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Abstract

The analysis of collections of visual data, e.g., their classification, modeling and clustering,
has become a problem of high importance in a variety of applications. Meanwhile, image data
captured in uncontrolled environments by arbitrary users is very likely to be exposed to geo-
metric transformations. Therefore, efficient methods are needed for analyzing high-dimensional
visual data sets that can cope with geometric transformations of the visual content of interest.

In this thesis, we study parametric models for transformation-invariant analysis of geo-
metrically transformed image data, which provide low-dimensional image representations that
capture relevant information efficiently. We focus on transformation manifolds, which are image
sets created by parametrizable geometric transformations of a reference image model. Trans-
formation manifolds provide a geometric interpretation of several image analysis problems. In
particular, image registration corresponds to the computation of the projection of the target
image onto the transformation manifold of the reference image. Similarly, in classification, the
class label of a query image can be estimated in a transformation-invariant way by comparing
its distance to transformation manifolds that represent different image classes. In this thesis,
we explore several problems related to the registration, modeling, and classification of images
with transformation manifolds.

First, we address the problem of sampling transformation manifolds of known parameteri-
zation, where we focus on the target applications of image registration and classification in the
sampling. We first propose an iterative algorithm for sampling a manifold such that the se-
lected set of samples gives an accurate estimate of the distance of a query image to the manifold.
We then extend this method to a classification setting with several transformation manifolds
representing different image classes. We develop an algorithm to jointly sample multiple trans-
formation manifolds such that the class label of query images can be estimated accurately by
comparing their distances to the class-representative manifold samples. The proposed methods
outperform baseline sampling schemes in image registration and classification.

Next, we study the problem of learning transformation manifolds that are good models of
a given set of geometrically transformed image data. We first learn a representative pattern
whose transformation manifold fits well the input images and then generalize the problem to
a supervised classification setting, where we jointly learn multiple class-representative pattern
transformation manifolds from training images with known class labels. The proposed manifold
learning methods exploit the information of the type of the geometric transformation in the data
to compute an accurate data model, which is ignored in previous manifold learning algorithms.

Finally, we focus on the usage of transformation manifolds in multiscale image registration.
We consider two different methods in image registration, namely, the tangent distance method
and the minimization of the image intensity difference with gradient descent. We present a
multiscale performance analysis of these methods. We derive upper bounds for the alignment
errors yielded by the two methods and analyze the variations of these bounds with noise and
low-pass filtering, which is useful for gaining an understanding of the performance of these
methods in image registration. To the best of our knowledge, these are the first such studies in
multiscale registration settings.

Geometrically transformed image sets have a particular structure, and classical image anal-
ysis methods do not always suit well for the treatment of such data. This thesis is motivated
by this observation and proposes new techniques and insights for handling geometric transfor-
mations in image analysis and processing.
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Résumé

L’analyse de collections de données visuelles, comme leur classification, modélisation, ou par-
titionnement, est un problème très important dans de nombreuses applications. Cependant les
images prises par différents utilisateurs dans un environnement incontrôlé sont susceptibles de
subir de nombreuses transformations géométriques. Des méthodes efficaces prenant en compte
ces transformations sont donc nécessaires afin d’analyser des données visuelles de grande di-
mension.

Dans cette thèse, nous étudions des modèles paramétriques permettant une analyse de col-
lections d’images invariante par transformations géométriques et fournissant une représentation
en basse dimension de ces images tout en préservant leurs informations caractéristiques. Nous
nous concentrons sur l’utilisation des variétés créées par des transformations géométriques, re-
présentées par quelques paramètres, d’une image de référence. Ceci nous permet d’avoir une
interprétation géométrique de plusieurs problèmes d’analyse de collections d’images. En parti-
culier, le problème du recalage de deux images se réduit au calcul de la projection de l’image
d’intérêt sur la variété générée par transformations de l’image de référence. De la même manière,
pour la classification, la classe de l’image d’intérêt peut être estimée de manière invariante aux
transformations en comparant les distances entre cette image et les variétés produites par trans-
formations des images représentant chaque classe. Dans cette thèse, nous explorons plusieurs
problèmes liés à la modélisation, la classification et au recalage d’images grâce à l’utilisation de
ces variétés.

Nous étudions tout d’abord le problème de l’échantillonnage de variétés générées par des
transformations paramétriques d’images de référence. Pour cela, nous nous concentrons plus
particulièrement sur les problèmes de recalage et de classification d’images. Nous proposons
tout d’abord un algorithme itératif pour l’échantillonnage d’une variété de sorte que les échan-
tillons obtenus permettent d’estimer précisément la distance entre une image d’intérêt et la
variété. Nous généralisons ensuite cette méthode au problème de la classification où nous de-
vons échantillonner plusieurs variétés générées à partir d’images de classes différentes. Nous
développons un algorithme capable d’échantillonner conjointement plusieurs variétés afin que
la classe d’une image puisse être estimée correctement en comparant les distances entre cette
image et les échantillons de chaque variété. Les méthodes proposées sont plus performantes que
les méthodes d’échantillonnages classiques utilisées en recalage et classification d’images.

Ensuite, nous étudions le problème de l’apprentissage de variétés modélisant correctement
un ensemble d’images géométriquement transformées. Nous apprenons tout d’abord un motif
de base générant une variété dont les images d’entraînement sont proches. Nous généralisons
ensuite cette approche pour traiter un problème de classification supervisée, où nous apprenons
conjointement plusieurs motifs représentatifs de chaque classe à partir d’images dont la classe
est connue. Cette méthode d’apprentissage de variétés exploite l’information connue du type de
transformations existant entre images, et ignorée dans les autres méthodes d’apprentissage de
variétés, pour obtenir un modèle fidèle des données.

Enfin, nous nous intéressons à l’utilisation des variétés pour le recalage d’image par des
méthodes multi-échelles. Nous considérons deux différentes méthodes de recalage d’images : la
minimisation de la différence d’intensité entre images par descente de gradient et la méthode de
la distance aux tangentes. Nous présentons une analyse multi-échelle de la performance de ces
méthodes. Nous fournissons des bornes supérieures sur les erreurs de recalage produites par ces
deux méthodes et analysons les variations de ces bornes en présence de bruit ou de filtrage passe-
bas. Ces résultats sont utiles pour comprendre et expliquer les performance de ces méthodes
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de recalage d’images. A notre connaissance, ce sont les premières études de performance de ces
méthodes dans un contexte multi-échelle.

Les images transformées géométriquement forment un ensemble avec une structure parti-
culière et les méthodes classiques d’analyse d’images ne sont pas toujours adéquates pour le
traitement de tels ensembles. Cette thèse est motivée par cette observation et nous proposons
de nouvelles techniques et idées pour traiter efficacement les transformations géométriques en
analyse et traitement d’images.

Mots Clés : recalage d’images, classification d’images, invariance aux transformations
géométriques, transformation géométrique d’images, variétés générées par transformations géo-
métriques.
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Chapter 1

Introduction

1.1 Analysis of Image Sets

We are living in an era where vast collections of high-dimensional data are created every day, so that
the analysis of data content in a fully-automated or computer-aided manner is of great interest in
many different domains such as entertainment, security, healthcare, and surveillance. This prompts
the need for intelligent systems capable of analyzing data while requiring as little human interaction
as possible.

One of the main research interests of the last few decades has thus been the development of
efficient algorithms for analyzing data or image sets towards effective solutions for classification,
pattern recognition, and clustering tasks. However, the variation in data acquisition conditions
constitutes a major challenge in these problems. Most classification and pattern recognition meth-
ods are either designed for perfectly aligned input data, in which case the data should be a priori
registered with respect to a suitably selected reference model, or they require large amounts of
manually labeled training data to achieve invariance to small transformations, which is often time-
consuming and burdensome to supply. Invariance to geometric transformations is however an
important property of effective data analysis applications. The same object captured from different
perspectives, for example, should be given the same identity or label. This can be achieved by
parametric data representations built on different forms of analytical models. The treatment of
data analysis problems with parametric models that are appropriately designed to account for ge-
ometric transformations allows for the development of powerful classification and recognition tools
that achieve transformation-invariance in a natural way. The integration of prior knowledge about
data geometry into parametric models significantly reduces the required number of training samples
in classification applications. Moreover, parametric models provide concise representations for data
sets, and therefore, offer convenient means of encoding, processing or retrieving data information.

In this thesis, we study a class of parametric models for analyzing image sets that are based on
transformation manifold models. Transformation manifolds are defined as image sets that can be
described by parametrizable geometric transformations of a reference image model. An instance
of a transformation manifold can be a pattern transformation manifold, which refers to the set of
patterns obtained by applying geometric transformations to a reference pattern; or the observation
manifold of an object, which consists of its images captured under varying viewpoints.
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q

p

dmin

Figure 1.1: Illustration of the image registration problem. The transformation manifold of the reference
pattern p consists of its rotated and scaled versions. The target pattern q can be aligned with the reference
pattern p by finding the point on the pattern transformation manifold that has the smallest distance (dmin)
to q. The distance dmin is called the manifold distance. (Photos from [1])

In a setting where transformation manifolds are used for modeling and representing different
image types or image classes, the geometric interpretation of common image analysis problems can
be used to devise efficient image analysis methods for the registration [2], classification [2], [3], and
clustering [4] of images. Image registration refers to the problem of estimating the coordinate trans-
formation between a reference image and a target image, which gives the best approximation of
the target image from the reference image. Provided that the coordinate transformation is globally
parametrizable by a small number of parameters, the image registration problem can be geomet-
rically regarded as the computation of the projection of the target image onto the transformation
manifold of the reference image. In this case, the transformation parameters that best align the
image pair are given by the transformation parameters of the manifold point that has the smallest
distance to the target image. This is illustrated in Figure 1.1, where the target image q is similar to
a rotated and scaled version of the reference image p, and the two images are aligned by identifying
the projection of q onto the transformation manifold of p. Then, the problem of classifying im-
ages that have undergone geometric transformations can also benefit from manifold models. While
common classification methods such as SVM and LDA work very well for linearly separable data
sets, geometrically transformed image data usually has a highly nonlinear structure. Such generic
methods attempt to handle nonlinearities by using kernel tricks, which however yields a limited
performance as the prior information about the data model is not taken into account. However,
in a setting where each image class is represented with a different transformation manifold, the
class label of a query image can be estimated simply by comparing its distance to the candidate
class-representative manifolds and selecting the label of the closest manifold. In such a setting,
class-representative manifolds partition the image space into regions such that each region consists
of points that correspond to the class represented by a particular manifold. Then, the consideration
of each region as a different image class defines a classification rule, where the nonlinearity of data is
automatically handled in the classifier as it inherently accounts for geometric transformations with
the manifold models. An illustration of transformation-invariant classification with transformation
manifolds is given in Figure 1.2, where the object observation manifoldsM1 andM2 represent two
candidate image classes. Since the query image q has smaller distance to the first transformation
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q

Figure 1.2: Transformation-invariant image classification with manifold models. Object observation
manifolds M1 and M2 are generated by the observations of two objects representing two different im-
age classes. The class label of a query image q can be estimated by comparing its distances d1, d2 to the
class-representative transformation manifoldsM1,M2 respectively.

manifoldM1, it is assigned the class label of the first manifold.

The analysis and representation of image sets with parametric models however raises important
research questions. First, given a transformation manifold model representing an image set, how
can one use it effectively in the analysis of the image set? A key problem in transformation-invariant
image analysis is the computation of the distance between an image and a transformation mani-
fold, which is called the manifold distance. The calculation of the manifold distance requires the
projection of the image onto the manifold, which is a complicated optimization problem that does
not have a known optimal solution for generic transformation models. This leaves space for the
exploration of constructive solutions to estimate the manifold distance by seeking alternative repre-
sentations of the manifold, such as discrete or multiresolution approximations. Next, given a data
set, how can one construct a manifold model that is a good representative of the data? Although
the recovery of low-dimensional structures in data sets, which is known as the manifold learning
problem, has been studied in many previous works in the literature (e.g., [5], [6], [7]), the problem
of learning manifolds in an application-specific manner, by exploiting prior information about the
data model, has not been warranted much consideration so far. Finally, what are the theoretical
performance limits in the registration of images with globally parametrizable transformation mod-
els? Previous studies on the performance of image registration methods usually constrain their
analysis to limited types of geometric transformation models; and the works examining the regis-
tration problem in a multiresolution setting are mostly restricted to optical flow computation with
gradient-based methods. The analysis of image registration for arbitrary transformation models
and various representations of the manifold, such as first-order or multiresolution approximations,
remains an interesting problem. This thesis is motivated by these important observations and seeks
answers to the above key questions.
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1.2 Thesis Outline

The thesis is organized as follows.
In Chapter 2, we introduce the setting used in this thesis for image analysis with manifold

models and give a brief overview of image registration and classification.
In Chapter 3, we consider the problem of estimating the distance between an image and a

transformation manifold of known parameterization and present an effective solution based on
the discretization of the manifold. An easy and computationally very simple way to estimate
the distance between a query image and a transformation manifold is to sample the manifold
offline and then to approximate the manifold distance with the distance of the query image to the
sample set. In such a scheme, the accuracy of the manifold distance estimation depends highly
on the selection of samples, especially when the manifold is represented with a limited number
of samples to speed up the computation. We therefore study the problem of selecting samples
from transformation manifolds that provide a good representation of manifolds. We focus on two
important applications in manifold sampling; namely, image registration and image classification.
We first present an iterative algorithm for sampling a single transformation manifold such that the
average error in the manifold distance estimation is minimized. We then extend this solution to
propose a method for the joint discretization of multiple manifolds that represent different classes,
such that the selected samples give an accurate estimation of the class labels of query images.
The proposed sampling methods are experimentally shown to outperform typical sampling schemes
such as random and uniform discretizations in the problems of the registration and classification of
images with 2-D and 3-D geometric transformations.

While we have considered that manifolds are known in Chapter 3, we study in Chapter 4 the
learning of manifolds that are good representatives of image data sets. In particular, we consider
the problem of learning pattern transformation manifolds from image sets that have undergone
geometric transformations. We treat the manifold learning problem in an application-oriented
way, where we target image approximation and classification. For the approximation problem, we
propose a greedy method that constructs a representative pattern that is sparsely represented in
an analytic dictionary, such that the transformation manifold of the representative pattern fits
well the input images. Then, we generalize this learning approach to a supervised classification
setting with multiple transformation manifolds representing different image classes. We present
an iterative multiple manifold building algorithm such that the classification accuracy is promoted
in the joint learning of the representative patterns from training images with known class labels.
The learned manifolds are then used in the classification of test images. The most important
advantage of the proposed manifold building methods over traditional manifold learning algorithms
is that they integrate in the learning the knowledge of the type of geometric transformations of
data. This permits us to fit a precise parametric model to the data, which enables the synthesis
of novel manifold points and the use of the learned manifolds effectively in classification. We
present experimental results showing that the proposed methods have good performance in the
approximation and classification of handwritten digits and microbiological images.

Next, in Chapter 5 we concentrate on the utilization of pattern transformation manifolds in
image registration applications based on the common tangent distance method [3]. The compu-
tation of the exact projection of a target image onto the transformation manifold of a reference
image is generally a complicated optimization problem. As an alternative to manifold discretiza-
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tion presented in Chapter 3, the tangent distance method estimates this projection by using a
first-order approximation of the transformation manifold, in which case the distance estimation is
given by a simple least-squares solution. Tangent distance is commonly used in image registration
and classification, and like many registration methods, it has multiresolution extensions [2], where
the alignment is achieved gradually by using a pyramid of low-pass filtered versions of the reference
and target images. Meanwhile, the tangent distance works well only if the linear approximation of
the manifold is accurate. The linearity assumption holds when the reference parameters used in
the linearization of the manifold are sufficiently close to the optimal solution, or when the mani-
fold has small curvature. This motivates the study presented in this chapter, where a multiscale
performance analysis of the tangent distance method is proposed. We first derive an upper bound
for the alignment error. Then, we analyze its variation with the size of the low-pass filter used
in smoothing the images to build the multiscale representation, and with the image noise level,
i.e., the distance between the target image and the transformation manifold of the reference image.
Our main finding is that the alignment error bound is linearly proportional to the noise level and
it generally varies non-monotonically with the filter size. Hence, there exists an optimal filter size
that minimizes the alignment error, whose value depends on the image noise level and the dis-
tance between the reference and optimal transformation parameters. Our theoretical findings are
confirmed by extensive experimental results.

The tangent distance method considered in Chapter 5 gives a fast estimation of the transfor-
mation parameters by linearizing the manifold. Therefore, this method minimizes an approximate
version of the manifold distance. Meanwhile, many registration methods minimize the actual mani-
fold distance in order to compute the transformation parameters. A simple and fast solution is to
use local, descent-type optimizers for the calculation of the manifold distance. In Chapter 6, we
focus on this setting and present a performance analysis of multiscale image registration where
the global 2-D translation between a reference image and a noisy target image is estimated by
smoothing the images and minimizing the distance between them with local optimizers. In order
to provide a thorough characterization of the performance of descent-type minimizers in image
registration, we first analyze the well-behavedness of the image distance function by estimating
the neighborhood of translations that can be correctly computed with a simple gradient descent
minimization. We show that the area of this neighborhood increases at least quadratically with
the size of the low-pass filter used in smoothing the image pair in the multiscale representation.
We then examine the deviation in the global minimum of the distance function caused by noise,
which constitutes a source of error common to all region-based methods that minimize the distance
function locally. We derive an upper bound for the alignment error and study its dependence on
the noise properties and the filter size. Our main finding is that the error bound increases at a rate
that is at least linear with respect to the filter size. We also present experimental results, which
are in accordance with the theoretical results. Our detailed analysis of the effect of filtering on the
local minima of the distance function and the alignment error is helpful for better understanding
the performance limits of multiscale registration methods.

To conclude, this thesis studies the analysis of images with parametric models and proposes new
approaches for the representation, approximation, registration and classification of images based on
a geometric interpretation of several image analysis problems. Our study provides new insights into
transformation-invariance in image analysis and has the potential to be used in the development of
effective, geometry-aware tools for the treatment of visual data sets.
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1.3 Summary of Contributions

The main contributions of this thesis are summarized below.

• We propose novel methods for sampling transformation manifolds of known parameteri-
zation, which yield accurate estimates of the manifold distance in image registration and
transformation-invariant image classification applications.

• We present a new and application-oriented approach for the manifold learning problem. We
propose novel methods that learn analytic pattern transformation manifolds from data sets by
exploiting data model priors in the learning. The proposed methods yield a good performance
in the approximation and classification of images.

• We present a first theoretical analysis of multiscale image registration with the tangent dis-
tance method for arbitrary geometric transformation models, which shows the importance of
the filter size selection for the performance of this algorithm.

• We present an extensive theoretical study of multiscale image registration with descent-type
minimizers for the transformation model of 2-D translations. We propose a comprehensive
analysis of the well-behavedness of the image dissimilarity function and give a thorough
characterization of the alignment error of local minimizers in a multiscale registration setting.



Chapter 2

Low-Dimensional Image Representations
and Image Analysis

In this chapter, we introduce some of the concepts and notations used in this thesis, while giving
an overview of the most relevant previous works. In Section 2.1, we discuss the representation and
processing of image sets with manifold models. Then in Section 2.2, we give an overview of some
recent results in image registration and classification.

2.1 Image Manifolds

Many image analysis methods rely on the geometric interpretation of image data as a subset of a
high-dimensional ambient space. For example, n-pixel digital images can be represented as points
in the discrete space Rn. Another common representation for image sets relies on the continuous
space of square-integrable functions, where images correspond to functions in L2(R2).

Interestingly enough, in quite many image processing applications, the image data at hand is
concentrated around an intrinsically low-dimensional structure in the high-dimensional space; i.e.,
the images residing in the high-dimensional ambient space Rn can be locally approximated with a
lower-dimensional space Rm, with m � n. The representation of data sets with low-dimensional
models has recently been a popular research topic as it is helpful for understanding the intrinsic
and meaningful structures in large data sets and facilitates their analysis.

An image set in Rn or L2(R2) that can be globally parameterized by a few parameters is a
manifold if around each image there exists an open neighborhood where the mapping between the
parameter domain and the image set is a homeomorphism. In an image processing application,
the knowledge of a global parameterization for image sets is highly desirable; the availability of a
simple representation with a few degrees of freedom that captures the important characteristics of
a large data set in a compact way makes it possible to analyze and process the data efficiently.

While one can find many examples of image processing methods that benefit from low-
dimensional image models (e.g., as in [8]), in this thesis we rather focus on the utilization of
transformation manifold models in image registration and classification problems. Hence, we begin
with giving some examples of parametric image manifolds that have been studied in previous works.
We then introduce the setting and notations used in this thesis for the registration and classification
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of image sets with manifold models. Next, we give an overview of some manifold learning methods.
Finally, we describe the representation of images in structured and parametric dictionaries, which
is used in the manifold learning methods proposed in this thesis.

2.1.1 Different families of image manifolds

Since it provides concise and convenient models, the representation of signals with parametric
manifolds has been the subject of many previous studies. We mention here a few of them. The work
[8] by Peyré describes several manifold models for 1-D signals and image patches, corresponding
to smoothly varying images, cartoon images, locally parallel textures and sparse patches. These
models are used in the solution of inverse problems such as image inpainting and compressed sensing.
Next, in [9], Wakin et al. study image articulation manifolds (IAMs), which are defined as image sets
generated by the variation of a parameter controlling the appearance of an image. Some examples
of IAMs are manifolds generated by the translations and rotations of an object; or the articulations
of a composite object, which change the relative arrangement of its individual components. Lastly,
the work [10] by Donoho et al. proposes an interesting study of image manifolds that are isometric
to the Euclidean space, in which case the geodesic distances on a manifold of dimension m are
proportional to Euclidean distances in Rm. Several examples of image manifolds with this nice
property are presented in [10], and include manifolds generated by translating a 4-fold symmetric
object, pivoting an object with piecewise smooth boundaries, horizon articulations, and cartoon
face articulations.

There are several additional examples of parametrizable image manifolds and the related appli-
cations in the literature. In this thesis we however consider the use of manifolds in image analysis,
and focus especially on registration and classification applications. We thus discuss these in more
details below.

2.1.2 Image analysis with manifold models

We define now the parametric manifold models used for analyzing images in this thesis. We adopt a
notation that fits with image transformation manifolds. However, the data analysis problems that
we formulate here are generalizable to arbitrary parametrizable signal manifolds.

Let H be a Hilbert space of visual signals (i.e., the discrete space Rn or the continuous space
L2(R2)), p denote a visual object, and Λ ⊂ Rd represent a compact d-dimensional transformation
parameter domain. Assume that the transformation parameter vectors λ in Λ act on p such that
Uλ(p) ∈ H denotes a geometrically transformed observation of the object p in the space H, where
the geometric transformation is specified by the parameter vector λ. We consider a non-degenerate
geometric transformation model Uλ; i.e., we assume that, around each λ0 in the interior of Λ,
there exists an open ball Bε(λ0) ⊂ Λ such that the mapping U(·)(p) : Bε(λ0) → UBε(λ0)(p) ⊂ H
is a homeomorphism. Then, we call the set M(p) that consists of all geometrically transformed
observations of p over the parameter domain Λ as the transformation manifold1 of p.

1Throughout the thesis, the term “manifold” is used to mean a smooth manifold rather than a topological manifold.
Since the manifoldM(p) is defined with a global parameterization on Λ via the mapping U(·)(p),M(p) can be written
as a union of compatible charts such that the transition between any two intersecting charts is given by the identity
diffeomorphism. Note, however, that the assumption thatM(p) is globally parametrizable over a domain Λ ⊂ R

d is
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Definition 1.
M(p) = {Uλ(p), λ ∈ Λ} ⊂ H (2.1)

Once the visual object p is fixed, the transformation U(·)(p) represents a mapping from the pa-
rameter domain Λ to H, which constructs the transformation manifold. As it is defined on the
d-dimensional parameter domain Λ, the manifoldM(p) has dimension d. Some examples of trans-
formation manifolds that we study are pattern transformation manifolds and object observation
manifolds.

Pattern transformation manifolds are generated by the geometric transformations of a 2-D visual
pattern p. A typical pattern transformation model that we will consider is

M(p) = {Uλ(p) : λ = (θ, tx, ty, sx, sy) ∈ Λ} (2.2)

where θ denotes a rotation, tx and ty represent translations in x and y directions, and sx and
sy define an anisotropic scaling in x and y directions. In Figure 1.1, the pattern transformation
manifold generated by the rotations and scale changes of a reference pattern is illustrated.

Next, the observation manifold of a 3-D object model p is given by

M(p) = {Uλ(p) : λ = (ψx, ψy, ψz) ∈ Λ} (2.3)

where Uλ(p) is the image of the object p rendered from the viewpoint specified by the three rotation
angles ψx, ψy, ψz. An illustration of object observation manifolds is given in Figure 1.2.

If the mapping U(·)(p) : Λ → H is differentiable, then the inner product 〈·, ·〉 on H induces a
Riemannian metric onM(p) given by

Gij(λ) =
〈
∂Uλ(p)
∂λi

,
∂Uλ(p)
∂λj

〉
where λ = [λ1 λ2 · · · λd]T . In this case, M(p) is a Riemannian manifold. In this thesis, we
will mostly study differentiable transformation manifolds, which are Riemannian manifolds. The
Riemannian manifoldM(p) is illustrated in Figure 2.1.

Now let x ∈ H be an image that does not necessarily belong to the manifold. We define the
distance of x to the manifoldM(p) as follows.

