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Abstract Scaling exponents for the conductivity and

stiffness of replicated microcellular materials exceed

commonly predicted values of 1 and 2. We show here that

this is caused by the fact that, in replicated microcellular

materials, the solid architecture varies with the relative

density: a simple derivation based on the physics of powder

consolidation returns and explains the observed scaling

behaviour. The same derivation also gives an explanation

for Archie’s law, known to describe the conductivity of wet

soils.

Introduction

The thermal or electrical conductivity C and the Young’s

modulus E of microcellular materials vary strongly with

their relative density Vm. When solid-phase contributions

are dominant, this dependence is generally described using

a power-law scaling relation [1]:

C

Cm

¼ k Vmð Þn and
E

Em

¼ K Vmð ÞN ð1Þ

where Cm is the conductivity and Em is the Young’s

modulus of the constitutive solid material making the

porous material, while k, n, K and N depend on the porous

material’s mesostructure or architecture (i.e. the geometry

of solid around the pores). In microcellular materials made

of identical interconnected straight struts of uniform cross

section, analysis predicts n = 1 and N = 2 for highly

porous structures, in which Vm is well below unity [1–3].

There are many ways of making microcellular materials;

among them replication processing is one of the most

convenient if an open-pore material is desired [4–9].

Replication processing begins with the production of a

porous ‘preform’ made of packed and densified particles of

a soluble refractory space-holder material. A melt or slurry

is then infiltrated into open pores of the preform, and

solidified. Finally, the refractory space-holder material is

removed by leaching. The resulting ‘replicated’ microcel-

lular solid contains a network of interconnected, open,

pores; as the name of the process indicates, its structure is a

replication of the open pore space between densified space-

holder particles that made the soluble preform. Advantages

of the process include its simplicity, as well as its ability to

produce relatively regular microcellular structures of

metal, polymer or ceramic, with independent control of the

pore volume fraction, size and shape.

For both replicated and other microcellular materials, the

scaling exponent n in the relationship for the conductivity

(Eq. 1) is seldom 1: observed n values generally range

between 1.5 and 1.8 [1, 2, 10]. Equation (1) with

n & 1.5–1.8 is also found in experimental data from similar

structures, namely (i) metal matrix composites containing a

high volume fraction of electrically insulating particles [11–

13] and (ii) fluid-saturated rock and soil, where electricity is

carried by ionic conduction through liquid filling the space

between consolidated insulating particles; in soil science,

this is known as ‘Archie’s law’ [14–17]. Various interpre-

tations have been offered for observed n values; these
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include continuum mean-field approximations (among

which the differential effective medium model indeed

returns n C 1.5 and accounts for the influence of particle

shape, but does not explain the law physically), as well as the

view that this exponent is a manifestation of percolation-

based scaling around a percolation threshold situated at or

near Vm = 0 [3, 10, 14–22].

Mechanical testing of most open or closed cell micro-

cellular materials gives values of the exponent N in the

scaling law for Young’s modulus (Eq. 1) situated between

1 and 2. This is in keeping with models, both mean-field

and numerical, of the elastic stiffness of microcellular

materials, essentially all of which predict N B 2 [1–3,

23–34]. With replicated microcellular materials, on the

other hand, one finds N & 2.6–3, and the value of N tends

to increase as Vm decreases [23, 35]. To our knowledge,

Roberts and Garboczi [34] have proposed the only model

in the literature that produces N so clearly in excess of two;

however, the corresponding (‘Gaussian Random Field’)

structure differs fundamentally from that of replicated

microcellular materials. So this model does not offer a

physical explanation.

We propose here that the physical origin of the experi-

mentally observed scaling exponents of replicated micro-

cellular materials for both conductivity (n & 1.5–1.8) and

for Young’s modulus (N & 2.6–3.0) lies in the fact that

their mesostructure does not remain geometrically self-

similar as Vm varies. To show this, we give in what follows

a simple derivation, itself based on consideration of the

space between randomly packed monosized spheres and its

evolution as packed powders are densified. Taking then the

struts as simplified resistor or bending beam elements,

values and trends for n and N emerge that are consistent

with experiment. The predictions for conductivity also

reproduce Archie’s law from soil science.

Derivation

To understand the geometry of replicated microcellular

solids and how it evolves with Vm, we consider an

assembly of deformable spherical particles (space-holders),

all having the same radius. The particles can pack together

to a maximum packing density /o & 0.64 while main-

taining their spherical shape. To reach higher packing

densities (/[/o) without changing their volume, the

densely packed particles must deform. If we evolve the

particle assembly to higher density, /[ /o, letting the

particle centres approach one another in roughly homo-

thetic fashion, then the particles must deform at their

contact points. At the same time, the average number Z of

particle-to-particle contacts per particle increases, because

new contacts are created as densification brings particle

centres closer together. This evolution was elucidated by

Arzt and coauthors [36–38].

