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Abstract
This thesis is devoted to the study of activated processes at the nanoscale by means of state-

of-the-art computer simulations. On the one hand, we are interested in addressing specific

aspects of chemico-physical processes of great practical importance, namely the early steps of

wet carbon dioxide capture, and the diffusion of an impurity in cadmium telluride. On the

other hand, we assess the limitations of current methodologies and propose new tools and

protocols to extend their range of applicability.

The simulation of the dynamics of activated processes at the atomistic level is a delicate issue

facing two major difficulties: (i) an accurate description of the changes happening in the

electronic structure has to be obtained ; and (ii) a statistically meaningful portion of the con-

figuration space has to be explored, including scarcely populated regions like transition states.

By employing finite temperature ab initio molecular dynamics empowered by metadynamics,

it is possible to successfully overcome these challenges. We apply these methods and develop

general robust protocols for these simulations and for the analysis of the results.

Applications refer to CO2 chemical reactions, which are relevant to the science of carbon

capture, and sulfur diffusion in CdTe, a photovoltaic material of current great interest. An

unprecedented characterization of these processes is obtained, leading to new understanding

of the experimentally observed behavior, well beyond the reach of state-of-the-art calculations.

For example, our simulations disclose the active role played by water in the capture of carbon

dioxide, and reveal the easiness by which sulfur is trapped in a CdTe lattice.

Keywords : activated process, chemical reaction, ab initio molecular dynamics, enhanced

sampling, metadynamics, carbon dioxide, monoethanolamine, water, cadmium telluride,

atom diffusion in solids, impurities in semiconductors, structural clustering, collective vari-

ables, permutation symmetry
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Résumé
Le travail de recherche présenté dans cette thèse de doctorat porte sur l’étude des processus

nanoscopiques activés au moyen de simulations numériques avancées. Nous nous intéresse-

rons pour partie à des processus physico-chimiques particulièrement importants tels que les

étapes initiales de la capture du dioxyde de carbone (CO2) en solution ainsi qu’à la diffusion

d’une impureté dans le tellurure de cadmium (CdTe), un matériau employé dans certaines

cellules photovoltaïques. Nous explorerons également les limites de méthodes actuelles et

proposerons de nouveaux outils et protocoles pour étendre leur champ d’application.

La simulation au niveau atomique de la dynamique des processus activés est une tâche dé-

licate confrontée à deux obstacles majeurs : (i) les changements survenus dans la structure

électronique doivent pouvoir être décrits avec précision ; et (ii) l’espace des configurations,

incluant également des régions peu peuplées tels que les états de transitions, doit pouvoir être

exploré de façon statistiquement satisfaisante.

L’utilisation de la méthode, dite ab initio, de dynamique moléculaire à température finie et

augmentée de la métadynamique permet d’attaquer ces deux difficultés de façon efficace

et de les surmonter. Nous appliquerons ces techniques et développerons des procédures

générales et robustes, à la fois pour les simulations en tant que telles, ainsi que pour l’analyse

des résultats.

Les applications portent sur les réactions chimiques du CO2 ainsi que sur la diffusion du

souffre dans CdTe. En caractérisant ces processus au-delà des limites atteintes par les simula-

tions actuelles, nous pouvons améliorer la compréhension des observations expérimentales.

A titre d’exemple, nos calculs ont révélé que le solvant joue un rôle prépondérant lors de la

capture du CO2 et que le souffre peut très facilement se faire piéger dans le réseau de tellurure

de cadmium.

Mots clés : processus activés, réactions chimiques, dynamique moléculaire ab initio, explo-

ration améliorée, métadynamique, dioxyde de carbone, monoethanolamie, eau, tellurure de

cadmium, diffusion d’atomes dans les solides, impuretés dans les semi-conducteurs, agréga-

tions de structures, variables collectives, symétrie de permutation
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1 Introduction

In this thesis I study activated physico-chemical processes using state-of-the-art atomistic

computer simulations with a twofold aim: obtaining new insights into particularly challenging

issues, and investigating the power and limitations of the available methodologies.

A specific introduction to the applications is postponed to Chapter 4. The topics we tackle are

especially important in the current search for new energy sources: chemical reactions of car-

bon dioxide in gas phases and aqueous solutions, and impurity diffusion in CdTe, a material of

wide technological use, especially as photovoltaic material in solar cells. The challenging prob-

lems these systems present are indeed of general importance. For example, they concern the

understanding of the role of a solvent in a chemical reaction from the microscopic viewpoint or

the physical mechanisms that govern the diffusion of impurities and dopants in a real material.

A computational approach of the above processes at the atomistic level requires methods

that ensure both an accurate description of interatomic forces and techniques allowing for a

statistically sufficient sampling of the relevant regions of the configuration space. Concerning

the former, bond breaking and formation in chemical reactions imply a quantum mechanical

method. To date, density functional theory (DFT) [1, 2] is still the method of choice, when

one deals with large-scale systems. Validation and verification of the specific functionals was

carried out whenever possible. Simulations of the time evolution of atomistic models rely on

molecular dynamics (MD) techniques [3, 4]. In 1985, the seminal paper by Car and Parrinello

(CP) [5], opened the field of ab initio MD by evaluating under a unified scheme the motion

of the nuclei and the electronic structure at the DFT level. Further implementations of the

concepts and techniques introduced [6] have allowed to extend the reach of CP molecular

dynamics to increasingly complex systems, from small atom clusters to the nanoscale, and

to access the physics of complicated phenomena, with applications relevant to diverse dis-

ciplines. Nowadays this is certainly the method of choice for the study of the physics of real

materials and of chemical reactions in condensed phases.

1



Chapter 1. Introduction

Regarding the sampling problem, very long MD simulations could, in principle, access all the

relevant regions of the configuration space. This thorough exploration, however, is hampered

by the uneven nature of the underlying free energy surface (FES). Indeed, configurations

whose free energy differs from the local minimum by À kBT are practically unaccessible

within the timescale of ab initio MD. Consequently, activated processes occurring in Nature

on long timescales (even larger than 1 s), for instance chemical reactions, require the use

of enhanced sampling techniques. Different schemes have been developed to address this

issue. We will mainly employ a flexible and successful technique, metadynamics [7], that

relies on a history-dependent bias added to the FES allowing to accelerate the crossing of free

energy barriers as well as reconstructing the free energy landscape at the end of the calculation.

Metadynamics requires the choice of a few reaction coordinates able to capture the important

changes undergone by the system as it progresses along the reaction pathway. Determining

good reaction coordinates is in itself a non-trivial task and the use of inappropriate ones

can dramatically affect the results of the simulations. Great care has been taken in all the

simulations presented here, as it will become clear from the presentation.

Through the research carried out in this thesis, new protocols and analysis tools have been

developed for atomistic simulations in condensed matter phases and also new unprecedented

understanding have been obtained into the physics and chemistry of the systems we have

studied.

My work has benefited from the CPMD [8] code, which is especially flexible and efficient, as

well as of the use of the IBM BlueGene systems, namely today’s most powerful supercomputers.

Outline

In Chapter 2, we present a short reminder of the fundamentals of the theory on which compu-

tations are based (density-functional-theory based molecular dynamics (the Car-Parrinello

method)) and of the current methods used to simulate activated processes.

In Chapter 3 we describe a general protocol to approach the study of chemical reactions in

gas phase by mean of ab initio MD and introduce a new approach to extract representative

structures from MD trajectories taking into account the permutation symmetry of identical

atoms.

In Chapter 4 we discuss the applications mentioned above: the formation and dissociation of

carbonic acid (H2CO3) in the gas phase, the early steps of the formation of a stable carbamate

from CO2 dissolved in amine solutions, and sulfur diffusion in cadmium telluride. Progress

and insights from new methodological advancements will be there included.

Conclusions will be given separately for each research.
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2 Fundamentals of Theory and Simula-
tion Methods

This Chapter presents the theoretical methods employed in this thesis for the simulation of

activated processes at the atomistic level. After briefly summarizing the foundations of density

functional theory (DFT) and DFT-based (ab initio) molecular dynamics (MD), I will describe

some of the algorithms currently used to enhance configuration sampling and thus extend the

reach of ab initio MD by accelerating the occurrence of rare events.

2.1 Molecular Hamiltonian and the Stationary Schrödinger Equa-

tion

Let us consider a system of N atoms, namely N nuclei of coordinates {R I } and n electrons of

coordinates {r i }. The corresponding Hamiltonian can be written as:

Ĥ=−
n∑

i=1

~2

2me
∇2

i︸ ︷︷ ︸
T̂ el

−
N∑

I=1

~2

2MI
∇2

I︸ ︷︷ ︸
T̂ nucl

+1

2

n∑
i , j

e2

|r i − r j |︸ ︷︷ ︸
V̂ int

−
n,N∑
i ,I

ZI e2

|r i −R I |︸ ︷︷ ︸
V̂ext

+1

2

N∑
I ,J

ZI ZJ e2

|R I −R J |︸ ︷︷ ︸
Û

. (2.1)

In this thesis we will be mainly concerned with solving the time-independent Schrödinger

equation:

ĤΦ= EΦ, (2.2)

whereΦ=Φ({r }, {R}) is the wavefunction describing the electron-nuclei system and E , its the

energy. This problem does not have an analytical solution for anything but trivial systems.

The Born-Oppenheimer (BO) approximation decreases the complexity of Eq. 2.2 by decoupling

nuclear and electronic degrees of freedom. This is achieved by introducing the following ansatz

3



Chapter 2. Fundamentals of Theory and Simulation Methods

for the wavefunction:

Φ ({r }, {R}) =
∞∑
µ=0

ϕµ ({R}) ·Ψµ ({r }; {R}) , (2.3)

where the ϕµ and Ψµ are the nuclear and electron wavefunctions respectively. The latter

satisfy orthonormality conditions∫
dnrΨ∗

νΨµ = δµν (2.4)

and depend parametrically on {R}.

One can demonstrate [9] that the ansatz (Eq. 2.3) reduces Eq. 2.2 with the Hamiltonian (Eq. 2.1)

to the following equations:

Eϕν =
(
T̂ nucl +Eν+ Û

)
ϕν−

∑
µ

Aνµϕµ, (2.5)

where Eν(R) is the eigenvalue of the Schrödinger equation for the electronic system:(
T̂ el + V̂ int + V̂ext

)
︸ ︷︷ ︸

Ĥel({r };{R})

Ψν = Eν({R})Ψν. (2.6)

In Eq. 2.5, Aνµ couples the electronic and nuclear variables

Aνµϕµ =
∑

I

~2

2MI

∫
dnrΨ∗

ν

(
ϕµ∇2

IΨµ+2∇Iϕµ ·∇IΨµ

)
. (2.7)

On the basis of the different scale of the nuclear and electronic masses

me

MI
¿ 1, (2.8)

one can demonstrate that Aνµ can be neglected for most purposes. This is the BO approxima-

tion.

Therefore Eq. 2.5 reduces to an equation of the nuclear wavefunctions:

Eϕν({R}) =
(
T̂ nucl + Û +Eν({R})

)
ϕν({R}). (2.9)

The nuclei obey a Schrödinger equation with the potential term containing Eν({R}), i.e., the

electrons provide the potential energy surface onto which the nuclei evolve. We will consider

simulations in which the electrons will be in their ground state (Ψ0({r }, {R})).

In Hartree-Fock theory (HF), the electronic Schrödinger equation (Eq. 2.6) is solved by ap-

proximating the many electron wavefunctionΨ by a Slater determinant of n single electron

orbitals ψi (r j ,σ j ). For a singlet state (total spin = 0) where opposite spins are paired, we can

4



2.1. Molecular Hamiltonian and the Stationary Schrödinger Equation

thus write:

Ψ({r }) = 1p
n!

∣∣∣∣∣∣∣∣
ψ1(r 1) · · · ψn(r 1)

...
. . .

...

ψ1(r n) · · · ψn(r n)

∣∣∣∣∣∣∣∣ , (2.10)

where we have omitted the spin variables.

Ψ is antisymmetric under permutation of electrons by construction in accordance with Pauli’s

exclusion principle. No other correlations are included and the electrons are independent.

By plugging the ansatz (Eq. 2.10) into the electronic Schrödinger equation (Eq. 2.6) and

minimizing the expectation value of the electronic Hamiltonian with respect to the variation

of the single-particle wavefunctions,

0 =
δ

(
〈Ψ|Ĥel |Ψ〉−∑

j Λ j k (〈ψ j
∣∣ψk〉−δi j )

)
δψi

(2.11)

under orthonormalization constraints, we can show that the ψi obey

F̂iψi = εiψi , (2.12)

where the ψi were rotated so thatΛi j = εiδi j , and

F̂i = ĥi +
∑

j
( Ĵ j − K̂ j ) (2.13)

is the Fock operator with

ĥi =− ~2

2me
∇i +

∑
I

ZI e2

|r i −R I |
; (2.14)

Ĵ jψi (r ) = e2
∫

dr ′ |ψ j (r ′)|2
|r − r ′| ψi (r ); (2.15)

K̂ jψi (r ) = e2
∫

dr ′ψ
∗
j (r ′)ψi (r ′)

|r − r ′| ψ j (r ). (2.16)

The Ĵ jψi term (Eq. 2.15) is the Hartree potential which corresponds to the classical Coulomb

interaction of a charge distribution |ψ j |2 , and K̂ j is the exchange operator. This has no classical

counterpart. It arises only from the antisymmetric character of the electronic wavefunction.

In particular the self interaction in Eq. 2.15 is exactly compensated in Eq. 2.16. Hartree-Fock

is the starting point of more advanced approximation to the solution of the multi-electrons

Schrödinger equation, which include electron-electron correlation. For example, the Møller-

Plesset theory which is a second order perturbation theory or the coupled cluster methods

that use a combination of Slater determinants as basis set.
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Chapter 2. Fundamentals of Theory and Simulation Methods

2.2 Density Functional Theory

Density functional theory (DFT) is a radically different approach to post Hartree-Fock methods

because it focuses on the electronic density

ρ(r ) = n
∫

dr 2 . . .dr n |Ψ0(r ,r 2, . . . ,r n)|2, n =
∫

drρ(r ) (2.17)

rather than on the electronic wavefunction. A major advantage is that the number of degrees

of freedom is reduced from 3n to 3.

Two fundamentals theorems demonstrated by Hohenberg and Kohn (HK) [1] lay the founda-

tions of density functional theory1:

HK1 For any system of interacting electrons, the external potential vext(r ) is determined

uniquely, except for a constant, by the ground state electronic density ρ(r ).

As a corollary, the Hamiltonian is fully determined, except for a constant shift of the

energy. It follows that the many-electron wavefunction for all states (ground and excited)

are determined. Therefore, all properties of the system are completely determined given

only the ground state density ρ(r )

HK2 A universal functional

Ẽ [ρ] = T [ρ]+E H[ρ]+E XC[ρ] (2.18)

of the density ρ(r ) can be defined. T [ρ] is the kinetic energy functional and E H[ρ] is the

Hartree functional. The exchange and correlation (xc) functional, E XC[ρ] includes the

exchange contribution and correlation among the electrons. For any vext, the energy

functional can be written as:

E [ρ] = Ẽ [ρ]+V ext[ρ], where V ext[ρ] =
∫

dr vext(r )ρ(r ). (2.19)

The density minimizing the functional E [ρ] is density of the ground state. The corre-

sponding value of E [ρ] is the ground state energy.

The many-electron problem is generally solved by employing an ansatz originally formulated

by Kohn and Sham (KS) [2]. They assumed the existence of an auxiliary fictitious system, in

which the electrons are non interacting by definition, and which has the same energy density

as the system of interacting electrons.

The many-electron wavefunction can be written as a Slater determinant (Eq. 2.10) of the one

particle Kohn-Sham wavefunctions ψi , and E H [ρ] and V ext[ρ] are easily expressed in terms of

the electronic density

ρ(r ) =
n∑

i=1
|ψi (r )|2. (2.20)

1The formulation hereafter is taken almost verbatim from Ref.[9]
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2.2. Density Functional Theory

The KS kinetic energy functional is

TKS[ρ] =−
n∑

i=1
〈ψi

∣∣ ~2∇i

2me

∣∣ψi 〉 . (2.21)

Following, HK2, we can carry out the following minimization procedure

δ
(
EKS[ρ]−∑

j ,kΛ j k
(〈ψ j

∣∣ψk〉−δ j k
))

δψi
= 0 (2.22)

and obtain the Kohn Sham equations(
− ~2

2me
∇2 + veff

KS(r )

)
ψi (r ) = εiψi (r ), (2.23)

where we defined

veff
KS(r ) = e2

∫
dr ′ ρ(r ′)

|r − r ′| −e2
∑

I

ZI

|r −R I |︸ ︷︷ ︸
vext(r )

+ δE XC
KS [ρ]

δρ(r )︸ ︷︷ ︸
vXC

KS (r )

(2.24)

We carried out a rotation of the orbitals so thatΛi j = εiδi j . Solving Eq. 2.23 self-consistently

will yield the ground state density and energy which are the same than the ones of the physical

system.

