
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

Automatic Generation of Constructable Brick Sculptures

Romain Testuz, Yuliy Schwartzburg and Mark Pauly

École Polytechnique Fédérale de Lausanne, Switzerland

Figure 1: A demonstration of our method from start to finish. The LEGO Man is first voxelized into 1x1 bricks and the bricks are
merged respecting color. Then, the bricks are optimized for structure and extraneous bricks are removed. Finally, instructions
are produced and a LEGO model is built from the instructions.

Abstract
Fabrication of LEGO R© models in large scale requires careful pre-planning to produce constructable and stable
models. We propose a system that, starting with a voxelization of a 3D mesh, merges voxels to form larger bricks,
and then analyzes and repairs structural problems, finally outputting a set of building instructions. We also present
extensions such as producing hollow models, fulfilling limits on the number of bricks of each size, and including
colors. Results (both real and virtual) and timings show significant improvements over previous work.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

Introduction

The generation and rationalization of 3D models for fabrica-
tion has recently become a topic of great interest in the com-
puter graphics community. However, most fabrication meth-
ods still require the user to have expensive equipment such
as laser cutters or 3D printers. LEGO R©, a popular toy con-
struction system, is comparatively cheap and nearly ubiqui-
tous. However, building arbitrary 3D models out of LEGO
manually often involves significant trial-and-error. This pro-
cess requires approximating a 3D model out of a limited set
of pieces and ensuring the sculpture to be connected, stable
and constructable. The goal of this paper is to automatically
create the set of instructions for a LEGO model from a 3D
object representation. By doing so, we highly simplify the
task of building a large customized LEGO model.

The LEGO Group, the company that produces LEGO
toys, has twice openly presented this problem to the scien-
tific community–first in 1998 and later in 2001 [Pet01]. Our
approach is inspired by previous work [vZS08] in the sense

that the algorithm starts from the voxelization of a model
into the smallest possible bricks, namely the 1x1 bricks (see
Figure 2) and merges those to form larger bricks. However,
merging bricks greedily makes it highly unlikely that the
model is buildable or stable. To resolve this, we propose a
graph-based algorithm to ensure brick connections and re-
solve structural weaknesses. Furthermore, our method can
reduce the brick number by hollowing the model, allows the
user the specify limits on how many bricks of a certain type
can be used, and can even take into account the coloring of
bricks.

1. Related Work

After the LEGO Group proposed this problem, a first attempt
was done by a group of mathematicians in a one week work-
shop [GHP98]. They created a cost function for a simulated
annealing technique but they did not implement or test it.
The next attempt used evolutionary algorithms with a cost
function inspired from [GHP98]. The results describe the

c© The Eurographics Association 2013.



R. Testuz, Y. Schwartzburg & M. Pauly / Automatic Generation of Constructable Brick Sculptures

Figure 2: The set of legal bricks.

performance of the evolutionary algorithm itself (number of
generations before convergence, etc. . . ) but they do not re-
port whether this method can actually make a LEGO model
that is constructable [Pet01]. Moreover, the required time
that they report for optimization is 5 to 11 hours. Another
attempt was done using the beam search technique but there
is no data about experimental results [Win05]. Van Zijl and
Smal compare existing approaches and propose another ap-
proach based on cellular automata [vZS08]. They use a sim-
ilar merge/split formulation but use several heuristics rather
than a graph connectivity formulation. The reported results
have a long optimization time of about a few minutes and
there is no information on the solidity of the model. All
the above methods are based on the cost function proposed
by [GHP98]. [SPC09] looks into how to transform a mesh
into a LEGO representation but this is only meant for real-
istic 3D rendering and does not aim at making the model
buildable.

2. General pipeline

As in previous methods, we first represent the object as 1x1
LEGO bricks. We transform a mesh representation of an ob-
ject into a discrete set of voxels using the method of [NT03].
The choice of voxel resolution is important as a higher value
results in a better approximation of the original object, but
would require more bricks and more time to build.