Between the particles is a volume of interconnected

porosity composed of two basic building blocks: (i) narrow

channels connected at (ii) wider open pores, which we refer

to as ‘channels’ and ‘nodes’, respectively. The narrow

channels are circumscribed by three contacting particles.

Nodes are often defined by the open space between four

touching particles, where four channels meet; however, at

lower particle density (meaning as / nears /o), some nodes

are thicker than the space between four touching spheres.

Such thicker nodes comprise the flat regions between two

particles that are the nearest neighbours but are not in

contact; a few larger nodes of this kind are sketched in 2-D

in Fig. 1 and are visible in replicated aluminium structures

shown in Fig. 2.

In the replication process this pore network is infiltrated

by what will become the solid making the open-pore

microcellular material. After the space-holder particles are

removed one is left with a microcellular solid composed of

the same two elementary building blocks described above,

except that these refer to solid material, Fig. 2: (i) channels

have become narrow ‘struts’ connecting at (ii) thicker

nodes, ideally, but not always, four struts per node.

If we now assume that the Coxeter identity (strictly

valid only for dry foams) [39] can be applied to the net-

work of lines running midway through all channels and

nodes delineated by the packed particles, we have:

Z ¼ 12

6� nh i ð2Þ

where hni is the average number of channels bounding one

particle contact in the particle assembly. Since a channel is

Fig. 1 2D schematic of the space between close-packed and partly

densified spheres
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shared by two contacts for each particle, the total number

of channels surrounding one particle, Y, equals Z nh i=2.

Hence:

Y ¼ 3 Z � 2ð Þ:

When particles first touch, there are roughly Z = 7

contacts between these; as compaction proceeds,

Z increases to reach a maximum value of 14 when /
approaches unity [36, 40]. Y thus correspondingly evolves

from 15 to 36 as the density of particles increases from /o

to 1 (Eq. 2); however, in practice the peak value of 36 is

not reached since replicated foam structures are seldom

produced to have solid fractions below 5 % (in Ref. [41] a

few examples are given of replicated microcellular

aluminium in this low range of densities). The reason is

that as / reaches values around 90–95 %, pores tend to

close-off and spheroidize in powder compacts under the

action of surface forces [42–45]. The number of particle

contacts Z will thus not exceed 12 in practice, and

Y reaches a maximum around 30.

Thus, at least half of all channels in a particle compact

were present initially, from the moment the particles were

packed, being delineated between particles that touched in

the powder compact at the limit of random dense packing,

i.e. before particles deformed to densify the compact.

Remaining channels have appeared later, during densifi-

cation, around newly created particle-to-particle contacts.

Replicated foam mesostructures are, thus, more complex

than regular periodic structures assumed in nearly all

models proposed so far in the literature. Struts (replicated

channels) have unequal cross sections and vary in number,

width and length as the foam relative density varies; so do

nodes, the number and shape of which also evolve with

relative density. Figure 2 gives two examples of replicated

aluminium mesostructures; close examination of this fig-

ure, and of the more comprehensive views of spherical pore

replicated aluminium mesostructures offered in Figs. 7 and

8 of Ref. [35], clearly show this.

Now, (i) the thinnest of all struts are those that surround

initial particle-to-particle contacts in the (monosized

spherical) powder compact that served to produce the

material and (ii) these ‘initial’ struts always represent at

least half of all struts present, as suggested by the calcu-

lation above. The threshold for bond percolation in three-

dimensional networks with the coordination expected for

the space between packed spheres (four) is pc = 0.39 [46,

47]. This is also the transition threshold from zero to finite

values for C, and for E in regular networks of coordination

four when both stretching and bending of bonds oppose

deformation [48–51]. Hence, although thicker struts will

influence the conductivity and stiffness of replicated mi-

crocellular strut networks, these can reasonably be expec-

ted either to form isolated clusters (because they appear

around newly formed particle/pore contact points), or to be

just past the percolation threshold (at the lowest replicated

microcellular material relative densities, near 5 %).

Although the reasoning that precedes cannot constitute

proof (if only because, at variance with percolation models,

‘initial’ and other struts are not distributed here completely

at random), it is reasonable to expect that the thinner

‘initial’ struts exert a dominant influence on both conduc-

tion and deformation of the strut-node network composing

the open-cell structure of replicated microcellular materi-

als. So we pose this as our starting assumption and seek to

deduce the scaling relations that it implies.

