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Experimental Section 

Physical measurements 

Electrochemical measurements were recorded on an EG&G Princeton Applied 

Research Potentiostat/Galvanostat model 273. A three-electrode configuration was used. For 

polarization and electrolysis measurements, a platinum wire was used as the counter 

electrode and a home-made Ag/AgCl (KCl saturated) electrode was used as the reference 

electrode. The reference electrode was placed in a position very close to the working 

electrode, often with the aid of a Luggin tube. Potentials were referenced to a standard 

hydrogen electrode (SHE) or reversible hydrogen electrode (RHE), respectively, by adding a 

value of (0.197+0.059·pH) V. Gas chromatography measurements were conducted on a 

home-made gas analyzer equipped with a Valco microvolume dual filament TCD detector 

and a HayeSep DB 100/120 mesh, 30 ft. long, 2 mm internal diameter, stainless steel packed 

column (part number G3591-80088 – Agilent Technologies). X-ray photoelectron 

spectroscopy (XPS) data were collected by an Axis Ultra (Kratos Analytical, Manchester, 

UK) under ultra-high vacuum condition (>10-8 Torr), using a monochromatic Al K X-ray 

source (1486.6 eV), in the Surface Analysis Laboratory of CIME at EPFL. The source power 

was maintained at 150 W (10 mA, 15 kV) Gold (Au 4f7/2) and copper (Cu 2p3/2) lines at 84.0 

and 932.6 eV, respectively, were used for calibration, and the adventitious carbon 1s peak at 

285 eV as an internal standard to compensate for any charging effects. For quantification, 

relative sensitivity factors from the supplier were used. Ohmic drop was corrected by current 

interrupt technique on the PAR 273 equipment. Impedance data was recorded with an 

IviumStat Electrochemical Interface. The parameters of the EIS experiments were fixed for 

all measurements: 100 points were recorded in the frequency range between 0.1 and 106 Hz 

(14 points per decade) with the amplitude of the sinusoidal perturbation fixed at 15 mV. 

Potentials from 100 to 200 mV vs. RHE were applied with steps of 10 mV. A pre-treatment 

was performed at the desired potential for 10 s before each experiment. The modified 

electrodes were pre-activated prior to EIS measurements by galvanostatic electrolysis at 10 

mA·cm2 for 10 mim. Experimental data was analyzed and fitted using ZView software 

(Scribner Associates). For Tafel analysis, polarization curves were recorded with a scan rate 

of 1 mV·s-1 and ohmic drop was corrected by the potentiostat using the current interrupt 

technique. 
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Electrodes fabrication 

 For the preparation of the reference electrodes, porous Vycor® was initially used as a 

bridge for the fabrication of the reference electrodes. Since its shortage on the market, it was 

successfully replaced by porous silica gel spheres, typically used for desiccation. Type II 

silica gel of 3.5 mm bead size (Aldrich, catalog n. S7500-1KG) was first soaked in pure 

acetone for an hour. Acetone was removed and replaced by water. After 24 hours the water 

solution was replaced by saturated KCl solution and the solution renewed each day for 3 

consecutive days. The spheres can be stored under saturated KCl solution for months and are 

ready to use. Direct addition of water to the dry spheres will cause them to break. 

Ag/AgCl reference electrodes were built using a 4 mm external diameter glass tube 

with an inner diameter of 3 mm. The desired length was cut and the tips heated briefly with 

an Oxygen / Propane burner. A pure silver wire (0.5 mm diameter, 99.9 %, Aldrich) was 

wound around a 0.5 mm supporting copper wire to yield a silver coil. The silver coil was 

transferred to a branch of a U-shape glass tube filled with 6.0 M HCl. The silver wire was 

connected to the positive pole of a laboratory power supply and the negative pole was 

connected to a small platinum wire on the other branch of the U-tube. A constant current of 3 

mA was applied during 30 minutes to oxidize the surface of the silver to silver chloride. A 

previously prepared silica gel sphere filled with saturated KCl solution was fixed to the tip of 

the glass tube using a transparent heat-shrink polyolefin tube by heating it inside a boiling 

solution of saturated aqueous KCl. The tube was filled with saturated KCl/AgCl mixture and 

the coiled silver wire added. The top of the tube was sealed with hot glue to ensure no leaks 

or evaporation of the filling solution. The electrode was kept immersed in saturated aqueous 

KCl when not in use. The potential of the reference electrodes was periodically checked 

using a standard reference electrode from Metrohm. To verify the potential of the electrode, 

both electrodes were dipped into concentrated KCl solution, and the potential difference 

between them measured using a high precision digital voltmeter (Fluke 87V). If the 

difference between the electrodes was bigger than 5 mV the home-made electrode was 

discarded and a new electrode was built. 