Definition 2.
d(x,M(p)) = min

λ∈Λ
‖x− Uλ(p)‖

The distance d(x,M(p)) is also known as the manifold distance. In the above definition and
throughout the thesis, ‖ · ‖ denotes the norm induced by the inner product in H. In particular,
‖ · ‖ denotes the L2-norm for vectors in L2(R2) and the `2-norm for vectors in Rn. We define the
manifold distance using this norm, since it corresponds to the “physical” distance in the signal space
H. If λ∗ ∈ Λ is a parameter vector such that

λ∗ = arg min
λ
‖x− Uλ(p)‖

to make the notation and the analysis easier and is not a generally required condition in the formal definition of a
manifold.
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Λ ⊂ Rd

Uλ(p)

λ

M(p)

H
∂Uλ(p)

∂λ1

∂Uλ(p)
∂λd

λ1

λd

U(·)(p)

Figure 2.1: Riemannian manifoldM(p) residing in the Hilbert space H. The Riemannian metric is given
by the inner products of the tangent vectors ∂Uλ(p)/∂λi.

then we call Uλ∗(p) a projection of x onM(p). The projection of an image onto a transformation
manifold is typically associated with the registration of the image with respect to a transformation
model. Given an image x with an unknown geometric transformation and a reference transformation
manifoldM(p), the projection point Uλ∗(p) gives the best estimate of x that can be obtained with
a geometric transformation of p. If x and p represent 2-D images, then the computation of the
optimal transformation parameters λ∗ that best align the reference image p with the target image
x is referred to as an image registration problem, which is illustrated in Figure 2.2.

Now let us overview transformation-invariant image classification with manifold models. We
assume that H = Rn in this part of the discussion. Consider a collection of visual objects
p1, p2, · · · , pM representing M different image classes. Then, the transformation manifolds
M1,M2, · · · ,MM ⊂ Rn,

Mm =M(pm) = {Uλ(pm), λ ∈ Λ}, m = 1, · · · ,M (2.4)

defined by the geometric transformations of the visual objects {pm} are transformation-invariant
representatives of these M image classes.

In the following, we assume that the transformation manifolds {Mm} constitute sufficiently
accurate models for the representation of the image classes 1, · · · ,M . Note that this assumption
holds when the variations within an image class are sufficiently well-captured by the transformations
of a single reference model, so that the manifold distance gives a good measure of image dissimilarity.
The validity of this assumption depends of course on the application. Nevertheless, we show
throughout this thesis that such a setting can be applied to various classification and recognition
problems. In this case, a query image is assumed to belong to the class corresponding to the closest
manifold. Hence, based on the set of transformation manifolds {Mm}, the class label l(x) of a
query image x is assigned as

l(x) = arg min
m∈{1,··· ,M}

d(x,Mm). (2.5)

Now let us consider a setting with only two image classes represented by the manifolds Mm
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M(p)

Λ

Uλ∗(p)

λ∗

d(x,M(p)) = min

x,

p

Figure 2.2: Illustration of the registration of a target pattern x with respect to a reference pattern p. The
transformation manifold M(p) of the reference pattern p is the set of geometrically transformed versions
Uλ(p) of p. If the projection of the target pattern x onto the transformation manifoldM(p) is given by the
manifold point Uλ∗(p), then the parameter vector λ∗ defines the geometric transformation that best aligns
p with x.

andMr. In order to characterize the sets of images that belong to the same class as each of these
manifolds, we define the half-spaces2 Hmr and Hrm as follows. We denote by Hmr the set of points
whose distance toMm is smaller than their distance toMr (notice that Hmr 6= Hrm):

Definition 3.
Hmr = {x ∈ Rn : d(x,Mm) < d(x,Mr)}. (2.6)

The notation (·) in (2.6) denotes the closure of the set. Note that Hmr is defined in this way in
order to properly handle the degenerate cases that may be caused by manifold intersections. We
then define the decision surface Bmr as the boundary of the half-space Hmr,

Definition 4.

Bmr = ∂Hmr (2.7)

where the notation ∂(·) denotes the boundary of a set. The decision surface Bmr is a combination
of hypersurfaces, i.e., a union of (n− 1)-dimensional manifolds in Rn.

Let us now consider M class representative manifolds instead of two. We define the approxi-
mation region Hm ⊂ Rn of the manifoldMm as follows.

Definition 5.
Hm =

⋂
r∈{1,··· ,M}\{m}

Hmr (2.8)

2Although in the standard definition, the boundary surface determining a half-space is an affine hyperplane, here
we generalize the term to include the case where the boundary is a hypersurface.
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Figure 2.3: Illustration of the partitioning of the signal space into different signal classes. M1, M2,
M3 are three manifolds representing different classes; H1, H2, and H3 are their respective approximation
regions; and B is the combined decision surface.

The approximation regionHm defines the set of images belonging to them-th class. Finally, in order
to adapt the decision surface Bmr determined by two manifolds to the case of multiple manifolds,
we define the combined decision surface B

Definition 6.

B =
M⋃
m=1

∂Hm. (2.9)

The combined decision surface B is a subset of the union of the decision surfaces Bmr, i.e., B ⊂⋃
m6=r Bmr. It forms a boundary between the regions of the space that correspond to different

classes, which are determined by the manifolds M1,M2, · · · ,MM . An illustration of the class-
representative transformation manifolds, the approximation regions Hm of these manifolds, and
the decision surface B is given in Figure 2.3. We observe that the decision surface B defines a
classification rule in the ambient space Rn. The decision surface B is determined by the collection
{Mm} of transformation manifolds, which are defined by the geometric transformations of class-
representative image models. Therefore, the surface B has a nonlinear structure that is specifically
designed to handle geometric transformations in image classification.

Finally, we remark the following. It may not always be possible to partition the whole image
space Rn into the approximation regions of a set of class-representative transformation manifolds.
For instance, one may come across degeneracies resulting from manifold intersections and there
may exist a full-dimensional subset of the image space that is equidistant to two manifolds. Yet,
in this thesis, our treatment relies on the implicit assumption that the training and test images
in a transformation-invariant classification application are reasonably close to the representative
transformation manifolds of their class. In particular, the sampling algorithm presented in Chapter
3 assumes that most of the training and test images of class m are in the approximation region
Hm of the predetermined class-representative manifoldMm to be sampled. Similarly, the manifold
learning algorithm presented in Chapter 4 is based on the hypothesis that, for each class m, there
exists a transformation manifold Mm around which the training and test images of class m are
concentrated.
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2.1.3 Manifold learning

Following the discussion on image manifolds and data analysis with manifold models, we provide
now a brief overview of manifold learning methods. Manifold learning represents the recovery of low-
dimensional structures in high-dimensional signal sets. It typically seeks a good way of mapping the
data in the high-dimensional space Rn to a low-dimensional space Rm, while the objective criterion
in the construction of the mapping varies between different methods. For example, the ISOMAP
method obtains a mapping that preserves the geodesic distances in the original space [5], whereas
methods such as LLE [6] are based on retaining the weights in the locally linear representation
of data samples in terms of their neighbors. Laplacian eigenmaps [11] and Hessian eigenmaps [7]
methods resemble LLE; the former learns a mapping that conforms to the weights of the data graph
constructed in the original space, while the latter computes local coordinates that have vanishing
Hessian. Diffusion maps [12] and LTSA [13] are among other well-known manifold learning methods.
In diffusion maps, data points are embedded into a low-dimensional Euclidean space such that the
Euclidean distance in the low-dimensional domain corresponds to the diffusion distance defined in
the original domain. Finally, in LTSA, a global parameterization is computed by aligning the local
tangent spaces computed around the data points via affine transformations.

Manifold learning methods such as the ones mentioned above construct a discrete mapping that
sends each data point to a vector in a small-dimensional Euclidean space, without learning a general
parametric data model; i.e., without learning an explicit formulation of a manifold. For this reason,
in contrast to methods that learn parametric models from data samples, they have the following
main shortcomings regarding their usage in image analysis. First, they compute a parameterization
only for the initially available data, and their generalization for the parameterization of additional
data is not straightforward. Second, these methods lack the means of synthesizing new data samples
that are on the same manifold. Third, most of the methods that do not allow the synthesis of new
data do not have immediate generalizations for classification applications, since the classification
problem usually requires the generation of new manifold points for the computation of the manifold
distance.

A couple of previous works have sought solutions to these limitations. Concerning the gener-
alization of the learned parameterization to initially unavailable data samples, a method has been
proposed in [14], which provides out-of-sample extensions for some common manifold learning al-
gorithms. The authors interpret these algorithms as learning the eigenvectors of a data-dependent
kernel, and then generalize the eigenvectors to the continuous domain in order to compute eigen-
functions. Next, the method in [15] computes a smooth tangent field with the use of analytic
functions and thus yields a smooth manifold structure that makes the generation of novel points
possible. Also, a method is proposed in [16] for synthesizing new images based on the LLE al-
gorithm. Finally, the SLLE algorithm proposed in [17] achieves dimensionality reduction while
promoting classification performance, which is obtained by modifying LLE such that the discrimi-
nation between different class samples is encouraged in the computation of the data embedding. It
however does not provide a solution for the data synthesis problem.

Meanwhile, all of these methods are generic and they make no assumption on the type of the
manifold underlying the observed data. Therefore, if they are applied on a data set sampled from a
transformation manifold, the embedding computed with these generic methods does not necessarily
reflect the real transformation parameters. This significantly limits the usage of these methods for



14 Chapter 2. Low-Dimensional Image Representations and Image Analysis

the particular problem of the analysis of images with geometric transformations. The manifold
learning method that we propose in Chapter 4 is motivated by this key observation and it aims
to learn a parametric mapping that physically corresponds to actual transformation parameters.
It differs from the above methods essentially in the fact that it uses the information of the model
that generates the data and employs it for learning an accurate data representation that assigns an
exact transformation parameter vector to each data sample. Moreover, it provides straightforward
solutions for the issues mentioned above: It allows the parameterization of additional data points
and the synthesis of novel manifold points, which leads to successful applications in classification
and image analysis problems.

2.1.4 Image representations with parametric dictionaries

A natural way to construct a parametric manifold is to build a representative pattern by selecting
atoms from a parametric dictionary, e.g., as in the study presented in [18]. An atom is a wave-
form that is adapted to the local structures of signals [19], and a dictionary refers to a (typically
redundant) collection of atoms. In the manifold learning problem that we study in Chapter 4, it
is favorable to use a structured and parametric dictionary instead of an unstructured one, since it
allows the formulation of the atom selection problem as an optimization problem on a continuous
parameter space. Furthermore, the geometric transformation model can be easily combined with
the parametric dictionary model, which is used to devise an efficient learning algorithm. In the im-
age registration analyses presented in Chapters 5 and 6, we also adopt a representation of patterns
in a parametric dictionary as it permits us to study the registration problem in an analytic way.
We now describe the parametric dictionaries used in this thesis in more details.
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1. PROBLEM FORMULATION AND PROPOSED METHOD

D

Let p ∈ Rn be a visual pattern. We define the transformation
manifold of p as Mp = {Uλ(p), λ ∈ Λ} ⊂ Rn, where λ =
(θ, tx, ty, sx, sy) is a transformation parameter vector, Λ is the param-
eter domain, and Uλ(p) is a geometrically transformation version of p
specified by λ. Here θ denotes rotation, tx and ty represent the transla-
tions in x and y directions, and sx and sy define an anisotropic scaling
in x and y directions.

Let U = {ui}N
i=1 ⊂ Rn be a set of observations of a geomet-

rically transformed visual signal. We would like to describe the ob-
servations {ui} by the transformations of a representative pattern as
ui = Uλi(p) + ei, where the term ei denotes the deviation of ui

from the transformation manifold Mp of p. Here, the representative
pattern p is to be learned, as well as the parameter vectors {λi} corre-
sponding to the observations {ui}. We construct p as a linear combi-
nation of some atoms selected from a dictionary manifoldD = {φγ =
Uγ(φ), γ ∈ Γ} ⊂ Rn, where γ is an atom parameter vector and Γ
is the parameter domain defining D. An atom φγ is derived from the
Gaussian mother function φ(x, y) =

p
2/π exp(−x2− y2) by apply-

ing the geometric transformation defined by γ = (ψ, τx, τy, σx, σy),
where ψ is a rotation parameter, τx and τy denote translations, and σx

and σy represent anisotropic scalings in x and y directions. We con-
struct the representative pattern p =

PK
j=1 cjφγj as a combination of

K atoms {φγj} with coefficients {cj}. We would like to optimize the
atom parameters {γj} and the coefficients {cj} such that the total data
approximation error

E =
NX

i=1

‖ui − Uλi

` KX

j=1

cjφγj

´
‖2 (1)

is minimized, where the notation ‖.‖ stands for the l2-norm and E
corresponds to the total distance of the data to the constructed trans-
formation manifold. In the minimization of the error, we use an ap-
proximation of the manifold near each data point. For this reason,
we begin with an arbitrary initialization of the representative pattern
as p = c1φγ1 . Then, we assign a tentative set of parameter vec-
tors {λi} to the points {ui} by projecting them onto Mp, where
λi = arg minλ∈Λ ‖Uλ(p) − ui‖. We construct the pattern progres-
sively by adding an atom at each iteration. Let us denote the pattern
consisting of j−1 atoms by pj−1, where in the jth iteration we would
like to optimize the parameters of the new atom γ and its coefficient c
such that the new pattern pj = pj−1 + c φγ minimizes E. However, E
has a complicated dependence on γ and c, mainly due to the fact that
the values of parameter vectors {λi} determined by the previous state
of the pattern pj−1 are not necessarily the same as their values corre-
sponding to the updated pattern pj . Hence, we propose the following

approach for the minimization of E in two steps. In the first step, we
define a coarse approximation Ê of E as

Ê =

NX

i=1

êi =
NX

i=1

‖ui − Uλi

`
pj−1 + c φγ)‖2,

where the vectors {λi} are determined according to pj−1. This er-
ror can be represented as a DC function, i.e. as the difference of two
convex functions f and g such that Ê(γ, c) = f(γ, c) − g(γ, c), as
we will explain shortly. We use the cutting plane algorithm discussed
in [?] to approach the vicinity of the globally optimum solution (γ, c)

that minimizes Ê. Then in the second step, we employ a more refined
approximation ε of E by using locally linear approximations of the
manifold Mpj around the points Uλi(pj). As we have shown in [?],
ε is given by ε =

PN
i=1 εi =

PN
i=1

`
vi − Ti(T

T
i Ti)

−1 T T
i vi

´
, where

vi = ui − Uλi(pj), and Ti is an n× 5 matrix whose columns are the
tangent vectors to the manifoldMpj at the point Uλi(pj). We finalize
the atom selection by minimizing ε over (γ, c) using a gradient-descent
algorithm. We build the representative pattern p by adding a new atom
and updating the parameter vectors {λi} at each iteration until the con-
vergence of the error.

Although we skip a full proof here, a sketch of the derivation of Ê
as a DC function is as follows. We build on the results from [?], where
a DC decomposition of the distance between a query pattern and the 4-
dimensional transformation manifold of a reference pattern consisting
of Gaussian atoms is derived. The manifold model assumed in [?] is
defined by 4 parameters (rotation, horizontal and vertical translations,
isotropic scaling), therefore, we have modified the analysis to adapt to
our dictionary manifold model of 5 parameters. With a simplification
of notation, let ê = ‖u − Uλ

`
p + c φγ)‖2 denote the approximate

distance between the data point u and the manifoldMp+cφγ . Then one
can write ê = ‖v−c Uλ(φγ)‖2 = ‖v−c φλ◦γ‖2, where v = u−Uλ(p)
is a constant with respect to γ and c, and λ◦γ denotes the composition
of the transformations λ and γ. Expressing the relation between the
transformed Gaussian atom and the mother function with the change
of variables φλ◦γ(x, y) = φ(x̃, ỹ) =

p
2/π exp(−x̃2 − ỹ2), one can

derive x̃ and ỹ in the form

x̃ = α1 cos(ψ)/σx + α2 sin(ψ)/σx − cos(ψ)τx/σx + sin(ψ)τy/σx

ỹ = β1 cos(ψ)/σy + β2 sin(ψ)/σy + cos(ψ)τy/σy + sin(ψ)τx/σy

where α1, α2, β1, β2 are expressions in terms of the transformation pa-
rameters λ and constant with respect to the atom parameters γ. Using
Lemmas 5 and 6 from [?], where the DC decompositions of functions
such as cos(ψ), cos(ψ)τx/σx are derived, one can obtain DC decom-
positions of x̃ and ỹ. Then from Proposition 2.c in [?] (product of
DC functions), we obtain the DC decompositions of x̃2 and ỹ2, which
gives a DC decomposition of φ(x̃, ỹ) using Proposition 3 of [?] (com-
position with a convex function). Finally, the DC decompositions of ê

and Ê follow from Propositions 2.a and 2.c. in [?].
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γ

Γ
Let p ∈ Rn be a visual pattern. We define the transformation

manifold of p as Mp = {Uλ(p), λ ∈ Λ} ⊂ Rn, where λ =
(θ, tx, ty, sx, sy) is a transformation parameter vector, Λ is the param-
eter domain, and Uλ(p) is a geometrically transformation version of p
specified by λ. Here θ denotes rotation, tx and ty represent the transla-
tions in x and y directions, and sx and sy define an anisotropic scaling
in x and y directions.

Let U = {ui}N
i=1 ⊂ Rn be a set of observations of a geomet-

rically transformed visual signal. We would like to describe the ob-
servations {ui} by the transformations of a representative pattern as
ui = Uλi(p) + ei, where the term ei denotes the deviation of ui

from the transformation manifold Mp of p. Here, the representative
pattern p is to be learned, as well as the parameter vectors {λi} corre-
sponding to the observations {ui}. We construct p as a linear combi-
nation of some atoms selected from a dictionary manifoldD = {φγ =
Uγ(φ), γ ∈ Γ} ⊂ Rn, where γ is an atom parameter vector and Γ
is the parameter domain defining D. An atom φγ is derived from the
Gaussian mother function φ(x, y) =

p
2/π exp(−x2− y2) by apply-

ing the geometric transformation defined by γ = (ψ, τx, τy, σx, σy),
where ψ is a rotation parameter, τx and τy denote translations, and σx

and σy represent anisotropic scalings in x and y directions. We con-
struct the representative pattern p =

PK
j=1 cjφγj as a combination of

K atoms {φγj} with coefficients {cj}. We would like to optimize the
atom parameters {γj} and the coefficients {cj} such that the total data
approximation error

E =
NX

i=1

‖ui − Uλi

` KX

j=1

cjφγj

´
‖2 (1)

is minimized, where the notation ‖.‖ stands for the l2-norm and E
corresponds to the total distance of the data to the constructed trans-
formation manifold. In the minimization of the error, we use an ap-
proximation of the manifold near each data point. For this reason,
we begin with an arbitrary initialization of the representative pattern
as p = c1φγ1 . Then, we assign a tentative set of parameter vec-
tors {λi} to the points {ui} by projecting them onto Mp, where
λi = arg minλ∈Λ ‖Uλ(p) − ui‖. We construct the pattern progres-
sively by adding an atom at each iteration. Let us denote the pattern
consisting of j−1 atoms by pj−1, where in the jth iteration we would
like to optimize the parameters of the new atom γ and its coefficient c
such that the new pattern pj = pj−1 + c φγ minimizes E. However, E
has a complicated dependence on γ and c, mainly due to the fact that
the values of parameter vectors {λi} determined by the previous state
of the pattern pj−1 are not necessarily the same as their values corre-
sponding to the updated pattern pj . Hence, we propose the following

approach for the minimization of E in two steps. In the first step, we
define a coarse approximation Ê of E as

Ê =

NX

i=1

êi =

NX

i=1

‖ui − Uλi

`
pj−1 + c φγ)‖2,

where the vectors {λi} are determined according to pj−1. This er-
ror can be represented as a DC function, i.e. as the difference of two
convex functions f and g such that Ê(γ, c) = f(γ, c) − g(γ, c), as
we will explain shortly. We use the cutting plane algorithm discussed
in [?] to approach the vicinity of the globally optimum solution (γ, c)

that minimizes Ê. Then in the second step, we employ a more refined
approximation ε of E by using locally linear approximations of the
manifold Mpj around the points Uλi(pj). As we have shown in [?],
ε is given by ε =

PN
i=1 εi =

PN
i=1

`
vi − Ti(T

T
i Ti)

−1 T T
i vi

´
, where

vi = ui − Uλi(pj), and Ti is an n× 5 matrix whose columns are the
tangent vectors to the manifoldMpj at the point Uλi(pj). We finalize
the atom selection by minimizing ε over (γ, c) using a gradient-descent
algorithm. We build the representative pattern p by adding a new atom
and updating the parameter vectors {λi} at each iteration until the con-
vergence of the error.

Although we skip a full proof here, a sketch of the derivation of Ê
as a DC function is as follows. We build on the results from [?], where
a DC decomposition of the distance between a query pattern and the 4-
dimensional transformation manifold of a reference pattern consisting
of Gaussian atoms is derived. The manifold model assumed in [?] is
defined by 4 parameters (rotation, horizontal and vertical translations,
isotropic scaling), therefore, we have modified the analysis to adapt to
our dictionary manifold model of 5 parameters. With a simplification
of notation, let ê = ‖u − Uλ

`
p + c φγ)‖2 denote the approximate

distance between the data point u and the manifoldMp+cφγ . Then one
can write ê = ‖v−c Uλ(φγ)‖2 = ‖v−c φλ◦γ‖2, where v = u−Uλ(p)
is a constant with respect to γ and c, and λ◦γ denotes the composition
of the transformations λ and γ. Expressing the relation between the
transformed Gaussian atom and the mother function with the change
of variables φλ◦γ(x, y) = φ(x̃, ỹ) =

p
2/π exp(−x̃2 − ỹ2), one can

derive x̃ and ỹ in the form

x̃ = α1 cos(ψ)/σx + α2 sin(ψ)/σx − cos(ψ)τx/σx + sin(ψ)τy/σx

ỹ = β1 cos(ψ)/σy + β2 sin(ψ)/σy + cos(ψ)τy/σy + sin(ψ)τx/σy

where α1, α2, β1, β2 are expressions in terms of the transformation pa-
rameters λ and constant with respect to the atom parameters γ. Using
Lemmas 5 and 6 from [?], where the DC decompositions of functions
such as cos(ψ), cos(ψ)τx/σx are derived, one can obtain DC decom-
positions of x̃ and ỹ. Then from Proposition 2.c in [?] (product of
DC functions), we obtain the DC decompositions of x̃2 and ỹ2, which
gives a DC decomposition of φ(x̃, ỹ) using Proposition 3 of [?] (com-
position with a convex function). Finally, the DC decompositions of ê

and Ê follow from Propositions 2.a and 2.c. in [?].
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γ = (ψ, τx, τy, σx, σy)

Let p ∈ Rn be a visual pattern. We define the transformation
manifold of p as Mp = {Uλ(p), λ ∈ Λ} ⊂ Rn, where λ =
(θ, tx, ty, sx, sy) is a transformation parameter vector, Λ is the param-
eter domain, and Uλ(p) is a geometrically transformation version of p
specified by λ. Here θ denotes rotation, tx and ty represent the transla-
tions in x and y directions, and sx and sy define an anisotropic scaling
in x and y directions.

Let U = {ui}N
i=1 ⊂ Rn be a set of observations of a geomet-

rically transformed visual signal. We would like to describe the ob-
servations {ui} by the transformations of a representative pattern as
ui = Uλi(p) + ei, where the term ei denotes the deviation of ui

from the transformation manifold Mp of p. Here, the representative
pattern p is to be learned, as well as the parameter vectors {λi} corre-
sponding to the observations {ui}. We construct p as a linear combi-
nation of some atoms selected from a dictionary manifoldD = {φγ =
Uγ(φ), γ ∈ Γ} ⊂ Rn, where γ is an atom parameter vector and Γ
is the parameter domain defining D. An atom φγ is derived from the
Gaussian mother function φ(x, y) =

p
2/π exp(−x2− y2) by apply-

ing the geometric transformation defined by γ = (ψ, τx, τy, σx, σy),
where ψ is a rotation parameter, τx and τy denote translations, and σx

and σy represent anisotropic scalings in x and y directions. We con-
struct the representative pattern p =

PK
j=1 cjφγj as a combination of

K atoms {φγj} with coefficients {cj}. We would like to optimize the
atom parameters {γj} and the coefficients {cj} such that the total data
approximation error

E =
NX

i=1

‖ui − Uλi

` KX

j=1

cjφγj

´
‖2 (1)

is minimized, where the notation ‖.‖ stands for the l2-norm and E
corresponds to the total distance of the data to the constructed trans-
formation manifold. In the minimization of the error, we use an ap-
proximation of the manifold near each data point. For this reason,
we begin with an arbitrary initialization of the representative pattern
as p = c1φγ1 . Then, we assign a tentative set of parameter vec-
tors {λi} to the points {ui} by projecting them onto Mp, where
λi = arg minλ∈Λ ‖Uλ(p) − ui‖. We construct the pattern progres-
sively by adding an atom at each iteration. Let us denote the pattern
consisting of j−1 atoms by pj−1, where in the jth iteration we would
like to optimize the parameters of the new atom γ and its coefficient c
such that the new pattern pj = pj−1 + c φγ minimizes E. However, E
has a complicated dependence on γ and c, mainly due to the fact that
the values of parameter vectors {λi} determined by the previous state
of the pattern pj−1 are not necessarily the same as their values corre-
sponding to the updated pattern pj . Hence, we propose the following

approach for the minimization of E in two steps. In the first step, we
define a coarse approximation Ê of E as

Ê =

NX

i=1

êi =

NX

i=1

‖ui − Uλi

`
pj−1 + c φγ)‖2,

where the vectors {λi} are determined according to pj−1. This er-
ror can be represented as a DC function, i.e. as the difference of two
convex functions f and g such that Ê(γ, c) = f(γ, c) − g(γ, c), as
we will explain shortly. We use the cutting plane algorithm discussed
in [?] to approach the vicinity of the globally optimum solution (γ, c)

that minimizes Ê. Then in the second step, we employ a more refined
approximation ε of E by using locally linear approximations of the
manifold Mpj around the points Uλi(pj). As we have shown in [?],
ε is given by ε =

PN
i=1 εi =

PN
i=1

`
vi − Ti(T

T
i Ti)

−1 T T
i vi

´
, where

vi = ui − Uλi(pj), and Ti is an n× 5 matrix whose columns are the
tangent vectors to the manifoldMpj at the point Uλi(pj). We finalize
the atom selection by minimizing ε over (γ, c) using a gradient-descent
algorithm. We build the representative pattern p by adding a new atom
and updating the parameter vectors {λi} at each iteration until the con-
vergence of the error.