The Kohn-Sham exchange and correlation functional E XC
KS [ρ] and its potential vXC

KS (r ) are

unknown. Therefore one has to rely on an approximation. This is the problem one encounters

in applying DFT.

2.2.1 Practical Implementations of DFT

Various Approximations to the Exchange and Correlation Functional

Perdew has proposed to classify the approximations to the exchange-correlation functional

of DFT on a ladder (Perdew’s ladder; Figure 2.1) ranging from local-spin density to "exact

exchange and partial exact correlation" [10].

We shall recall some of these approximations that will be used in this thesis. For the sake of

simplicity, we will neglect the dependence on spin variables.

• Local density approximation (LDA)

The first rung is the local density approximation, in which the xc functional is a local

functional of the electron density ρ(r ):

E XC
LDA[ρ] =

∫
drρ(r )εXC

HEG(ρ(r )), (2.25)

where the xc energy density εXC
HEG is a local function of ρ(r ). At each ρ(r ), this function is

7



Chapter 2. Fundamentals of Theory and Simulation Methods

Figure 2.1 – Perdew’s ladder of xc functionals; adapted from [10].

that of the homogeneous electron gas (HEG). Therefore, for the exchange term [11] :

εX
HEG(ρ) =−3

4

(
3

π

)1/3

ρ1/3 (2.26)

and for the correlation term:

– in the low density limit (rs →∞) [12]

εC
HEG(ρ)

rs→∞→ a1

rs
+ a2

r 3/2
s

+ a3

r 2
s
+ . . . (2.27)

– in the high density limit (rs → 0) [13]

εC
HEG(ρ)

rs→0→ b1 logrs +b2 + rs
(
b3 logrs +b4rs

)
, (2.28)

where rs is the Wigner-Seitz radius

4

3
πr 3

s = ρ−1. (2.29)

Typical densities of interest for DFT calculations are in the range 0.8 < rs < 10. LDA

calculations uses interpolation formulas of Monte Carlo computations of correlation

energies of the HEG over a wide range of densities [14, 15, 16, 17].

By construction, LDA works well in systems with a slowly varying density but indeed its

range of validity goes well beyond it. This was explained on the basis of fundamental

conditions that the exchange and correlation functionals must satisfy and that LDA does

satisfy, being grounded on the HEG (e.g., Ref. [18]).

• Semi-local density functionals

The most natural extension of LDA consists in introducing partial nonlocality via a
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2.2. Density Functional Theory

(truncated) Taylor expansion of the energy density (GEA, Gradient Expansion Approxi-

mation). The lowest order in this expansion (second order in the gradient), called GE2,

was applied and shown to provide an overcorrection to LDA for realistic densities and

thus worsen the results. (see, e.g., Ref. [19, 20]).

E XC
GGA[ρ] =

∫
drρ(r )εXC(ρ,∇ρ) (2.30)

Starting from GEA, a new approach was introduced by Perdew and collaborators, in a

series of papers [21, 22, 23, 24, 25] which they named Generalized Gradient Approxima-

tion (GGA). In the GGA, the energy density depends only on ρ and ∇ρ (see Eq. 2.30) ; it

introduces cutoffs to correct off the long-range behavior of GEA and is constructed in

such a way that several exact conditions on the exchange and correlation contributions

be separately satisfied. Remarkably, this construction is from first-principles, like LDA,

namely it does not include any empirical parameter. Moreover, GGA reduces to LDA for

slowly varying density ρ(r ).

GGA significantly improves on LDA especially in the prediction of atomization energies,

the cohesive energies of solids and in the description of inhomogeneous systems, like

surfaces or adsorbates. In this thesis, we will apply one of the latest and most widely used

formulations of GGA functionals by Perdew and coworkers (Perdew-Burke-Ernzerhof

(PBE) [26]).

Other functionals have expressions consistent with GGA but are semi-empirical. We

refer here to Becke’s approximation for the exchange functional [27]. This is mainly used

in conjunction with the Lee-Yang-Parr correlation [28] functional that has a different

origin. This combination goes under the acronym BLYP. We will also present calculations

using this approximation.

PBE

The original GGA functional was derived in numerical form and reduced to an

analytical expression by Perdew and Wang [24]. A further simplification lead to the

so called PBE functional [26].

For the correlation functional:

E C
PBE[ρ] =

∫
drρ

(
εC

HEG(ρ)+H C(ρ, t )
)

, t = ∇ρ
2ksρ

, (2.31)

t is a dimensionless density gradient, 1/ks is the Thomas-Fermi screening wave-

length, and

H C(ρ, t ) = a2 me

~2 log

(
1+ a1

a2
t 2

(
1+ At 2

1+ At 2 + A2t 4

))
, (2.32)

where

A = a1

a2

1

exp(−εC
HEG/(a2 me /~2))−1

(2.33)

9



Chapter 2. Fundamentals of Theory and Simulation Methods

with a1 = 0.066725 and a2 = (1− log2)/π2.

Similarly for the exchange we have:

E X
PBE[ρ] =

∫
drρ(r )εX

HEG(ρ)F X(s), s = 2(3π2/2)1/3prs t , (2.34)

s is a dimensionless gradient, and

F X(s) = 1+b1 − b1

1+ b2s2

b1

(2.35)

with b1 = 0.804 and b2 = a2π
2/3 .

BLYP

Becke proposed to correct the exchange density from LDA (Eq. 2.26)

E X
B[ρ] =

∫
drρεX

HEG(ρ)

(
1+ 4

3

(π
3

)1/3
a1

x2

1+6a1x sinh−1 x

)
, x = |∇ρ|

ρ4/3
. (2.36)

This expression has the advantage of being simple while respecting the known

limit for the exchange energy density. a1 is obtained via a least square fit on the

exact Hartee-Fock exchange of noble gases (a1 = 0.0042 a.u.)

Starting from the Hartree-Fock formulation and introducing Jastrow factors to

describe correlation effects, Colle and Salvetti derived a simplified expression

for the energy due to dynamical correlation, depending on one parameter only

which was fitted to helium [29]. The well-known LYP correlation functional E C
LYP

was obtained from a simplification and further reformulation of the Colle-Salvetti

formula in terms of ρ and ∇ρ only.

E C
LYP[ρ] =−

∫
dr

b1

1+b4ρ−1/3

(
ρ+b2ρ

−2/3
(
CFρ

5/3 −2tW + tW

9
+ ∇2ρ

18

)
e−b3ρ

−1/3
)

,

(2.37)

where

CF = 3

10
(3π)2/3 and tW = 1

8

( |∇ρ|2
ρ

−∇2ρ

)
. (2.38)

tW is the kinetic energy density, and b1 = 0.04918, b2 = 0.132, b3 = 0.2533 and

b4 = 0.349.

• Beyond GGA

On the third rung of Perdew’s ladder we find meta-GGA functionals (e.g., Ref. [30, 31, 32,

33]) that are explicitly dependent on the Kohn-Sham kinetic energy (Eq. 2.21).
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2.2. Density Functional Theory

The more advanced rung includes the so-called hybrid functionals, that combine GGA

expressions with the exact Hartree-Fock exchange (Eq. 2.16) with weight generally

empirically adjusted to, e.g., molecular properties.

In this thesis we will present calculations using both a hybrid functional born from PBE

(PBE0 [34]) (Eq. 2.39) and one from BLYP (B3LYP [35]) (Eq. 2.40).

E XC
PBE0 = E XC

PBE +a0
(
E X

HF −E X
PBE

)
(2.39)

In PBE0, the only adjustable parameter a0 = 0.25 is not empirical but derived from

Perdew’s theoretical arguments in Ref. [36].

The B3LYP functional is written as:

E XC
B3LYP = (1−a0)E X

LDA +a0E X
HF +ax∆E X

B +ac E C
LYP + (1−ac )E C

VMN, (2.40)

where E C
VMN is the Vosko-Wilk-Nusair expression for the correlation energy of the HEG

[15] and a0 = 0.20, ax = 0.72, ac = 0.81 [37].

The accuracy and shortcomings of all xc functionals presented here are well documented (see

[38, 9]) For example, neither LDA nor GGA cancel the electron self-interaction coming from

the Hartree term in Eq. 2.15 and obviously hybrid functional do only partially. Semi-empirical

corrections are often employed, e.g., Ref. [16, 39, 40, 41].

Extensions of GGA functionals and also new strategies for the construction of the DFT func-

tionals continue to be developed. Here we mention only one: the series of functionals due to

Truhlar and his collaborators [42] born from a combination of the meta-GGA and Hartree-Fock

exchange. Different parametrizations characterize the different classes of functionals, which

are each optimized to represent certain classes of systems or physical quantities. We will use

one of them (Ref. [43]) as reference in one of the applications presented in this thesis.

Another problem concerns dispersion interactions which are inherently non-local and thus

not accounted for in GGA.

Grimme’s corrections to GGA functionals

Simple semi-empirical corrections to GGA were introduced by Grimme in a series of papers

[44, 45, 46] via the addition of a long-range van-der-Waals-like attractive potential Edisp to the

Kohn-Sham total energy :

Edisp =− s6

2

N∑
I ,J

C I J
6

d 6
I J

fdamp(dI J ), dI J = |R I −R J |. (2.41)

In this thesis, we will employ the so called D2 version [45], in which the dispersion coefficients

were calculated as

C I J
6 =

√
C I

6C J
6 , (2.42)
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Chapter 2. Fundamentals of Theory and Simulation Methods

where the single atom coefficients C I
6 are computed from the ionization potential and polariz-

ability.

The s6 parameter in Eq. 2.41 is a scaling constant that is functional-dependent. It is obtained

via fitting to a set of binding energies and intramolecular distances of non-covalently bound

complexes obtained with high-level quantum chemistry methods. The damping function

fdamp is required to make vanish Edisp at short interatomic distances. More recently Grimme

et al. [46] proposed a new approximation (D3) in which the effect of the local environement is

accounted for. Moreover, the level of empiricism in the values of the dispersion coefficients is

reduced by deriving them for time-dependent density functional theory calculations. In this

way, the accuracy was shown to improve on a few selected systems, e.g., S22 set [47].

The Pseudopotentials and Plane-Wave Scheme

The calculations presented in this thesis use the pseudopotential (PP) method, which reduces

the electronic problem to the valence subspace, and plane-waves as basis set for the expansion

of the valence wavefunctions.

The basic assumption from which the pseudopotential method develops is the frozen-core

approximation, in which one neglects the redistribution of the core electron density. The

change of core wavefunctions caused by changes in the chemical environment, e.g., processes

like bond breaking or formation, can be safely neglected in most cases. The pseudopotential

method, however, goes one step further, and provides a technique to solve exclusively for the

valence wavefunctions. This is done by accounting for the contribution of the core electrons

via an effective potential describing their interaction with the valence electrons. In this way,

for each l subshell, the valence states are described by pseudo-wavefunctions, and the one

with lowest energy is nodeless. The validity of a pseudopotential scheme is measured in

terms of what is called "transferability", namely it should be able to represent the valence

properties of a given atom in different chemical environments. The seminal paper by Hamann

et al. [48] established the criteria on which one should construct such an accurate atomic

pseudopotential from an all-electron (AE) calculation.

For each angular momentum l , not only

εPP
l = εAE

l (2.43)

but also the radial pseudo-wavefunction should satisfy the following conditions, as close as

possible

ψPP
l (r ) =ψAE

l (r ), for r > rc , (2.44)

where ψAE
l is the result of an all-electron calculation and∫ rc

0
dr r 2|ψAE

l |2 =
∫ rc

0
dr r 2|ψPP

l |2, (2.45)
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2.3. Molecular Dynamics

where rc is a selected effective "core" radius, typically between the outmost node and the

outmost maximum of ψAE
l (r ) or rψAE

l (r ). (Eq. 2.45) is the norm conservation condition, which

guarantees that the integrated probability density within the "core" region be preserved.

Clearly the choice of rc governs the degree of accuracy of the pseudopotential and at the same

time its hardness.

Different techniques have been proposed for the derivation of pseupdopotentials; either in

numerical or analytical form. We will make use of two most popular schemes: one introduced

by Troullier and Martins (TM)[49], the other by Goedecker, Tetter and Hutter (GTH) [50, 51].

TM is numerical; its construction enforces also continuity of the pseudopotential up to the

fourth derivative at rc and flatness about r = 0. GTH is analytical, with an expression separable

in real and reciprocal space.

Although not restricted to it, the introduction of a pseudopotential becomes necessary when

plane waves are used as basis set for the expansion of the one-electron wavefunctions:

ψi (r ) =∑
g

ci (g )eı̇g ·r (2.46)

In practice a cutoff must be established, which depends on the hardness of the pseudopoten-

tial.

Plane-waves have several advantages, and in particular: (i) they are a complete set, which

allows one to verify the convergence of the calculations in terms of the cutoff; (ii) the Hamilto-

nian matrix elements have often an analytical expression; (iii) the forces acting on the ions

can also be expressed easily. Moreover (iv) they are extremely convenient in ab initio (Car-

Parrinello) molecular dynamics, because the basis functions do not change when the atoms

move.

2.3 Molecular Dynamics

The aim of the molecular dynamics (MD) technique is the simulation of the time evolution

of an atomistic system obtained by numerically integrating the equation of motion (see, e.g.,

[4] and reference therein). We will assume that the nuclei are classical objects subject only to

the laws of classical mechanics. The difference between classical and ab initio MD is in the

treatment of the electrons, which, in the latter case, are explicitly included in the calculation

and participate in the shaping of the potential energy surface for the nuclei.

The basic idea behind MD is to approach an atomic system very much like it is done in a real

experiment where the system is prepared in some state (certain temperature, pressure, etc.)

and then properties are measured. In MD, a set of N atoms is selected, and their evolution

is simulated, and with the help of statistical mechanics, the trajectory of these atoms (i.e.,

the set of position and velocities) can be related to observables, e.g., temperature, diffusion
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Chapter 2. Fundamentals of Theory and Simulation Methods

coefficients, or free energy differences.

2.3.1 Classical Molecular Dynamics

Classical MD denotes a dynamics driven by classical forces on the atoms. The electrons are

not explicitly considered and the atoms evolve on a potential energy surface given by an

empirical force field. Classical MD is employed in a broad range of fields including simulations

of materials, nanostructures, solutions and complex biomolecules.

The Newtonian equations of motion can be derived from the Lagrangian:

L({R}, {Ṙ}) =∑
I

MI

2
Ṙ I

2 −U ({R}) (2.47)

by means of the Euler-Lagrange equations:

d

dt

∂L
∂Ṙ I

= ∂L
∂R I

(2.48)

which yield

MI R̈ I =−∇IU . (2.49)

The integration of the equations of motion starts from initial conditions {R(0), Ṙ(0)} with the

velocity drawn, e.g., from a Maxwellian distribution at a given temperature.

In practice, the trajectories {R(t )} and {Ṙ(t )} are obtained by numerical integration, and the

system evolution is computed at discrete times {R(n∆t ), Ṙ(n∆t )}n∈N.

The velocity-Verlet algorithm [52] is often employed to carry out this integration. Let us

consider one particle of mass M in one dimension x for convenience. The position at the next

step x(t +∆t ) is obtained from the current position x(t ) and from the position at the previous

step x(t −∆t ):

x(t +∆t ) = 2x(t )−x(t −∆t )+ F (t )

M
∆t 2 +O(∆t 4), F (t ) =− dU (x)

dx

∣∣∣∣
x(t )

. (2.50)

The velocities are not used to iterate Eq. 2.50; instead, they are computed separately:

v(t +∆t ) = v(t )+ F (t +∆t )+F (t )

2M
∆t +O(∆t 3). (2.51)

We note that in order to compute the velocities at time t the forces at time t +∆t are needed,

therefore in practice the velocities at step t are computed only once the new positions have

been computed from Eq. 2.50.