‘Initial’ struts in replicated structures have a cross sec-

tion defined by the open space left between three initially

touching space-holder particles. Their cross-sectional area,

a, is proportional to the square of some characteristic

dimension, say the side of their near-triangular cross

Fig. 2 Replicated foam with 400 lm pore of irregular polygonal

shape (top) and spherical shape (bottom)
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section d, Fig. 3. As the powder compact densifies, the

centre-to-centre distance of space-holder particles decrea-

ses. If we assume that particle centres remain distributed

similarly in space (or in other words that the particle net-

work shrinks homothetically), then if D is the average

centre-to-centre separation of initially touching particles,

we have:

D3

D3
o

¼ /o

/
ð3Þ

where Do is the initial particle centre separation distance,

equal to twice the initial particle radius.

As the powder compact densifies and D is reduced, the

average area defined between each set of three initially

contacting particles becomes increasingly narrow. This, in

turn, causes channels between the three particles to narrow.

If we assume that material within a triangular slice of

material defined by the zone of contact of each set of three

initially touching particles remains within that slice (and

thus leave aside complexities of how the geometry of these

channels evolves as they thin), then, as its average cross-

sectional area is reduced from (H3/2) Do
2 to (H3/2) D2,

mass conservation dictates that the average strut cross-

sectional area (times the thickness of the slice) must be

reduced by the same area (times the thickness of the slice).

Hence:
ffiffiffi

3
p

4
D2

o � D2
� �

¼ ao � a ¼
ffiffiffi

3
p

4
d2

o � d2
� �

ð4Þ

if we assimilate, for simplicity, the strut cross section and

the corresponding slice of surrounding space-holder

material to equilateral triangles, Fig. 3. Inserting Eq. 3

this becomes:

d2

D2
¼ 1� D2

o � d2
o

D2
o

1� Vm

1� Vm;o

� �2=3

ð5Þ

where Vm = 1 - / is the relative density of the replicated

microcellular material produced by infiltration of particles

packed to a volume fraction solid of /; Vm,o : 1 - /o.

If conduction through the replicated foam is controlled

by the rate of flow of current or heat through these initial

struts, then the conductivity C of replicated foams will

scale as d2/D2, leading to:

C ¼ a 1� A 1� Vmð Þ2=3
� �

ð6Þ

with

A ¼ D2
o � d2

o

D2
o

1

1� Vm;o

� �2=3

ð7Þ

Similarly, we take it that elastic deformation of the

replicated microcellular material is controlled by bending

of these initial struts (the strut coordination being near four,

deformation of the structure is expected to be bending-

dominated [52]). Then, Young’s modulus E (and also the

microcellular material shear modulus) will scale as d4/l4 [1]

where l, the length of the struts, is roughly proportional to

D. E thus scales as d4/D4, giving:

E ¼ a0 1� 2A 1� Vmð Þ2=3þA2 1� Vmð Þ4=3
� �

ð8Þ

In Eqs. 6 and 8, a, a0 and A are constants. Their value

can be set by:

(i). defining C0 and E0 as the conductivity and stiffness,

respectively, of the replicated microcellular solid

at its highest possible relative density, i.e. at

Vm = Vm,o : 1 - /o & 0.36 (C0 and E0 are of

course each proportional to the dense solid material

values, Cm and Em, respectively) and

(ii). noting that at some point during compaction, chan-

nels in the space-holder powder compact pinch-off,

causing pores to close and spheroidize (in the theory

of powder densification this has been called the

transition from Stage 2 to Stage 3 densification [53,

54] or from the intermediate to the final stages of

densification [55–57]). Irregularity in the shape and

size of ‘real’ particle preforms causes the moment at

which this occurs to vary from strut to strut. In the

simplified geometry of the present model, such

irregularity is ignored and all initial struts are

assumed to pinch-off at a single relative density

defined by the ratio of strut to solid matter cross-

Fig. 3 a Cross section of a strut

defined between three touching

spheres in the initial packed

powder compact, and (dotted

line) a triangle having the same

cross-sectional area; b same

after densification
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sectional areas in the triangular slice sketched in

Fig. 3, and hence by the value of A (Eq. 7).

We thus define /c = 1 - Vm,c as the space-holder

packing density at which the cross-sectional area of (all)

initial struts decreases to zero. Having assumed here that

initial struts govern the conduction and elastic stiffness, Vm,c

is the relative density of the microcellular material at which

its conductivity or modulus goes to zero; it is also, for the

material and processing route at hand, the lowest attainable

replicated microcellular material relative density.