Synthesis of MoS3 particles 

 Two methodologies were developed for the synthesis of MoS3, the latter being 

improved for the preparation of colloidal dispersions. 
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Method I: 

 In a typical procedure, molybdenum trioxide (1.0 g, 6.95 mmol) was added to an 

aqueous solution of sodium sulfide (8.34g, 34.74 mmol of Na2S·9H2O in 250 mL of water) to 

form a light yellow solution. This solution was kept under vigorous stirring while 6.0 M 

aqueous HCl was added slowly ( 10 minutes) until the solution reached the pH of 4. At first 

darkening of the solution was observed; close to the end of the addition, a large amount of 

gaseous H2S was produced. After addition of acid, the solution was boiled for 30 minutes to 

remove the H2S present in solution and to improve the filtration step. After being cooled to 

ambient temperature, the solution was filtered under vacuum and washed with a copious 

amount of water and then ethanol. The dark paste obtained was oven dried for 12 hours at 80 

ºC to yield a black vitreous solid that could be powdered with the aid of a mortar. 

Method II:  

 Since this method is more adapted for the preparation of MoS3 sols, the quantities 

used for the synthesis were reduced. In a typical procedure, MoO3 (250 mg, 1.74 mmol) was 

added to a hot solution of sodium sulfide (2.09g, 8.68 mmol of Na2S·9H2O in 25 mL of 

water) to form a light yellow solution. This solution was kept under vigorous stirring while 

acetic acid (1.10 g, 18.32 mmol dissolved in 10mL of water) was added dropwise. The color 

of the solution intensifies passing from bright yellow to deep orange. At the end of the 

addition of acetic acid, the dark solution was left stirring for 5 minutes. Aqueous HCl (15 

mL, 2.5 M) was added at once causing evolution of H2S and formation of a brown solid. The 

solution was left stirring for further 10 minutes and centrifuged at 5500 rpm for 5 minutes. 

The pellet was washed 2 times with pure deionized water being centrifuged at 5500 rpm for 5 

minutes after each washing step, and another 2 times being centrifuged at 5500 rpm for 20 

minutes. The solid suspends easily in neutral water, which is the reason for the longer 

centrifugation times in the last washing steps. 

 The wet pellet was suspended in isopropanol by sonication and transferred to a 

volumetric flask with a total volume of 250 mL. The concentration of this stock solution of 

MoS3 was determined by ICP-OES to be 1.31 g·L-1 (0.666 g·L-1 on Mo). This concentration 

corresponds to a yield of 98.5 %. 

Synthesis of MoS3 dispersed in Vulcan® 
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 In a typical procedure, MoO3 (55 mg, 0.38 mmol) was added to a hot solution of 

sodium sulfide (460 mg, 1.91 mmol of Na2S·9H2O in 5 mL of water) to form a bright yellow 

solution. This solution was kept under vigorous stirring while acetic acid (240 mg, 4.0 mmol 

dissolved in 1.0 mL of water) was added dropwise. The color of the solution intensifies 

passing from bright yellow to deep orange. This orange solution was added to a slurry of 

Vulcan® XC-72R (100 mg in 2 mL of isopropanol) under constant stirring. Aqueous HCl (3 

mL, 2.5 M) was added at once and the suspension left stirring for 10 minutes. The suspension 

was centrifuged at 5500 rpm for 5 minutes. The pellet was washed 4 times with pure 

deionized water being centrifuged at 5500 rpm for 10 minutes after each washing step. The 

wet pellet was suspended in isopropanol by sonication and transferred to a volumetric flask 

with a total volume of 100 mL. The concentration of this stock solution of MoS3/Vulcan® 

was determined by ICP-OES to be 0.3435 g·L-1. This concentration corresponds to a yield of 

93.7 %. The solid residue after evaporation was determined gravimetrically as 1.32 g·L-1, 

which corresponds to a molybdenum loading of 26 % in weight related to the total mass of 

solid (MoS3+carbon). 

