
Error Correction Mechanism for Five-Key Chording
Keyboards

Adrian Tarniceriu, Bixio Rimoldi, Pierre Dillenbourg
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

adrian.tarniceriu@epfl.ch, bixio.rimoldi@epfl.ch, pierre.dillenbourg@epfl.ch

Abstract—As different text input devices lead to different
typing error patterns, considering the device characteristics when
designing an error correction mechanism can lead to significantly
improved results. In this paper, we propose and evaluate a
spelling algorithm specifically designed for a five-key chording
keyboard. It is based on the maximum a posteriori probability
criterion, taking into account a dictionary model and the
probabilities that one character is typed for another. These
probabilities are determined experimentally. In our experiment,
the proposed method reduced the substitution error rate from
7.60% to 1.59%. As comparison, MsWord and iSpell reduced the
substitution error rates to 3.12% and 3.94%, respectively.

Keywords—error correction; confusion matrix; maximum a

posteriori probability; chording keyboard

I. INTRODUCTION
Personal computers and mobile computing devices have a

constant presence in most people’s life, but there are situations
when we cannot easily access their services. For example,
when walking in a crowded place, the vision should be focused
on what happens around us, rather than on typing. Not doing so
can have potentially dangerous consequences. Furthermore,
input devices such as classic desktop keyboards, keypads or
touchscreens may not be suitable for persons that have certain
physical disabilities such as limited vision and/or can use only
one hand.

Chording keyboards [1] represent a possible solution for the
above-mentioned situations. These keyboards allow users to
generate a character by simultaneously pressing a combination
of keys, similarly to playing a note on a musical instrument.
With five keys, there are 31 combinations in which at least one
key is pressed, enough for the 26 letters of the English alphabet
and five other characters. An additional sixth key can be used
to toggle between modes that permit typing capital letters,
numbers, or other symbols. If the keys are placed in a position
that is naturally under the fingertips (for example on the
handlebar of a bike or around a mobile phone), then we can
type with only one hand and without looking at the input
device. Therefore, we will be able to use a mobile device even
during activities for which the visual attention is partially or
entirely committed, like walking in crowded spaces, jogging,
or riding a bike. Being focused at another activity while typing
will probably lead to more errors, so efficient error correction
becomes an important issue in these situations.

The most plausible explanation why chording keyboards
are not popular is that users require some training before being
able to type, to learn the correspondence between key
combinations and characters. A previous study [2] showed that
people can learn to type with a five-key chording keyboard in
less than 45 minutes. According to that study, the average
typing rate after 250 minutes of practice is 15.2 words per
minute (wpm) with a maximum of 19.2 wpm, comparable to
iPhone or Twiddler [3] rates. The error rate is low, 0.22%,
because users preferred to correct their mistakes. An effective
mean of automatically correcting these mistakes might increase
the keyboard’s ease-of-use and typing speed because users will
not have to stop typing in order to correct errors.

This paper represents an initial effort to explore the area of
error correction for chording keyboards, by taking into
consideration the particularities of the text input device. This is
motivated by the fact that different devices lead to different
error patterns, and knowledge about these patterns can be used
to improve the error correction methods. The error correction
method that we propose is based on the maximum a posteriori
probability principle (MAP) [4]. For every typed word, it
provides a list of possible candidates and chooses the one that
is the most likely. The correction method is developed for a
five-key keyboard, but it can be easily generalized to other
designs.

The paper is organized as follows. In Section II, we
overview existing text error correction mechanisms. In Section
III, we describe the proposed error correction algorithm. In
Section IV, we describe the data set used to evaluate the
algorithm, and in Section V, we present the results. In Section
VI, we conclude the paper and discuss future directions.

II. RELATED WORK
Traditionally, text error detection and correction focuses on

character-level errors, which can be classified into three
categories: deletions, when a character is omitted, insertions,
when an additional character is inserted, and substitutions,
when a character is substituted by another character.

Some approaches take into account the context,
grammatical and semantical rules, and also detect errors such
as missing words, wrong phrase structure, misused inflections,
or others.

A detailed overview of commonly used correction
techniques is presented by Kukich in [5]. Research in spelling
error detection and correction is grouped in three main
categories:

1. Non-word error detection:

Groups of n letters (n-grams) are examined and looked up
in a table of statistics. The strings that contain non-existing or
highly infrequent n -grams are considered errors.