The velocity-Verlet algorithm is widely employed because it is rather simple and consumes

only a limited amount of resources. Moreover, it can be derived from Liouville’s description

of classical mechanics [53]. Thus, it is area preserving in phase-space and, provided that the

timestep ∆t is small enough, it will only exhibit a moderate long-term energy drift. This is
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a desirable feature because the forces in Eq. 2.49 derive from a potential and therefore the

total mechanical energy must be conserved. This is important if one is interested in time

dependent properties and not only in configurational averages.

The timestep ∆t for integrating the equations of motion, has to be smaller than the period of

the natural thermal motion of the particles; typically ∆t ∼ 0.1−1 fs.

2.3.2 Ab Initio Molecular Dynamics

Ab initio MD takes the electrons into account explicitly. Hence, this approach is suitable to

study processes where electrons are expected to play a significant role, e.g., during chemical

reactions where covalent bonds are broken and formed.

Car-Parrinello Molecular Dynamics

The Car-Parrinello (CP) method [5] was born as the unification of DFT and molecular dynamics.

The CP Lagrangian (Eq. 2.52) incorporates both electronic and ionic degrees of freedom, adopts

the KS total energy as potential energy and simplifies the solution of the electronic problem

via a fictitious kinetic energy of the electronic wavefunctions ψi .

L({R}, {Ṙ}, {ψ}, {ψ̇}) =∑
I

1

2
MI Ṙ2

I +
∑

i
µ〈ψ̇i |ψ̇i 〉−EKS({ψ}; {R})+∑

i , j
Λi j

(〈ψi |ψ j 〉−δi j
)−U ({R}).

(2.52)

The introduction of the Lagrange multiplier guarantees the orthonormalization of the wave-

functions.

The corresponding Euler-Lagrange equations read:{
MI R̈I =−∇I (EKS +U )

µψ̈i =−δEKS
δψ∗

I
+∑

j Λi jψi
(2.53)

If the electrons are in the ground state, then the second equation amounts to the Kohn-Sham

equation (Eq. 2.23).

µ is a key parameter, acting as a fictitious mass associated to the electronic variables and is

meant to be adjusted to guarantee a BO dynamics, or in other words to prevent energy from

flowing from the ionic to the electronic variables. If their respective vibrational density of

states do not overlap the transfer of energy will be sufficiently slow and adiabatic separation

will be achieved. It can be shown [54] that the lowest frequency of the vibrational spectrum of

the ψ can be written as:

ωel
min ∝

√
2Egap

µ
, (2.54)
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where Egap is the energy gap between the highest occupied electronic KS state and the lowest

unoccupied KS state.

The bigger the difference between ωel
min and the largest phonon frequency of the ions (ωion

max)

the better the adiabatic decoupling between electronic and ionic degrees of freedom. Hence

the crucial role of the value one selects for µ. Indeed the whole electronic spectrum depends

on µ−1/2. One more choice is however as important. As we have seen in Section 2.3.1, the

timestep ∆t for the integration of the equations of motion should always be smaller than the

period of oscillation of the fastest degree of freedom. Therefore, in solving the CP equations of

motion :

∆t ∝p
µ. (2.55)

In its original, and most widely used, version, the CP Lagrangian was restricted to systems with

a "sufficiently" large energy gap. However, a number of extensions have been made to allow

application also to metallic systems [55, 56]. The simplest one makes use of a thermostat to

maintain the kinetic energy at fixed values, namely to maintain the electronic variables "cold"

[55].

Born-Oppenheimer Molecular Dynamics

The CP-MD method solves for the electronic and ionic variables on the same footing. One

can, however, adopt another procedure, called BO-MD, which is conceptually simpler but

(generally) less efficient in practice.

In the BO-MD one solves for the electronic and ionic variables in sequence, and the electrons

are kept on the BO surface. The Newton equations for the ions can be written as

MI R̈ I =−∇I (EKS,0 +U ) (2.56)

where EKS,0 is the KS energy in the ground state.

At each step in the evolution of the ions, the electronic problem is solved (Eq. 2.6), thus

providing EKS,0. The positions of the ions are then updated. In turn, this generates a new

external potential for the electrons. The procedure is iterated.

The time step for the solution of the Newton equation can be taken larger than for the CP-MD,

but this is not always an advantage, given that one must also solve the KS equation (Eq 2.23) at

each step.

2.3.3 Molecular Dynamics in the Canonical Ensemble

Experiments are often carried out at constant temperature and fixed volume, i.e., they sample

the canonical ensemble. In both classical and ab initio molecular dynamics the total energy is

conserved and therefore both schemes naturally sample the microcanonical ensemble, i.e.,
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the probability P ({R}) of exploring a configuration {R} is proportional to

P ({R}) ∝ δ (E −U ({R})) . (2.57)

Where E is the (constant) energy of the simulation and U ({R}) the energy of the configuration.

Instead, in the canonical ensemble, the probability of a configuration is given by its Boltzmann

weight:

P ({R}) ∝ e−βU ({R}), β= 1

kBT
. (2.58)

Many thermostats exist that allow to extend MD to sample the configuration space at an

average constant temperature. The most naive one is the velocity rescaling algorithm that

rescales all the velocities in order to have

< Ekin >= 3N

2
kBT (2.59)

as soon as the average kinetic energy goes out of a specified region.

This simple approach however does not reproduce the fluctuations in temperature

σ2
T = 2T

3N
(2.60)

which exist in the canonical ensemble since, in between rescaling steps, the sampled ensemble

is microcanonical.

A less abrupt scheme was introduced by Berendsen et al. [57]: rather than having a sudden

rescaling, they proposed to have the velocities scaled so that the average kinetic energy would

exponentially decay or grow towards the desired temperature. This scheme although less

drastic than velocity rescaling, is still unable to reproduce the fluctuations of the canonical

ensemble.

Andersen [58] proposed a thermostat scheme that couples the system to a heat bath. A particle

randomly colliding with it has its velocity reset to one drawn from a Maxwell-Boltzmann

distribution at the desired temperature. Employing this thermostat will induce faster decorre-

lations.

Nosé-Hoover chain thermostat [59, 60, 61], contrary to Andersen’s, is deterministic. It was

shown to sample Boltzmann’s distribution and to reproduce the fluctuations associated with

the canonical ensemble correctly. It introduces additional degrees of freedom ζ in the equa-

tions of motion to ensure a sampling of the canonical distribution. The "mass" of these ζ

is chosen so as to overlap the power spectra of the system with those of the ζ in order to

maximize the exchange of energy between them [62].

In this thesis, we will employ this thermostat almost exclusively.
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Figure 2.2 – A sketch of the energy profile
of the process in Eq. 2.61. Eactivation is the
activation energy and q∗ indicates the co-
ordinate of the transition state.

2.4 Activated Processes

Physico-chemical transition processes can be schematized as

A �B. (2.61)

Where A and B are distinct metastable states, i.e., the system is almost always found in either A

or B . The rate of transition from A to B is a particularly important characteristic of the reaction.

It is related to the frequency at which the systems visits a high energy, scarcely populated state,

located between A and B , the transition state (TS).

To determine the transition rate kA→B we first consider the evolution of the population in the

two states:

Ṗ A =−kA→B P A +kB→APB (2.62)

ṖB =+kA→B P A −kB→APB . (2.63)

The next step requires the introduction of the concept of reaction coordinates. They are

coordinates that track the progress of the reaction as the system passes from A to B . In

particular they allow to draw energy profiles like in Figure 2.2. On this sketch, TS has coordinate

q∗.

A crucial assumption of transition state theory is that if the system crosses q∗ to go from A

to B , it will not recross it (from B to A) before it has reached equilibrium in B . Moreover, a

transition from A to B happens when the system reaches q∗ with q̇ > 0. Hence, the rate kA→B

is given by the ratio (similarly for kB→A)

kA→B = 〈q̇θ(q̇)δ(q −q∗)〉
〈θ(q −q∗)〉 . (2.64)

The expectation value < θ(q −q∗) > counts the number of states in A. Eq. 2.64 can be derived

from Equations 2.62 and 2.63 in the framework of linear response (see, e.g., Chapter 16 of [4]).

Explicitly calculating the averages in Eq. 2.64 in the canonical ensemble yields

kA→B ∝ e−β(ETS−E A)) (2.65)
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and we define the activation energy Eactivation = ETS −E A . Based on experimental data, van

’t Hoff and Arrhenius arrived at the same expression already in the late 19th century. The

proportionality prefactor in Eq. 2.65 is independent of the temperature.

Physico-chemical processes in Nature may be very slow because they require overcoming bar-

riers with E A À kBT , i.e., much larger than the typical size of the thermal energy fluctuations.

Consequently, the timescale associated with these reactions can be several orders of magni-

tude higher than the timescale associated with the fastest motion of the atoms. For instance,

O−H bond stretching in a water molecule has a period of about 10 fs while a chemical reaction

such as the formation of carbonic acid requires about twenty minutes at 300 K [63].

Activated processes are a serious pitfall for molecular dynamics because, as we know, the

timestep for integrating the equations of motion in MD has to be smaller than the timescale re-

lated to the fastest degrees of freedom. To date, the total simulation time available to classical

MD ranges from nanoseconds to milliseconds while it is of the order of of 100 ps for ab initio

MD. A whole class of processes is therefore completely unaccessible to standard molecular

dynamics. Several techniques exist and that allow to overcome this intrinsic limitation and we

detail a few of them in the upcoming paragraphs.

2.4.1 Reaction Coordinates, Order Parameters and Collective Variables

Molecular dynamics simulations of chemical reactions may involve an important number N

of particles, especially if the reaction takes place in a solvent. The volume of the configuration

space grows exponentially with the number of particles; it is hopeless to explore its entirety in

a reasonable time, even more so if barriers are present.

As previously mentioned, a reaction coordinate q smoothly tracks the evolution of the reaction

when passing from A to B . As we discussed, this concept is especially useful to represent the

energy change along the reaction path and can be further used to identify the transition state

(q∗ in Figure 2.2).

In the canonical ensemble, the probability of observing the system in a configuration with a

given value for q follows directly from the Boltzmann weight:

P (s) = 1

Q

∫
dN Re−βU (R)δ(q(R)− s), Q=

∫
dN Re−βU (R)a. (2.66)

The free energy is a fundamental quantity and it assumes the minimum value at equilibrium.

It can be defined as:

F (s) =−kBT logP (s) ⇒ P (s) ∝ e−βF (s) (2.67)
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The free energy (FΩ), enthalpy (HΩ) and entropy (SΩ) of a regionΩ of the configuration phase

space can be estimated by:

FΩ =−kBT log

∫
Ω e−βF ds

Z , Z =
∫

dse−βF (2.68)

HΩ =
∫
ΩdN RU ({R})e−βU ({R})∫

ΩdN Re−βU ({R})
(2.69)

T SΩ = HΩ−FΩ (2.70)

Actually, the thermodynamic definition of the enthalpy is

H = E +pV (2.71)

with V the volume and p the pressure. In our simulations, e.g., chemical reactions in vacuum

or in dilute solution, the changes in pV term can typically be ignored and enthalpy and energy

changes coincide. Often the partition function Z cannot be directly obtained. Nonetheless, it

is usually not relevant as it amounts to fixing an absolute reference for the free energy, whereas

the important quantities are the free energy difference between two regionsΩ and Σ; in that

case

∆F = FΩ−FΣ =−kBT log

∫
Ω e−βF ds∫
Σ e−βF ds

(2.72)

and the computation of Z is not required.

The use of reaction coordinates appears very powerful to simplify the study of an activated

process and extract properties from a molecular dynamics simulation. Until now however we

did not specify how reaction coordinates can be found or constructed.

By employing functions of the atomic coordinates (collective variables (CVs)), it is possible

to approximate a reaction coordinate. CVs can have a very simple functional form, e.g., the

interatomic distance but can also be much more complicated, e.g., the path CVs [64] which

are introduced in the following.

The choice of CV might be very delicate. To illustrate this issue we take the example of sodium

chloride (NaCl) dissociation in liquid water [65]. The system has three local minima the

contact ion pair (A), the solvent separated ion pair (B) and the dissociated ion pair (C ). In a

seminal work by Geissler et al. [65] it was shown that employing solely the distance between

Na+ and Cl− was not sufficient to describe the nature of the transition of the transitions states

between A and B . And that in fact, solvent related degrees of freedom had to be taken into

account explicitly.

They also discuss a stringent test of the CV, namely committor analysis. It consists in starting

many trajectories differing by the initial random velocities from all the configurations at q∗; if
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q∗ indeed is a transition state then, for each configuration, half of the trajectories must end

up in A and the other half in B . If this is not satisfied, i.e., if the majority of the configurations

at q∗ are solely committed to either A or B , then the CV employed to compute q∗ are proven

unable to correctly account for all relevant degrees of freedom participating in the reaction.

The Na+−Cl− distance is sufficient to distinguish configurations in A from configuration in

B , i.e., it is a good order parameter. It is an inadequate reaction coordinate because it fails

to identify the precise nature of the transition state and to successfully pass the committor test.

In the following paragraphs we present two kinds of CVs that we used when studying activated

process.

Coordination Functions

This type of CV counts the number of contacts between two sets of atoms (Ω, Σ) based

on the Cartesian distances (dI J = |RI −R J |) between their elements

CN ({R}) = ∑
I∈Ω,J∈Σ

cn
(
dI J

)
. (2.73)

Two definitions for the pairwise coordination function cn are often employed.

• The symmetric coordination (Fermi-Dirac like)

cn(x) = 1

1+eλ(x−d0)
. (2.74)

d0 is the critical distance before we can consider the atoms to be coordinated and

after which they are not anymore, λ controls the steepness of the function.

• The asymmetric coordination

cn(x) =
1−

(
x

d0

)p

1−
(

x
d0

)p+q , p, q > 0. (2.75)

Similarly to the symmetric coordination, d0 specifies the critical region. Two

additional parameter (p and q) control the steepness of the head and the tail of

the coordination function respectively (see Figure 3.5 for specific examples).

Path collective variables

The path CVs were introduced by Branduardi et al. [64] and are constructed from a

predetermined path {R0} from A to B

• the first function, s, measures the progress along the path:

s({R}) = lim
λ→∞

∫ 1
0 dt t ·e−λD({R0(t )},{R})∫ 1

0 dt e−λD({R0(t )},{R})
(2.76)
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and D is a measure of how much the configuration {R} differs from the reference

structure {R0(t )}. The limit, λ→∞, is taken to ensure that the largest contribution

to the integral comes from the structure in the reference path for which D is at a

minimum, i.e., the t ′ for which {R0(t ′)} is most similar to {R}.

• the second function, z, measures the distance away from the reference path:

z({R}) =− lim
λ→∞

λ−1 log
∫ 1

0
dte−λD({R0(t )},{R}). (2.77)

The measure D can be, for instance, the mean square difference between all pairs of

interatomic distances computed in {R A} and in {RB }

D
(
{R A}, {RB }

)= 2

N (N −1)

N∑
J>I

(|R A
I −R A

J |− |RB
I −RB

J |
)2

. (2.78)

It is important to note that D should contain information on all the relevant atoms, and

therefore can be used to describe complicated cooperative processes. The z-coordinate

is a measure of the distance in a direction orthogonal to the path. Therefore, if enough

atoms are included in the path, the risk of not being able to capture an essential aspect

of the reaction is reduced .

From the computational point of view, the continuous path {R0(t )} has to be replaced

by a finite set of N0 structures
[

{R (k)
0 }

]N0

k=1
and the path CVs become

s({R}) = 1

Z
N0∑

k=1
k ·e

−λD
(
{R (k)

0 },{R}
)

(2.79)

with

Z ≡Z({R}) =
N0∑

k=1
e
−λD

(
{R (k)

0 },{R}
)

(2.80)

and

z({R}) =−λ−1 logZ({R}). (2.81)

The structures in the reference path should be chosen D-equidistant and λ should be

such that λD({R (k)
0 }, {R (k+1)

0 }) ' 1 in order to avoid a discontinuous evolution of the CVs.