Although we skip a full proof here, a sketch of the derivation of Ê
as a DC function is as follows. We build on the results from [?], where
a DC decomposition of the distance between a query pattern and the 4-
dimensional transformation manifold of a reference pattern consisting
of Gaussian atoms is derived. The manifold model assumed in [?] is
defined by 4 parameters (rotation, horizontal and vertical translations,
isotropic scaling), therefore, we have modified the analysis to adapt to
our dictionary manifold model of 5 parameters. With a simplification
of notation, let ê = ‖u − Uλ

`
p + c φγ)‖2 denote the approximate

distance between the data point u and the manifoldMp+cφγ . Then one
can write ê = ‖v−c Uλ(φγ)‖2 = ‖v−c φλ◦γ‖2, where v = u−Uλ(p)
is a constant with respect to γ and c, and λ◦γ denotes the composition
of the transformations λ and γ. Expressing the relation between the
transformed Gaussian atom and the mother function with the change
of variables φλ◦γ(x, y) = φ(x̃, ỹ) =

p
2/π exp(−x̃2 − ỹ2), one can

derive x̃ and ỹ in the form

x̃ = α1 cos(ψ)/σx + α2 sin(ψ)/σx − cos(ψ)τx/σx + sin(ψ)τy/σx

ỹ = β1 cos(ψ)/σy + β2 sin(ψ)/σy + cos(ψ)τy/σy + sin(ψ)τx/σy

where α1, α2, β1, β2 are expressions in terms of the transformation pa-
rameters λ and constant with respect to the atom parameters γ. Using
Lemmas 5 and 6 from [?], where the DC decompositions of functions
such as cos(ψ), cos(ψ)τx/σx are derived, one can obtain DC decom-
positions of x̃ and ỹ. Then from Proposition 2.c in [?] (product of
DC functions), we obtain the DC decompositions of x̃2 and ỹ2, which
gives a DC decomposition of φ(x̃, ỹ) using Proposition 3 of [?] (com-
position with a convex function). Finally, the DC decompositions of ê

and Ê follow from Propositions 2.a and 2.c. in [?].
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φγ

Let p ∈ Rn be a visual pattern. We define the transformation
manifold of p as Mp = {Uλ(p), λ ∈ Λ} ⊂ Rn, where λ =
(θ, tx, ty, sx, sy) is a transformation parameter vector, Λ is the param-
eter domain, and Uλ(p) is a geometrically transformation version of p
specified by λ. Here θ denotes rotation, tx and ty represent the transla-
tions in x and y directions, and sx and sy define an anisotropic scaling
in x and y directions.

Let U = {ui}N
i=1 ⊂ Rn be a set of observations of a geomet-

rically transformed visual signal. We would like to describe the ob-
servations {ui} by the transformations of a representative pattern as
ui = Uλi(p) + ei, where the term ei denotes the deviation of ui

from the transformation manifold Mp of p. Here, the representative
pattern p is to be learned, as well as the parameter vectors {λi} corre-
sponding to the observations {ui}. We construct p as a linear combi-
nation of some atoms selected from a dictionary manifoldD = {φγ =
Uγ(φ), γ ∈ Γ} ⊂ Rn, where γ is an atom parameter vector and Γ
is the parameter domain defining D. An atom φγ is derived from the
Gaussian mother function φ(x, y) =

p
2/π exp(−x2− y2) by apply-

ing the geometric transformation defined by γ = (ψ, τx, τy, σx, σy),
where ψ is a rotation parameter, τx and τy denote translations, and σx

and σy represent anisotropic scalings in x and y directions. We con-
struct the representative pattern p =

PK
j=1 cjφγj as a combination of

K atoms {φγj} with coefficients {cj}. We would like to optimize the
atom parameters {γj} and the coefficients {cj} such that the total data
approximation error

E =
NX

i=1

‖ui − Uλi

` KX

j=1

cjφγj

´
‖2 (1)

is minimized, where the notation ‖.‖ stands for the l2-norm and E
corresponds to the total distance of the data to the constructed trans-
formation manifold. In the minimization of the error, we use an ap-
proximation of the manifold near each data point. For this reason,
we begin with an arbitrary initialization of the representative pattern
as p = c1φγ1 . Then, we assign a tentative set of parameter vec-
tors {λi} to the points {ui} by projecting them onto Mp, where
λi = arg minλ∈Λ ‖Uλ(p) − ui‖. We construct the pattern progres-
sively by adding an atom at each iteration. Let us denote the pattern
consisting of j−1 atoms by pj−1, where in the jth iteration we would
like to optimize the parameters of the new atom γ and its coefficient c
such that the new pattern pj = pj−1 + c φγ minimizes E. However, E
has a complicated dependence on γ and c, mainly due to the fact that
the values of parameter vectors {λi} determined by the previous state
of the pattern pj−1 are not necessarily the same as their values corre-
sponding to the updated pattern pj . Hence, we propose the following

approach for the minimization of E in two steps. In the first step, we
define a coarse approximation Ê of E as

Ê =

NX

i=1

êi =
NX

i=1

‖ui − Uλi

`
pj−1 + c φγ)‖2,

where the vectors {λi} are determined according to pj−1. This er-
ror can be represented as a DC function, i.e. as the difference of two
convex functions f and g such that Ê(γ, c) = f(γ, c) − g(γ, c), as
we will explain shortly. We use the cutting plane algorithm discussed
in [?] to approach the vicinity of the globally optimum solution (γ, c)

that minimizes Ê. Then in the second step, we employ a more refined
approximation ε of E by using locally linear approximations of the
manifold Mpj around the points Uλi(pj). As we have shown in [?],
ε is given by ε =

PN
i=1 εi =

PN
i=1

`
vi − Ti(T

T
i Ti)

−1 T T
i vi

´
, where

vi = ui − Uλi(pj), and Ti is an n× 5 matrix whose columns are the
tangent vectors to the manifoldMpj at the point Uλi(pj). We finalize
the atom selection by minimizing ε over (γ, c) using a gradient-descent
algorithm. We build the representative pattern p by adding a new atom
and updating the parameter vectors {λi} at each iteration until the con-
vergence of the error.

Although we skip a full proof here, a sketch of the derivation of Ê
as a DC function is as follows. We build on the results from [?], where
a DC decomposition of the distance between a query pattern and the 4-
dimensional transformation manifold of a reference pattern consisting
of Gaussian atoms is derived. The manifold model assumed in [?] is
defined by 4 parameters (rotation, horizontal and vertical translations,
isotropic scaling), therefore, we have modified the analysis to adapt to
our dictionary manifold model of 5 parameters. With a simplification
of notation, let ê = ‖u − Uλ

`
p + c φγ)‖2 denote the approximate

distance between the data point u and the manifoldMp+cφγ . Then one
can write ê = ‖v−c Uλ(φγ)‖2 = ‖v−c φλ◦γ‖2, where v = u−Uλ(p)
is a constant with respect to γ and c, and λ◦γ denotes the composition
of the transformations λ and γ. Expressing the relation between the
transformed Gaussian atom and the mother function with the change
of variables φλ◦γ(x, y) = φ(x̃, ỹ) =

p
2/π exp(−x̃2 − ỹ2), one can

derive x̃ and ỹ in the form

x̃ = α1 cos(ψ)/σx + α2 sin(ψ)/σx − cos(ψ)τx/σx + sin(ψ)τy/σx

ỹ = β1 cos(ψ)/σy + β2 sin(ψ)/σy + cos(ψ)τy/σy + sin(ψ)τx/σy

where α1, α2, β1, β2 are expressions in terms of the transformation pa-
rameters λ and constant with respect to the atom parameters γ. Using
Lemmas 5 and 6 from [?], where the DC decompositions of functions
such as cos(ψ), cos(ψ)τx/σx are derived, one can obtain DC decom-
positions of x̃ and ỹ. Then from Proposition 2.c in [?] (product of
DC functions), we obtain the DC decompositions of x̃2 and ỹ2, which
gives a DC decomposition of φ(x̃, ỹ) using Proposition 3 of [?] (com-
position with a convex function). Finally, the DC decompositions of ê

and Ê follow from Propositions 2.a and 2.c. in [?].

(b)

Figure 2.4: Illustration of a parametric Gaussian dictionary. (a) Gaussian mother function φ. (b) Dictio-
nary manifold D generated by the geometric transformations of φ. Each atom φγ on D is a geometrically
transformed version of the mother function φ.

We consider the representation of visual patterns in the continuous space of square-integrable
functions L2(R2). Let φ(X) denote an analytic and square-integrable function (i.e., φ ∈ L2(R2)),
where X = [x y]T ∈ R2×1 defines the spatial coordinate variable. We will refer to φ as the mother



2.2 Image Analysis 15

function and consider the analytic and parametric dictionary

D = {φγ : γ = (ψ, τx, τy, σx, σy) ∈ Γ} ⊂ L2(R2) (2.10)

such that each atom φγ of the dictionary D is derived from the mother function φ ∈ L2(R2) by the
geometric transformation specified by its parameter vector γ. In (2.10), ψ is a rotation parameter,
τx and τy denote translations in x and y directions, and σx and σy represent an anisotropic scaling
in x and y directions. The set Γ is the transformation parameter domain over which the dictionary
is defined. Then, an atom φγ is given by

φγ(X) = φ(σ−1 Ψ−1 (X − τ)), (2.11)

where

σ =
[
σx 0
0 σy

]
, Ψ =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
, τ =

[
τx
τy

]
. (2.12)

Since the dictionary D is generated by parametrizable geometric transformations of the mother
function φ, it is a manifold. In Figure 2.4, the illustration of a dictionary manifold created with a
Gaussian mother function is shown.

It is shown in [20] (in the proof of Proposition 2.1.2) that the linear span of a dictionary D
generated with respect to the transformation model in (2.10) is dense in L2(R2) if the mother
function φ has nontrivial support (unless φ(X) = 0 almost everywhere). In this case, for any
pattern p ∈ L2(R2), there exists a sequence {φγk} of atoms in D such that

p = lim
K→∞

K∑
k=1

ck φγk (2.13)

where ck are the atom coefficients. Hence, the above equation gives a parametric and analytic
representation of reference patterns in L2(R2). We mostly consider the Gaussian function φ(X) =
e−X

TX = e−(x2+y2) for the choice of the mother function φ as it has a good spatial localization and
it is easy to treat in derivations due to its well-studied properties. This choice also ensures that the
linear span of D is dense in L2(R2); therefore, any pattern p ∈ L2(R2) can be approximated with
a finite set of atoms in D up to a controllable accuracy. The works presented in Chapters 4-6 of
this thesis benefit from the parametric representation of reference patterns given in (2.13), which
is helpful for studying the learning and registration of visual patterns.

2.2 Image Analysis

This thesis focuses primarily on solving and analyzing image registration and image classification
problems with manifold models. Therefore, in this section, we give a brief overview of image
registration and classification methods that have been studied in the literature.
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2.2.1 Image registration

Image registration refers to the problem of estimating the coordinate transformation that gives the
best approximation of a target image from a reference image. More formally, if p(X) denotes a
reference image and q(X) denotes a target image where X = [x y]T is a coordinate vector in R2,
the image registration problem corresponds to the computation of a warping function w : R2 → R2

that defines a mapping of the coordinates between two images such that the warped version of the
reference image is as close as possible to the target image

q(X) ≈ p(w(X)).

The need for aligning images arises in many different applications like image analysis and classifi-
cation [2], [3], [4], biomedical imaging [21], and stereo vision [22]. The type of the warping function
w(X) also varies between different image registration problems. While it is assumed to be given
by a parametric transformation model (e.g., translation, rotation, scale change, affine or perspec-
tive transformations) in some settings, some geometric deformations can be better modeled with
nonparametric transformations such as elastic or piecewise affine transformations [23]. The image
registration problem is closely related to the motion estimation problem [24], which is the compu-
tation of the displacement of pixels or image blocks between two image frames. In this case, the
warping model corresponds simply to a 2-D shift, whose value changes however between different
image blocks or pixels.

Image registration methods are mainly categorized as feature-based or region-based methods.
Feature-based methods compute the warping function with the help of a discrete set of matched
coordinates between the reference and target images, while region-based methods estimate the
warping by optimizing an objective function that measures the dissimilarity or the similarity of
the images. As we are particularly interested in the usage of manifold models in registration,
which correspond to region-based methods with parametric transformation models, here we limit
our discussion to region-based image registration. Many region-based methods use the SSD
(sum-of-squared difference) as the dissimilarity measure or its approximations [24]. The SSD
corresponds to the squared-norm of what is usually called the displaced frame difference (DFD)
in motion estimation. The direct correlation is also widely used as a similarity measure [25], [26],
and it can be shown to be equivalent to the SSD [27].

Generic registration methods

We begin with reviewing some registration and motion estimation methods that do not use
manifold models. In [28], the displacement is computed with a discrete search of the match of
each pixel on a search window. In motion estimation literature, several algorithms such as 2-D
logarithmic search and increasing accuracy search have been proposed for speeding up the search
in the block-matching, by locating a solution coarsely and then refining it progressively [24]. Such
methods are based on the hypothesis that the objective image dissimilarity function is convex.
In the family of motion estimation methods using the SSD measure, the Netravali-Robbins pel-
recursive algorithm [29] and its variations [30], [31], estimate the displacement field by minimizing
the SSD over image subregions with gradient descent. There are many methods that minimize
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an approximate version of the SSD for a faster implementation, e.g., [32]. Gradient-based optical
flow computation methods also belong to this type [24], [26], which exploit a linear approxima-
tion of the image intensity function in the estimation of the displacement between two image blocks.

Manifold-based registration methods

Unlike the generic methods mentioned above, manifold-based registration methods use a geo-
metric intuition for estimating a parametric transformation model between an image pair. Some
examples of manifold-based methods are as follows. The study in [18] formulates the registration
problem as the minimization of the distance between a target image and a pattern transformation
manifold and proposes an algorithm to solve it optimally for geometric transformations consisting
of translations, rotations, and isotropic scalings. Then, the tangent distance method proposed by
Simard et al. in [3] constructs a first-order approximation of the transformation manifold of the
reference image by computing the tangent space of the manifold at a reference manifold point.
The transformation parameters are then estimated by calculating the orthogonal projection of
the target image onto the tangent space of the manifold. The study in [2] is a multiresolution
extension of the tangent distance. The recent work [33] uses the tangent distance in motion
compensation for video compression. In fact, gradient-based optical flow computation methods can
also be interpreted as alignment algorithms that make use of manifold linearizations. Applying a
first-order approximation of the intensity function of the reference image block and then computing
the displacement in a least-squares manner is equivalent to projecting the target image block onto
the linear approximation of the manifold formed by the translations of the reference image block.
Therefore, these methods can be seen as a special instance of the tangent distance that is restricted
to the transformation model of 2-D translations.

Hierarchical registration strategy

Many registration techniques adopt, or can be coupled with, a multiscale hierarchical search
strategy. In hierarchical registration, reference and target images are aligned by applying a
coarse-to-fine estimation of the transformation parameters, using a pyramid of low-pass filtered
and downsampled versions of the images. Coarse scales of the pyramid are used for a rough
estimation of the transformation parameters, where the solution is less likely to get trapped into
the local minima of the dissimilarity function as the images are smoothed by low-pass filtering.
Moreover, the search complexity is lower at coarse scales as the image pair is downsampled
accordingly. The alignment is then refined gradually by moving on to the finer scales. The
hierarchical search strategy is widely used in image registration and motion estimation, since it
accelerates the algorithm and leads to better solutions with reduced sensitivity to local minima
[22], [24], [28], [32], [34]. In particular, it is common practice to apply the tangent distance [2], [3]
and gradient-based optical flow estimation techniques [26], [35] in a coarse-to-fine manner as that
improves the accuracy of the first-order approximations used in these methods.

Theoretical analysis of registration methods

While generic methods are more suitable for handling arbitrary deformation models includ-
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ing nonparametric ones, manifold-based methods are applicable when the warping function w(X)
admits a global parameterization. Meanwhile, for the estimation of parametric transformations,
manifold models offer a good performance in general. In particular, methods that are based on
manifold linearizations are very convenient in many applications, since these methods are model-
independent (i.e., they are applicable to any parametric transformation model) and they estimate
the transformation very easily with a simple least-squares solution. However, they have the limi-
tation that they are accurate only for small transformations. As mentioned above, this limitation
can be partially overcome by using a hierarchical search technique. The theoretical characteri-
zation of the accuracy of manifold-based registration methods is important for gaining a better
understanding of transformation-invariance in image analysis, which is one of the purposes of this
thesis. We overview below some theoretical studies about the performance of methods that estimate
parametric transformation models.

To begin with, the work by Robinson et al. [27] studies the estimation of global translation
parameters between an image pair corrupted with additive Gaussian noise. The authors derive the
Cramér-Rao lower bound (CRLB) on the translation estimation. Given by the inverse of the Fisher
information matrix, the CRLB is a general lower bound for the MSE of an estimator that computes
a set of parameters from noisy observations. Another work that studies performance bounds in
registration is [36], where the CRLB is derived for several geometric transformation models. Next,
the article [37] is a recent theoretical study on the accuracy of subpixel block-matching in stereo
vision. The paper first examines the relation between the discrete and continuous block-matching
distances, and then presents a continuous-domain analysis of the effect of noise on the accuracy
of disparity estimation from a rectified stereo pair corrupted with additive Gaussian noise. An
estimation of the disparity that globally minimizes the windowed squared-distance between blocks
is derived. While the main goal of the paper is to examine the theoretical limits in attaining a
subpixel accuracy in block-matching, their results, which provide a characterization of the disparity
estimation error with the noise level, are particularly interesting from the standpoint of our study.
We give a more detailed discussion of these works in Chapters 5 and 6.

Next, we mention some results related to the performance of multiscale gradient-based opti-
cal flow estimation methods. The works in [27], [38] and [39] examine the bias on gradient-based
shift estimators and show that smoothing the images reduces the bias on the estimator. However,
smoothing also has the undesired effect of impairing the conditioning of the linear system to be
solved in gradient-based estimators [38]. Therefore, this tradeoff must be taken into account in
the selection of the filter size in coarse-to-fine gradient-based registration. The papers [27], [40]
furthermore show that the bias on gradient-based estimators increases as the amount of translation
increases. Robinson et al. use this observation to explain the benefits of multiscale gradient-based
methods [27]. At large scales, downsampling, which reduces the amount of translation, and smooth-
ing help to decrease the bias on the estimator. Then, as the change in the translation parameters
is small at fine scales, the estimation does not suffer from this type of bias anymore. Moreover, at
fine scales, the accuracy of the estimation increases as high-frequency components are no more sup-
pressed. This is due to the fact that the CRLB of the estimation is smaller when the bandwidth of
the image is larger. Lastly, the analysis in [41] studies the convergence of multiscale gradient-based
registration methods where the image pair is related with a 2-D translation. It is shown that, for
sufficiently small translations, coarse-to fine gradient-based registration algorithms converge to the
globally optimal solution if the images are smoothed with ideal low-pass filters such that the filter
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bandwidth is doubled in each stage of the pyramid. However, this convergence guarantee is limited
to an ideal noiseless setting where the target image is exactly a translated version of the reference
image.

Meanwhile, the previous works analyzing the performance of image registration do not address
the following issues. First, the effect of image noise on the alignment error is analyzed at a single
scale in works such as [36], [37], whereas the multiscale analysis in [27] is restricted to gradient-based
optical flow methods. The examination of the influence of noise on the performance of registration
in a multiscale setting is important since many registration methods use a hierarchical alignment
strategy. Next, although it is widely known as a practical fact that smoothing an image pair is
helpful for overcoming the undesired local minima of the dissimilarity function [42], [24], this has
not been studied on a theoretical basis before. We address these problems in Chapter 6 for the
geometric transformation model of 2-D translations, where we first characterize the variation of
the local minima of the dissimilarity function with low-pass filtering and then examine the joint
variation of the alignment error with image noise and smoothing. As we examine the deviation
between the global minima of the noiseless distance function and the distance function obtained
under noise, the alignment error bounds that we derive have implications for a wide range of
displacement estimation methods such as [29]-[32], which use the SSD or its approximations. Lastly,
the performance analysis of registration algorithms employing a linearization of the manifold has
only been done for translations in works such as [27], [38], [39], [41], which study gradient-based
methods. We present a more general treatment of image alignment with manifold linearizations by
analyzing the performance of the tangent distance method for arbitrary transformation models in
a multiscale setting in Chapter 5.

2.2.2 Image classification

The classification problem can be defined as the determination of the category of data samples.
In Bayes decision theory, the classification problem is formalized by assuming a prior probability
P (m) for each class m and a conditional probability density p(x|m) for the data samples x of the
m-the class [43]. Then, the estimation of the class label of a data sample x is formulated as the
maximization of the posterior probability P (m|x), which is the probability that the observation x
is an instance of the m-th class. Such a representation of data classes with probabilistic models
yields well-defined classification rules defined by the decision boundaries between class probability
densities. However, in practice, the probability density functions of data classes are often not
known and not easy to estimate, neither. Therefore, the key problem in the design of a classifier
is typically to learn a suitable classification rule from data observations. In the following, we first
give an overview of generic classification methods that do not assume any data priors, and then
discuss some classification methods that are designed for manifold-modeled data.

Generic classification methods

We begin with describing some common classification methods that are based on the projection
of high-dimensional data onto linear subspaces in order to handle the excessive dimensionality of
data. These methods typically try to learn good subspaces using the training data with known class
labels. Then, query data of unknown classes can be classified according to their similarity with the
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training data when projected onto the learned subspaces, for instance by nearest neighbor classifi-
cation. The Principal Component Analysis (PCA) method projects the data onto low-dimensional
subspaces generated by the first few principal directions corresponding to the dominant orienta-
tions of the data, which are given by the eigenvectors of the data scatter matrix [44]. However,
the performance of PCA is not always optimal for classification, since the principal components
are not guaranteed to be the directions that are useful for discriminating different classes. On the
other hand, Linear Discriminant Analysis (LDA) methods [45], [46] seek a subspace such that the
projection of the data on the subspace minimizes the scatter within the classes and maximizes the
scatter between different classes; i.e., data samples of the same class are close to each other and
the centers of different classes are far from each other on the projected subspace. These subspace-
based classification methods have been demonstrated in several pattern recognition problems. For
instance, Eigenfaces [47] and Fisherfaces [48] are face recognition algorithms based respectively on
PCA and LDA. We also note that quite many recent works study the classification of images by us-
ing suitable subspaces that capture well the characteristics of different image classes. For instance,
a face recognition algorithm is proposed in [49], where face images are classified by comparing
their sparse representations in the subspaces generated by the training samples of each class. The
study in [50] models data samples as belonging to a union of subspaces where each subspace is
treated as a different class and proposes a method to compute these subspaces based on a sparse
representation model. The proposed method is demonstrated in motion segmentation and face
clustering problems. Finally, dictionary learning for classification tasks is an active research field,
which aims at constructing dictionaries that allow an accurate classification of signals based on
their representations in these dictionaries [51].

The subspace-based classification methods mentioned above work well if the data has an ap-
proximately linear structure or is linearly separable. However, in quite many applications the data
has a nonlinear geometry and different classes are not linearly separable, in which case nonlinear
classifiers are preferable. Some common examples of nonlinear classifiers are neural networks and
Support Vector Machines (SVM). Neural networks are structures consisting of units called neurons,
which are organized in an architecture with (typically multiple) layers [52]. The data sample to be
classified is provided as input to the first layer of neurons, and the neurons in each layer output a
response that is a linear combination of the response from the previous layer, which is provided to
the next layer. In this way, the output layer determines the estimate of the class label of the input
data sample. It is common to train neural networks with a back-propagation algorithm, which is
based on optimizing the weights of the neuron connections such that a cost function representing
the classification error is minimized. A solution for handling the nonlinearity of data in a more
effective way is to design the first layer of the network such that it maps the original data to a
higher-dimensional space via a nonlinear function called an interpolation function or a kernel, so
that the data has higher chances to be linearly separable in the new space. Some popular inter-
polation functions are polynomials and radial basis functions. The idea of mapping the data to
higher dimensional spaces via kernels to achieve linear separability is also at the core of the SVM
method [53], which then classifies the data by separating them with hyperplanes constructed using
the samples that are closest to the decision boundaries.

Note that it is common to use an alternative representation of the data in a feature space instead
of the original image space in such classification methods. The types of features that give a good
classification accuracy depend of course on the application and vary on a wide span including trans-
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form domain features [52] (e.g., Fourier, Wavelet, Hadamard coefficients), regional features such
as SIFT keypoints [54] and local binary patterns [55], and shape descriptors such as chain codes [56].

Classification methods for manifold-modeled data

The above classification methods are generic and they do not rely on any specific assumption
on the geometry of data. Meanwhile, when the data is likely to be sampled from a manifold instead
of being arbitrarily spread in the ambient space, it is useful to exploit this special structure in
the learning. We now mention a couple of classification techniques that are based on this hypothesis.

In several classification methods, the exploitation of the manifold structure of data is through
local linearity assumptions and the hypothesis that neighboring samples on the same manifold
have a small distance, as opposed to the usage of a parametric representation of the data manifold.
Therefore, these methods are nonparametric.

Among nonparametric methods, graph-based methods are algorithms that construct a data
graph such that each node of the graph is a data sample, where the weights between connected
nodes are typically set according to the distance between the data samples. In these methods, the
edges between nodes are usually assigned such that each node is connected to a predetermined
number of nearest neighbors (k-nearest neighbors), or its neighbors within a sphere of a predefined
radius (ε-neighborhood). Such a construction of the data graph makes these methods a good choice
when the data is concentrated around a manifold and has a locally flat structure, since neighboring
nodes in the graph correspond to neighboring manifold points in this case. In graph-based methods,
data classification is usually formulated as a semi-supervised learning problem, such that the data
with both known and unknown class labels are used in the construction of the graph. The unknown
class labels are then estimated based on the similarity between the data samples, which is captured
by the edge weights. There are several ways to estimate the unknown class labels. One way is
to use graph mincuts [57]. In a setting with binary class labels, this method seeks a minimum
set of edges such that when these edges are removed, the resulting graph yields two disconnected
components corresponding to the two classes. Another example of a graph-based method is the
label propagation algorithm [58], which proposes to estimate class labels by assigning soft labels
to the nodes and letting all nodes propagate their soft labels to their neighbors according to a
probabilistic transition model. The nodes with known class labels are exploited by setting their
soft labels to the correct class labels at each iteration, which drives the learning. In this way, the
algorithm converges to a solution that gives an estimate of the labels of all nodes.

