Averaging and 99th Percentile

In ICNIRP-2010 and IEEE Std. C95.6-2002, both biological and numerical rationales are given

for the spatial averaging of the induced E-fields. The biological rationales are: (1) a point-wise

peak E-field is unlike to occur during a LF exposure (i.e., excluding the effect of conductive

implants); (2) induced E-fields across a certain distance along an axon are required to activate

an action potential (AP) [71]. The numerical rationale is: due to computational artefacts

such as stair-casing errors, the maximum E-field value of a single voxel element tends to

overestimate the actual peak and is less stable than the average of neighbouring voxel values.

ICNIRP-2010

In ICNIRP-2010, a vector average of the E-field within a contiguous tissue volume of 2×2×2

mm3 is suggested. It is followed by a statement: for a specific tissue, the 99th percentile value

of the electric field is the relevant value to be compared with the basic restriction. The 99th

percentile value refers to the value exceeded by 1% of the total voxel elements. While the

choice of 2 mm is stated to be based on the maximum inter-nodal distance between the nodes

of Ranvier, ICNIRP acknowledged that a biologically reasonable averaging distance is from 1

mm to 7 mm. The choice of 2 mm can be understood as a practical compromise since at the

time of ICNIRP guidelines setting, i.e., the year 2010, the best available numerical dosimetry

results are based on anatomical models with 2 mm grid resolution. Hence, no 2×2×2mm3

volume-averaged dosimetry results were in fact available at that time since no averaging can

be performed on the computational results obtained from a 2 mm grid resolution. This is

speculated to be the main reason why the 99th percentile value is suggested in the first place.

The rationale for the 99th percentile value is stated in ICNIRP-2010 as: maximal values in one

voxel in a specific tissue are prone to large stair-casing errors associated with sharp corners of

the cubical voxel. A solution to obtain more stable peak approximations is based on choosing

for the peak value a value representing the 99th percentile value of the induced field in a specific

tissue. ICNIRP also acknowledged that from a biological point of view, the decision of 99th

percentile is a somewhat arbitrary choice.

While an arbitrary choice is strictly speaking unsuitable for an international exposure guideline,

the ICNIRP-recommended instructions for volume averaging and 99th percentile filtering are
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ambiguous. For instance, the definition of a contiguous tissue volume is not clearly stated in

ICNIRP-2010. One possible interpretation is that the exposed tissue groups defined by ICNIRP:

CNS tissue of the head (i.e., brain and retina) and all tissues of body and head can be treated as

target tissues. Alternatively, each individual segmented tissue can be regarded as one target

tissue. The lack of clear tissue definition for averaging may lead to uncorrelated findings from

different research groups. For the 99th percentile approach, the definition of specific tissue is

unclear as well. For instance, to assess the induced E-field in the brain, one could take the

99th percentile of the entire brain or take the 99th percentile value of each segmented brain

tissue and then choose the maximal value. Since the 99th percentile value is dependent on

tissue size and applied grid resolution, the whole-brain 99th percentile value is expected to be

less conservative than the maximal 99th percentile value taken from individual brain tissues.

In a more extreme case when less than 100 voxels are assigned to a tissue, a 99th percentile

value will be invalid unless interpolation is allowed.

IEEE Std. C95.6-2002

In IEEE Std. C95.6-2002, the averaging distance 5 mm is determined with the use of a non-

linear model of a myelinated nerve [72]. It is stated that: The basic restrictions on the in situ

electric field apply to an arithmetic average determined over a straight line segment of 0.5

cm length oriented in any direction within the tissue. A biological rationale is attached to

the line averaging: the most sensitive means of exciting a nerve fibre is via an in situ electric

field oriented with the long axis of the nerve fibre, and acting at its terminus. Both the spatial

averaging and its associated biological rationale are coherent. It is relatively easy to define

a 5 mm straight line within an investigated tissue, however to comply with the any direction

orientation requirement, a brute-force approach will require a complete rotation of the line

at each pivot point. As a practical compromise, a possible approach is to assume that when

the line is centred on a grid and aligned with the direction of the vectorial E-field at that grid,

then an averaging along this line would lead to the maximal averaged E-field. An erroneous

statement is noted in IEEE Std. C95.6-2002: the in situ electric field can be determined as

the average over a distance da = 5 mm, which can be readily determined from the potential

difference at a spacing of 5 mm. This statement is only valid for the E-field induction and

contact current induction cases. In a B-field induction scenario, the induced E-field is a

product of both the magnetic vector potential and electric scalar potential, hence the averaged

E-field cannot be obtained solely from electric potential difference.

2.3.5 Conversion Factors between ex situ and in situ Fields

ICNIRP-2010

To derive a reference level based on an established basic restriction level (or vice versa), the

results of computational models are often employed. In ICNIRP-2010, it is stated that the

maximum local peak E-field induced in the brain by a 50 Hz uniform B-field is approximately
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23 mV/m to 33 mV/m per mT. As there was no conversion factor for peripheral nerve tissue

available at the time of guideline setting for ICNIRP-2010, the skin, which contains peripheral

nerve endings, was chosen as a worst-case target tissue. The E-field induced in the skin by a

50 Hz uniform B-field is approximately 20 mV/m to 60 mV/m per mT. For the external E-field

exposure, the maximum local E-field induced by a 50 Hz E-field in the brain is approximately

1.7 mV/m to 2.6 mV/m per kV/m. The maximum E-field in the skin is approximately 12

mV/m to 33 mV/m per kV/m. These conversion factors are based on the 99th percentile

computational results of anatomical models reported in [11, 12]. The ICNIRP-2010 reference

levels are derived based on the 99th percentile values with an additional reduction factor of

3 to account for dosimetric uncertainty. In another word, the conversion factors between

the ICNIRP-recommended 2×2×2mm3 volume-averaged E-field and the external field are

not applied due to the lack of computational results. It is therefore unclear if the the existing

ICNIRP conversion factors can offer sufficient safety margins for stimulation prevention.

IEEE Std. C95.6-2002

In IEEE Std. C95.6-2002, the maximum permissible exposure for the external B-field is derived

from ellipsoidal induction models. The use of anatomical model is dismissed due to the lack

of model validation and a large variation in reported dosimetry values. It should be noted that

the setting of IEEE Std. C95.6-2002 is eight years ahead of ICNIRP-2010. At the time of IEEE

standard setting, an analytical model was indeed a more reliable choice than an anatomical

model for the derivation of exposure limits. The magnetic induction model treats an exposed

human body as an elliptical shape with homogeneous conductivity. Large body dimensions

were assumed to provide conservatism. Based on the basic restriction values, magnetic flux

density values are analytically computed. Subsequently, the maximum permissible exposure

limits are derived after applying multiplying factors such as the safety factor, probability

factor and adverse reaction factor. Due to the use of different numerical models (analytical vs.

anatomical), a large variation is observed between the ICNIRP and IEEE conversion factors.

For the external E-field, the maximum permissible exposure limits are mainly derived based on

the contact current induced in an erect person touching a grounded conductor in a vertically

polarized E-field. Experimental data on the threshold of perception for individuals exposed in

60 Hz E-field are also referred. It is stated in IEEE Std. C95.6-2002 that the threshold E-field

required to limit the threshold contact current is significantly lower than what is required to

directly induce the threshold in situ E-field. A conversion example is given by IEEE as follows:

to induce a 17.7 mV/m E-field in the brain of an erect person at 60 Hz, an external vertically

polarized E-field of about 59 kV/m is required [73]. The computational results of anatomical

models [11] quoted in ICNIRP-2010 indicate that to induce the same amount of E-field in

the brain, the external E-field threshold limit may be as low as 10 kV/m. Similar discrepancy

between the ICNIRP and IEEE conversion factors can be observed through further comparison.

As shown in Table 2.7 the external 50 Hz B-field limit is 0.904 mT in IEEE Std. C95.6-2002 and

0.2 mT in ICNIRP-2002, while the induced E-field limit is 0.0147 V/m (for IEEE) and 0.02 V/m
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Table 2.7: A list of exposure limits at 50 Hz for ICNIRP-2010 and IEEE Std. C95.6-2002.

IEEE Std. C95.6-2002 ICNIRP-2010

General public
Basic restriction (V/m)

Brain (CNS tissues) 1.47×10−2 0.02
Extremities (PNS tissues) 2.10 0.4

Reference level
E-field (kV/m) 5 5

B-field (mT) 0.904 0.2
Occupational (controlled environment)

Basic restriction (V/m)
Brain (CNS tissues) 4.42×10−2 0.1

Extremities (PNS tissues) 2.10 0.8
Reference level
E-field (kV/m) 20 10

B-field (mT) 2.71 1.0

(for ICNIRP), respectively. This indicates that the conversion factors at 50 Hz differ by more

than a factor of 4 between IEEE and ICNIRP. Such discrepancy should be closely investigated

to assess the validity of the recommended reference levels with respect to the associated basic

restrictions.

2.3.6 Summary on the ICNIRP and IEEE Exposure Limits

This section provides an in-depth discussion on the derivations of the ICNIRP and IEEE

exposure limits. Limited by the scope of research objectives, the details pertaining to the

exposure assessment of pulsed (non-sinusoidal) fields, additive exposure (both E-field and B-

field), and contact-induced current threshold are not included in the discussion. By analyzing

the rationales behind the derivations of the basic restriction and reference levels, a clear

frame work of the exposure limit setting is presented. A comparison between the ICNIRP-2010

exposure guidelines and the IEEE Std. C95.6-2002 exposure standard reveals that there are

significant discrepancies between the two sets of exposure limits. Recall the ICNIRP-2010

statement: the reference levels are calculated for the condition of maximum coupling of the field

to the exposed individual, thereby providing maximum protection and the IEEE Std. C95.6-2002

statement: compliance with the maximum permissible exposure level ensures compliance with

the basic restrictions. Both ICNIRP and IEEE claim that the recommended exposure limits

provide maximum protection against LF E-field and B-field exposure. To assess the validity of

these claims, up-to-date scientific evidences should be provided to support the derivations of

exposure limits.
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2.4 Low Frequency Field Measurement Techniques

2.4.1 Free Space Electric and Magnetic Field Measurement

For the measurement of low frequency E-field and B-field, field meters are often employed [74].
There are in general two types of E-field meter. One type is known as the self-contained or free-

body meter which measures the current flow between two halves of an isolated conductive

body (probe) immersed in an E-field. The other type is the ground reference meter which

measures the current flow from a probe placed inside an E-field to the ground. The free-body

type is portable and often used for outdoor measurements, e.g., area near power lines. An

E-field meter consists of two parts: probe and detector. During a measurement, the probe is

introduced into an E-field on an insulating handle while the detector measures the current

induced between the two conducting halves of the probe. Precaution should be taken to

minimize E-field perturbation from the probe and the person making the measurement. For

the measurement of the E-field acting on a conductive surface (e.g., surface of a human

body), a small surface element can be placed directly over the surface of interest. The current

induced in this element is directly related to the average E-field acting on it. A B-field meter

typically consists of electrically shielded coils of wire. When the coils are immersed in a

time-varying B-field, a current is induced corresponding to the applied B-field. The induced

current is assumed to be sufficiently small so that the opposing secondary B-field generated

by it can be neglected. The B-field can then be extrapolated from the measured induced

current value. In the context of a LF exposure guideline compliance assessment, the free space

field measurement data of an exposure environment is compared with the reference level to

preliminarily determine if the peak induced E-field in an exposed object exceeds the basic

restriction.

Figure 2.6: (a) A B-field meter and (b) a dual-element E-field and B-field meter, copyright
Narda Safety Test Solutions GmbH.
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2.4.2 Limitations of Induced Field Measurement

For the measurement of the induced E-field (current density) inside a human body, exper-

imental techniques adopting either an anatomically shaped phantom [21] or non-invasive

measurement technique [22] have been investigated. The first approach utilizes a scaled-down

human model (see Figure 2.7) filled with a homogeneous conductive solution, e.g., saline. An

E-field probe is inserted into the model at various locations to determine the induced E-field

and subsequently the current density can be calculated based on the measured E-field and

known conductivity value. An advantage of this measurement technique is that the directional

characteristics of the induced fields can be captured. On the down side, the field probe might

perturb the induced E-fields and contribute to measurement error. In addition, a homoge-

neous phantom is inadequate to represent the realistic human tissue composition since the

human body tissues are highly inhomogeneous from a dielectric property point of view. The

second approach can be applied to achieve the measurement of the short-circuit current (i.e.,

the current across the feet of a grounded person) or body surface potential distribution. This

type of ex situ measurement could yield the maximum current flow occurring at different cross-

sections of a human body. However it does not provide information regarding the current

distribution within a body. As the human body is composed of biological tissues with various

sizes, shapes and dielectric properties, the measurement of the induced E-fields in such a

complex environment is limited by the existing phantom modelling and sensor technology.

Hence, numerical dosimetry is often employed when detailed induced field distribution and

peak magnitude are required.

Figure 2.7: A scaled-down human model made of styrofoam cast and filled with saline solution,
copyright Kaune and Forsythe 1985 pp.17 [21].
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2.5 Anatomical Model and Tissue Dielectric Property

2.5.1 High-Resolution MRI-based Anatomical Models

In the early numerical dosimetry studies, spherical or cubic models were used to represent

human bodies [23]. A new class of millimeter-resolution models of the human body emerged

in the 1990s, for instance, the “Visible Man Project” [75] by the National Institutes of Health

(NIH). Such high resolution anatomical model can be derived from cryosection, Computed

Tomography (CT) or Magnetic Resonance Imaging (MRI) data. These models provide detailed

geometrical representations of biological tissues and organs. Furthermore the distinct dielec-

tric properties of body tissues can be assigned to the segmented tissue models. In this study,

anatomical models [76] from different gender and age groups are employed to provide a broad

coverage of body shapes. As shown in Figure 2.8, the models include Roberta, a 5-year-old girl

(weight 18 kg, height 1.1 m), Dizzy, an 8-year-old boy (26 kg, 1.4 m), Duke, a 34-year-old male

(70 kg, 1.7 m), Ella, a 26-year-old female (58 kg, 1.6 m), Fats, a 37-year-old obese male (120 kg,

1.9 m). These computer-aided-design (CAD) models are derived from high resolution MRI

scans and consist of approximately 200 organ parts and 80 tissue types. The CAD format of

the objects allows the meshing of the models to be performed at an arbitrary resolution (see

Figure 2.9) without the loss of details and small features due to multiple samplings.

Figure 2.8: The anatomical models employed in this study, from left to right, Roberta, Dizzie,
Duke, Ella and Fats.

2.5.2 Posable Anatomical Model

Most of the published literatures [6–17] on LF exposure of the human body are based on

fixed-posture body models which are typically in a general standing posture (i.e., body straight

with hands on the side). A fixed-posture anatomical CAD model provides general numerical

dosimetry results without considering the possible effects of body posture variation on the
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Figure 2.9: The Duke model with (a) detailed skeleton and tissue composition and (b) 2 mm
grid resolution voxel slices.

induced E-field distribution and strength. The anatomical models employed in this study

belong to a special group of 3D human CAD models known as the posable human. The word

“posable” implies that the models can be manipulated into different body postures. This

is achieved by an approach derived from the dual-quaternion-skinning method, volume-

preserving deformations and non-iterative method based on Lagrange multipliers [77]. The

posable human models can assume many realistic body postures, e.g., sitting, squatting and

stretching (see Figure 2.10).

Figure 2.10: A posable anatomical model manipulated into various postures, copyright IT’IS
Foundation, Zurich, Switzerland.
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2.5.3 Low Frequency Human Body Tissue Dielectric Property

The dielectric properties of biological tissues vary significantly with respect to frequency. In

the low frequency range, human body tissues are mostly diamagnetic, i.e., the permeability

of the tissue is equivalent to the free-space permeability (i.e., µ= µ0). In addition, most of

the tissues exhibit ohmic-current-dominant characteristic (i.e., σ�ωε). In this study, the

human body tissues are assumed to be piecewise-isotropic such that the tensor material

parameters, e.g., permittivity (ε), conductivity (σ) and permeability (µ), can be treated as

scalars. The anisotropy characteristics of the human body tissues are not considered. The

tissue conductivity and relative permittivity values used in this work are obtained from [60]. A

list of dielectric property values at 50 Hz for selected human body tissues is shown in Table

2.8. As shown, the cerebrospinal fluid exhibits the highest conductivity value and the skin

exhibits the lowest conductivity value among all the human body tissues at 50 Hz. At 50 Hz,

the relative permittivity of a human body tissue has a dynamic range of 102 to 107 and the

conductivity has a dynamic range of 10−4 to 100.

Table 2.8: Dielectric property values of selected human body tissues at 50 Hz.

Tissue εr σ(S/m)

Blood 5260 0.70
Bone 8870 0.02

Brain (Grey Matter) 12100000 0.08
Brain (White Matter) 5290000 0.05

Cartilage 1640000 0.17
Cerebellum 12100000 0.10

Cerebrospinal Fluid 109 2.00
Fat 458000 0.04

Gallbladder 1450 0.90
Heart Muscle 8660000 0.08

Kidney 10100000 0.09
Large intestine 32100000 0.055

Liver 1830000 0.04
Lung 5760000 0.07

Midbrain 12100000 0.10
Muscle 17700000 0.23
Nerve 1610000 0.03
Penis 8100000 0.026

Pineal body 1640000 0.52
Skin 1140 0.0002

Small Intestine 2030000 0.52
Spinal Cord 1610000 0.03

Spleen 10200000 0.09
Stomach 1640000 0.52

Tendon/ligament 17100000 0.27
Uterus 31800000 0.23
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2.6 Low Frequency Numerical Dosimetry Techniques

Computational electromagnetics focuses on solving Maxwell’s equations by the means of

numerical techniques. It benefits from the continuous advancement of computer technol-

ogy in terms of processing speed, random access memory (RAM) and data storage. For a

LF exposure problem, with appropriate assumptions, the full Maxwell’s equations can be

simplified. This allows an exposure scenario with complex human body geometry and field

distribution to be discretized and solved with satisfactory accuracy and efficiency. In this

section, various existing computation methods are reviewed and a numerical solver tailored

for LF numerical dosimetry is introduced.

2.6.1 Electromagnetic Quasi-Static Approximation

Low frequency computational (analytical and numerical) dosimetry benefits from the electro-

magnetic quasi-static approximation. This assumption can be applied in a frequency range

from 1 Hz up to a few kHz and it allows the analysis of the interactions between biological

systems and LF E-field and B-field to be greatly simplified if the following conditions are

satisfied [78]:

(a) The size of the exposed object is small when compared to the free-space wavelength of the

incident field. This condition ensures that field propagation effects can be neglected, which

also implies that the E-field and B-field can be conditionally represented by electro-static or

magneto-static fields.

(b) The size of the exposed object is comparable or smaller than the skin depth of the materials

inside the object. This condition ensures that the secondary B-field produced by the currents

induced in the object will be small and hence the incident B-field is unperturbed by the

exposed object. This condition also implies that the secondary B-field will not affect the

incident and induced E-fields.

(c) The exposed object is conductive and inside it the conduction currents dominate over

the displacement currents (i.e., a large loss tangent). This ohmic-current-dominant condi-

tion is, strictly speaking, not an essential requirement for the fulfilment of the quasi-static

approximation. Its existence is to allow further simplification of the field equations.

Mathematically speaking, the quasi-static approximation can be represented by a set of equa-

tions. Maxwell’s equations can be expressed in the complex phasor form X(r, t ) =R{e jωt X(r )}
with angular frequencyω:

∇×E=−jωB (2.3)
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∇×H= jωD+ J (2.4)

∇·D=ρ (2.5)

∇·B= 0 (2.6)

where E, D, B, H, J and ρ are the electric field, displacement current, magnetic flux density,

magnetic field, current density and volume charge density, respectively. For linear materials,

three constitutive laws govern the electromagnetic theory together with Maxwell’s equations:

D= εE (2.7)

B=µH (2.8)

J=σE+ J0 (2.9)

where σ is the effective conductivity, µ is the permeability, J0 is the source current and ε is

the permittivity given by ε = εr ε0 where εr is the relative permittivity and ε0 is the free space

permittivity. A complex permittivity ε̃ is defined as

ε̃ = ε+
σ

jω
(2.10)

The quasi-static approximation is derived from Maxwell’s equations by neglecting either the

magnetic induction or the electric displacement current. This is equivalent to replacing (2.3)

with∇×E' 0 or replacing (2.4) with∇×H' J0. A decision as to whether a quasi-static field

ought to be classified as Electro-Quasi-Static (EQS) or Magneto-Quasi-Static (MQS) can be
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deduced by a simple rule of thumb: lower the frequency of the driving source to zero so that

the fields become static, if the B-field vanishes in this limit then the field is EQS; if the E-field

vanishes then the field is MQS.

To justify the assumption of quasi-static approximation, one has to ensure that neglecting the

magnetic induction in EQS or the displacement current in MQS does not produce significant

error. By defining a characteristic length d and a characteristic time τ, the spatial derivatives

that make up the curl and divergence operators can be approximated as 1
d and the temporal

derivative as 1
τ

. For the EQS approximation, based on (2.3) and (2.4), a quantity En given in

(2.11) is defined as the E-field term neglected due to the approximation. The quasi-static

field and the ratio of the neglected field to the quasi-static field are given in (2.12) and (2.13),

respectively. In a similar manner, the ratio for the MQS approximation can be deduced and

proven to be the same as that of the EQS case. Both the EQS and MQS approximations are valid

by assuming a sufficiently low frequency and small characteristic length, i.e., ω2µε̃d 2 � 1

(2.14). This is equivalent to the statement that the quasi-static approximation is valid if an

E-field or B-field can propagate through a length d in a time that is short compared to the

τ of interest. For a sinusoidal excitation, τ is the reciprocal of the angular frequencyω. The

condition (2.14) must be satisfied by all the materials within the computation domain.

En =
µρd 3ε̃

τ2ε
(2.11)

E=
ρd

ε
(2.12)

En

E
=

Hn

H
=
µε̃d

τ2

2

=ω2µε̃d 2 (2.13)

ω2µε̃d 2� 1 (2.14)

2.6.2 Existing Low Frequency Numerical Dosimetry Techniques

Finite-Difference Time-Domain (FDTD) Method

The Finite Difference Time Domain (FDTD) [79] method is one of the most widely used

computational methods for numerical dosimetry due to its versatility and computational

efficiency. The FDTD method solves Maxwell’s equations in the time domain for the six vector
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components of electric and magnetic fields arranged in a cubical cell known as Yee cell (see

Figure 2.11). The main constraint for the FDTD method is that the cell size (∆d ) must be

smaller than the smallest wavelength of the materials present in the computation domain. In

order to obtain stable solution, the Courant-Friedrich-Levy (CFL) criterion must be satisfied.

This criterion is stated as δt ≤∆d /
p

3c , , where δt is the time step,∆d is the space step (∆d=
∆x= ∆y= ∆z ) and c is the speed of light. When the FDTD method is applied to a human

body exposure simulation, the computation continues until steady state is reached after the

incident wave has propagated through the body and back to the source a few times. For a LF

exposure simulation, as the human body is much smaller compared to the wavelength, the

number of time step which is required to compute the steady-state magnitude and phase is

large. This implies that the standard FDTD method is extremely inefficient if it is to be applied

directly to a LF problem. As a result, frequency scaling is often employed at low frequency

for the FDTD method. This is done by performing a simulation at a slightly higher frequency

f ′ than the actual frequency f . The results are linearly scaled to the desired frequency using

(2.15). The tissue dielectric properties at frequency f are assumed to be consistent with the

values at frequency f ′ so that no scaling of the tissue properties is necessary. The drawback of

the frequency-scaling approach will be discussed in Section 3.4.

Figure 2.11: 3D Yee cell showing the E- and H-field components in the staggered grid.

E( f ) =
f

f ′
E( f ′) (2.15)

An alternative approach to apply the FDTD method at low frequency is to take advantage

of the fact that the phase of the external and internal fields of a conductive body is known

in the quasi-static state. The excitation source can be modelled as a ramped function, e.g.,
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the start of a sinusoid with an infinitely long period. A smooth start is used to avoid high-

frequency contamination. The amplitude of the external field can be obtained from their

rate of change and the amplitude of the internal field from the actual values. The Perfectly-

Matched-Layer (PML) technique is valid as an absorbing boundary condition (ABC) for low

frequency problems. The quasi-static FDTD approach has been applied to LF numerical

dosimetry simulations in [14–16, 80].

Boundary Element Method (BEM)

The Boundary Element Method (BEM) is a combination of the classical boundary integral

equation method and the discretization concepts were originated from the Finite Element

Method [81]. It is essentially the Method of Moment (MoM) technique when sub-sectional

bases and Dirac delta function are used as weighting functions. In a BEM approach, the

integral equation formulation of the differential equations governing the electromagnetic

problem is derived first. For EQS and MQS problems, the governing differential equation

is a Laplace equation for a source-free domain and a Poisson equation if source is present

in the domain. Once the integral equation formulation is obtained, the boundaries of a

computation domain are discretized into a set of elements. The unknown solution over each

element is approximated by an interpolation function which is associated with the values of

the functions at the element nodes. Subsequently the corresponding integral equation can be

converted into a system of algebraic equations. The solution of the algebraic equation system

gives the approximate solution of the original integral equation. The boundary geometry can

be discretized into a series of constant, linear or quadratic elements. The geometry of the

elements is then expressed in the form of interpolation or shape functions. LF numerical

dosimetry examples employing the BEM technique can be found in [41, 82].

Scalar Potential Finite Difference (SPFD) Method

A popular numerical technique for LF numerical dosimetry is the Scalar Potential Finite

Difference (SPFD) method [6–12]. It is primarily used for B-field induction and contact

current induction problems. The SPFD formulation can be obtained from Maxwell’s equations

using the concepts of electric scalar potentialφe , magnetic vector potential A, as well as the

electromagnetic quasi-static approximation.

Assuming a magnetic vector potential A where B=∇×A and an electric scalar potentialφe ,

(2.3) can be written as

∇× (E+ jωA) = 0 (2.16)
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Using the vector identity∇× (−∇φe ) =~0 , (2.16) can be written as

E=−∇·φe − jωA (2.17)

From (2.4) and (2.7):

∇×
1

µ
∇×A= jωε̃(−∇·φe − jωA)+ J (2.18)

Taking∇· on both sides of (2.18) and assuming that no charge is generated (∇· J= 0 for steady

current), (2.18) leads to the scalar potential equation:

∇· ε̃ (−∇φe ) = jω∇· ε̃A (2.19)

At low frequency, biological tissues in general exhibit ohmic-current-dominant characteristic

(i.e.,σ�ωε), hence (2.19) can be further simplified to:

∇·
�

σ(−∇φe − jωA)
�

= 0 (2.20)

As suggested by the quasi-static approximation, the excitation terms which account for the

impressed E-field and B-field can be considered separately. For the MQS case, the condition
�

�ω2µε̃d 2
�

�� 1 is introduced in order to neglect theω2ε̃A and jωε̃∇φe terms in (2.18). As a

result, in addition to the condition ω2µεd 2 � 1, the condition ωµσd 2 � 1 is imposed to

ensure that the ohmic current only negligibly perturb the incident B-field. If
�

�ω2µε̃d 2
�

�� 1

is satisfied, i.e., the ∇×∇× term in (2.18) dominates over the other two terms and (2.18)

becomes

5×
1

µ
5×A= J0 (2.21)

The magnetic vector potential A is now equivalent to the magneto-static vector potential

A0 which is completely decoupled from E. If the permeability µ is constant over the entire
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computation domain Ω, A0 can be computed by the Biot-Savart law:

A0(r ) =
µ

4π

∫

Ω

J0(r
′ )

�

�r − r ′
�

�

d 3r
′

(2.22)

To establish the discrete form of the SPFD formulation, one could adopt the integral form

of (2.20) by applying the divergence theorem. Finite Difference (FD) technique is utilized to

define the potential at a node (where cells with dimensions∆meet) in terms of the potentials

at neighbouring nodes. The conductivity values (σi ) of neighbouring cells are evaluated at

half-node points (i.e., half way between nodes), together with the magnetic vector potential

values (A i ) at these half-nodes. The three-dimensional segmented SPFD formulation can be

expressed as:

φ =
1

6
∑

i=1
σi /∆2

i

·
6
∑

i=1

®

σi

∆2
i

�

φi − (−1)i jω∆i A i

�

¸

(2.23)

This finite difference problem can be solved using techniques such as the successive over-

relaxation method [83]. A distinct advantage of the SPFD method is that its computation is

only performed within a lossy material volume due to the fact that the scalar potential values in

conductive regions (inside the body) are not affected by values in the non-conductive regions

(free space) since the average conductivities that link vertexes on the border of the conductive

region with the non-conductive vertexes are null. This is only valid with the assumption that

the lossy materials exhibit ohmic-current-dominant characteristics (i.e.,σ�ωε).