In Section 3.2 we will extend this idea to construct a metric which remain invariant

under permutation of identical atoms.
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2.4.2 Techniques for the Study of Activated Processes

Nudged Elastic Band

If one is only interested in a description of activated processes based on the potential energy

surface (PES) (T = 0), finding the transition state requires a good algorithm able to locate

saddle points between reactant and product basins. The nudged elastic band (NEB) methods

[66] aims at finding the minimum energy path (MEP) and transition state between known

stationary points of the PES (reactants and products). NEB is particularly easy to employ

because it does not rely on reaction coordinates, or rather the reaction coordinate is computed

within the NEB framework from a set of N configurations ({R (k)}Nk=1):

q (k) = q (k−1) +D
(
R (k),R (k−1)

)
, q (1) != 0 (2.82)

and one does not have to guess it a priori. Traditionally the Euclidean distance is employed as

metric

D
(
R (k),R (k−1)

)
=

√√√√ 1

3N

N∑
J=1

(R (k)
J −R (k−1)

J )2. (2.83)

Furthermore, the location of the saddle point is found by computing only energy gradients

and not the Hessian matrix as it is instead the case for other TS location algorithms (e.g.,

the partitioned rational function optimizer (P-RFO) in [67]) reducing therefore the costs of

computation if many atoms are included.

NEB works by optimizing a path (composed of N configurations with NEB-coordinates

q (1), . . . , q (N ) along the NEB path (Eq. 2.82)) connecting A and B until all atoms have zero

forces in the direction orthogonal to the path. This is achieved by computing effective forces

on the atoms: the parts orthogonal to the path derive from the PES while instead, the parallel

components are replaced by forces coming from springs linking the configurations together,

and such that, at equilibrium, all configurations are equidistant along the path:

F (k),NEB
J = F (k),⊥

J +F (k),spring,∥
J ; (2.84)

only the parallel components of the spring forces are considered to alleviate the problem of

corner cutting.

Based on the NEB forces a steepest descent algorithm can be employed to find the MEP.

Generally the highest energy configuration, i.e., the one closest to the saddle point, is set to

not feel the force from the spring and the parallel component has simply an inverted sign to

the one coming from the PES [68]

F (CI)
J = F (CI),⊥

J −F (CI),∥
J . (2.85)

Therefore this configuration is allowed to climb up the energy gradient and is referred to as a

climbing image (CI).
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Figure 2.3 – NEB of the MEP converges
to a path with higher barrier than the
true MEP.

A limitation of the NEB method is that the relaxed configuration of both reactants and products

have to be known beforehand; fortunately this is not so uncommon when studying physico-

chemical processes with static methods.

Figure 2.3 illustrates a more serious shortcoming: the initial path (the green lines) between

A and B consists in a few configurations taken from an interpolation between reactants and

products. Carrying out a minimization procedure based on the forces in Equations 2.84 and

2.85 will converge to the red path which indeed goes through a saddle point; as such this might

also be relevant although it is not the true MEP (the blue line).

An alternative formulation based on the reparametrization of the path and the redistribution

of the configurations has also been proposed [69]. However, we will not employ it in this thesis.

Umbrella Sampling and the Weighted Histogram Analysis Method

Although NEB is a very powerful technique when employed with care, it cannot include finite

temperature effects beyond the harmonic approximation and in particular it does not provide

free energy barriers.

Umbrella sampling (US) [70] uses finite temperature MD to incorporate those effects and a

biasing potential to overcome the sampling problem associated with the poor exploration

of high free energy regions. Like many other enhanced sampling techniques it requires

to define a reaction coordinate which is used to apply an ad hoc biasing potential W (q).

Clearly employing W (q) =−F (q) would guarantee the most effective sampling of the reaction

coordinate. However, F (q) is not known beforehand and a practical strategy is to perform

multiple simulations, in each one applying a bias potential tailored to focus the simulation in

a given window of q . Typical form is

Wi (q) = 1

2
k(q −qi )2 (2.86)

If windows overlap, the weighted histogram analysis method (WHAM) can be employed.

The probability in the i th window is

Pi (s) = 1

Zi

∫
dN Re−β(U (R)+Wi (q(R)))δ(q(R)− s) (2.87)
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The unbiased probability can be estimated as a linear combination of [71, 72]

P e =
n∑

i=1
πi eβWi

Zi

Z Pi , (2.88)

where the weights πi can be determined by minimizing the statistical uncertainty of P e

computed from a histogram distribution in each window assuming they follow a Poisson dis-

tribution. The derivation holds if the sampling of the distribution is performed at sufficiently

large time intervals. The estimated probability is then

P e =∑
i
αni Pi =

∑
i ni Pi∑

i e−βWi niZ/Zi
. (2.89)

The ratio Z/Zi has to be computed self consistently.

Whenever the reaction coordinate is known to a good approximation, umbrella sampling is an

extremely powerful technique whose results can in principle be systematically improved by

collecting more statistics in the windows and make the estimate in Eq. 2.88 more accurate.

Although, it is possible to include more than one reaction coordinate in theory, it becomes

rapidly too expensive in practice because the number of bins grows exponentially with the

number of reaction coordinates.

Metadynamics

Metadynamics (MTD) [7] relies on the same basic idea as umbrella sampling: it biases the

potential along a CV to enhance the sampling of high free energy regions. However it differs

significantly from US because first MTD does not employ multiple simulations in different

windows and second the bias is constructed in a different way. In metadynamics, the bias is a

history dependent quantity: as the system evolves, it deposits small hills of potential energy

(traditionally Gaussian) in the CV-space discouraging the system to revisit the same region. At

time t , the bias at q is

W (q ; t ) =
Nhills(t )∑

i=1
he

−
(

q−q(ti )
σi

)2

, ti = i ·τ, (2.90)

where τ is the time between hill depositions.

Under the assumption that the CV is well suited to describe the reaction, the added bias

will gradually compensate for the underlying well of the free energy landscape and drive the

system to undergo transitions. Once the barrier has been crossed, the system relaxes to the

next unvisited minimum and starts filling it as well. After some time tfilling, all the wells have

been filled and the system should diffuse on a more or less flat landscape (Figure 2.4). In fact

25



Chapter 2. Fundamentals of Theory and Simulation Methods

Figure 2.4 – Sketch of the principle behind metadynamics. The system deposits positive hills
of potential energy as it moves in the free energy landscape. The sum of added hills is the blue
filling. At the end the system only feels a flat potential and diffuses freely.

the central assumption of metadynamics is that

− lim
t→∞W (q ; t ) ' F (q)+const. (2.91)

It was first shown empirically correct by extensive testing on simple one dimensional systems

with Langevin dynamics and the exact reaction coordinate [73]. Furthermore, the authors

derived an expression for the instantaneous error (ε(t)) on the reconstructed free energy

surface (FES):

ε(t ) =
√∫

dq
(
W (q ; t )−F (q)+C

)2 ∝
√

h ·τ
Dβ

, (2.92)

where D is the diffusion coefficient associated with the system and C is an unphysical shift

constant chosen to optimally align the profiles. The expression in Eq. 2.91 was formally proven

true in Ref. [74] under the same assumptions, and the same error expression as in Eq. 2.92

was derived. In more complex systems, comparisons between reconstructed free energy

surface from MTD against those obtained with other free energy calculation techniques, e.g.,

umbrella sampling typically show good agreement within a few kcal/mol (see, e.g., [75, 76])

These fluctuations in the reconstructed FES can be averaged out by computing the following

[77]

F (q) '−W (q ; tfilling)− 1

ttot − tfilling

∫ ttot

tfilling

dtW (q ; t ), (2.93)

where ttot is the total time of the simulation. Crespo et al. [78] empirically showed that, even for

a system lacking adiabatic separation between slow and fast degrees of freedom, performing

such an average will reduce the error

ε(t ) ∝ t−1/2
tot , (2.94)

which is the same law governing the convergence of reconstructed FES from umbrella sam-

pling if the compensating bias is W (q) =−F (q) (ideal case).

A practical way to estimate the statistical error in a finite simulation is by comparing profiles
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obtained with Eq. 2.93 in different time windows: a parallel growth of W (q) is an indication

that the systems reached a stationary state in which W (q) compensates the underlying FES.

Well tempered metadynamics [79] is a different approach aiming at reducing the fluctuations

by progressively reducing the size of the hills. This technique, however, will not be employed

in this thesis.

Often in a simulation, it is possible to realize if the CVs are not capturing one or more crucial

slow degrees of freedom: the reconstructed free energy surface will in this case exhibit strong

hysteresis oscillating between different profiles and the system will never reach a diffusive

behavior.

Similarly to umbrella sampling, the volume of the space of the CV also grows exponentially

with the number of CVs making the use of more than ∼ 2 CV in the same simulation expensive

computationally. Nonetheless, bias exchange metadynamics is an elegant way to circumvent

this issue [80]. It works by simulating several replicas of the system each with different CV

and allowing them to periodically exchange the bias direction. The FES is then reconstructed

through a weighted histogram analysis [81].
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3.1 Protocol for Studying Finite Temperature Chemical Reactions

in Gas Phase

While it is customary to obtain robust and reproducible results on the potential energy surface

with traditional quantum chemistry methods, it is more difficult in the case of the free energy

surface from MD. There are multiple reasons: (i) temperature introduces stochastic fluctua-

tions, (ii) many techniques exist for enhanced sampling (see Section 2.4.2) with no consensus

on a "optimal" one and often they require to choose collective variables that approximate the

true reaction coordinate which already is a non-trivial task (see Section 2.4.1). And, finally, (iii)

the statistical uncertainty on the results is seldom estimated.

Here we address these issues and, based on the study of gas-phase CO2-water reactions in

Section 4.1, we come to propose a general protocol that is able to provide a reliable and

reproducible comparison of potential energy surfaces (PES) and free energy surfaces (FES).

1. The suitability of DFT for the characterization of the reaction has to be determined by

comparing the results with those of higher level quantum chemistry methods.

2. Ab initio molecular dynamics empowered by metadynamics and the path collective

variables can then be used to accelerate the reaction and reconstruct the FES. The

use of the path CVs is strongly encouraged especially if the process studied is highly

cooperative.

A physically sound putative path for the path CVs can in principle be generated by

starting short molecular dynamics simulations close to the transition state of the PES

and extracting configurations located at equal distance from one another between

reactants and products. If not, one can employ an interpolation between the stable

states.

The MD simulations have to be long enough to allow multiple recrossings to take place.

3. The convergence of the reconstructed FES is then measured by comparing the profiles

in different time windows and checking for parallel growth.
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4. A committor analysis (see Section 2.4.1) on the structures located at the saddle point of

the FES is then performed to validate the CVs a posteriori.

New mechanisms, present only at finite temperature, can be uncovered by a thorough com-

parison of the structures in the reactant and product basins as well as in the transition state

region against those computed from the PES. This analysis can be simplified by the use of

structural clustering algorithms (see next section). Similarly, the calculations of ∆F , ∆H and

T∆S (Eqs. 2.68-2.70) provide an account of the energetics at finite temperature with an uncer-

tainty estimated on the basis of a statistical argument.

Extension of this procedure to, e.g., chemical reactions in solution, is problematic unless a

suitable metric is employed. This issue is discussed in the next section.

3.2 Structural Clustering of Chemical Reactions in Solutions

The importance of having good reaction coordinates to study activated processes and retrieve,

e.g., free energy barriers has clearly emerged. A crucial property of a good reaction coordinate

is the ability to resolve important chemical variations of the system (e.g., bond breaking and

formation) irrespective of trivial geometric differences like, for instance, the reorganisation

of identical solvent molecules. To this end, we propose a novel metric [82] to compare two

different atomic configurations of the same system including solvent molecules diffusing

in a disordered way and possibly participating to reactions. The metric can be employed to

cluster together similar structures and therefore simplify the study of long MD trajectories.

The peculiarity of this metric is that it relies on a space of coordinates that is invariant under

the permutation of identical objects. This might seem trivial since it is well known that Nature

possesses such a symmetry; however, the customarily used Cartesian atomic coordinates in

an MD simulation do not because atoms, in this case, are labelled. Hence, configurations

extracted from a molecular dynamics simulation of a solute in equilibrium with the solvent

will typically display large distances in Cartesian space despite belonging to the same physical

metastable state of the system.

Because of this, automatizing the identification of structures that truly differ from one another

from those that only differ by unimportant or unphysical details like the labelling of atoms

is difficult and therefore hampers the analysis of the species found along a MD trajectory.

Powerful techniques developed for simulations of complex biomolecules (e.g., proteins) are

able to distinguish among different conformations of the macromolecule [83, 84, 85, 86, 87].

In that case, however, first the solvent is ignored and, second, the atoms are ordered and are

therefore distinguishable which avoids having issues related to the permutation symmetry.

In disordered systems or when covalent bonds are formed or broken (during a chemical reac-

tion), this ordering no longer exists and therefore it becomes difficult to distinguish between

structures that are truly different and those whose topology (physically equivalent) only differs

by the unphysical labelling of the atoms. The need for a permutation invariant measure is

manifest. We note that in principle it is possible to lift this kind of degeneracy by systematically

permuting the atoms and checking the similarity (e.g., with root mean square displacement)
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[88, 89]. However in practice the number of permutations grows with the factorial of the

number of particles and therefore this approach is unrealistic to compute for anything but the

simplest systems.

The metric presented in the next sections is general enough that it could, in principle, be ap-

plied to a wide range of system including chemical reactions in disordered systems. Ultimately

it could also serve as a distance for the path collective variables (D in Eq. 2.78).

3.2.1 The Permutation Invariant Vector

Clustering molecular dynamics trajectories requires the ability to compute a distance DAB

between two different configurations ({R A} and {RB }) of the same system. This kind of distance

is also employed in the path collective variables (Section 2.4.1) where D was chosen as the

mean square difference between all pairs of interatomic distances.

We introduce a metric that is focused on a given range of distances (encompassing, for instance,

bond breaking and formation) and is quite insensitive to structural differences at longer range

(due to, e.g., disorder in the system). We start by constructing a vector v of Npairs = N (N −1)/2

components

v = sort
(
FI J

)= sort
(
F (|R I −R J |)

)
, (3.1)

where FI J is a monotonically decreasing function of the interatomic distance dI J = |R I −R J |
(e.g., coordination functions cn in Equation 2.73). Its purpose is to focus the metric on the

range of interest. v includes all the elements from the upper triangular part of the matrix

F . These elements are sorted within each block characterized by the pairing of the same

elements. In Figure 3.1, these blocks are: the O-O (in red), the O-H in yellow, and the H-H in

gray. This sorting operation ensures the invariance of v under the permutation of identical

atoms and v can be dubbed a permutation invariant vector (PIV).

We note that the unmodified all-to-all interatomic distance matrix provides a redundant

description of the geometry the system (aside from, e.g., chirality). The focusing and sorting

operations (Eq. 3.1) amount to a reduction of the information contained in the PIV. The

number of components in the PIV is always constant; however based on the function F , the

number of elements with a negligible value (' 0) will vary. The dimensionality of the PIV scales

as N 2 and therefore employing it may become computationally expensive for very large N .

Nonetheless, the intrinsic limited range of F makes possible the use of, e.g., neighbor lists

which should reduce the computational cost and effectively make it ∼O(N ).

Finally, the metric DAB is constructed from the Euclidean distance between the PIVs (v A and

v B )

DAB = |v A −v B | =
√√√√Npairs∑

k=1

(
v A

k − vB
k

)2
. (3.2)
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Figure 3.1 – A simple system of two wa-
ter molecules illustrating the definition
of the PIV: the upper diagonal part of
the 6× 6 symmetric coordination ma-
trix F is rearranged into a vector of 15
components vk . The entries from each
matrix block corresponding to O−O
(in red), O−H (in yellow), and H−H in
(gray) are sorted in ascending order. F
from Eq. 2.75 with x0 = 1.7 Å, p = q = 6.
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Figure 3.2 – Schematic view of a structural clustering analysis.

D could also be referred to as the frame-to-frame distance matrix. It can be to cluster together

structures having a small distance (in this Npairs dimensional space). Two clustering algorithms

were considered to select the cluster centers:

• The simple method from Daura et al. [90] which requires choosing a cutoff c for D.

For each frame A, the number of neighbors, i.e., the number of structures B such that

DAB < c is determined. The frame A with the most neighbors is chosen as the cluster

center C1 and it is removed along with all its neighbors from the set of structures. The

procedure is iterated until no frame is left in the set (see Figure 3.3 (a)).

The cutoff c implicitly controls the number of clusters: the larger the cutoff, the less

clusters.

• The k-medoids algorithm [91] (with k-means++ initialization [92]) takes the desired

number (k) of clusters rather than a cutoff as input.