Next, the classification method proposed in [59] assumes that the data points reside on a
manifold, which contain labeled and unlabeled samples from two classes. It learns a function
on the data graph as a linear combination of the first few eigenvectors of the graph Laplacian such
that the values of the function at labeled data samples approximate well their class labels. The
construction of the classifier function in terms of the eigenvectors of the graph Laplacian is helpful
for controlling its smoothness on the manifold, so that nearby samples are encouraged to have the
same class labels. Finally, the SLLE method presented in [17] proposes the classification of data
samples lying on a manifold via dimensionality reduction. It learns a mapping of the data to a
lower-dimensional space by introducing a separation between different classes. The class labels of
new data samples are then estimated in the lower-dimensional space using a simple method such
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as nearest mean or nearest neighbor classifier.

While all of the above methods are based on the assumption that all data samples lie on a
single manifold, there are also several studies that model different classes with different manifolds
like we do in this thesis. We mention here a few of them. First, the texture classification method
proposed in [60] relies on a clustering algorithm where each cluster is considered as a different
manifold. The clusters are then computed by minimizing the total geodesic distance between data
samples and the representatives of their cluster. Another manifold-based classification method is
presented in [61], which proposes an algorithm for human face recognition in videos. The images
of each person are modeled as a different manifold given by a union of planes that approximate
different poses of that person, where the planes are connected to each other with transition
probabilities. The recognition of faces in the video is then achieved with a maximum a posteriori
estimation, which takes the transitions between consecutive frames into account. Finally, the
recent study in [62] proposes a method to learn multiple manifolds that represent different facial
expressions. Then the facial expression in a query image is estimated by identifying the manifold
that gives the smallest reconstruction error for the image.

In contrast to nonparametric methods described above, parametric methods are algorithms
that explicitly make use of a parametric representation of the manifold model in classification.
Some examples to parametric manifold-based classification methods are the following. The
tangent distance method [3] proposes a solution for transformation-invariant classification by
estimating the manifold distance by making use of a linear approximation of the manifolds, which
is demonstrated in handwritten digit recognition applications. The multiresolution extension of
the tangent distance proposed in [2] is applied in face recognition and semantic video classification
problems. The work in [4] proposes to measure image dissimilarities with a metric called the
joint manifold distance. The joint manifold distance is given by the subspace-to-subspace distance
between linear manifold approximations; however, the proposed formulation involves priors on the
image distributions as well. The method is used to cluster faces in videos. Lastly, a generalized
maximum likelihood classifier is described in [63], where each class is represented by a different
parametrizable image appearance manifold, and the class labels of image observations are estimated
according to their distances to the manifolds as in our framework. This setting is then used for
developing a compressive classifier called the smashed filter, which estimates the class labels of
data samples from compressed measurements.

Finally, we remark the following about the classification of image sets with geometric transfor-
mations, which is studied in this thesis. This kind of image data has a highly nonlinear structure;
therefore, linear classifiers fail for such data. One may get slightly better results through the use
of nonlinear classifiers; however, the generic kernels used in these classifiers do not necessarily
match well the particular geometric structure of such image sets. Since geometrically transformed
image sets can be assumed to be concentrated around transformation manifolds, manifold-based
methods give better results for their classification in general. Meanwhile, manifold-based classi-
fication methods have some limitations as well. First, graph-based or nonparametric algorithms
are susceptible to the sampling conditions of data, such as the sampling density and noise. The
sampling density becomes an important issue especially when the dimension of the manifold is
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high.3 Parametric methods such as [3], [2], [4] provide an analytic way to estimate the manifold
distance; however, they have the drawback that their estimation is accurate only for small trans-
formations. In this thesis, we aim at developing efficient image classification methods based on
parametric transformation-manifold models that can handle large transformations as well. We thus
study the approximation of manifold distance with manifold samplings in Chapter 3 and propose
methods to construct transformation manifolds that are good for classification in Chapter 4. Then,
in Chapters 5 and 6 we theoretically examine how the performance of parametric methods relying
on the estimation of the manifold distance can be improved with a multiscale analysis.

3The analysis in our recent study [64] shows that, for the local linearity assumptions to hold, the ambient space
distance between data samples must decrease at a rate of O(d−3/2) with the dimension d of the manifold.



Chapter 3

Sampling Parametrizable Manifolds

3.1 Fast Manifold Distance Estimation with Sampling

In this chapter, we address the problem of sampling transformation manifolds for accurate esti-
mation of the manifold distance in image registration and classification. The exact computation
of the manifold distance is in general a complicated problem, mainly due to the variety and com-
plexity of the involved transformation models. Among the previous works that propose solutions
for the manifold distance computation problem, studies such as [2], [3], [4] are based on first-order
approximations of the manifold. However, such methods perform well especially when the rela-
tive transformation between the target image and the reference image is small, and the first-order
approximation loses accuracy for large transformations. There are also some works that study
the estimation of transformation parameters for specific types of geometric transformation mod-
els, e.g., [18], [65]. Meanwhile, there is no known solution for the computation of the manifold
distance optimally for generic transformation models. A simple and practical way to estimate the
manifold distance is then to represent the manifold with a finite grid of manifold samples, where
the distance between a query image and its projection onto the manifold is approximated by the
distance between the image and the nearest manifold sample. The usage of such a grid improves
the complexity of distance estimation immensely, possibly at the price of a lower distance accuracy.

In image analysis applications, it is common practice to sample manifolds in a straightforward
way by generating a grid regular in the parameter domain. However, a regular discretization in
the parameter space is not guaranteed to offer a good performance, especially when the number
of samples is limited. While the choice of the manifold grid has considerable influence on the
accuracy of manifold distance estimation, the manifold sampling problem has not been given much
consideration so far within the context of image analysis. Structured grid generation has been well-
studied especially for analytical two-dimensional surfaces in R3, mostly for the purpose of obtaining
finite-difference solutions to partial differential equations [66]. It is also possible to find sampling
solutions for surfaces represented in non-analytical forms such as meshes [67]. Even though some of
these sampling methods may in principle be generalized for image manifolds of arbitrary dimension,
the targeted applications must be taken into account in grid generation.

In this chapter, we study the distance-based discretization of transformation manifolds of known
parameterization. We first present a manifold discretization algorithm that minimizes the manifold
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distance estimation error stemming from the representation of the manifold by finitely many grid
points. Our discretization method bears some resemblance to the LBG vector quantization algo-
rithm [68] due to the alternating optimization steps it involves, where the representative samples
for a given partition of the space are computed, and then the space is repartitioned for the updated
set of samples. However, the proposed method differs essentially from the LBG algorithm, since
it targets the minimization of the manifold distance with samples positioned on the manifold and
does not have a signal approximation objective.

Noting the dependency between the registration and classification performances, we then extend
this sampling solution to the joint discretization of multiple transformation manifolds representing
different classes. As discussed in Chapter 2, the estimation of the class label m of a query image
x requires the determination of the approximation region Hm it lies in. We assume that the exact
knowledge of the manifolds determines the class label of an image perfectly. A discrete representa-
tion of the manifolds reduces the complexity of the classification problem, while the classification
performance in the discrete setting depends significantly on the sampling. We propose a discretiza-
tion method where all manifolds are jointly sampled such that the relative geometries of different
manifolds are taken into account to yield a good classification accuracy. Experimental results show
that the proposed discretization methods yield better registration and classification performance
than basic discretizations such as random grids or regular grids. Moreover, the consideration of the
relative properties of manifolds in the sampling in addition to their individual properties improves
the classification accuracy.

In the manifold discretization study presented in this chapter, we essentially focus on transfor-
mation manifolds. However, we maintain a generic formulation that it is applicable to arbitrary
parametric signal manifolds. We also note that parametrizable signal manifolds are not restricted
to image manifolds, which could find examples within acoustic and seismic signals for instance [8],
[69].

This chapter is organized as follows. In Section 3.2 we overview the discretization of para-
metric manifolds based on distance estimation, and in Section 3.3 we propose an extension of the
registration-based sampling solution for classification. We present experimental results in Section
3.4, and conclude in Section 3.5.

3.2 Manifold Discretization for Minimal Distance Estimation Error

In this section, we present an iterative method for the optimization of manifold samples such that
the manifold distance estimation error caused by representing the manifold with a finite number
of samples is minimized. Note that the main purpose of the sampling scheme proposed here
is the accurate estimation of the manifold distance for registration applications rather than the
approximation of the manifold, which are not necessarily equivalent.

We consider signal manifolds residing in Rn that are defined by a parametric model as in (2.1).
We assume that a generating signal pattern p, a compact parameter domain Λ and a bounded
mapping U(·)(p) between Λ and Rn are given. Considering the pattern p to be fixed, we denote the
manifoldM(p) simply asM. We formulate the discretization of the manifoldM as the selection
of a predetermined number N of manifold points; i.e., a sample set S = {Si} = {Uλi(p)} ⊂ M,
i = 1, · · · , N for some {λ1, · · · , λN} ⊂ Λ. We would like to select a set of samples that minimizes
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the total manifold distance estimation error E over R, where R is a bounded region in the space
Rn. We consider R to be a region of interest, which depends on the application. We define the
error E as

E =
∫
R

(
d2(x,S)− d2(x,M)

)
dx (3.1)

where
d(x,S) = min

i∈{1,2,··· ,N}
‖x− Si‖ (3.2)

denotes the distance between x and the sample set S. The formulation of the error in terms of
squared distances is for the ease of analytical manipulation.

For a given sample set, one can partition R into N regions as R =
⋃N
i=1Ri, where each Ri is a

region consisting of points with smallest `2-distance to Si among all samples, i.e.,

Ri = {x ∈ R : ‖x− Si‖ ≤ ‖x− Sj‖,∀j ∈ {1, · · · , N}}. (3.3)

The regions Ri are thus defined similarly to the Voronoi cells in the LBG vector quantization
method or Lloyd’s quantization algorithm [68]. Then, the total manifold distance estimation error
can be written as

E =
N∑
i=1

Ei =
N∑
i=1

∫
Ri

(
‖x− Si‖2 − d2(x,M)

)
dx. (3.4)

In order to minimize the error E, we follow an iterative optimization procedure. In each iteration
of the algorithm a two-stage optimization is employed: In the first stage, we fix the samples Si and
determine the partition regions Ri corresponding to the samples. In the actual implementation of
the method, we numerically determine the regions Ri with the help of training data. Then, in the
second stage, we fix the regions Ri and optimize each sample Si individually such that the error Ei
in the regarding region is minimized. The minimization of the manifold distance estimation error
Ei within a specific region Ri is achieved as follows. The error term Ei can be rearranged as

Ei =
∫
Ri

‖x− Si‖2 dx−
∫
Ri

d2(x,M) dx

where the second integration depends only on Ri, and is constant with respect to Si as Ri is treated
as a fixed parameter. Therefore, Ei is given by

Ei =
∫
Ri

‖x− Si‖2 dx+ ci =
∫
Ri

xTx dx− 2ST
i

∫
Ri

x dx+ ViS
T
i Si + ci,

where ci is a constant independent of Si, and Vi =
∫
Ri
dx is the volume of the region Ri. Denoting

the centroid of Ri by Gi = (
∫
Ri
x dx)/(

∫
Ri
dx), we get

Ei =
∫
Ri

xTx dx+ Vi(−2ST
i Gi + ST

i Si) + ci = Vi(ST
i Si − 2ST

i Gi) + c′i,
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where we express the sum of the terms independent of Si by c′i. As Ei differs from ‖Si−Gi‖2 only
up to a positive multiplicative factor and an additive term constant with respect to Si, one can
equivalently minimize

εi = ‖Si −Gi‖2 (3.5)

at each iteration of the algorithm. This actually means that Si should be selected as the manifold
point closest to the centroid of the region Ri.

The following is a summary of the procedure we apply for obtaining a manifold discretization
that minimizes the total manifold distance estimation error. Given the available domain of param-
eters and the mapping defining the manifold, we begin with an initial sample set S(0) = {Si(0)}
on the manifold, which is possibly randomly selected. We optimize the sample set iteratively. In
iteration k of the algorithm, we first compute the regions {Ri(k)} that partition R with respect
to the manifold samples {Si(k)}, and then we modify each sample Si(k) individually to obtain the
new sample Si(k+ 1) such that the manifold distance estimation error given by (3.5) is minimized
in the corresponding region. The new sample Si(k+ 1) is the projection of the centroid Gi(k) onto
the manifold. Iterations are repeated until improvements become negligible. We call this algorithm
Registration-Efficient Manifold Discretization (REMD). An iteration of the algorithm is illustrated
in Figure 3.1, and the pseudocode is given in Algorithm 1.

As the parameter domain Λ is compact and the mapping U(·)(p) is bounded, for a given number
of samples N , there exists a solution S∗ that globally minimizes the total error E in (3.1). At each
iteration of the method, first the partition regions are updated and then the samples are readjusted,
both of which are modifications that either reduce E or retain it. Since the error E is non-increasing
throughout the iterations and is also lower bounded, it converges. However, in general the cost
function E is a non-convex, complicated function of the optimization variables {λi}Ni=1; therefore,
the algorithm is not guaranteed to find a globally optimal solution. This could be mitigated by
the choice of a good initial distribution of samples. For instance, in order to begin with a balanced
sample distribution, a preliminary stage can be added before the main iterations. Here one can
impose the condition that the pairwise distance between any two samples in the ambient space or
the parameter space is larger than some threshold value.

Lastly, although the error E converges, the output of the algorithm (the sample locations) is not
theoretically guaranteed to converge. The study of the convergence of the Lloyd algorithm and its
extensions is indeed an active research topic and recent works such as [70] provide some conditions
under which the Lloyd algorithm converges in one-dimensional and multi-dimensional data spaces.
While the generalization of such results to the manifold setting considered in this chapter remains
as an interesting future study, we note that the convergence of the algorithm is not critical for the
utilization of the algorithm output in practical applications: Different sample sets that yield the
same distance estimation error are quite likely to perform similarly in practice.

3.3 Classification-Based Discretization of Multiple Manifolds

We have examined above a discretization solution for a single signal manifold based on the min-
imization of the distance estimation error given by the approximation of the manifold with a set
of samples. Now we consider the sampling problem with multiple signal manifolds. We consider
that the manifold distance is computed with a discrete set of samples from each manifold, and the
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Figure 3.1: Illustration of a single iteration of the algorithm with three samples: Each Gi(k) is the centroid
of the partition region corresponding to the sample Si(k) at the kth iteration. The updated sample Si(k+1)
is the projection of the centroid Gi(k) onto the manifold.

estimated class label of a signal is the label of the nearest manifold sample. Clearly, the accuracy
of a sampling in classification is highly related to its accuracy in distance approximation. One pos-
sible solution to the multiple manifold discretization problem is to sample each class-representative
manifold independently with the REMD algorithm presented in Section 3.2. Although this brings a
certain improvement in the classification performance compared to baseline sampling solutions such
as regular or random sampling, it fails in taking into account the geometric properties of different
manifolds relative to each other. A better approach to the multiple discretization problem is the
joint discretization of all manifolds.

Furthermore, given a fixed budget for the total number of manifold samples, which can also be
interpreted as a fixed computational complexity for classification, we would like to determine how
many samples should be selected from each manifold such that the overall classification accuracy
is maximized. The ease of representing a manifold by a discrete sample set is highly dependent
on the manifold geometry. The sample budget may thus vary for different manifolds. Moreover,
in the determination of the budget allocation, the relative configuration of the manifolds must
also be taken into account. For instance, if a subgroup of manifolds are more likely to lead to
misclassifications because of their internal resemblance, then it may be better to allocate them a
higher number of samples.

In Section 3.3.1, we first formulate the classification accuracy of a multiple manifold discretiza-
tion, then in Section 3.3.2 we describe an iterative algorithm for sampling multiple signal manifolds
that aims to improve the classification accuracy gradually. In Section 3.3.3 we discuss some ap-
proaches for determining the allocation of the overall sample budget to different manifolds.

3.3.1 Classification with discrete samples on manifolds

The classification of signals with discretized manifolds can be formulated as follows. We considerM
signal manifolds M1, · · · ,MM generated from M class-representative signal patterns p1, · · · , pM
with parametrizable models as defined in (2.4). Each manifoldMm is approximated by a finite set
of Nm samples

Sm = {Smi } = {Uλmi (pm)} ⊂ Mm (3.6)
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Algorithm 1 Registration-Efficient Manifold Discretization
1: Input:

Λ: Parameter vector domain
U(·)(p): Mapping from parameter domain Λ to manifoldM
N : Number of manifold samples

2: Initialization:
3: Choose an initial set of manifold samples S(0) = {Si(0)}, i = 1, · · · , N .
4: k = 0.
5: repeat
6: Determine the partition regions {Ri(k)}.
7: Compute the centroids {Gi(k)} of the regions.
8: Update each sample Si(k) to Si(k + 1), which is the projection of the centroid Gi(k) on the

manifold.
9: k = k + 1.

10: until Error E converges
11: S = S(k).
12: Output:
S = {Si}: A set of manifold samples

for i = 1, · · · , Nm, where λmi ∈ Λ is the parameter vector generating the sample Smi . The classifi-
cation of a test signal corresponds to the determination of the manifold with smallest distance to
it. Given a signal x ∈ Rn, the estimate l̂(x) of its true class label l(x) is given by the class label of
its nearest neighbour among all manifold samples

l̂(x) = arg min
m

d(x,Sm) = arg min
m

(
min

i∈{1,..,Nm}
‖x− Smi ‖

)
. (3.7)

We analyze now the classification error yielded by the discretization of manifolds. Let R ⊂ Rn

denote a bounded region of interest in the signal space. For each manifold Mm, we define a
partitioning of R into regions {Rmi }, where each region consists of points closest to a specific
sample Smi ofMm among its all samples,

R =
Nm⋃
i=1

Rmi

Rmi = {x ∈ R : ‖x− Smi ‖ ≤ ‖x− Smj ‖, j ∈ {1, · · · , Nm}}.
(3.8)

Now, consider a signal x ∈ Rmi that is of class m. Then x ∈ Rmi ∩ Hm. Depending on the
distribution of samples, x can be correctly classified only if its distance to Smi is the smallest among
its distances to all manifold samples. Thus, we define a function Emi : Rmi → {0, 1} such that it
represents the classification error for signals of class m in the region Rmi .

Emi (x) =
{

1 if x ∈ Hm and ‖x− Smi ‖ > d
(
x,
⋃
r 6=m Sr

)
0 otherwise

(3.9)
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Figure 3.2: Illustration of transformation-invariant signal classification via transformation manifolds

Then, from (3.9) we define the total classification error

E =
M∑
m=1

Nm∑
i=1

∫
Rmi

Emi (x) dx. (3.10)

Notice that due to the definition of the error Emi (x), the total classification error E corresponds
to the sum of the volumes of the regions in R where signals are not correctly classified. Another
source of misclassification associated with a sample Smi corresponds to the points that are actually
closer to another manifold than Mm, but are misclassified as a result of being closer to Smi than
their nearest manifold sample of the correct class. Hence, in analogy with Emi , we can define an
alternative classification error function Fmi : Rmi → {0, 1} as

Fmi (x) =
{

1 if x /∈ Hm and ‖x− Smi ‖ < d
(
x,
⋃
r 6=m Sr

)
0 otherwise

(3.11)

which leads to the following alternative formulation of the total classification error

F =
M∑
m=1

Nm∑
i=1

∫
Rmi

Fmi (x) dx. (3.12)

The classification errors E in (3.10) and F in (3.12) are equal. However, due to the two men-
tioned sources of misclassification associated with a single sample Smi , we formulate the classification
error as the combination of the two. The reason for this choice is made more clear in the algorithm
description in Section 3.3.2. Hence we write the total classification error as

ε =
1
2

M∑
m=1

Nm∑
i=1

∫
Rmi

(
Emi (x) + Fmi (x)

)
dx (3.13)

where ε = E = F .
Note that a geometric interpretation of the problem is the following. Let R̃mi denote the region
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of space with smallest distance to the sample Smi among the samples of all manifolds

R̃mi =
{
x ∈ R : ‖x− Smi ‖ ≤ ‖x− Srj ‖, ∀r ∈ {1, · · · ,M},∀j ∈ {1, · · · , Nr}

}
(3.14)

where R̃mi ⊂ Rmi . Also, let Amrij denote the affine hyperplane which is at equal distance to the two
samples Smi and Srj belonging to two different manifolds Mm and Mr. In analogy with the way
that the decision surface B is defined in Chapter 2 as the boundary for the determination of the
true classes l(x) of signals, let now A denote the decision surface that determines the class label
estimates l̂(x) of signals based on the manifold approximations with samples. Hence, we define

A =
M⋃
m=1

∂
(Nm⋃
i=1

R̃mi
)
, (3.15)

where A ⊂ ⋃m,r,i,j Amrij . The definition of the classification error function ε in (3.13) corresponds to
the total volume of the regions between the true boundary B and its approximation A. Therefore,
the problem of minimizing the classification error can be regarded geometrically as the selection
of the sample sets

⋃M
m=1 Sm such that the resulting A constitutes an accurate approximation of B

inside R. This is illustrated in Figure 3.2.

3.3.2 Discretization algorithm

We would like to minimize the classification error ε in (3.13) by optimizing the sample sets
⋃M
m=1 Sm.

In order to achieve this, we suggest an iterative procedure as follows. We start with an initial set
of samples. Then, in each iteration we optimize one manifold sample Smi and try to reduce ε by
perturbing Smi . However, the dependence of the classification error on the location of a sample
Smi is fairly intricate, and it is not simple to determine the optimal sample location. Hence, in
the minimization of the error, we adopt a constructive approach rather than optimal; therefore,
the search directions in the perturbation of a sample may not always decrease the overall error. In
order to handle this, we accept an update on a sample location only if it reduces the classification
error. After reaching a locally optimum error with the perturbation of the single sample Smi , we
repeat this process with different manifold samples until the stabilization of the classification error.
Constraining the classification error to be non-increasing assures the termination of the algorithm.
The overall procedure is not guaranteed to find the globally optimal solution and the accuracy of
the final sampling is influenced by the initialization of the samples.

In a single iteration of the algorithm, we would like to find an update on Smi that reduces the
error ε, where the rest of the samples are considered to be fixed. The examination of the error term
in (3.13) reveals that the effect of the sample Smi on ε is twofold. The terms Emi (x) and Fmi (x)
involve the distance of space points ‖x− Smi ‖ to the sample Smi , but the region of integration Rmi
is also defined by the position of the sample Smi . Hence, the classification error has a complicated
dependence on the sample location Smi . Let Θm

i and Φm
i denote the regions of Rmi where Emi (x) = 1

and Fmi (x) = 1 respectively (illustrated in Figure 3.2).
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Θm
i =

{
x ∈ Rmi ∩Hm : ‖x− Smi ‖ > d

(
x,
⋃
r 6=m
Sr
)}

(3.16)

Φm
i =

{
x ∈ Rmi \ Hm : ‖x− Smi ‖ < d

(
x,
⋃
r 6=m
Sr
)}

(3.17)

The error terms in the expression (3.13) contributing to ε are in fact the sum of the volumes
of these two regions Θm

i and Φm
i . Therefore, in order to reduce the error ε, we seek an update on

Smi that decreases the volumes of Θm
i and Φm

i . Let Smi (k) be the location of the sample Smi in
iteration k of the search algorithm, and let Rmi (k), Θm

i (k), and Φm
i (k) be defined similarly. The

definitions (3.16) and (3.17) suggest that decreasing the distance ‖x− Smi (k)‖ between the sample
and the points in Θm

i (k) reduces the misclassified portion of Θm
i (k). Similarly, it is necessary to

increase the distance ‖x−Smi (k)‖ between the sample and the points in Φm
i (k) in order to reduce the

misclassified portion of Φm
i (k). Hence, we define the distance measures DΘ(Smi (k)) and DΦ(Smi (k))

as follows

DΘ(Smi (k)) =
∫

Θmi (k)
‖x− Smi (k)‖2 dx (3.18)

DΦ(Smi (k)) =
∫

Φmi (k)
‖x− Smi (k)‖2 dx. (3.19)

As discussed in Section 3.2, the minimization of DΘ(Smi (k)) is possible by minimizing the distance
‖θmi (k)−Smi (k)‖, where θmi (k) is the centroid of Θm

i (k). Similarly, in order to maximizeDΦ(Smi (k)),
one should maximize ‖φmi (k) − Smi (k)‖, where φmi (k) is the centroid of Φm

i (k). However, even an
update on Smi (k) that decreases DΘ(Smi (k)) and simultaneously increases DΦ(Smi (k)) does not
guarantee that the total classification error ε decreases. This is because in general Θm

i (k + 1) 6⊂
Θm
i (k) and Φm

i (k + 1) 6⊂ Φm
i (k). Even if the error is reduced within Θm

i (k), Θm
i (k + 1) might

contain points that are not inside Θm
i (k) and actually increase ε. Still, when one aims to reduce

ε by perturbing only Smi (k) in a given configuration of the samples and manifolds, curing the
immediate regions of misclassification Θm

i (k) and Φm
i (k) is a promising attempt. We thus propose

to update the sample Smi (k) in the following way as long as the overall error does not increase.
Let µmi (k) and νmi (k) denote the parameter vectors corresponding respectively to the projections

of the centroids θmi (k) and φmi (k) on the manifold. Then, the purpose of moving Smi (k) closer to
θmi (k) and away from φmi (k) leads to the following two updates

Smi (k + 1) = Uη(pm), η =
(
(1− α)λmi (k) + αµmi (k)

)
such that α minimizes ε (3.20)

Smi (k + 1) = Uη(pm), η =
(
(1 + β)λmi (k)− β νmi (k)

)
such that β minimizes ε (3.21)

where λmi (k) is the parameter vector defining Smi (k) and both α and β are positive scalars. Hence we
determine the directions of perturbation with respect to the centroids of the misclassified volumes,
and we adjust the amount of perturbation to obtain the largest decrease in the error. In this
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way, we find a locally optimum sample location reducing the misclassified portions of Θm
i (k) and

Φm
i (k). It also guarantees that the possible penalty of creating new misclassified regions by moving

the sample is always smaller than the benefit of correcting previous misclassifications. In the
optimization of a single sample Smi , we alternate between the updates in (3.20) and (3.21) until
convergence, where the parameters µmi (k) and νmi (k) are updated after each perturbation. Then
we continue the optimization process by picking other manifold samples and applying the same
procedure until the classification error is stabilized. We call this algorithm Classification-Driven
Manifold Discretization (CMD) and give an overview of it in Algorithm 2. Finally, we note that
in each iteration the perturbation of a manifold sample in the described way corresponds to a one-
dimensional search in the d-dimensional parameter space. Although the algorithm is not guaranteed
to be optimal, it offers a compromise in the performance-complexity trade-off.