2.6.3 Scalar Potential Finite Element (SPFE) Method

In this thesis work, an alternative numerical technique is utilized. The adopted approach is

similar to the aforementioned SPFD method in the sense that it is also based on the scalar

potential equation with electromagnetic quasi-static approximation. The finite element

method [81] is employed for the discretization of the problem instead of the finite difference

approach utilized in the SPFD method. The finite element discretization approach is only

a result of practical implementation choice; it holds no distinct advantage over the finite

difference approach. The Scalar Potential Finite Element (SPFE) formulation begins with

(2.19), and is expanded into the EQS and MQS cases.
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In the EQS case, assuming that no current source is present (i.e., J0 = 0), (2.19) is reduced to:

∇· ε̃(−∇φe ) = 0 (2.24)

With ohmic-current-dominant approximation, (2.24) can be written as:

∇·σ(−∇φe ) = 0 (2.25)

Two E-field induction scenarios are described by the aforementioned equations: (2.24) repre-

sents the direct E-field induction and (2.25) represents the indirect contact current induction

case. When (2.24) is employed, both the external E-field and induced E-field are computed. If

(2.25) is utilized, only the E-fields induced in lossy materials (with ohmic-current-dominant

assumption) due to electric potential difference are computed. During a computation, once

φe is solved, E can be computed by E=−∇·φe . Two boundary conditions, namely Dirichlet

(i.e., fixed potential value) and Neumann (i.e., vanishing flux normal to the boundary), are

available for the EQS solver.

In the MQS case, the magnetic vector potential A is first solved by the Biot-Savart law (2.22) and

then (2.20) is employed to solve forφe . Following that, (2.17) is employed for the calculation of

E based on the previously obtainedφe and A values. (2.20), (2.24) and (2.25) can be discretized

using the finite element method and linear nodal basis functions on a structured rectilinear

grid. For (2.20) and (2.25), the Neumann boundary condition is imposed forφe at the tissue-

air interface and the value ofφe on one node is fixed (i.e., Dirichlet boundary condition) to

remove the degrees of freedom of∆φe from the linear system. The resulting linear equation

system is solved using the conjugate gradient method [84]. The Scalar Potential Finite Element

(SPFE) solver has been implemented in the commercial software package SEMCAD-X [48].
Unless specified otherwise, low frequency dosimetry computations presented in this work are

performed using the SPFE solver with a stopping criterion of 8 orders of magnitude reduction

for the initial residuum (i.e., the preconditioned residuum drops to 10−8 of its initial value).

2.7 Validation of the SPFE Method

2.7.1 Comparison with Analytical Solutions

The validation of the SPFE solver is first conducted by comparing its results to the solutions

obtained from analytical methods. An exposure scenario involving an ungrounded ellipsoidal

object illuminated by uniform E-field or B-field is chosen for this comparison study. Three

orientations of the applied fields along the x , y and z directions are considered. As shown in

Figure 2.12, an ellipsoid is defined by three parameters: a , b and c , respectively. To roughly

represent the size of an adult human body, the parameters a , b and c are assigned to be 0.9 m,
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0.2 m and 0.1 m respectively. The x z plane is considered to be the front of the body while 2a is

the vertical height of the body. The three field orientations are labelled as TOP (top-to-bottom,

z -direction), AP (front-to-back, y -direction) and LAT (side-to-side, x -direction) according to

the plane of incidence with respect to the ellipsoid.

Figure 2.12: The ellipsoidal body employed in the validation study.

The surface of an ellipsoid can be described by the following equation:

x 2

a 2 +
y 2

b 2 +
z 2

c 2 = 1 (2.26)

where x , y , z are the rectangular coordinates. The size and shape of an ellipsoid are determined

by the values of a , b and c , where c ≥b ≥ a . Ellipsoidal coordinates (ξ,η,ζ) is used instead of

the Cartesian coordinates (x , y , z ) to represent such a shape. An analytical approach based on

Stevenson’s theory [85] is utilized for the calculation of the E-fields induced inside the ellipsoid

due to the exposure to an external uniform E-field. To outline the theory, let Eo and Ei denote

the incident E-field and the induced E-field, expressed in root mean square form.

The E-field induced inside an ellipsoid (Ei ) by an external uniform vertically polarized (i.e.,

aligned along the z axis) E-field (Eo) is give by:

Ei =
ε0

ε̃

Eo

S
(2.27)

where

S =
ab c

2

∞
∫

0

dξ

(ξ+a 2)
p

(ξ+a 2)(ξ+b 2)(ξ+ c 2)
(2.28)
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The E-field induced by an external uniform B-field (Bo) aligned along the z axis, is given by:

Ei =
ωBo

b 2+ c 2

p

b 4z 2+ c 4y 2 (2.29)

The maximum induced E-field occurs when z = c and y = 0, and is given as:

Ei max =
ωBo

b 2+ c 2 b 2c (2.30)

The detailed derivations and solutions of (2.27) and (2.29) can be found in [86] and [87], re-

spectively. The equations can be modified for the other two field orientations by interchanging

a and b (or a and c ). The ellipsoid is assumed to be homogeneous and has a conductivity

value of 0.15 S/m and a relative permittivity value of 7×105. The operating frequency is set

to be 100 Hz, at which the requirements for the quasi-static approximation are valid. The

intensities of the incident uniform E-field and B-field are set to be 1 V/m and 1 µT, respectively.

Both quantities are expressed in terms of the root-mean-square (rms) values.

A uniform grid size of 1 mm is applied to voxel the ellipsoid with the SPFE solver. The peak

induced E-fields calculated by the analytical methods and the SPFE solver are presented in

Table 2.9. The peak values obtained from the SPFE solver are extracted at the peak induction

locations predicted by the analytical solutions so that numerical artefacts due to stair-casing

errors can be avoided to a large extent. For the EQS calculations with the SPFE solver, the

preconditioned residual tolerance is set to 10−14 to compensate the larger dynamic range

between the external E-field and the induced E-field. The solutions obtained from the SPFE

solver show good agreement with the analytical solutions (∆≤ 2%). The discrepancy between

the two solutions is mainly due to the discretization uncertainties which cause the dimensions

of the voxellized ellipsoid to be slightly different from the actual values.

2.7.2 Comparison with FDTD Solutions

A uniform LF field exposure scenario with the homogeneous ellipsoid is simulated using a

Finite Difference Time Domain (FDTD) full-wave solver from SEMCAD-X [48] and the results

are compared to the values obtained from the SPFE solver. The upper bound of the low

frequency spectrum, 100 kHz, is selected as the field frequency in this case. The relative

permittivity and conductivity of the ellipsoid is assigned to be 1000 and 0.15 S/m, respectively.

The incident E-field and B-field strengths are set to be 1 V/m and 1 µT, respectively. A uniform

grid size of 1 mm is applied for both solvers. The stopping criterion for the SPFE solver is 8

orders of magnitude reduction for the initial residual while 20 sinusoidal simulation periods

are applied for the FDTD solver. Uniform E-field and B-field are generated in the FDTD
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Table 2.9: The peak induced E-field (V/m) at 100 Hz,∆ denotes the difference between the

analytical and SPFE solutions in percentage (∆= |ESPFE−Eanalytical|
Eanalytical

%).

Orientation of the external E-field

V/m TOP(Ez ) AP(Ey ) LAT(Ex )
analytical 9.6×10−7 5.7×10−8 1.20×10−7

SPFE 9.8×10−7 5.8×10−8 1.22×10−7

∆ 2.0% 1.8% 1.6%

Orientation of the external B-field

V/m TOP(Bz ) AP(By ) LAT(Bx )
analytical 5.0×10−5 1.20×10−4 6.2×10−5

SPFE 5.1×10−5 1.22×10−4 6.3×10−5

∆ 2.0% 1.6% 1.7%

simulations by utilizing two uniform plane waves oriented with either the electric component

or the magnetic component opposite to its counterpart. For the vertically polarized E-field

excitation case, the distributions of the perturbed external E-field are shown in Figure 2.13

for both solvers. The field patterns and magnitude agree well between the two solvers. A

comparison of the peak induced E-field reveals that∆( |ESPFE−EFDTD|
Eaverage

%)≤ 5% is achieved between

the two numerical solvers for both the EQS and MQS exposure scenarios.

Figure 2.13: The perturbed vertically-polarized external E-field distribution at 100 kHz com-
puted by (a) the SPFE solver and (b) the FDTD solver.

2.8 Quasi-Static Approximation for a Full-Body Exposure

2.8.1 Quasi-Static Frequency Limit

As stated in Section 2.6.1, the quasi-static approximation is valid when an E-field or B-field

propagates through a characteristic length d in a time which is short compared to a character-

istic time τ of interest. When this condition is satisfied, wave propagation can be neglected,
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i.e., a change in one location implies an immediate change throughout the computational

domain. The validity of the quasi-static approximation for the SPFE solver is guaranteed

by satisfying the condition
�

�ω2µε̃d 2
�

�� 1, this condition can be written as two real-valued

criteria:

ω2µεd 2� 1 (2.31)

ωµσd 2� 1 (2.32)

In addition, the ohmic-current-dominant tissue property condition can be expressed as:

σ

ωε
� 1 (2.33)

For a full human body exposure scenario, the characteristic length d can be approximated by

the maximum diagonal length of the body. To assess the valid frequency range for a full-body

exposure, (2.31) and (2.32) are computed based on the body height, tissue dielectric property

and tissue composition of an adult male and an adult female. The diagonal length of the male

adult is assumed to be 2 m and the length of the female adult is assumed to be 1.8 m. The

tissue dielectric property values are obtained from [60] and the tissue composition data is

obtained from [61]. The tissue composition data is applied to derive a weighted average for the

corresponding relative permittivity or conductivity value. As shown in Table 2.10, the mean

tissue weights of the skin, fat, muscle, bone and other body tissue are expressed as percentages

of the total body weight measured based on 12 male and 13 female cadaver subjects [61]. By

assuming equal tissue density and excluding the other body tissues, the weighted average

values of the relative permittivity and conductivity can be derived based on the composition

of the skin, fat, muscle and bone (which made up approximately 85% of the total body mass).

The weighted average dielectric property values based on the adult male tissue composition

(see Table 2.10) is presented in Figure 2.14 The left-hand-side values of (2.31), (2.32) and (2.33)

are computed based on the weighted average dielectric property values of the adult male

body and presented in Figure 2.15. The variations in tissue composition and body height for

the adult female case are found to have negligible impact on the left-hand-side values. It is

observed that to satisfy the inequality condition for both (2.31) and (2.32), the upper limit of

the frequency range is at approximately 200 kHz. The left-hand-side values of (2.33) indicate

that the ohmic-current-dominant assumption is valid for whole-body exposure in the 1 Hz to

100 kHz frequency range when the weighted average whole-body tissue dielectric properties

are considered.
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Table 2.10: The tissue composition of adult male and female as a percentage of the total body
weight.

Sex Weight (kg) Skin Fat Muscle Bone Other Total

Male 66.2 5.6% 28.1% 37.4% 14.3% 14.6% 100%
Female 64.3 5.5% 34.6% 32.9% 13.4% 13.6 % 100%

Figure 2.14: The weighted average values of the relative permittivity and conductivity for an
adult male body.

Figure 2.15: The left-hand-side values of (2.31), (2.32) and (2.33) calculated based on the adult
male tissue composition data.
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2.8.2 Quasi-Static Approximation Uncertainty above 200 kHz

To establish the effect of the electromagnetic quasi-static approximation for a full-body simu-

lation above 100 kHz. a simplified human body model as shown in Figure 2.16 is developed for

the simulation of a full-body exposure in uniform E-field or B-field using the SPFE solver and

the FDTD solver. The model consists of tissues such as the brain, cerebrospinal fluid (CSF),

spinal cord, heart and body shell. Each inner tissue model is represented by a rectangular

block. The body shell and inner tissues are constructed based on the dimensions of the

adult male anatomical model Duke (see Section 2.5.1). For the inner tissues, the frequency-

dependent tissue dielectric properties are obtained from [60]. For the body shell, the weighted

average dielectric property values computed based on the adult male tissue composition

shown in Table 2.10 are assumed. Uniform vertically polarized 1 V/m E-field and 0.1 mT

front-to-back polarized B-field are employed as the incident fields. The computations are

performed at three frequency points: 100 kHz, 1 MHz and 10 MHz, respectively. A uniform

2 mm grid resolution is applied for the discretization of the model. For the SPFE solver, the

stopping criterion is 10 orders of magnitude reduction for the initial residual. For the FDTD

solver, the simulation duration is 20 sinusoidal periods. The peak induced E-fields in the

respective tissues are computed and the percentage difference of the computational results

(∆= |ESPFE−EFDTD|
EFDTD

%) from the two solvers are shown in Table 2.11. The deviation between the

two sets of computational results is within 6% up to 10 MHz, indicating that the SPFE solver

may be applied for a full-body simulation up to a few MHz with small uncertainty due to the

violation of the quasi-static approximations.

Figure 2.16: A simplified human body model (based on the dimensions of Duke) with brain,
cerebralspinal fluid, spinal cord, heart and body shell represented by rectangular blocks.

2.9 Conclusion

In this chapter, a comprehensive literature review of the LF E-field and B-field exposure to the

human body is presented. The interaction of biological systems and LF fields is discussed with

respect to the associated biological effects to establish the significance of LF exposure limits
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Table 2.11: The variation of the computed peak induced E-fields of the simplified body model
between the SPFE solver and the FDTD solver (∆= |ESPFE−EFDTD|

EFDTD
%).

∆% of the peak induced E-field (V/m)

EQS Brain Heart CSF Spinal cord Whole Body
100 kHz 0.8% 0.7% 0.9% 1.1% 0.8%
1 MHz 1.9% 1.6% 1.0% 0.8% 1.4%

10 MHz 3.6% 5.6% 1.6% 2.4% 2.2%

MQS Brain Heart CSF Spinal cord Whole Body
100 kHz 1.3% 1.7% 0.8% 1.2% 1.6%
1 MHz 2.1% 2.6% 2.7% 1.8% 2.2%

10 MHz 3.2% 5.3% 2.7% 2.2% 2.5%

and numerical dosimetry. The ambiguity and discrepancy pertaining to the existing exposure

guidelines and standards [2, 3, 5] are summarized to establish a core research objective: the

derivation of up-to-date conversion factors between the external LF fields and the induced

E-fields in the human body. The biological and computational rationales for a LF exposure

assessment illustrated in this chapter serves as a basis for the research activities presented in

Chapters 3, 4 and 5.

The methods and materials (e.g., high-resolution anatomically realistic model, LF human body

tissue dielectric property, existing measurement and numerical techniques) of LF dosimetry

are summarized. Based on the concept of an existing LF numerical technique (the scalar po-

tential finite difference method), a Scalar Potential Finite Element (SPFE) solver is introduced

as a mean to estimate the induced E-fields in an exposed human body. To validate the SPFE

solver, the exposure scenarios of an ellipsoid in uniform E-field and B-field are computed and

compared to the corresponding analytical and numerical solutions. Good agreement between

the SPFE solutions and the alternative solutions is achieved. Next, the upper frequency limit of

a full-body exposure simulation with respect to the validity of the quasi-static approximation

is investigated. Based on the weighted average dielectric properties derived from adult male

tissue composition, the quasi-static approximation is found to be valid up to 100 kHz for a

full-body exposure simulation using the SPFE solver. The validation of the SPFE solver and the

assessment of the applicable frequency limit demonstrated its applicability to the complex

scenarios outlined in this thesis.
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3 LF Magnetic Field Exposure Analysis -
Theory and Fundamentals

3.1 Introduction

With the continuous developments of low frequency (LF) magnetic (B) induction technology

(e.g., induction cooker, magnetic therapeutic mattress, wireless power transmission) and

raising public awareness over the potential adverse health effects [65–67] due to LF B-field

induction, particular research interest has been focused on the exposure of the human body

to LF B-fields. In this chapter, the numerical dosimetry analysis for LF B-field induction

are performed using the SPFE solver [48] described in Section 2.6.3. With high-resolution

anatomically realistic models and guideline-compliant spatial averaging algorithms, the peak

induced electric (E) fields in the human body are computed. The computational results are

employed to examine the validity of the exposure limits and assessment techniques suggested

in ICNIRP-2010 [2] and IEEE Std. C95.6-2002 [3].

Numerous studies [6–18] have been published in the field of numerical dosimetry for LF

B-field induction. While the effects of spatial averaging algorithms have been investigated

in [15], the grid size of the voxellized anatomical models used in [15] is 2 mm. Hence, no

averaged field value was reported for the ICNIRP-2010 volume (2×2×2 mm3) averaging. To

comply with the volume averaging requirement, grid sizes smaller than 2 mm are employed

in this study. For the IEEE Std. C95.6-2002 line (5 mm) averaging, the values reported in [15]
were obtained by averaging the E-field components along the principal axes and reporting the

highest values. This approach does not necessarily estimate the worst-case scenario since the

exposed nerve fibres can exhibit random orientations with respect to the principal axes. To

achieve a better compliance with the line averaging requirement, the orientation of the line

segment in this work is determined by the nodal E-field vector direction. With improved spatial

averaging algorithms and adequate grid resolutions, various open issues associated with LF

numerical dosimetry (e.g., discretization uncertainty due to grid size variation, potential

underestimation of the peak induced E-field due to the use of homogeneous models, the effect

of tissue dielectric property and geometrical variations) can be addressed.
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The investigations conducted in this chapter are structured as follows: first, the discretization

uncertainty associated with grid size variation is analyzed using both canonical models and

high-resolution anatomically realistic models to estimate the convergence of the peak spatially

averaged and 99th percentile in situ E-field values with respect to grid size variation. Next, the

effects of tissue conductivity contrast and tissue model geometrical variation are examined

using a heterogeneous spherical model. Subsequently, with anatomical models, the worst-

case spatially averaged E-fields induced in the human brain and body due to the exposure

to a uniform B-field at the ICNIRP-2010 [2] and IEEE Std. C95.6-2002 [3] reference levels are

computed at multiple frequency points from 10 Hz to 100 kHz. The computational results

are employed to assess the safety margins provided by the IEEE and ICNIRP exposure limits.

Furthermore, the impacts of body posture variation and skin layer modelling are addressed

to facilitate an in-depth analysis of the whole-body B-field exposure scenario. The research

work reported in this chapter leads to a better understanding of the LF B-field induction to

the human body in terms of the numerical assessment techniques, the derivation of exposure

limits and the identification of critical modelling parameters.

3.2 Post-processing Techniques for the in situ E-field

3.2.1 Spatial Averaging

ICNIRP-2010

In ICNIRP-2010 [2], the range of a biologically reasonable averaging distance for the induced

E-field is stated to be from 1 to 7 mm. Based on the maximum inter-nodal distance between

the nodes of Ranvier for myelinated nerve cells, the E-field integration distance is suggested to

be 2 mm. The in situ E-field is specified as a vector average of the E-fields in a small contiguous

tissue volume of 2× 2× 2 mm3. In this work, the integration of the E-fields within a cubic

volume of 2×2×2 mm3 is obtained by summing up the contribution of each voxel as follows:

〈E(r0)〉V =
1

V

∑

n

E(rn ) f n Vn (3.1)

where r0 is the location of the voxel center, V is the average volume which is fixed at 8 mm3,

Vn is the volume of the n t h voxel within the cube and 0 < f n ≤ 1 is the filling factor. The

filling factor is a coefficient that accounts for the partial volume of the outermost voxels to the

averaging cube. The filling factors are determined by the overall cube size (i.e., 8 mm3) and

the grid sizes within the cube. To comply with the 2×2×2 mm3 average volume, no averaging

will be performed at a voxel if the cube is not completely within the tissue of interest, and the

E-field value of this voxel will not be considered as a spatially averaged value. In this thesis,

the quantity EV.avg represents the 2×2×2 mm3 volume-averaged E-field rms value.
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While the biological rationale of volume averaging has been questioned in [88], the discussion

of the biological significance of spatial averaging is out of the scope of this thesis. Hence, the

ICNIRP-recommended spatial averaging algorithm is implemented based on the technical

interpretation of the guideline statements without further speculation. In ICNIRP-2010 [2],
the exposed tissues are classified as “CNS tissue of the head” and “All tissues of head and

body”. The “CNS tissue of the head” is further specified to be the brain and retina. Based on

different interpretations of the “brain tissue”, when performing an ICNIRP-recommended

volume averaging of the induced E-fields in the brain, one could choose to average the induced

E-fields tissue-by-tissue based on the segmented CAD models (e.g., grey matter, white matter,

etc.) or average the E-fields over the entire brain (treating the brain as one tissue). It should

be noted that the biological rationale of spatial averaging is to determine whether the E-

field strength in a specific tissue is sufficient to trigger electro-stimulation. Furthermore, the

neurons in the brain are not necessarily confined in one particular brain tissue. Hence, in

this thesis, spatial averaging is performed over the entire brain when the brain is chosen as

the target tissue. For the whole-body exposure scenario, the induced E-fields in all the body

tissues are averaged contiguously.

IEEE Std, C95.6-2002

In IEEE Std. C95.6-2002 [3], the in situ E-field is specified as an arithmetic average of E-fields

projected onto a straight line segment of 5 mm length oriented in any direction within a tissue.

The choice of 5 mm is determined using a non-linear model of a myelinated nerve. Based on

a nerve axon with a diameter of 20 µm and an inter-nodal distance of 2 mm, an averaging

distance of 5 mm is found to be neither overly conservative nor permissive [89]. To perform

the spatial averaging of E-fields along a 5 mm straight in this thesis, a line segment L centred

at each voxel r0 is created in the direction parallel to the E-field vector at that voxel location,

i.e., l̂ 0 =E(r0)/ |E(r0)|. The rationale behind this direction selection is that the E-field at each

voxel will provide the maximum contribution to the averaging along this direction. The spatial

average is computed as follows:

〈E(r0)〉L =
l̂ 0

L

∫

L

E(r ) · l̂ 0 d l =
K

L
l̂ 0 (3.2)

where L is the average distance which is fixed at 5 mm, K is the integral of E-fields along the

line segment. For the averaging line segment to be entirely within the tissue, no averaging will

be performed at a voxel if the 5 mm line segment extends out of the tissue of interest. In this

thesis, the quantity EL.avg represents the 5 mm line-averaged E-field rms value.
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3.2.2 99th Percentile Value

In an attempt to reduce discretization uncertainty due to numerical artefacts such as stair-

casing errors, the E-field value exceeded by only 1% of the voxels of a specific tissue, known

as the 99th percentile value (E99), is specified as the relevant value to be compared with the

basic restriction in ICNIRP-2010 [2]. Several issues associated with the filtering effect of the

99th percentile approach have been reported [17, 18]. For instance, the E99 value is dependent

on the spatial distribution of the induced E-fields, the size and definition of the tissue of

interest and the number of voxels assigned to the tissue. In [17], a 40% underestimation of the

maximum induced E-field due to the 99th percentile approach is demonstrated for a layered

sphere subjected to localized B-field exposure. Despite the aforementioned issues, the E99

E-field rms value is hereby reported for the sake of compliance assessment. In this thesis, the

99th percentile value of a target tissue (e.g., the brain) is obtained by treating the whole tissue

group as a single tissue and filtering out the top 1% voxel values. Higher and grid-dependent

values are expected if the filtering is to be performed on each segmented tissue model [18].

3.3 Discretization Uncertainty for the Peak Induced E-field

3.3.1 Background

In a LF numerical dosimetry computation, when an anatomically realistic model is discretized

with structured grids (i.e., rectilinear grids), the numerical artefacts introduced by stair-casing

errors as well as field singularity due to sharp corners render the maximum E-field value

of a single voxel unstable with respect to grid size variation. As the prevention of potential

nerve stimulation relies on the prediction of the peak induced E-field values in particular

organs, large variations in the peak values are undesirable. The 99th percentile value is

known to suppress the discretization uncertainty, however the lack of biological rationale and

the tendency of potential underestimation diminishes the rationales for the 99th percentile

value. The motivation of the subsequent investigations is to characterize the effect of spatial

averaging on the discretization uncertainty with respect to grid size variation.

3.3.2 Discretization Uncertainty due to Stair-Casing Error

To assess the discretization uncertainty associated solely with stair-casing errors (due to the

approximation of the curvature of surfaces), a spherical model is employed. The exposure

scenario of a homogeneous sphere with a diameter of 10 cm and 2 cm in a uniform 50 Hz

B-field is computed with uniform grid size from 2 mm to 0.05 mm. The computed peak E-field

values are normalized to the respective analytical peak values (see Section 2.7.1). As shown

in Figure 3.1, the maximum value in a single voxel, Emax, in general exceeds the analytical

peak value due to the stair-casing errors. The EV.avg and EL.avg values are much less affected

by grid size variation than the Emax value and gradually converge to the analytical peak value,

e.g., ∆ ≤ 3% for a grid size of 0.5 mm. This shows that stair-casing errors are successfully
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Figure 3.1: The E-field distribution in a sphere with a diameter of (a) 10 cm and (b) 2 cm,
exposed to a uniform 50 Hz B-field in the x direction and the peak induced E-field (normalized
to the respective analytical value) as a function of grid size.
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suppressed by spatial averaging. It is noted that the spatially averaged values could potentially

underestimate the peak E-fields when the ratio between the object size and grid size is small

(e.g., when a sphere with 2 cm diameter is discretized with a grid size from 2 mm to 1 mm). The

E99 values are the least affected quantity with respect to grid size variation and stay at 95-100%

of the analytical peak value for the investigated grid sizes. As the E99 value is both stable and

close to the analytical peak value in this particular exposure scenario (i.e., a homogeneous

sphere in a uniform B-field), it was often employed as a substitute for the Emax value to obtain

a more stable approximation of the peak induced E-field in an anatomical model [10–16].
Issues associated with the prediction of the peak value based on the E99 value will be revealed

in Sections 3.3.3 and 3.3.4.

To visualize the effect of spatial averaging on the induced E-field distribution in the sphere,

the voxel E-field (Evoxel), volume-averaged E-field (EV.avg) and line-averaged E-field (EL.avg)

distributions are presented in Figure 3.2. The stair-casing errors are prominent in the Evoxel

case; bright spots are observed along the peripheral of the sphere (see Figure 3.2(a)). The EV.avg

field distribution shown in Figure 3.2(b) indicates that the 2× 2× 2mm3 volume averaging

truncates the outermost 1 mm layer of the sphere. This is due to the specification of the volume

averaging algorithm which allows the exclusion of voxels that do not fit in the 2×2×2mm3 cube.

The stair-casing bright spots are removed from the EV.avg field due to this volume truncation; it

should be noted that this truncation only occurs on the outermost layer of a target tissue. For

the induced E-fields in inner tissues, the volume averaging will merely smooth out the high

values due to stair-casing errors. In Figure 3.2(c), the EL.avg field distribution shows that very

little truncation of the sphere is caused by the line averaging. This is due to the fact that the

vectorial E-fields circulate the sphere tangentially, hence the averaging line is projected also

tangentially along the sphere surface. The stair-casing errors are effectively suppressed in the

EL.avg case while maintaining the in situ E-field distribution with minimum truncation. The

presented E-field distributions depict the scenario of a homogeneous spherical body which

demonstrates visually the stair-casing error suppression capability of spatial averaging.

Figure 3.2: The induced E-field distribution on the upper left corner of the sphere (with 10 cm
diameter) for (a) Evoxel, (b) EV.avg and (c) EL.avg, the E-field values are normalized to the peak
induced Emax value.
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3.3.3 Discretization Uncertainty due to Field Singularity

While stair-casing errors must be suppressed, local peak induced E-fields should be preserved

to reflect the actual induction scenario. To assess the discretization uncertainty associated

solely with field singularity, the exposure scenario of a homogeneous 10×10×10 cm3 cube

with a missing octant in a uniform 50 Hz B-field is computed with grid size from 2 mm to 0.05

mm. As shown in Figure 3.3, field singularities arise when the induced E-fields are forced to

“squeeze” into sharp concave corners carved out by the missing octant. The E-field values at

such singularity points are expected to approach infinity if the grid size is allowed to shrink

indefinitely (i.e., approach a physical singularity). The E-field values are normalized to the

EV.avg value computed at 0.05 mm grid size and presented in Figure 3.3 as a function of grid

Figure 3.3: The E-field distribution (on the xz plane, at y = +5 cm, y = 0 mm at the cubic
center) in a 10×10×10 cm3 cube with a missing octant exposed to a uniform 50 Hz B-field in
the x direction and the peak induced E-field value (normalized to the EV.avg value at the grid
size of 0.05 mm) as a function of grid size.
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size. As expected, the Emax value increases with decreasing grid size. Instead, the EV.avg and

EL.avg values are found to gradually converge to a stable value, e.g., ∆≤5% for a grid size of

0.5 mm. This indicates that the edge singularities are preserved by the spatially-averaged

value while numerical stability is progressively achieved. The E99 values are approximately

50% lower than the spatially averaged values due to the arbitrary exclusion of peak values.

This serves as a clear indication that the 99th percentile approach can potentially lead to an

underestimation of the peak induced E-field.

3.3.4 Discretization Uncertainty for an Anatomical Model

To analyze the discretization uncertainty (due to both stair-casing errors and field singularities)

associated with an anatomically realistic model, the exposure scenario of Duke in a uniform

LAT (side-to-side) 50 Hz B-field is computed. Uniform grid sizes from 2 mm down to 1 mm,

with a step change of 0.1 mm, are employed for the discretization. In addition, 0.9 to 0.5 mm

uniform grid sizes are applied to discretize the head while a 2 mm grid size is applied to the

rest of the body with a fixed grading ratio (i.e., the spatial step ratio of adjacent cells) of 1.2.

The variation in the computed peak E-fields due to the change of grid size from 2 mm to 1 mm

for the rest of the body (with the grid size for the head fixed at 0.5 mm) is investigated. The

variations in the peak E-field values (EV.avg, E99 and EL.avg) in the brain are found to be within

3%. This indicates that the computational results of the induced E-field in the brain are not

significantly affected by the grid resolutions of the body trunk for a uniform B-field exposure.

