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Abstract—As different text input devices lead to different 
typing error patterns, considering the device characteristics when 
designing an error correction mechanism can lead to significantly 
improved results. In this paper, we propose and evaluate a 
spelling algorithm specifically designed for a five-key chording 
keyboard. It is based on the maximum a posteriori probability 
criterion, taking into account a dictionary model and the 
probabilities that one character is typed for another. These 
probabilities are determined experimentally. In our experiment, 
the proposed method reduced the substitution error rate from 
7.60% to 1.59%. As comparison, MsWord and iSpell reduced the 
substitution error rates to 3.12% and 3.94%, respectively.  
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I.  INTRODUCTION 
Personal computers and mobile computing devices have a 

constant presence in most people’s life, but there are situations 
when we cannot easily access their services. For example, 
when walking in a crowded place, the vision should be focused 
on what happens around us, rather than on typing. Not doing so 
can have potentially dangerous consequences. Furthermore, 
input devices such as classic desktop keyboards, keypads or 
touchscreens may not be suitable for persons that have certain 
physical disabilities such as limited vision and/or can use only 
one hand.  

Chording keyboards [1] represent a possible solution for the 
above-mentioned situations. These keyboards allow users to 
generate a character by simultaneously pressing a combination 
of keys, similarly to playing a note on a musical instrument. 
With five keys, there are 31 combinations in which at least one 
key is pressed, enough for the 26 letters of the English alphabet 
and five other characters. An additional sixth key can be used 
to toggle between modes that permit typing capital letters, 
numbers, or other symbols. If the keys are placed in a position 
that is naturally under the fingertips (for example on the 
handlebar of a bike or around a mobile phone), then we can 
type with only one hand and without looking at the input 
device. Therefore, we will be able to use a mobile device even 
during activities for which the visual attention is partially or 
entirely committed, like walking in crowded spaces, jogging, 
or riding a bike. Being focused at another activity while typing 
will probably lead to more errors, so efficient error correction 
becomes an important issue in these situations. 

The most plausible explanation why chording keyboards 
are not popular is that users require some training before being 
able to type, to learn the correspondence between key 
combinations and characters. A previous study [2] showed that 
people can learn to type with a five-key chording keyboard in 
less than 45 minutes. According to that study, the average 
typing rate after 250 minutes of practice is 15.2 words per 
minute (wpm) with a maximum of 19.2 wpm, comparable to 
iPhone or Twiddler [3] rates. The error rate is low, 0.22%, 
because users preferred to correct their mistakes. An effective 
mean of automatically correcting these mistakes might increase 
the keyboard’s ease-of-use and typing speed because users will 
not have to stop typing in order to correct errors. 

This paper represents an initial effort to explore the area of 
error correction for chording keyboards, by taking into 
consideration the particularities of the text input device. This is 
motivated by the fact that different devices lead to different 
error patterns, and knowledge about these patterns can be used 
to improve the error correction methods. The error correction 
method that we propose is based on the maximum a posteriori 
probability principle (MAP) [4]. For every typed word, it 
provides a list of possible candidates and chooses the one that 
is the most likely. The correction method is developed for a 
five-key keyboard, but it can be easily generalized to other 
designs. 

The paper is organized as follows. In Section II, we 
overview existing text error correction mechanisms. In Section 
III, we describe the proposed error correction algorithm. In 
Section IV, we describe the data set used to evaluate the 
algorithm, and in Section V, we present the results. In Section 
VI, we conclude the paper and discuss future directions. 

II. RELATED WORK 
Traditionally, text error detection and correction focuses on 

character-level errors, which can be classified into three 
categories: deletions, when a character is omitted, insertions, 
when an additional character is inserted, and substitutions, 
when a character is substituted by another character.  

Some approaches take into account the context, 
grammatical and semantical rules, and also detect errors such 
as missing words, wrong phrase structure, misused inflections, 
or others.  



A detailed overview of commonly used correction 
techniques is presented by Kukich in [5]. Research in spelling 
error detection and correction is grouped in three main 
categories: 

1. Non-word error detection: 

Groups of n letters (n-grams) are examined and looked up 
in a table of statistics. The strings that contain non-existing or 
highly infrequent n -grams are considered errors. 