2. Isolated word error correction:

Each word is treated individually and considered either
correct or incorrect. In the latter case, the incorrectly spelled
word is compared to entries from a dictionary. Based on
similarities between the typed word and dictionary words, a list
of possible candidates is proposed. These candidates can be
provided using several techniques:

• minimum edit distance techniques consider the
minimum number of editing operations required to
transform a string into another. A basic example is
to consider the dictionary word that can be
obtained from the typed word with a minimum
number of insertions, deletions and substitutions;

• similarity key techniques map each string to a key
which is similar or identical for similarly spelled
strings. In this way, the key for a misspelled string
can point to similarly spelled candidates from the
dictionary. The advantage of this approach is that
the misspelled string is not compared to all entries
in the dictionary;

• rule-based techniques propose candidate words by
using knowledge of the most common errors;

• probabilistic techniques, which consider transition
and confusion probabilities. The first ones provide
the probability that a letter is followed by another
given letter (the values are language dependent).
Confusion probabilities estimate how often a letter
is typed instead of another letter (the values are
text-input device dependent);

• among other possible methods, n-gram techniques
and neural net techniques can also be efficiently
used.

Most isolated word error correction methods do not correct
errors when the erroneously typed word is contained in the
dictionary. For example, if farm was typed instead of form, no
error will be detected. Moreover, these methods cannot detect
the use of wrongly inflected words (for example, they is instead
of they are).

3. Context dependent error correction:

These methods try to overcome the drawbacks of analyzing
each word individually by also considering the context. Errors
can be detected by parsing the text and identifying incorrect
part-of-speech or part-of-sentence n-grams. Or, if enough
memory and processing power are available, tables of word n-
grams can be used. Other approaches consider grammatical and

inflectional rules, semantical context, and can also identify
stylistic errors.

Most of the methods presented above can be applied to any
typed text, regardless of the input device. As various input
techniques become more and more popular, the classic
correction techniques have been improved to consider both the
text and the device particularities. Goodman et al. [6] presented
an algorithm for soft keyboards that combines a language
model and the probabilities that the user hits a key outside the
boundaries of the desired key. Kristensson and Zhai [7]
proposed an error correction technique for stylus typing using
geometric pattern matching. The T9 text input method for
mobile phones can also be included here, as it considers the
correspondence between keys and characters to predict words.

Sandnes and Huang classify chording errors in three
categories: deletions, when the user does not press one of the
required keys, insertions, when the user presses an extra key,
and substitutions, when the user makes a mistake between
adjacent fingers. Assuming that most words have very few
errors, they propose an algorithm for chording text input that
can correct words that contain one deletion, insertion, or
substitution [8].

III. ERROR CORRECTION ALGORITHM
The proposed error correction method corrects character

substitution errors and focuses on individual words, without
considering any contextual information. It is designed for a
chording keyboard with five keys, each key being operated by
a finger of the right hand. The algorithm is based on the
maximum a posteriori probability (MAP) principle, and for
every typed string, it finds the string that is the most likely to
be typed and is a valid word.

We can interpret the typing process as sending information
over a communication channel. The symbol at the channel
input, x , is the word to be typed and the channel output, y , is
what has actually been typed. The MAP algorithm will find the
string x̂ , which is the most likely in the sense of maximizing
the posterior probability p(x | y) over all x ∈ S . The set S
contains all the possible candidate strings. If we denote by
p(x) and p(y) the distributions for the channel input and

output respectively, then

x̂ = argmax
x∈S

p(x | y)

= argmax
x∈S

p(y | x)p(x)
p(y)

= argmax
x∈S

p(y | x)p(x).

