

Lego Assembly

Author: Romain Testuz

Supervised by: Yuliy Schwartzburg

Previous work

 All the approaches are based on a variation of the following heuristic:

$$Fitness = C_{numbricks} \times numbricks + C_{perpend} \times perpend$$

$$+ C_{edge} \times edge + C_{uncovered} \times uncovered$$

$$+ C_{otherbricks} \times otherbricks + C_{neighbour} \times neighbour,$$

 They all try to prevent problems but they never actually try to find the problems to solve them.

Our approach

- Our method will not try to prevent problems, it will correct them.
- At the end we know if there are problems and we can estimate their seriousness.

Merge

Cost function: favors the merges that will create the most connections

Merge

Cost function: favors the merges that will create the most connections

Connectivity graph

Vertex <=> brick

Edge <=> connection

How to measure solidity?

- All the bricks should be connected: connected graph
- 2. We do not want any brick to be the only connection between 2 large parts of the construction: **articulation points**

Connected components

Bad articulation points

- Articulation point: a vertex that if removed increases the number of connected components
- Bad articulation point: an articulation point which connects 2 or more subgraphs of size greater than 1

"Bad" articulation points

Removing connected components and bad articulation points

Bad articulation point

Using colors

Pre-hollow

- Reduces the number of bricks before optimization
- Very fast

Post-hollow

- Start when there is a single connected component and no more bad articulation point.
- Remove an inside brick only if it won't introduce more connected components or bad articulation point.

Post-hollow

- 1. Select a random brick in the inside of the model.
- 2. Create a 3-ring subgraph of the connectivity graph centered on this brick.
- 3. Compute the connected components and the articulation points of this subgraph.
- 4. Remove the vertex corresponding to the current brick.
- Recompute the connected components and the articulation points.
- 6. If there are more connected components or more articulation points in the second subgraph, the brick cannot be removed. Otherwise, the brick can be removed and the connectivity graph updated.

Satisfying brick type limit

- Last step
- Similar to post-hollowing
- Select an extra brick and see if there is a cut that will not create weak points

The 4 cuts of a 2x6 brick

Instructions

Results

			w/o post-hollowing		With post-hollowing	
Model	Layers	Voxels	Time(sec)	Brick count	$\overline{\text{Time}(\text{sec})}$	Brick count
Lego man top	30	4'295	0.5	921	0.6	804
Cube	32	14'912	1.2	2'421	1.6	2'178
Stanford Bunny	53	21'393	3.7	5'350	4.8	4'322
Mario	64	16'735	3.4	4'222	4.0	3'453
Armadillo	110	138'393	25.3	16'201	28.5	12'972

 All of the above models have a single connected component and no bad articulation point.

Demo

Legal bricks

Can be changed except for the 1x1 and 1x2

Merging

- 1. Choose a random brick
- 2. Find the set of neighbours with which the brick can be merged
- 3. Select one of them (randomly or with a cost function) and merge
- 4. Goto 2. until there is no more mergeable neighbours
- 5. Goto 1