2. Isolated word error correction: 

Each word is treated individually and considered either 
correct or incorrect. In the latter case, the incorrectly spelled 
word is compared to entries from a dictionary. Based on 
similarities between the typed word and dictionary words, a list 
of possible candidates is proposed. These candidates can be 
provided using several techniques: 

• minimum edit distance techniques consider the 
minimum number of editing operations required to 
transform a string into another. A basic example is 
to consider the dictionary word that can be 
obtained from the typed word with a minimum 
number of insertions, deletions and substitutions; 

• similarity key techniques map each string to a key 
which is similar or identical for similarly spelled 
strings. In this way, the key for a misspelled string 
can point to similarly spelled candidates from the 
dictionary. The advantage of this approach is that 
the misspelled string is not compared to all entries 
in the dictionary; 

• rule-based techniques propose candidate words by 
using knowledge of the most common errors; 

• probabilistic techniques, which consider transition 
and confusion probabilities. The first ones provide 
the probability that a letter is followed by another 
given letter (the values are language dependent). 
Confusion probabilities estimate how often a letter 
is typed instead of another letter (the values are 
text-input device dependent); 

• among other possible methods, n-gram techniques 
and neural net techniques can also be efficiently 
used. 

Most isolated word error correction methods do not correct 
errors when the erroneously typed word is contained in the 
dictionary. For example, if farm was typed instead of form, no 
error will be detected. Moreover, these methods cannot detect 
the use of wrongly inflected words (for example, they is instead 
of they are). 

3. Context dependent error correction: 

These methods try to overcome the drawbacks of analyzing 
each word individually by also considering the context. Errors 
can be detected by parsing the text and identifying incorrect 
part-of-speech or part-of-sentence n-grams. Or, if enough 
memory and processing power are available, tables of word n-
grams can be used. Other approaches consider grammatical and 

inflectional rules, semantical context, and can also identify 
stylistic errors. 

Most of the methods presented above can be applied to any 
typed text, regardless of the input device. As various input 
techniques become more and more popular, the classic 
correction techniques have been improved to consider both the 
text and the device particularities. Goodman et al. [6] presented 
an algorithm for soft keyboards that combines a language 
model and the probabilities that the user hits a key outside the 
boundaries of the desired key. Kristensson and Zhai [7] 
proposed an error correction technique for stylus typing using 
geometric pattern matching. The T9 text input method for 
mobile phones can also be included here, as it considers the 
correspondence between keys and characters to predict words.  

Sandnes and Huang classify chording errors in three 
categories: deletions, when the user does not press one of the 
required keys, insertions, when the user presses an extra key, 
and substitutions, when the user makes a mistake between 
adjacent fingers. Assuming that most words have very few 
errors, they propose an algorithm for chording text input that 
can correct words that contain one deletion, insertion, or 
substitution [8].  

III. ERROR CORRECTION ALGORITHM 
The proposed error correction method corrects character 

substitution errors and focuses on individual words, without 
considering any contextual information. It is designed for a 
chording keyboard with five keys, each key being operated by 
a finger of the right hand. The algorithm is based on the 
maximum a posteriori probability (MAP) principle, and for 
every typed string, it finds the string that is the most likely to 
be typed and is a valid word.  

We can interpret the typing process as sending information 
over a communication channel. The symbol at the channel 
input, x , is the word to be typed and the channel output, y , is 
what has actually been typed. The MAP algorithm will find the 
string x̂ , which is the most likely in the sense of maximizing 
the posterior probability p(x | y)  over all x ∈ S . The set S  
contains all the possible candidate strings. If we denote by 
p(x)  and p(y)  the distributions for the channel input and 

output respectively, then 

x̂ = argmax
x∈S

p(x | y)

= argmax
x∈S

p(y | x)p(x)
p(y)

= argmax
x∈S

p(y | x)p(x).