 (1)

Because our goal is to design a spelling algorithm, we can
reduce the set of candidates from all possible strings to
dictionary words. Moreover, as we focus on substitutions, we
can limit the candidate set to words with the same length as the
typed word. Considering this and assuming that the typing of
each letter is an independent event, we can write

p(y | x) = p(yi | xi)
i=1

N

∏ , (2)

where yi is the i-th letter of the typed word, xi is the intended
letter, and N is the word length. The conditional probability
p(yi | xi) is the probability that the character yi is typed in lieu

of xi . The prior probability, p(x) , is given by the frequencies
of the dictionary entries in the English language. For example,
given the typed word y = oat and the candidate x = bat , we
need to compute

p(oat |bat)p(bat) = p(o |b)p(a | a)p(t | t)p(bat). (3)

Determining the posterior probabilities for all dictionary
words with the same length as the typed word can be too
computationally demanding. Therefore, to reduce the
complexity, we use the fact that only a certain fraction of the
substitutions occur with non-negligible probability. To describe
how this is done, it is useful to represent each character by a
five-bit codeword. We choose the first digit to represent the
key under the thumb, the second to represent the key under the
index, etc. The value of a position is 1 if the corresponding key
is pressed and 0 otherwise. So, for instance, the sequence
11011, corresponding to the letter “x”, means that all fingers
except the middle are pressing the keys. In this way, we can
compare two words not only by the edit distance, but also from
a bit distance point of view.

The key-to-character mapping was designed to minimize
the learning time by assigning intuitive mnemonics to each
character. In Fig. 1, we show five examples, and the complete
list is given in the Appendix.

Our tests have shown that in 98.5% of the cases, the
wrongly typed word differs from the intended one by at most
five bits. Hence, for each typed word we limit the set of
possible candidates, S, to words with the same length and
which differ by at most five bits. Four of the possible
candidates for the typed word oat are given in Table I. ham is
not a valid candidate, because it differs by six bits.

In our study, we use the British National Corpus,
containing approximately 100 million words [9]. The used
dictionary was obtained from this corpus by choosing all the
items occurring at least five times. It contains 100,944 entries,
which include inflected forms such as declensions and
conjugations. The probabilities p(x) are given by the word

frequency in the corpus and the confusion probabilities,
p(yi | xi) , were estimated experimentally.

IV. EXPERIMENTAL SETUP AND EVALUATION DATA
In order to gather enough data to evaluate the proposed

algorithm, we asked ten PhD students from our university
(eight male and two female, with ages between 24 and 31) to
type using a chording keyboard. All are right handed and have
previously participated in another typing study [2], so they
already knew the mapping. They used a five-key chording
keyboard prototype with the keys placed around a computer
mouse, presented in Fig. 2.

We designed the prototype in this way because we wanted
the subjects to see a practical application of a chording device,
allowing typing and screen navigation at the same time, with
only one hand. The keyboard is designed using an Arduino Pro
Mini microcontroller board and communicates with the
computer by Bluetooth. The buttons are placed so that they can
be easily operated while holding the mouse with the palm. We
used keys and not pressure or touch sensors because they
provide a distinct tactile feedback.

The participants were asked to type for 10 sessions of 30
minutes each, while sitting at a desk. Each session consisted of
three rounds of 10 minutes, separated by breaks of two
minutes. In the beginning of each round, the participants
warmed up by typing each letter of the alphabet. During the
warm-up, a help image showing the key combination for the
letter to be typed was displayed. Afterwards, the help image
was no longer available and the participants typed sentences
chosen from a set considered representative for the English
language [10]. These sentences were pre-prepared before the
experiment to contain only small letters and no punctuation
signs.

Fig. 1. Examples of letter mappings: “i” is given by the initial of the finger
pressing the key (index). “m” is given by the shape of the fingers pressing the
keys. “w” is given by the shape of the fingers not pressing the keys. For “x”,
we represent the four corners, and for “o”, we imagine five dots spread around
a circle.

TABLE I. POSSIBLE CANDIDATES FOR THE TYPED WORD OAT

Possible candidates Binary form Bit distance
oat 11111 00110 10000 0
bat 10111 00110 10000 1
rat 00010 00110 10000 4
ore 11111 00010 11000 2
ham 11001 00110 01110 6-not valid

Fig. 2. Chording keyboard prototype

A Java application was designed to display the text to be
typed and to monitor the pressed keys. A screenshot of the
application is shown in Fig. 3. The top-left window contains
the text to be typed and the bottom-left window represents the
typing area. The help image is displayed on the right.

Because we wanted to evaluate an error correction
mechanism, we instructed the participants not to correct their
mistakes (however, this was not enforced and they could delete
typed text). As a reward for the time commitment during the
experiment, they received a fixed monetary compensation for
the first nine typing sessions. To provide additional motivation,
for the last session, the reward was proportional to the number
of typed words and to the typing accuracy.