Algorithm 2 Classification-Driven Manifold Discretization
1: Input:

Λ: Parameter vector domain
U(.)(pm): Mappings from parameter domain Λ to manifoldsMm, m = 1, · · · ,M⋃M
m=1 Sm(0) =

⋃M
m=1

⋃Nm
i=1{Smi (0)}: Initial set of manifold samples

2: Initialization:
3: Initialize total classification error ε as defined in (3.13).
4: k = 0.
5: repeat
6: Pick (possibly randomly) a manifold Mm and a sample Smi from this manifold, m ∈

{1, · · · ,M}, i ∈ {1, · · · , Nm}.
7: repeat
8: Determine the misclassified region Θm

i (k) and the parameter vector µmi (k).
9: Update Smi (k + 1) as in (3.20).

10: k = k + 1.
11: Determine the misclassified region Φm

i (k) and the parameter vector νmi (k).
12: Update Smi (k + 1) as in (3.21).
13: k = k + 1.
14: until ε is stabilized
15: until ε is stabilized
16:
⋃M
m=1 Sm=

⋃M
m=1 Sm(k).

17: Output:⋃M
m=1 Sm: A set of representative samples for each manifold

3.3.3 Sample budget allocation

We have considered so far that the number of samples per manifold is predetermined. We address
now the problem of the allocation of samples from a total budget to the different manifolds. This
allocation is driven by the properties of the different manifolds. We propose two solutions for
budget allocation that can be paired with the CMD algorithm.



34 Chapter 3. Sampling Parametrizable Manifolds

A first simple way of determining the sample budget between manifolds is the following. We
initialize the sample set of each manifold to be a dense grid on the manifold, and delete samples
progressively until the total number of samples meets the budget constraint. We determine the
sample to be deleted based on the classification error associated with each sample. Following the
previously mentioned arguments, we delete a grid point on one manifold where Θm

i is relatively
small. When the number of remaining grid points reaches the budget, we optimize the resulting
sample sets using CMD for the final adjustment of sample locations. Since the optimization of sam-
ple locations takes place after the budget allocation, we name this approach Manifold Discretization
with Predefined Allocation (MDPA).

Second, we introduce a joint budget allocation and CMD sample optimization solution where we
allow the deletion of a sample from one manifold to create a new sample in another manifold during
the iterations. In order to elaborate on the transfer of samples between manifolds, we turn back to
the geometric interpretation of our problem formulation. In a configuration with multiple manifolds,
our definition of the classification error is the total volume of the regions lying between the piecewise
planar boundary surface A formed by the sample sets and the true boundary surface B. As a result,
the classification accuracy of such a setting is directly dependent on the approximability of the
boundary surface B by a piecewise linear model. A “well-behaved” manifold region corresponding
to a well-approximable part of B is more amenable to be represented by a small set of discrete
samples than a manifold region corresponding to a part of B that is difficult to approximate with
a linear model. Therefore, the compensation of the loss of a sample from a well-behaved manifold
region is relatively easier. We thus propose the following method for dynamic sample budget
allocation and optimization. We start with an equal distribution of samples per manifold that
satisfies the overall budget constraint, and begin optimizing them with the CMD algorithm. During
iterations, we deduce that the manifold region around a sample has poor representability, whenever
the misclassified region Θm

i has a large volume compared to the average and iterations 7-14 of
Algorithm 2 fail to improve the classification accuracy. In a similar way, we determine regions
of good representability around samples where the volume of the corresponding Θm

i is relatively
small. Consequently, we add a new sample to the poorly representable region, at the cost of
deleting a sample from a well-representable region selected among all manifolds. We place the new
sample at the point corresponding to the projection of the centroid of Θm

i onto the manifold. We
further adapt the discretization to the new configuration in the regions where sample deletion and
creation have taken place, and apply iterations 7-14 of CMD to all neighboring samples on the
manifolds of the deleted sample and the created sample. Note however that the sample transfer
is not guaranteed to reduce the classification error. In order to ensure the improvement of the
classification accuracy, we accept the update only if it reduces the error. We call this approach
Dynamic Manifold Discretization (DMD).

3.4 Experimental Results

3.4.1 Setup

We now present experimental results demonstrating the performances of the manifold discretization
algorithms discussed in Sections 3.2 and 3.3. All experiments are conducted on two kinds of
transformation manifolds, namely the transformation manifold of a 2-D pattern, and the observation
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Figure 3.3: Example images from database Figure 3.4: Pattern transformation manifold images

Figure 3.5: Example objects from airplane class Figure 3.6: Object observation manifold images

manifold of a synthetical 3-D object.
In the first experimentation setup, we construct pattern transformation manifolds generated

by the rotations and translations of 2-D visual patterns. Given a reference image p, we define its
transformation manifoldM(p) as

M(p) = {Uλ(p) : λ = (θ, tx, ty) ∈ Λ}, (3.22)

where θ is the angle of rotation, and tx and ty are horizontal and vertical translation parameters.
In the experiment, we use a database of top-view images of 5 different objects, where each object
has 500 images captured under different orientations and positions. An example image for each
object is given in Figure 3.3. Note that due to the positioning of the camera and the limitations on
object positions, the 2-D pattern transformation model in (3.22) constitutes an approximate model
for the observations. For each object we build the transformation manifold of a fixed representative
pattern picked among the database images. The image set of each object is grouped randomly into
300 training and 200 test images. The categorization of the database into training and test sets
is changed randomly in each repetition of the experiment. All images are converted to greyscale,
downsampled to a resolution of 50×60 pixels, and background pixels are assigned zero intensity by
simple thresholding. Manifold points are generated by rotating and translating the representative
pattern (cropped previously near the boundary) over a 50×60 pixel zero background within the
parameter range θ ∈ [−π, π); tx ∈ [−7, 7]; ty ∈ [−12, 12]. All images and generated manifold points
are normalized to have unit norm. Some illustrative images from the transformation manifold of
one of the objects are shown in Figure 3.4.

In the second experimentation setup, we consider the object observation manifold model defined
in (2.3), which is generated by the observations of a synthetical 3-D object model p from different
viewpoints. We use the Princeton Shape Benchmark database of 3-D objects [71], and conduct
our experiments on 8 different classes of objects (car, airplane, ship, tank, human, animal, table,
bottle) with several (4-30) objects belonging to each class. Some example objects belonging to
the airplane class are shown in Figure 3.5. For each class we choose a representative object, and
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generate the observation manifold of the representative object in the parameter range ψx, ψy, ψz ∈
[−π/4, π/4]. The representative object of each class is changed randomly in different repetitions of
the experiment. All rendered images are converted to greyscale, downsampled to the resolution of
50×50 pixels and normalized to unit norm. The training and test sets for each manifold consist of
500 random observations of the objects of the same class within the same parameter range. Some
images from an object observation manifold are displayed in Figure 3.6.

In both experimental setups, we use training images only for the computation of the centroids of
space regions. We compute the centroid of a region of Rn experimentally by taking random training
images, checking if they are in the inquired region, and then computing the arithmetic average of
inliers when a sufficient number of them are accumulated as suggested in [72]. Once the centroids
are computed, we estimate their projections onto the manifold with the aid of a dense grid on the
manifold. We first locate the projection coarsely by finding the grid point that has the smallest
distance to the centroid, and then refine the location of the projection by minimizing its distance
to the centroid using gradient descent tools.

3.4.2 Results on registration accuracy

Here we test the REMD algorithm on pattern transformation and object observation manifolds.
In both experimental setups, we initialize the algorithm with a randomly selected sample set.
We compare the sample set determined by the REMD algorithm to the initial random sample
set and to a sample set defined by a regular grid over the parameter domain. The performance
evaluation criterion is the accuracy of the discretization in manifold distance estimation. For
each discretization, the distances of test points to the sample set are computed and the average
registration error is calculated. The registration error is taken as the `2-distance between the exact
projection of the test point onto the manifold and the manifold sample with smallest `2-distance
to the test point.

In the setup with pattern transformation manifolds, we build and sample the transformation
manifold of each object individually. For each object the experiment is repeated 10 times with
different random initializations. The results are averaged over all realizations and all objects. In
Figure 3.7(a), average registration errors obtained with the REMD output, random, and regular
sample sets are plotted for several numbers of samples. Then, we compute the distance of each test
point to all manifold samples obtained with these three discretization approaches. For each test
point we determine the sample among all three sets that has the smallest distance to the test point.
In Figure 3.7(b) we report the percentage of test points that have their closest manifold sample
within the REMD output, random, and regular sample sets.

These experiments intend to measure the capability of the discretization to provide an accurate
approximation of the projection onto the manifold. As shown in the figures, the discretization
obtained by the REMD method yields the least registration error when compared to the random
discretization and the regular discretization in the parameter domain. In addition, for the majority
of the test points the most accurate approximation of the projection lies within the REMD algorithm
output sample set.

The experiments on object observation manifolds are conducted similarly. We construct and
sample the observation manifold of each object individually. Experiments are repeated 5 times for
each class with different random initializations. The results are again averaged over all realizations
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and all objects. Figure 3.8(a) shows the registration errors obtained with the samplings and Figure
3.8(b) shows the percentage of test images with the best projection approximations within the
REMD output, random, and the regular sample sets. The results are in accordance with the results
obtained on pattern transformation manifolds. Note that, although the intrinsic dimensions of
manifolds are the same in the two experimental setups, the typical number of samples required for
accurately representing the pattern transformation manifolds and the object observation manifolds
is quite different in these experiments. This is due to the differences in the type and range of
the geometric transformation parameters that generate the manifolds. The fact that the object
observation manifolds are defined over a relatively small parameter domain makes it possible to
represent them with fewer samples compared to the pattern transformation manifolds for similar
performance.
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Figure 3.7: Sampling results obtained on pattern transformation manifolds

3.4.3 Results on transformation-invariant classification

In this part, we evaluate the performances of the discretization approaches in Section 3.3 in
transformation-invariant classification. In all of the pattern transformation manifold experiments,
the image set of each object in the database is regarded as a different signal class. Similarly, in the
synthetical objects database, the rendered images of each class of objects are considered to belong
to a separate signal class. Only training images are available to the sampling algorithms, and the
classification performance is measured on test images. Once sample sets are obtained, the class
label of a test image is estimated as the class label of the manifold sample with smallest distance
to it. In all of the following figures, the correct classification rates of test images are plotted in
percentage with respect to the number of samples per manifold. All experiments are repeated 10
times with different random algorithm initializations and averaged.

First, we compare the REMD algorithm, the random discretization and the regular discretiza-
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Figure 3.8: Sampling results obtained on object observation manifolds

tion in the parameter domain with respect to their classification performances. The experimental
setting is the same as that of Section 3.4.2; i.e., the transformation manifold of each class is sam-
pled individually with the REMD algorithm, random discretization, and regular discretization,
where an equal number of samples are selected on each manifold. The results obtained on pat-
tern transformation manifolds and object observation manifolds are plotted respectively in Figures
3.9(a) and 3.9(b). The plots indicate that in both setups, the REMD output sample set has higher
classification performance compared to the random and regular discretizations. This is in agree-
ment with the results of the registration experiments of Section 3.4.2, confirming the dependency
of the transformation-invariant classification performance on the accuracy of manifold distance
estimation. When the two plots in Figures 3.9(a) and 3.9(b) are compared, it is seen that the
classification rate improvement introduced by REMD or by increasing the number of samples is
higher in pattern transformation manifolds. This can be explained by the difference between the
two setups. In object observation manifold experiments there are several object models belonging
to the same class. Therefore, space points have a relatively large deviation from the manifold of the
representative object. This deviation is smaller in pattern transformation manifolds as the space
points of a specific class are the images of the same object.

Then we search the efficiency of jointly optimizing all manifold samples in comparison with
sampling each manifold individually. For this purpose, we first select an equal number of samples
from each manifold independently with the REMD algorithm as in the previous experiment. Then
we apply an additional stage of joint optimization, where we optimize the samples from all classes
together with two alternative approaches. In the first approach, we optimize the output sample set
of the REMD algorithm further with the CMD algorithm (marked simply as CMD in the plots).
In the second one we again begin with the REMD output sample set, but then perform the joint
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Figure 3.9: Classification results obtained by sampling class representative manifolds individually

optimization of manifold samples using a simulated annealing algorithm where we define the cost
function as the classification error ε in (3.13). We name this approach Manifold Discretization with
Simulated Annealing (MDSA). The simulated annealing algorithm is based on seeking the global
optimum by trying random search directions, whereas the CMD algorithm has a more restricted
search domain. Therefore, the results with MDSA are provided as a benchmark for the evaluation
of the efficiency of CMD. The correct classification rates are plotted in Figure 3.10(a) for pattern
transformation manifolds and in Figure 3.10(b) for object observation manifolds. The results show
that the joint optimization of manifold samples after the individual sampling stage brings a signifi-
cant improvement on the classification rate. This is consistent with the expectation that the relative
characteristics of manifolds, i.e., their structures with respect to each other, should also be taken
into account as well as their individual characteristics in classification. Moreover, the performances
of the sample sets obtained by CMD and MDSA are close to each other. This shows that CMD is
an effective constructive algorithm. The slight superiority of MDSA to CMD is justifiable in the
sense that the CMD algorithm performs a one-dimensional search in the parameter domain at each
update step, whereas in simulated annealing the search space is full dimensional in the parameter
domain.

Finally, in a third experiment we examine the effect of the uneven distribution of the total
sample budget to different manifolds. We compare the performances of the CMD algorithm with
equal budget distribution to different manifolds, DMD, and MDPA, which have been discussed in
Section 3.3.3. In order to test CMD, we first select an equal number of samples from each manifold
independently with the REMD algorithm, and then optimize the output of REMD in a further
stage with CMD as in the previous experiment. We apply the same procedure for DMD as well; it
is initialized with the output of REMD with equally distributed samples, where the movement of
samples between different manifolds is allowed afterwards to optimize the distribution of the sample
budget. The correct classification rates obtained with the three sampling approaches are plotted
with respect to the average number of samples selected per manifold in Figures 3.11(a) and 3.11(b),
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Figure 3.10: Effect of the joint optimization of samples on classification accuracy

respectively for pattern transformation and object observation manifolds. The results suggest that
an uneven distribution of the sample budget to different manifolds according to their geometric
properties may improve the classification accuracy when compared to the equal distribution of
samples. It is seen that the performances of DMD and MDPA are close to each other in the object
observation manifolds experiment. However, in the pattern transformation manifolds experiment,
the number of available training images per manifold sample is much smaller, which has a negative
influence on the efficiency of budget distribution in the first stage of progressive sample deletion in
MDPA.

3.4.4 Discussion of results

Here we interpret our experimental results from the perspective of the trade-off between computa-
tional complexity and performance. The main motivation behind this work is the difficulty of the
exact computation of the manifold distance. The state-of-the-art methods accomplishing manifold
distance computation are considerably demanding. For instance, the algorithm proposed in [18]
involves a complexity of O(K n1 n2), where K is the number of atoms used in the decomposition
of the reference pattern and n1 × n2 is the image resolution, while a similar algorithm complexity
is reported in [2]. On the other hand, in order to estimate the manifold distance we propose the
utilization of a suitable manifold grid that is to be determined offline. Once the grid is obtained,
the manifold distance estimation is simplified merely to the computation of the norms of the differ-
ence vectors between the query signal and the samples, which clearly reduces the cost of distance
estimation significantly. Meanwhile, it is not easy to draw a general conclusion in the comparison of
the accuracies of manifold distance computation algorithms and our grid approach. This is highly
dependent on the algorithms under comparison. For instance, the algorithm in [18] is guaranteed
to find the global solution in the projection of query images onto pattern transformation mani-
folds, resulting in a perfectly accurate distance computation for the studied transformation model.
However, methods such as [4], [2], [3] do not have such optimal performance guarantees. In the
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Figure 3.11: Effect of the uneven distribution of sample budget on classification accuracy

approximation of the manifold distance with a grid, the registration accuracy is clearly dependent
on the number of samples, and the registration error asymptotically approaches zero as the number
of samples increases. We also note that, in presence of large geometric transformations the grid ap-
proach may have an advantage over algorithms based on tangent distance, which are susceptible to
local minima. Considering these, we conclude that sample-based approaches achieve a compromise
between accuracy and computational effort.

Now, let us turn to the complexity of the discretization process. We begin with the REMD
algorithm. In each iteration of REMD, first the regions Ri are computed and then the samples Si
are optimized. In the first stage, the cells Ri are numerically determined by identifying the manifold
sample closest to each training image. Therefore, the complexity of computing the Ri’s is O(NTn),
where T is the number of training images, N is the number of manifold samples and n is the data
dimension. Next, in the second stage, the samples Si are computed by projecting the centroids of
the regions Ri onto the manifold. The complexity of computing the centroids of all regions is O(Tn)
since this requires the summation of a total of T training images. Then, in our implementation,
we simply computed the projections of centroids onto the manifold with the aid of a dense grid. If
the sample locations do not change much, one can also employ a descent-type optimization for this
stage. Note however that centroid projection is in fact an image registration problem, and a variety
of solutions may be applicable depending on the geometric transformation model (e.g., [73], [65]).
Let g denote the complexity parameter of this registration stage (for instance, g may refer to the
grid density, or the dimension d of the manifold if gradient descent is used). Then the complexity
of centroid projection is O(Ngn) as this is repeated for all N samples, which gives the complexity
of the second stage as O(Tn+Ngn). Summing up the complexities of the first and second stages,
we obtain the overall complexity of the REMD algorithm as O(NTn + Ngn). The runtime of a
non-optimized MATLAB implementation of the algorithm is around a few minutes for N = 16 in
the experiment reported in Figure 3.7.

Next, we derive the complexity of the CMD algorithm. First, in the main loop of the algorithm,
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the determination of the misclassified regions Θm
i (k) and Φm

i (k) requires the comparison of the
distances between all training images and all samples. The complexity of determining these regions
is therefore O(TJ NJ n), where TJ and NJ denote respectively the total number of training images
and samples from all classes. The complexity of computing the centroids θmi (k) and φmi (k) of these
regions is O(TJ n). Next, consider the optimization of one sample Smi . As in the analysis of the
REMD algorithm, the projections of θmi (k) and φmi (k) onto the manifold can be computed with a
complexity of O(g n). Then, the update steps in (3.20) and (3.21) require the minimization of the
classification error ε, which is based on the inspection of the regions Θm

i (k) and Φm
i (k). Therefore,

these updates can be achieved with a complexity of at most O(TJ NJ n). This gives the complexity
of the optimization of a single sample as O(g n+TJ NJ n). Multiplying this with the total number
of samples NJ and summing up the complexity of all stages, the overall complexity of the CMD
algorithm is obtained as O(NJ g n+ TJ N

2
J n).

Finally, we note that the classification performance of CMD, which has a refined search space,
is fairly close to that of MDSA where the correct classification rate is optimized by simulated
annealing. Comparing these two approaches with respect to their convergence rates, we have
seen that CMD terminates in a much less number of iterations, which is a result of its capability
of assessing the proper search directions. Yet, the overall running time of the CMD algorithm
depends on the computational time required by the projection of space points onto manifolds. The
speed of the required registration block depends on the type of transformations involved. Efficient
solutions exist for certain geometric transformations. For instance, the phase correlation method
[73] is a well-known and fast technique that recovers image translations. We remark also that
image registration is an active research field and recent works such as [74] are promising for the
generalization of such techniques to handle a wider range of geometric transformations.

3.5 Conclusion

In this chapter, we have studied the sampling of signal manifolds with known parameterization.
We have presented a method for the discretization of a single manifold such that the sample set
yields a good registration accuracy. Then we have generalized the problem to the discretization of
multiple signal manifolds representing different classes of signals; we have proposed a method for
the joint optimization of all manifold samples in order to preserve high classification performance.
We have also discussed possible ways of optimizing the distribution of a fixed sample budget to
different class representative manifolds in order to improve the classification accuracy. We have
tested the proposed sampling approaches on pattern transformation manifolds and object observa-
tion manifolds. Experimental results show that the registration and classification accuracy of the
distance-based sampling is considerably higher than the ones obtained with random and regular
samplings. Moreover, the consideration of the relative structures of different manifolds in the dis-
cretization improves the classification performance significantly when compared to the independent
discretization of each manifold. We have also observed that distributing the total sample bud-
get unequally to the manifolds by taking their different characteristics into account also brings an
improvement. The study presented in this chapter proposes a grid-based solution for maintaining
speed and accuracy at the same time in tasks related to the registration, modeling and classification
of data sets.



Chapter 4

Learning Pattern Transformation
Manifolds

4.1 Manifold Learning with Data Priors

In the previous chapter, we have proposed a solution for fast computation of the manifold distance
based on the discretization of manifolds, where the manifolds are sampled to yield a good accuracy in
the registration and transformation-invariant classification of data sets. While we have investigated
how one can sample effectively a given manifold model, an important problem still needs to be
resolved: how to build suitable manifolds that are good representatives of the data at hand. In
this chapter, we seek a solution for this problem for the particular class of pattern transformation
manifolds.

Given a set of images that are geometrically transformed observations of a visual signal, we
address the problem of constructing a pattern transformation manifold (PTM) that well represents
the image set. We assume that the type of transformations that generate the input images, i.e.,
the geometric transformation model, is known. However, we do not assume any prior alignment
of the input images; i.e., the individual transformation parameters corresponding to the images
are to be computed. Under these assumptions, our manifold computing problem is formulated
as the construction of a representative pattern, together with the estimation of the transformation
parameters approximating the input images. We consider a PTMmodel that is generated by smooth
geometric transformations. We propose to build the representative pattern as a linear combination
of parametric atoms selected from an analytic dictionary manifold (as defined in (2.10)). We
study the PTM building problem in two parts, where we respectively address approximation and
classification applications.

In the data approximation part, we aim at obtaining an accurate transformation-invariant
approximation of input images with the learned manifold. We iteratively construct a representative
pattern by successive addition of atoms such that the total squared distance between the input
images and the transformation manifold is minimized. The selection of an atom is then formulated
as an optimization problem with respect to the parameters and the coefficient of the atom. We
propose a two-stage solution for the atom selection, where we first estimate the parameters of
a good atom and then improve this solution. In the first stage, we derive an approximation of
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the objective function (total squared distance) in a DC (Difference-of-Convex) form; i.e., in the
form of a difference of two convex functions. We describe a procedure for computing this DC
decomposition when a DC form of the geometrically transformed atom is known. The resulting DC
approximation is minimized using a DC solver. Then, we refine the solution of the first stage with
a gradient descent method where we approximate the manifold distance by the tangent distance in
the objective function.

In the second part of our study, we extend this manifold building approach to explore
transformation-invariant image classification with PTM models. We consider multiple sets of geo-
metrically transformed observations, where each set consists of a different class of images. We study
the problem of constructing multiple PTMs such that each PTM represents one image class, and
the images can be accurately classified with respect to their distances to the constructed PTMs.
We propose an iterative method that jointly selects atoms for the representative patterns of all
classes. We define an objective function that is a weighted combination of a classification and a
data approximation error term. Then, we select atoms by minimizing a two-stage approximation
of the objective function as in the first part. We present experimental results showing that the
approaches proposed for single and multiple manifold computation perform well in transformation-
invariant approximation and classification applications in comparison with baseline methods.

Our study is linked to two main topics; manifold learning and sparse signal representations.
First, our PTM building approach can be seen as a special instance of manifold learning with
prior information on the data model. However, as discussed in Chapter 2, it differs from classical
manifold learning methods since it uses the information of the geometric transformation model in
learning a parametric and analytic manifold that fits the data. Since the manifold is constructed
in a parametric form, the mapping between the parameter domain and the high-dimensional signal
space is perfectly known. Thus, one can generate new samples on the manifold and compute the
parametrizations of initially unavailable data simply by finding their projections on the manifold.
This also permits the estimation of the distance between a test image and the computed manifolds.
It is then possible to assign class labels to test images in a transformation-invariant way by com-
paring their distances to the computed class-representative manifolds. Finally, as demonstrated
by some of our experiments, the incorporation of the model knowledge into the manifold learning
procedure brings important advantages such as robustness to data noise and sparse sampling of
data, in comparison with generic methods based on local linearity assumptions.

The method proposed in [75] is related to our work in the sense that it computes a simultaneous
alignment of a set of images that have undergone transformations, where the application of the
method to classification problems is also demonstrated. However, their technique is essentially
different from ours as it is based on the idea of “congealing” via the minimization of entropy in
the corresponding pixels of aligned images. Next, our method uses the idea of learning by fitting a
parametric model to the data. It is possible to find several other examples of this kind of approach
in the literature. For example, the article [76] is a survey on locally weighted learning, where
regression methods for computing linear and nonlinear parametric models are discussed. Efficient
computation of locally weighted polynomial regression is the focus of [77]. Meanwhile, the method in
[78] applies locally weighted regression techniques to the appearance-based pose estimation problem.
Lastly, the study in [79] proposes a method to learn dictionaries in a parametric form that yield
domain-invariant sparse signal representations.

Next, we remark the following about the relation between this work and the field of sparse
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signal approximations. Since we construct representative patterns in a greedy way, our method
bears some resemblance to sparse approximation algorithms such as Matching Pursuit (MP) [19]
or Simultaneous Orthogonal Matching Pursuit (SOMP) [80]. There are also common points be-
tween our method and the Supervised Atom Selection (SAS) algorithm proposed in [81], which is
a classification-driven sparse approximation method. SAS selects a subset of atoms from a discrete
dictionary by minimizing a cost function involving a class separability term and an approximation
term. However, the main contributions of this work in comparison with such algorithms lie in the
following. First, we achieve a transformation-invariant approximation of signals due to the trans-
formation manifold model. Furthermore, we employ an optimization procedure for computing the
atom parameters that provide an accurate approximation (or classification) of signals. This cor-
responds to learning atoms from a dictionary manifold, whereas methods such as MP and SOMP
pick atoms from a predefined discrete dictionary. This also suggests that it is possible to find
connections between our work and transformation-invariant dictionary learning, where a sparse
representation of signals is sought not only in terms of the original atoms but also in their geomet-
rically transformed versions. So far, transformation-invariance in sparse approximations has been
mostly studied for shift-invariance as in [82] and [83], and for scale-invariance as in [84], [85]. The
work presented in [86] also achieves shift-invariance in the sparse decomposition via a continuous
basis pursuit. Our PTM learning method involves the formation of atoms that ensure invariance
to a relatively wide range of geometric transformations in comparison with the above works. Our
study may thus provide some insight into transformation-invariance in sparse approximations as
well.