                          (1) 

Because our goal is to design a spelling algorithm, we can 
reduce the set of candidates from all possible strings to 
dictionary words. Moreover, as we focus on substitutions, we 
can limit the candidate set to words with the same length as the 
typed word. Considering this and assuming that the typing of 
each letter is an independent event, we can write  



p(y | x) = p(yi | xi )
i=1

N

∏ ,                               (2) 

where yi  is the i-th letter of the typed word, xi  is the intended 
letter, and N  is the word length. The conditional probability 
p(yi | xi )  is the probability that the character yi  is typed in lieu 

of xi . The prior probability, p(x) , is given by the frequencies 
of the dictionary entries in the English language. For example, 
given the typed word y = oat  and the candidate x = bat , we 
need to compute  

p(oat |bat)p(bat) = p(o |b)p(a | a)p(t | t)p(bat).        (3) 

Determining the posterior probabilities for all dictionary 
words with the same length as the typed word can be too 
computationally demanding. Therefore, to reduce the 
complexity, we use the fact that only a certain fraction of the 
substitutions occur with non-negligible probability. To describe 
how this is done, it is useful to represent each character by a 
five-bit codeword. We choose the first digit to represent the 
key under the thumb, the second to represent the key under the 
index, etc. The value of a position is 1 if the corresponding key 
is pressed and 0 otherwise. So, for instance, the sequence 
11011, corresponding to the letter “x”, means that all fingers 
except the middle are pressing the keys. In this way, we can 
compare two words not only by the edit distance, but also from 
a bit distance point of view.  

The key-to-character mapping was designed to minimize 
the learning time by assigning intuitive mnemonics to each 
character. In Fig. 1, we show five examples, and the complete 
list is given in the Appendix.  

Our tests have shown that in 98.5% of the cases, the 
wrongly typed word differs from the intended one by at most 
five bits. Hence, for each typed word we limit the set of 
possible candidates, S, to words with the same length and 
which differ by at most five bits. Four of the possible 
candidates for the typed word oat are given in Table I. ham is 
not a valid candidate, because it differs by six bits.  

In our study, we use the British National Corpus, 
containing approximately 100 million words [9]. The used 
dictionary was obtained from this corpus by choosing all the 
items occurring at least five times. It contains 100,944 entries, 
which include inflected forms such as declensions and 
conjugations.  The probabilities p(x)  are given by the word 

frequency in the corpus and the confusion probabilities, 
p(yi | xi ) , were estimated experimentally. 

IV. EXPERIMENTAL SETUP AND EVALUATION DATA 
In order to gather enough data to evaluate the proposed 

algorithm, we asked ten PhD students from our university 
(eight male and two female, with ages between 24 and 31) to 
type using a chording keyboard. All are right handed and have 
previously participated in another typing study [2], so they 
already knew the mapping. They used a five-key chording 
keyboard prototype with the keys placed around a computer 
mouse, presented in Fig. 2.  

We designed the prototype in this way because we wanted 
the subjects to see a practical application of a chording device, 
allowing typing and screen navigation at the same time, with 
only one hand. The keyboard is designed using an Arduino Pro 
Mini microcontroller board and communicates with the 
computer by Bluetooth. The buttons are placed so that they can 
be easily operated while holding the mouse with the palm. We 
used keys and not pressure or touch sensors because they 
provide a distinct tactile feedback. 

The participants were asked to type for 10 sessions of 30 
minutes each, while sitting at a desk. Each session consisted of 
three rounds of 10 minutes, separated by breaks of two 
minutes. In the beginning of each round, the participants 
warmed up by typing each letter of the alphabet. During the 
warm-up, a help image showing the key combination for the 
letter to be typed was displayed. Afterwards, the help image 
was no longer available and the participants typed sentences 
chosen from a set considered representative for the English 
language [10]. These sentences were pre-prepared before the 
experiment to contain only small letters and no punctuation 
signs.   

     
Fig. 1. Examples of letter mappings: “i” is given by the initial of the finger 
pressing the key (index). “m” is given by the shape of the fingers pressing the 
keys. “w” is given by the shape of the fingers not pressing the keys. For “x”, 
we represent the four corners, and for “o”, we imagine five dots spread around 
a circle. 