In general, typing errors can be classified into cognitive and
sensorimotor errors. Cognitive errors appear when users type a
word wrongly because they do not know the correct spelling or
they do not remember the key combination for a certain
character, while sensorimotor errors appear when a
coordination mistake is produced during the execution. During
the experiment, the text to be typed was shown to the users,
and they already knew the mapping, so we can assume that
most errors are sensorimotor. Therefore, the errors will be more
dependent on the input device and mapping than on the user's
knowledge of the mapping.

The total amount of data gathered during the experiment
consists of 40,345 words. Out of these, 4052 (10.17%) contain
errors. 3065 (75.64%) of the errors are substitution errors when
one or more letters of the word are replaced by other letters (for
example houss instead of house). The remaining 987 errors
occurred when people did not type a letter (hous instead of
house), typed an extra letter (housee instead of house), the
space between two consecutive words was missing (thehouse
instead of the house), they combined several of the above-
mentioned mistakes, or when whole words were missing,
added, or the topic of the sentence changed.

The total number of typed characters is 219,308. We used
these characters to determine the confusion matrix, which is a
square matrix with rows and columns labeled with all the
characters that can be typed. The value at position ij shows the
frequency of character j being typed when i was intended. The
values are given as percentages from the total number of
occurrences for character i and will represent the conditional
probabilities, p(j | i) . In Table II, we present the values of the
confusion matrix for the characters from a to e.

By analyzing the confusion matrix and the five-bit code for
each letter, we notice that 44.81% of the wrongly typed
characters differ from the intended character by one bit,
39.22% by two bits, 8.72% by three bits, 5.87% by four bits
and 1.39% by five bits. If we check word by word and consider
only substitution errors, 91.48% of the erroneous words contain
one substitution, 7.68% contain two substitutions and 0.67%
three substitutions. From a bit-error point of view, 40.56% of
the erroneous words contain a one-bit error, 40.92% a two-bit
error, 7.62% a three-bit error, 7.20% a four-bit error and 2.13%
a five-bit error.

V. RESULTS
The typing and error correction processes are described by

the diagram of Fig. 4. The three vertical levels represent correct
words, substitution errors and other error types, respectively. In
the following, we will refer to the error rates before applying
the proposed algorithm as pre-processing error rates, and to the
error rates obtained after applying the algorithm as post-
processing error rates.

The left part of the diagram represents the typing process.
Out of Nw (40,365) typed words, Nps (3065) are substitution

errors, No (987) represent other error types, and the rest are

correct. The “p” before “s” in the subscript of Nps stands for
pre-processing. The pre-processing substitution error rate is
computed as Nps / Nw , and the pre-processing overall error

rate as (Nps + No) / Nw .

The right part of the diagram shows the error correction
process. The final number of correct words is made up of
corrected substitution errors and words that were correctly
spelled from the beginning. The number of substitution errors
remaining after processing is denoted by Nsp , where the “p”

TABLE II. CONFUSION MATRIX ENTRIES FOR A, B, C, D, AND E

% a b c d e
a 96.79 0.01 0.03 0.02 0.86
b 0.01 94.17 0.01 1.17 0.07
c 0.01 0.01 98.14 0.01 0.90
d 0.01 0.47 0.03 95.37 0.03
e 0.11 0.01 0.17 0.03 97.92

Fig. 3. Screenshot of the application used for typing

N

w

�N
ps

�N
o

N
ps

N
o

Typed words
N

w

Correct words
N

w

�N
sp

�N
o

Substitution errors
N

sp

= N
u

+N
a

Other errors
N

o

N
a

N
u

Typing Error correction

1

Fig. 4. Typing and error correction diagram

after “s” stands for post-processing. Nsp has two

components: Nu , the substitution errors uncorrected by the

algorithm, and Na , additionally introduced substitution errors
(any algorithm that determines the most likely candidate will
occasionally introduce new errors). The number of other error
types, No , is not affected by the algorithm. The final number

of errors is Ne = Nsp + No . The post-processing substitution

error rate is computed as Nsp / Nw , and the post-processing

overall error rate as (Nsp + No) / Nw .