The cluster centers are chosen as follow: the first center C1 is chosen randomly among

all the structures. The second one (C2) is chosen based on a probability distribution

proportional to D2
C1C2

. The remaining centers C j are chosen among the remaining

structures with probability ∝D2
Ci C j

where Ci is the center (already chosen) closest to

C j (DCi C j is at a minimum).

Given a set of centers, the members are determined by Voronoi partitioning (see Fig-

ure 3.3 (b)). Then, within each cluster, a new center is determined as the one with the

smallest average distance with all the other members. The procedure is iterated over
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 The structure 

having most 

neighbors within

a cutoff c is 

selected as center

The center and its 

neighbors are

removed from the set

(a) Daura’s algorithm

A given number of 

medoids (centers) 

are chosen according

to a distribution

The clusters are chosen 

according to a 

Voronoi partitioning 

New centers 

(more central) 

are chosen

(b) k-medoids algorithm

Figure 3.3 – Schematic representation of two algorithms for choosing the cluster centers. See
text for more details.

until the centers do not change anymore.

Once the centers have been determined the clusters are constructed based on a Voroni parti-

tioning, i.e., the configuration A is attributed to the center C for which DAC is at a minimum.

This method has been applied to chemical reactions in gas phase (Section 4.1.2) as well as in

solution (Section 4.2). We further benchmarked it on the well documented cases of Na+-Cl−

ion pair dissociation in solution (see Section 3.2.2).

A code performing this analysis, piv_clustering.x, can be downloaded freely from the

sourceforge website [93].

3.2.2 Test Case: Na+-Cl− Ion Pair Dissociation in Solution

NaCl in solution is a well studied system (e.g., [65, 94]) and offers a sound test case for assessing

the robustness of the new structural clustering approach proposed in Section 3.2.

In this system, the solvent does not behave as a spectator in the dissociation/association

reactions and beside the Na+−Cl− distance, one needs a second collective variable to account

for the reorganization of the solvation shells (see Ref. [65] and Section 2.4.1). Following Ref. [7],

we select the potential energy calculated between Na+ and the surrounding water molecules

(Eq. A.1). For additional computational details, we refer to Appendix A.1.

The systems has three metastable states: the contact ion pair, the solvent separated ion pair

and the fully dissociated ion pair (respectively A, B and C in Figure 3.4) with relative equi-

librium populations of 1%, 8% and 67%. Figure 3.4, shows the free energy surface obtained

directly from the equilibrium MD simulations.
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Figure 3.4 – Free energy landscape as a
function of the Na+-Cl− distance and
of the electrostatic energy between Na+

and water. Contour lines are plotted ev-
ery kBT . Metastable basins A, B and C
correspond to the contact ion pair, the
solvent separated ion pair and the fully
solvated ions respectively. The dots are
the centers of the 40 clusters obtained
with the k-medoids algorithm. The in-
set magnifies the transition state region
between A and B .

Figure 3.5 – Coordination functions
computed from the interatomic dis-
tance x and employed to focus the PIV
on the appropriate length scale in the
different system presented.

The all-to-all coordination matrix F focused the search for clusters in appropriate range of

interatomic distances, typically below ∼ 9 Å, and removed the contribution from far away

atoms that, in solution, do not add relevant chemical information but mainly noise. Moreover,

since the hydrogen atoms do not participate in the breaking or formation of covalent bonds,

we assume that they can be discarded when constructing the PIV. From a computational

point of view, the reduction in the dimensionality of the PIV amounts to an important gain

in computational speed. In the absence of hydrogen, the shortest distance between a pair

of atoms in this system is ∼ 2.5 Å. Therefore we construct F to be focused in the [2.5 : 9.0] Å

range by employing the asymmetric coordination function (Equation 2.75) and the parameters

d0 = 5.5 Å, p = 4 and q = 4 (see red curve in Figure 3.5).

We note that if we were to employ the interatomic distances (dI J ) instead (e.g., Ref. [95]) of

the FI J in Equation 3.1 we would precisely bring noise and spoil the results of the clustering.

This was verified by extracting structures from the basins A,B , and C and computing the
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Figure 3.6 – Distribution of intra- and
inter basin distances computed from
three different definitions of F . (a)
plain interatomic distances (FI J = dI J ).
(b) coordination focused on a 2.5-9.0 Å
range (red curve in Figure 3.5) and (c)
coordination focused on a 2.5-5.0 Å
range (blue curve in Figure 3.5).

distance D between all possible structure once with a PIV constructed from dI J and once

from FI J . Figure 3.6 (a) and (b) shows the respective distributions of frame-to-frame distances

D. The overlap between the A− A distribution and the A−B distribution in Figure 3.6 (a) is

problematic because it means that a significant portion of structures belonging to basin B

have a similar distance from a structure in A than from another structure in B . This overlap is

substantially reduced if F is used to compute the PIV instead (Figure 3.6 (b)).

The resulting forty centers from the clustering of 1 µs long trajectory (more than 10000 frames)

with the k-medoids algorithm are reported as dots in Figure 3.4: they are well distributed over

the FES and we see from Figure 3.7 that all the members assigned to a specific center can be

determined to belong to either A, B or C . This shows that tens of thousands of structures can

be reduced to only a few tens which significantly simplifies the analysis and visualization of

the ensemble of structures.

Since the k-medoids algorithm is randomly initialized, it will sometimes fail to locate at least

one center in A because this state represents only 1% of the total population and therefore we

advise care in employing this algorithm in presence of scarcely populated metastable states.

From this point of view, Daura et al. ’s algorithm [90] is more reliable. Finally, we note that

the different numbers of clusters in basins A, B and C can be related to the difference in their

relative population.

For the A ↔ B transition state region, a finer analysis is instructive. We extracted all the

structures (424) having a Na+-Cl− distance between 3.10-3.95 Å as it is the range where the

transition state region is located. We already stated that only a few of these structures will

behave as true transition state because of the non-trivial solvent-related degree of freedom

and we shall see if our clustering approach is able to capture this behavior. This time the PIV

was constructed from a slightly more tuned coordination function focusing the range in 2.5-5 Å

(blue curve in Figure 3.5); as shown in Figure 3.6 (c), this function fails to distinguish basin B

from basin C but there is almost no overlap between A and B which is very important since the
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Figure 3.7 – Cluster members (black points) and centers (red points) for all 40 clusters of
the NaCl solution trajectory obtained using a PIV focused in the 2.5-9 Å range (red curve in
Figure 3.5) and the k-medoids algorithm. The FES is the same as in Figure 3.4.

TS is located between these two basins. Indeed, in the absence of a clear separation between

A and B , there is no hope of correctly identifying the transition state because, by definition,

structures from A and B will be mixed together. In particular, we see from Figure 3.6(a), that

employing the interatomic distance rather than F provides a poorer separation of the A and

B basins.
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ities to fall in basin B (the solvent-
separated Na+-Cl− pair) in the set of
members of each cluster from the re-
gion in the inset of Figure 3.4. The
circles denote the average committor
probability with RMSD as error bars.

The sixty centers obtained with the k-medoids algorithm are depicted as dot in the inset of

Figure 3.4. For each individual cluster, we performed a committor analysis (see Section 2.4.1)

on its members by starting for each one 100 MD runs of 4 ps with Boltzmann distributed

(T = 300 K) initial velocities. The probability to fall into basin B for each cluster averaged over

the cluster members is reported in Figure 3.8. A majority of the clusters is committed either

to A or B and only a few lie between 0.4 and 0.6 which are the ones exhibiting a transition

state-like behavior.

The use of the PIV based metric allowed us to recover known features of the NaCl dissociation

reactions in solution. A more thorough analysis of the different clusters reported in Figure 3.7

and at the transition state could reveal unforeseen characteristics of the process. This will be

the subject of a later study.

3.2.3 Conclusion

The simple approach we introduced allowed us to cluster MD trajectories without requiring a

deep knowledge of the processes beforehand. It can be used to simplify the analysis, interpre-

tation, and visualization of the results. It was shown to be particularly effective for chemical

reactions in solution where the clusters exhibited consistent structural and kinetic properties.

Two other applications of the methods are present in this thesis; one is a reaction in the gas

phase (Section 4.1.2) and the other is in solution (Section 4.2).
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4 Applications

In this Chapter we apply the simulation methods described in Chapters 2 and 3 to the study

of reactions that are known to require a non-negligible barrier in order to take place. We

choose to investigate specific aspects of problems of great current interest, namely the early

steps in the capture of carbon dioxide in solution and the diffusion of an impurity (S) into a

photovoltaic material (CdTe).

Reducing the concentration of atmospheric carbon dioxide is one of the main challenges

of this century [96, 97]. Carbon capture and sequestration encompasses techniques able to

either remove it directly from the atmosphere or to prevent its release from point sources

such as fossil-fuels (coal and oil) based power plants or industrial facilities. The most mature

technology for CO2 post-combustion capture goes through a cyclic process and employs

amine solutions [98]. First, the gas passes through the aqueous solution in which CO2 binds

to the organic molecules in different forms through different chemical reactions depending

on the nature of the amine. Then higher temperature scrubbing allows CO2 to be released in a

controlled environment for final storage, and the amine solutions are regenerated by heating

so as to restart the capture step. The commonly used apparatus uses monoethanolamine

(MEA) at fixed concentration (30 wt.%), which is highly performant for the capture. However,

release and regeneration imply a high energy penalty [99, 100]. Many efforts are being made

worldwide to try and devise new solvents or processes to improve the overall efficiency of this

operation [101, 102, 103].

There is a huge literature on the performance of different amines, under diverse conditions, as

well as on the description of the kinetics of the multi-step reactions involved. On the other

hand, there are only few simulations aimed at characterizing their pathways and energetics.

There is ample room for extensive and more accurate computational studies.

We have approached this problematics from scratch. First, we have cared about the suitability

of our computational scheme to represent the CO2-water interaction [104]. We focused on

characterizing the reactions occurring in the gas phase, i.e., the formation and dissociation of
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a carbonic acid molecule (H2CO3) with increasing number of water molecules. This system

offered us the possibility to study in detail these reactions with calculations of the potential

energy surface (PES) as well as via metadynamics (MTD) and the reconstructed free-energy

surface (FES). Moreover the PES characteristics obtained with a variety of exchange-correlation

functionals could be directly compared with high level quantum-chemical calculations [105,

106].

Then we studied one of the early steps of the CO2 capture in a (dilute) MEA solution [76]1,

namely the formation of the carbamate via a zwitterion. The latter was never observed experi-

mentally but has long been postulated to act as the intermediate of the reaction [107]. Model-

ing and simulations of this reaction are only a few and of limited sophistication. In particular,

the solute-solvent interactions are often described with continuum models [108, 109, 110, 111],

whose validity fails when the solvent participates actively to the reaction.

Reducing the amount of CO2 in the atmosphere also implies finding clean ways to produce

energy. Solar cells are among the most promising solutions. Silicon provides the current

solution to the demands of the market, both in the crystalline and amorphous form.

Cadmium telluride is a semiconductor with a direct band gap Egap of 1.50 eV at 300 K [112],

which is optimal for sunlight harvesting , and high absorption coefficient ([113]). The optimal

junction is with n-type cadmium sulfide (CdS), which acts as the window material having a

gap of 2.4 eV at 300 K [114]. The material characteristics that are believed to mostly influence

the performance are the morphology of the CdTe/CdS interface and trapping of impurities

and dopants at the grain boundaries [115, 116, 117].

Understanding from theory relies on studies of the electronic structure of bulk CdTe with

native defects and typical dopants [118, 119, 120] and on very few calculations of simplified

models of grain boundaries [121]. Recently, diffusion of Cu and Ag impurities in the bulk

phase has been investigated with nudged elastic band (NEB) calculations [122].

Our simulations refer to sulfur, which is an unavoidable impurity penetrating from the inter-

face and mainly diffusing along the grain boundaries. We studied the dynamics of diffusion of

sulfur in bulk CdTe at very low concentration (one over 100 anions), in the absence and in

the presence of native defects, with the aim of finding the most probable pathways, and of

understanding the underlying mechanisms and the induced changes in electronic structure.

Again we attempted a comparison of the outcome of MTD with that of NEB calculations. [123]

1The simulations presented in this section were performed by Ciro A. Guido. My contribution was mainly to the
analysis of the results.
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4.1 Gas Phase Reaction of Carbon Dioxide and Water: the Forma-

tion of Carbonic Acid

4.1.1 Results from the Potential Energy Surface

The PES of the systems composed of a carbon dioxide molecule and up to three water

molecules was first investigated in order to assess the suitability of DFT employing different

xc functionals (namely PBE, BLYP and B3LYP) to describe the interactions between CO2 and

H2O. This included the comparison with higher level quantum chemistry methods [105, 106].

The limited size of the system (at most 12 atoms) makes all electrons calculations of PES

possible and we carried out B3LYP and meta-hybrid M06 [43] calculations in this approach.

For more computationally demanding simulations such as ab initio MD we will employ the

pseudopotential/plane wave approach exclusively.

The transition states of the PES were determined by using the partitioned rational-function-

optimizer (P-RFO) [67]; additional computational details can be found in Appendix A.2.

The formation and dissociation of carbonic acid follows

CO2 +nH2O�H2CO3 + (n −1)H2O, n = 1,2,3 (4.1)

The PES of these reactions have been studied extensively at different levels of theory. The

most accurate ones were obtained by Nguyen and collaborators (CCSD(T) energy on MP2

geometry) [106]. In agreement with previous studies [124, 125, 105], they found a substantial

barrier reduction for H2CO3 formation and dissociation upon the addition of water molecules.

The direct participation of n = 3 H2O molecules was stressed as being particularly impor-

tant. DFT studies were also carried out with various approximations for the xc functionals

[126, 127, 128]. We will employ these results to perform a critical analysis of the PES obtained

in our calculations and validate our DFT scheme.

In Figure 4.1, we report a sketch of the optimized structures of the reactants (Rn), products (Pn)

and transition states (TSn) for the reactions in Eq. 4.1. All methods agree on the description of

the structures, as indicated by the small root mean square deviations from MP2 geometries

(Table 4.1).

In the reactants, the H2O molecules do not tend to form hydrogen bonds with CO2. The forma-

tion of a water cluster is favored when more than one water molecules are present (dimer for

n = 2 and closed/open trimer for R3 and R′
3 respectively). For n = 1, the transition state breaks

apart the water molecule while carbon dioxide bends to eventually form carbonic acid. For

n > 1, the mechanisms are qualitatively different: the TS consists in a ring of water molecules

in which a proton can circulate more easily. For n = 3, two mechanisms were considered; TS3

has all water molecules actively participating and exchanging protons along the ring. In TS′
3,

one behaves as a spectator and neither accepts nor donates a proton. The latter mechanism is
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Figure 4.1 – Reactants (Rn), transition states (TSn) and products (Pn) for the reaction in Eq. 4.1.
n = 1,2,3. The black ball is carbon, the red are oxygen and the withe hydrogen.

similar to the one observed for n = 2.

The structures being very close in different xc functional schemes, a comparison of the binding

energies (BE)

BE(Xn) = E(Xn)− ((E(CO2)+nE(H2O)), X = {R,TS,P} (4.2)

should provide precious insights on the actual capabilities of the different functionals to

account for the interactions of the different complexes correctly. We adopt the convention of

having a negative binding energy when the system is bound. The term binding energy for a

transition state might be slightly misleading since it is usually not bound but we formally refer

to the definition in Eq. 4.2. Further down, we shall also mention barrier heights (BH) for the

forward and backward reactions (formation and dissociation of H2CO3), we will actually be
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Table 4.1 – Root mean square deviation of DFT geometries with respect to
MP2 geometries in Ref. [106] (Å). TS3 geometry not reported in Ref. [106].

System PBEa BLYPa B3LYPa B3LYPa’ M06a’

R1 0.007 0.010 0.008 0.010 0.003

TS1 0.001 0.004 0.002 0.001 0.002

P1 0.001 0.002 0.001 0.001 0.001

R2 0.007 0.008 0.005 0.003 0.007

TS2 0.003 0.005 0.003 0.001 0.002

P2 0.004 0.005 0.004 0.004 0.004

R3 0.012 0.015 0.011 0.011 0.025

P3 0.032 0.032 0.032 0.033 0.032

R′
3 0.011 0.012 0.008 0.006 0.008

TS′
3 0.003 0.005 0.004 0.006 0.004

P′
3 0.005 0.005 0.005 0.005 0.003

a Pseudopotential/plane waves. Cutoff 100 Ry a’ All electrons. Aug-cc-pVTZ basis set

Table 4.2 – Binding energies (kcal/mol) referred to the isolated CO2 and H2O
molecules, including ZPE.