The peak E-field values in the brain are normalized to the peak EV.avg value computed with

0.5 mm grid size and presented in Figure 3.4. The Emax values of the anatomical model are

Figure 3.4: The peak induced E-field values (normalized to the EV.avg value at 0.5 mm) in
the brain of Duke as a function of grid size due to 50 Hz LAT (side-to-side) uniform B-field
exposure.
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found to be significantly influenced by the numerical artefacts. Owing to the spatial averaging,

the EV.avg and EL.avg values are much less affected by grid size variation. The variations of

the peak spatially averaged values are within 10% between the grid sizes of 1 mm to 0.5 mm.

Similar to the field singularity case (see Section 3.3.3), the E99 values of the anatomical brain

model are found to be approximately 50% below the spatially averaged values. Based on the

discretization uncertainty behaviour of the canonical models, the peak spatially averaged

E-field value computed in the brain of an anatomical model at a grid size of 0.5 mm can be

regarded as a stable peak approximation. To achieve absolute numerical convergence with

respect to grid variation for an anatomical model, grid size smaller than 0.5 mm should be

investigated. However, based on the computation hardware and the segmentation quality of

anatomical models (i.e.,based on MRI scans with minimum 0.5 mm resolution) employed

in this study, the minimum grid size applied for a dosimetry computation with anatomically

realistic models is limited to 0.5 mm.

3.3.5 Summary of the Discretization Uncertainty Analysis

The discretization uncertainty associated with a rectilinear-voxellized model has always been

an obstacle for numerical dosimetry in the past. The prediction of the peak induced E-field

suffered from high uncertainty due to the numerical artefacts introduced by stair-casing

errors and field singularities. To address this issue, percentile filtering approach such as

the 99th percentile value has been introduced. However, it is revealed in this section that

a filtering technique without reliable biological basis can lead to a gross underestimation

of the actual peak induced E-field. The computational results of this study indicate that a

well-implemented spatial averaging algorithm and a suitable grid resolution can provide dis-

cretization uncertainty suppression and at the same time preserve the biologically significant

peak E-field values. Through the analysis of canonical and anatomical models, the effect of

guideline-compliant volume and line spatial averaging on the numerical convergence with

respect to grid size variation is disclosed. It is observed that with sufficiently refined grids, the

peak spatially averaged E-field value serves as a more suitable peak approximation than the

99th percentile value. The practice of percentile filtering in an exposure guideline is therefore

discouraged based on the analysis results shown in this section.
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3.4 Analysis of Human Brain Exposure

3.4.1 Background

The peak E-field induced in the human brain due to the exposure to LF B-field has been

numerically computed and reported in [6–18]. To provide an up-to-date estimation of the

peak spatially averaged E-field induced in the human brain due to uniform B-field exposure,

numerical computations are performed in this section with canonical and anatomically

realistic models using the SPFE solver [48] and the spatial averaging algorithms described

in Section 3.2.1. The computed peak E-fields in an anatomical brain model are scaled with

respect to the relevant reference levels (RL) suggested in IEEE Std. C95.6-2002 [3] and ICNIRP-

2010 [2]. These values are then compared with the corresponding basic restrictions (BR) to

assess the safety margins provided by the aforementioned exposure guidelines and standards

for the prevention of brain stimulation due to the exposure to a LF B-field.

3.4.2 Canonical Head Model

Prior to the availability of anatomically realistic models, homogeneous ellipsoidal and spheri-

cal models were often employed to estimate the peak induced E-field in the human brain and

body. Although analytical solutions can be derived using these simplified homogeneous mod-

els, details such as inner tissue geometry, tissue-to-tissue conductivity contrast and variation

in tissue conductivity with respect to frequency are completely neglected. As a result, the peak

induced E-field value calculated in a homogeneous model does not necessarily represent a

conservative worst-case estimation. The research objective in this section is to characterize

the effect of tissue conductivity contrast and model geometrical variation on the induced

E-fields in the human brain.

Based on the overall size of Duke’s head, a spherical model is constructed. This canonical

model is comprised of a sphere and a circular dish layer with the horizontal edge conform to

the sphere as shown in Figure 3.5(a). The sphere represents a larger organ (e.g., the head) while

the dish layer represents a potential tissue-to-tissue interface with conductivity contrast within

the head (e.g., between the brain tissues with lower conductivity and the cerebralspinal fluid

with higher conductivity). Uniform x-direction-oriented B-field exposure scenario is simulated

with a uniform grid size of 0.5 mm for the canonical model. In this case, the induced E-fields

are forced to circulate the sphere and pass through the tissue interface normally (i.e., the E-field

vectors pass the horizontal surfaces of the dish vertically). The sphere has a fixed radius of 11

cm. Two thickness values (2 mm and 10 mm) for the dish layer are investigated. Conductivity

values σ1 and σ2 are assigned to the sphere and dish layer, respectively. In addition to the

homogeneous case (i.e.,σ1 =σ2), four conductivity contrast ratios are considered: σ1:σ2 =
10:1, 100:1, 1:10 and 1:100. The EV.avg field distributions are presented in Figure 3.5 for the

configuration ofσ1:σ2 = 100:1. It is observed that when compared to a homogeneous model,

the induced E-fields are significantly higher in a heterogeneous model. The peak induced
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Figure 3.5: (a) A canonical head model with a dish layer of thickness d, for a conductivity ratio
ofσ1:σ2 = 100:1, the EV.avg field distributions in (b) a homogeneous model, (c) d = 2 mm and
(d) d = 10 mm.

E-field is observed to be inversely proportional to the thickness of the tissue transition layer.

High concentration of induced E-fields are found within theσ2 layer. When compared with

the homogeneous case, the E-field distribution in the sphere is significantly altered due to the

presence of the tissue contrast layer.

The peak EV.avg values of the investigated conductivity contrast ratios and model configura-

tions are normalized to the peak EV.avg value of the homogeneous sphere case and presented

in Figure 3.6. This normalized quantity is referred to as the enhancement factor for the peak

EV.avg value. No variation in the peak induced E-field is observed whenσ1 is smaller or equal

to σ2. However, when σ1 is greater than σ2, significantly higher peak E-field is observed in

the less conductive tissue region (i.e., theσ2 layer). This indicates that a high-low-high tissue

conductivity distribution will result in higher induced E-field in the less conductive tissue. A

narrower transition region will cause greater E-field enhancement due to the reduced distance

between the opposite surface charges. It should be noted that the induced E-field orientation

in this example is configured to be normal to the tissue contrast layer on purpose. If the

tissue contrast interface is tangential to the E-field vectors, no variation in the E-field intensity

is expected. An inspection of Figures 3.5 and 3.6 reveals that the peak induced E-field is a

function of the conductivity contrast and tissue model geometry. This investigation indicates

that, without considering tissue conductivity contrast and tissue geometry, a homogeneous

head model is likely to significantly underestimate the peak induced E-field in the brain.
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Figure 3.6: The enhancement factor for the peak EV.avg value in the heterogeneous spheri-
cal model due to tissue conductivity contrast and model variation (when compared to the
homogeneous sphere case) as a function of conductivity contrast ratio and layer thickness (d).

3.4.3 Computational Results of Anatomical Models

Peak induced E-fields at ICNIRP and IEEE Reference Levels

A uniform B-field is applied as the source of exposure at twelve frequency points from 10 Hz

to 100 kHz. Three field orientations, namely TOP (top-to-bottom), AP (front-to-back) and

LAT (side-to-side) are considered. The five anatomical models described in Section 2.5.1

are investigated. Based on the discretization uncertainty analysis reported in Section 3.3, a

uniform grid size of 0.5 mm is applied to discretize the head while a 2 mm grid size is applied

to the rest of the body with a fixed grading ratio of 1.2. Three E-field quantities are computed:

the 2×2×2 mm3 volume-averaged E-field (EV.avg), the 5 mm line-averaged E-field (EL.avg) and

the 99th percentile value (E99). The LAT B-field orientation is found to produce the highest

induced E-fields in the brain for the investigated anatomical models. This finding is consistent

with the previously published results, e.g., the E99 values reported in [11] and [16]. This is

likely due to the fact that the brain exhibits the largest cross-sectional area in the sagittal plane.

Among the five anatomical models, the Duke model produces the highest induced E-field in

the brain at all the investigated frequencies. The peak E-field (EV.avg, E99 and EL.avg) values

computed in the brain of Duke, scaled to the reference levels suggested in the ICNIRP-2010 [2]
and IEEE Std. C95.6-2002 [3], are presented in Figure 3.7 with the respective basic restrictions.

As shown in Figure 3.7(a) and Figure 3.7(b), the E99 values are compliant with the ICNIRP-2010

basic restrictions. This is expected since the ICNIRP-2010 reference levels were derived based

on the E99 values [11, 12]with additional safety factors to account for dosimetry uncertainties.

However, it should be noted that the 99th percentile value has been shown to potentially

underestimate the peak induced E-field in the brain by approximately 50% when compared

to the EV.avg and EL.avg values (see Sections 3.3.3 and 3.3.4). The EV.avg values are found to be
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Figure 3.7: The ICNIRP-2010 BR levels for the CNS tissues and the peak EV.avg, E99 values for
(a) general public and (b) occupational exposure, and (c) the IEEE.Std.C95.6-2002 BR levels for
the brain and the peak EL.avg values for general public exposure, in the brain of Duke exposed
to a uniform LAT (side-to-side) B-field at the respective reference level.
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compliant with the ICNIRP-2010 basic restrictions except at 10 Hz. As shown in Figure 3.7(c),

the EL.avg values exceed the IEEE Std. C95.6-2002 basic restriction levels (e.g., by a factor of

6 at 10 Hz) in the frequency range of 10 Hz to 1 kHz. A similar finding is reported in [16] in

which the E99 values in the brains of anatomically realistic models at 20 Hz were found to

be 10-70% higher than the IEEE Std. C95.6-2002 basic restrictions. To investigate the root

cause of this discrepancy, numerical computation is performed for the 50 Hz LAT B-field

exposure case by applying 0.085 S/m as a weighted average conductivity value to the grey

matter (σ50Hz = 0.075 S/m), white matter (0.053 S/m) and cerebralspinal fluid (2 S/m). As

a result, a reduction factor of 3 is observed for the peak EV.avg and EL.avg values of the brain

tissues, compared to the heterogeneous case. Recall the finding in Section 3.4.2: the peak

spatially averaged E-field value estimated in a heterogeneous model can be significantly higher

than the value derived from a homogeneous model. The computational results reported in

this study evidently suggest that the IEEE Std. C95.6-2002 B-field exposure limits, which were

derived from homogeneous ellipsoidal models, are most likely not conservative enough to

represent the worst-case peak induced E-field in the human brain.

Conversion factor

A conversion factor (CF) between the external B-field (or E-field) and the induced E-field can

be defined as:

CFf =
Eind

Bext× f
(3.3)

where f is the frequency of interest, Eind is the induced E-field and Bext is the external B-

field (or E-field). For a biological system which exhibits tissue composition with frequency-

independent tissue-to-tissue dielectric property contrast (i.e., the dielectric property value of

an individual tissue might be different in frequency but the tissue-to-tissue dielectric property

contrast remains the same) , the conversion factor of a LF B-field exposure scenario should

be frequency-independent. The conversion factors between a 1 T uniform LAT (side-to-side)

B-field and the computed peak induced E-field in the brain of Duke are presented in Table

3.1. It is observed that the conversion factor for a human brain model is in fact frequency-

dependent (e.g., between 10 Hz and 50 Hz); this in term suggests that frequency scaling

should not be applied directly for the conversion of the external B-field to the in situ E-field.

The conversion factors provided in this section serve as an up-to-date numerical dosimetry

reference. Together with a set of known BR or RL levels (i.e., obtained from nerve stimulation

models or experimental data), the reported conversion factors can be applied to derive the

corresponding exposure limits for the exposure of human brain in LF B-field.
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Table 3.1: The conversion factors between a 1 T uniform LAT (side-to-side) B-field and the
computed peak induced E-field in the brain of Duke.

Frequency (Hz)
(V/m)/T/Hz 10 50 100 500 1000 5000 10000 50000 100000

EV.avg 2.34 1.20 1.10 1.07 1.06 1.03 1.01 0.98 0.96
E99 0.79 0.58 0.55 0.54 0.54 0.53 0.52 0.50 0.49

EL.avg 1.99 1.17 1.07 1.05 1.04 1.00 0.99 0.95 0.94

Compliance level

A compliance level (CL) with respect to the basic restriction at a fixed frequency point can be

defined as:

CLf =
Eind.RLf

EBRf
(3.4)

where f is the frequency of interest, Eind.RLf is the worst-case peak induced E-field value scaled

to the reference level (RL) at f and EBRf is the basic restriction (BR) level at f . A compliance

level value greater than 1 implies that compliance with the reference level does not ensure

compliance of the basic restriction at the frequency of interest. Hence, the compliance level

quantity (CL) is employed in this study to examine the validity of the claim: compliance with

the reference level will ensure compliance with the relevant basic restriction stated in ICNIRP-

2010 [2] and the claim: the MPEs incorporate conservative assumptions such that adherence to

them insures that the basic restrictions are not exceeded stated in IEEE Std. C95.6-2002 [3].

The compliance levels for the investigated anatomical models at 10 Hz and 50 Hz for the

general public exposure limits are presented in Figure 3.8. For Duke, the CL10Hz value is twice

of the CL50Hz value for the volume-averaged E-field. This discrepancy can also be observed

in the data presented in Table 3.1. As a result, the EV.avg value exceeds the ICNIRP-2010 basic

restriction at 10 Hz as shown in Figure 3.7(a) and Figure 3.7(b). Based on the conversion factors

provided by ICNIRP and IEEE (see Section 2.3.2), frequency scaling which assumes invariant

tissue conductivity contrast ratio with respect to frequency variation was evidently employed.

However, the computational results of this study indicate that the conversion factors can be

strongly frequency-dependent, i.e., frequency scaling would not be valid throughout the entire

low frequency range. To verify this claim, the low frequency conductivity values [60] and the

contrast ratios with respect to the cerebralspinal fluid (CSF) for several biological tissues in

the human head are presented in Figure 3.9. An apparent increase of the conductivity contrast

ratio from 50 Hz to 10 Hz can be observed for the brain grey matter, brain white matter and

cerebellum (e.g., σCSF : σg r e y ≈ 70 at 10 Hz and σCSF : σg r e y ≈ 40 at 50 Hz). As discussed

in Section 3.4.2 and demonstrated in Figure 3.6, an increase in conductivity contrast ratio

could lead to higher induced E-field in a heterogeneous head model and the amount of E-field
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Figure 3.8: The compliance levels for the peak induced EV.avg,, E99 for ICNIRP-2010 and EL.avg

for IEEE Std. C95.6-2002, in the brains of the five anatomical models due to uniform LAT
B-field exposure at (a) 50 Hz and (b) 10 Hz for general public exposure.

enhancement is subjected to the tissue geometry at the peak induction location. Hence, the

variation of the compliance levels between 50 and 10 Hz can be attributed to the variation of

the frequency-dependent tissue conductivity contrast ratio.

To explain why the compliance levels of different anatomical models do not scale linearly

between 10 Hz and 50 Hz, a comparison of the induced EV.avg distributions at 50 Hz between

Duke and Roberta is presented in Figure 3.10. In the 0.5 mm voxel slice views, the dark color

tissue represents the CSF while the lighter color tissues enclosed by the CSF represent the brain

tissues. The induced E-field distributions demonstrate that due to the difference in tissue

geometry between the two investigated anatomical models, the peak induced E-field occurs

at different locations (marked by circles). It is observed that while the peak induction location

stays the same for the two anatomical models between 10 Hz and 50 Hz, the conversion factor

becomes different. This agrees with the finding in Section 3.4.2: a change in the conductivity
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Figure 3.9: (a) Tissue conductivity value and (b) conductivity contrast ratio (σCSF :σT i s s u e )
with respect to the cerebralspinal fluid (CSF) for selected biological tissues at low frequency.

contrast ratio is expected to produce different effects on the induced E-field in two distinct

models (as demonstrated by the spherical heterogeneous model with different dish layer

thickness). The exact amount of variation depends the tissue conductivity contrast ratio and

the tissue model geometry at the peak induction location (see Figure 3.6).

3.4.4 Summary of the Human Brain Exposure Analysis

In this section, several critical open issues pertaining to LF numerical dosimetry are addressed.

With canonical models and an anatomically realistic model, the effect of spatial averaging

on the discretization uncertainty associated with grid size variation is investigated. The

computational results indicate that stable peak spatially averaged E-field value can be achieved

when the applied grid size is sufficiently small compared to the averaging dimension (e.g., a

grid size of 0.5 mm for the ICNIRP-2010 2×2×2 mm3 volume averaging or the IEEE Std. C95.6-

2002 5 mm line averaging). The 99th percentile value would allow larger grid size and can
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Figure 3.10: The sagittal 0.5 mm voxel slice views (at the peak induction location) of Duke and
Roberta and the EV.avg field distributions at 50 Hz due to uniform LAT (side-to-side) B-fields.

conveniently achieve numerical convergence, however it may also significantly underestimate

the peak induced E-field. The computational results of high-resolution anatomically realistic

models lead to three conclusions: (1) frequency scaling should not be applied if frequency-

dependent tissue conductivity contrast ratios are expected; (2) the peak induced E-field

derived in a homogeneous head model is most likely not conservative enough to represent the

worst-case peak induced E-field in the human brain; (3) the B-field reference levels of IEEE

Std. C95.6-2002 [3] can be in contradiction with the basic restrictions by a factor of more than

5 (e.g., at 10 Hz). Based the aforementioned research findings, a revision of the IEEE exposure

limits is recommended to achieve a technically sound exposure standard without ambiguity.

A list of conversion factors are provided for the human brain exposure in uniform LAT(side-

to-side) B-field (from 10 Hz to 100 kHz). These conversion factors serve as an up-to-date

reference for the derivations of LF B-field induction exposure limits.
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3.5 Analysis of Human Body Exposure

3.5.1 Background

While a detailed analysis of the exposure of human brain tissues to a LF uniform B-field is

provided in the previous section, the current section focuses on the exposure of the peripheral

nerve system (PNS). A peripheral nerve is defined as the nerve found outside the central

nervous system (CNS) and leading to and from the CNS. It is stated in ICNIRP-2010 [2] that

the skin can be treated as a worst-case target tissue as it is the outermost anatomical site

where sensory nerve endings first emerge. Although the choice of a worst-case target tissue

is not specified in IEEE Std. C95.6-2002 [3], the same rationale could be applied. Hence, the

modelling of the skin plays a critical role in a LF numerical dosimetry assessment. Despite

its importance, the modelling of skin layers was inadequately addressed in past literatures.

In [11], a conductivity value of 0.1 S/m (at 50 Hz) was proposed to represent the skin of an

anatomical model. This value was described as the value to represent a composite tissue

consisting of the skin and the subcutaneous fat. However, it was unclear if the skin layers can

in fact be treated as a single composite tissue without compromising the estimation of the

peak induced E-field. Also, the derivation of the value 0.1 S/m is not clarified in [11], leading to

further ambiguity. Most importantly, the effects of the conductivity contrast among skin layers

and the influence of the thickness of skin layers were not characterized prior to this study.

To address the aforementioned open issues, an in-depth investigation is conducted in this

section. A multi-layer sub-millimeter skin structure is modelled to represent the actual

biological composition of the human skin. By analyzing the impact of the conductivity and

thickness of various skin layers on the peak induced E-field in the dermis layer (i.e., where

sensory nerve endings emerge), an equivalent single layer skin model is derived for a limb-non-

touching body posture (e.g., a general standing posture). The research objective of this section

is to establish the biological and numerical basis for the modelling of skin in a numerical

dosimetry assessment for LF B-field induction.

3.5.2 Skin Anatomy and Tissue Dielectric Property

In this section, a literature review of the skin anatomy and tissue dielectric property is provided

to establish a biological basis for the numerical skin model. As shown in Figure 3.11, the human

skin consists of mainly two structural layers: the epidermis and dermis [90]. The fatty layer

below the dermis is known as the hypodermis (i.e., subcutaneous fat). The hypodermis layer

is often not considered as part of the skin. The epidermis layer can be further classified into

several layers based on biological composition and function. The outermost epidermis layer

is known as the stratum corneum (i.e., the keratin layer). This layer is made up mainly by

corneocytes (dead, anucleate cells) and contributes significantly to the impedance of the skin

(i.e., poorly conductive). The epidermis layers beneath the stratum corneum are often referred

to as the cellular epidermis in order to differentiate them from the keratin layer. The innermost
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epidermis layer is a basale layer known as the stratum basale and this layer is usually only one

cell thick. Within the basale layer, Merkel nerve endings start to emerge. During keratinization,

live cells are generated in the basale layer and gradually migrate towards the keratin layer

where they are flattened out. The skin layer below the epidermis is the dermis which mainly

consists of connectivity tissue, blood vessels and sensory nerve endings. The hairs and hair

follicles associated with hairy skin are not considered in this study. From a nerve stimulation

point of view, the Merkel nerve endings in the stratum basale layer signify the outermost site of

potential electro-stimulation. As the extremely thin basale layer resides on top of the dermis,

the peak E-field induced in the dermis can be regarded as the field quantity which is relevant

to peripheral nerve stimulation.

Figure 3.11: Skin anatomy and layer structure (copyright 2009 Pearson Education, Inc., pub-
lishing as Benjamin Cummings).

The thickness of the skin varies with respect to anatomical site, gender and age, ranges approx-

imately from 0.5 mm (e.g., on the eyelids) to 3 mm (e.g., on the soles of the feet). According

to the reported skin thickness measurement data [91–93], the thickness of a skin layer is

approximately 0.02 mm to 0.04 mm for the stratum corneum, 0.08 mm to 1.0 mm for the

cellular epidermis, 0.5 mm to 2 mm for the dermis and 5 mm to 10 mm for the hypodermis.

The dielectric property of the skin has been investigated in various studies [94–99]. The con-

ductivity values of both dry and moistened skin were reported based on in vivo measurements.

It is stated in [95] that the effect of the stratum corneum is dominant at frequencies below 10

kHz and the conductivity value is affected by the degree of hydration and the type of moisten-

ing agent used. To the authors’ best knowledge, no existing literature provides conductivity

measurement data for the distinct layers of the skin. The reported values were obtained by
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treating the skin layers as a whole. In this study, the skin conductivity values reported in [95] is

employed as a basis for the conductivity of the stratum corneum. The conductivity values of

the cellular epidermis, dermis and hypodermis layers are postulated based on the respective

biological tissue composition. The conductivity value of the muscle is employed as a basis

for the dermis and the conductivity value of the fat is employed for the hypodermis. The

tissue transition characteristics (live to dead cells) of the cellular epidermis is considered by

assuming either linear or non-linear conductivity variation from the conductivity value of the

stratum corneum to the conductivity value of the dermis.

3.5.3 Multi-layer Skin Modelling

Based on the skin anatomy illustrated in Figure 3.11, a multi-layer skin model is established

to assess the effect of skin layer thickness and skin tissue conductivity on the peak induced

E-field in the dermis for a limb-non-touching body posture. Subsequently, the possibility of

estimating the peak induced E-field in a multi-layer skin model with an equivalent single-layer

skin model is investigated.

Multi-layer Skin Model Configuration

Figure 3.12: (a) A multi-layer skin structure, (b) a single-layer skin structure and (c) an over-
lapped skin model (note that the skin layer dimensions are not drawn to scale).

To investigate the effect of skin layer thickness and heterogeneous conductivity on the peak

induced E-field in the skin, a multi-layer skin model is constructed as shown in Figure 3.12(a).

A corresponding single-layer skin model is obtained by replacing the multiple layers with a

67



Chapter 3. LF Magnetic Field Exposure Analysis - Theory and Fundamentals

homogeneous single layer skin model (see Figure 3.12(b)). As only the E-field component

which is normal to the skin layer transition interface is affected by the conductivity contrast,

the uneven structure of an actual skin layer can be approximated with a flattened smooth

surface as a worst-case scenario. To simulate the overlapped skin structure for a limb-non-

touching posture, two blocks of the multi-layer skin models are joined to form an overlapped

skin model as shown in Figure 3.12(c). As no modification of the induced E-field distribution

due to body posture is considered in this overlapped skin model, the investigation in this

section focuses solely on the skin contact scenario for a limb-non-touching posture.

In the overlapped skin model (see Figure 3.12(c)), E-fields which are normal to the skin layer

interfaces are induced by exposing the overlapped skin model in a uniform B-field which is

aligned tangentially to the interface surface of the skin layers, i.e., perpendicularly in or out

of the paper in Figure 3.12(c). The two skin blocks are assumed to be identical in terms of

thickness and conductivity distribution. The stratum corneum layer interface is assumed

to exhibit perfect contact, i.e., no substances such as dirt and hairs exist at the interface.

This ensures the induced E-fields to transit normally across the skin layers. In the case of

an imperfect skin-to-skin contact, the induced E-fields will be perturbed whenever a non-

conductive obstacle is encountered. As both the thickness and conductivity values of the skin

layers are variables, a set of typical values is proposed as the initial simulation parameters

based on the reported skin measurement data. The typical thickness value is 0.02 mm for

the stratum corneum, 0.08 mm for the cellular epidermis, 1 mm for the dermis and 5 mm

for the hypodermis. The conductivity value at 50 Hz is selected to be 0.0002 S/m (i.e., the

value of dry skin) for the stratum corneum, 0.23 S/m (i.e., the value of muscle) for the dermis

and 0.04 S/m (i.e., the value of fat) for the hypodermis. The aforementioned thickness and

conductivity values serve as the initial configuration of the skin model simulations. A uniform

grid step size of 0.005 mm is employed to resolve the layer thickness and a uniform 50 Hz

B-field is considered. The range of the investigated skin layer conductivity and thickness

values is presented in Table 3.2.

Table 3.2: The range of the investigated skin layer conductivity values and thickness values,
the typical values are shown in the parenthesis.

Conductivity (S/m) Thickness (mm)

Stratum Corneum 0.0002 - 0.002 (0.0002) 0.01 - 0.05 (0.02)
Cellular Epidermis 0.0002 - 0.3 (0.23) 0.08 - 1 (0.08)

Dermis 0.1 - 0.7 (0.23) 0.5 - 2.5 (1)
Hypodermis 0.01 - 0.1 (0.04) 5 - 20 (5)

Sensitivity Analysis of Skin Layer Thickness and Conductivity

To analyze the influence of skin layer thickness and conductivity variation on the peak in-

duced E-field in the dermis, the E-fields in the multi-layer skin model are computed with

the parameter range shown in Table 3.2. The computations are performed by sweeping the
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Figure 3.13: The normalized peak induced E-field in the dermis layer as a function of the
conductivity (S/m) and thickness (mm) of (a) stratum corneum, (b) cellular epidermis, (c)
dermis and (d) hypodermis.
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parameters (i.e., the thickness and conductivity values) of a selected skin layer while keeping

the parameters of the other layers constant at the typical values. The computational results of

the peak induced E-fields in the dermis are shown in Figure 3.13. The values are normalized

to the highest value obtained within the investigated parameter range. As shown in Figure

3.13(a), a thicker and less conductive stratum corneum layer leads to lower peak induced E-

fields in the dermis. The stratum corneum thickness becomes less influential with ascending

conductivity value. A similar trend is observed with the cellular epidermis and hypodermis

layers (see Figure 3.13(b) and (d)). The thickness of the dermis is found to exert little impact

on the peak induced E-field, hence only the E-field values of 2 mm thickness are shown in

Figure 3.13(c). On the other hand, the conductivity of the dermis is found to cause significant

variation of the peak value. The higher the dermis conductivity, the lower the peak induced

E-field in the dermis. This is due to the increasing high-low-high (dermis-epidermis-dermis)

conductivity contrast, more E-fields are accumulated within the epidermis layers and less in

the dermis. The result of the sensitivity analysis indicates that the conductivity value of the

dermis is a dominant tissue parameter which has strong influence on the peak induced E-field

in the dermis. Within the investigated conductivity range, the worst-case peak E-field value in

the dermis occurs when the conductivity values of the stratum corneum, cellular epidermis

and hypodermis are at the respective upper limit while the conductivity value of the dermis is

at its lower limit.

Equivalent Single-layer Skin Model

To evaluate the possibility of estimating the peak induced E-field in the dermis of a multi-

layer model with an equivalent single-layer skin model, an overlapped single-layer model is

simulated with skin thickness values ranging from 1 mm to 4 mm and conductivity value from

0.0002 S/m to 0.7 S/m. The computed peak E-field values are normalized to the maximum

value obtained within the investigated parameter range and presented in Figure 3.14. As

shown in Figure 3.14(a), the peak induced E-field value in the single-layer skin model is highly

sensitive to the layer thickness for low conductivity values. The dependency of layer thickness

reduces significantly with ascending conductivity value. In Figure 3.14(b), the peak E-field

values in the single-layer skin are displayed together with the peak E-field values (i.e., the

horizontal lines) computed in the dermis (with conductivity values from 0.1 S/m to 0.7 S/m) of

the multi-layer skin model in the worst-case scenario within the investigated skin parameter

range (see Table 3.2). The parameterσS represents the conductivity value of the single-layer

skin model andσM refers to the conductivity value of the dermis in the multi-layer skin model.