The error-correction algorithm was implemented in
MATLAB. For evaluation, we compared the pre-processing
and post-processing error rates. We also compared the
proposed algorithm to MsWord and iSpell. MsWord and iSpell
return an ordered list of candidates from which the user should
choose, the first one being the most likely. These algorithms
can also return candidate words with different lengths. To be
consistent in comparing the three algorithms, we only
considered the candidates with the same length as the typed
word. This is fair because we are only analyzing substitution
errors. The first one of these candidates is taken as the chosen
word.

In addition to determining the various error rates for the
processed text, we also compared the candidate sets provided
by the proposed algorithm, MsWord and iSpell. The first one is
based on bit distance, while the last two on edit distance. These
sets were compared by applying the MAP algorithm to the
candidates provided by MsWord and iSpell. The results are
presented in Table III.

The proposed error correction method reduces the
substitution error rate from 7.60% to 1.59%, which is
considerably better than the rates for MsWord and iSpell
(3.12% and 3.94%, respectively). The results are also better
than applying the MAP algorithm to the MsWord candidates
and very close to applying it to the iSpell candidates, proving
the bit distance to be an efficient metric when building the
candidate set. However, one should not forget that the
dictionaries are not the same, and this can affect the results.
Moreover, our algorithm is specifically designed for a five key
chording keyboard, while MsWord and iSpell can be applied to
any text input device with the same results.

The proposed algorithm corrects significantly more
substitution errors than MsWord and iSpell, but it is

unavoidable that some correctly typed words are modified.
This occurs if another word is more likely given the typed
word. For example, if we type tee, which is a valid English
word contained in the dictionary, it will be changed to the. This
can be an important inconvenient, because, in general, users are
less displeased when the algorithm does not correct an error
than when the algorithm modifies a correctly typed word.

One may be tempted to reduce the number of additional
errors by accepting as correct the words that are found in the
dictionary. This method is no longer a MAP algorithm,
therefore we expect the overall error rates to increase. We
tested this by using three dictionaries denoted by D5, D50 and
D100. The number next to the letter D is the minimum number
of appearances of every dictionary entry in the used corpus. All
of them contain inflected words and their sizes are 100,944,
41,028, and 11,288 words, respectively.

For each of these dictionaries, we computed the number of
uncorrected substitution errors and the number of newly
introduced errors (Nu and Na) for two cases: with the original
and with the modified algorithm. A graphical representation of
the contribution of each error type to the overall error rates is
given in In Fig. 5, and the detailed results are given in Table
IV. A * sign next to the dictionary name means that the
dictionary words were not modified. The results confirm our
expectations: modifying the algorithm reduces the additional
errors, but also corrects fewer of the existing ones, leading to
higher overall error rates.

We can also notice that smaller dictionaries lead to higher
error rates. From a fundamental point of view, reducing the
dictionary size by excluding words with low frequency in the
corpus is equivalent to setting their prior probabilities to zero.
Using less accurate priors can only reduce the performance of
the algorithm, thus increasing the error probability.

TABLE III. SUBSTITUTION AND OVERALL ERROR RATES BEFORE AND AFTER APPLYING THE ALGORITHM

 Pre-processing Post-processing

 MAP algorithm MsWord iSpell MsWord MAP iSpell MAP

Substitution error
rates %

7.60 1.59 3.12 3.94 1.77 1.58

Overall error rates
%

10.04 4.04 5.57 6.38 4.22 4.03

D5 D50 D100 D5* D50* D100* Initial
0

2

4

6

8

10

O
v
e

ra
ll
 e

rr
o

r
ra

te
s

Non−substitution errors

Uncorrected substitutions

Added substitution errors

Fig. 5. Overall error rates for different dictionaries

VI. CONCLUSION
 In this paper, we have presented an error correction
algorithm for substitution errors, designed for a five-key
chording keyboard. For every typed word, it selects several
possible candidates and returns the most likely one using the
MAP algorithm. This method decreases the substitution error
rate from 7.60% to 1.59%, providing a considerable
improvement compared to MsWord and iSpell (leading to
substitution error rates of 3.12% and 3.94%, respectively). This
advantage is due to the MAP algorithm, which takes into
account the prior distribution of words and the confusion
probabilities, which depend on the input device. Even if it was
designed for a specific keyboard and mapping, the presented
method can be easily generalized to other input devices by
updating the confusion matrix.