After conversion, we sequentially merge the 1x1 bricks
in a greedy fashion. Given a legal set of bricks, we make
them as large as possible until no further merges can be done
(see Figure 2). At this point, the model is very likely to be
weakly connected and possibly disconnected leading to an
unbuildable structure. Therefore, we increase the solidity of
the model by identifying the weaknesses and repairing them.
Finally, the user can save the instructions as images repre-
senting the brick layout of each layer to facilitate building,
or a video of the building process can be generated.

2.1. Merge algorithm

In order to decrease brick count and increase connectivity,
we prefer larger bricks. We can do this simply by merging
bricks with their neighbors. We use a randomized greedy
merge algorithm as follows:

Figure 3: The initial merge step.

Figure 4: Two brick layouts (left), and their respective graph
representations (right).

1. Choose a brick in the model at random.
2. Find the legal set of neighbors with which the brick can

be merged.
3. Select the neighbor with the lowest cost value and merge.
4. Goto step 2 until there are no more mergeable neighbors.
5. Goto step 1 until no brick can merge.

Note that for step 2 only a specific set of LEGO bricks
is considered (the "legal bricks"). For our examples, we use
the set shown in Figure 2, but arbitrary other legal sets can
be specified by the user. For step 3, we favor the brick which
when merged with the current brick, will create the most
connections (two bricks are connected if they are on adjacent
levels and they have at least one knob overlapping). If two
merges create the same number of connections, we choose
between them randomly. This allows us to save optimization
steps in the next section. The result of this algorithm for a
10x10 grid can be seen on Figure 3.

2.2. Solidity Optimization

The stability of the construction is related to how the bricks
are connected: the more the bricks of a model are connected
to each other, the stronger it will be. This observation mo-
tivates the mapping of our LEGO brick representation to a
graph representation where each brick represents a vertex
and each connection between two bricks represents an edge.
In Figure 4, we illustrate the equivalence between a toy brick
layout example and its associated graph; see Figure 1 for
a more complex example. With this representation, we can
analyze the connectivity of the LEGO model to determine
weak points.

The number of connected com-
ponents in the graph directly re-
lates to solidity as pieces can sim-
ply fall off if they are not con-
nected to the rest. Two (non-trivial)
subgraphs that are only connected
to each other by one brick also
weaken the structure. We call the brick connecting sub-
graphs of size greater than 1 a weak articulation point.

Using these measures, we change the brick layout to in-
crease solidity. After Section 2.1, the bricks are at their max-
imum extent. Therefore, we split each of the bricks at the in-

c© The Eurographics Association 2013.



R. Testuz, Y. Schwartzburg & M. Pauly / Automatic Generation of Constructable Brick Sculptures

Figure 5: The process of removing a weak articulation point.

terface between two connected components or neighboring
an articulation point into 1x1 bricks. Then, we simply run the
merge algorithm again, changing only the cost function to a
random cost function. We perform this process iteratively
until the number of connected components and weak artic-
ulation points no longer decreases. In Figure 5, we can see
the split process for an weak articulation point (in red), note
that only the layer containing the weak articulation point is
displayed for better visibility.

We tested with a dozen models at various scales, and we
find that we need under 50 iterations to have no disconnected
components and no weak articulation points for most mod-
els. Unfortunately, we cannot know beforehand if the algo-
rithm will converge to the ideal case. There may be thin re-
gions where articulation points cannot be removed (such as
the ears of the bunny at very coarse voxelizations), or spe-
cific voxelizations that result in disconnected components.
In these cases, the input mesh would need to be changed to
result in a completely stable structure. Nevertheless, if the
user does not need a specific voxel resolution, they can it-
erate with increasing voxel count until a completely stable
model is reached. See Table 1 and the additional materials
for experimental results.