It is observed that when the same conductivity value (in the range of 0.1 S/m to 0.7 S/m) is

applied forσS andσM, the peak E-field value found in the single-layer skin model (i.e., marked

as black dots in Figure 3.14(b)) is consistently higher than the peak value found in the dermis

of the multi-layer model. A comparison between the computational results of the single-layer

skin model and the multi-layer skin model reveals that a single-layer skin model with the same

conductivity as the dermis of a multi-layer model can provide a conservative estimation of the

peak induced E-field in the dermis.
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Figure 3.14: (a) The normalized peak induced E-field in the single-layer skin model as a
function of the skin conductivity (S/m) and layer thickness (mm), and (b) a comparison with
the peak E-field values (horizontal lines) computed in the dermis of the multi-layer skin model.

3.5.4 Computational Results of an Anatomical Model

In this section, the anatomical model Duke is employed for the computations of the induced

E-fields in the human body. The skin layer of Duke was segmented as a single-layer CAD model

(approximately 2 mm to 4 mm thick) which completely covers the body surface. As a separate

CAD model was segmented for the hypodermis, the anatomical skin model hereby represents

a composite single-layer tissue consisting of the epidermis and dermis. The subsequent

investigations focus on assessing the skin modelling characteristics derived in Sections 3.5.3

on an anatomically realistic model.
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Based on the canonical skin model investigated in Section 3.5.3, the anatomical skin model

can be considered as an equivalent single-layer skin for a limb-non-touching body posture.

To assess the impact of conductivity and grid size variation on the peak induced E-field in the

skin of an anatomical model, the scenario of Duke exposed to a uniform 50 Hz AP (front-to-

back) 0.1 mT B-field is investigated (i.e., corresponds to the maximum circumference of the

body). The model is posed in a general standing posture with arms to the side of the body

and legs slightly split from each other (see Figure 2.9). The computations are performed with

uniform grid size ranging from 2 mm to 1 mm (with a step change of 0.1 mm) and skin layer

conductivity at either 0.0002 S/m (i.e., the value of dry skin) or 0.23 S/m (i.e., the value of

muscle).

Figure 3.15: The peak E-field induced in Duke due to 0.1 mT 50 Hz uniform front-to-back B-
field as a function of grid size with two skin conductivity values, “G” stands for a conductivity
of 0.0002 S/m and “M” stands for 0.23 S/m, “Skin” stands for E-field in the skin and “Sat”
stands for E-field in the hypodermis.

72



Chapter 3. LF Magnetic Field Exposure Analysis - Theory and Fundamentals

Figure 3.16: The ICNIRP-2010 BR levels for the PNS tissue and the peak EV.avg, E99 values for
(a) general public and (b) occupational exposure, and (c) the IEEE.Std.C95.6-2002 BR levels
for the extremities and the peak EL.avg values for general public exposure, in the skin of Duke
exposed to a uniform AP (front-to-back) B-field at the respective reference level, “G” stands
for a skin conductivity of 0.0002 S/m and “M” stands for 0.23 S/m.
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The peak induced E-fields computed in the skin and the hypodermis are presented as a

function of grid size in Figure 3.15. As expected, the voxel maximum value (Emax) varies

significantly with respect to grid size variation. Since the variation of grid size could potentially

change the discretized skin layer thickness, the voxellized model exhibits slightly variable skin

thickness with respect to the applied grid size. The spatially averaged peak induced E-field in

the skin with 0.0002 S/m conductivity is the highest among the spatially averaged values (i.e.,

due to lower skin conductivity) and exhibits moderate dependency to grid size variation. The

fluctuation of the E-field values can be explained by Figure 3.14(a) which demonstrates that

the induced E-field in a single-layer skin model is significantly influenced by the skin thickness

for low skin conductivity values (e.g., at 0.0002 S/m). The remaining spatially averaged and

99th percentile E-field values are much less affected by grid size variation (i.e., due to higher

skin conductivity). When the skin conductivity value is at 0.23 S/m, the peak E-field in the

hypodermis closely resembles the peak value in the skin. This agrees with the finding in

Section 3.5.3 that the peak E-field in the hypodermis can be the dominant peak value due to its

lower conductivity compared to the conductivity value of muscle. As shown in Figure 3.15(a),

the 99th percentile value underestimates the peak E-field significantly when compared to the

volume-averaged value. The computational results in this section indicate that for a limb-

non-touching anatomical model with a single-layer skin, the dermis conductivity should be

applied to the skin layer to avoid overestimation and grid dependency. The spatially averaged

peak induced E-field in the skin (which also includes the values in the hypodermis due to

contiguous averaging) can be considered as the relevant field quantity to be compared with

the basic resections.

Subsequently, the same exposure scenario is computed with a uniform 1 mm grid size and

two skin conductivity values (i.e., the values of dry skin and muscle) at nine frequency points

from 10 Hz to 100 kHz. The peak E-field (EV.avg, E99 and EL.avg) values found in the skin of

Duke, scaled to the reference levels suggested in ICNIRP-2010 [2] and IEEE Std. C95.6-2002

[3] are presented in Figure 3.16 with the respective basic restrictions. The peak E-field values

due to the dry skin conductivity is provided as a reference to indicate the amount of potential

overestimation due to the erroneous conductivity value assumption. As shown in Figure

3.16(a) and (b), the E99 values are compliant with the ICNIRP-2010 basic restrictions. This is

expected since the ICNIRP-2010 reference levels were derived based on the E99 values [11, 12].
However, it should be noted that the 99th percentile value has been shown to potentially

underestimate the peak induced E-field when compared to the EV.avg value (see Figure 3.15(a)).

The volume-averaged E-field values are marginally compliant for the ICNIRP-2010 general

public exposure limits and non-compliance is demonstrated for the occupational exposure

limits for frequencies above 100 Hz. This is due to the fact that a less stringent safety factor is

applied for the ICNIRP-2010 occupational exposure limits. As shown in Figure 3.16(c), for the

comparison between the line-averaged E-field values and the IEEE exposure limits, marginal

compliance is demonstrated for frequencies above 100 Hz. In summary, the computational

results of the limb-non-touching Duke model suggest that the exposure limits [2, 3] should be

revised to provide adequate safety margins. The conversion factors between a 1 T uniform AP
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(front-to-back) B-field and the computed peak induced E-field in the skin (with the conductiv-

ity value of muscle) and hypodermis (with the conductivity value of fat) of Duke is presented

in Table 3.3. It is observed that the conversion factors for the whole-body B-field exposure are

relatively invariant with respect to frequency shift.

Table 3.3: The conversion factors between a 1 T uniform AP (front-to-back) B-field and the
computed peak induced E-field in the skin of Duke when the conductivity value of muscle is
applied to the skin layer.

Frequency (Hz)
(V/m)/T/Hz 10 50 100 500 1000 3000 10000 50000 100000

EV.avg 4.70 4.96 4.09 4.40 4.45 4.51 4.56 4.62 4.67
E99 1.83 1.92 1.87 1.84 1.85 1.93 1.89 1.96 1.86

EL.avg 4.51 4.78 4.63 4.72 4.76 4.79 4.82 4.85 4.88

3.5.5 Summary of the Human Body Exposure Analysis

In this section, open issues pertaining to the modelling of skin layer (i.e., a potential worst-

case target tissue for a LF B-field full-body exposure) are addressed. By developing and

simulating a multi-layer skin structure, the impact of the conductivity and thickness of various

skin layers on the peak induced E-field in the dermis (i.e., where sensory nerve endings

emerge) is investigated. It is revealed that the peak E-field in the dermis can be conservatively

approximated by an equivalent single-layer skin model for a limb-non-touching body posture

(e.g., a general standing posture). The computational results of an anatomical model indicate

that the reference levels recommended by ICNIRP-2010 [2] and IEEE Std. C95.6-2002 [3]
provide inadequate safety margins for a limb-non-touching human body exposed to a LF

uniform B-field.

3.6 Conclusion

In summary, the research work presented in this chapter illustrates the applications of the

SPFE solver in the exposure analysis of LF B-field induction. The core research objective

is to improve on the existing knowledge of the peak induced E-field in the brain tissues

(CNS) and peripheral tissues (PNS) of a human body exposed to LF B-field. To this aim, the

spatial averaging and percentile filtering techniques recommended in ICNIRP-2010 [2] and

IEEE Std. C95.6-2002 [3] are implemented based on a sound interpretation of the associated

biological and numerical rationales. Next, to quantify the effects of spatial averaging and 99th

percentile filtering algorithms on the discretization uncertainties with respect to stair-casing

errors, field singularities and grid size variations, the simulations of canonical and anatomical

models are investigated. The computational results indicate that the guideline-recommended

spatial averaging is capable of suppressing the discretization uncertainties, provided that a

suitable grid resolution is applied (e.g., 0.5 mm grid size for the 2×2×2mm3 volume averaging
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and the 5 mm line averaging). The 99th percentile filtering, as suggested in ICNIRP-2010

[2], is discouraged by the research outcome of this study because it is shown to potentially

underestimate the peak induced E-field. The research findings reported in this chapter have

established a sound basis for further investigations with high-resolution anatomically realistic

models.

The subsequent research work leads to a detailed analysis of the human brain and whole body

exposure in a LF uniform B-field. For the first time, the conversion factors between the external

uniform B-field and the peak induced E-field in the human brain and human body are derived

based on the computational results of the spatially averaged peak E-field values. Compliance

assessments with the published LF exposure limits [1–3, 5] are conducted to assess the validity

of these exposure limits. In the human brain exposure analysis, it is observed that the ICNIRP-

2010 reference level at 10 Hz is non-conservative due to the erroneous assumption of frequency

scaling and the IEEE Std. C95.6-2002 reference levels below 1 kHz are non-conservative due

to the assumption of tissue conductivity homogeneity. These findings are verified by the

computational results of a canonical heterogeneous model which demonstrate the potential

underestimation due to the neglection of tissue-to-tissue conductivity contrast and frequency-

dependent tissue conductivity variation. In the whole body exposure analysis, the modelling

of a multi-layer skin is addressed for the first time. The computational results indicate that

for a limb-non-touching body posture, a multi-layer heterogeneous skin structure can be

conservatively approximated by a single-layer homogeneous model.

76



4 LF Magnetic Field Exposure Analysis -
Practical Investigations

4.1 Introduction

Wireless power transfer (WPT) via magnetic resonant coupling has been a popular research

topic in recent years [100–102]. Both mid-range and close-range WPT system designs have

been experimentally explored for practical wireless charging applications [103–105]. Besides

achieving adequate power transfer efficiency and link range, another critical design require-

ment for a practical WPT system is the electromagnetic exposure safety compliance for a

human body in close vicinity of the system. The evaluations of mid-range high-power WPT

system exposure to the human body at MHz range have been reported in [106] and [107].
In this section, the exposure of a human body to a close-range low-power (5 W) 4-link WPT

system is numerically examined with respect to the peak induced spatially averaged electric

field (E-field) and specific absorption rate (SAR). The exposure limits of the peak induced

E-field and SAR (i.e., the basic restrictions) recommended by the International Commission

on Non-Ionizing Radiation Protection (ICNIRP-1998 [1] and ICNIRP-2010 [2]) and the Institute

of Electrical and Electronics Engineers (IEEE C95.1-1991 [4] and IEEE C95.1-2005 [5]) are

employed as the basis of compliance assessment.

The distinct differences between the currently investigated WPT system and the systems

examined in [106–108] lie in the operating frequency (i.e., at kHz range for the current WPT

system and MHz range for the previously reported systems) and the overall system dimensions

(i.e., a maximum coil dimension of 125 mm compared to 580 to 600 mm in [106, 107]). Another

distinguishing feature of the investigated WPT system is the inability of one subsystem to

work independent of the others, due to proprietary algorithms and control circuitry. This

makes the study of a complete 4-link system the only configuration necessary for the exposure

assessment during a normal operation.

In addition to the exposure assessment of a practical close-range low-power resonant WPT

system, a theoretical assessment of the effects of coil dimension, coil-to-body distance and

WPT operating frequency on the induced peak field intensity is also conducted to systemati-

cally reveal the impacts of system design parameters on exposure compliance. To this aim,
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this section is structured as follows: first, the employed anatomical models, exposure limits

and numerical techniques are described to provide a basis for the forthcoming investigations.

Next, the exposure assessment of a practical 4-link WPT system is conducted to determine

the exposure compliance with respect to the published exposure limits. Subsequently, the

induction characteristics of generic coils are analyzed using homogeneous phantom and high-

resolution anatomical models to establish the dependence of induced peak field intensity on

WPT system parameters (e.g., coil dimension and operating frequency). A semi-analytical

estimation approach is proposed to be applied during the key design phase of a practical

close-range WPT system to conservatively predict the worst-case induced field intensity in a

human body.

4.2 Exposure to Close-Range Wireless Power Transfer System

4.2.1 Methods and Materials

Anatomical Models and Exposure Locations

Four anatomically realistic human models (Duke, Ella, Fats and Dizzie) and one homogeneous

torso phantom are used for the numerical simulations in this study. As a homogeneous

model leads to induced E-fields which are independent of tissue dielectric properties at

low frequency (i.e., when the body dimension is significantly smaller than the wavelength),

Figure 4.1: Human body models (Duke and Dizzie) with the investigated sites of exposure and
system positions (torso and hand) for location sensitivity analysis, the encircled area indicates
the region exposed to the WPT system.
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the induced peak E-field based on a homogeneous model can be non-conservative (i.e.,

potential underestimation) compared to the peak intensity estimated by a heterogeneous

anatomical model (see Section 3.4). Hence, a 1.54×0.34×0.09 m3 homogeneous phantom

is considered in this study solely for the derivation of induced peak E-field characteristics,

instead of compliance assessment. As indicated in Figure 4.1, ten exposure locations are

selected for investigation. These anatomical sites are identified as : P1: center chest, P2:

center back, P3: center tummy, P4: left arm, P5: left leg, P6: top of the head, P7: chin, P8: left

head, P9: back of the head and P10: right head. The coils in Figure 4.1 represent the potential

locations of the closest current-carrying element of a WPT system to a human body. The

coil-to-body distance will be specified according to the investigated exposure scenarios in

the subsequent sections. The coil surface is orientated tangential to the body surface at the

coil center. It should be noted that some of the selected exposure locations, e.g., P6 (top of

the head), are unlikely to occur in a practical exposure scenario. They are included only as a

pre-cautious measure. The Duke and Dizzie models are employed for the analysis of P1 to

P10 sites of exposure. In addition, a location sensitivity analysis is performed with all four

anatomical models by shifting the center of the WPT system within a 3× 4 grid array by a

uniform step of 50 mm as shown in Figure 4.1 on the front and back (i.e., the largest flat torso

region) of the four anatomical models. The sensitivity analysis is performed to assess the

worst-case exposure corresponding to a flat body region which could potentially be exposed

to the magnetic flux generated by the WPT system. Furthermore, to depict the most frequently

encountered exposure scenario, an user hand exposure case is also considered by employing

a 4×3 location grid array with a uniform step of 20 mm.

Table 4.1: The ICNIRP and IEEE exposure limits relevant for WPT operating between 0.1–10
MHz, f in Hz.

Quantity Spatial Average Value

ICNIRP 1998 (psSAR10g) and ICNIRP 2010 (E, B)

Bi nc−l i m i t point 27µT
Ei nd−l i m i t 8 mm3 (cubic) el i m i t · f (el i m i t = 13.5 mV/m/Hz)
psSARl i m i t 10g (cubic) 2 W/kg (head&body)

4 W/kg (extremeties)

IEEE C95.1-1992 (psSAR1g) and IEEE C95.1-2005 (E, B, psSAR10g)

Bi nc−l i m i t point 205µT
Ei nd−l i m i t 5 mm (line) el i m i t · f (el i m i t = 20.9 mV/m/Hz)
psSARl i m i t 10g (cubic) 2 W/kg (head&body)

4 W/kg (limbs)
psSARl i m i t 1g (cubic) 1.6 W/kg (head&body)

4 W/kg (limbs)
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Relevant ICNIRP and IEEE Exposure Limits

The general public basic restrictions (i.e., the maximum value of the induced E-field and SAR

allowed in an exposed human body) are considered in this study. The following international

exposure guidelines are considered: ICNIRP 1998 [1], ICNIRP 2010 [2], IEEE C95.1-1999 [4]
and IEEE C95.1-2005 [5]. As shown in Table 4.1, the basic restriction values for body tissues

in the frequency range between 100 kHz and 10 MHz are the relevant exposure limits for

this investigation. It should be noted that ICNIRP 1998 [1] which employs current density

(J) for low frequency exposure is referred only for the SAR limit in this study. The maximum

permissible external field intensity, known as the reference level (for ICNIRP) and maximum

permissible exposure (for IEEE), are provided by the respective exposure guidelines based on

worst-case uniform field exposure scenarios. As a human body can be a few millimeters away

from the current-carrying elements of the investigated WPT system during normal operation,

the exposure will be largely localized. Hence, the reference level based on worst-case uniform

exposure is not representative of the exposure threshold for the investigated WPT system.

Relevant Basic Restriction Field Quantities

For the induced peak E-field, a vector average of the E-fields within a contiguous tissue volume

of 2× 2× 2 mm3 is specified in ICNIRP 2010 [2] while an arithmetic average determined

over a straight line segment of 5 mm length oriented in any direction within the tissue is

recommended in IEEE C95.1-2005 [5]. It is stated in the ICNIRP 2010 guidelines that for

a specific tissue, the 99th percentile value (i.e., the value exceeded by 1% of the total voxel

elements) of the E-fields is the relevant value to be compared with the basic restriction. Several

drawbacks of the 99th percentile filtering, e.g., underestimation of the peak value for localized

exposure, have been reported in [15] and [18] and Sections 3.4, 3.5. As only localized exposure

scenarios are investigated in this study, the non-filtered peak spatially averaged E-field serves

as a conservative quantity to be compared with the basic restriction. For the localized peak

spatial specific absorption rate (SAR), spatial averaging in a 10 gram or 1 gram tissue mass is

specified in ICNIRP 1998 [1] and IEEE C95.1-1991 [4]. The frequency range in which both the

induced peak E-field and SAR are required to be assessed concurrently is 100 kHz to 10 MHz

for the ICNIRP guidelines and 100 kHz to 5 MHz for the IEEE standards.

Quasi-Static Approximation Frequency Limit

In this work, low frequency exposure simulations are performed using the Scalar Potential

Finite Element (SPFE) solver [48]. A stopping criterion of 10 orders of magnitude reduction for

the initial residual is applied for all the low frequency simulations. The validity of quasi-static

approximation for the SPFE solver is guaranteed by satisfying the condition
�

�ω2µε̃d 2
�

�� 1,

where µ is the permeability, ε̃ is the complex permittivity and d is the characteristic length

(i.e., the maximum dimension of an exposed object). This condition and the ohmic-current-

dominant tissue property condition have been described in 2.31, 2.32 and 2.33. As local-
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ized exposure scenario is investigated in this study, an exposed body region with the size of

230×230×80 mm3 is assumed based on the 0 dB to -30 dB B-field distribution region (on one

side of the coil) by a 150×150 mm2 current-carrying coil (i.e., the maximum dimension of the

investigated coil sizes). The diagonal distance of this exposure region, 335 mm, is employed

as the characteristic length d . The tissue dielectric properties (µ and ε) are approximated by

the weighted averaged values based on measured percentage tissue compositions of male

adults [61] and individual tissue dielectric properties [60]. The left-hand-sides of 2.31, 2.32

and 2.33 are computed and presented in Figure 4.2. Based on the plots, numerical simulations

at frequencies below 1 MHz are performed with the SPFE solver. For frequencies above 1 MHz,

exposure simulations are performed with a full-wave finite-difference time-domain (FDTD)

solver provided in SEMCAD-X V.14.8 [48]. The anatomical models are discretized without

truncation for all the simulations.

To ensure that the E-fields produced by the system components (e.g., the tuning capacitors)

do not impair the assumption of magnetic induction dominance, an electro-quasi-static (EQS)

simulation is performed using the EQS SPFE solver provided in the same software package.

The homogeneous flat body phantom as shown in Figure 4.1 is employed. A 1×1 cm2 capacitor

plate with a 2 mm gap is placed 5 mm away from the front center of the phantom. The dielectric

properties of the phantom is assumed to be 0.18 S/m for the conductivity (σ) and 3600 for the

relative permittivity (εr ) based on the weighted averaged tissue properties at 100 kHz. The

simulation result indicates that to induce 20.9 V/m (IEEE-C95.1-2005 basic restriction) of

E-field in the body at 100 kHz, an external E-field of 760 kV/m immediately outside of the body

is required, equivalent to a voltage of 9.8 kV in the capacitor. This voltage level is significantly

higher (by a factor of 100) than the maximum voltage across the tuning capacitors in the

investigated system. Based on the results, the contribution of E-field induction at 100 kHz is

assumed to be negligible in this study.

Figure 4.2: The quasi-static approximation validity conditions computed by 2.31, 2.32 and
2.33, based on weighted average tissue dielectric properties and a characteristic length of 335
mm.
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4.2.2 Investigation of a Practical WPT System

In this section, the exposure of a practical 100 kHz WPT system is investigated with anatomi-

cally realistic human body models and a validated numerical WPT model. The peak induced

field quantities are compared with the associated exposure limits to determine the compliance

of the investigated WPT design with respect to the ICNIRP and IEEE exposure guidelines.

(a)

(b)

(c)

Figure 4.3: The structure of the investigated WPT system (not drawn to scale): (a) L1 to L4 coil
positions, (b) top view of the system with B-field measurement line and (c) side view of the
system.
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Description of the Investigated WPT System

The WPT system under investigation is a 5 W 4-link power transfer unit which operates at

100 kHz with dimensions and inductances optimized for magnetic resonant wireless power

transfer. The coils, L1 to L4, are separated into the Tx (co-axial L1 and L2) and Rx (co-axial

L3 and L4) subsystems as shown in Figure 4.3. A Tx-to-Rx subsystem separation of 5.4 mm

is considered in this study. L1 is an 8-turn single-layer square coil of 66/38 Litz wire with

inductance of 12.49 µH, equivalent series resistance (ESR) of 106 mΩ and outer dimension

of 74×74 mm2. A 76×76×2.5 mm3 ferrite disc is attached on the top of L1 to limit the non-

adjacent coil coupling and to increase coil inductance. L2 is a 4-turn 3-layer square coil of

420/38 Litz wire with outer dimension of 125×125 mm2, inductance of 34.78 µH and ESR of 47

mΩ. L3 is a 14-turn single-layer spiral coil of 75/41 Litz wire with inductance of 17.8 µH, ESR of

138 mΩ, inner diameter of 27.8 mm and outer diameter of 52.8 mm. L4 is a 6-turn single-layer

spiral coil of 75/41 Litz wire with inductance of 4.44 µH, ESR of 61.5 mΩ, inner diameter of

27.8 mm and outer diameter of 38.4 mm. A 50×50×2.5 mm3 ferrite disc is attached above L3

and L4 to act as both flux guide and shielding of device electronics. The investigated WPT

system is designed towards conforming to the interoperability and compatibility standards of

the international wireless power standard, the Qi-standard, by the Wireless Power Consortium

(WPC) [109].

Numerical Modelling and Experimental Validation

The incident B-fields generated by the WPT system with one Rx subsystem in active charging

operation (aligned center-to-center with respect to the Tx subsystem) were measured along

the central horizontal axis on the plane 9.7 mm above the top of the Rx subsystem with a Narda

ELT-400 Exposure Level Tester (see Figure 4.3(b)). The measurements were performed at 100

kHz with the Rx subsystem attached to a 5 Ω load, drawing 5 W power from the L1 source coil.

The uncertainty of the instruments is ±6%, the integration results in an error of 5% and the

repeatability is < 2.5%, i.e., the combined uncertainty (root sum square) for k = 2 was less

than 8%. At the surface of the enclosure the peak B-field is approximately 7 times above the

Bi nc−l i m i t of ICNIRP 2010 and approaching the Bi nc−l i m i t of IEEE C95.1-2005 (see Table 4.1).

A numerical model consisting of Tx and Rx coils is constructed to simulate the exposure of the

actual system (see Figure 4.4).

Exposure Assessment using Anatomical Models

A grid analysis is initiated to assess the influence of discretization variation on the computed

induced peak E-field in an anatomical model. The scenario of the adult model exposed to the

WPT system at P2 (center back) is computed with a uniform grid size from 2 mm to 0.5 mm,

with a step change of 0.1 mm. The computed induced peak E-field values are presented in

Figure 4.5. As shown, the spatially averaged E-field value is relatively stable with respect to

discretization variation for a grid size ≤ 1 mm, with a maximum deviation of 7% among the
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Figure 4.4: The measured and simulated B-field along the central horizontal axis, 9.7 mm
above the top of the Rx subsystem.

Figure 4.5: The peak EV.avg and EL.avg values (V/m) for the Duke model at P2 exposure location
as a function of grid size.

peak values. Hence, a computed EV.avg or EL.avg value based on a uniform 1 mm grid resolution

can be considered as a stable numerical quantity to be compared with the respective exposure

limit for compliance assessment.

To facilitate a convenient assessment metric with respect to the basic restrictions for the

investigated WPT system, a compliance factor CE for the induced peak E-field, which compares

the peak value with the relevant basic restriction, is defined in this study as:

CE =
Eind

Eind−limit
(4.1)

where Eind is the computed induced peak E-field in a human body due to the exposure to a WPT

system at its operating frequency f and Eind−limit is the guideline-specified basic restriction

at f . A CE value greater than 1 indicates that the basic restriction is exceeded, while a value

lower than 1 serves as an indication of the available margin (below exposure threshold) for the

external B-field. A similar compliance factor is defined for the SAR:

CpsSAR =
psSARind

psSARLimit
(4.2)
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The exposure scenario of the WPT system located at P1 to P10 positions for Duke and Dizzie

are computed with the validated numerical WPT model at 100 kHz. A uniform 1 mm grid

resolution is employed to discretize the anatomical models. The WPT system is orientated

(a)

(b)

(c)

(d)

Figure 4.6: The compliance factors for (a) the peak EV.avg (ICNIRP 2010), (b) the peak EL.avg

(IEEE C95.1-2005), (c) the peak SAR10g (ICNIRP 1998) and (d) the peak SAR1g (IEEE C95.1-1991).
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with the measurement plane on top of the Rx subsystem touching the body and centered

on the exposure location. The computed CE and CpsSAR values at 100 kHz are presented in

Figure 4.6. It is observed that the two anatomical models lead to higher induced field intensity

levels at flat torso regions (e.g., P1 and P2). At P2, the peak EV.avg is 1.4 times lower than the

ICNIRP 2010 basic restriction, the peak EL.avg is 2.5 times lower than the IEEE C95.1-2005

basic restriction, the peak SAR10g is 1760 times lower than the ICNIRP 1998 basic restriction

and the peak SAR1g is 730 times lower than the IEEE C95.1-1991 basic restriction. Therefore,

the induced E-field restriction of ICNIRP 2010 is the most stringent exposure limit for the

evaluated WPT system.

To assess the sensitivity of the peak E-field intensity on the system location variation around

the location of highest exposure, i.e., front and back of the torso, the induced peak Eind values

for the 12 torso positions depicted in Figure 4.1 are computed on the front and back of the four

anatomical models. The analysis of the induced E-fields normalised to the limit of ICNIRP 2010

for the 96 exposure scenarios resulted in a mean value of 0.45, a maximum value of 0.85 and a

standard deviation value (σsd) of 0.15, based on a sample size of 96. The mean, maximum and

standard deviation values for the IEEE C95.1-2005 E-field compliance factor were 0.27, 0.48

and 0.07, respectively. These values are conservative estimations for any potential location of

the WPT system. It should be noted that the ICNIRP 2010 E-field compliance factor will be

significantly lower than the presented values if the 99th percentile E-field is to be employed as

dosimetric quantity.

In addition, we also have evaluated the most common scenario, namely the exposure of the

hand picking up a power receiving device. As shown in Figure 4.7a, a posable anatomical

adult hand model is positioned on top of the WPT system with fingers touching the top of the

Tx subsystem and palm facing the top of the Rx subsystem. For the 12 investigated system

location, the mean, maximum and standard deviation values of the compliance factor are

found to be 0.26, 0.33, 0.04 for ICNIRP 2010 and 0.15, 0.19, 0.02 for IEEE C95.1-2005. In

conclusion, the investigated WPT system is in compliance with the considered exposure

guidelines for all the investigated potential exposure scenarios provided that the assessment

uncertainties are not considered in the evaluations.

4.2.3 Characterization of Generic Coils

In this section, the exposure characteristics of a generic circular single-turn coil are analyzed

with respect to coil dimension and operating frequency using flat body phantom and anatom-

ical models. The purpose of this investigation is to reveal the impact of WPT system design

parameters on the induced peak field intensity. Coils with diameter ranging from 20 to 150

mm are considered. This dimensional range is selected as it encompasses the typical coil

sizes for low and medium power devices such as mobile phones and tablet computers. By

considering housing thickness and Tx-to-Rx subsystem distance, the coil is assumed to be

located at either 5 mm or 10 mm away from the exposed body, with the coil surface oriented
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(a)

(b)

Figure 4.7: (a) The E-field distribution in an adult hand due to the exposure to the WPT system
operating at 100 kHz with 5 W received power, and (b) the peak E-field values (maximum and
mean ± 2σsd) in the torso and hand with respect to the relevant basic restrictions.

tangential to the surface of the body.