 

TABLE I.  POSSIBLE CANDIDATES FOR THE TYPED WORD OAT 

Possible candidates Binary form Bit distance 
oat 11111 00110 10000 0 
bat 10111 00110 10000 1 
rat 00010 00110 10000 4 
ore 11111 00010 11000 2 
ham 11001 00110 01110 6-not valid 

 

 

Fig. 2. Chording keyboard prototype 

 



A Java application was designed to display the text to be 
typed and to monitor the pressed keys. A screenshot of the 
application is shown in Fig. 3. The top-left window contains 
the text to be typed and the bottom-left window represents the 
typing area. The help image is displayed on the right.  

Because we wanted to evaluate an error correction 
mechanism, we instructed the participants not to correct their 
mistakes (however, this was not enforced and they could delete 
typed text). As a reward for the time commitment during the 
experiment, they received a fixed monetary compensation for 
the first nine typing sessions. To provide additional motivation, 
for the last session, the reward was proportional to the number 
of typed words and to the typing accuracy. 

In general, typing errors can be classified into cognitive and 
sensorimotor errors. Cognitive errors appear when users type a 
word wrongly because they do not know the correct spelling or 
they do not remember the key combination for a certain 
character, while sensorimotor errors appear when a 
coordination mistake is produced during the execution. During 
the experiment, the text to be typed was shown to the users, 
and they already knew the mapping, so we can assume that 
most errors are sensorimotor. Therefore, the errors will be more 
dependent on the input device and mapping than on the user's 
knowledge of the mapping. 

The total amount of data gathered during the experiment 
consists of 40,345 words. Out of these, 4052 (10.17%) contain 
errors. 3065 (75.64%) of the errors are substitution errors when 
one or more letters of the word are replaced by other letters (for 
example houss instead of house). The remaining 987 errors 
occurred when people did not type a letter (hous instead of 
house), typed an extra letter (housee instead of house), the 
space between two consecutive words was missing (thehouse 
instead of the house), they combined several of the above-
mentioned mistakes, or when whole words were missing, 
added, or the topic of the sentence changed. 

The total number of typed characters is 219,308. We used 
these characters to determine the confusion matrix, which is a 
square matrix with rows and columns labeled with all the 
characters that can be typed. The value at position ij shows the 
frequency of character j being typed when i was intended. The 
values are given as percentages from the total number of 
occurrences for character i and will represent the conditional 
probabilities, p( j | i) . In Table II, we present the values of the 
confusion matrix for the characters from a to e. 

By analyzing the confusion matrix and the five-bit code for 
each letter, we notice that 44.81% of the wrongly typed 
characters differ from the intended character by one bit, 
39.22% by two bits, 8.72% by three bits, 5.87% by four bits 
and 1.39% by five bits. If we check word by word and consider 
only substitution errors, 91.48% of the erroneous words contain 
one substitution, 7.68% contain two substitutions and 0.67% 
three substitutions. From a bit-error point of view, 40.56% of 
the erroneous words contain a one-bit error, 40.92% a two-bit 
error, 7.62% a three-bit error, 7.20% a four-bit error and 2.13% 
a five-bit error.  

V. RESULTS 
The typing and error correction processes are described by 

the diagram of Fig. 4. The three vertical levels represent correct 
words, substitution errors and other error types, respectively. In 
the following, we will refer to the error rates before applying 
the proposed algorithm as pre-processing error rates, and to the 
error rates obtained after applying the algorithm as post-
processing error rates.  

The left part of the diagram represents the typing process. 
Out of Nw  (40,365) typed words, Nps  (3065) are substitution 

errors, No  (987) represent other error types, and the rest are 

correct. The “p” before “s” in the subscript of Nps  stands for 
pre-processing. The pre-processing substitution error rate is 
computed as Nps / Nw , and the pre-processing overall error 

rate as (Nps + No ) / Nw .  