We have only focused on substitution errors because they
represent more than 75% of the total errors. Given the
encouraging results, as a next step we will expand the
algorithm to also consider other error types such as missing or
extra characters. The performance of the MAP algorithm can
be improved by increasing the accuracy of the confusion
matrix and of the prior probabilities. One possibility is to
implement an adaptive approach, starting with a common
matrix and updating it for individual users based on what they
type. Words that are typed more often can have their prior
probability increased. One should also be able to add new
words to the dictionary.

Even though it is not the purpose of this study, the gathered
data enables us to estimate the achievable typing rates. Taking
into account the previous experience of the participants, after
approximately 350 minutes of typing, the average speed is 20.1
wpm, with the maximum of 31.2 wpm. The average character
error rate is 2.91%, but the users were instructed not to correct
errors. Considering this, the chording keyboards can be a
viable typing option, especially in situations where one wants
to type a short text and cannot continuously look at the keys,
such as walking in crowded places or riding a bike. In addition,
they can facilitate text input for persons who can only use one
hand – the prototype used in this study allows a person to type
and control the mouse with one hand and without the need for
moving the hand from the keyboard to the mouse and back.
Because one does not need to move the fingers from one key to
another, chording keyboards can also be used by visually
impaired persons. Efficient error correction will only increase
the usability of these keyboards.

APPENDIX

References

[1] J. Noyes, “Chord keyboards,” Applied Ergonomics, vol. 14, no. 1, 1983,
pp. 55 – 59.

[2] A. Tarniceriu, P. Dillenbourg, and B. Rimoldi, “Single-handed typing
with minimal eye commitment: A text-entry study,” in The Sixth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies, September 2012, pp. 117 – 122.

[3] K. Lyons, et al., “Twiddler typing: one-handed chording text entry for
mobile phones,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’04, (Vienna, Austria), ACM, 2004,
pp. 671–678.

[4] S. Kay, “Fundamentals of statistical signal processing: estimation
theory,” Prentice-Hall, 1993.

[5] K. Kukich, “Techniques for automatically correcting words in text,”
ACM Comput. Surv. 24, 4 , December 1992, pp. 377–439.

[6] J. Goodman, G. Venolia, K. Steury, and Parker, “C Language modeling
for soft keyboards, ” in Proceedings of the 7th international conference
on Intelligent user interfaces, IUI ’02, (New York, NY, USA), ACM,
2002, pp. 194–195.

[7] P. O. Kristensson, and P. Zhai, “Relaxing stylus typing precision by
geometric pattern matching,” in Proceedings of the 10th international
conference on Intelligent user interfaces, IUI ’05, (New York, NY,
USA), ACM, 2005, pp. 151–158.

[8] F. Sandnes, and Y. P. Huang, “Non-intrusive error-correction of text
input chords: a language model approach,” in Fuzzy Information
Processing Society, 2005. NAFIPS 2005, June 2005, pp. 373 – 378.

[9] http://www.kilgarriff.co.uk/bnc-readme.html, July 2013.
[10] I. S. Mackenzie and R. W. Soukoreff, “Phrase sets for evaluating text

entry techniques,” in Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems CHI ’03, (Fort Lauderdale,
Florida, United States), ACM, 2003, pp. 766– 767.

TABLE V. KEY COMBINATIONS FOR THE USED CHARACTERS

Character 5-bit code Character 5-bit code
a 00110 q 01101
b 10111 r 00010
c 10100 s 10101
d 11101 t 10000
e 11000 u 01001
f 01010 v 10011
g 11100 w 10001
h 11001 x 11011
i 01000 y 10110
j 01011 z 10010
k 11010 space 11110
l 00111 backspace 01111
m 01110 enter 00011
n 01100 period 00100
o 11111 comma 00101
p 00001

TABLE IV. UNCORRECTED, ADDED AND REMAINING SUBSTITUTION ERRORS

 Pre-processing Post-processing
Substitution

errors
Other errors Uncorrected

substitutions
Added

substitutions
Substitution

errors
Substitution
error rate %

Overall error
rate %

D5

3065

987

476 167 643 1.59 4.04
D50 527 508 1035 2.56 5.01

D100 544 696 1240 3.07 5.52
D5* 762 1 763 1.89 4.34

D50* 691 417 1108 2.74 5.19
D100* 648 605 1253 3.10 5.55