Approximation

The 1.54×0.34×0.09 m3 homogeneous flat body phantom shown in Figure 4.1 is employed

to represent the human body. A uniform 1 mm grid resolution is employed to discretize the

phantom. In addition to the numerical simulation results, an analytical approach is employed

to calculate the induced peak E-field in the phantom. The coupling between two coils can be

estimated from the mutual inductance between them using Neumann’s formula:

M i j =
µ

4π

∮

C i

∮

C j

~d l i · ~d l j
�

� ~Dij

�

�

(4.3)

where M i j is the mutual inductance between coils C i and C j , ~d l i and ~d l j are the differential

elements of the coils in the direction of the current, and Dij is the distance between these

differential elements. In this case, one of the coils represents the currents induced in the body.
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For two co-axial parallel circular single-turn coils, the mutual inductance M can be simplified

to [110]:

M =µ
p

Rr

�

(
2

k
−k )F −

2

k
E

�

(4.4)

where R is the radius of the induced currents in the body which leads to the peak E-field, r is

the excitation coil radius, and k is given by:

k =
2
p

Rr
p

(R + r )2+D2)
(4.5)

with F and E being the complete elliptical integrals of the first and second kind to the modulus

k , and D as the distance between the two coils. The peak induced rms E-field can then be

expressed as:

Eind =
NMωI

2πR
(4.6)

where N is the number of turns of the coil and I is the rms current in the coil. Subsequently,

the SAR can be computed by:

SAR=
σE2

ind

ρ
(4.7)

whereσ and ρ are the conductivity and density of the medium, respectively. The numerically

and analytically calculated peak rms E-field values are normalized to 1 A peak current values

and presented in Figure 4.8. The maximum deviation of the numerical results from the

analytical results is found to be within 5%, indicating good agreement between the numerical

and analytical solutions. The discrepancy is the result of discretization uncertainty and spatial

averaging. As shown in Figure 4.8, the peak E-field value increases logarithmically with

ascending coil dimension.

Figure 4.8: The peak rms E-field values normalized to 1 A peak current for the homogeneous
phantom at 100 kHz as a function of coil dimension and coil-to-body distance (D), EAnalytical is
the analytically calculated E-field and ESimulation is the result of the SPFE solver.
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Figure 4.9: The KE and KpsSAR factors at 100 kHz to convert the peak field values in a homoge-
neous Duke model to values of a heterogeneous Duke model as a function of coil diameter (d)
for two coil-to-body distances (D = 5 and 10 mm) at P2.

Scaling Factors Based on Anatomical Models

Since a homogeneous phantom does not account for field enhancements due to tissue con-

trasts, a scaling factor which is determined statistically is introduced. An E-field scaling factor

is defined in this study as KE = Ehetero/Ehomo where Ehetero and Ehomo are the peak E-field in a

heterogeneous anatomical model and a homogeneous anatomical model, respectively. The

homogeneous flat phantom is found to produce higher induced peak E-field compared to a

homogeneous anatomical model at the same coil-to-body distance (i.e., the minimum coil-to-

body distance in the case of an anatomical model). Hence, the scaling factor in this study is

computed conservatively by applying the peak E-field of a homogeneous anatomical model as

Ehomo. A similar SAR scaling factor is defined as KpsSAR = SARhetero / SARhomo. Subsequently,

an approximated E-field compliance factor of a WPT system can be formulated as:

CE,approx. =
KENM

elimitR
I (4.8)

where N , M , I and R are the number of coil turns, mutual inductance, coil current and coil

radius defined by a WPT system and e l i m i t is a constant value defined by the basic restrictions

(see Table 4.1). In a similar manner, the SAR compliance factor can be approximated by using

a lowσ value of 0.05 S/m and a ρ value of 1000 kg/m3:

CpsSAR,approx. =
σ

ρ

KpsSAR(NM)2

psSARlimitR2 f 2I 2 (4.9)

The scaling factors were determined for the anatomical versus the homogeneous Duke model

composed of low conductivity medium (σ = 0.05 S/m). In the first approximation, the scaling

factor is assumed to be frequency independent as the contract between the different tissues in

the frequency range hardly changes, e.g., for muscle versus bone from 17 at 100 kHz to 15 at

10 MHz and for muscle versus fat from 10 to 12, respectively. The scaling factors due to coil
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with variable diameter at the P2 location are presented in Figure 4.9. Based on these results,

the scaling factor of a d = 150 mm coil serves as a conservative value for the investigated coil

dimensions. To analyze the sensitivity of the scaling factor with respect to body model and

coil position, the scaling factors of a 150 mm coil at 5 mm and 10 mm coil-to-body distances

are computed for the front and back of the four anatomical models. The mean, maximum

and standard deviation values for the E-field and SAR scaling factors are presented in Table

4.2 based on a sample size of 192. The validity of the compliance approximation is checked

against the system investigated in this study as well as the system analysed in [108]. For

the system in [108], the coil dimensions of 170×280 mm3 is approximated by a d= 123 mm

coil. The compliance factors are compared in Table 4.3, demonstrating the validity and

conservativeness of the approximation when applying the mean + 2σsd KE and KpsSAR scaling

factors.

Frequency Dependence of the Peak E-field and SAR

An examination of 4.8 and 4.9 suggests that the E-field compliance factor is independent

of frequency while the SAR compliance factor varies with the square of frequency. This is

due to the fact that the E-field basic restriction level increases linearly with frequency as the

stimulation threshold of nerve fibres rises with frequency; while the SAR basic restriction is

a constant value to prevent harmful thermal effects at any frequency. As the reactive power

stored in a WPT system can be approximated by P= 1
2ωLI2 where L is the coil inductance and

Table 4.2: The mean, maximum and standard deviation values of the KE and KpsSAR scaling
factors based on the sensitivity analysis of a 150 mm coil placed at 24 locations on the body
with 5 and 10 mm coil-to-body distances at 100 kHz.

Scaling Factor Mean Maximum StdDev

KE (ICNIRP 2012) 2.9 4.8 0.73
KE (IEEE C95.1-2005) 2.6 4.4 0.65
KpsSAR (IEEE C95.1-1992) 7.2 15.7 2.8
KpsSAR (ICNIRP 1998) 5.4 8.9 1.3

Table 4.3: Compliance factors versus approximations, d is coil diameter and D is coil-to-body
distance.

CE(ICNIRP) CE(IEEE) CpsSAR10g CpsSAR1g

test 4.8 test 4.8 test 4.9 test 4.9

System I, f = 100 kHz, D = 20 mm, d = 125 mm, N I = 17.5 Arms

0.85 1.28 0.48 0.74 8.7×10−4 1.6×10−3 1.8×10−3 3.2×10−3

System II [108], f = 6.78 MHz, D = 50 mm, d ≈ 123 mm, N I = 5.36 Arms

0.14 0.24 N.A. N.A. 0.15 0.48 0.42 0.86
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(a)

(b)

Figure 4.10: (a) The normalized source power (W) and (b) the normalized permissible B-field
(T) with respect to the basic restrictions (Ei nd−l i m i t , psSARl i m i t ) based on the simulation
results (Esim. and psSARsim.) and approximation results (Eapprox. and psSARapprox.) of a 150 mm
coil at 5 mm coil-to-body distance for the Duke model at P2, the vertical dashed lines indicate
the frequencies to achieve the maximum WPT source power and permissible B-field.

I is the coil current, this implies that there exists an optimal frequency at which a WPT system

could operate with a maximum source power without exceeding both the E-field and SAR

basic restrictions.
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To determine the frequency point, above which the SAR becomes dominant over the E-field

for exposure compliance, the WPT source powers and permissible B-field intensity subjected

to the ICNIRP and IEEE exposure limits are computed for the Duke model with a 150 mm coil

positioned 5 mm away from the body at P2 exposure location in the frequency range from 100

kHz to 10 MHz. In addition to the anatomical model results, the approximation results based

on 4.8 and 4.9 are also calculated by applying the mean + 2StdDev of KE and KpsSAR values.

The computed power and B-field results are normalized to the maximum value and presented

in Figure 4.10. As shown, both the simulation and approximation results, for stored power and

permissible B-field, lead to the same optimal frequency (i.e., where the SAR-related power

curve intersects the E-related power curve). Based on the approximation results, the WPT

operating frequency to achieve the maximum permissible source power is 2.5 MHz for the

ICNIRP exposure guidelines, 1 MHz for the IEEE exposure standards and 1.8 MHz for the both

of them. As the system stored power and incident B-field can deviate from the simple P ∝ B 2

relationship based on the applied WPT technologies (e.g., link range, shielding), the optimal

frequency for a specific design should fall within the derived range, i.e., 1 MHz to 2.5 MHz.

4.2.4 Summary of the Short-range Wireless Power Transfer System Analysis

In this section, the exposure assessment of a practical 100 kHz close-range low-power wireless

power transfer (WPT) unit is conducted with a novel and simple comparison metric based on

practical system measurements and numerical dosimetry. A generic coil study estimates that

the optimum WPT operating frequency range to achieve exposure compliance is at 2.5 MHz

for the ICNIRP guidelines and at 1 MHz for the IEEE standards. Furthermore, the generic coil

study establishes a convenient method for the exposure estimation of a practical WPT system

with known B-field intensity and distribution. The investigated WPT system is employed

to validate the accuracy and viability of this formula. The proposed approach provides an

easy-to-adapt assessment routine in achieving an initial exposure estimation, in the low and

medium power regime, for close-range magnetic resonant WPT systems.
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4.3 Theoretical Assessment of the Maximum Obtainable Power for

Mid-range Wireless Power Transfer Based on Exposure Limits

4.3.1 Background

As discussed in the Section 4.2, besides achieving adequate power transfer efficiency and link

range, a critical requirement for a practical WPT system is the electromagnetic exposure safety

compliance for a human body exposed to the low frequency magnetic field (B-field) generated

by such a system. The transmit (Tx) and receive (Rx) coil diameters in previous reported

studies ([106], [107], [108] and Section 4.2) are in the range of 0.2 to 0.6 m, which lead to

more localized exposure for a close-by human body. In this section, the whole-body exposure

scenario in a room-size WPT environment (i.e., Tx coil diameter of 2.5 m) is numerically

examined with respect to the peak induced electric field (E-field) and specific absorption rate

(SAR) induced in a human body.

The same exposure limits mentioned in Section 4.2 are employed as the basis of compliance

assessment. Once again, the exposure limits for the external E-field and B-field, known as

the reference level (ICNIRP) or maximum permissible exposure (IEEE), are not representative

for a room-size WPT environment since they were established conservatively based on the

scenario of whole-body exposure to uniform field. To determine the exposure characteristics

of a human body in a non-uniform exposure scenario, the source field and the potential

exposure conditions (e.g., body orientation and location with respect to the source) should

be considered. In this section, the exposure of a human body in the B-fields generated by

the Tx coil of a room-size WPT system is investigated. The research objective is to determine

the maximum power that can be obtained by a Rx coil (i.e., embedded in a wireless device

which is much smaller than the Tx coil) in the presence of a human body without exceed-

ing the exposure limits. To this aim, numerical dosimetry techniques and high-resolution

anatomically realistic models are employed to derive the exposure characteristics of a human

body in a full-room WPT scenario with respect to the body orientation/position in the room,

Tx coil shape/location, WPT operating frequency and room size variation. This section is

structured as follows: first, the incident B-fields generated by a Tx coil is analyzed. Next, the

exposure assessment in a room-size environment is conducted to determine the maximum

permissible B-field intensity at the threshold of exposure limit and validate the optimum oper-

ating frequencies derived in Section 4.2. Lastly, based on the computed dosimetry data and

B-field distribution, the maximum power obtainable by a Rx coil with pre-defined parameters

is estimated to assess the feasibility of a room-size WPT system with respect to the human

body exposure limits.
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4.3.2 Methods and Materials

Anatomical Models

The same high-resolution anatomically realistic human models (Duke, Ella, Fats, Dizzie as

shown in Figure 2.8) in Section 4.2 were employed for the numerical simulations in this section.

Only general standing and lying-down body postures (with arms on the side of the body and

legs slightly apart) are investigated in this work. The skin layer of an anatomical model is

considered as a single-layer tissue which represents the composition of cellular epidermis and

dermis instead of the stratum corneum (i.e., the low conductive outermost skin layer) which

contains no excitable nerve endings.

Investigated Basic Restriction Quantities

In addition to the basic restriction quantities described in Table 4.1. The 99th percentile

volume averaged E-field taken over the whole body, which is expected to be the lower bound of

a 99th percentile peak estimation, is also reported in this section. Alternative 99th percentile

filtering (.e.g, tissue-by-tissue) is expected to produce peak estimation in between this value

and the non-filtered volume averaged value. For a whole-body exposure scenario above 100

kHz, in addition to the 10 gram tissue mass averaged peak spatial SAR which is established

mainly for localized exposure, the whole-body average SAR is also specified as the relevant

dosimetric quantity by ICNIRP and IEEE with a limit of 0.08 W/kg at any frequency. In this

section, wbSAR refers to the whole-body averaged SAR, psSAR1g and psSAR10g refer to the 1

gram and 10 gram averaged peak spatial SAR, EV.avg refers to the peak 2×2×2 mm3 volume-

averaged root-mean-square (rms) E-field, EL.avg refers to the peak 5 mm line-averaged rms

E-field and E99 refers to the 99th percentile of the 2×2×2 mm3 volume-averaged E-field taken

over the entire body.

Computational Techniques

According to Figure 2.15, the left-hand-sides of 2.31, 2.32 and 2.33 indicate that the quasi-static

approximation is valid up to 100 kHz for a whole body exposure scenario. For frequencies

above 100 kHz, a full-wave finite-difference time-domain (FDTD) solver with Huygens box

approach [106], is employed to assess the deviation between a full-wave method and the

quasi-static method. The whole-body exposure of the Duke and Dizzie model in a uniform

front-to-back B-field are computed at 1 MHz, 5 MHz and 10 MHz, respectively, with the SPFE

and FDTD solvers. The maximum deviation is found to be 8.2% for EV.avg, 10% for psSAR1g

and 18% for wbSAR, respectively. The findings in this study are consistent with the results

reported in [107]which suggest that a quasi-static approach can be applied for a whole-body

dosimetry computation up to 10 MHz with acceptable tolerance. Hence, all the simulations in

this study (from 100 kHz to 10 MHz) are computed using the SPFE solver [48] with a 1 mm

uniform grid resolution for the discretization of the anatomical models.
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4.3.3 Incident B-field based on Tx Coil Size

To cover a room space with wireless power, two types of Tx coil set-ups can be considered:

1) a single Tx coil and 2) a Tx coil array. To decide an initial approximation of suitable Tx

coil dimensions, a room size dimension of 5×5×2.6 m3 is considered. The incident B-fields

generated by a Tx coil is calculated by the Biot-Savart equation.

A Tx coil with radius R varying from 0.5 m to 2.5 m is considered. The incident B-fields at 0.1

and 1 m away from the coil with various dimensions are normalized to the same stored power

at 200 kHz and presented in Figure 4.11. As shown, for the same broadcast power, a smaller

coil leads to higher incident B-field at close range (e.g., 0.1 m) but lower power coverage at

a further distance (e.g., 1 m). At higher frequency, the rate of decay for B-field further away

from the coil decreases due to the transition from near field to far field regime. Hence, from an

exposure and power coverage point of view, a larger coil is a suitable choice. As the practical

issues with regard to the choice of Tx coil dimension (e.g., cost, windings, power handling

capacity) is not considered in this study, a large Tx coil is selected for investigation. The actual

size of the considered Tx coil is 5.2×5.2 m2, a 0.1 m isolation distance is assumed to account

for wall embedment and coil housing.

Investigated Exposure Scenarios

The B-fields generated by a single-turn coil are employed to approximate the B-fields produced

by a multi-turn Tx coil which encircles an entire room. When the turns of the Tx coil are

concentrated at the outer diameter with close spacing, the approximation is valid when the

currents in a multi-turn coil can be considered to be in-phase (i.e., one tenth of the free-

space wavelength 0.1λ f s � room size) . At higher frequency (e.g., 10 MHz), series capacitive

compensation can be introduced along the coil to balance the current phase shifts. Hence,

by multiplying the peak B-field intensity of a single-turn coil with N 2, the peak B-field of a

N -turn coil can be calculated with the assumptions of negligible ohmic and magnetic losses.

In this study, the B-field perturbation due to any electric and magnetic objects in the room or

in the human body (e.g., medical implants) are not considered. In addition, only the exposure

due to the Tx coil is analyzed in this study, i.e., the simultaneous localized exposure from a Rx

coil is considered as a separate topic for future investigation.

Two Tx coil shapes: square and circular; and three Tx coil positions: ceiling level, quarter

level (i.e., 0.65 m above the floor to represent table level) and floor level, are considered as

shown in Figure 4.12. In a full-room exposure environment, the freedom of body location and

orientation in the room should be taken into consideration. To this aim, 9 body locations (P1

to P9, P∗ for a circular Tx coil) which represent the potential worst-case exposure locations are

investigated. Two body orientations: standing straight and face-up lying down, are considered.

The body locations are selected based on the typical scenarios which lead to the smallest

spatial distance between a Tx coil and a human body.
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(a)

(b)

(c)

Figure 4.11: The analytically calculated normalized B-field at 200 kHz along: (a) the central
vertical axis, (b) the central horizontal axis 0.1 m away from a Tx coil and (c) the central
horizontal axis 1 m away from a Tx coil, for Tx coils with radius in the range of 0.5 to 2.5 m.

As shown in Figure 4.12, the child (Dizzie) model is employed to illustrate some of the investi-

gated body locations with respect to the Tx coil positions. With reference to a plane tangential

to the floor surface, the center or corner of a rectangular bounding box which encloses the

entire body model is aligned with the predefined locations (P1 to P9). The following body-coil

configurations are investigated: (1) ceiling-level Tx coil with (i) elevated standing body (e.g.,

stands on a bookshelf) and (ii) face-up lying-down body at quarter level (represents bed

level), (2) quarter-level Tx coil with (i) floor-bound standing body and (ii) face-up lying-down

body at quarter level, and (3) floor-level Tx coil with (i) floor-bound standing body and (ii)
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(a)

(b)

(c)

Figure 4.12: The Tx coil locations with body positions and orientations: (a) 3D-view, (b)
side-view and (c) top-view with labelled body positions (P1 to P9).
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face-up lying-down body on the floor. The included Tx coil placements, body locations and

orientations provide a thorough coverage of the potential worst-case exposure scenarios in a

full-room WPT exposure environment.

Investigated Operating Frequency Range

To decide the frequency points which should be considered in this study, the preferences of

practical WPT implementations are taken into account. The frequencies in the lower kHz

range, e.g., 200 to 500 kHz, are the frequencies of choice for most of the wireless-charging

products in the market today. The Consumer Electronics Association (CEA) [111] and Wireless

Power Consortium (WPC) [109] standards fall in this frequency range. The frequency 6.78

MHz is an alternate choice which has being considered by the wireless power community with

the advantage that it is in the Industrial, Scientific and Medical (ISM) band, and hence leads

to less restriction on the electromagnetic compatibility (EMC) issue than the other competing

standards in the frequency spectrum. Based on the aforementioned rationales, two frequency

points: 200 kHz and 6.78 MHz, are selected as the primary frequencies of investigation in this

study. The frequency range from 100 kHz to 10 MHz is also considered for the worst-case

exposure scenarios to analyze the frequency-dependent characteristics of the induced field

intensity with respect to the research findings in Section 4.2.

4.3.4 Maximum Permissible B-field Intensity

B-field Intensity based on Exposure Limits

The induced peak E-field (i.e., EV.avg, E99V, and EL.avg) and SAR (wbSAR, psSAR1g and psSAR10g)

are computed with the four anatomical models positioned at the predefined locations (P1 to

P9) for the investigated coil-body orientations at 200 kHz and 6.78 MHz, respectively. Accord-

ing to the B-field intensity at which the induced field value exceeds the relevant exposure limit,

the peak induced E-field leads to lower source B-field than the wbSAR at 200 kHz, i.e., the

peak E-field is the determinant factor for the compliance of exposure limit at 200 kHz. This

agrees well with the findings in Section 4.2. Based on the computational results, a square Tx

coil results in lower induced peak E-field and SAR than a circular coil due to the avoidance

of small coil-to-body proximity scenarios such as P2∗ to P8∗, especially for the lying-down

body position. This suggests that a larger keep-out distance should be considered for practical

implementation of the Tx coil. The Duke model and the Fats model are responsible for the

majority of low Bz values among the investigated anatomical models. This is likely due to the

larger body cross-sectional areas exhibited by these two models. A quarter-level Tx coil is

found to produce the lowest maximum permissible Bz in the center of the room among the

three investigated Tx coil locations. This indicates that the increase in the peak induced field

intensity outweighs the gain in the Bz intensity for a quarter-level Tx coil. Hence, only the re-

sults of a square Tx coil at the ceiling and floor levels are presented. The mean, maximum and

standard deviation of the maximum permissible Bz in the center of the room by a square Tx
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Table 4.4: The mean (µ), maximum (max) and standard deviation (σsd) of the B-field intensity
in the center of the room at the middle and quarter levels before the induced E-field exceeds
the ICNIRP 2010 and IEEE C95.1-2005 basic restrictions at 200 kHz.

B-field (µT) at the middle vertical room level

BR ICNIRP (E99) ICNIRP (EV.avg) IEEE (EL.avg)
µ, max,σsd µ, max,σsd µ, max,σsd

Ceilinga 22, 54, 13 4.5, 11, 2.7 11, 24, 6.2
Ceilingb 75, 122, 27 15, 27, 5.4 24, 46, 9.3
Floorc 8.7, 25, 4.8 1.8, 5.6, 1.2 2.7, 7.7, 1.7

B-field (µT) at the quarter vertical room level

BR ICNIRP (E99) ICNIRP (EV.avg) IEEE (EL.avg)
µ, max,σsd µ, max,σsd µ, max,σsd

Ceilinga 16, 40, 9.3 3.2, 7.8, 1.9 8.2, 18, 4.6
Ceilingb 55, 90, 20 11, 20, 4.2 18, 34, 6.8
Floorc 11, 31, 5.9 2.3, 7.0, 1.2 3.5, 10, 1.7

a Ceiling-level square Tx coil with elevated body
b Ceiling-level square Tx coil with floor-bound body
c Floor-level square Tx coil

coil are presented in Tables 4.4 and 4.5, for 200 kHz and 6.78 MHz, respectively. It is observed

that a ceiling Tx coil, when excluding the elevated body scenario (i.e., assuming that the power

of a Tx coil can be deactivated upon the detection of a human body by a proximity sensor),

leads to the highest Bz among the investigated coil-body configurations.

Optimum Operating Frequency based on Exposure Limits

To investigate the frequency-dependent characteristics of the maximum permissible B-field

for whole body exposure, two exposure scenarios are considered: (1) the worst-case scenario

of a standing model; and (2) the worst-case scenario of a lying-down model. The maximum

permissible Bz in the center of the room at the middle vertical level, with respect to the peak

E-field and SAR, are converted to the normalized source power and presented in Figure 4.13

as functions of frequency. The intersection points between the E-field related curves and the

SAR related curve are marked by the vertical dotted lines in Figure 4.13. According to Figure

4.13(a) the optimum operating frequencies, i.e., 1 and 2.5 MHz, agree well with the results in

Section 4.2 for a standing model. The E99 value leads to lower optimal frequency as it allows

higher incident B-field. As shown in Figure 4.13(b), the optimal frequencies are shifted when

the lying down body is considered. This is due to the change of exposure quantity from psSAR

to wbSAR (i.e., the worst-case quantity for a lying-down model). It can therefore be concluded

that the optimal WPT frequency for both close-range and mid-range operation lies in the

range from 500 kHz to 2.5 MHz, depending on the investigated exposure quantities.
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Table 4.5: The mean (µ), maximum (max) and standard deviation (σsd) of the B-field intensity
in the center of the room at the middle and quarter levels before the induced SAR exceeds the
ICNIRP 1998, IEEE C95.1-1991 and IEEE C95.1-2005 basic restrictions at 6.78 MHz.

B-field (µT) at the middle vertical room level

BR ICNIRP (wbSAR) IEEE (psSAR10g) IEEE (psSAR1g)
µ, max,σsd µ, max,σsd µ, max,σsd

Ceilinga 1.5, 3.3, 0.8 1.3, 2.9, 0.5 0.7, 1.5∗, 0.3
Ceilingb 5.3, 7.9, 1.6 4.5, 6.0, 1.1 2.3, 3.3∗, 0.6
Floorc 0.6, 1.6∗, 0.4 1.3, 4.5, 1.2 0.7, 2.6, 0.6

B-field (µT) at the quarter vertical room level

BR ICNIRP (wbSAR) IEEE (psSAR10g) IEEE (psSAR1g)
µ, max,σsd µ, max,σsd µ, max,σsd

Ceilinga 1.1, 2.5, 0.6 0.9, 2.1, 0.4 0.5, 1.1∗, 0.2
Ceilingb 3.9, 5.8, 1.2 3.7, 5.0, 0.9 1.8, 2.6∗, 0.5
Floorc 0.7, 2.0∗, 0.4 1.4, 4.7, 1.2 0.7, 2.4, 0.6

a Ceiling-level square Tx coil with elevated body
b Ceiling-level square Tx coil with floor-bound body
c Floor-level square Tx coil
* The lowest maximum Bz value among wbSAR, psSAR1g and

psSAR10g

4.3.5 Estimation of the Maximum Obtainable Power

When a Rx coil is immersed in the B-fields generated by a Tx coil (BTx), assuming that the

Rx coil turns are concentrated at its outer diameter and BTx is homogeneous over the Rx coil

surface area, the output voltage Vout of the Rx coil is equivalent to the induced voltage Vind:

Vind =N ·A · jω ·BTx (4.10)

where N is the number of coil turns and A is the coil surface area. In the case of series

resonance, maximum power (Pmax) can be achieved when the Rx coil resistance RS equals the

load resistance RL :

Pmax =Q ·
|Vind|2

4ω ·LRx
(4.11)

whereQ is the quality factor of the Rx coil inductor and L Rx is the Rx coil inductance. Assuming

a perfectly lossless capacitor component, Q can be expressed as Q =ωL Rx /RS . With a known

operating frequency, BTx intensity and Rx coil parameters (e.g., Q factor, inductance and coil

size), the maximum obtainable output power can be estimated based on (5). By defining a
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(a)

(b)

Figure 4.13: The normalized maximum permissible power (W) at the middle vertical level for
(a) a ceiling-level Tx coil with a ground-level standing body and (b) a floor-level Tx coil with a
lying-down body, as a function of frequency.

term L∗ to be the inductance normalized to per coil turn with L∗ = LRx/N2, the maximum

output power with normalized inductance can be expressed as [112]:

P∗max =Q ·
ω · (A · |BTx|)2

4L∗
(4.12)

While the shape and size of a Rx coil vary with respect to a specific electronic device design, Rx

coil dimensions of 50×100 mm2 and 200×300 mm2 are considered in this work based on the

typical dimensions of mobile phone and laptop computer. The inductance of a single-turn

rectangular coil with 0.3 mm wire diameter is estimated to be about 0.32 µH and 1.32 µH, for

a 50×100 mm2 coil and a 200×300 mm2 coil, respectively [110]. Based on the aforementioned

parameters, the maximum obtainable power P∗max at 1.3 m above the floor (e.g., center vertical

level) in a 5×5×2.6 m3 room, delivered by a square Tx coil and received by a small (50×100

mm2) or large (200×300 mm2) Rx coil, is estimated based on the respective mean + 2σsd

permissible Bz intensity (see Tables 4.4 and 4.5). The P∗max value is presented in Table 4.6 for

Q = 100, small and large Rx coil sizes, with ceiling-mount and floor-mount Tx coils, at 200 kHz

and 6.78 MHz, respectively.
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Table 4.6: The maximum power (W) obtainable by a small (50×100 mm2) and large (200×300
mm2) Rx coil (Q = 100) 1.3 m above the floor tangential to a 5.2×5.2 m2 Tx coil (a) 2.7 m above
the floor (assume floor-bound body), (b) 0.1 m below the floor, at 200 kHz and 6.78 MHz, based
on the µ±2σsd of the calculated maximum permissible BTx, while maintaining compliance
with the ICNIRP and IEEE basic restrictions.

(a) Ceiling-mount Tx Coil

ICNIRP 1998 (psSAR10g) and ICNIRP 2010 (EV.avg)

Small Coil Large Coil
200 kHz 1.7 56

6.78 MHz 3.7 130

IEEE C95.1-1992 (psSAR1g) and IEEE C95.1-2005 (EL.avg)

Small Coil Large Coil
200 kHz 4.5 158

6.78 MHz 0.65 22.8

(b) Floor-mount Tx Coil

ICNIRP 1998 (wbSAR) and ICNIRP 2010 (EV.avg)

Small Coil Large Coil
200 kHz 0.04 1.5

6.78 MHz 0.16 5.7

IEEE C95.1-1992 (wbSAR) and IEEE C95.1-2005 (EL.avg)

Small Coil Large Coil
200 kHz 0.09 3.2

6.78 MHz 0.16 5.7

As shown, the maximum obtainable power varies according to Tx coil location and investi-

gated exposure guidelines. In this section, the achievable power ranges from 0.04 to 158 W,

depending on the considered parameters. These estimated value serves as the theoretical

upper and lower bounds of the received power limit, the practically achievable power is deter-

mined by system parameters such as component loss, link range, power transfer efficiency

and actual operating frequency.