2.3. Assembly Instructions

After the previous steps are com-
pleted, the user can save the assem-
bly instructions in order to build the
model. These correspond to the lay-
out of each layer. To help the user
align a new layer above a previous
one, we show the layer below shad-
owed. The inset shows the assem-
bly instructions for layer 21 of the LEGO Man. The two
black bricks correspond to the eyes.

3. Extensions

Besides the basic pipeline, we introduce several extensions
to facilitate the building of the model. In order to reduce the
brick number and computation time, the model can be pre-
hollowed right after voxelization. After running the pipeline,
once the model has no more structural weaknesses, several
other steps can be performed to facilitate building of the
model. The model can again be hollowed to remove unnec-
essary bricks, and bricks of certain types can be removed to
fulfil a specified quantity of each brick. We can also intro-
duce color into the process.

Figure 6: A pre-hollowed layer of the Stanford bunny before
optimization (left) and the final built bunny (right).

Reducing the overall brick number Reducing the quan-
tity of bricks can allow for easier and cheaper construction
without significantly harming the stability of the construc-
tion. If the model is filled with bricks it will require much
more bricks than if it is hollow. We have therefore devised
two strategies for reducing the brick count by hollowing the
model.

Pre-hollowing. Before the pipeline, the user can specify
a shell size, and we remove the voxels which are further than
than that number of bricks away from the outside of the fig-
ure in any direction (not just in that plane). One layer of a
hollowed Stanford bunny with shell size 2 is shown in Fig-
ure 6. An advantage of pre-hollowing is a faster optimization
process during the pipeline. The user can change the shell
size but usually 2 is sufficient for stability even for complex
models.

Post-hollowing. Pre-hollowing is fast but does not result
in a minimal number of bricks. Another technique to reduce
brick count is to remove inside bricks without compromis-
ing the model solidity. We remove pieces without introduc-
ing more connected components or more weak articulation
points. For each brick in the inside of the model we con-
sider a subgraph of the connectivity graph centered at the
brick. We then remove the brick if its removal does not add
any weak points. This method can sometimes result in pil-
lars of bricks that form a path through the middle of the
model. Therefore, we can combine pre-hollowing and post-
hollowing to start with a shell and then remove any extrane-
ous bricks.

Satisfying brick type limits When building a model with a
set kit of bricks, there are set limits to each type of brick. For
example, there can be many more 1x2 bricks and not enough
1x4 bricks. Limiting the brick type greedily during merging
often does not result in a solid model. We therefore use an
approach similar to post-hollowing. As a post-process, we
remove bricks over the limit by cutting them into two (legal)
smaller bricks. As in post-hollowing, we choose the split as
to not to increase the number of connected components or
weak articulation points. If every split causes weak points,
we go on to the next brick.

c© The Eurographics Association 2013.



R. Testuz, Y. Schwartzburg & M. Pauly / Automatic Generation of Constructable Brick Sculptures

no post-hollowing with post-hollowing

Mesh Voxels Time(sec) Brick # Time(sec) Brick # Conn Comp Weak Pt

EROS 15144 4.66 ± 1.35 3820 ± 25.5 5.51 ± 1.40 3110 ± 27.8 1 ± 0 0.100 ± 0.300
BUNNY 11472 26.5 ± 5.98 2900 ± 21.4 27.0 ± 6.00 2380 ± 29.5 1 ± 0 7.20 ± 2.48
FERTILITY 6859 2.46 ± 1.21 1610 ± 17.9 2.78 ± 1.20 1400 ± 19.5 1 ± 0 0.050 ± 0.218
KITTEN 12887 2.04 ± 0.728 3340 ± 28.4 2.72 ± 0.705 2650 ± 27.1 1 ± 0 0 ± 0
LEGOMAN 9961 2.17 ± 0.846 2120 ± 24.9 2.50 ± 0.839 1800 ± 21.3 1 ± 0 0 ± 0

Table 1: Mean values and standard deviations for 20 trial runs of 5 models at 50 layer resolution. Note that the randomized
algorithm produces consistent results across different trials.