The right part of the diagram shows the error correction 
process. The final number of correct words is made up of 
corrected substitution errors and words that were correctly 
spelled from the beginning. The number of substitution errors 
remaining after processing is denoted by Nsp , where the “p” 

TABLE II.  CONFUSION MATRIX ENTRIES FOR A, B, C, D, AND E 

% a b c d e 
a 96.79 0.01 0.03 0.02 0.86 
b 0.01 94.17 0.01 1.17 0.07 
c 0.01 0.01 98.14 0.01 0.90 
d 0.01 0.47 0.03 95.37 0.03 
e 0.11 0.01 0.17 0.03 97.92 

 
 

Fig. 3. Screenshot of the application used for typing 
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Fig. 4. Typing and error correction diagram 

 
 



after “s” stands for post-processing. Nsp  has two 

components: Nu , the substitution errors uncorrected by the 

algorithm, and Na , additionally introduced substitution errors 
(any algorithm that determines the most likely candidate will 
occasionally introduce new errors). The number of other error 
types, No , is not affected by the algorithm. The final number 

of errors is Ne = Nsp + No . The post-processing substitution 

error rate is computed as Nsp / Nw , and the post-processing 

overall error rate as (Nsp + No ) / Nw . 

The error-correction algorithm was implemented in 
MATLAB. For evaluation, we compared the pre-processing 
and post-processing error rates. We also compared the 
proposed algorithm to MsWord and iSpell. MsWord and iSpell 
return an ordered list of candidates from which the user should 
choose, the first one being the most likely. These algorithms 
can also return candidate words with different lengths. To be 
consistent in comparing the three algorithms, we only 
considered the candidates with the same length as the typed 
word. This is fair because we are only analyzing substitution 
errors. The first one of these candidates is taken as the chosen 
word.  

In addition to determining the various error rates for the 
processed text, we also compared the candidate sets provided 
by the proposed algorithm, MsWord and iSpell. The first one is 
based on bit distance, while the last two on edit distance. These 
sets were compared by applying the MAP algorithm to the 
candidates provided by MsWord and iSpell. The results are 
presented in Table III.  

The proposed error correction method reduces the 
substitution error rate from 7.60% to 1.59%, which is 
considerably better than the rates for MsWord and iSpell 
(3.12% and 3.94%, respectively). The results are also better 
than applying the MAP algorithm to the MsWord candidates 
and very close to applying it to the iSpell candidates, proving 
the bit distance to be an efficient metric when building the 
candidate set. However, one should not forget that the 
dictionaries are not the same, and this can affect the results. 
Moreover, our algorithm is specifically designed for a five key 
chording keyboard, while MsWord and iSpell can be applied to 
any text input device with the same results.   

The proposed algorithm corrects significantly more 
substitution errors than MsWord and iSpell, but it is 

unavoidable that some correctly typed words are modified. 
This occurs if another word is more likely given the typed 
word. For example, if we type tee, which is a valid English 
word contained in the dictionary, it will be changed to the. This 
can be an important inconvenient, because, in general, users are 
less displeased when the algorithm does not correct an error 
than when the algorithm modifies a correctly typed word. 

One may be tempted to reduce the number of additional 
errors by accepting as correct the words that are found in the 
dictionary. This method is no longer a MAP algorithm, 
therefore we expect the overall error rates to increase. We 
tested this by using three dictionaries denoted by D5, D50 and 
D100. The number next to the letter D is the minimum number 
of appearances of every dictionary entry in the used corpus. All 
of them contain inflected words and their sizes are 100,944, 
41,028, and 11,288 words, respectively.  

For each of these dictionaries, we computed the number of 
uncorrected substitution errors and the number of newly 
introduced errors ( Nu and Na ) for two cases: with the original 
and with the modified algorithm. A graphical representation of 
the contribution of each error type to the overall error rates is 
given in In Fig. 5, and the detailed results are given in Table 
IV. A * sign next to the dictionary name means that the 
dictionary words were not modified. The results confirm our 
expectations: modifying the algorithm reduces the additional 
errors, but also corrects fewer of the existing ones, leading to 
higher overall error rates. 