4.3.6 Summary of the Mid-range Wireless Power Transfer Analysis

This study provides a systematic analysis of the maximum obtainable power by a mobile

phone or laptop-size electronic device in a wireless-powered room-size environment with

respect to the ICNIRP and IEEE exposure limits. Based on the computational results of the

peak spatially averaged E-field, 1 gram, 10 gram averaged peak spatial SAR and whole-body

SAR in high-resolution anatomical models, the maximum permissible B-field intensities, at

200 kHz and 6.78 MHz, with respect to various wireless power transmit configurations are

derived.
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In addition, the optimum WPT operating frequency, i.e., the highest frequency to achieve

maximum permissible B-field intensity in the investigated frequency range (100 kHz to 10

MHz), is determined by examining the frequency-dependent characteristics of the induced

field quantities. With known maximum permissible B-field intensity and predefined Tx/Rx coil

parameters, the estimation of the maximum power obtainable by a small receiver is presented.

The assessment results suggest that in theory, low to medium received power (e.g., 0.04 to 158

W) can be achieved in a room-size wireless power transfer environment while maintaining

compliance to the ICNIRP and IEEE human body exposure limits.

4.4 Conclusion

The investigation of both close-range and mid-range wireless power transfer leads to several

important design guidelines for exposure-compliant WPT system designs. Most importantly,

the optimal frequency range, i.e., 1 – 2.5 MHz, to achieve maximum stored power and exposure

compliance is determined by both numerical and analytical methods. In addition, the effect

of Tx coil dimensions is analyzed to provide system designers with guidelines to estimate the

maximum obtainable power in a mid-range WPT set up.
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5 LF Electric Field Exposure Analysis

5.1 Introduction

In this chapter, the electric (E) field and contact current (I) induced in a human body due to

the exposure to low frequency (LF) external E-field and the contact with a conductive object

are numerically investigated with a high-resolution anatomically realistic model (Duke) and

the SPFE solver described in Chapter 2. In general, there are less man-made and natural high-

intensity E-field environments than high-intensity magnetic (B) field environments. Highly

intensive LF E-fields are commonly encountered near high-voltage facilities (e.g., a pylon

carrying power lines). As the human body exhibits high relative permittivity and conductivity

values at low frequency, the induced E-fields are significantly lower than the external E-fields

(e.g., 5 to 6 orders of magnitude reduction at 50–60 Hz). Furthermore, protective measures

(e.g., the Faraday suit) against LF E-field exposure has been well established for professional

workers operating near high-voltage facilities. As a result, the human body exposure to LF

E-field has received less research attention than the exposure to LF B-field. Nevertheless,

the availability of state-of-art anatomical model and numerical techniques allows a research

update to the existing knowledge of the peak induced E-field in the human body due to the

exposure to a LF E-field.

5.2 Analysis of the Exposure to Uniform E-field

5.2.1 Background

The computational results of the induced E-field and current density (J) in the human body due

to the exposure to a LF uniform E-field have been reported in [11–13]. In a LF E-field induction

case, two scenarios are considered: the direct induction of E-fields in the human body due to

the oscillating surface charges introduced by an external E-field and the indirect induction

due to the contact currents induced in the body when it is in contact with a conductive object

which is at a different electric potential than the body. Some of the characteristics of E-field
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induction are summarized here based on published literatures [11–13]: (1) the maximum

induced E-field occurs when the human body is aligned with the external E-field lines (i.e.,

due to the greater potential difference induced between the head and the feet), (2) higher

induced E-field occurs when the feet are grounded instead of floating, and (3) the induced

E-fields due to the direct induction are in general weaker than the indirect induction due to the

high permittivity and conductivity nature of the human body tissues at low frequency. In this

section, an up-to-date database of the computational peak induced E-field and short-circuit

current (i.e., current which flows through the body to the ground) is provided to assess the

safety margins provided by the ICNIRP-2010 [2] and IEEE Std. C95.6-2002 [3] reference levels.

5.2.2 Computational Results of an Anatomical Model

In this section, the Duke model in its general standing posture as shown in Figure 2.9 is

numerically investigated for the exposure to a uniform vertically polarized E-field. The model

is grounded on both feet at zero potential for all the simulations. The skin layer is treated as

the stratum corneum (i.e., poorly conductive). To ensure a proper ground-to-sole contact, two

5-mm-thick slabs (with the same dielectric properties as the skin layer) are inserted between

the sole and the ground as shown in Figure 5.1(e). A uniform grid size of 1.5 mm is applied for

the discretization of the body and a grid size of 1 cm with a grading ratio of 1.2 is applied for

the space around the body. The exposure scenario is computed at nine frequency points from

10 Hz to 100 kHz. Residual tolerance (i.e., the stopping criterion for the SPFE solver) in the

range of 10−16 to 10−10 are applied with respect to the frequency-dependent tissue relative

permittivity values. The peak induced E-field values (EV.avg, E99 and EL.avg) are computed

with the post-processing techniques described in Section 3.2. As shown in Figure 5.1, highly

intensive external perturbed E-field is observed around the top of the head and close to the

nose (i.e., due to its protruding shape). The induced E-field distribution shown in Figure

5.1(d) indicates a significant concentration of E-field in the ankle regions (due to the smaller

cross-sectional areas).

The conversion factors between a 1 kV/m vertically polarized external E-field and the peak

induced E-field in the brain and body (excluding the skin layer) are presented in Tables 5.1

and 5.2. The induced E-field in the skin layer is omitted since no nerve-stimulation can occur

in the stratum corneum. The conversion factors for the peak induced E-field in the heart

and the short-circuit current across the ankles are shown in Table 5.3. It is observed that the

conversion factors for the induced E-field in the body are less frequency-dependent than those

for the brain and heart. This is due to the fact that the total body resistance varies linearly

with respect to frequency. The trend is also verified by observing the frequency-independent

short-circuit current conversion factor presented in Table 5.3(b). An additional simulations is

performed by treating the skin layer as muscle (more conductive and capacitive) instead of

stratum corneum (i.e., dry skin). It is observed that due to this variation, the peak induced

E-fields in the brain and heart are reduced by approximately 8% while the peak value in the

body tissues drops by about 30-40%.
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Figure 5.1: The external E-field distribution (a) front view, (b) side view, (c) top view, and (d)
the induced E-field (EV.avg) distribution, (e) the configuration of ground-to-sole contact.

The computed peak induced E-field and short-circuit current values are scaled by the re-

spective reference levels (maximum permissible exposure) and compared to the associated

Table 5.1: The conversion factors between a 1 kV/m uniform vertically polarized E-field and
the computed peak induced E-fields in the brain of Duke.

Frequency (Hz)
(mV/m)/(kV/m)/Hz 10 50 100 500 1000 3000 10000 50000 100000

EV.avg 0.09 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04
E99 0.06 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03

EL.avg 0.10 0.08 0.06 0.06 0.06 0.05 0.05 0.05 0.04

Table 5.2: The conversion factors between a 1 kV/m uniform vertically polarized E-field and
the computed peak induced E-fields in the body of Duke (excluding the skin layer).

Frequency (Hz)
(mV/m)/(kV/m)/Hz 10 50 100 500 1000 3000 10000 50000 100000

EV.avg 1.20 1.28 1.21 1.15 1.14 1.13 1.15 1.21 1.21
E99 0.82 0.74 0.69 0.72 0.74 0.78 0.82 0.75 0.79

EL.avg 1.27 1.38 1.36 1.22 1.31 1.27 1.25 1.28 1.26
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Table 5.3: The conversion factors between a 1 kV/m uniform vertically polarized E-field and
(a) the computed peak induced E-field in the heart of Duke and (b) the short-circuit current
(ISC) across the ankles of Duke.

Frequency (Hz)
10 50 100 500 1000 3000 10000 50000 100000

(mV/m)/(kV/m)/Hz (a)
EL.avg 0.17 0.10 0.09 0.08 0.08 0.07 0.05 0.04 0.04

mA/(kV/m)/Hz (b)
ISC 3.0×10−4

basic restrictions in Figures 5.2, 5.3 and 5.4, respectively. In Figure 5.2(a) and 5.2(b), it is

observed that the ICNIRP-2010 external E-field reference levels are in general conservative for

the induced E-field in the brain for both general public and occupational exposure. The only

exception occurs at 50 Hz when the EV.avg value approach the general public threshold limit

(EV.avg = 0.017 V/m, BR= 0.02 V/m). This is due to the variation in the RL-to-BR conversion

factors between the general public exposure and the occupational exposure in ICNIRP-2010 at

50 Hz (i.e., 5 kV/m to 0.02 V/m for the general public exposure and 10 kV/m to 0.1 V/m for the

occupational exposure). The IEEE Std. C95.6-2002 reference level is found to be marginally

conservative for the peak induced E-field in the brain (see Figure 5.2(c)).

For the peak induced E-field in body tissues, the ICNIRP-2010 reference levels are found to

be conservative throughout the investigated frequency range as shown in Figure 5.3(a) and

Figure 5.3(b). The IEEE Std. C95.6-2002 reference levels for the controlled environment are

found to be non-conservative for frequencies above 100 Hz as shown in Figure 5.3(c). This

is due to the fact that while the basic restrictions for the body extremities (i.e., hands, wrists,

feet and ankles) are invariant between the general public and controlled environment, the

reference levels of the controlled environment are given relaxation factors of 3 and 4. The

rationale given in IEEE Std. C95.6-2002 for this relaxation is that the exposed person (e.g., a

power-line worker) in a controlled environment can consciously take preventive measures

such as wearing a conductive suit, hence higher external E-field is allowed. For the peak

induced E-field in the heart and the short-circuit current across the ankles, a comparison to

the basic restrictions reveals that both ICNIRP and IEEE exposure limits are conservative (see

Figure 5.4). This is due to the fact that the external E-field threshold limits are mainly derived

based on the scenario of indirect contact current, instead of direct induction from external

E-field. In general, higher induced current is expected in an indirect induction case (i.e., due

to the contact with a conductive object).

5.2.3 Summary of the Uniform E-field Exposure Analysis

In summary, the computational results of an anatomical model in a general standing posture

suggest that the external E-field reference levels provided in ICNIRP-2010 are in general ca-
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pable of preventing the induced E-field from exceeding the basic restrictions for a grounded

person exposed to a uniform E-field. A larger safety factor is recommended for the IEEE

standard based on the brain and body exposure results. It is noted that the RL-to-BR con-

version is not consistent between the IEEE Std. C95.6-2002 general public and controlled

environment body extremities exposure scenarios. This could give rise to confusion during

the interpretation of the exposure limits since the assumption of conductive suit shielding is

not stated in the definition of controlled environment in IEEE Std .C95.6-2002. To maintain

a coherent conversion factor between the external E-field and the induced E-field for body

extremities, one recommendation for the IEEE standard is to provide a separate reference

level for an exposed person without protective gears in a controlled environment or state

clearly in the standard that the reference level for the controlled environment applies with the

assumption that the exposed person is protected by a conductive suit.

The computational results of an anatomically realistic model provide the estimation of the

spatially averaged peak induced E-field in the human brain and body due to LF E-field induc-

tion. Through a comparison with the basic restrictions provided in ICNIRP-2010 and IEEE Std.

C95.6-2002, the ICNIRP-2010 reference levels are found to be in general conservative while

larger safety factor is recommended for the IEEE reference levels. The investigation of the

impact of skin layer dielectric property indicates that a less conductive skin layer represents a

more conservative set-up for the E-field induction assessment of a grounded body.
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Figure 5.2: The ICNIRP-2010 BR levels for the CNS tissues and the peak EV.avg, E99 values for (a)
general public and (b) occupational exposure, and (c) the IEEE Std. C95.6-2002 BR levels for
the brain and the peak EL.avg values for general public exposure, in Duke exposed to a uniform
vertically polarized E-field at the respective reference level.
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Figure 5.3: The ICNIRP-2010 BR levels for the PNS tissues and the peak EV.avg, E99 values for
(a) general public and (b) occupational exposure, and (c) the IEEE Std. C95.6-2002 BR levels
for the extremities and the peak EL.avg values, in Duke (excluding skin) exposed to a uniform
vertically polarized E-field at the respective reference level.
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Figure 5.4: (a) The IEEE Std. C95.6-2002 BR levels and the peak EL.avg values for the heart, and
(b) the ICNIRP-2010 (occupational), IEEE.Std.C95.6-2002 (controlled environment) threshold
limits for contact current and the computed short-circuit current (ISC) in Duke exposed to a
uniform vertically polarized E-field at the respective reference level.
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5.3 Analysis of Contact Current

5.3.1 Background

Besides the direct E-field induction due to the exposure to an external E-field, certain exposure

scenario includes an additional source of induced E-field: physical contact with a conductive

object at a different potential. The conductive object may be charged due to a physical

connection to a voltage source or through the exposure to an external E-field. Alternatively, the

conductive object may be grounded while the human body is charged at a different potential.

These two induction types could occur simultaneously when both induction sources are

present. In this section, a “hot stick” live-line working scenario is investigated by simulating

a person operating a voltage detector underneath a high voltage distribution line. In this

case, two mechanisms are responsible for the induced E-field in the worker’s body: physical

contact with the voltage detector and exposure to the E-field generated by the power line.

The exposure to external E-field has been investigated in the previous section, hence only the

indirect induction case is investigated in this section. Three body postures with respect to

the handling of voltage detector are employed to assess the impact of posture variation on

the induced contact current. In a contact current induction scenario, the induced E-field in

the human body is generated due to the electric potential difference between two physical

contact points. In general, one of the possible contact is the feet-to-ground contact and the

other contact is between the body (e.g., the hand) and a charged object. With the ohmic-

current-dominant approximation for biological tissues, (2.25) can be applied to solve for the

induced E-field within the lossy tissue materials by neglecting the displacement current (see

Section 2.6.3). A human body can be treated as a cascaded resistor network with the body

tissues modelled as resistor segments. The induced ohmic current is expected to flow in a

path defined by the tissue resistance between the contact points.

5.3.2 High Voltage Detector

A single-pole high voltage detector is often utilized for overhead contact systems in electric

railways and substations. It is designed to determine the presence of high voltage on a power

distribution line. A high voltage detector consists of the following components: contact

electrodes, indicator, insulating elements and a elongated handle with a specific length.

During the operation of a high voltage detector, a person standing on the ground holds the

detector at one end and touches a power line with the other end. A conducting path is formed

between the power line and the ground through the voltage detector and the person operating

it. As a result, a small amount of current can be detected if the power line is energized. As

shown in Figure 5.5, the contact current is a ratio of the power line voltage to the sum of

voltage detector resistance Ri and body resistance Rb. Ri must be large enough to limit the

amount of current which is allowed to flow through the human body. Note that additional

resistance introduced by footwear or gloves will further reduce the strength of the contact

current.
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Figure 5.5: The outline of a person operating a voltage detector (left) and a photograph
depicting a realistic operation (right), copyright Pfisterer AG.

5.3.3 Analysis of the Contact Current due to a High Voltage Detector

Based on the details of an actual exposure environment provided by the power facility com-

pany (Pfisterer International AG), numerical computations are performed with the SPFE solver

and a posable anatomical model (Duke) to investigate the induced E-field and short-circuit

current in a human body during the operation of a voltage detector. The voltage detector

employed in this study exhibits an operational resistance of 300 MΩ or 3000 MΩ, respectively,

depending on whether it is wet and dirty or dry and clean. A resistance of 300 MΩ is assumed

to be the worst-case scenario within the manufacturing tolerance of the voltage detector.

The computational model is constructed with the Duke holding a conductive stub which

represents the handle of the voltage detector and standing on a ground plane with both of his

feet grounded (represents the worst-case short-circuit scenario). A three-phase 50 Hz power

line system located 5 meters above the human body as shown in Figure 5.5 is considered as

the electric potential source. The power lines exhibit a peak voltage of 110 kV and a peak load

current of 600 A. A uniform grid resolution of 1 mm is employed for the discretization of the

anatomical model.

Three body postures are modelled as shown in Figure 5.6. The selected body postures represent

some of the typical worker’s postures during a voltage detector operation based on the survey

result provided by the associated organization. In the first posture scenario, the Duke model

holds the stub in his right hand and positions it close to his waist level. This body posture

is noted as P1. In the second posture scenario (P2), Duke’s right arm is rotated by 90◦ and

the stub is raised to his eye level. In the third posture scenario (P3), the Duke model grabs

the conductive stub with both of his hands and holds it at his chest level. As the contact

area between the hand and the stub serves as an entry point for the current flow, the posable

human body is modelled to offer hand grip that bears resemblance to real-life hand grip
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scenario as shown in Figure 5.7. Uncertainty is expected due to the resistance difference

between the homogeneous skin model employed in this study and the realistic multi-layer

skin structure. Based on the tissue ohmic-current-dominant approximation, the current flow

through the body due to the potential difference between the voltage detector and the ground

can be computed with the assumption that the external E-field generated by this potential

difference and the displacement current in the lossy tissues are negligible.

Figure 5.6: Three body postures for the simulation of a person operating a voltage detector,
from left to right, body posture P1, P2 and P3.

Figure 5.7: The posable hand grip of the voltage detector handle.

The ground plane is set to zero potential while the conductive stub is set to an arbitrary

positive non-zero potential. The body resistance Rb during the operation of a voltage detector

is derived based on the computed short-circuit current ISC. The body resistance is found to be

in the range of 3-5 kΩ for the investigated body postures. Compared to the measured resistance

of a dry skin hand-to-hand configuration presented in Table 5.4 [70], the computed hand-to-

feet body resistance is within a reasonable range. In the case when Ri is at 300 MΩ, the electric

potential value at the detector handle is found to be 1.9 V, 1.8 V and 1.1 V, respectively, for P1,

P2 and P3. At these potentials, the volume-averaged peak induced E-fields in various body

tissues are presented in Table 5.5. In accordance with Kirchhoff ’s current law, the currents

which flow through the trunk, ankles and the arm/arms are found to be consistent.
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Table 5.4: The measured resistance of a hand-to-hand configuration for dry skin and large
contact areas, with respect to the contact voltage (V) and population percentile (%) at 50 Hz.

Voltage (V) 5% 50% 95%

25 1.75 kΩ 3.25 kΩ 6.10 kΩ
100 1.20 kΩ 1.88 kΩ 3.20 kΩ
220 1.00 kΩ 1.35 kΩ 2.13 kΩ

1000 0.70 kΩ 1.05 kΩ 1.50 kΩ

Table 5.5: The computed body resistance Rb with respect to posture variation, the correspond-
ing peak induced E-field (EV.avg) and the short-circuit current (ISC), for Ri of 300 MΩ and Vsource

of 110 kV at 50 Hz.

Rb (kΩ) E (V/m) ISC (mA)

Posture Brain Heart Ankle
P1 5.2 4.5×10−3 0.23 0.72 0.37
P2 4.9 3.5×10−3 0.22 0.74 0.37
P3 3.1 1.1×10−3 0.16 0.78 0.37

It is observed that the variation of body posture from P1 to P2 alters the body resistance slightly

without affecting the corresponding short-circuit current. The change in body resistance can

be explained with the compression of body tissues caused by, e.g., bending of the arm, which

leads to different cross-sectional areas for the current path. The change in body posture from

P1 to P3 results in a greater variation in the body resistance. However, the short-circuit current

remains invariant. This is due to the fact that the detector resistance is much larger than

the body resistance, therefore the range of the body resistance variation is not big enough to

significantly alter the total resistance (Ri+Rb). The greater body resistance variation from P1

to P3 can be explained as follows: grabbing the detector handle with both hands instead of

a single hand is equivalent to adding a shunt resistor in the current path, which effectively

lower the body resistance. Based on the given power line voltage of 110 kV and the minimum

detector resistance of 300 MΩ, the variation in the posture-related body resistance is found to

have negligible effect on the short-circuit current. The contact current threshold limit is given

as 1 mA for ICNIRP-2010 [2] occupational environment and 6 mA for IEEE Std. C95.6-2002

[3] controlled environment at 50 Hz. The contact currents computed in this case study are

well below these limits due to the presence of a large voltage detector resistance. The contact

current of 6 mA [3] requires a faulty detector resistance at or below 18 MΩ. The current density

distributions for the investigated body postures are presented in Figure 5.8. Higher current

density is observed in the wrist and ankle regions due to their relatively smaller cross-sectional

areas. Significantly higher currents are found in the heart than in the head because the head

does not lie in the current flow path as observed in Figure 5.8. The peak E-fields induced in

the brain, heart and ankle are found to be within the exposure limits.
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Figure 5.8: The induced current density distribution for the three investigated body postures,
from left to right, body posture P1, P2 and P3.

5.3.4 Summary of the Contact Current Analysis

In this study, the contact current induced in a human body due to the operation of a voltage

detector is numerically investigated with a posable anatomical model and the SPFE solver. It

is demonstrated that the body resistance and contact current can be estimated with respect

to different body postures and contact configurations. Based on a practical exposure envi-

ronment with a known voltage source and detector resistance, three body postures which

represent typical operation scenarios are employed to investigate the effect of posture variation

on the body resistance and short-circuit current.

The investigated body postures are found to have negligible effect on the total short-circuit

current due to the large ratio between the voltage detector resistance and the body resistance.

The computational results indicate that as long as the voltage detector resistance is high

enough (i.e., ≥18 MΩ), the contact current induced in the operator will be lower than the

IEEE Std. C95.6-2002 exposure limit (i.e., 6 mA at 50 Hz). The investigation performed in

this study assumes the scenario of a grounded person in contact with a voltage detector as

the worst-case scenario for a voltage detection operation. To cover all the possible exposure

scenarios, e.g., when the person is touching an additional conductive object while operating

the voltage detector, further analysis is required.
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5.4 Conclusion

The research work presented in this chapter not only leads to the validation of several known

induction characteristics for a grounded body exposed to a vertically polarized uniform E-

field, it also addresses some of the practical open issues for LF E-field induction numerical

dosimetry. The conversion factors between the external E-field and the peak induced E-field

(and short-circuit current) are derived based on the computational results of the anatomical

model. In the second part of this chapter, a realistic exposure scenario of a person operating

a high voltage detector below a power distribution line is numerically investigated with a

posable anatomical model. The induced contact currents in a human body estimated based

on the computational results of several body postures reveal no tangible exposure safety

concerns towards the operation of a high voltage detector, provided that the detector exhibits

a proper operating resistance.

The computational results of a high-resolution anatomically realistic model provide the esti-

mations of the spatially averaged peak induced E-field in the human brain, heart and body.

Through a comparison with the basic restrictions provided in ICNIRP-2010 [2] and IEEE Std.

C95.6-2002 [3], the ICNIRP-2010 reference levels are found to be conservative while more

safety margins are recommended for the IEEE Std. C95.6-2002 maximum permissible exposure

limits. The investigation of the impact of skin layer dielectric property variation indicates that

a less conductive skin layer represents a more conservative set-up for an E-field induction

exposure assessment. The research findings presented in this chapter path the way towards a

better understanding of the induction characteristics of E-field exposure and form the basis

for further research activity pertaining to the assessment of the worst-case E-field induction

scenario.
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6 Mobile Device Antenna Optimization
with Genetic Algorithms

6.1 Introduction

With the ever increasing demand for novel hand held wireless devices such as mobile phones

and tablet personal computers, the design cycle has to be shortened in order to reduce the

product delivery time. This introduces great challenges as product engineers have to realize a

design in a rather short time frame while achieving complex design requirements including

compliance with the Over The Air (OTA) [113] performance, Specific Absorption Rate (SAR)

[114] and Hearing Aid Compatibility (HAC) [115] product standards.. With the trend of slimmer

and smaller mobile devices, the available space for antenna placement also shrinks. Inevitably,

antenna engineers face great difficulty implementing multi-band antenna for mobile phone

with a short chassis and small antenna volume. In recent years, emphasis has been placed on

computer-aided antenna optimization methods [42–44].

In this chapter, Genetic Algorithms (GAs) [45] in conjunction with a Finite Difference Time

Domain (FDTD) [48] solver are employed for the design and optimization of mobile phone

antennas in a Computer Aided Design (CAD) environment. On the basis of an up-to-date com-

mercial mobile phone CAD model, three types of embedded multi-band antenna are designed

and optimized within a fixed volume. The research objective is to achieve optimum antenna

performance efficiently for all three designs by employing a well devised numerical optimiza-

tion approach. This chapter is organized in the following manner: a network distribution

scheme for the genetic algorithms is introduced first, followed by a discussion of the antenna

design concepts. Next, a description of mobile device antenna modelling and optimization

approach is presented. The computational results are discussed with respect to the near-field

and far-field performance of the optimized antenna designs. Finally, a conclusion is provided

on the use of computer-aided numerical modelling for mobile device antenna optimization.
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6.2 Methods and Materials

6.2.1 FDTD-based Simulation Platform

The antenna simulations are performed with a FDTD-based full-wave electromagnetic simu-

lation software package “SEMCAD X” [48]. Powered with “Graphic Processing Unit” (GPU)

acceleration technology, this simulation platform has achieved simulation speed boost beyond

the limit of mere “Central Processing Unit” (CPU) accelerations [116]. A complex structure, e.g.

a full scale mobile phone with detailed components, can be simulated across a broadband

frequency range in a matter of minutes instead of hours. The suitability and accuracy of

the FDTD-based simulation tool for mobile device antenna design has been investigated in

[117–120]. The Specific Anthropomorphic Mannequin (SAM) head phantom and a posable

CTIA (Cellular Telephone Industries Association) compliant hand model are available in the

employed software package for the numerical simulations of mobile phones under real us-

age conditions. The antenna-related parameters, for instance, the reflection coefficient of

an antenna (S11), Total Radiated Power (TRP), radiation pattern, Specific Absorption Rate

(SAR) and Hearing Aid Compatibility (HAC), can be acquired through a single broadband

simulation process. Compared to a frequency-domain solver which requires multiple sim-

ulation runs to acquire a broadband response, the time-domain simulation capability of

the FDTD method is particularly beneficial for a multi-band antenna design. In addition,

compared to the boundary element method (e.g., the method of moments), the FDTD method

(a volume-discretization method) tends to be more efficient for complex structure with inho-

mogeneous mediums (e.g., with device plastic housing, human head and hand phantoms).

The aforementioned factors render the FDTD time-domain solver a suitable candidate for the

computer-automated optimization of mobile phone antennas.

6.2.2 Genetic Algorithms and Network Distributed Optimization

Optimization algorithms such as the Genetic Algorithms (GAs) have been experimentally ap-

plied to antenna design in the past decade [44, 46, 47, 117, 121, 122]. With the advancement of

computer hardware such as multi-core CPUs and GPUs, coupled with efficient computational

electromagnetic modelling techniques, complex antenna optimization problems can now be

solved efficiently. GAs belong to a particular class of evolutionary algorithms which utilize

techniques inspired by evolutionary biology [45]. It was formally introduced in the 1970s and

has since been widely used to optimize antenna and other microwave structures. Even though

GAs are known to be computationally costly, the method becomes increasingly attractive

for complex optimizations due to the continuing price and performance improvements of

computer systems. GAs work very effectively on combinatorial problems and are less sus-

ceptible to pitfalls such as stuck at local optima than the traditional algorithms, e.g., gradient

search methods. In addition, GAs are more suitable for an optimization task with unknown

suboptimal initial parameters.
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When a GA is applied to an optimization task, the problem is structured into a population

of abstract representations (known as chromosomes) of candidate solutions (known as indi-

viduals). These candidate solutions are to be evolved towards optimum solutions. Typically,

solutions are represented in binary forms as strings of 0s and 1s. The evolution normally

initiates from a population of stochastically generated individuals and occurs in generations.

In each generation, after evaluating the fitness of every individual in the population, several

individuals are chosen from the current population based on their fitness and then modified

(mutated) to create a new population. The new population is used in the next iteration of the

algorithm. The optimization process terminates when either a predefined maximum number

of generations has been produced or a satisfactory fitness level has been achieved for the

population.

Based on GA’s unique evolution-like optimization process, parallelization is realized in the

FDTD solver [48] by utilizing network clustered computer systems. In general, the chromo-

somes from a population are grouped and evenly distributed to multiple computer systems.

Each computer will then solve for the fitness values of the assigned individuals. A master

computer collects all the fitness information at the end of each generation cycle and cre-

ates the next population based on this information. As a result, the optimization time is

reduced proportionally by the number of computer systems utilized. This study focuses on

the assessment of the suitability of GAs (with network parallelization) in conjunction with the

FDTD method for mobile device antenna design. The research objective is to validate that the

combination of GAs with FDTD method provides promising practical performance in terms

of simulation time and optimization result.

6.2.3 Antenna Optimization Methodology

In a mobile phone, the antenna is one of the key components that has direct impact on

product functionality and user experience. A poorly designed mobile phone antenna could

cause shorter battery life, inadequate signal coverage and frequent call drops. A mobile

phone antenna design cycle consists of initial concept validation, prototyping and numerous

optimization iterations based on the product’s mechanical and electrical design changes.