Synthesis of MoSx species by reduction with NaBH4 

 A solution of (NH4)2MoS4 (250 mg, 0.96 mmol dissolved in 50 mL of water) was 

freshly prepared and filtered through a Nylon membrane filter (0.22 m) to remove the 

insoluble MoS3 particles present in the solution. The clear red solution was left stirring while 

NaBH4 (100 mg, 2.64 mmol dissolved in 3 mL of water) was added at once. The solution 

becomes immediately dark with slow evolution of gas. The mixture was left stirring for 10 

minutes and brought to boil. A large amount of black precipitate was formed and then, 1.0 

mL of acetic acid was added to quench the excess of NaBH4. The solution was centrifuged at 

5500 rpm for 5 minutes and washed 4 times with water following the same centrifugation 

method. After washing the wet pellet was suspended in isopropanol by sonication and 

transferred to a volumetric flask with a total volume of 100 mL. The concentration of this 

stock solution of MoSx was determined by ICP-OES to be 0.7118 g·L-1 (in Mo). This 

concentration corresponds to a yield of 77 % based on Mo. The relative low yield is 

explained by the appreciable amount of solution lost during the filtration step to remove 

MoS3 particles present in the commercial starting material. 

Synthesis of MoSx dispersed in Vulcan® by reduction with NaBH4 
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 A solution of (NH4)2MoS4 (100 mg, 0.384 mmol dissolved in 20 mL of water) was 

filtered through a Nylon membrane filter (0.2 m) to remove insoluble MoS3 particles. The 

red solution was added to a slurry of Vulcan® (100 mg in 5mL of isopropanol) that was 

previously sonicated to disperse the carbon black particles. The suspension was left stirring 

while a solution of NaBH4 in water (100 mg, 2.64 mmol dissolved in 3mL of water) was 

added at once. The suspension was left stirring for 10 minutes and heated until boil. Acetic 

acid (1.0 mL) was added drop wise to quench the excess of NaBH4. The suspension was 

centrifuged at 5500 rpm for 5 minutes and then washed 4 times with water centrifuging for 10 

minutes. The wet pellet at the bottom of the tube was suspended in 30 mL of isopropanol by 

sonication and transferred to a 100 mL volumetric flask, which was put to the final volume 

with isopropanol. The concentration of Mo in this solution was determined by ICP-OES to be 

0.2907 g·L-1, corresponding to a yield of 79 %. The solid residue after evaporation was 

determined gravimetrically as being approximately 1.4 g·L-1 which corresponds to a Mo 

loading of 21 % in weight related to the total mass of solid (MoSx + carbon). 

Preparation of MoS3 modified glassy carbon electrodes by spray casting 

 The glassy carbon electrodes were cleaned and polished as described above. 10 μL of 

MoS3 sol in EtOH (various concentrations), were spray cast on a glassy carbon electrode with 

an airbrush. Previous to spray cast, the suspensions were sonicated for several minutes to 

ensure a homogeneous deposition. 

ICP-OES measurements 

 The molybdenum content of colloidal dispersions was determined by ICP-OES. In a 

typical procedure, 1.000 mL of the colloidal dispersion was taken using a micropipette (air 

displacement pipette) and transferred to a 30 mL vial. Since the colloidal dispersions are in 

isopropanol, the reverse pipette method was used. Samples were analyzed in triplicate. 

 The isopropanol was removed by placing the vials on top of a plate heated to 50 ºC. A 

small flow of nitrogen was blow on top of the vials to accelerate the evaporation of the 

solvent. Once dry, 1.0 mL of hot aqua regia was added to the vials and the solid dissolved. 

For samples containing Vulcan®, the carbon component was not soluble and was removed by 

filtering through a 0.22 m Nylon membrane prior to ICP analysis.  