Scaling relations (6) and (8) can then be rewritten as:

C

Co

¼
1� 1�Vm

1�Vm;c

� �2=3
� �

1� 1�Vm;o

1�Vm;c

� �2=3
� � and

E

Eo

¼
1� 2 1�Vm

1�Vm;c

� �2=3

þ 1�Vm

1�Vm;c

� �4=3
� �

1� 2
1�Vm;o

1�Vm;c

� �2=3

þ 1�Vm;o

1�Vm;c

� �4=3
� � ð9Þ

Results and discussion

Figure 4a, b gives plots, in the usual logarithmic coordi-

nates, of C/C0 and E/E0 versus Vm for Vm,c = 0, 2.5, 5, 7.5

and 10 %, taking Vm,o = 1 - /o = 0.36. With Vm,c = 0

the two plots return approximately the two straight lines, of

slope 1 or 2, respectively, characteristic of fixed-architec-

ture microcellular materials models [1–3]. This does not

come out simply from Eqs. 5, 6, 7 and 8 but must be

because the assumed geometry then gives, approximately,

to initial struts a cross section and a length that both are in

keeping with the average material architecture as it evolves

with changing Vm.

As Vm,c increases, the curves deviate from the usual

scaling relation. These now show a cutoff where both fall

precipitously (as should be since the microcellular material

loses coherency). At higher relative densities the curves

nearly trace a straight line, the slope of which increases as

Vm,c increases.

The simple model presented here thus reproduces the

gradual increase in slope that is found as Vm decreases in

corresponding experimental plots of E versus Vm [23, 35].

Furthermore, with Vm,c = 5 %, the slope of the curve is

that displayed by experimental data, both for C and for E,

in replicated aluminium over the range of relative densities

traced by experimental data [10, 23, 35]. This value for

Vm,c is reasonable: (i) 5 % is the porosity at which pores

are on average documented to close-off in pressed metal

powder compacts [44, 45] and (ii) this is the observed

lower limit of foam relative densities that can be achieved

in replication processing using equiaxed space-holder

particles [41].

The calculation presented here is highly simplified: it

ignores many effects (for example the fact that initial strut

cross sections have varying shapes and areas, or load-

sharing between initial struts and thicker struts). Yet,

despite its simplicity, it captures the observed scaling

behaviour when its one adjustable variable takes its most

reasonable value. The main difference between what is

presented here and corresponding models proposed so far

in the literature is that we take the architecture of the mi-

crocellular material to vary with the relative density: struts

considered to govern conduction and elastic deformation of

the microcellular material do not thin or shorten at the

same rate as does, on average, the microcellular material.

Rather, we decouple the evolution of elements we view as

critical to the property in question from that of the cell

architecture as a whole, and evaluate this evolution with no

concern for the (highly complex) evolution of the material

architecture in other locations, basing the present deriva-

tion on the physics of powder compact densification.

The derivation also gives a view to the physical origin of

Archie’s law: n & 1.5 is indeed often observed in wet rock

(see Table 5.2 of Ref. [15]). Many sedimentary rocks are

formed by deposition and compaction (‘diagenetic’) pro-

cesses that resemble geometrically preform densification

processes [14–17, 20]. The conducting phase in wet rock

(ion-containing water), therefore, has a geometry similar to

that of the solid in replicated microcellular solids, leading

to infer that its conductivity should follow the same law. In

fact, although it is much simpler (or, viewed differently,

more simplistic), the present derivation is close to the

Bernal sphere distribution model offered in Ref. [20] to

explain Archie’s law as observed in consolidated soil.

We close by pointing out similarities and differences

that exist between the problem treated here, and that of the

conductivity of liquid foams, or similarly that of emulsions

in which only the continuous phase conducts [39, 58, 59].

In all such structures conduction is carried by a phase that

fills the space between close random packed deformed

spheres. In structures addressed here (replicated microcel-

lular materials; wet soil,…) the spheres are solid and their

shape is determined by plastic deformation or by diffusive

transport mechanisms that cause the packed solid particles

to densify. In wet foams and emulsions, on the other hand,

the spheres are soft: they offer essentially no resistance to

deformation. Their shape is then entirely dictated by

equilibration of capillary and disjoining forces. These tend

to equalize strut cross sections across the entire structure,

causing in turn the conductivity to remain finite as the

volume fraction of conducting phase tends to zero. This is

confirmed by experiment: in wet foams and emulsions

C follows, at vanishing conducting phase, the Lemlich rule

8144 J Mater Sci (2013) 48:8140–8146
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(k = 1/3, n = 1 in Eq. 1) [39, 58–60]. The present deri-

vation, therefore, does not apply to liquid foams or

emulsions.

Conclusion

In summary, a simple calculation shows that scaling expo-

nents, around 1.5 and 3, respectively, displayed by the

conductivity and Young’s modulus of replicated microcel-

lular materials are explained if one assumes that these

properties are controlled by struts, the shape of which

evolves with Vm differently from that of the material as a

whole. The derivation also offers a simple alternative

explanation of what is known in soil science as Archie’s law.
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