The traditional optimization process requires an antenna engineer to tweak the antenna

design and matching circuit for optimum performance. This approach demands engineering

expertise, measurement equipments (e.g., vector network analyzer, anechoic chamber) and

hours of measurement time. In light of the ever shortening design cycle, a computer-aided

antenna optimization approach serves as an important complement to the traditional method.

Antenna optimization normally focuses on tuning the physical dimensions of an antenna

(e.g., the length of radiator element, distance to ground plane, etc.) to achieve bandwidth and

efficiency requirements. Performing such optimization iterations in a simulation environment

demands a proper choice of optimization goals and variables. On the employed simulation

platform, the embedded optimization module allows its user to perform optimization with an
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arbitrary number of parameters and a combination of goal functions with different weights.

Far-field and near-field parameters such as S11, TRP, SAR, HAC etc. are offered as antenna

optimization goals. Since the optimization time is exponentially proportional to the number

of variables to be optimized, the antenna parameters to be included should be carefully

identified based on their sensitivity and impact to the overall design.

6.3 Antenna Models

In this study, a bar type mobile phone (see Figure 6.1) is analyzed. This mobile device structure

incorporates several challenges faced in a mobile phone antenna design: low profile, short

chassis and close proximity to electrical components. To establish its corresponding numerical

model, a highly detailed CAD database of the phone is imported into the simulation platform.

The components with dimensions significantly smaller than the wavelength of the highest

frequency of interest are neglected. The entire CAD phone consists of over two hundred parts,

providing a “near final hardware” simulation model.

Figure 6.1: The mobile phone model employed in this study: the photograph of the actual
phone (far left) and the CAD derived model.

It is known that the radiation characteristics of a mobile phone are better understood and

described by considering the antenna element, the printed circuit board (PCB) and the metal

chassis frame as a single radiating structure [54]. However, in this study, only the antenna is

considered for optimization since for industrial products, form factor and antenna volume

are usually locked down in the initial stage of development. The original antenna design

for the selected phone model is a folded monopoles antenna (FMA) as shown in Figure 6.2.

Alternative antenna designs are realized in the same volume (45 mm × 14.5 mm × 8 mm)

occupied by this antenna. The electrically conductive components near to or within the

assigned antenna volume include polyphonic speaker, metal screws, battery and metal battery

door. No matching circuit is considered in this evaluation, i.e., the study is conducted purely

on the assessment of antenna performance. The antennas are designed to operate in the
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frequency bands of GSM850, GSM900, DCS1800 and PCS1900, covering frequencies from

824 MHz to 960 MHz and from 1710 MHz to 1990 MHz. In addition to the folded monopoles

antenna design, the antenna types investigated in this study are the Planar Inverted F Antenna

(PIFA) [123] (see Figure 6.3) and the Folded Inverted Conformal Antenna (FICA) [124] (see

Figure 6.4). These antenna designs have been widely implemented in commercial mobile

phones and their respective design methodology has been well documented [54].

6.3.1 Folded Monopoles Antenna (FMA)

This antenna structure is derived from the Inverted L Antenna [54], which is essentially a

monopole antenna with its radiator arm bent parallel to the printed circuit board (PCB). By

incorporating two branch arms as shown in Figure 6.2, two resonance modes can be excited

to cover the required frequency bands. The attainable bandwidth of a FMA largely depends on

its distance to the ground plane (PCB and metal chassis). To realize an antenna-to-ground

distance, a 45 mm × 12 mm “ground clearance area” is implemented on the PCB by removing

all conductive layers in this clearance region. The resonances are tuned mainly by adjusting the

lengths of the arms and the coupling between them. The FMA is relatively easy to implement

due to its simple construction in which antenna tuning can be achieved by adjusting the

lengths of the branch arms and the gaps between them. However, a matching circuit is crucial

for such design as the antenna impedance exhibits strong capacitive characteristic due to the

parallel radiator section.

Figure 6.2: The Folded Monopoles Antenna (FMA).

6.3.2 Planar Inverted F Antenna (PIFA)

The Inverted F Antenna (IFA) [54] is a variant of the monopole antenna similar to the Inverted

L antenna. The antenna element is folded down to be parallel with the ground plane. A short

circuit stub is introduced to provide inductive matching to the structure and this compensates

the capacitive input impedance caused by the parallel section. The PIFA can be considered as

an Inverted F Antenna (IFA) with the wire radiator element replaced by a plate to expand its
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bandwidth. The input impedance of a PIFA can be tuned to achieve an appropriate value and

matched to the load impedance (i.e., usually at 50 Ω) without using any additional matching

circuit. This characteristic is known as self-matching [49]. To obtain a desired resonance and

bandwidth, various parameters of PIFA are available for tuning. In general, a PIFA design

focuses on the following parameters: the locations of the feed pin and short-circuit stub, the

antenna patch-to-ground-plane distance (antenna height), and the design of the slot pattern.

The U-shape slot as shown in Figure 6.3 produces two arms on the patch. The longer arm

governs the GSM band (i.e., 824 to 960 MHz) resonance and the shorter arm determines the

DCS/PCS band (i.e., 1710 to 1990 MHz) resonance. The resonances can be tuned by adjusting

the lengths and widths of these arms. A “ground clearance area” is also introduced in the PIFA

design to broaden the achievable bandwidth by enhancing the fringing field effect.

Figure 6.3: The Planar Inverted F Antenna (PIFA).

6.3.3 Folded Inverted Conformal Antenna (FICA)

The Folded Inverted Conformal Antenna (FICA) [124] is a multiple-resonance antenna which

generates different resonance modes based on the radiating mechanisms of its physical

construct. It offers three resonance modes, namely the “common mode”, the “differential

mode”, and an additional “slot mode” created by the folded slot as shown in Figure 6.4. A FICA

antenna exhibits broad bandwidth coverage for the DCS/PCS bands by having dual resonance

modes present across the 1710-1990 MHz range. The unbalanced feeding structure comprises

of one feed stub and one short-circuit stub that are oriented symmetrically with respect to

the center of the ground plane. It is more challenging to realized a FICA design compared

to other two antenna designs due to its multiple-resonance characteristics. The “differential

mode” and “slot mode” must be tuned properly to achieve usable DCS/PCS band resonance.

In general, the parameters considered for the tuning of a FICA design include the followings:

the distance between the feed and short-circuit stubs, the length and width of the slot, and

the antenna height (i.e., the distance from the antenna patch to the nearest ground plane).

Two “ground clearance” regions are implemented in the FICA design following its symmetrical

structure.
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Figure 6.4: The Folded Inverted Conformal Antenna (FICA).

6.4 Parametrization and Optimization

6.4.1 Antenna Modelling and Parametrization

An efficient antenna optimization scheme is initiated by identifying the most critical antenna

parameters, e.g., feed and ground pin locations in the case of a PIFA design. The antenna

elements subjected to optimizations are modelled as parametrized objects as shown in Figure

6.5 for the PIFA design. In this design, the parameters selected for optimization include the

dimensions of the U-shape slot and the distance between the feed and ground pins. These

are the critical parameters related to the antenna impedance and resonant frequency. Due to

the difference in design complexity for each antenna structure, the number of parameters to

be included in the optimization process varies for each design. In this study, 5 optimization

parameters are selected for the FMA design, 8 parameters for the PIFA design and 9 parameters

for the FICA design. Since the overall optimization time is exponentially proportional to the

number of variable parameters and their resolutions (i.e., the number of variants in the

parameter range), a well-planned setting allows fast convergence to target goals without

sacrificing the best available solution.

Figure 6.5: The parametrization configuration for the optimization of the Planar Inverted F
Antenna (PIFA) design.

125



Chapter 6. Mobile Device Antenna Optimization with Genetic Algorithms

6.4.2 Optimization Process

The numerical optimizations are performed in two stages. In the first stage, optimizations

are carried out for the mobile phone antennas in a free space environment and initiated from

arbitrary antenna geometries. The parametrized antennas are simulated targeting a S11 of

-5 dB at band edges which serves as the primary goal for a quad-band operation covering

the GSM850, GSM900, DCS1800 and PCS1900 frequency bands. The secondary goal targets

minimum field intensity above the acoustic point for the HAC compliance. Subsequently,

the optimized antenna geometries are subjected to a head-and-hand phantom loading en-

vironment to evaluate their performance in real usage conditions. A homogeneous Specific

Anthropomorphic Mannequin (SAM) head phantom and a CTIA-compliant anatomical hand

model as shown in Figure 6.6 are employed. SAM Head phantom cheek placement and

CTIA-compliant mono-block hand grip are considered. The dielectric properties of the head

and hand phantoms, given in Table 6.1, are based on the human tissue measurements data

described in [114] and [125], respectively.

The second stage of the optimization aims at rectifying the detuning effect when the mobile

phone is placed in close proximity to the head and hand phantoms. The optimization for

the SAR compliance is also introduced in the head-only condition (i.e., without the hand

phantom) by considering the minimum achievable SAR value as a secondary goal (i.e., with

less weight than the primary reflection coefficient goal). For the optimization (i.e., reduction)

of the head-and-head loading effect, the optimization iterations can be significantly reduced

by using the optimized antenna geometry from the free space case as the starting point since

the dynamic range of parameter sweep can be reduced considerably.

Figure 6.6: The SAM head phantom cheek placement and a CTIA-compliant hand phantom
grip for the investigated mobile phone.
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Table 6.1: The relative permittivity εr and conductivity σ (S/m) of the SAM head and hand
phantoms.

Dielectric Property Head Hand

εr at 900 MHz 41.5 30
σ at 900 MHz 0.97 0.62
εr at 1800 MHz 40 27
σ at 1800 MHz 1.4 0.99

6.5 Optimization Results and Discussions

6.5.1 Radiation Performance in Free Space

The optimizations are successfully performed for the antenna designs in free space. The

optimized antenna structures achieved the desired bandwidth coverage for a quad-band

operation following the predefined reflection coefficient goal. The S11 plots of the optimized

antennas are shown in Figure 6.7. The TRP values of the transmit channels for the respective

frequency bands are averaged based on the conducted power of 33 dBm (for GSM850/GSM900)

and 30 dBm (for DCS1800/PCS1900) and presented in Figure 6.8. From the bandwidth and

radiation performance requirement aspects, all three designs serve as suitable internally

embedded antennas for the selected bar type phone model.

Figure 6.7: The antenna S11 of the optimized antennas in free space.

In Figure 6.9, the PIFA geometries before and after the free space optimization are presented

together with the total fitness plot. In Figure 6.10, the corresponding antenna S11 is presented.

As observed in the fitness plot, the first 100% fitness occurred after approximately 70 iterations.

The optimization module was configured to continue through the entire generations even after

achieving the first 100% fitness. This ensures the coverage of all available optimum solutions.

All simulated geometries and results are automatically recorded for further evaluation.
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Figure 6.8: The band-averaged total radiated power values of the optimized antennas in free
space.

Figure 6.9: The PIFA geometries before and after optimization with the total fitness chart.
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Figure 6.10: The antenna S11 of the PIFA design in free space before and after optimization.

Figure 6.11: The band-averaged total radiated power values of the optimized antennas with
SAM head phantom only.

6.5.2 Radiation Performance with Head and Hand Phantoms

Frequency detuning often occurs for the antenna S11 when a mobile phone is held in an user’s

hand and placed next to the ear. The antenna geometries optimized in the free space condition

are simulated with the SAM head and CTIA-compliant hand phantoms to evaluate the amount

of frequency detuning. Only the right-hand-side head-and-hand phantom placement is

investigated in this study. The band-averaged TRP values for the SAM head phantom alone

and the SAM head with hand phantoms are presented in Figures 6.11 and 6.12, respectively.

The degree of frequency detuning and the amount of power absorption vary for each antenna

design under the SAM head phantom loading condition. The PIFA design is selected to

demonstrate the optimization for the head-and-hand phantom loading condition, targeting
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the same S11 goal and optimum head-and-hand phantom TRP. By initializing the optimization

with the optimized antenna parameter values obtained in the free space case, the parameter

sweep range is reduced, hence allowing a shorter optimization convergence time. Upon the

completion of optimization, the frequency detuning effect is rectified as shown in Figure

6.13. The antenna band-averaged TRP under the head-and-hand phantom loading condition

enjoys an increase of up to 3 dBm for the GSM bands.

Figure 6.12: The band-averaged total radiated power values of the optimized antennas with
head-and-hand phantom loading.

Figure 6.13: The antenna S11 optimized against head-and-hand phantom frequency detuning
for the PIFA design.
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6.5.3 Specific Absorption Rate (SAR)

As mandated by the safety compliance for mobile phones, the Specific Absorption Rate (SAR),

defined as the rate at which energy is absorbed by the body when exposed to a radio frequency

(RF) electromagnetic field, is investigated for each optimized antenna design. The employed

mobile phone has an approximate size of 49 mm × 117 mm × 11 mm. This thin phone profile

brings the main current carrying components (e.g., the antenna element and PCB) close to

the user’s head. This could lead to a high SAR level as the absorption of RF energy in lossy

biological tissues is directly associated with the current distribution of the excitation source

[126]. The optimized antenna geometries which provide the lowest SAR values are selected for

comparison. The peak SAR values for the GSM900 and DCS1800 bands , averaged in a volume

of one gram of tissue according to the specification provided in [114], are normalized to the

conducted powers which are required to achieve equal TRP performance under the head-only

phantom loading condition and are presented in Figure 6.14.

The FMA design exhibits higher SAR in the GSM900 band compared to the PIFA and FICA

designs. As shown in Figure 6.15, the magnetic field distributions at 849 MHz (a frequency

point in the first transit band of GSM900) of the three antenna designs reveals higher current

concentration near the antenna element for the FMA design. The SAR hot spots (the red-

color squares) for all three designs are found near the navigation keypad region, where the

mobile phone touches the head phantom. These simulation results indicate that the choice of

antenna design presents a high impact on the resultant SAR performance. To reduce the SAR

value of a mobile phone, a variety of device parameters such as antenna location, phone length

and width, shielding and grounding of components, should be taken into consideration.

Figure 6.14: The peak 1-gram SAR values normalized to the conducted powers for equal total
radiated power under the SAM head phantom loading condition for the GSM900 and DCS1800
bands.
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Figure 6.15: The magnetic field distributions extracted at the frontal (keypad side) phone
surface at 849 MHz for the FMA (left), PIFA (center) and FICA (right) under the SAM head
phantom loading condition; the red-color squares indicate the SAR hot spot locations.

6.5.4 Hearing Aid Compatibility (HAC)

For hearing aid users, a transmitting mobile phone can cause annoying buzz noise in the hear-

ing aid unit due to the lower order harmonics generated by a pulse-like modulation scheme

employed by some communication systems (e.g., the Global System for Mobile Communica-

tions, GSM). To reduce the possible interference from a mobile phone to a hearing aid device,

a compatibility standard known as the Hearing Aid Compatibility (HAC) [115] is proposed to

limit the electromagnetic field intensity generated by a mobile phone. Since the introduction

of the HAC requirement by the U.S. Federal Communications Commission (FCC) in 2003,

mobile phone manufacturers are mandated to deliver a certain number of HAC-compliant

phone models to the U.S. market per annum. The HAC standard puts a threshold on the

near fields generated by mobile devices due to the potential electromagnetic compatibility

(EMC) problems between hearing aids and mobile devices. The electric and magnetic fields

are measured on a 5 cm × 5 cm area (HAC area), located 1.5 cm above and centered over the

mobile phone speaker point. The HAC area is divided into nine grids, and three contiguous

outer grids with the highest field strength can be excluded. The center sub-grid and three

contiguous outer grids which are not excluded must be common between the electric and

magnetic field measurements. The HAC rating given to a mobile phone is based on the worst

score across air interfaces, frequency bands, and channels.

The optimized antenna geometries which provide the lowest HAC field intensity values are

selected for comparison. The electric and magnetic fields (on the HAC area) of the investigated

antennas at 849 MHz and 1910 MHz are presented in Figures 6.16 and 6.17, respectively. For

the GSM900 band, the HAC field distributions are similar in all three antenna designs. A
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Figure 6.16: The HAC electric (upper row) and magnetic (lower row) field distributions at 849
MHz for the FMA (left), PIFA (center) and FICA (right).

Figure 6.17: The HAC electric (upper row) and magnetic (lower row) field distributions at 1910
MHz for the FMA (left), PIFA (center) and FICA (right).
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high electric field distribution is observed in the central grid, which is located near the PCB

edge where low current and high voltages are present. In contrast, HAC distribution patterns

vary significantly among different antenna designs for the DCS1800 band. This is mainly due

to the fact that the mobile phone ground plane (i.e., the PCB and metal chassis) acts as a

quarter-wave radiator element in the low cellular band and the entire phone structure behaves

as a half-wave dipole regardless of which antenna element is employed. However in the high

cellular band, the antenna element has a greater impact on the current flow excited on the

ground plane based on the antenna feed location and the current flow on the antenna patch.

As a result, different antenna design leads to distinct HAC patterns. In this study, the PIFA

design is found to offer favourable HAC performance in the high cellular band. It should be

noted that the current HAC compliance test judges the level of potential interference based

on the peak near field intensity generated by a mobile phone in free space. When a phone is

placed next to an user’s ear, the strong perturbation and absorption of the near field energy can

in fact cause higher near field intensity around the ear region (i.e., near the hearing aid device).

Hence, a revision of the HAC compliance test is recommended to consider the potential field

enhancement due to the presence of user head.

6.5.5 Computation Requirement and Optimization Time

A practical optimization process can be concluded when the first 100% fitness is achieved, in

this study the optimization was allowed to continue until all optimum antenna geometries

within the predefined parameter range are obtained. The numerical simulations are performed

on two workstations each equipped with a NVIDIA Quadro FX5600 GPU acceleration card.

The resulting grids for the mobile phone alone contain about 4 million FDTD cells, while the

grids for the phone with head and hand phantoms contain around 20 million cells. With GPU

acceleration, each broadband simulation (for individual antenna design) can be completed in

approximately 15 minutes (phone only) and 25 minutes (phone, head and hand phantoms),

respectively. The statistics concerning the computation performance of the optimization is

shown in Table 6.2. Based on the respective parametrization settings of the three investigated

antenna designs, the numbers of simulations required for a 100% fitness in the free space

condition and the head-and-hand loading condition are 100 and 50, approximately. This is

equivalent to a total of 22 hours of simulation time.

Table 6.2: Computation settings and optimization time requirement.

Free Space Head and Hand

Min. grid size (µm) 250 250
Computation domain 4 million cells 20 million cells

Simulation time ≤15 minutes ≤25 minutes
Total no. of simulations 100 50

Total simulation time 12 hours 10 hours
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6.5.6 Optimization Validation

The GA-optimized PIFA geometry is implemented in an actual prototype of the employed

mobile phone design. Due to the numerical uncertainties associated with the component

dielectric property and exact device geometry, approximately 5 MHz frequency detuning

occurs between the numerical and the physical models. This frequency detuning is rectified

by trimming the low-band and high-band radiator arms of the physical model. The adjusted

PIFA antenna is measured to obtain band-averaged TRP, peak spatial 1g SAR and HAC rating.

A comparison between simulation and measurement data shows approximately∆ 0.5 dBm for

TRP,∆ 0.2 W/kg for SAR and same rating (e.g., M4) for HAC. Hence, the GA-optimized antenna

structure is proven to be suitable for practical implementation.

6.6 Conclusion

In this chapter, the suitability of virtual prototyping and optimization for a mobile phone

antenna system design is investigated. Compared to the traditional development approach,

i.e., iterations of cutting and trimming the antenna elements, the FDTD-based simulation soft-

ware powered with genetic algorithms, GPU acceleration and cluster network parallelization

offers an excellent alternative for automated analysis and optimization. Three typical mobile

phone multiple-resonant antenna designs are numerically simulated and optimized for the

free-space, head-only and head-and-hand operating conditions. The antenna performance

with respect to Over the Air (OTA) communication capacity (i.e., the Total Radiated Power,

TRP), RF exposure limit (i.e., the Specific Absorption Rate, SAR) and device-to-device EMC (i.e.,

the Hearing Aid Compatibility, HAC) are optimized and compared among the investigated

antenna designs. The computational results reveal that in order to comply with the OTA,

SAR and HAC design requirements, the selection of a suitable antenna design with respect to

the target mobile device structure can be numerically determined based on the optimized

antenna performance.

The design characteristics of each of the investigated antenna structure is evaluated to facilitate

the selection of the optimization parameters. The final optimization results show that the

antenna of a complex commercial mobile device can be improved with respect to various

performance criteria in less than 24 hours; thus reducing substantially the development

time and improving the device quality during the development process. Computer-aided

optimization is proven to be effective and efficient in terms of cost reduction and design quality,

especially considering the increasing complexity of modern mobile phone architectures and

the reduced antenna volumes that must cover expanding frequency bands while achieving

TRP performance coupled with SAR and HAC compliances.
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7 Analysis and Design of Mobile Device
Antenna-Speaker Assembly

7.1 Introduction

With the rising trend of slim mobile device form factor, the efficient utilization of available

device volume for component packaging becomes essential. By integrating electronic com-

ponents such as speaker, vibrator, camera and microphone in the vicinity of an antenna

element, the antenna volume of a mobile device can be efficiently re-utilized. Among the

integrated components, an antenna-speaker combination is often employed [50–53]. Such

antenna-speaker integration, however, could lead to various Electromagnetic Compatibility

and Interference (EMC, EMI) issues, e.g., severe antenna radiation degradation. As a result,

the decoupling of antenna and speaker becomes a critical design requirement for an antenna-

speaker assembly in a mobile device. To address this problem, the Radio Frequency (RF)

characteristics of an antenna-speaker assembly must be closely analyzed.

In [55–58], antenna systems which incorporate integrated speakers have been studied. The

speakers in these studies are often modelled as simplified structures, e.g., floating metallic

blocks enclosed by dielectric frames. Such simplification corresponds to an idealistic design

scenario in which the speaker model represents an isolated non-resonant structure which

leads to antenna impedance mismatch and dielectric/ohmic loss to an antenna system. In a

practical product design, antenna-speaker isolation is often a non-trivial task. For instance,

a speaker design which works well in a particular antenna-speaker assembly (i.e., causes

negligible performance issues) could lead to significant performance degradation in another

assembly design. An additional practical issue is that mobile device manufacturers generally

require multiple component supply sources. While speakers provided by different suppliers

may exhibit very similar acoustic performance, they can be drastically different in terms of

their RF characteristics. This could lead to inconsistency in antenna radiation performance.

To overcome the aforementioned design pitfalls, it is imperative to gain the insights of antenna-

speaker interaction mechanisms and provide clear design guidelines to address the EMC and

EMI issues.
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A preliminary study of speaker RF resonance and its impact to antenna radiation performance

has been reported by us in [127]. In that study, the antenna radiation efficiency and speaker

resonance for the assembly of a single-resonant monopole antenna and a speaker were in-

vestigated. As a follow-up study, both simplified and detailed antenna-speaker assembly

models are analyzed in this paper based on numerical simulations and fixture measurements.

The detailed Computer-Aided-Design (CAD) speaker model employed in this study was de-

rived from a commercially available speaker design. This paper is organized as follows: first,

simplified speaker models are investigated with various single-resonant and dual-resonant

antenna designs to address the mutual coupling conditions in an intuitive manner. Next,

based on a detailed speaker model and a dual-resonant antenna system, simulations and

measurements are performed to analyze and verify the influence of critical design parameters

in a realistic design environment. The objective of this study is to provide practical design

guidelines to achieve cost-effective antenna-speaker co-existence and optimum antenna

radiation performance.

7.2 Background

7.2.1 Moving-Coil Speaker Model

A speaker is essentially an acoustic transducer which converts electrical signals to sound

waves. A dynamic moving-coil speaker is investigated in this study. As shown in Figure 7.1,

the employed speaker model consists of the following components: a voice coil (i.e., a multi-

turn coil), a diaphragm, a permanent magnet, spring contacts, yoke, top-plate and a frame.

The voice coil is made of copper (Cu), the frame is made of a plastic material, the permanent

magnet is constructed from neodymium magnet (NdFeB) and the yoke and top-plate are made

of ferromagnetic materials. In Table 7.1, a list of the RF conductivity and relative dielectric

constant values of the speaker components is presented. These values are provided by the

component suppliers.

Figure 7.1: The basic structure and components of the investigated moving-coil speaker
(components are not drawn to scale and plastic frame is not shown).

138



Chapter 7. Analysis and Design of Mobile Device Antenna-Speaker Assembly

Table 7.1: The conductivity (σ) and relative permittivity (εr ) of the speaker components

Component σ (S/m) εr

Voice Coil 5.7×107 -
Permanent Magnet 1.9×105 -
Top Plate and Yoke 9.3×105 -
Spring Contacts 4.7×105 -
Frame and Cover 2.0×10−3 2.5

To achieve a desirable audio performance, the voice coil of a speaker is typically designed

to resonate at around 700 Hz and has a corresponding resistance of about 7 Ω. The voice

coil is constructed by winding a long and thin metal wire around the permanent magnet

core. The turns of the wire are stacked closely together and the insulation between turns

are provided by coating the metal wire with an extremely thin non-conductive layer. The

resistance and resonant frequency of the voice coil are mainly determined by wire radius, wire

length, number of turns and winding style. For the employed speaker model, the wire radius

and wire length are approximately 0.035 mm and 1.5 m.

When an alternating current passes through the voice coil, a time-varying magnetic field

is established. This magnetic field interacts with the static magnetic field produced by the

permanent magnet and results in a controlled movement of the voice coil. With a piece of

light-weight diaphragm supported by the voice coil, the vibration of the flexible diaphragm

leads to the production of sound waves. The voice coil ends are connected to two spring

contacts which lead to the "audio signal line-in" and the "ground" terminals, respectively.

Based on the audio circuitry design and speaker location associated with a particular device

platform, audio signal lines which connect the speaker terminals to the audio amplifier are

often implemented on a Printed Circuit Board (PCB).

7.2.2 Equivalent Circuit of an Antenna-Speaker Assembly

To illustrate the potential interaction between an antenna and a moving-coil speaker, an

equivalent circuit is presented in Figure 7.2. Both the antenna and the speaker are modelled

as series-resonant circuits. The quantity Ro denotes the source resistance, the quantities

Ra(Rs), La(Ls) and Ca(Cs) are the resistance, inductance and capacitance of the antenna (and

speaker), respectively. The equivalent circuit in Fig. 2 bears a close resemblance to the 2-

coil inductive link circuit employed in wireless power transmission (WPT) studies [128–130].
However, a fundamental difference is observed in the antenna-speaker circuit: the coupling

mechanism is no long limited to the mutual inductance between 2 resonators as in a WPT

system. Instead, both free-space coupling (capacitive and inductive), Mfs, and conductive

coupling (due to physical connections), Mcond, can be present. As a result, analytical circuit

modelling approach based on the coupled-mode theory [128] or the reflected load theory [129]
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cannot be applied without a significant simplification of the coupling mechanisms. In addition,

the self-resonance of a practical speaker and the mutual coupling coefficients (Mfs, Mcond) are

functions of the design characteristics (e.g., physical geometry and relative position) of the

respective antenna system and speaker model. Therefore, a detailed numerical modelling

can provide more insightful information pertaining to the exact coupling mechanisms in a

realistic design environment.

Figure 7.2: The equivalent circuit of a single-resonant antenna-speaker assembly, the mutual
couplings are classified as free-space and conductive couplings.

7.2.3 Mutual Coupling and EMC/EMI Issues

In an antenna-speaker assembly, a speaker is typically mounted in an antenna support frame

such that the frame also serves as an acoustic chamber. As a result, the distance between the

antenna element and the speaker can be extremely close. Such design requirement inherently

leads to difficulty in achieving RF isolation. At radio frequency, due to skin effect, proximity

effect and parasitic capacitance, a moving-coil speaker becomes a lossy and self-resonant

structure. Hence, unlike parasitic elements which are introduced for antenna bandwidth

enhancement [131], a speaker exhibits practically no radiation capability at high frequency.

As a speaker is designed to be an audio transducer, its RF characteristics have not been well

quantified. Based on practical design observations, several EMC and EMI issues associated

with antenna-speaker integration are summarized as follows: (1) In the strong-coupling

regime, detuning of antenna impedance match and/or degradation of antenna radiation

efficiency could occur. (2) Spurious interference could be coupled through the speaker to

the antenna during the RF signal reception stage. This would lead to desensitization (i.e., a

reduction of RF receiver radiated sensitivity). (3) The audio performance of a speaker can also

be affected by the antenna-speaker coupling. A speaker could pick up unwanted RF energy and

produce audible buzz. This is particularly problematic for a mobile communication system

which utilizes packet burst transmission, e.g., a Global System for Mobile communications

(GSM) system. The aforementioned EMC and EMI issues can be suppressed with a properly

devised antenna-speaker integration. In this study, the design objective is focused on the

preservation of antenna radiation efficiency.
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7.2.4 Existing Design Techniques and Limitations

Various antenna-speaker assembly design techniques have been proposed recently. In [132],
decoupling through RF filter is suggested. Prevention of conductive coupling can be achieved

by introducing filters at the speaker terminals to block RF energy from entering the voice

coil through the PCB ground. The filter configurations include parallel-connected capacitor

(i.e., RF bypass), series-connected inductor (i.e., RF block), frequency-selective filter (e.g.,

tank circuit) and RF ferrite beads. These RF filers can be positioned inside or outside of the

speaker box. Caution must be exercised while selecting the appropriate filter components. For

instance, a series-connected inductor must exhibit low Direct Current (DC) resistance such

that it does not significantly alter the voice coil resistance at the audio frequencies. It should

be noted that the filtering technique only addresses conductive coupling issues. However, in a

practical design environment, capacitive and inductive coupling could also occur.