This chapter is organized as follows. In Section 4.2, we discuss the manifold computation
problem for transformation-invariant approximation of image signals. Then, in Section 4.3, we
present an extension of the proposed scheme for transformation-invariant classification. We discuss
the complexity of the proposed methods in Section 4.4. Finally, we conclude in Section 4.5.

4.2 Computation of PTMs for Signal Approximation

4.2.1 Problem formulation

The PTM computation problem can be briefly explained as follows. Given a set of observations
{ui}, we would like to compute a pattern p such that its transformation manifold M(p) fits the
observations {ui}. Therefore, we look for a pattern p such that the total distance between M(p)
and {ui} is minimized, which is illustrated in Figure 4.1. Now we define the problem formally.

Let p ∈ L2(R2) be a visual pattern, Λ ⊂ Rd be a closed parameter domain, and λ ∈ Λ be
a parameter vector. We define Aλ(p) ∈ L2(R2) as the pattern that is generated by applying the
geometric transformation specified by λ to p. The relation between the two patterns is expressed as
Aλ(p)(X) = p(X ′), where X = [x y]T , X ′ = [x′ y′]T , and the coordinate variables X, X ′ are related
as X ′ = a(λ,X). We assume that a is a smooth (C∞) function. Also, defining aλ(X) := a(λ,X)
for a fixed λ ∈ Λ, we assume that aλ : R2 → R2 is a bijection. Then, we define the transformation
manifold of p as

M(p) = {Uλ(p) : λ ∈ Λ} ⊂ R
n, (4.1)
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Figure 4.1: The set {ui} of geometrically transformed observations is approximated with the transforma-
tion manifoldM(p) of a representative pattern p.

where Uλ(p) ∈ Rn is an n-dimensional discretization of Aλ(p).1

Let U = {ui}Ni=1 ⊂ Rn be a set of observations of a geometrically transformed visual signal. We
would like to describe these observations as ui = Uλi(p) + ei by the transformations Uλi(p) of a
common representative pattern p, where the term ei indicates the deviation of ui from M(p). In
the selection of p, the objective is to approximate the images in U accurately. We represent the
approximation accuracy in terms of the distance of the input images to M(p). We formalize this
problem as follows.

Problem 1. Given images U = {ui}Ni=1, compute a pattern p ∈ L2(R2) and a set of transformation
parameter vectors {λi}Ni=1 ⊂ Λ, by minimizing

E =
N∑
i=1

‖ui − Uλi(p)‖2. (4.2)

The error E corresponds to the total squared distance of the input images to M(p). In order
to solve Problem 1, we propose to construct p as a sparse linear combination of some parametric
atoms from a dictionary manifold

D = {Bγ(φ) : γ ∈ Γ} ⊂ L2(R2). (4.3)

Here, each atom Bγ(φ) ∈ L2(R2) is derived from the analytic mother function φ ∈ L2(R2) through a
geometric transformation specified by a parameter vector γ. An atom is thus given by Bγ(φ)(X) =
φ(X ′), where X ′ = b(γ,X). We assume that b is a smooth function, and that bγ(X) := b(γ,X),
bγ : R2 → R2 is a bijection for any fixed γ ∈ Γ. The parameter domain Γ is assumed to be a closed
and convex subset of Rs for some s, where s is the number of transformation parameters generating
D. Hence, D is an s-manifold. Let us write φγ = Bγ(φ) for simplicity. We would like to obtain the
representative pattern in the form

p =
K∑
j=1

cj φγj

1When sampling Aλ(p) to get Uλ(p), we fix a rectangular window on R
2, and a regular sampling grid once and

for all. Note that defining the pattern transformations in the continuous space L2(R2) instead of Rn, together with
constructing p with parametric atoms in L2(R2), saves us from resampling and interpolation ambiguities.
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as a combination of K atoms {φγj} with coefficients {cj}. Under these assumptions, we reformulate
the previous problem as follows.

Problem 2. Given images U = {ui}Ni=1, an analytic mother function φ, and a sparsity constraint
K; compute a set of atom parameter vectors {γj}Kj=1 ⊂ Γ, a set of coefficients {cj}Kj=1 ⊂ R, and a
set of transformation parameter vectors {λi}Ni=1 ⊂ Λ, by minimizing

E =
N∑
i=1

‖ui − Uλi
( K∑
j=1

cj φγj
)
‖2. (4.4)

Note that the construction of p with smooth atoms assures the smoothness of the resulting
transformation manifold. A manifold point Uλ(p) ∈ Rn is given by the discretization of the function

Aλ(p)(X) = p(aλ(X)) =
K∑
j=1

cj φγj (aλ(X)) =
K∑
j=1

cj φ(bγj ◦ aλ(X)) (4.5)

where the notation ◦ stands for function composition. Here aλ(X) is a smooth function of λ; and
b and φ are smooth functions, too. Therefore, Aλ(p)(X) is a smooth function of λ. Then, each
component Uλ(p)(l) of Uλ(p) is a smooth function of λ, for l = 1, . . . , n.

4.2.2 PTM building algorithm

We now describe an algorithm for the solution of Problem 2. Due to the complicated dependence
of E on the atom and projection parameters, it is hard to find an optimal solution for Problem
2. Thus, we propose a greedy method that builds a pattern p iteratively by selecting atoms from
D. Each successive version pj of the pattern p leads to a different manifold M(pj), whose form
gradually converges to the final solution M(p). During the optimization of the atom parameters
in each iteration, we first locate a good initial solution by minimizing a DC approximation of the
objective function using DC programming. We then refine our solution by using a locally linear
approximation of the manifold near each input image and minimizing the total tangent distance to
the manifold with gradient descent. The reason for our choice of a two-step optimization in atom
selection is the following. The DC solver used in our implementation is the cutting plane algorithm,
which slows down as the number of vertices increases throughout the iterations. Therefore, in
practice, we use the DC programming step for approaching the vicinity of a good solution and we
terminate it when it slows down. Then, we continue the minimization of the function with gradient
descent. Considering that the DC program is not affected by local minima and gradient descent is
susceptible to local minima, using these two methods respectively for the first and second parts is
a suitable choice. We start by giving a brief discussion of DC functions [87] that are used in our
algorithm.

Definition 7. A real valued function f defined on a convex set C ⊂ Rs is called DC on C if for all
x ∈ C, f can be expressed in the form

f(x) = g(x)− h(x) (4.6)
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where g, h are convex functions on C. The representation (4.6) is said to be a DC decomposition
of f .

An important fact about DC functions is the following2 [87].

Proposition 1. Every function f : Rs → R whose second partial derivatives are continuous every-
where is DC.

The global minimum of DC functions can be computed using DC solvers such as the cutting
plane algorithm and the branch-and-bound algorithm [89], which is a major reason for the choice
of DC programming in this work. There are also some DC optimization methods such as DCA [90]
and the concave-convex procedure (CCCP) [91], which have favorable computational complexities
and converge to a local minimum. The theoretical guarantee for finding the global minimum with
the cutting plane algorithm is lost when the DC program is terminated before exact convergence as
in our implementation; however, the overall two-step minimization gives good results in practice.

Equipped with the DC formalism, we can now describe our iterative manifold learning algorithm.
As the atom selection procedure requires the computation of the distance between the input images
and the PTM, the algorithm initially needs rough estimates of the parameter vectors. Therefore,
we first assign a tentative set of parameter vectors {λi} to the images {ui} by projecting {ui}
onto some reference transformation manifold M(Ψ). The pattern Ψ can be possibly chosen as a
typical pattern in the input set (an L2(R2)-representation of some ui). Then, the parameter vector
assigned to an image is given by λi = arg minλ∈Λ ‖ui − Uλ(Ψ)‖. We compute the transformation
parameters by first roughly locating the projections with the help of a grid, and then performing a
line search near the closest grid point.

Now let us describe the j-th iteration of the algorithm. Let pj−1 denote the pattern consisting
of j − 1 atoms (one can set p0=0). In the j-th iteration we would like to choose an atom φγj ∈ D
and a coefficient cj such that the data approximation error

E =
N∑
i=1

‖ei‖2 =
N∑
i=1

d2(ui,M(pj)) (4.7)

is minimized, where pj = pj−1 + cj φγj . We remark that the cost function in (4.4) is defined as
a function of all atom parameters {γj}Kj=1 and coefficients {cj}Kj=1, however, the one in (4.7) is
considered only as a function of γj and cj . For simplicity, we use the same symbol E for these two
functions with an abuse of notation.

Notice that the values of {λi} may change between iterations j−1 and j, because the projection
points change when the manifold is updated. The alteration of {λi} is illustrated in Figure 4.2. At
the beginning of the j-th iteration, the vectors {λi} take the values computed at the end of iteration
j − 1 by projecting {ui} onM(pj−1). Therefore, d(ui,M(pj)) 6= ‖ui − Uλi(pj)‖ in general. In the
minimization of E, it is not easy to formulate and compute the exact distance d(ui,M(pj)), since it

2Proposition 1 is the original statement of Corollary 4.1 in [87], which holds for functions defined on R
s. However,

a function defined on a convex subset of Rs with continuous second partial derivatives is also DC. This can be easily
seen by referring to the proof of Corollary 4.1 in [87], which is based on the fact that locally DC functions are DC,
and to Hartman’s proof [88] that locally DC functions defined on a convex subset of Rs are DC on the same domain.
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Figure 4.3: Si(pj) is the first order approximation of the manifold M(pj) around Uλi(pj). Here, the
difference vector ei between ui and its exact projection onM(pj) is approximated by the difference vector
êi between ui and its projection on Si(pj).

would require the formulation of λi as a function of the optimization variables, which does not have
a known closed-form expression. Therefore, we propose to minimize E in two stages. Let γ = γj
and c = cj denote the parameters and the coefficient of the new atom for the ease of notation. In
the first stage, we define a coarse approximation

Ẽ =
N∑
i=1

‖ẽi‖2 =
N∑
i=1

‖ui − Uλi(pj−1 + c φγ)‖2 =
N∑
i=1

‖vi − cUλi(φγ)‖2 (4.8)

of E, where vi = ui−Uλi(pj−1) is a constant with respect to γ and c. Note that the operator Uλ(·)
is linear, since for two patterns p, r, and a scalar c, we have

Aλ(c p+ r)(X) = (c p+ r)(aλ(X)) = c p(aλ(X)) + r(aλ(X)) = cAλ(p)(X) +Aλ(r)(X).

We have the following proposition.

Proposition 2. Ẽ is a DC function of γ and c. Moreover, if a DC decomposition for the compo-
nents (pixels) of the transformed atom Uλ(φγ) is known, a DC decomposition of Ẽ is computable.
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The proof of Proposition 2 is given in Appendix A.1. Although finding the DC decomposition of
an arbitrary function is an open problem, DC decompositions are available for important function
classes [89]. See, for instance, [18] for the derivation of the DC decompositions of several elementary
functions, and [89] for operations with known DC decompositions. For the rest of our discussion,
we assume that a DC decomposition of the components of Uλi(φγ) is computable. We can therefore
minimize Ẽ using the cutting plane algorithm discussed in [89] and [18]. This provides an initial
solution for the atom that is optimized further in the next stage.

In the second stage of our method, we approximate E by another function Ê, which is the sum
of the squared tangent distances of {ui} to the updated manifoldM(pj). Let Si(pj) denote the first
order approximation ofM(pj) around Uλi(pj), where λi is still as computed at the end of iteration
j − 1. Then, the distance d(ui,Si(pj)) between ui and Si(pj) is called the tangent distance [3] and
it provides an approximation for d(ui,M(pj)) (illustrated in Figure 4.3). Hence, Ê is given by

Ê =
N∑
i=1

‖êi‖2 =
N∑
i=1

d2(ui,Si(pj)). (4.9)

The complete derivations of Ê, Si(pj) and the distance to Si(pj) are given in Appendix A.2. We
minimize Ê over (γ, c) using a gradient descent algorithm. At the end of this second stage, we
finally obtain our solution for the atom parameters γ and the coefficient c.

The new atom is then added to the representative pattern such that pj = pj−1 + c φγ . Since
pj is updated, we recompute the projections of {ui} on the new manifoldM(pj) and update {λi}
such that they correspond to the new projection points. The projections can be recomputed by
performing a search in a small region around their previous locations.

We continue the iterative approximation algorithm until the change in E becomes insignificant
or a predefined sparsity constraint is reached. We also finalize the algorithm in case an update
increases E, which might occur as the atom selection is done by minimizing the approximations of
E. The termination of the algorithm is guaranteed as E is forced to be non-increasing throughout
the iterations. However, due to the complicated structure of the method that uses several approx-
imations of E, it is hard to provide a theoretical guarantee that the solution p, {λi}Ni=1 converges,
even if that has been the case in all experiments. We name this method Parameterized Atom
Selection (PATS) and summarize it in Algorithm 3. The complexity of the algorithm is discussed
in Section 4.4. As a final remark, we discuss the accuracy of the reformulation of the objective
function E in (4.2) in several stages of the algorithm. To begin with, the error arising from ap-
proximating (4.2) with (4.4) asymptotically approaches 0 as the number of atoms in the sparse
approximation is increased, provided that the span of D is dense in L2(R2). Then, the gradual
minimization of (4.4) via minimizing (4.7) also introduces an error, which is a common feature of
greedy algorithms. Next, the deviation of Ẽ in (4.8) from E in (4.7) mainly depends on the amount
of change in the transformation parameters between consecutive iterations. Starting the algorithm
with a good initialization of parameters helps to reduce this error. Moreover, the inaccuracy caused
by this approximation is partially compensated for in the next stage as Ê accounts for parameter
changes. The accuracy of this second approximation essentially depends on the nonlinearity of the
manifold; i.e., Ê = E if the manifold is linear. However, even if the manifold has high curvature, the
approximation Ê ≈ E is accurate if the change in the transformation parameters is small between
adjacent iterations, which is often the case especially in late phases of the algorithm.
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Algorithm 3 Parameterized Atom Selection (PATS)
1: Input:
U = {ui}Ni=1: Set of observations

2: Initialization:
3: Determine a tentative set of parameter vectors {λi} by projecting {ui} on the transformation

manifoldM(Ψ) of a reference pattern Ψ.
4: p0 = 0.
5: j = 0.
6: repeat
7: j = j + 1.
8: Optimize the parameters γ and the coefficient c of the new atom with DC programming such

that the error Ẽ in (4.8) is minimized.
9: Further optimize γ and c with gradient descent by minimizing the error Ê in (4.9).

10: Update pj = pj−1 + c φγ .
11: Update parameter vectors {λi} by projecting {ui} ontoM(pj).
12: until the approximation error E converges or increases
13: Output:

p = pj : A representative pattern whose transformation manifoldM(p) fits the input data U

4.2.3 Experimental results

We now present experimental results demonstrating the application of PATS in transformation-
invariant image approximation. We first describe the experimental setup. We experiment on the
PTM model given in (2.2). The transformed image Uλ(p) is a discretization of Aλ(p), where
Aλ(p)(X) = p(X ′) and the coordinate transformation between p and Aλ(p) is given by[

x′

y′

]
=
[
s−1
x 0
0 s−1

y

] [
cos θ sin θ
− sin θ cos θ

] [
x− tx
y − ty

]
. (4.10)

We use the dictionary manifold model given in (2.10), where we take the mother function φ as the
normalized Gaussian function

φ(X) =

√
2
π
e−(x2+y2). (4.11)

In Appendix A.3, we describe the computation of the DC decompositions of Uλ(φγ) and the error
Ẽ for this setup.

In the first set of experiments, we test the PATS algorithm on two data sets, which consist of
handwritten “5” digits and face images. The first data set is generated from the MNIST handwritten
digits database [92] by applying random geometric transformations to 30 randomly selected images
of the “5” digit. The second data set consists of 35 geometrically transformed face images of a single
subject with facial expression variations [93], which is regarded as a source of deviation of the data
from the manifold. Both data sets are generated by applying rotations, anisotropic scalings and
translations.

In the experiments we measure the data approximation error of the learned pattern, which is
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the average squared distance of input images to the computed transformation manifold. In the
plots, the data approximation error is normalized with respect to the average squared norm of
input images.

In order to evaluate the performance of the PATS method, we compare it with the following
baseline approaches.

• MP on average pattern: We determine a representative pattern (average pattern) by picking
the untransformed image that is closest to the centroid of all untransformed data set images.
Then, we obtain progressive approximations of the average pattern with Matching Pursuit
[19].

• SMP on aligned patterns: We obtain a progressive simultaneous approximation of untrans-
formed images with the Simultaneous Matching Pursuit algorithm explained in [94]. SMP
selects in each iteration one atom that approximates all images simultaneously, but the coef-
ficient of the atom is different for each image. We construct a pattern gradually by adding
the atoms chosen by SMP and weighting them with their average coefficients.

• Locally linear approximation: We compute the locally linear approximation error, which is
the average distance between an image and its projection onto the plane passing through its
nearest neighbors. We include this error, since typical manifold learning algorithms such as
[6] and [7] use a linear approximation of the manifold.

The dictionary used in the first two methods above is a redundant sampling of the dictionary
manifold in (2.10). The results obtained on the digit and face images are given respectively in
Figures 4.4 and 4.5. Some images from each data set are shown in Figures 4.4(a) and 4.5(a). The
patterns built with the proposed method are displayed in Figures 4.4(b) and 4.5(b). It is seen that
the common characteristics of the input images are well captured in the learned patterns. The
data approximation errors of the compared methods are plotted in Figures 4.4(c) and 4.5(c). The
errors of the PTM-based methods are plotted with respect to the number of atoms used in the
progressive generation of patterns. The results show that the proposed method provides a better
approximation accuracy than the other approaches. The approximation accuracies of MP and SMP
are better in the face images experiment compared to the digits experiment. This can be explained
by the fact that face images of the same subject have smaller numerical variation with respect to
handwritten digit images; therefore, an average pattern in the data set can approximate the others
relatively well.3 One can also observe that the locally linear approximation error is significantly
high. The local linearity assumption fails in these experiments because of the sparse sampling of
the data (small number of images), whereas PTM-based methods are much less affected by such
sampling conditions.

In a second experiment, we study the effect of occlusions and outliers in PTM building. We
experiment on the same digits data set as before, with a transformation model consisting of 2-D
translations, where only the parameters tx, ty in (2.2) are used. The images are randomly occluded
with horizontal and vertical stripes as shown in Figure 4.6(a). We generate four different data
sets, where the first one consists of 150 images of only the digit “2”. We obtain the other data sets

3In an evaluation on the aligned and normalized versions of the input images, the average squared distance to
the centroid is found as 0.40 for the digit images and 0.01 for the face images.
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Figure 4.4: Manifold approximation results with
handwritten “5” digits. (a) Images from the digits data
set. (b) Learned pattern. (c) Approximation error.
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Figure 4.5: Manifold approximation results with face
images. (a) Images from the face data set. (b) Learned
pattern. (c) Approximation error.

by adding the first data set outliers consisting of a mixture of “3”, “5” and “8” digits, where the
outlier/inlier ratio is 10%, 20% and 30%. We test the PATS method using a dictionary generated
with the inverse multiquadric mother function given by

φ(X) = (1 + x2 + y2)µ, µ < 0.

We have set µ = −3 in the experiments. The computation of the DC decomposition for this
mother function is explained in Appendix A.3. The patterns learned with all four data sets are
shown in Figure 4.6(b), and the errors are plotted in Figure 4.6(c). The errors obtained with
SMP on aligned patterns are also given for comparison. It is shown that the proposed method can
recover a representative “2” digit in spite of the occlusions. As the ratio of outliers is augmented, the
characteristics of the learned pattern gradually diverge from the “2” digit; and the approximation
error increases as the average deviation of the data from the “2” manifold is increased.

Then, in a third experiment, we search the effect of some algorithm settings on the performance
of PATS. We experiment on a data set from the Extended Yale Face Database B [95] where face
images are captured under varying illumination conditions. We create a data set of 90 images
by applying geometric transformations consisting of anisotropic scaling to the images of a single
subject, where only the parameters sx, sy in (2.2) are used. Some sample data set images are
shown in Figure 4.7(a). We apply the PATS algorithm in three different settings. In the first
setting, the algorithm is used in its normal mode; i.e., in line 3 of Algorithm 3, parameters are
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Figure 4.6: Manifold approximation results with oc-
cluded digit images with outliers. (a) Images from
the occluded digits data set. (b) Learned patterns,
from left to right: 0%, 10%, 20%, 30% outliers. (c)
Approximation error.
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Figure 4.7: Manifold approximation results with face
images with varied illumination conditions. (a) Images
from the Yale face data set. (b) Learned patterns,
from left to right: Normal setting, without gradient
descent, bad initialization. (c) Approximation error.
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Figure 4.8: Dependence of the approximation error on data noise. The largest noise variance 2 × 10−4

corresponds to an SNR of 9.054 dB.

initialized with respect to the data set image having the smallest distance to the centroid of all
images. In the second setting, the initialization is done in the same way; however, line 9 of the
algorithm (gradient descent) is omitted. The third setting is the same as the first setting except
that the algorithm is started with a bad initialization, where the alignment in line 3 is done with
respect to the data set image having the largest distance to the centroid. The patterns learned in
all three settings are shown in Figure 4.7(b), and the approximation errors are plotted in Figure
4.7(c). The algorithm does not output clear facial features due to the variation of illumination. The
gradient descent step is seen to bring a certain improvement in the performance. The results also
show that the algorithm has a sensitivity to initialization. A significant change in the initial values
of the transformation parameters causes the algorithm to compute a different solution. In order
to provide a comparison, we also plot the results obtained with “SMP on aligned patterns” with
default and bad alignments. The fact that the error difference between the two cases is much larger
in SMP compared to PATS suggests that PATS can nevertheless compensate for a bad initialization
of transformation parameters to some extent.

Finally, in a last experiment we examine the approximation accuracy of the learned manifold
with respect to the noise level of the data set. We form a synthetic pattern r that is composed
of 10 randomly selected atoms from D. Then, we generate a data set U of 50 images by applying
to r random geometric transformations of the form (2.2). We derive several data sets from U
by corrupting its images with additive Gaussian noise, where each data set has a different noise
variance. Then, we run the PATS algorithm on each data set. In Figure 4.8, the data approximation
error is plotted with respect to the noise variance. The deviation between U and M(r) depends
on the noise level, and the ideal approximation error is linearly proportional to the noise variance.
Such a linear dependency can be observed in Figure 4.8. However, it is observed that the curve
does not pass through the origin, which is due to the suboptimal greedy nature of the algorithm.
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4.3 Joint Computation of PTMs for Classification

In this section we consider multiple image sets, where each set consists of geometrically transformed
observations of a different visual signal class. We build on the scheme presented in Section 4.2.2
and extend the PATS algorithm for joint manifold computation in classification applications.

4.3.1 Problem formulation

Consider a collection of images U =
⋃M
m=1 Um ⊂ Rn consisting of M classes, where each subset

Um = {umi }Nmi=1 consists of Nm geometrically transformed observations of a visual signal of class
m. We would like to represent each set Um by a transformation manifold M(pm) ⊂ Rn that is
generated by the geometric transformations of a representative pattern pm as in (2.4). We would
like to build {Mm} such that they provide a good representation of the images in U and also permit
us to classify them accurately by manifold distance computation. Hence, in the construction of the
manifolds, we formulate the objective function as a weighted combination of two terms Ea and Ec,
which respectively represent approximation and classification errors. The approximation error Ea
is given by the sum of the squared distances of images to the manifold of the same class

Ea =
M∑
m=1

Nm∑
i=1

‖emi ‖2 =
M∑
m=1

Nm∑
i=1

d2(umi ,Mm). (4.12)

We assume that an image is assigned the class label of the manifold with smallest distance to
it. We define a misclassification indicator function I such that for umi ∈ Um

I(umi ) =
{

0, if d(umi ,Mm) < minr 6=m d
(
umi ,Mr

)
1, otherwise. (4.13)

Then, the classification error Ec is the total number of misclassified data points.

Ec =
M∑
m=1

Nm∑
i=1

I(umi ) (4.14)

We would like to compute {Mm}Mm=1 such that the weighted error

E = Ea + αEc (4.15)

is minimized, where α > 0 is a coefficient adjusting the weight between the approximation and
classification terms. We formulate a generic PTM learning problem as follows.

Problem 3. Given image sets {Um}, compute patterns {pm} ⊂ L2(R2) and transformation pa-
rameters {λmi } ⊂ Λ, m = 1, . . . ,M and i = 1, . . . , Nm, by minimizing

E =
M∑
m=1

Nm∑
i=1

(
‖umi − Uλmi (pm)‖2 + α I(umi )

)
. (4.16)

Our solution is based on constructing each pm with atoms from the dictionary manifold D
defined in (4.3). We reformulate Problem 3 under these assumptions.
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Problem 4. Given image sets {Um}, a mother function φ and sparsity constraints {Km}; compute
a set of atom parameters {γmj } ⊂ Γ, coefficients {cmj } ⊂ R, and transformation parameters {λmi } ⊂
Λ for m = 1, . . . ,M , j = 1, . . . ,Km and i = 1, . . . , Nm, by minimizing

E =
M∑
m=1

Nm∑
i=1

(
‖umi − Uλmi

( Km∑
j=1

cmj φγmj
)
‖2 + α I(umi )

)
. (4.17)

4.3.2 Classification-driven PTM learning

Problem 4 is similar to Problem 2, except that it also involves a classification error term that has
a quite complex dependence on the optimization variables. Therefore, it is hard to solve optimally.
We present a greedy solution based on building {pm} iteratively with joint atom selection.