Using colors We can also allow for different colors of
LEGO bricks. We initialize the colors for each brick by find-
ing the color of the original mesh texture on the point clos-
est to the center of the brick. We then round this color to the
closest LEGO brick color. Then, during step 2 of the merge
algorithm (see Section 2.1), another verification is added to
allow merging of two bricks: if both bricks are outer (visi-
ble) bricks and they have different colors, then they cannot
be merged. Inner bricks can be merged regardless.

4. Results

Table 1 summarizes timings and final brick counts for dif-
ferent models pre-hollowed with a shell size of 2 (measure-
ments were done using a 1.8 GHz processor). The time is
measured from the start of the first merge to the final re-
sult which consists of a single connected component and no
weak articulation points. The amount of bricks removed by
post-hollowing in each case is close to 20% of the number
of bricks before the operation.

It is difficult to compare the results with those of [vZS08]
since they do not have a solidity measure. For example, if we
compare the results for the cube with 32 layers, we know that
our cube is solid but we cannot say the same for theirs. They
report a time of 197 seconds and a brick count of 2,128. If
we suppose that both are solid than our algorithm is orders
of magnitude faster while using only slightly more bricks.

Using the instructions produced by our method, we built
a 17 layer hollow Stanford bunny with 314 bricks (see Fig-
ure 6). We also built a bust of a LEGO figurine (see Figure 1)
which takes color and brick type limits into account, consist-
ing of 30 layers and using 1,315 bricks.

5. Future work

The voxelization algorithm may sometimes result in alias-
ing artifacts. Furthermore, we use the texture of the closest
point on the mesh to determine the color of the brick, which
can also cause aliasing. These can be replaced with a more
sophisticated scheme based on feature detection or by a user-
assisted painting and voxel insertion and deletion UI.

The current layer-by-layer instructions have the draw-
back of making it difficult to add bricks only supported by

the layer above. Another way of displaying the instructions
would be an interactive visualizer which displays each steps
of the assembly similar to the Autodesk Inventor Publisher
Mobile Viewer or the LEGO Digital Designer applications.

By taking into account the weight of each pieces and the
gravity, it should be possible to check that the model is able
to stand without falling. If the center of mass is not properly
place, it could be moved by adding pieces in the inside of the
model. The definition of weak articulation points can be ex-
panded to those that support a load over a certain threshold.
Finally, the code could be parallelized to take advantage of
multi-core processors.

6. Conclusion

In this paper, we showed that it is possible to automatically
create assembly instructions to build a mesh from LEGO
bricks using simple graph-based algorithms. Our method is
faster and more accurate than the existing approaches and
has the advantage of reporting whether the model is solid
or if it has some weaknesses. We can also account for brick
type limits and colors, and can produce a LEGO sculpture
with a minimal number of bricks.

References
[GHP98] GOWER R., HEYDTMANN A., PETERSEN H.: LEGO:

Automated Model Construction. Jens Gravesen and Poul Hjorth,
1998, pp. 81–94. 1, 2

[NT03] NOORUDDIN F., TURK G.: Simplification and repair of
polygonal models using volumetric techniques. Visualization and
Computer Graphics, IEEE Transactions on 9, 2 (2003), 191–205.
2

[Pet01] PETROVIC P.: Solving the LEGO brick layout problem
using evolutionary algorithms. Tech. rep., Norwegian University
of Science and Technology, 2001. 1, 2

[SPC09] SILVA L., PAMPLONA V., COMBA J.: Legolizer: A real-
time system for modeling and rendering LEGO representations
of boundary models. In Computer Graphics and Image Process-
ing (SIBGRAPI) (2009). 2

[vZS08] VAN ZIJL L., SMAL E.: Cellular automata with cell clus-
tering. Automata-2008: Theory and Applications of Cellular Au-
tomata (2008), 425. 1, 2, 4

[Win05] WINKLER D.: Automated brick layout. BrickFest
(2005). 2

c© The Eurographics Association 2013.