System PBEa BLYPa B3LYPa B3LYPa’ M06a’ MP2b CCSD(T)b

R1 −1 abs < 1 abs < 1 −1 −2 −2.0 −2.1

TS1 40 46 49 48 49 48.3 48.5

P1 8 14 11 10 11 11.4 8.6

R2 −6 −3 −4 −4 −6 −7.0 −7.2

TS2 16 25 26 26 26 25.1 25.0

P2 2 9 6 5 4 4.2 1.6

R3 −12 −8 −9 −10 −12 −14.2 −14.4

TS3 5 16 15 15 15 14.0 13.9

P3 −6 3 −1 −1 −2 −3.0 −5.7

R′
3 −9 −5 −7 −7 −9 −10.9 −11.3

TS′
3 6 18 17 17 16 14.3 13.8

P′
3 −9 2 −3 −4 −6 −5.6 −8.5

a,a’ Same as Table 4.1 b Ref. [106]: single-point calculations on MP2 geometries. aug-cc-pVTZ
basis set
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Table 4.3 – Barrier heights (kcal/mol) for the formation and dissociation of carbonic acid and
their decrease (in italics) due to the addition of one water molecule (from n to n +1).

(a) formation

n PBEa BLYPa B3LYPa B3LYPa′
M06a′

MP2b CCSD(T)b

1 41 46 49 49 51 50 51

2 22 29 30 30 32 32 32
1−2 19 18 19 19 19 18 19

3 17 24 25 25 28 28 28
2−3 5 5 5 5 4 4 4

3′ 15 23 23 24 25 25 25
2−3′ 7 5 6 6 7 7 7

(b) dissociation

n PBEa BLYPa B3LYPa B3LYPa′
M06a′

MP2b CCSD(T)b

1 32 32 37 38 39 37 40

2 15 16 20 21 22 21 23
1−2 17 16 17 17 17 16 17

3 11 12 17 16 18 17 20
2−3 4 4 4 4 4 4 4

3′ 15 17 20 21 21 20 22
2−3′ abs < 1 abs < 1 1 abs < 1 1 abs < 1 abs < 1
a,a′

Same as Table 4.1 b same as Table 4.2

referring to E(TSn)−E(Rn) and E(TSn)−E(Pn) respectively. These BH will always be positive.

The zero-point energy (ZPE) is included in the BE and BH from the potential energy surfaces.

All methods predict the same ZPE contribution for the reactants, products and transition

states within 1 kcal/mol.

By inspection of the BEs in Table 4.2, we remark that the reactant R1 is a shallow minimum for

all methods, suggesting a limited interaction between CO2 and H2O. This is further confirmed

by the softness of the modes associated with the CCO2 −OH2O distance (∼ 150 cm−1). The same

remark can be made for R2 and R3 where the interactions (e.g., hydrogen bonds) within the

water moiety (dimer or trimer) account for the major part of the binding energy.

From Tables 4.3 (a) and (b) we note that all methods predicts the same catalytic effect caused

by water addition (within 1 kcal/mol). This remarkable quantitative agreement suggests that

the main contribution to the reduction of either formation or dissociation barriers is mainly

due to electrostatic effects.

Besides these similarities, we note that PBE strongly underestimates (∼ 10 kcal/mol) the BE of

the transition states and the formation or dissociation BH. PBE being non-empirical leads us
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to conclude that the relative good agreement in the reactants and products is fortuitous and

can be attributed to the known tendency of PBE to strengthen intermolecular bonds in water

[129].

The closeness of the BE obtained for B3LYP in both the pseudopotential and all-electrons

schemes allows us to validate the former even though, the pseudopotential employed was

originally derived for the BLYP xc functional. We also note the good agreement of the BE

computed with the hybrid B3LYP and meta-hybrid M06 functionals with the MP2 values.

4.1.2 Reaction Dynamics and Free Energy Surfaces

With a solid characterization of the potential energy surfaces for the reactions in Eq. 4.1 we

carry on with a study of the formation and dissociation of carbonic acid at finite temperature

by means of ab initio MD. We employ metadynamics to accelerate the occurrence of the

transitions and allow the system to overcome the high free energy barriers suggested by the

PES. The limited size of the systems makes the calculations of long MD trajectories possible

(> 100 ps) and much can be learned on how finite temperature effects can modify the reactions

mechanisms and energetics.

The study of these reactions at finite temperature was the basis to construct the protocol

detailed in Section 3.1.

The Crucial Choice of Collective Variables and its Validation

The choice of appropriate collective variables is central if one wants to track the reaction

progress and reconstruct free energy surfaces (see Section 2.4.1).

In fact, prior to devising the scheme in Section 3.1, we had made several unsuccessful attempts

employing simple collective variables such as the C−OH2O coordination or the number of

covalent bridges between C-O-H. These CVs were successful in distinguishing reactants and

products (i.e., good order parameters) and even to simulate formation and dissociation re-

actions. However, the structures at the saddle point of the FES failed the committor test, i.e.,

the structures at the saddle point were mostly committed to the reactants or to the products

(Section 2.4.1). Moreover, the free energy surfaces reconstructed from the metadynamics

resulted in barriers higher than the ones from the potential energy surfaces by ∼ 20 kcal/mol.

This finding could not be reasonably explained. Despite fine tuning of the parameters entering

in the CV definition, these issues were never satisfactorily solved.

To capture the very cooperative nature of the mechanisms involved, we decided to employ the

path CVs instead (see Section 2.4.1). We could have chosen a linear interpolation between

reactants and products for the reference paths, However, obtaining more physical paths was

relatively easy and computationally inexpensive: they were generated from short unbiased

MD runs started at the PES transition states and forming continuous trajectories from reactant

to product. A few equidistant (∼ 10−20) frames were selected from the trajectories. The paths

obtained with the PBE xc functional were also employed in the simulations with the BLYP and

B3LYP xc functionals.
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Figure 4.2 – Committor analysis for the n = 1 and n = 2 systems (BLYP). Start (empty circles)
and end (filled) points of the unbiased trajectories.

These CVs performed extremely well with respect to our previous choice: they allowed us

to simulate easily multiple re-crossings from reactants and back. In addition, they were a

posteriori validated by passing the stringent test of committor analysis.

Figure 4.2 shows the results of the committor analysis for the BLYP n = 1 and n = 2 cases.

We selected a region around the saddle point of the free energy surfaces (ΩTS) and chose

two different regions, one more towards the reactants (ΩR) and the other more towards the

products (ΩP), which should be committed either to the reactants or the products respectively.

In Figure 4.2, structures extracted from the metadynamics trajectories and falling into the

regions ΩTS, ΩR and ΩP are represented as empty red, blue and green circles respectively.

From each of these configurations, we started twenty short MD runs with initial velocities

drawn from a Maxwell-Boltzmann distribution at 300 K. The end points of these simulation

are represented as filled circles in Figure 4.2.

For n = 1, the configurations in the region ΩR were committed to the products (pR) with

pR = 100% while those in the regionΩP were committed to the products (pP) with pP = 98%.

InΩTS, the probabilities were pR = 70% and pP = 30%. For n = 2 we had pR = 99%, pP = 98%

and pR = 39% and pP = 53% respectively. Qualitatively similar results were found for the

systems with n = 3.

Convergence of the Free Energy Surfaces

In metadynamics simulations of chemical reactions with ab initio molecular dynamics it is

customary to estimate free energy barriers heights after the first crossing (see, e.g., Ref. [130])

rather than after having observed multiple forward and backward transitions. With this ap-

proach, parallel growth of the surfaces cannot be observed, i.e., the reconstructed FES do

not grow parallel to itself (Section 2.4.2). Therefore, the results may suffer from uncertainties

which can not be estimated on the basis of a statistical argument. In principle however, given

an appropriate choice of collective variables, parallel growth can be achieved if the system is
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Figure 4.3 – Free energy profile along
the reaction path on the reconstructed
FES for the reaction in Eq. 4.1 with n = 1
(BLYP): from reactants (solid black) and
products (solid red) and from the two
halves of the simulations started from
the reactants (dashed and dotted black
lines).

small enough that long MD trajectories can be generated. Having both several re-crossings

and parallel growth of the reconstructed FES is highly desirable if one aims at the same level of

robustness and reproducibility as in PES calculations.

All the free energy surfaces discussed in the following were reconstructed at the end of a MTD

simulation (∼ 200 ps) after about ten forward/backward reactions had been observed. Parallel

growth was realised in all cases and for all the xc functionals.

As an example, we refer to the similarity of the two free energy profiles reconstructed at differ-

ent times (dashed and dotted lines in Figure 4.3). In general, the root mean square deviation

between two FES reconstructed at two different filling time (Eq. 2.93) provides an estimate of

the statistical error of ∼ 2 kcal/mol.

Having already fulfilled both the committor test and the parallel growth requirement, the path

CVs scheme was even further validated by checking the reproducibility of the results. For

n = 1, a second simulation was initialized in the products P1 instead of the reactants. Excellent

agreement was found between the reconstructed FES (see the alignment of the red and black

curves of the profile along the reaction pathway in Figure 4.3).

Free Energy Landscapes and Comparison with the Potential Energy Surface

The previous section established that the chosen path CV produced reliable results. In partic-

ular, we showed that reconstructed free energy surfaces were converged. We are, therefore,

confident that the calculations of the free energy barriers, the characterization of the reac-

tants and products basins as well as of the transition state regions, and the description of the

dynamics of the reaction are meaningful and that comparing them with the results from the

potential energy surfaces is possible.

The structures in the product basins and the transition state regions were in close agreement

with their equilibrium counterparts and the structural parameters oscillated around the equi-
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Figure 4.4 – n = 3,3′: distribution of relevant distances in the reactants and products basins.
The optimized geometry from Figure 4.1 is reported in inset. The dot represent the value of
the distance of the optimized geometry.

Figure 4.5 – n = 3 cluster centers for the (a)/(d) reactant basin R3/R′
3, (b)/(e) product basin

P3/P′
3 and (c)/(f) transition state region TS3/ TS′

3. Distances in Å.

librium value. The same was true for the reactants with n = 1,2. For n = 3, however, there were

a few differences for the reactants. The optimized R3 from the PES was made of a closed water

trimer having no hydrogen bond with CO2 (Figure 4.1), while the structures in the reactant

basin of the FES mostly were made of an open water chain forming one hydrogen bond with

carbon dioxide (see Figure 4.4 (a) for the distribution of distances and Figure 4.5 (a) for an ex-

ample of the configuration). Also shown in Figure 4.4 (b) is the comparison of distances for R′
3

showing the agreement between statics values (filled circles) and their dynamical distribution.

These configurations were further investigated employing structural clustering based on the

permutation invariant vector and Daura’s algorithm (see Section 3.2). Being in the gas phase,

no noise can come from, e.g., far away solvent molecules and therefore it is not necessary to

restrict the PIV to a specific range. We used simply the plain interatomic distances to construct

it. The cutoff for the clustering algorithm was chosen such that the first four clusters of the

reactant basin encompassed more than 50 % of all the structures in the basin.

The cluster centers from the reactant and product basins for n = 1,2 differed mainly in the

orientation of the water molecules; both TS1 and TS2 had only one cluster and the structure of

their respective center were similar to the PES transition state.
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Table 4.4 – Free energy barrier heights (kcal/mol) for the formation and dissocia-
tion of carbonic acid at room temperature and decrease (in italics) due to the
addition of one water molecule (from n to n +1).

Formation Dissociation

n PBE BLYP B3LYP PBE BLYP B3LYP

1 46 51 54 31 33 38

2 29 32 31 18 20 19

1−2 17 20 23 14 13 19

3 26 31 16 19

2−3 3 1 1 1

3′ 19 26 15 16

2−3′ 10 6 3 4

In the case with three water molecules, the richness of conformations in R3 was confirmed

and the most populated was indeed the "open water chain"; the other centers all showed a

different degree of openness in the chain and the geometry of the static reactant was also

present (Figure 4.5 (a)). The product P3 exhibited a narrower clustering distribution with the

first two clusters encompassing already 80 % of the 1600 configurations (Figure 4.5 (b)) and TS3

was reduced to one cluster (Figure 4.5 (c)) as in the case of n = 1 and n = 2. R′
3 exhibited less

deviation from the geometry at 0 K, the cluster analysis revealed that the four most populated

cluster are more compact than for R3: two water molecules form a hydrogen bond with CO2

and the third one serves as a bridge between them (Figure 4.5 (d)). The P ′
3 clusters are closely

related to each other with the carbonic acid separating the two remaining water molecules

(Figure 4.5 (e)).

In Figure 4.6, we report the free energy surfaces and the evolution of a few structural parame-

ters along the reaction pathway (BLYP xc functional; similar FES were obtained for PBE with

n = 1,2,3 and B3LYP with n = 1,2). For n = 3, we performed two distinct simulations whose

paths were generated by a trajectory shot either from TS3 or from TS′
3. In principle, both

mechanisms could have been found in a single simulation by virtue of the second collective

variable of the path CV (z; Eq. 2.81) which allows the system to explore different TS from the

one included in the path. However, a reasonably precise free energy surface for different mech-

anisms can only be obtained if the two different paths are employed. We report the values for

the free energy barriers for formation and dissociation in Table 4.4. We recall that the root

mean square alignment of FES reconstructed at two different filling times was ∼ 2 kcal/mol

and within this error, the catalytic effect of adding water molecules is quite independent of

the xc functionals.
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Figure 4.6 – (an) Free energy surfaces for the reactions in Eq. 4.1 and (bn) evolutions of relevant
structural parameters along the reaction pathway (BLYP). n = 1,2,3,3′. Distance in Å and
angles in degrees. Error bars denote the RMSD.
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4.1. Gas Phase Reaction of Carbon Dioxide and Water: the Formation of Carbonic Acid

Figure 4.7 – BLYP reactants, products
and transition identified during our sim-
ulation and plotted in the CV space
used in Ref. [130].

Previous metadynamics simulations of the dissociation of carbonic acid were published in

Ref. [130]. The authors reported a dissociation free energy barrier of 37 kcal/mol in the BLYP

xc functional and the difference of 4 kcal/mol with respect to our result can easily be traced

back to the different pseudopotential scheme or box size. In addition the number they report

is computed as a first passage barrier passage and the simulation does not include a formation

reaction.

In fact, their choice of collective variables (coordination of OCO2 −HH2O and of OH2O −HH2O;

Eq 2.74), although intuitively sound, is flawed for the simulations of H2CO3 formation. To

illustrate this statement we refer to Figure 4.7 in which our reactant R1, transition state TS1

and product P1 configurations are reported in their CV space: the TS occupies almost a quarter

of the total CV space while the product basins shrinks and the reactants collapse to a single

point whence ∂qW = 0 (Eq. 2.90) in this region. Carrying out a metadynamics simulation there

is ineffective because the forces from the bias are null and therefore the system is not driven

towards the transition state.

Car-Parrinello KS energies of the structures in the basins (as reported along the MTD run)

were used to estimate the enthalpy (Eq. 2.69). From calculations on 13000 configurations

extracted from the trajectories at room temperature, a difference of ∼ 2 kcal/mol on average

was noted between the CP-KS energies and the "true" KS energies obtained after quenching

the electronic degrees freedom to the BO surface

The remarkable agreement between the enthalpy barriers (in Table 4.5) and the corresponding

static value (in square brackets) gives us confidence in ascribing the difference between free

energy and enthalpy barriers to entropic effects. We note that the static values are reported

without ZPE contributions because ions are treated classically within our MD scheme.

Entropy contributions to the free energy barriers could be directly calculated by T∆S =
∆H −∆F (Eq. 2.70) without having to separate its contribution into vibrational, rotational

and translational entropy as it is customarily done to estimate entropy form the PES (see, e.g.,
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Table 4.5 – Enthalpy barrier height (kcal/mol) for the formation and dissociation of carbonic
acid estimated from room temperature DFT-MD and decrease (in italics) due to the addition
of one water moleculea (from n to n +1).