We can also notice that smaller dictionaries lead to higher 
error rates. From a fundamental point of view, reducing the 
dictionary size by excluding words with low frequency in the 
corpus is equivalent to setting their prior probabilities to zero. 
Using less accurate priors can only reduce the performance of 
the algorithm, thus increasing the error probability. 

TABLE III.  SUBSTITUTION AND OVERALL ERROR RATES BEFORE AND AFTER APPLYING THE ALGORITHM 

 Pre-processing Post-processing 

  MAP algorithm MsWord iSpell MsWord MAP iSpell MAP 

Substitution error 
rates % 

7.60 1.59 3.12 3.94 1.77 1.58 

Overall error rates 
% 

10.04 4.04 5.57 6.38 4.22 4.03 
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Fig. 5. Overall error rates for different dictionaries 

 



VI. CONCLUSION 
 In this paper, we have presented an error correction 
algorithm for substitution errors, designed for a five-key 
chording keyboard. For every typed word, it selects several 
possible candidates and returns the most likely one using the 
MAP algorithm. This method decreases the substitution error 
rate from 7.60% to 1.59%, providing a considerable 
improvement compared to MsWord and iSpell (leading to 
substitution error rates of 3.12% and 3.94%, respectively). This 
advantage is due to the MAP algorithm, which takes into 
account the prior distribution of words and the confusion 
probabilities, which depend on the input device. Even if it was 
designed for a specific keyboard and mapping, the presented 
method can be easily generalized to other input devices by 
updating the confusion matrix.  

We have only focused on substitution errors because they 
represent more than 75% of the total errors. Given the 
encouraging results, as a next step we will expand the 
algorithm to also consider other error types such as missing or 
extra characters. The performance of the MAP algorithm can 
be improved by increasing the accuracy of the confusion 
matrix and of the prior probabilities. One possibility is to 
implement an adaptive approach, starting with a common 
matrix and updating it for individual users based on what they 
type. Words that are typed more often can have their prior 
probability increased. One should also be able to add new 
words to the dictionary. 

Even though it is not the purpose of this study, the gathered 
data enables us to estimate the achievable typing rates. Taking 
into account the previous experience of the participants, after 
approximately 350 minutes of typing, the average speed is 20.1 
wpm, with the maximum of 31.2 wpm. The average character 
error rate is 2.91%, but the users were instructed not to correct 
errors. Considering this, the chording keyboards can be a 
viable typing option, especially in situations where one wants 
to type a short text and cannot continuously look at the keys, 
such as walking in crowded places or riding a bike. In addition, 
they can facilitate text input for persons who can only use one 
hand – the prototype used in this study allows a person to type 
and control the mouse with one hand and without the need for 
moving the hand from the keyboard to the mouse and back. 
Because one does not need to move the fingers from one key to 
another, chording keyboards can also be used by visually 
impaired persons. Efficient error correction will only increase 
the usability of these keyboards.  
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TABLE V.  KEY COMBINATIONS FOR THE USED CHARACTERS 

Character 5-bit code Character 5-bit code 
a 00110 q 01101 
b 10111 r 00010 
c 10100 s 10101 
d 11101 t 10000 
e 11000 u 01001 
f 01010 v 10011 
g 11100 w 10001 
h 11001 x 11011 
i 01000 y 10110 
j 01011 z 10010 
k 11010 space 11110 
l 00111 backspace 01111 
m 01110 enter 00011 
n 01100 period 00100 
o 11111 comma 00101 
p 00001   

 

 

TABLE IV.  UNCORRECTED, ADDED AND REMAINING SUBSTITUTION ERRORS 

 Pre-processing Post-processing 
Substitution 

errors 
Other errors Uncorrected 

substitutions 
Added 

substitutions 
Substitution 

errors 
Substitution 
error rate % 

Overall error 
rate % 

D5  
 

3065 

 
 

987 

476 167 643 1.59 4.04 
D50 527 508 1035 2.56 5.01 

D100 544 696 1240 3.07 5.52 
D5* 762 1 763 1.89 4.34 

D50* 691 417 1108 2.74 5.19 
D100* 648 605 1253 3.10 5.55 

 