We begin with a tentative assignment of parameter vectors. In (4.17) each vector λmi corresponds
to the projection of umi onMm. We assign {λmi } by picking a reference pattern Ψm for each class
and then projecting each Um ontoM(Ψm). We also compute the cross-projection vectors {λm,ri },
where

λm,ri = arg min
λ∈Λ
‖umi − Uλ(pr)‖

corresponds to the projection of umi ontoMr.
Then, we construct {pm} by gradually adding new atoms to each pm. In the j-th iteration of the

algorithm, we would like to optimize the parameters γmj and coefficients cmj of the new atoms such
that the weighted error E is minimized. Now we consider the j-th iteration and denote γm = γmj ,
cm = cmj . Then γ = [γ1 γ2 . . . γM ] and c = [c1 c2 . . . cM ] are the optimization variables of the j-th
iteration. We consider E as a function of γ and c similarly to Section 4.2 and propose to minimize
E through a two-stage optimization. We first obtain an approximation Ẽ of E, which is in a DC
form. We minimize Ẽ using the cutting plane algorithm and estimate a coarse solution, which
is used as an initial solution in the second stage. Then in the second stage, we define a refined
approximation Ê of E based on the tangent distances of images to the manifolds and minimize it
with a gradient-descent algorithm.

The minimization of Ẽ and Ê determines a solution for γ and c. We update the pattern pm of
each class by adding it the selected atom with parameters γm and coefficient cm (in practice, we
add an atom only if its coefficient is significant enough). Then, we recompute the transformation
parameters {λmi } and {λm,ri } by projecting the images onto the new manifolds. We have observed
that selecting the atoms by minimizing a combination of approximation and classification terms
instead of only a classification term gives better results, especially for robustness to data noise.
Still, we would like to make sure that the selected atoms improve the classification performance at
the end of an iteration. Therefore, the decision of accepting the updates on the manifolds is taken
according to the classification error Ec in (4.14). If Ec is not reduced we reject the updates and
pass to the next iteration.4 We continue the iterations until the classification error Ec converges.
The termination of the algorithm is guaranteed by constraining Ec to be non-increasing during

4In the course of the algorithm, parameters β and α are adapted such that the emphasis is shifted from approxi-
mation capabilities in early phases to classification capabilities in later phases. This is explained in more detail in
Section 4.3.3. For this reason, even if the classification error does not decrease in one iteration, it may do in the next
one.
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Algorithm 4 Joint Parameterized Atom Selection (JPATS)
1: Input:
U =

⋃M
m=1 Um: Set of observations for M signal classes

2: Initialization:
3: Determine tentative parameter vectors {λm,ri } by projecting {umi } on the transformation mani-

folds {M(Ψm)} of reference patterns {Ψm}.
4: pm0 = 0 for m = 1, . . . ,M .
5: j = 0.
6: Initialize the sigmoid parameter β and the weight parameter α.
7: repeat
8: j = j + 1.
9: Optimize the joint atom parameters γ = [γ1 γ2 . . . γM ] and coefficients c = [c1 c2 . . . cM ]

with DC programming such that the error Ẽ in (4.24) is minimized.
10: Further optimize γ and c with gradient descent such that the refined error Ê in (4.27) is

minimized.
11: Update pmj = pmj−1 + cm φγm for m = 1, . . . ,M if cm is significant.
12: Update the parameter vectors {λm,ri }.
13: Update β and α.
14: Check if the new manifolds reduce the classification error Ec. If not, reject the updates on

pm and {λm,ri }, and go back to 9.
15: until the classification error Ec converges
16: Output:
{pm} = {pmj }: A set of patterns whose transformation manifolds {Mm} represent the data
classes Um

the iterations, which in return stabilizes the objective function E. We call this method Joint
Parameterized Atom Selection (JPATS) and summarize it in Algorithm 4.

Let us come to the detailed description of the approximations of E in the two-stage optimiza-
tion. Let {pmj−1} and {Mm

j−1} denote the patterns and the corresponding transformation manifolds
computed after j − 1 iterations. For simplicity of notation, we will use the conventionMm =Mm

j

and pm = pmj throughout the derivations of Ẽ and Ê.

In the first step, we obtain Ẽ in the form Ẽ = Ẽa + α Ẽc, where Ẽa and Ẽc are respectively
the approximations of Ea and Ec. The first term Ẽa is simply given by the generalization of the
approximation error in (4.8) to the multiple manifold case.

Ẽa =
M∑
m=1

Nm∑
i=1

‖ẽmi ‖2 =
M∑
m=1

Nm∑
i=1

‖vmi − cm Uλmi (φγm)‖2 (4.18)

where the parameters λmi are the ones computed at the end of iteration (j − 1), and vmi = umi −
Uλmi (pmj−1).

Then, we derive Ẽc in the following way. Notice that the classification error Ec in (4.14) is a
discontinuous function of γ and c due to the discontinuity of the misclassification indicator function
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I. Let r(umi ) denote the index of the manifold with smallest distance to an image umi among the
manifolds of all classes except its own class m; i.e.,

r(umi ) = arg min
r 6=m

d(umi ,Mr).

Clearly, r(umi ) can take different values throughout the iterations. However, for simplicity, in the
j-th iteration we fix the indices r(umi ) to their values attained at the end of iteration (j − 1) and
denote them by the constants rmi . Then we can define the function

f(umi ) = d2(umi ,Mm)− d2(umi ,Mrmi )

such that I(umi ) corresponds to the unit step function of f(umi ); i.e., I(umi ) = u(f(umi )). Thus,
if we replace the unit step function with the sigmoid function S(x) = (1 + e−βx)−1, which is a
common analytical approximation of the unit step, we obtain the approximation

S
(
f(umi )

)
=
(

1 + e−βf(umi )
)−1

of I(umi ). As the value of the positive scalar β tends to infinity, the sigmoid function approaches
the unit step function. A continuous approximation of Ec is thus given by

M∑
m=1

Nm∑
i=1

S
(
f(umi )

)
. (4.19)

Now, in order to minimize the function in (4.19) we do the following. We first compute

f0(umi ) = d2
(
umi ,Mm

j−1

)
− d2

(
umi ,M

rmi
j−1

)
for each image umi . Then, applying a first-order expansion of S around each f0(umi ), we obtain the
following approximation of the error term in (4.19)

M∑
m=1

Nm∑
i=1

(
S
(
f0(umi )

)
+
dS

df

∣∣∣∣
f=f0(umi )

(
f(umi )− f0(umi )

))
. (4.20)

Since f0(umi ) and S(f0(umi )) are constants, the minimization of the expression in (4.20) becomes
equivalent to the minimization of

M∑
m=1

Nm∑
i=1

dS

df

∣∣∣∣
f=f0(umi )

f(umi ) =
M∑
m=1

Nm∑
i=1

ηmi f(umi ) (4.21)

where

ηmi =
dS

df

∣∣∣∣
f=f0(umi )

=
β e−βf

(1 + e−βf )2

∣∣∣∣
f=f0(umi )

.

Let us rearrange (4.21) in a more convenient form. For each class index m, let Rm = {(i, k) :
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rki = m} consist of the pairs of data and class indices of images that do not belong to class m but
have Mm as their closest manifold among all manifolds except the one of their own class. Then
(4.21) can be rewritten as

M∑
m=1

Nm∑
i=1

ηmi d
2(umi ,Mm)−

M∑
m=1

∑
(i,k)∈Rm

ηki d
2(uki ,Mm). (4.22)

As it is not easy to compute the distance terms d2(uki ,Mm) directly, we proceed with the
approximation d2(uki ,Mm) ≈ ‖uki − Uλk,mi (pmj−1 + cm φγm)‖2, where the value of λk,mi is the one

computed in iteration (j − 1). We finally get Ẽc from (4.22) with this approximation.

Ẽc =
M∑
m=1

Nm∑
i=1

ηmi ‖vmi − cm Uλmi (φγm)‖2 −
M∑
m=1

∑
(i,k)∈Rm

ηki ‖vk,mi − cm U
λk,mi

(φγm)‖2 (4.23)

where vk,mi = uki − Uλk,mi (pmj−1). Now, from (4.18) and (4.23) we can define

Ẽ = Ẽa + α Ẽc. (4.24)

Proposition 3. Ẽ is a DC function of γ and c. Moreover, if a DC decomposition for the compo-
nents of the transformed atom Uλ(φγ) is known, a DC decomposition of Ẽ is computable.

The proof of Proposition 3 is given in Appendix A.4.
Now let us describe the term Ê that is used in the second stage of the optimization of E. We

derive Ê by replacing the manifold distances by tangent distances; i.e., we use the approximation
d2(uki ,Mm) ≈ d2(uki ,Ski (pm)), where Ski (pm) is the first-order approximation of Mm around the
point U

λk,mi
(pm). The tangent distance is derived in Appendix A.2. Let wmi = umi − Uλmi (pm) and

wk,mi = uki − Uλk,mi (pm). Then the function Ea in (4.12) is approximated by

Êa =
M∑
m=1

Nm∑
i=1

‖wmi − Tmi
(
(Tmi )T Tmi

)−1
(Tmi )Twmi ‖2. (4.25)

Similarly, the classification error function in (4.22) is approximated by

Êc =
M∑
m=1

Nm∑
i=1

ηmi ‖wmi − Tmi
(
(Tmi )T Tmi

)−1
(Tmi )Twmi ‖2

−
M∑
m=1

∑
(i,k)∈Rm

(
ηki ‖wk,mi − T k,mi

(
(T k,mi )T T k,mi

)−1
(T k,mi )Twk,mi ‖2

)
.

(4.26)

Here Tmi and T k,mi denote the n×d matrices whose columns are the tangent vectors to the manifold
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Mm at respectively the points Uλmi (pm) and U
λk,mi

(pm). From (4.25) and (4.26) we can finally define

Ê = Êa + α Êc. (4.27)

Let us briefly discuss the effect of the approximations made on the original cost function E.
The accuracy of approximating the unit step function with a sigmoid in (4.19) can be adjusted by
changing the slope of the sigmoid (see also the note in Section 4.3.3). Then, in order for the linear
approximation of the sigmoid in (4.20) to be valid, the values of f(umi ) must be sufficiently close
to their base values f0(umi ). The effect of this linearization can be alleviated by updating the base
values f0(umi ) several times in an iteration. The rest of the approximations are similar to those
discussed in Section 4.2.2.

4.3.3 Implementation details

We now discuss some points related to the implementation of JPATS. We first explain the choice of
the parameter β in Algorithm 4. Notice that the function S

(
f(umi )

)
can also be interpreted as the

probability of misclassifying umi upon updating the manifolds at the end of the iteration. When
umi gets closer to its true manifold Mm, f(umi ) decreases and S

(
f(umi )

)
decays to 0. Similarly,

when umi gets away from Mm, S
(
f(umi )

)
approaches 1. The probabilistic interpretation of the

function S
(
f(umi )

)
stems naturally from its shape. Consequently, the approximate error in (4.19)

corresponds to the sum of the probabilities of misclassifying the input images. Based on this
interpretation, we propose to update β according to the statistics drawn from the data. For each
umi , we examine the value of f(umi ) at the beginning the iteration and the value of I(umi ) at the end
of the iteration. Then we pick β such that the shape of the sigmoid matches the I(umi ) vs. f(umi )
plot. Such an adaptive choice of β also provides the following flexibility. In early phases of the
process where the total misclassification rate is relatively high, β usually has small values, which
yields slowly changing sigmoids. Therefore, a relatively large portion of the input images have
an effect on the choice of the new atoms. However, in later phases, as the total misclassification
rate decreases, β usually takes larger values resulting in sharper sigmoids, which gives misclassified
images more weight in atom selection.

Then, we comment on the choice of the weight parameter α. In principle, α can be set to
have any nonnegative value. Setting α = 0 corresponds to a purely approximation-based procedure
that computes the manifolds individually with PATS, whereas a large α yields a learning algorithm
that is rather driven by classification objectives. However, we have observed that a good choice in
practice consists of selecting a small value for α at the beginning and increasing it gradually.5 This
guides the algorithm to first capture the main characteristics of input signals, and then encourage
the selection of features that enhance class-separability.

Finally, we have made the following simplification in the implementation of the DC programming
block. The number of optimization variables is (s+ 1)M in our problem, where s is the dimension
of D and M is the number of classes. Although the cutting plane algorithm works well for low-
dimensional solution spaces, it becomes computationally very costly in high dimensions. Therefore,
in the implementation of JPATS we partition the variables into subsets and optimize the subsets one

5In our setup, we control the α parameter by using a shifted and scaled sigmoid function. The initial and final
values of the sigmoid are around 0.5 and 10; and its center is typically attained at iterations 5-7 of Algorithm 4.
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by one. Although there is no guarantee of finding the globally optimal solution in this case, we have
experimentally observed that one can still obtain reasonably good results regarding the complexity-
accuracy trade-off. In order to handle high-dimensional solution spaces, one can alternatively
replace the cutting plane algorithm with another DC solver such as DCA [90] or CCCP [91]. These
methods reduce the original DC program to the iterative solution of a pair of dual convex programs,
which improves the computational complexity significantly at the expense of losing global optimality
guarantees. Another issue affecting the efficiency of the DC programming block is the size of the
solution space. We have seen that it is useful to add a preliminary block that locates a good search
region before the DC block. This can be achieved using a coarse grid in the solution space or
a global search method such as the genetic algorithm or particle swarm optimization. Note that
one may also minimize the objective function by using only a global search method. However, in
experiments we have seen that the final value of the objective function is the smallest when both
global search and DC optimization are employed.

4.3.4 Experimental results

We now evaluate the performance of JPATS with experiments on transformation-invariant classifi-
cation. We test the algorithm on two data sets consisting of handwritten digits [92] and microbi-
ological images [96]. In the digits experiment, we use the transformation manifold model in (2.2).
In the microbiological images experiment, we use the model

M(p) = {Uλ(p) : λ = (θ, tx, ty, s) ∈ Λ} ⊂ R
n, (4.28)

where s denotes an isotropic scale change. In both experiments, we use the dictionary model in
(2.10) and the Gaussian mother function in (4.11).

The first experiment is conducted on the images of the “2,3,5,8,9” digits, which lead to a rel-
atively higher misclassification rate than the rest of the digits. The data sets are generated by
randomly selecting 200 training and 200 test images for each digit and applying random geometric
transformations consisting of rotation, anisotropic scaling and translation. The images of each digit
are considered as the observations of a different signal class.

The second experiment is done on some sequences from the microbiology video collection of
the Natural History Museum [96], which contains short video clips of living protists. We run the
experiment on 6 different species (Discocephalus sp., Epiclintes ambiguus, Oxytricha sp., Scyphidia
sp., Stentor roeseli, Stylonychia sp.), and we use three sample videos for each one. Each species is
considered as a different class. The manifold in (4.28) provides a suitable model, as the rotation and
translations describe well the movements of the protists, and the isotropic scaling compensates for
zoom changes. However, there is still some deviation from the manifold, as a result of noise, small
nonrigid protist articulations and occasional recording of different individuals in different videos.
For each species, we experiment on a subset of frames from all three sequences. We preprocess the
frames by conversion to greyscale, smoothing and thresholding. Then, for each class, we randomly
select 70 training and 35 test images.

In the experiments we compare the methods listed below. In the first four methods, we apply the
algorithms on the training images in order to build PTMs. Then we compute the misclassification
rate of the test images. The class label of a test image is estimated by identifying the smallest
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distance between the image and the computed manifolds. The algorithms work as follows.

• JPATS: We jointly build PTMs for all classes with the proposed method.

• PATS: We compute individual PTMs for each class with PATS.

• SMP on aligned patterns: We compute individual PTMs for each class as explained in Section
4.2.3.

• SAS on aligned patterns: We use the untransformed/aligned images of all classes and select
a set of Gaussian atoms with SAS [81]. We set the weight factor to λ = 2 in [81]. Then, for
each class we build a PTM by forming a pattern, where the selected atoms are weighted with
their average coefficients.

• LLA: We compute a locally linear approximation using the training images of each class. A
test image is classified by identifying its (d+ 1)-nearest neighbors among the training images
of each class, computing its distance to the plane passing through the nearest neighbors, and
comparing its distances to the planes of different classes.

• SLLE: We compute a low-dimensional embedding of the training images with the Supervised
Locally Linear Embedding algorithm [17] and assign the class labels of the test images via
nearest-neighbor classification in the embedded domain.

• LDA: Linear Discriminant Analysis on aligned data. The better one of linear and quadratic
kernels is picked in each experiment.

• Neural Network: A feed-forward backpropagation network for pattern recognition is used on
aligned data.

The results are presented in Figures 4.9 and 4.10 respectively for the digit and microbiological
image experiments. In Figures 4.9(a) and 4.10(a), a data set image from each class is shown. Some
typical representative patterns computed with JPATS, PATS and the reference methods are shown
in Figures 4.9(b)-4.9(e) and 4.10(b)-4.10(e). Figures 4.9(f) and 4.10(f) show the misclassification
rates of test images (in percentage) vs. the number of atoms per class. Both plots are obtained
by averaging the results of 5 repetitions of the experiment with different training and test sets.
The results show that JPATS yields the best classification performance in general, although PATS
produces visually more pleasant patterns. This can be explained as follows. PATS is designed to
minimize the approximation error; and the assessment of the visual quality of the computed patterns
is rather dependent on their approximation capabilities. The local features that are common to
different classes appear in the representative patterns of all these classes built with PATS, which
produces an output that matches visual perception. However, if a local feature is common to several
classes, its inclusion in the representative patterns does not contribute much to the discrimination
among classes; therefore, these non-distinctive features are not emphasized in the output of JPATS.
On the other hand, the local features that are rather special to one class are more pronounced in
JPATS compared to PATS. In fact, due to the classification error term in JPATS, the algorithm
tends to select atoms that “push” a manifold away from the samples of other classes. For instance,
in Figure 4.9(b), the top and bottom arcs of the “8” digit are not as apparent, since the other digits
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(a) Sample images from data set

(b) Patterns built with JPATS

(c) Patterns built with PATS

(d) Patterns built with SMP on aligned patterns

(e) Patterns built with SAS on aligned patterns
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Figure 4.9: Performance of the classification-driven
learning algorithms on handwritten digits data set

(a) Sample images from data set

(b) Patterns built with JPATS

(c) Patterns built with PATS

(d) Patterns built with SMP on aligned patterns

(e) Patterns built with SAS on aligned patterns
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(f) Classification errors of test images

Figure 4.10: Performance of the classification-driven
learning algorithms on microbiological images data set
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Figure 4.11: Performance of JPATS on noisy data. The noise variance σ2 = 1.6 corresponds to an SNR
of 6.35 dB.

also have similar features. However, the crossover of “8” is specific to this class; therefore, it is
prominent in the output. Similarly, the straight edge of “9” is also characteristic of this class and
emphasized in the learned pattern.

Next, we examine the effect of data noise on the performance of JPATS. We create several data
sets by corrupting the digits data set used in the previous experiment with additive Gaussian noise
of different variances. For each noise level, we look into two cases, where only training images are
corrupted in the first one, and both training and test images are corrupted in the second one. The
misclassification rate of test images are plotted in Figure 4.11, where σ2

train and σ2
test denote the

noise variances of training and test images. The data noise has a small influence on the performance
of the algorithm. The final increase in the misclassification rate is bounded by 2.7% even when the
noise energy reaches 23% of the signal energy. The robustness to noise is achieved due to the fact
that the algorithm is designed to generate a smooth pattern that fits all images simultaneously,
which enables it to smooth data noise. The other PTM-based methods are also expected to exhibit
similar noise behaviors.

Finally, we evaluate the performances of PATS and JPATS in a setting where the test images
contain some outliers that do not belong to any of the classes. We run the experiment on the digit
data set used in the experiment of Figure 4.9. The training phase of the algorithms is as before: In
both methods, the manifolds are learned using only training images of known classes. However, test
images are contaminated with 200 outlier images that do not belong to any of the target classes,
where the number of test images in each class is also 200. Each outlier image is generated by
randomly selecting one test image from each class, taking the average of these images, corrupting
the average image with additive Gaussian noise, and finally normalizing it. Thus, all outlier images
have unit norm, while a typical class-sample test image with unit scale (sx = 1, sy = 1) also has
unit norm. Then, test images are classified using the manifolds learned with PATS and JPATS as
follows. If the distance between a test image and the closest manifold is larger than a threshold,
the image is labeled as an “outlier”; and if this distance is smaller than the threshold, it is assigned
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Figure 4.12: Performance of PATS and JPATS in a classification setting with outlier test images that do
not belong to any class. For the noise variance σ2 = 0.5 × 10−3, the ratio between the norms of the noise
component and the average component of an outlier image is 0.65.

the class label of the closest manifold as before. The experiment is repeated for different values
of the noise variance for the Gaussian noise component of the outlier images. The threshold used
for each noise level is numerically selected in a sample run of the experiment such that it gives
the best classification rate and fixed for the other runs, separately for PATS and JPATS. The
results are presented in Figure 4.12, which are the average of 5 runs. The misclassification rate
is the percentage of test images that have not been assigned the correct class label or the correct
“outlier” label. In the plots shown in Figure 4.12, the noise variance 0 corresponds to the case
that outlier images are the averages of some test images coming from different classes. This is the
most challenging instance of the experiment, as outliers come from a region close to class samples
and it is relatively difficult to distinguish them from class samples. Consequently, the optimal
threshold that gives the smallest misclassification rate is high for this instance, resulting in labeling
all outliers as class samples. The performance of JPATS is better than PATS in this case, as the
overall classification rate is determined by the classification rate of class samples. Then, as the
noise variance is increased, the components of the outlier images in random directions in the image
space are amplified, making it thus easier to distinguish them from class samples. It is seen that
JPATS performs better than PATS in most cases. However, for the smallest nonzero noise variance
value σ2 = 0.25× 10−3, PATS is observed to give a better classification rate than JPATS. This can
be explained as follows. In this experiment, JPATS is trained according to the hypothesis that all
test images belong to a valid class. For this reason, in order to increase the distance between a
manifold and the samples of other classes, JPATS may occasionally pick some atoms that push a
manifold away from the samples of its own class as well. This slight increase in the distance between
the manifold and the samples of its own class renders it difficult for JPATS to distinguish between
real class samples and challenging outliers that are very close to class samples. In order to get the
best performance from JPATS in such a setting with outliers, one can tune the α parameter to a
suitable value depending on outlier characteristics such that a sufficiently strict control is imposed
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on the distance between the learned manifolds and the samples of their own classes through the
approximation term Ea.

4.4 Complexity Analysis

Let us now examine the complexities of the proposed algorithms. We begin with the PATS method
summarized in Algorithm 3. There are three blocks in the main loop of the algorithm. The first
one minimizes Ẽ with DC programming, the second one minimizes Ê via gradient descent, and the
third one computes the projections of {ui} on the manifold. In the analysis of the first block, it is
important to distinguish between the complexities of the DC solver and the computation of the DC
decomposition of Ẽ. The former depends on the selected solver. The cutting plane method involves
the construction of polytopes in the search space; therefore, it has an exponential complexity in
the number of atom parameters s (dimension of D). However, one can also use a technique such
as DCA [90]. In this case, the solution of the dual convex programs involves the evaluation of
the subdifferentials of the functions constituting the DC decomposition. In our problem, this
corresponds to the evaluation of gradients since the decomposing functions are differentiable. The
gradient can be numerically evaluated using finite differences; therefore, the complexity of such a
solver is at most linear in s. Next, it can be seen from equations (A.1) and (A.2) that the cost of
computing the DC decomposition of Ẽ is linear in the image resolution n and the number of samples
N . Hence, the complexity of the first block becomes O(2s nN) for cutting plane, and O(s nN) for
DCA. In the analysis of the second block, it can be easily shown that the complexity of calculating
the vector wi−Ti(T Ti Ti)−1 T Ti wi in (A.3) is O(dn2), where d is the dimension ofM(p). Therefore,
the cost of computing the total squared tangent distance Ê in (A.3) is obtained as O(dn2N). As
we minimize Ê with gradient descent using finite differences, the complexity of the second block is
O(s d n2N). Finally, the cost of updating the projections of {ui} onM(p) is O(dnN) in our actual
implementation, because we minimize the distance between each {ui} andM(p) by performing a
line search along each dimension ofM(p). Thus, taking DCA as a reference for the first block, we
can summarize the overall complexity of PATS as O(s d n2N). In the experiments in Figure 4.9,
the practical runtime of a non-optimized MATLAB implementation of the PATS algorithm to learn
one atom from 200 training images was around twenty minutes.

We examine the complexity of JPATS given in Algorithm 4 similarly. From (A.4) it is seen that
the cost of computing the DC decomposition of Ẽ is linear in NJ and n, where NJ =

∑M
m=1Nm =∑M

m=1 |Rm|. The complexity of the first block with respect to DCA is therefore O(s nNJ). Then,
(4.25) and (4.26) show that the cost of computing Ê is O(dn2NJ). The complexity of the second
block is thus O(s d n2NJ). Finally, the third block has complexity O(dnNJM), since each image
is reprojected on each manifold. Therefore, the overall complexity of JPATS is O

(
NJ(s d n2 +

dnM)
)
. The complexity of selecting an atom with “SMP on aligned patterns”, which has the

closest performance to the proposed methods, can be similarly obtained as O(NJ nD), where D
denotes the cardinality of the discrete dictionary used. We remark that the proposed method
is more suitable for applications where the manifolds are learned “offline” and then used for the
classification of test data. Moreover, there might be ways to improve the complexity-accuracy
trade-off depending on the application. For instance, one might prefer to sacrifice on accuracy for
a less complex solution by omitting step 9 or 10 of Algorithm 4. Also, if the class-representative
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manifolds are well-separated, it may be sufficient to use the PATS algorithm instead of JPATS.
An option for achieving a high-speed PTM learning is to build a tentative representative pattern,
for instance with “SMP on aligned patterns”, in a preliminary analysis step and register the input
images with respect to this pattern. Then, one may speed up the learning significantly by discarding
the projection update steps and optimizing the atoms of the representative pattern by minimizing
only the error in (4.8) with a fast minimizer such as the gradient descent algorithm.