Formation Dissociation

n PBE BLYP B3LYP PBE BLYP B3LYP

1 42 [41] 48 [47] 50 [50] 33 [34] 34 [35] 38 [41]

2 24 [23] 31 [30] 31 [31] 17 [17] 19 [16] 22 [17]

1−2 18 [18] 17 [18] 20 [19] 16 [17] 15 [16] 16 [17]

3 20 [18] 28 [26] 13 [14] 17 [16]

2−3 4 [4] 3 [4] 4 [4] 2 [4]

3′ 16 [15] 24 [23] 19 [17] 18 [20]

2−3′ 8 [8] 8 [6] −2 [abs < 1] 1 [abs < 1]
a In square brackets: results from the PES. Cutoff 70 Ry; no ZPE

Table 4.6 – Entropy contribution (T∆S) (kcal/mol) to the free-energy barriers at room-
temperature. MD: estimate from MTD and Eq. 2.70. H: from PES, vibrational component
computed in the harmonic approximation (see Ref. [131]).

Formation Dissociation

PBE BLYP B3LYP PBE BLYP B3LYP

n MD H MD H MD H MD H MD H MD H

1 −4 −4 −3 −3 −4 −3 2 1 1 1 1 1

2 −5 −6 −1 −5 abs < 1 −4 abs < 1 −1 −1 −1 3 −1

3 −6 −7 −3 −5 −3 −1 −2 −1

3′ −2 −8 −2 −7 4 −1 2 −1

Ref [131]). The comparison of results from the two methods is possible as was the comparison

of finite temperature enthalpy with the Kohn-Sham energy from the PES. Results are reported

in Table 4.6; the estimated error on the MD values is 3 kcal/mol. The vibrational entropy is

computed within the harmonic approximation, i.e., the modes are populated according to a

Boltzmann distribution since the ions are treated classically.

The dynamical reactants R′
3 (and to a lesser extent the products P′

3) exhibit sizable deviations

from the harmonic entropy (∼ 6 kcal/mol; beyond our error bars of 3 kcal/mol). This fact, in

addition to the discrepancy noted in the structural description of the reactants R3, suggest that

the sole study of the potential energy surface is insufficient to faithfully describe the reaction

mechanisms for n ≥ 3.

Temperature dependence of the entropic term was also investigated by carrying out an ad-

ditional simulation at T = 500 K for the n = 1 case. Within our accuracy of 3 kcal/mol, the

entropic contribution to the free energy dissociation barrier remained the same while it in-
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4.1. Gas Phase Reaction of Carbon Dioxide and Water: the Formation of Carbonic Acid

Figure 4.8 – Entropic contribution (in kcal/mol) to free-energy barriers (temperature in K on
the x-axis): from ab initio MD (circles) and from standard calculation using harmonic (solid)
and quasi-harmonic (dashed) approximations for the vibrational entropy.

creased it significantly (6 kcal/mol) for the formation. Entropy tends to stabilize the reactants

which is consistent with the very shallow nature of this minimum.

4.1.3 Conclusions

In this section we have uncovered interesting aspects of the formation and dissociation

reactions of carbonic acid in the gas phase. In particular, we have shown that the catalytic

effect of water addition is quantitatively independent on the xc functional and is in agreement

with the results from previous quantum chemistry calculations [106, 128]. This remained true,

to a large extent, also at room temperature.

Moreover, comparison of the potential and free energy surfaces of the processes revealed that

finite temperature effects were limited on the reactions with one or two water molecules. In

the case of CO2 interacting with three water molecules, substantial changes were identified:

notably the reactant basin cannot be described as a single configuration but as a statistical

ensemble of quasi-degenerate configurations.

The rapid decrease of the catalytic effect and of the free energy barrier height towards the

experimental value in solution [63] is however not sufficient to conclude that the chemistry of

solvated CO2 is accurately described by the inclusion of only a few water molecules. Indeed,

experiments [63] and standard molecular dynamics simulations with metadynamics have

shown that the formation of carbonic acid may proceed via more complex pathways in liquid

water. [132, 133, 134].

Finally, we also verified that the protocol introduced in Section 3.1 produces robust and

reproducible results.
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4.2 Carbon Dioxide - Monoethanolamine Reactions in Liquid Water

Computational details can be found in Appendix A.3.

The formation of a zwitterion (a neutral molecule with both a negative and positive charge)

composed of a CO2 molecule (carrier of the negative charge) bound to a monoethanolamine

(MEA) molecule (carrier of the positive charge) is a long postulated intermediate in the reaction

from solvated CO2-MEA to stable carbamate in solution [107]:

HOCH2CH2NH2︸ ︷︷ ︸
MEA

+CO2(aq.)
CO2 release↔ HOCH2CH2NH2CO2︸ ︷︷ ︸

zwitterion

deprotonation↔ HOCH2CH2NHCO−
2︸ ︷︷ ︸

carbamate

+H3O+.

(4.3)

The question of the zwitterion stability emerges because its very existence eludes experimental

confirmation. Two possible routes can be envisaged for its decomposition: it can either release

CO2 and go back to the MEA (left-hand side of Eq. 4.3) or lose one of the protons attached to

the nitrogen and form a carbamate (right-hand side of Eq. 4.3).

We investigated the dependence of these decomposition mechanisms in liquid water by means

of ab initio MD including explicitly 122 water molecules.

The description of liquid water by commonly used GGA functionals such as PBE and BLYP

was thoroughly investigated by many authors and it is an established fact that both fail at

reproducing correct physical properties (see, e.g., Ref. [135, 136, 137, 138] and references

therein). For instance they tend to underestimate the equilibrium density by 10-20% and

overstructure the liquid (radial distribution functions at 300 K have too high peaks and too

shallow wells). The inclusion of van der Waals effects to the functionals was shown to mitigate

these issues [139, 140, 141]. In particular, the empirical scheme presented in Section 2.2.1

softens the structure and improves the density to almost match the experimental datum.

In our Car-Parrinello simulations, the nuclei are treated as classical objects, and therefore we

neglect the effects of their quantum nature. Indeed, the inclusion of nuclear quantum effects

can be done using the path-integral method [142]. In this case, the radial distribution func-

tions of liquid water become less structured and the momentum distribution of the proton

becomes broader [143] in closer agreement with experimental data. In the case of ice, a more

recent study [144] has identified the zero-point motion as the major quantum contribution to

the dynamics of the proton.

In order to address the issue of the zwitterion existence in solution (Figure 4.9) we simulated

its evolution at finite temperature and on our timescale (∼ 20 ps) it remained whole.

The relative stability of the zwitterion within the ab initio MD framework implies the use of

enhanced sampling schemes (Section 2.4) to facilitate the zwitterion decomposition and we

employed both metadynamics and umbrella sampling .

Free energy profiles for the CO2 release and deprotonation are reported in Figure 4.10 (a) and

(b) respectively; the inset shows a snapshot of the transition state region with the distance used

as collective variable indicated in yellow. The free energy barriers corresponding to the first
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Figure 4.9 – The zwitterion formed from
a monoethanolamine molecule and
CO2 molecule solvated by water. Black
balls are carbon, red balls: oxygen,
blue ball: nitrogen, white balls: hydro-
gen and blue sticks are further water
molecules.

(a) CO2 release (b) Formation of the carbamate via N deprotonation

Figure 4.10 – Free energy profiles for the two decomposition routes of the MEA-CO2 zwitterion.
Only the first passage barrier is reported. Inset: snapshot at the transition state region; the
dashed yellow line indicates the distance used as collective variable in the enhanced sampling
scheme.

passage for both reactions were found to be in the range of 6-8 kcal/mol. Therefore they are

competitive. The agreement between the results obtained with the two different functionals

and also between metadynamics and umbrella sampling was remarkable: the free energy

barriers were the same within 2 kcal/mol, namely, within the accuracy of the calculations.

The enthalpic barriers, calculated from Eq. 2.69, turned out to be 24±3 kcal/mol and 13±
3 kcal/mol for CO2 release and deprotonation respectively. These values indicate substantial

entropic contributions of ∼ 17 kcal/mol and ∼ 6 kcal/mol respectively that reduce the free

energy barriers at room temperature.

These large entropic effects come from the reorganization of the solvent and the use of explicit

water molecules allows us to reveal its importance in the reactions. We can, for instance,

provide a detailed analysis of the modifications undergone by the hydrogen bond network

when carbon dioxide is released or when the carbamate is formed. We adopt the definition of

Luzar et al. for the hydrogen bond [145].
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Figure 4.11 – The water cage forming
around CO2. The hydrogen bond net-
work was significantly modified with re-
spect to the reactants in Figure 4.9.

(a) χ−θ distribution in the reactants (b) χ−θ distribution at the transition state

Figure 4.12 – Definition of the θ and χ (following [147]) angles and their distribution in the
reactants (a) and the transition state (b). All water in the first shell are included.

When captured by the amine, the CO2 molecule is bent ( 140◦) and forms 3±0.7 hydrogen

bonds on average with the surrounding water molecules (Figure 4.9). As it is released it pro-

gressively loses them: 1±0.7 remain at the transition state and they vanish in the product. Free

CO2 is linear and repels water (see Figure 4.11). The caging effect is further confirmed by the

orientation of the water molecules surrounding it (Figure 4.12). This particular distribution of

θ−χ angles has previously been related to hydrophobicity [146, 147].

The changes in the solvent are not confined to the sole interaction with CO2. We noted

that, on passing from the reactant to the transition state, the number of hydrogen bonds

within the first solvation shell increased from 0.4±0.2 to 1±0.1 on average per water molecule

while it decreased from 2.3±0.3 to 1.5±0.2 for hydrogen bonds between first and second shells.

The solvent reorganisation is an interesting mechanism to investigate with the permutation
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Figure 4.13 – (a) distribution of carbon-nitrogen distance (black lines) for the 15 largest
clusters, compared with a smoothed out distribution of the discrete number of hydrogen
bonds (defined according to Ref. [145]) between CO2 and the surrounding water molecules
(blue lines). (b) Number (average and RMSD) of water-water hydrogen bonds per molecule
within the first solvation shell and between the first and second shell for each of the 50 clusters.

invariant vector and the cluster analysis introduced in Section 3.2. From the umbrella sam-

pling simulations of the CO2 release we extracted thousands of configurations and applied

the k-medoids algorithm to obtain 50 clusters from a PIV focused on a range of 1-5 Å (yellow

curve in Figure 3.5). Figure 4.13 (a) shows a comparison of the distribution of the CCO2 −NMEA

distance (black line) with the smoothed out distribution of the number of hydrogen bonds

between CO2 and water molecules (blue line) for the fifteen largest clusters. There is an

anticorrelation between increasing C-N distance and the number of hydrogen bonds in the

clusters and the limited width of the distributions indicate that our metric is quite successful

in extracting clusters whose member configurations are structurally consistent. The PIV also

captures the changes beyond the first solvation shell: the anticorrelation between the number

of hydrogen bonds within the first shell and the number of hydrogen bonds between the first

and second shell is well reproduced (Figure 4.13 (b)).

During the deprotonation reaction, one water molecule directly participates in the break-

ing of covalent bonds because the proton leaving the NH2 site is transferred to it to form a

hydronium cation (H3O+). Substantial changes also take place in the hydrogen bond net-

work surrounding the proton-accepting water molecule. For instance the number of solvent
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molecules forming a hydrogen bond with it decreases from 2.9±0.7 to 2.2±0.5 on average

while the bonds themselves are strengthened (H-bond distance goes from 1.82 Å to 1.62 Å).

Diffusion of the proton in water was not investigated further as it is per se a delicate issue

[148, 149].

4.2.1 Conclusion

Our calculations indicate that the zwitterion is metastable in solution and could act as an

intermediate in the formation reaction of a carbamate from monoethanolamine and carbon

dioxide.

Both mechanisms inducing the dissociation of the zwitterion, namely the CO2 release and

nitrogen deprotonation, involve a non-trivial contribution from the solvent molecules, also

beyond the first solvation shell. This effect largely explains the sizable entropic contribution

to the free energy barrier favoring the decomposition of the zwitterion.

Our results also show that one cannot justify the use of either implicit solvent models [110]

reducing the effect of the solvent to a change in the electrostatic potential or of QM/MM

schemes including only a very small number of water molecules (hybrid explicit-implicit

models [111]).

Therefore, although computationally much more expensive, the explicit treatment of the

solvent appears to be crucial for an understanding of the mechanisms responsible for the

reactions studied in this work and more generally for the simulation of CO2 capture in any

aqueous solutions.

4.3 Impurity Diffusion in Cadmium Telluride

In this section we report on an investigation of the diffusion of sulfur in bulk CdTe, at low

concentration. First, we describe relevant impurity configurations and characterize the signa-

ture of sulfur on the Kohn-Sham spectrum. The former were obtained either with geometry

optimization or from the trajectories of ab initio molecular dynamics. Then, we will discuss

the results of metadynamics as well as NEB simulations.

Under standard conditions cadmium telluride adopts a zincblende structure and is a semi-

conductor with a 1.50 eV direct band gap at room temperature [112].

Our model is a 3×3×3 cubic supercell (Figure 4.14) (216 atoms). Simulations were carried

out within the PBE xc functional scheme; in order to estimate the dependence of the calcu-

lated quantities on the xc functional, we also performed some calculations using the PBE0

functional. As usual for covalent systems, we find that PBE predicts a lower density (by 7%)

and softer phonons than the real system. In this case, the experimental spectrum [150] taken

from inelastic neutron diffraction at room temperature, ranges from 3.7 (30) to 19.2 (155)

meV (cm−1). The vibrational density of states (VDOS) calculated at T = 0 (harmonic) appears
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4.3. Impurity Diffusion in Cadmium Telluride

Figure 4.14 – CdTe. The supercell
model. Silver and green spheres repre-
sent the cadmium and tellurium atoms
respectively.

to match perfectly with experiment but this is only an accident due to the softening from

PBE. The room temperature VDOS (accounting also for anharmonicity) is shifted down by

∼ 30 cm−1 (∼ 4 meV). This is the same shift between experiment and the room temperature

VDOS. Therefore the apparent red-shift of the theory is a consequence of the PBE underesti-

mate, and the temperature effect is relevant. This may imply that sulfur diffusion is facilitated

in the PBE model. Comparison of PBE results for structural and vibrational properties with ex-

periment is reported in the Appendix B. It is also well known that PBE strongly underestimates

the energy gap, namely from ∼ 1.5 to 0.5 eV. We analyze the dependence of our results on the

xc functional, through additional calculations made within the hybrid PBE0 functional.

4.3.1 Relevant Impurity Configurations

The zincblende structure has high symmetry sites available to an impurity atom: the centers

of the two tetrahedrons formed by four Cd (T(Cd)) or four Te (T(Te)) (Figure 4.15 (a) and

(b) respectively) and the center (M) of the hexagon formed by three Cd and three Te atoms

(Figure 4.15 (c)). These geometries are generally considered relevant for the diffusion in

zincblende crystals, and in particular also in recent calculations of noble metal impurities in

CdTe [122].

By allowing relaxation of all Cd and Te coordinates but constraining the sulfur atom at the

symmetrical positions, we obtain a pseudo-energy-minimum only for the T(Cd) and T(Te)

geometries, but 1.3 eV and 1.6 eV higher than the ground state respectively. Once also the S

coordinates are allowed to relax, in any of these cases, the system ends in the same structure,

with a S-Te(1) dumbbell (inset of Figure 4.16. This will be referred to as the A state. There, the

S-Te(1) bond-length is 2.45 Å and Te(1) is displaced from its lattice site by 1.17 Å. The S-Te(1)

bond is at an angle α of 38◦ with respect to the direction of the Cd-Te bond in the lattice. As

can be seen from the displacement plot in Figure 4.16 the presence of the S impurity causes
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(a) Site at the center of a Cd tetrahe-
dron T(Cd)

(b) Site at the center of a Te tetrahe-
dron T(Te)

(c) Hexagonal (M) site

Figure 4.15 – Three high-symmetry empty sites in a zincblende crystal.

Figure 4.16 – CdTe:S - A state. Struc-
ture and displacement from the lattice
sites of Cd and Te atoms as a function
of their distance from the S-Te center.
Colors are the same as in Figure 4.14;
sulfur is represented by a yellow sphere.
The ideal Te lattice site is indicated by a
green circle.
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sizable local changes, e.g., the Cd nearest neighbors are displaced by ∼ 0.4 Å.

The signature of the S-Te(1) pair can be seen in the Kohn-Sham spectrum by the emergence of

two levels near the top of the valence band, split by 0.2eV. These correspond to the combina-

tion of p-states on S and Te, localized at the S-Te pair.

When we introduced an additional sulfur atom, we observed that it formed a weakly bonded S

dimer (Figure 4.18 (a)) (2.07 Å bond-length) at close distance from Te (2.47 Å), respectively.