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013



S7 

 

EIS data processing 

 EIS data was fitted using ZView software with the equivalent circuits shown in Figure 

4. For the transmission line model (Figure 3), the extended element "Bisquert#2" was used. 

The transmission line model consists of three impedances representing the electronic 

transport in the solid phase, the ionic transport in the electrolyte and the electrochemical 

recombination. Each impedance consists on a parallel combination of a resistance and a CPE. 

For our systems, the impedance due to ionic transport was approximated to zero since the low 

frequency domain of the Nyquist plots are dominated by the recombination. Rsol and Rct 

represent respectively the solution and recombination resistances. R2 and CPE2 represent an 

additional impedance necessary for a proper fitting which originates from the contact 

impedance between the electrocatalyst and the glassy carbon electrode. 
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Table S1: Fit parameters for MoSx modified electrode 25.2 μg·cm-2 

 

(mV) 

Rsol 

(Ω) 

Rc 

(Ω) 

CPEc 

(F-1·s1-n) 

Rm 

(Ω) 

Rct 

(Ω) 

CPEct 

(F-1·s1-n) 

n CPEct 

 

100  5.378  0.86314  0.001724  5.414  48248  0.000144  0.91016 

110  5.405  0.86314  0.00174  5.477  25383  0.000145  0.91065 

120  5.439  0.86314  0.002012  5.84  13081  0.000142  0.91538 

130  5.461  0.86314  0.002203  6.034  6381  0.000144  0.91695 

140  5.484  0.86314  0.002309  6.154  3244  0.000148  0.91739 

150  5.532  0.86314  0.002528  6.448  1626  0.000147  0.92126 

160  5.717  0.86314  0.002662  6.647  821.2  0.000149  0.92288 

170  5.991  0.86314  0.002773  7.03  426.7  0.000153  0.92282 

180  6.203  0.86314  0.002794  7.203  226.3  0.000158  0.92498 

190  6.552  0.86314  0.002559  7.152  128.8  0.00016  0.91932 

200  6.477  0.86314  0.003177  8.543  72.49  0.000157  0.93413 

 

Constant parameters: 

n CPEc: 0.8 
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Table S.2: Fit parameters for MoSx modified electrode 252 μg·cm-2. 

 

(mV) 

CPEc 

(F-1·s1-n) 

Rm 

(Ω) 

Rct 

(Ω) 

CPEct 

(F-1·s1-n) 

n CPEct 

 

100  0.000886  12.67  5408  0.000979  0.93083 

110  0.000836  14.03  2665  0.000984  0.92908 

120  0.000729  14.62  1796  0.000984  0.92991 

130  0.000725  15.41  871.2  0.000988  0.93175 

140  0.000676  16.04  430.9  0.001003  0.93111 

150  0.00065  16.57  219.5  0.001022  0.93008 

160  0.000605  17.03  116.9  0.00106  0.92685 

170  0.000527  17.62  65.95  0.001103  0.92293 

180  0.00051  17.91  39.04  0.001147  0.91778 

190  0.000459  18.54  24.04  0.001194  0.91833 

200  0.00038  18.61  15.57  0.001288  0.90994 

 

Constant Parameters: 

Rsol: 4.8 Ω 

Rc: 0.64 Ω 

n CPEc: 0.8 
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Table S.3: Fit parameters for MoS3 modified electrode 28.2 μg·cm-2. 

 

(mV) 

CPEc 

(x10-5 F-1·s1-n) 

Rm 

(Ω) 

Rct 

(Ω) 

CPEct 

(F-1·s1-n) 

n CPEct 

 

100  1.38  90.48  28224  0.000143  0.87206 

110  1.46  90.6  14874  0.000147  0.86394 

120  1.48  92.38  7641  0.000145  0.86932 

130  1.49  90.34  3960  0.000152  0.86506 

140  1.46  91.35  2061  0.000152  0.87147 

150  1.44  88.82  1122  0.000158  0.87013 

160  1.49  82.3  640.8  0.000165  0.86316 

170  1.45  77.16  379.7  0.000172  0.85758 

180  1.42  71.29  237.2  0.000179  0.84948 

190  1.46  67.31  154  0.000184  0.8453 

200  1.46  63.52  103.6  0.000186  0.84522 

 

Constant Parameters: 

Rsol: 5.8 Ω 

Rc: 6.4 Ω 

n CPEc: 0.8 
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Table S.4: Fit parameters for MoS3 modified electrode 282 μg·cm-2. 