A decoupling technique which utilizes variable voice coil connector length is disclosed in

[133]. The resonance generated by the speaker, which falls in the mobile device operating fre-

quency range, is identified as the source of antenna performance deterioration. The proposed

technique relies on varying the electrical length of the voice coil connector in order to shift the

resonance frequency of the speaker. It should be noted that unlike the speaker type described

in [133]which utilizes external voice coil connectors, the investigated speaker model employs

internal voice coil connectors. This implies that for the latter, the length of the voice coil

connector cannot be conveniently varied. To apply the aforementioned design techniques, a

prerequisite is the speaker resonance characteristics. Analyses are performed in Sections 7.3

and 7.4 to determine the influence of the voice coil connector length, speaker location and

antenna design on the antenna radiation performance and the associated speaker resonance

frequency.

7.3 Numerical Analysis of a Simplified Speaker Structure

In this section, the antenna mismatch and radiation performance of an antenna-speaker

assembly model is numerically investigated with simplified speaker structures. The analysis

is focused on the following design parameters: antenna type, speaker position, voice coil

connector length and mutual coupling mechanisms.

7.3.1 CAD Model and Simulation Tool

A Computer-Aided-Design (CAD) speaker model with detailed component dimensions based

on a practical moving-coil speaker design is employed in this study. The overall size of the

speaker is 18 mm × 13 mm × 5 mm. As shown in Figure 7.3(a), the speaker model is mounted

on a single-ground-layer 60 mm × 110 mm × 1 mm FR4 substrate which represents the PCB

of a mobile device. The speaker is secured within a support frame with a dimension of 60

mm × 15 mm × 6 mm. The thickness of the frame is 1 mm. The left, center and right speaker
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Figure 7.3: (a) A printed circuit board with a center-positioned speaker and an antenna-
speaker assembly with (b) a PIFA, (c) a conformal loop antenna and (d) a vertical PIFA, the
speaker is conductively-coupled to the PCB ground.

positions are indicated in Fig. 7.3(a) and this orientation definition is applied throughout this

study. The material dielectric property values of the speaker components are assumed to be

non-dispersive in the investigated frequency range and follow the values listed in Table 7.1.

The antenna patch and PCB ground plane are modelled as copper. The material property for

the antenna support is the same as the speaker frame. The PCB substrate (FR4) has a relative

permittivity value of 4 and a conductivity value of 0.002 S/m.

In this section, the multi-turn voice coil model is replaced by a single-turn loop model. This

loop occupies the same overall physical volume as the multi-turn voice coil. Even though

the resonance characteristics of a single-turn loop (e.g., resonance frequency, quality factor

and ohmic loss) are different from a multi-turn coil, a simplified model can be employed to

investigate the coupling mechanisms with minimum computational resource. Five speaker

models, namely Speaker 1 to Speaker 5, are employed based on five different voice coil

connector lengths. The overall connector length is incrementally reduced from Speaker 1

to Speaker 5 by approximately 6-8 mm from one speaker to the next. Besides the connector

length, the remaining components are identical among the speaker models. A Finite Difference

Time Domain (FDTD) based commercial electromagnetic computational software SEMCAD-X

14.8 [48] is employed for all the numerical simulations.
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7.3.2 Conductively Coupled or Isolated Speaker

In this section, the conductive coupling (Mcond) scenario (due to the physical connections

between the speaker terminals and PCB ground) and the terminal isolated (Mfs) scenario

is investigated. As shown in Figure 7.3(b) to 7.3(d), three 1.5 GHz single-resonant antennas

mounted on a single-layer PCB are considered. In Figure 7.3(b), a planar inverted-F antenna

(PIFA) [134] is employed. The PIFA patch is centred along the width of the antenna support

with the feed line on the right and the ground line on the left. A loop antenna with a 1 mm

patch width is presented in Fig. 3(c) while a vertically-oriented PIFA with a 10 mm PCB ground

clearance is shown in Fig. 3(d). The speaker terminals are either conductively coupled to

the PCB ground through the spring contacts or isolated from the PCB. In the isolated case,

each spring contact is connected to a 2 mm × 2 mm floating conductive pad with a 1 mm gap

clearance from the PCB ground. The input resistance of an audio signal line-in terminal is

typically around 10 Ω, in this study, 0 Ω (i.e., short-circuit to the ground) is assumed when

the conductively-coupled scenario is investigated. In addition, the resistance and electric

delay introduced by the audio signal lines are neglected, i.e., the speaker spring contacts are

assumed to be directly connected to the respective audio circuitry terminals.

As shown in Figure 7.4(a), a terminal-isolated center-positioned speaker leads to about 50

MHz frequency detuning for the PIFA antenna. Negligible radiation loss (≈5%) is observed

in the isolated case. With a conductively-coupled speaker, the PIFA antenna mismatch be-

comes more severe (see Fig. 4(b)). This indicates a stronger coupling between the antenna

and speaker. Furthermore, a parasitic resonance occurs near the antenna resonance in the

conductively-coupled case. The parasitic resonant frequency behaves as a function of the

voice coil connector length. The shorter the connector length, the higher the resonance. For

the loop antenna, parasitic resonances similar to the PIFA case are observed at approximately

the same frequency locations while the antenna mismatch becomes less severe due to the

reduced antenna-speaker overlap area. For the vertical PIFA, the parasitic resonance frequency

is shifted significantly compared to the PIFA and loop antennas. The computational results

indicate that with a terminal-isolated speaker, no parasitic resonance or radiation degradation

occurs in the investigated frequency range (i.e., Mfs is negligible). With a conductively-coupled

speaker, the parasitic resonance frequency can be tuned by varying the voice coil connector

length or the antenna design.

In Figure 7.5(a) and Figure 7.6(a), the antenna radiation efficiency of the PIFA and vertical PIFA

designs with a center-positioned conductively-coupled speaker are presented. The speaker

input reactance at the left terminal (with the right terminal grounded to the PCB and the

antenna feed terminated at 50 Ω) are shown in Fig. 5(b) and Fig. 6(b), respectively. The loop

antenna case is not presented because the results are practically the same as the PIFA case.

From the efficiency and reactance plots, it is observed that when a series resonance occurs at

the speaker terminal, a significant deterioration of antenna radiation efficiency (≈70-90%) is

encountered near the speaker resonance frequency. It should be noted that this resonance

frequency is different from the self-resonance frequency of a speaker structure (which is
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Figure 7.4: The antenna S11 for (a) PIFA with a center-positioned terminal-isolated speaker, and
(b) PIFA , (c) loop antenna and (d) vertical PIFA, each with a center-positioned conductively-
coupled speaker.
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Figure 7.5: (a) The radiation efficiency of the PIFA with a center-positioned conductively-
coupled speaker and (b) the voice coil reactance of the respective speaker.

Figure 7.6: (a) The radiation efficiency of the vertical PIFA with a center-positioned
conductively-coupled speaker and (b) the voice coil reactance of the respective speaker.
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independent of the source of excitation). Unlike a two-port configuration where parameters

such as the coupling coefficient (e.g., S21) can be employed as a figure of merit for coupling

and isolation, an antenna-speaker assembly is a one-port device which provides no clear port

definition for the speaker terminals. Hence, the conductively-coupled speaker resonance in

this study is approximated by the input impedance at one excited speaker terminal while

keeping the other terminal at PCB ground potential.

7.3.3 Capacitively Coupled Speaker

In this section, two dual-resonant antenna designs and a dual-ground-layer PCB are employed

to represent a more practical design environment. As shown in Figure 7.7 and Figure 7.8, dual-

resonant (i.e., 820-960 MHz, 1719-1990 MHz, S11 ≤ -5dB) PIFA and Folded Inverted Conformal

Antenna (FICA)[135], are considered. The two PCB ground layers are electrically connected

through multiple vias. The simulations of the conductively-coupled speaker scenario yield

similar results as the single-resonant antenna case, i.e., antenna radiation deterioration occurs

near the parasitic resonance frequency. The investigation is extended to a capacitively-coupled

speaker case in which the speaker-PCB configuration is similar to the terminal-isolated case

except that a capacitive coupling exists between the lower PCB ground and the speaker pads.

This coupling structure corresponds to a practical design scenario in which the ground plane

beneath the speaker terminals cannot be removed due to certain design constraints (e.g., an

electronic component which requires shielding or grounding is mounted on the opposite side

of the PCB directly below the speaker terminals).

In the capacitively-coupled case, one speaker model (Speaker 1) and three speaker locations

(center, left and right) are investigated. As shown in Figure 7.8(b), a capacitively-coupled

speaker is also capable of introducing noticeable parasitic resonance in the antenna S11. On

the other hand, a parasitic resonance could merge with the antenna resonance and become

unnoticeable from the antenna S11 (see Figure 7.7(b)). It is observed that the low-band (820-

960 MHz) antenna radiation efficiency is negligibly affected by the speaker. The high-band

(1710-1990 MHz) radiation efficiency is affected under specific coupling conditions. The

high-band radiation efficiency due to different coupling conditions and speaker locations

are presented in Figure 7.7(c) and Figure 7.8(c). In the PIFA case, significant radiation de-

terioration occurs with the left-positioned capacitively-coupled speaker while in the FICA

case, deterioration occurs when a capacitively-coupled speaker is center-positioned. This

indicates that, similar to the conductively-coupled case, a capacitively-coupled speaker is

capable of achieving parasitic resonance and causing significant radiation degradation to

an antenna system. The speaker resonance frequency is dependent on the antenna-speaker

assembly configurations, e.g., speaker position, PCB layout and antenna structure. The simu-

lations of the other four speaker models (Speaker 2 to Speaker 5) reveal that varying the voice

coil connector length has the same frequency-shift effect on the speaker resonance as the

conductively-coupled case.
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Figure 7.7: (a) The dual-band PIFA antenna with a center-positioned speaker, (b) PIFA an-
tenna S11 and (c) antenna radiation efficiency due to a conductively-coupled (grounded) or a
capacitively-coupled (floating) speaker.

To analyze the mechanisms behind an antenna radiation degradation, the near-field distri-

butions of the FICA antenna system are investigated. In Figure 7.9 and Figure 7.10, the slice

views of the peak root-mean-square (RMS) electric field (E-field) and magnetic field (H-field)

distributions of the FICA antenna at 1875 MHz are presented for the capacitively-coupled

and conductively-coupled cases, respectively. The frequency 1875 MHz is selected because a

significant radiation degradation is observed (see Figure 7.8(c)) at this frequency point. As

shown in Figure 7.9, the peak E-field in the capacitively-coupled case occurs at the speaker

terminals and within the speaker box while the peak E-field in the conductively-coupled case

appears on the FICA antenna element. This shows that RF energy is coupled through the

speaker pads from the PCB ground to the speaker when capacitive coupling is present at the

speaker terminals. Similarly, as shown in Fig. 10, the peak H-field is observed around the voice

coil in the capacitively-coupled case while a H-field distribution equivalent to the case of no

speaker presence occurs in the conductively-coupled case.
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Figure 7.8: (a) The dual-band FICA antenna with a center-positioned speaker, (b) FICA an-
tenna S11 and (c) antenna radiation efficiency due to a conductively-coupled (grounded) or a
capacitively-coupled (floating) speaker.

Compared to the conductively-coupled case, the peak RMS field value in the capacitively-

coupled case is 15 dB higher for the E-field and 18 dB higher for the H-field, respectively. The

enhancement of near field intensity serves as a clear indication of strong mutual coupling

and the presence of speaker resonance. At 1875 MHz, the total time-averaged stored energy

in the FICA antenna system with a center-positioned capacitively-coupled speaker is 6 dB

higher than the conductively-coupled speaker case. This indicates that a resonant speaker

disrupts the near fields of an antenna system by causing significant field concentration within

the speaker structure. The energy stored in the speaker becomes part of the non-radiative

energy which “suck up” the RF energy that could potentially be radiated away by the antenna.

In addition, the increase of the dielectric and ohmic loss in the speaker components also

contributes to radiation degradation.
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Figure 7.9: The RMS E-field distributions of the FICA at 1875 MHz with a center-positioned
(a) capacitively-coupled speaker and (b) conductively-coupled speaker, the E-field values are
normalized to the peak value in the capacitively-coupled case.

Figure 7.10: The RMS H-field distributions of the FICA at 1875 MHz with a center-positioned
(a) capacitively-coupled speaker and (b) conductively-coupled speaker, the H-field values are
normalized to the peak value in the capacitively-coupled case.

7.4 Investigation of a Practical Antenna-Speaker Assembly

In this section, a detailed speaker model (with multi-turn voice coil) based on a practical

speaker design is first investigated through numerical simulations. Next, prototypes of a

PIFA-speaker assembly are constructed by incorporating speakers with different voice coil

connector lengths and positions. The antenna radiation efficiency and speaker impedance of

these fixtures are measured to validate the findings from the simulation results.
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7.4.1 Numerical Simulation of a PIFA-Speaker Assembly

As shown in Figure 7.11(a), a dual-resonant PIFA antenna is simulated with a detailed speaker

CAD model. Instead of the simplified single-turn loop employed in the previous section,

a multi-turn voice coil (44 turns, 0.035 mm wire radius and 1.5 m long) is modelled. The

conductively-coupled and terminal-isolated cases are simulated with respect to the center,

left and right speaker positions (see Figure 7.3(a)). The simulated antenna S11, radiation

efficiency and speaker impedance are presented in Figure 7.12. In Figure 7.12(a), it is observed

that the amount of antenna frequency detuning is associated with the relative position of

the speaker. For instance, less high-band resonance shift occurs when the speaker is right-

positioned (i.e., closer to low-band arm and away from high-band arm). In Figure 7.12(b),

the antenna radiation efficiency curves confirm that a variable speaker location corresponds

to a tunable coupling between the antenna and the speaker. The impedance of a center-

positioned conductively-coupled speaker extracted at the left speaker terminal is shown in

Figure 7.12(c). Two series speaker resonances occur within the antenna operating frequency

bands; one at around 1000 MHz and another one at around 1900 MHz. With reference to the

radiation efficiency curves, it is clear that a series speaker resonance, by itself, does not warrant

radiation degradation. A strong mutual coupling (Mfs, Mcond) serves as an additional criterion.

To predict radiation deterioration prior to a radiation efficiency assessment, the antenna

input impedance should be analyzed. As shown in Fig. 12(d), the variation of the PIFA input

impedance occurs only in the high frequency band; this serves as an indication of potential

radiation efficiency degradation due to a strong antenna-speaker near-field interaction.

Figure 7.11: (a) The CAD model of a PIFA-speaker assembly for numerical simulation and (b)
the corresponding physical model.
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Figure 7.12: The simulation results of (a) PIFA S11, (b) PIFA radiation efficiency, (c) speaker
impedance (R for resistance, X for reactance) and (d) PIFA input impedance with a center-
positioned terminal-isolated (floating) or conductively-coupled (grounded) speaker.
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7.4.2 Measurement of a PIFA-Speaker Assembly

As shown in Figure 7.11(b), the PIFA-speaker assembly model simulated in the previous

section is realized as a prototype fixture. Due to the complexity of a practical speaker structure

and the uncertainties associated with speaker component material dielectric properties, a

frequency shift between the simulated and measured results is expected [127]. As a result, the

measurements performed in this section aim at validating the trend of design characteristic

observed in the simulation results, instead of verifying the accuracy of the simulated models.

The antenna radiation efficiency with a conductively-coupled speaker and the corresponding

speaker impedance are measured. Five speaker designs (Speaker A to Speaker E), with voice

coil connector length variation similar to the simulated speaker models (Speaker 1 to Speaker

5), are employed. The speaker impedance measurement is performed on the left speaker

terminal with the right terminal short-circuited to the PCB ground and the antenna feed

terminated with a 50 Ω load. Three antenna support frames are constructed such that a

speaker can be fixed within the antenna chamber at the center, left and right positions.

The measurement results indicate that when a speaker is terminal-isolated, antenna radiation

performance varies only slightly (≈10%) among the different speaker models and locations.

Negligible radiation degradation is observed when compared to the antenna-only radiation ef-

ficiency. In Figure 7.13, the antenna radiation efficiency with the center- and right-positioned

conductively-coupled speakers are presented. The effects of the voice coil connector length

and speaker location become prominent in the conductively-coupled case. Significant effi-

ciency degradation occurs with the center-positioned Speaker C and Speaker D in the high

band when compared to the other speaker models. As shown in Figure 7.14, the degrada-

tion in the high band becomes even more pronounced for the left-positioned Speaker C and

Speaker D. In addition, a parasitic resonance is observed in the antenna S11 as shown in Figure

7.14(a), similar to cases shown in Figure 7.4 and Figure 7.8. This indicates a stronger mutual

coupling for the left-positioned case. It is due to the fact that the antenna feed and ground are

located on the left side of the structure. Hence, this region becomes the high current and low

impedance region. A conductively-coupled resonant speaker positioned within a high current

region will have the tendency to couple more RF energy.

The speaker reactance curves shown in Figure 7.14(d) indicate a gradual shift of the resonance

frequency towards the antenna operating frequency band (1710-1990 MHz), this corresponds

to the simulation results shown in Figure 7.5 and Figure 7.6. In addition, it is observed that

unlike the simplified single-loop case, the variation of the voice coil connector length does

not shift the resonance frequency in a predictable manner for the multi-turn voice coil. For

instance, the resonance frequencies of Speaker C and Speaker D are almost identical despite a 6

mm overall difference in the connector length. This serves as a clear indication that a simplified

voice coil model could not predict the impedance transformation of a complex multi-turn

coil. The measurement results of the PIFA-speaker assembly confirm the effects of speaker

location and voice coil connector length observed in the simulation results. Furthermore,

the measurement results indicate that optimum antenna performance can be achieved even
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Figure 7.13: The measurement results of PIFA radiation efficiency with a center-positioned
conductively-coupled speaker for (a) low band, (b) high band and with a right-positioned
conductively-coupled speaker for (c) low band and (d) high band.
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Figure 7.14: The measurement results of (a) PIFA S11, (b) PIFA radiation efficiency for the low
band, (c) PIFA radiation efficiency for the high band and (d) speaker coil reactance for the
high band, with left-located conductively-coupled speakers.
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with a conductively-coupled speaker. For instance, a conductively-coupled Speaker B results

in only 10% radiation efficiency degradation in the high band and 5% radiation efficiency

degradation in the low band, compared to the antenna-only case. This shows that even without

isolation, a non-resonant speaker does not introduce significant impact on the antenna

radiation performance. This design concept can be adapted together with the existing design

techniques, e.g., RF filtering and controlled voice coil connector length.

7.5 Summary and Proposed Design Guidelines

The antenna-speaker coupling characteristics derived from the simulation and measurement

results are summarized as follows:

• A completely isolated speaker (i.e., with negligible Mfs and Mcond) pose negligible impact

on antenna radiation efficiency regardless of the speaker impedance.

• The frequency at which radiation degradation occurs is closely associated with speaker

resonance, antenna design and available coupling mechanisms.

• A conductively-coupled or capacitively-coupled resonant speaker could lead to drastic

radiation efficiency reduction due to the non-radiative energy stored in the speaker.

• The mutual coupling coefficients (Mfs and Mcond) can be tuned by varying antenna type

and speaker location.

• The speaker resonance frequency can be effectively controlled by adjusting the voice

coil connector length.

• By tuning the speaker impedance, a conductively-coupled speaker can be employed

with minimum detrimental effect on the antenna radiation performance.

Based on the aforementioned coupling characteristics, practical design guidelines are pro-

posed as follows:

• An isolated (i.e., without conductive or capacitive coupling) speaker should be the

priority design goal. This can be achieved by introducing RF filters and removing any

potential capacitive coupling sources at the speaker terminals (e.g., PCB ground beneath

the speaker pads and audio signal lines).

• A non-resonant speaker due to a properly adjusted speaker impedance can be employed

under the capacitive or conductive coupling conditions without any RF filters. The

desirable audio frequency response and RF impedance of a speaker can be concurrently

achieved within a single speaker structure.
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• If capacitive coupling cannot be completely eliminated due to design constraints and

speaker resonance is encountered within the antenna operating frequency band, three

countermeasures can be applied:

1. adjust the voice coil connector length.

2. reposition the speaker.

3. alter the antenna pattern or employ a different antenna structure.

It should be noted that the audio signal lines can be considered as part of the voice coil

connector if the RF chokes are placed at the audio circuity terminals, instead of the speaker

terminals. In this case, adjusting the length of the audio signal lines serves the same purpose

as varying the voice coil connector length.

7.6 Conclusion

In this study, the design of an antenna-speaker assembly is investigated through numerical

simulations and prototype measurements. Based on the analysis, several critical design

parameters are identified. It is concluded that a speaker resonance in the antenna operating

frequency band or any potential mutual coupling mechanisms must be prevented to avoid

the enhancement of non-radiative RF energy which could lead to the degradation of antenna

radiation efficiency. Based on the simulation and measurements results, design guidelines are

proposed to achieve optimum antenna radiation performance without compromising speaker

audio performance for an antenna-speaker assembly. A cost-effective solution which requires

no RF filtering (i.e., less design effort and component counts) is revealed: a conductively-

coupled (i.e., speaker terminals directly connected to audio circuitry) non-resonant speaker

can be closely integrated with an antenna element with minimum detrimental effect on the

antenna radiation performance.
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8 Conclusions and Future Work

The research conducted in the framework of this thesis lead to the enrichment of existing

knowledge of low frequency exposure safety assessment, cross-frequency component integra-

tion and mobile device antenna optimization. For each research topic, the focus is placed on

critical open issues which were poorly or inadequately addressed within the literature in the

past. Based on the operating frequency range of the investigated wireless applications, the

content of this thesis can be structured into the following three research areas:

• Low frequency Electric and Magnetic Field Exposure Safety Assessment

• Mobile Device Antenna Optimization with Network-Distributed Genetic Algorithms

• Analysis and Design of Antenna-Speaker Integration

Being an industrial oriented doctoral thesis, topical issues related to the designs and opera-

tions of wireless technologies are investigated with emphasis on the practical applications

of computational electromagnetic techniques. The research results presented in this thesis

are primarily based on the analyses of complex electromagnetic environments performed

on a simulation platform (SEMCAD X) co-developed with our industrial partner Schmid &

Partner Engineering AG (SPEAG). The applied numerical techniques (e.g., the SPFE solver

for low frequency applications and the FDTD solver for high frequency applications) were

integrated in a single software platform to facilitate a smooth transition from one specific appli-

cation to another. Owing to the advancements in computer processing capability, anatomical

model segmentation and electromagnetic computational techniques, realistic models (e.g.,

a human body) and excitation sources (e.g., a wireless power transfer unit) were analyzed

with unprecedented accuracy and complexity. Such technological advancements present an

unique opportunity for novel scientific investigations which were absent prior to the work

of this thesis. In this chapter, summaries on the original research contributions and future

perspectives are presented and discussed.

8.1 Thesis Assessment

Among the various aspects of the investigated wireless applications, the achievements of this

thesis can be classified according to the following topics:
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• Revision Recommendations for the Existing Low Frequency Exposure Guidelines

• Exposure Safety Analysis for Emerging Wireless Technologies

• Virtual Prototyping of Antenna Optimization in a Complex Design Environment

• Design Guidelines for Cross-Frequency Component Integration

The detail assessments associated with each part are summarized and discussed below.

8.1.1 Recommendations for the Existing Low Frequency Exposure Guidelines

In Chapter 2, the review of existing low frequency exposure guidelines (ICNIRP and IEEE)

brought forward several research questions regarding the validity of exposure limits based on

outdated dosimetry data (especially for IEEE C95.6-2002 which was established 10 years ago).

To ensure that the scientific evidence employed by the aforementioned exposure guidelines

stay relevant with the state-of-the-art numerical dosimetry techniques, vigorous analyses

were conducted in the current study to provide an up-to-date database for uniform E-field

and B-field exposure scenarios.

By investigating simplified canonical models, some of the fundamental induction mecha-

nisms between a human body and external fields are outlined and proven to be critical for

the assessment of exposure thresholds. With the analysis of body posture effect on the in-

duced field intensity, an indispensable research foundation is paved for future investigations.

Critical revision recommendations are derived for the existing exposure guidelines to achieve

scientifically sound exposure limits.

8.1.2 Exposure Safety Analysis for Emerging Wireless Technologies

With the constant development and introduction of new wireless technologies, the demand

for novel exposure compliance assessment tailored for specific wireless application is on the

rise. To address public concern over the operation safety of one of the emerging low frequency

wireless technologies: wireless power transfer (WPT), practical and theoretical analyses of

WPT system exposure were conducted.

Through a collaboration with our industrial partners, a commercial close-range WPT unit

is investigated for the first time to determine the exposure compliance of such system with

respect to the published exposure guidelines. In addition to compliance assessment, the

induction characteristics of a human body are derived to facilitate an easy-to-adapt approach

which estimates the peak induced field intensity based on known system profiles. Furthermore,

the optimum WPT operating frequency range which leads to improved exposure compliance

(e.g., additional margin below stimulation or tissue heating thresholds) is determined to equip

the wireless power industry with an essential understanding of the frequency-dependence

effects. By providing the estimation of the maximum obtainable power in a mid-range WPT
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set-up based on exposure limits, this study also leads to a clear baseline for future mid-range

WPT implementations in terms of the theoretically achievable power limit with the presence

of a human body.

8.1.3 Virtual Prototyping of Antenna Optimization

To accelerate the optimization process of a mobile device antenna design, a computer-aided

numerical optimization scheme is favoured by the industry than the traditional empirical

optimization approach. To this aim, an antenna optimization approach based on network-

distributed generic-algorithms is examined with a detail numerical mobile phone model. By

identifying sensitive design parameters and utilizing a networked computer cluster, several

internal antenna designs are optimized with the identical goal of achieving OTA/SAR/HAC

standard compliance.

The numerical optimization analysis revealed several product development pitfalls, e.g., with

an ill-defined antenna structure, concurrent fulfillment of multiple standard requirements

become impractical due to the limitations imposed by the radiating mechanisms (e.g., high

SAR due to strong RF currents excited on the device chassis). In addition to reviewing the

practicability of antenna optimization by virtual prototyping, the research also leads to the

characterization of radiation performance based on antenna structural variations. The op-

timized antenna structure is validated with measurements and the proposed optimization

scheme is proven to be superior than empirical approach, i.e., with the possibility of achieving

optimization time inversely proportional to the number of employed simulation instances.

8.1.4 Design Guidelines for Cross-Frequency Component Integration

To address a frequently encountered design issue (i.e., radiation degradation) during a mobile

device antenna integration process, research is conducted based on a collaboration with

industrial partner to derive design guidelines for optimum antenna-speaker integration. The

coupling mechanisms between an electro-mechanical coil structure and a small antenna are

first determined with simplified and detail speaker coil models. The impacts of speaker coil

design and relative speaker location are analyzed with numerical modelling and validated

with hardware prototyping.

Based on the simulation results, the precise radiative energy dissipation mechanism, i.e.,

the concentration of reactive near fields within the voice coil, is identified. Following that,

the design parameters responsible for speaker harmonic resonance and inter-component

coupling are summarized. The outcome of this research is a systematic design guideline which

addresses individual integration stage and provides clear outlines of effective countermeasures

in a potentially hostile integration environment. This allows an efficient and cost-effective

integration process for antenna-speaker co-existence and optimum radiation performance.
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8.2 Perspectives

In this thesis, several aspects of the design and exposure safety of wireless technologies have

been addressed. Nevertheless, there are potential improvements and open issues that should

be further investigated.

8.2.1 Stimulation Threshold of Biological System

In addition to the revisions recommended in this thesis, other aspects of the published

exposure guidelines can be improved. Currently, the scientific evidence of stimulation thresh-

old is based on human volunteer experiments, numerical nerve modelling such as the spatially

extended non-linear node model (SENN model) and numerical dosimetry. Further research

in the nerve fibre stimulation threshold could be conducted to provide a better understanding

of the potential biological effects.

8.2.2 MRI Gradient Coil Peripheral Nerve Stimulation

The adverse biological effects experienced by a patient undergoing magnetic resonance

imaging (MRI) scan remains as an important safety issue. In addition to the tissue heating

effect (SAR) due to the RF coils, the potential peripheral nerve (and cardiac) stimulation due

to the exposure to intensive low frequency gradient fields should also be addressed. Further

research is required to understand the impact of gradient coil design and pulse sequence on

the stimulation threshold of a target patient.

8.2.3 Reduce the Exposure Level of a Wireless Power Unit

The emerging utilization of wireless power transfer will soon push the application from the

conventional low and medium power regime to higher power regime. Hence, the techniques

of exposure reduction is expected to be an important research direction with respect to safety

compliance. One of the potential solution is to direct the magnetic flux away from an exposed

body without affecting the fundamental power coupling mechanisms. Further research should

be undertaken to achieve a well balanced received power and induced field ratio.

8.2.4 Alternative Antenna Optimization Algorithms

Besides the Genetic Algorithms examined in this thesis, several alternative optimization

schemes should be investigated to understand the optimum choice with regard to specific

antenna design requirement. For instance, a gradient-based optimization approach can be

applied for optimization refinement after the initial local optimums were determined by GAs.
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