We call it "S dimer". This configuration is favored with respect to having two separate S-Te

dumbbells (Figure 4.18 (b)) by only 0.1 eV. The signature of two separate S-Te dumbbells on

the KS spectrum does not differ from that of the single pair. The "S dimer", instead, gives rise

to a localized state in the gap split by 0.2 eV from the top of the Te valence band.

Our MD simulations (see below) revealed that another state (B) is particularly important.

There, S is a substitutional impurity at 0.18 Å from the Te lattice site and a Te-Te dumbbell
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Figure 4.17 – CdTe:S A state. Probabil-
ity density corresponding to an impu-
rity state (see text). Isosurface values of
0.001 (light pink) and 0.01 (solid pink).
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(a) A S-S dimer in CdTe
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(b) Two S-Te dumbbells loctated on different Te sites

Figure 4.18 – The case of two sulfur atoms. Structure and displacement from the lattice sites
of Cd and Te atoms as a function of their distance the center of the S-S distance vector. Colors
as in Figure 4.16.

forms around another Te lattice site (inset of Figure 4.19), separated by 2.78 Å. B is higher than

A by 0.4 eV. The displacement plot in Figure 4.19 shows again substantial changes in the local

environment around the center of the Te-Te pair, especially the Cd nearest neighbors (up to

0.5 Å).

The analysis of the KS states shows a picture much like A: two localized states on the Te-Te pair

in the valence band, split by 0.2 eV, of which one 0.2 eV above the valence band (Figure 4.20).

No other significant changes are shown otherwise in the valence band.

In summary, we remark that, apart from the formation of new localized impurity states, the

variations induced in the valence band by the presence of the sulfur atom are minor. PBE0
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Figure 4.19 – CdTe:S B state - S trapping.
Structure and displacement from the
lattice sites of Cd and Te atoms as a func-
tion of their distance from the center of
the Te-Te dumbbell. Colors as in Fig-
ure 4.16.
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Figure 4.20 – CdTe:S B state. Probabil-
ity density corresponding to an impu-
rity state (see text). Isosurface values of
0.001 (light pink) and 0.01 (solid pink).

applied to the PBE geometries did not alter the KS electronic structure and also predicted

the same changes of the KS levels from one state to the other, within the accuracy of our

calculations. Also the decrease of the energy gap does not change in the two xc schemes : it is

negligible in the three cases considered above.

Major effects can be seen, instead, on the position of the 3s state of sulfur, which is split from

the bottom of the 5s Te band by ∼ 2 eV when hosted as interstitial impurity (A) and ∼ 1 eV

when substitutional (B).

4.3.2 Sulfur and Tellurium Migration from Metadynamics

Path-metadynamics assumed as reference the trajectory obtained from simple NEB simula-

tions either between A (Figure 4.16) and an equivalent state (S-Te dumbbell) about a different

Te site or between states A and B (Figure 4.19). However, it went away from it and always

found new pathways. Starting from the A configuration and heating up the system to room

temperature for 1 ps, the changes were limited; in particular α is 38±5◦. Successive MTD
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Figure 4.21 – CdTe:S. Reconstructed
free energy surface for the process A →
B . Estimate of the barrier fro the first
passage.

Figure 4.22 – CdTe:S. The configura-
tions explored by an equilibrium MD,
started at state A.

revealed an unforeseen scenario, in which S replaces Te in the lattice and Te starts to diffuse

via a kick-out mechanism. The first step of this process (A to B) has a ∆F of 0.3±0.2 eV. The

second step (Te kick-out by Te) was barrierless.

In order to study the diffusion of S, the A to B path had to be prevented by constraining the

Te atoms, closest to the Te forming the S-Te dumbbell, to the center of their respective Cd

cage. In this case room-temperature unbiased CP-MD (20 ps) explored a larger basin for the

"reactant" which can be described as an ensemble of A states with the S-Te(1) pair jumping

from one geometry to another equivalent with α ranging from 25 to 50.

Then, the reconstruction of the FES resulted in a free energy barrier of ∆F = 0.6 eV+/−0.2

(Figure 4.23) which we can consider higher than the one relative to the A → B mechanism.

The FES in Figures 4.21 and 4.23 are reconstructed after the first transition, i.e., the free energy

of the end state was not estimated.

4.3.3 Post-Metadynamics NEB calculations

For the sake of comparison, we have performed NEB search starting from the trajectories

resulting from the above simulations. The final NEB pathway remained close to the initial
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Figure 4.23 – CdTe:S. Reconstructed
free energy surface for the diffusion of
sulfur. Estimate of the barrier fro the
first passage.

Figure 4.24 – CdTe:S. The path fol-
lowed by sulfur to go from A to an
equivalent state around a different Te
lattice site (S−Te(1) → S−Te(2)). Color
as in Figure 4.16.

guess in both cases studied.

For the A → B , the energy barrier turns out to be 0.4 eV, namely close to our estimate for the

FEB. Within the uncertainty of our computations, we cannot assess the effect of temperature

in this case.

For the case of diffusion from one cell to the next, instead, the energy barrier (following

the path in Figure 4.24) was 0.2 eV, which can be considered somewhat lower than the FEB

(∼ 0.6 eV +/- 0.2 eV). One possible explanation is that in this case the ensemble of A states

describing the "reactant basin" had a larger spread in configuration space (Figure 4.22) (for

example α changed from 25 to 50 degrees) so as to stabilize it through entropic effects.

As expected, at the "transition state" (Figure 4.25), S is equidistant (2.70 Å) from the two Te,

which are displaced by 0.45 Å from their respective lattice sites. The nearest Cd is at a distance

of 2.42 Å from S and it relaxes away from it by 0.45 Å with respect to its ideal site.

4.3.4 Conclusions

The study presented here has revealed unforeseen characteristics of the CdTe system and its

interaction with sulfur. In particular, it was clearly shown that S has a tendency to be trapped in
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Figure 4.25 – CdTe:S. Snapshot show-
ing a configuration on the PES near
the "transition state". Colors as in Fig-
ure 4.16; a gray dot indicates the Cd
lattice site.

lattice sites, replacing Te. Moreover we could compare the output of two widely used methods

like NEB and MTD. NEB failed to be predictive. However, once used as a post-MTD tool, it

gave similar quantitative results as MTD and helped understand the effects of temperature.

It is not possible to reconcile these results with experiment yet. Scattered information exists

on thin films, in which CdTe is polycrystalline and grain-boundaries make the S concentration

profile very inhomogeneous [151, 152]. In bulk CdTe, instead, SIMS measurements of the

concentration profile are available at high temperature (372◦−675◦ C) [153, 154]. There, the

(traditional) analysis resulted in two slopes for the Arrhenius plots of the diffusion constant as

a function of 1/T, indicating that two different mechanisms were dominating, depending on

temperature, with activation barriers of 1.0±0.04 and 1.7±0.2 eV.

We remark that the model we adopted for CdTe is "ideal" namely no defects were introduced

and temperature is low. This makes comparison with experiment not possible yet. Indeed

defects are pervasive in CdTe and not easily controllable. It is known that Cd vacancies and Te

at the anti-site are the most common native defects. Preliminary results obtained with MTD

on CdTe samples including Cd vacancies clearly indicated that they help S trapping. Indeed

the ground state corresponds to a substitutional S and a Te in the antisite, which requires

overcoming a free energy barrier of the order of 1 eV to escape from it. These calculations were

performed in the GGA-PBE approximation. In this case, however, we expect that the use of

hybrid functionals is important for a quantitative assessment of diffusion processes, because

exact exchange tends to modify the localization of the electronic states in defective structures.

This is the on-going step of this research.

A clear message from our simulations so far is that S diffusion is not determined by one single

mechanism and the influence of the defects in the crystal is very important and not trivial. The

tendency to be trapped is certainly strong and will tend to slow down the diffusion drastically.
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A.1 Sodium Chloride in Solution

We employed classical molecular dynamics and the Gromacs 4.5.5 code [155] to simulate

NaCl in solution. We took the force field parameters from Joung and Cheatham to describe

the sodium and chlorine ions [156] and those of the TIP3P model for the water molecules

[157]; these parameters had previously been validated by comparison against both experiment

[158, 159] and ab initio MD [94]. We used the particle mesh Ewald method [160, 161] for

computing Coulomb interactions and the cutoff for both short and long range Lennard-Jones

interactions was 8 Å. The timestep for the integration of the equations of motion was 0.5 fs.

The system consisted in one Na-Cl pair and 574 water molecules (0.1 M concentration) in a

cubic box of 26 Å edge periodically repeated. We equilibrated it at T = 300 K and P = 1 atm

for 1 ns by using the stochastic velocity rescaling thermostat from Bussi et al. [162] which

efficiently samples the canonical ensemble and Berendsen’s barostat [57] both with τ= 5 ps.

The production runs consisted in 10 independent unbiased runs of 100 ns each in the NVT

ensemble.

As CV, we considered both the Na+-Cl− distance and a quantity associated with the solvent

around the Na+ ion: its electrostatic potential energy with the surrounding water molecules

(ΩH2O within a 6.5 Å radius) [7]

E pot = QNa+

4πε0

∑
i∈ΩH2O

(
QO

||ROi −RNa+ || +
QH

||RH1
i
−RNa+ || +

QH

||RH1
i
−RNa+ ||

)
(A.1)

where QNa+ = 1 e, QO =−0.834 e, QH =−0.417 e and ε0 is the vacuum permittivity.

A.2 Carbonic Acid Formation

We employed the GGAs PBE [26] and BLYP [27, 28] and hybrid B3LYP [15, 37, 35] to approx-

imate the c functional (see Section 2.2.1). All the calculations at that level made use of the

Troullier-Martins norm conserving pseudopotentials [49] and a plane waves set to expand the
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Kohn-Sham orbitals up to a 100 Ry kinetic energy cutoff (see Section 2.2.1). A periodic box of

16 Å was employed and an electrostatic decoupling scheme [163] was used to prevent periodic

image interactions. The code was CPMD [8].

Geometries were relaxed employing the L-BFGS algorithm [164, 165, 166, 167] while the tran-

sition states were found with the partitioned rational-function-optimizer (P-RFO) [67]; no

particular symmetries of either stable or saddle points were enforced. The structures were

converged so that the maximum component of the force was below 10−4 Ha/bohr Vibrational

frequencies were computed by linear response and, in all cases, there were no imaginary

frequencies except for the transition state which only had one.

For the sake of comparison we also carried out all electrons calculations with the B3LYP and

the meta-hybrid M06 [43] functionals with an aug-cc-PVTZ basis set. The code used in this

case was the NWChem software [168].

Metadynamics [7] simulations were carried out with CPMD patched with PLUMED [169] the

plug-in for free energy calculations compatible with a number of ab initio and classical MD

codes. We employed the path CV [64].

For computational efficiency reasons, we reduced the kinetic energy cutoff of the plane waves

from 100 Ry for the calculations on the PES to 70 Ry. We checked that this would not change

the relative energies by more than 2 kcal/mol (i.e., within our accuracy).

The electrons were given a mass of 500 au, and the equations of motion were integrated with

the velocity-Verlet algorithm on a 0.1 fs timestep. The temperature was controlled by the

Nosé-Hoover chain thermostat [59, 60, 61]. We quenched the electronic degrees of freedom to

the Born-Oppenheimer surface every 1 ps (10’000 MD steps) to ensure that they would not

warm up due to the bias from metadynamics.

A.3 Monoethanolamine and Carbon Dioxide

The zwitterion was placed in a box of 15.6 Å edge and surrounded by 122 water molecules

(0.46 M solution). DFT was employed with both PBE and BLYP xc functionals empirically

corrected for dispersion effects following Grimme’s scheme (D2) [45]. Norm-conserving

Troullier-Martins pseudopotentials were used to simulate core-valence interactions. The

Kohn-Sham orbitals were represented by a plane wave basis set up to a cutoff of 80 Ry. The

code employed was CPMD.

The fictitious electronic mass for CP-MD was 500 a.u., the equation of motions were integrated

with a 0.1 fs timestep by the velocity-Verlet algorithm. All hydrogen atoms were replaced

by deuterium. The temperature was set to 300 K and controlled by a Nosé-Hoover chain

thermostat.

We employed both metadynamics and umbrella sampling [70] to retrieve the free energy

profile with PLUMED. The reaction coordinates were either the CCO2 −N distance or the N −H

distance for CO2 release or deprotonation respectively. A supplementary MTD simulation

of the deprotonation employing the N−H coordination instead of the distance as CV was
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also carried out which yielded essentially the same results. During the metadynamics runs,

quenching to the Born-Oppenheimer surface was done every picosecond. During the umbrella

sampling calculations, statistics in each window was collected over a time frame extending up

to 10 ps after equilibration and the free energy profile was retrieved employing the weighted

histogram analysis method described in Section 2.4.2 as implemented in the code of Grossfield

[170].

A.4 Sulfur Diffusion in Cadmium Telluride

Calculations were carried out at DFT level with CPMD in a cell of 19.92 Å, with Goedecker-

Tetter-Hutter pseudopotentials [50] and a kinetic energy cutoff of 80 Ry for the plane wave

basis set. The xc functional was PBE. All reported PBE equilibrium geometries were optimized

so that the maximum force component on the ions were below 10−4 Ha/bohr. The NEB

calculations were carried out employing the CPMD-based script developed by Sbraccia [171].

The electronic degrees of freedom were given a fictitious mass of 500 a.u. and the equation of

motion were integrated using the velocity-Verlet algorithm on a 0.1 fs timestep. In order to

accelerate the dynamics, isotopes in the correct ratio were employed: the mass of cadmium

was set to 10.000 a.m.u. while tellurium was 11.352 a.m.u. and sulfur 2.853 a.m.u. The

temperature was controlled by a Nosé-Hoover chain thermostat. The electronic degrees of

freedom were quenched to the Born-Oppenheimer surface periodically (∼ 1 ps).

The various activated events discussed were computed with metadynamics (PLUMED) and

the path CV. with a reference path generated either with NEB or from linear interpolation

between the equilibrium structures.
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sion in Cadmium Telluride

The lattice constants and bulk moduli for PBE and PBE0 are determined by interpolation of

the calculated values for E(V ) (see Figure B.1) using the Murnaghan equation of state

E(V ) = E0 + B0 ·V
B ′

0


(

V0
V

)B ′
0

B ′
0 −1

+1

− B0V0

B ′
0 −1

(B.1)

where E0, V0, B0 and B ′
0 respectively are the energy, volume, bulk modulus and its V -derivative

at the equilibrium unit cell. The results are a0 = 6.64 Å (6.51 Å) and B0 = 35 GPa (43 GPa) for

PBE (PBE0). Experimental values are 6.48 Å and 42 GPa [172].

From unbiased molecular dynamics of bulk CdTe, we can retrieve the vibrational density of

states as the Fourier transform of the velocity auto-correlation function (VACF) (Figure B.2

(b)). In practice, the VACF assumes discrete values:

c j = 〈 1

N

N∑
I=1

v I (0) ·v I ( j ·∆t )〉 , j = 0, . . . ,m −1 (B.2)

since vibrational frequencies are real, the Fourier transform can be computed as a discrete

cosine transform

c̃k =
m−1∑
j=0

c j cos
( π

N

(
j +1/2

)
k
)

, k = 0, . . . ,m −1 (B.3)

It is interesting to compare this finite temperature density of states with the density of phonon

states computed within the harmonic approximation at T = 0 K (Figure B.2 (a)) employing

density functional perturbation theory [173]. Finite temperature effects turn out to be impor-

tant already at T = 300 K resulting in an overall redshift of about 25 cm−1.

We also report the results from neutron diffraction experiments at room temperature [150]

(Figure B.2 (c)). Both the overall shape and the peak positions in the low frequency part are
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Figure B.1 – PBE (red) and PBE0 (blue)
energy per unit cell (minimum set to
0 for each of the xc functional sepa-
rately) as function of the lattice param-
eter. Continuous line is a fit to Mur-
naghan equation (Eq. B.1)

Figure B.2 – Vibrational density of states
of bulk CdTe. (a) Harmonic approxima-
tion at T = 0 K. (b) Fourier transform
of the velocity-velocity autocorrelation
function at T = 300 K. (c) Neutron
diffraction experiment at T = 300 K,
adapted from Ref. [150]

well reproduced by the finite temperature calculation. The latter displays, however, a sizable

redshift (about 30 cm−1) in the high frequency part that can be traced back to the softening of

bonds by GGA-PBE.
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