 

(mV) 

CPEc 

(x10-5 F-1·s1-n) 

Rm 

(Ω) 

Rct 

(Ω) 

CPEct 

(F-1·s1-n) 

n CPEct 

 

100  5.89  306.8  4946  0.000817  0.92767 

110  5.88  298.3  2739  0.000795  0.90174 

120  5.66  290  1401  0.000771  0.88523 

130  5.76  288  714.8  0.000763  0.9024 

140  5.90  302  381.4  0.000784  0.93789 

150  6.52  332  212.1  0.000891  0.96265 

160  6.56  389.2  112.3  0.001255  0.93612 

170  5.80  402.7  59.06  0.001621  0.89892 

180  5.63  414.5  31.05  0.001982  0.88053 

190  5.38  442.1  16.32  0.002481  0.86235 

200  5.34  481.4  8.58  0.003142  0.8511 

 

Constant Parameters: 

Rs: 4.82 Ω 

Rc: 3.45 Ω 

n CPEc: 0.8 
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Table S.5: Fit parameters for MoS3-Vulcan modified electrode 145 μg·cm-2; 2 CPE model. 

 

(mV) 

Rsol 

(Ω) 

R2 

(Ω) 

C2 

(x 10-4 F) 

Rct 

(Ω) 

Cct 

(x 10-4 F) 

100 4.478 0.58518 1.688 7180 4.71265 

110 4.484 0.60977 1.653 3998 4.34444 

120 4.488 0.63157 1.6745 2088 4.16234 

130 4.492 0.65096 1.6985 1083 4.0644 

140 4.5 0.66537 1.7694 567.1 4.02815 

150 4.503 0.66822 1.7993 300.8 4.0752 

160 4.509 0.66732 1.859 163.3 4.14883 

170 4.517 0.65229 1.9039 91.24 4.24962 

180 4.539 0.63649 1.9462 52.58 4.35718 

190 4.53 0.60216 1.9365 31.74 4.46152 

200 4.543 0.56882 1.9 19.97 4.55479 
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Fig. S1. The Nyquist plot and fitting for the impedance response of MoS3-modified 

electrodes at a loading of 28.2 g•cm-2. Full plot (A) and zoom-in plot showing the 45o line 

(B).
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Figure S2. Plots of log (Rct
-1) vs.  for (A) MoS3, 28.2 g·cm-2 and (B) MoS3, 282 g·cm-2.  
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Figure S3. XPS spectra for MoSx-CR produced by reduction with NaBH4. (A) Mo 3d region: 
experimental data (····), fitting envelope (―), MoAS3 (―), MoBS3 (―), MoO3 (―) S 2s (―); 
S 2p region: experimental data (····), fitting envelope (―), doublet I (―), doublet II (―). 
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Fig. S4. The Nyquist plot and fitting for the impedance response of a MoSx-CR-modified 
electrode; loading: 25.2 g·cm-2. 
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Fig. S5. The characteristic parameters of recombination and transport in MoSx-CR-modified 

electrodes (top) and the associated time constants for the recombination and transport 

processes (bottom).
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Figure S6. (A) Stable polarization curves (10th) of glassy carbon electrodes modified with 
MoS3-V. Loading: 145 g/cm2; scan rate = 1 mV·s-1; 1 M H2SO4. (B) Corresponding Tafel 
plot.  
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Figure S7. The Nyquist plot and fitting for the impedance response of a MoS3-V-modified 
electrode; loading: 145 g/cm2. Even through Figure S7 appears similar to Figure 5 at a first 
glance, there is a difference in that the 45o line at the high frequency is absent in Figure S7 
whereas it is present, albeit very small, in Figure 5. Therefore, a 2CPE instead of 
transmission line model is used to fit the impedance data.  

 

 

 

 

Figure S8. A 2CPE equivalent circuit. CPE and Rct represent the charge transfer reaction; R2 
and CPE2 represent the contact between the electrode and the catalyst layer.  
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