4.5 Conclusion

In this chapter, we have studied the problem of building smooth pattern transformation manifolds
for the transformation-invariant representation of sets of visual signals. The manifold learning
problem is cast as the construction of a representative pattern as a linear combination of smooth
parametric atoms. The manifold is then created by geometric transformations of this pattern. The
smoothness of the computed manifolds is ensured by the smoothness of the constituting parametric
atoms, which is a desirable property that facilitates the usage of the manifolds in image analysis.
We have described a single manifold learning algorithm for approximation and a multiple manifold
learning algorithm for classification. Experimental results show that the proposed methods provide
a good approximation and classification accuracy compared to reference methods. The proposed
methods are applicable to unregistered data that can be approximated by 2-D pattern transforma-
tions with a known geometric transformation model. Our study shows the potentials of parametric
models for data representations, which can be effectively used to achieve high performance in the
registration, coding and classification of geometrically transformed image sets.



Chapter 5

Analysis of Image Registration with
Tangent Distance

5.1 Overview of Tangent Distance Analysis

In the previous chapter, we have studied the problem of learning pattern transformation mani-
fold models from image data sets. We have seen that one can attain a good performance
in transformation-invariant image analysis applications with properly constructed PTM models.
Meanwhile, given a reference transformation manifold model representing a group of visual signals,
the analysis of a query image requires its registration with respect to the transformation manifold,
which is an essential and challenging problem. In Chapter 3, we have proposed a constructive
solution for image registration based on the discretization of transformation manifolds. However,
sampling may not be the optimal solution for registration in some applications, e.g. due to memory
requirements or other constraints. Hence, in this chapter, we study the image registration problem
in a different setting. We examine the alignment of images using linear approximations of mani-
folds, which is known as the tangent distance method. We derive performance bounds in order
to understand the limits of this popular method, which is helpful for using it more efficiently in
registration problems. We specifically focus on pattern transformation manifolds that are used in
this thesis.

The tangent distance method is based on estimating the projection of a target image onto the
transformation manifold of a reference image by exploiting a first-order Taylor approximation of
the transformation manifold [3]. In image alignment with tangent distance, the reference transfor-
mation parameters around which the manifold is linearized are required to be sufficiently close to
the optimal transformation parameters corresponding to the exact projection of the target image
onto the manifold, so that the linear approximation of the manifold is valid and the optimal trans-
formation parameters can be estimated accurately. When the distance between the reference and
optimal transformation parameters is large, an efficient way to get around this limitation is to apply
the tangent distance method in a hierarchical manner [3]. In hierarchical alignment, a pyramid of
low-pass filtered and downsampled versions of the reference and target images is built, and the
alignment is achieved in a coarse-to-fine manner. The transformation parameters are first roughly
estimated using the smoothest images in the pyramid, and then refined progressively by passing
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to the fine scales. The low-pass filtering applied in coarse scales helps to reduce the nonlinearity
of the manifold, which renders the linear approximation more accurate and allows the recovery
of relatively large transformations. Once the transformation parameters are estimated roughly in
coarse scales, the remaining increment in the transformation parameters to be computed in fine
scales is relatively small and the linear approximation of the manifold is therefore accurate. The
hierarchical estimation of transformation parameters using manifold linearizations is very common
in image registration [2], motion estimation [26], [24] and stereo vision [22].

Although the tangent distance method is frequently used in image analysis applications, its per-
formance has not been theoretically studied for general transformation models yet. The treatments
in [27], [39] and [40] limit their scope to gradient-based optical flow estimation, which corresponds
to a transformation model consisting only of 2-D translations. The examination of the effect of
filtering on the accuracy of tangent distance is especially important in hierarchical alignment, so
that the filter size at each stage of the pyramid can be properly selected. In this chapter, we present
a theoretical analysis of hierarchical image alignment with the tangent distance method, where we
aim to characterize the alignment error as a function of the filter size. Previous works such as [3]
and [97] using the tangent distance in image classification and clustering compute the distance in
a symmetric fashion; i.e., they linearize the transformation manifolds of both the reference and
target images and compute the subspace-to-subspace distance. In our analysis we focus on the
alignment accuracy aspect of the tangent distance method and consider the point-to-subspace dis-
tance obtained by linearizing the transformation manifold of only the reference image, e.g., as in
[2], [22], which is more suitable for image registration purposes. We consider a setting where the
reference image is noiseless, the target image is a noisy observation of a transformed version of the
reference image, and both the reference and target images are presmoothed with low-pass filters
before alignment.

We first derive an upper bound for the alignment error, which is defined as the parameter-
domain distance between the optimal transformation parameter vector and its estimation with
the tangent distance method. The upper bound for the alignment error is obtained in terms of the
noise level of the target image, the parameter-domain distance between the reference transformation
parameters around which the manifold is linearized and the optimal transformation parameters,
and some geometric parameters of the transformation manifold such as curvature and metric tensor.
The alignment error is shown to be linearly increasing with the manifold curvature and the noise
level, and monotonically increasing with the parameter-domain distance between the reference and
optimal transformation parameters. Then, in order to study the relation between the alignment
error and the amount of low-pass filtering in a hierarchical setting, we employ an analytic and
parametric representation of the reference pattern and analyze the dependence of the alignment
error on the size of the low-pass filter kernel. Using the notation O(·) to represent the approximate
rate of variations of parameters with the noise level and the filter size, we show that the alignment
error decreases with the filter size ρ for small filter kernels at a rate of O(1 + (1 + ρ2)−1/2). This is
due to the fact that filtering smooths the manifold and decreases its nonlinearity, which improves
the accuracy of the linear approximation of the manifold. However, as one keeps increasing the
filter size, the decrease in the alignment error due to the improvement of the manifold nonlinearity
converges, and the error starts to increase with filtering at an approximate rate of O(ρ) at relatively
large values of the filter size. The increase in the error stems from the adverse effect of filtering,
which amplifies the alignment error caused by image noise. Therefore, our main finding is that, in a
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noisy setting where the target image is not exactly on the transformation manifold of the reference
image, the filter kernel has an optimal size where the alignment error takes its minimum value.
We also examine the dependence of the alignment error obtained with the filtered images on the
initial noise level (the distance between the target image and the transformation manifold of the
reference image before filtering), and show that the error is linearly proportional to the initial noise
level. Another finding of our study is that, for transformation models that involve a scale change
of the reference pattern, the operations of filtering and applying a geometric transformation do not
commute and filtering causes a secondary source of noise. Hence, even if the initial noise level is
zero, the alignment error increases with the filter size at relatively big filter sizes and the filter size
has an optimal value minimizing the alignment error for such transformation models. Finally, we
obtain an approximate expression for the optimal filter size that minimizes the alignment error,
which indicates that the filter size should be chosen as inversely proportional to the square-root of
the noise level, and proportional to the square-root of the distance between the reference and the
optimal transformation parameters. This justifies the usage of the coarse-to-fine strategy in image
alignment with tangent distance: Large filters are used at coarse scales, where the transformation to
be estimated is relatively large. Then, at fine scales small filters are preferable since the remaining
amount of transformation to be estimated is smaller.

This chapter is organized as follows. First, in Section 5.2, we give an overview of image registra-
tion with the tangent distance method and formulate the registration analysis problem. Then, in
Section 5.3, we present a theoretical analysis of the tangent distance method, where we first state
an upper bound for the alignment error and then examine its variation with the noise level and
filtering. In Section 5.4, we evaluate our analysis with some experiments and in Section 5.5 we give
a discussion of our results in comparison with previous works. We conclude in Section 5.6.

5.2 Image Registration with Tangent Distance

The computation of the exact projection of a target image onto a reference transformation manifold
is a complicated optimization problem, especially when the manifold is high-dimensional and gen-
erated by complex geometric transformations. The tangent distance method proposes to solve this
problem by using a first-order approximation of the transformation manifold, which is illustrated
in Figure 5.1. In the figure,M(p) is the transformation manifold of the reference pattern p defined
over the parameter domain Λ, and q is the target image to be aligned with p. The exact projection
of q onM(p) is the point pλo , so that λo is the optimal transformation parameter vector that best
aligns p with q. In order to estimate λo with the tangent distance method, a first order approxima-
tion Sλr(p) of the manifoldM(p) is computed at a reference point pλr , which is preferably not too
distant from pλo . The distance of q to Sλr(p) can be easily computed with a least squares solution
and the point of projection on Sλr(p) gives the transformation parameter vector λe, which is the
estimate of λo.

In the following, we first settle the notations and describe the tangent distance method formally.
We then formulate the registration analysis problem studied in this chapter.
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Figure 5.1: Illustration of image alignment with the tangent distance method. Sλr
(p) is the first-order

approximation of the transformation manifold M(p) around the reference point pλr
. The estimate λe of

the optimal transformation parameters λo is obtained by computing the orthogonal projection of the target
image q onto Sλr

(p).

5.2.1 Notations

Let p ∈ L2(R2) be a reference pattern that is C2-smooth with square-integrable derivatives and
q ∈ L2(R2) be a target pattern. Let Λ ⊂ Rd denote a compact, d-dimensional transformation
parameter domain and

λ = [λ1 λ2 · · · λd] ∈ Λ

be a transformation parameter vector. We denote the pattern obtained by applying p the geometric
transformation specified by λ as Aλ(p) ∈ L2(R2). We use the notation of Chapter 4 for geometrically
transformed images and denote X = [x y]T ,

Aλ(p)(X) = p(a(λ,X)) (5.1)

and aλ(X) = a(λ,X). We assume that a : Λ× R2 → R2 is a C2-smooth function representing the
change of coordinates defined by λ; and aλ : R2 → R2 is a bijection for a fixed λ.

Let us write pλ = Aλ(p) for convenience. Then, the transformation manifold M(p) of the
pattern p is given by

M(p) = {pλ : λ ∈ Λ} ⊂ L2(R2)

which consists of transformed versions of p over the parameter domain Λ. Since a and p are C2-
smooth, the local embedding ofM(p) in L2(R2) is C2-smooth. Therefore, the first and second-order
derivatives of manifold points with respect to the transformation parameters exist. Let us denote
the derivative of the manifold point pλ with respect to the i-th transformation parameter λi as
∂i pλ, where

∂i pλ(X) =
∂ pλ(X)
∂λi

.
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The derivatives ∂i pλ are also called tangent vectors. Similarly, we denote the second-order deriva-
tives by

∂ij pλ(X) =
∂2pλ(X)
∂λi∂λj

.

Then, the tangent space TλM(p) of the manifold at a point pλ is the subspace generated by the
tangent vectors at pλ

TλM(p) =

{
d∑
i=1

∂i pλ ζ
i : ζ ∈ R

d

}
⊂ L2(R2) (5.2)

where {∂i pλ}di=1 are the basis vectors of TλM(p), and {ζi}di=1 are the coefficients in the represen-
tation of a vector in TλM(p) in terms of the basis vectors.

Lastly, given a reference pattern p and a target pattern q, we denote the optimal transformation
parameter vector as

λo = arg min
λ∈Λ
‖q − pλ‖2 (5.3)

which gives the projection pλo of q onto M(p). The purpose of image registration methods is
to compute λo. However, the exact calculation of λo is difficult in general, since the nonlinear
and highly intricate geometric structure of pattern transformation manifolds renders the distance
minimization problem quite complicated. The tangent distance method simplifies this problem to
a least squares problem, which is described below.

5.2.2 Tangent distance algorithm

In alignment with the tangent distance, transformation parameters are estimated by using a linear
approximation of the manifold M(p) and then computing λo by minimizing the distance of q to
the linear approximation of M(p) [2]. The first-order approximation of M(p) around a reference
manifold point pλr is given by

Sλr(p) = {pλr +
d∑
i=1

∂i pλr(λ
i − λir) : λ ∈ R

d} ⊂ L2(R2).

Then, the estimate λe of λo with the tangent distance method is given by the solution of the least
squares problem

λe = arg min
λ∈Rd

‖q − pλr −
d∑
i=1

∂i pλr(λ
i − λir)‖2. (5.4)

The solution of the above problem can be obtained as

λe = λr + [Gij(λr)]−1[〈q − pλr , ∂i pλr〉] (5.5)

where [Gij(λ)] ∈ Rd×d is the matrix representation of the metric tensor Gij(λ) = 〈∂i pλ, ∂j pλ〉
induced from the standard inner product on L2(R2). Hence, the (i, j)-th entry of [Gij(λ)] is Gij(λ).
Similarly, [〈q − pλr , ∂i pλr〉] represents the d × 1 matrix whose i-th entry is 〈q − pλr , ∂i pλr〉. The
estimate λe of the transformation parameters obtained by solving (5.4) is expected to be closer
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to the optimal solution λo than the reference parameters λr; therefore, λe can be regarded as a
refinement of λr if the reference parameters λr are considered as an initial guess for the optimal ones
λo. The estimation of transformation parameters with the tangent distance method is illustrated
in Figure 5.1.

5.2.3 Problem formulation

From (5.3), we can decompose the target image q as

q = pλo + n

where pλo is the projection onto the manifold M(p) and n ∈ L2(R2) is the noise representing the
deviation of q fromM(p). We define the noise level parameter

ν = ‖n‖

as the distance of the target pattern to the translation manifold of the reference pattern.
We can now formulate the problems that we study in this chapter. Our first purpose is to

examine the deviation between the optimal transformation parameter vector λo and its estimate
λe, which defines the alignment error of the tangent distance method. In particular, we would
like to find an upper bound for the alignment error ‖λe − λo‖ in terms of the noise level ν of
the target image, the known geometric parameters of the manifold M(p) that can be computed
from p (such as its curvature and metric tensor), and the distance ‖λo − λr‖ between the optimal
and the reference transformation parameters. This states a bound on how much the initial guess
λr for λo can be improved, given the proximity of λr with respect to λo. We thus present an
upper bound for the alignment error ‖λe − λo‖ in Section 5.3.1. Note that it is also possible to
formulate the alignment error as the manifold distance estimation error measured in the ambient
space L2(R2). However, in this study, we characterize the error in the parameter space Λ instead
of the ambient space L2(R2) because of the following reason. The errors in the parameter domain
and the ambient space are expected to have similar behaviors. Meanwhile, since we examine the
problem in a multiscale setting, it is easier to characterize the error in the parameter domain as
the distances in the ambient space are not invariant to smoothing.

Next, our second and main goal is to examine how the alignment error varies when the reference
and target patterns are smoothed with a low-pass filter. We formalize this problem as follows. We
consider a Gaussian kernel for the low-pass filter, since it is a popular smoothing kernel whose
distinctive properties have been well-studied in scale-space theory [98]. Let

φ(X) = e−X
TX = e−(x2+y2)

denote a Gaussian mother function. Then, the family of functions

1
πρ2

φρ(X) (5.6)

define variable-sized, unit L1-norm Gaussian low-pass filters, where φρ(X) = φ(Υ−1(X)) is a scaled
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version of the mother function φ(X) with

Υ =
[
ρ 0
0 ρ

]
. (5.7)

Here, the scale parameter ρ corresponds to the radius of the filter kernel, which controls the filter
size. When the tangent distance method is used in a multiscale registration setting, the transfor-
mation parameters are estimated using the filtered versions of the reference and target patterns

p̂(X) =
1
πρ2

(φρ ∗ p)(X) q̂(X) =
1
πρ2

(φρ ∗ q)(X)

where ∗ denotes a convolution.
We write the parameters that are associated with the filtered versions of the reference and target

patterns with the notation (̂·). Now let λ̂o be the transformation parameter vector corresponding
to the projection of q̂ onto the transformation manifoldM(p̂) of the filtered reference pattern p̂

λ̂o = arg min
λ∈Λ
‖p̂λ − q̂‖2. (5.8)

Hence, λ̂o is the optimal transformation parameter vector that aligns p̂ with q̂. Let ∂i p̂λ and Ĝij
denote respectively the first derivatives and the metric tensor of the manifoldM(p̂). From (5.5), the
transformation estimate λ̂e obtained with the filtered versions of the reference and target patterns
by linearizing the manifoldM(p̂) is given by

λ̂e = λr + [Ĝij(λr)]−1[〈q̂ − p̂λr , ∂i p̂λr〉]

where λr is the reference parameter vector. The alignment error obtained with the smoothed
patterns is given as ‖λ̂e− λ̂o‖, which we are interested in in this study. In particular, we would like
to characterize the variation of ‖λ̂e − λ̂o‖ with the size ρ of the low-pass filter used for smoothing
the images in multiscale alignment, and the initial noise level ν of the target image before filtering.
We thus examine in Section 5.3.2 the variation of the alignment error with noise and filtering.

5.3 Analysis of Tangent Distance

5.3.1 Upper bound for the alignment error

We now present an upper bound for the error of the alignment computed with the tangent distance
method. We can assume that the parameter domain Λ is selected sufficiently large, so that pλo is
not on the boundary of M(p). Then, the noise pattern n is orthogonal to the tangent space of
M(p) at pλo . In other words, we have

〈n, ∂i pλo〉 = 0, ∀i = 1, · · · , d. (5.9)

The deviation of the target image from the transformation manifold model impairs the estimation
of transformation parameters. In our analysis of the alignment error, this deviation is characterized
by the distance ν between q and M(p). Then, there is another source of error that causes the
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deviation of the estimated parameters λe from the optimal ones λo. It is related to the nonzero
curvature of the manifold, as a result of whichM(p) diverges from its linear approximation Sλr(p).
In the derivation of the component of the alignment error associated with manifold nonlinearity,
we make use of a quadratic approximation of the manifold around the reference point pλr

pλ ≈ pλr +
d∑
i=1

∂i pλr(λ
i − λir) +

1
2

d∑
i=1

d∑
j=1

∂ij pλr(λ
i − λir)(λj − λjr). (5.10)

This approximation is treated as an equality in the derivation of the alignment error bound in
Theorem 1. Equation (5.10) shows that the nonlinearity of the manifold can be characterized with
an upper bound K on the norm of the second derivatives of the manifold

K := max
i,j=1,··· ,d

sup
λ∈Λ
‖∂ij pλ‖.

Since K is an upper bound for the norms of the derivatives of tangent vectors, it can be regarded
as a uniform curvature bound parameter forM(p).

We can now state our result that defines an upper bound on the alignment error.

Theorem 1. The parameter-domain distance between the optimal transformation λo and its esti-
mate λe given by the tangent distance method can be upper bounded as

‖λe−λo‖ ≤ E := K λ−1
min

(
[Gij(λr)]

)(1
2
d2
√

tr([Gij(λr)]) ‖λo − λr‖2∞ +
√
d ν ‖λo − λr‖1

)
(5.11)

where λmin(·) and tr(.) denote respectively the smallest eigenvalue and the trace of a matrix, and
the notations ‖ · ‖∞ and ‖ · ‖1 stand for the `∞ and `1-norms in Rn.

Theorem 1 is proved in Appendix B.1. The result is obtained by examining the effects of both
the nonlinearity of the manifold and the image noise on the alignment error. The theorem shows
that the alignment error augments with the increase in the manifold curvature parameter K and
the noise level ν, as expected. Moreover, another important factor affecting the alignment error is
the distance ‖λo − λr‖ between the reference and the optimal transformation parameters. If the
reference manifold point pλr around which the manifold is linearized is sufficiently close to the true
projection of the target image onto the manifold, the tangent distance method is more likely to
give a good estimate of the registration parameters.

5.3.2 Alignment error with low-pass filtering

We now analyze the influence of the low-pass filtering of the reference and target patterns on the
accuracy of alignment with the tangent distance method as it is the case in multiscale registration
algorithms. We consider a setting where the reference pattern p and the target pattern q are low-
pass filtered and the transformation parameters are estimated with the smoothed versions of p and
q. The purpose of this section is then to analyze the variation of the alignment error bound given
in Theorem 1 with respect to the kernel size of the low-pass filter used in smoothing.
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We first remark the following. The optimal transformation parameter vector λ̂o corresponding
to the smoothed patterns is in general different from the optimal transformation parameter vector
λo corresponding to the unfiltered patterns p and q. This is due to the fact that both the image
noise and the filtering cause a perturbation in the global minimum of the function f(λ) = ‖q−pλ‖2,
which gives the distance between the target pattern q and the transformed versions of the reference
pattern p. Note that the overall error in the transformation parameter estimation is ‖λ̂e− λo‖ and
it can be upper bounded as

‖λ̂e − λo‖ ≤ ‖λ̂e − λ̂o‖+ ‖λ̂o − λo‖.

Here, the first error term ‖λ̂e − λ̂o‖ results from the linearization of the manifold, whereas the
second error term ‖λ̂o−λo‖ is due to the shift in the global minimum of the distance function f(λ).
In this chapter, we aim to analyze how the linearization of the manifold affects the estimation of
the transformation parameters for generic transformation models. Therefore, we focus on the first
error term ‖λ̂e − λ̂o‖ associated particularly with the registration of the images using the tangent
distance, and examine its variation with the noise level and the action of smoothing the images.
Note that the second error term ‖λ̂o − λo‖ depends on the geometric transformation model. For
example, in Chapter 6, we examine it for the transformation model of 2-D translations and study
its dependence on the noise level and low-pass filtering in details. We remark however that the
error term ‖λ̂e − λ̂o‖ caused by the manifold linearization is in general expected to be dominant
over the second error term ‖λ̂o − λo‖ unless the reference parameters λr are really close to the
optimal parameters λo.

The filtered target pattern can be decomposed as

q̂ = p̂λ̂o + ñ

where the noise pattern ñ is orthogonal to the tangent space Tλ̂oM(p̂) at p̂λ̂o . Let ∂ij p̂λ and K̂
denote the second order derivatives and the curvature bound parameter of the manifold M(p̂).
Then, from Theorem 1, the alignment error obtained with the smoothed patterns can be upper
bounded as ‖λ̂e − λ̂o‖ ≤ Ê, where

Ê = K̂ λ−1
min

(
[Ĝij(λr)]

)(1
2
d2
√

tr([Ĝij(λr)]) ‖λ̂o − λr‖2∞ +
√
d ‖ñ‖ ‖λ̂o − λr‖1

)
. (5.12)

In order to analyze the variation of Ê with filtering and noise, we examine the dependence of each
term in the expression of Ê in (5.12) on the filter size ρ and the initial noise level ν of the unfiltered
target image. The curvature parameter K̂ of the smoothed manifold is given by

K̂ = max
i,j=1,··· ,d

sup
λ∈Λ
‖∂ij p̂λ‖.

Hence, if a uniform estimate can be found for the rate of variation of ‖∂ij p̂λ‖ with the filter size ρ
that is valid for all λ and (i, j), the curvature parameter K̂ will also have the same order of variation
with ρ. Next, the metric tensor of the smoothed manifold is given by Ĝij(λr) = 〈∂i p̂λr , ∂j p̂λr〉, and
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its trace is

tr
(
[Ĝij(λr)]

)
=

d∑
i=1

‖∂i p̂λr‖2.

Therefore, if the variation of ‖∂i p̂λr‖2 with the filter size ρ can be characterized uniformly (in a
way that is valid for all λr and i), the trace tr

(
[Ĝij(λr)]

)
of the metric tensor will also have the

same order of variation with ρ as ‖∂i p̂λr‖2. Since the trace is given by the sum of the eigenvalues,
one can reasonably expect the smallest eigenvalue λmin

(
[Ĝij(λr)]

)
to have the same variation with

ρ as well. Lastly, the norm ‖ñ‖ of the noise component of q̂ depends on both the filter size ρ and
the initial noise level ν before filtering.

We study now Equation (5.12) in more details and derive first a relation between the norms
‖∂i p̂λ‖, ‖∂ij p̂λ‖ of the first and second-order manifold derivatives and the norms ‖N∇p̂‖, ‖Nhp̂‖ of
the gradient and Hessian magnitudes of the filtered reference pattern p̂. We state the dependences
of ‖N∇p̂‖ and ‖Nhp̂‖ on the filter size ρ in Lemma 1, which is then used to obtain the variation of
the manifold derivatives ‖∂i p̂λ‖, ‖∂ij p̂λ‖ with ρ in Corollary 1. Next, we establish the dependence
of the norm ‖ñ‖ of the noise component on ρ and ν in Lemma 2. Finally, all of these results are
put together in our main result Theorem 2, where we present the rate of variation of the alignment
error bound Ê with the filter size ρ and the initial noise level ν of the target image.

Examination of ‖∂i p̂λ‖ and ‖∂ij p̂λ‖

Let us begin with the computation of the terms ‖∂i p̂λ‖ and ‖∂ij p̂λ‖. First, from the relation (5.1),
we have

pλ(X) = p(X ′)

where X ′ = aλ(X). Let us denote the transformed coordinates as X ′ = [x′ y′]T and write the
derivatives of the transformed coordinates with respect to the transformation parameters as

∂i x
′ =

∂x′

∂λi
, ∂i y

′ =
∂y′

∂λi
, ∂ij x

′ =
∂2x′

∂λi ∂λj
, ∂ij y

′ =
∂2y′

∂λi ∂λj
.

Also, let

∂x p(X ′) =
∂ p(X)
∂x

∣∣∣∣
X=X′

, ∂y p(X ′) =
∂ p(X)
∂y

∣∣∣∣
X=X′

∂xx p(X ′) =
∂2 p(X)
∂x2

∣∣∣∣
X=X′

, ∂xy p(X ′) =
∂2 p(X)
∂x ∂y

∣∣∣∣
X=X′

, ∂yy p(X ′) =
∂2 p(X)
∂y2

∣∣∣∣
X=X′

denote the partial derivatives of the reference pattern p evaluated at the point X ′. Then, the
derivatives of the manifoldM(p) at pλ are given by

∂i pλ(X) = ∂x p(X ′)∂i x′ + ∂y p(X ′)∂i y′

∂ij pλ(X) = ∂xx p(X ′) ∂i x′∂j x′ + ∂xy p(X ′) (∂i x′∂j y′ + ∂j x
′∂i y′) + ∂yy p(X ′) ∂i y′∂j y′

+ ∂x p(X ′) ∂ij x′ + ∂y p(X ′) ∂ij y′.
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One can generalize this to the smoothed versions p̂ of the reference pattern as

∂i p̂λ(X) = ∂x p̂(X ′)∂i x′ + ∂y p̂(X ′)∂i y′

∂ij p̂λ(X) = ∂xx p̂(X ′) ∂i x′∂j x′ + ∂xy p̂(X ′) (∂i x′∂j y′ + ∂j x
′∂i y′) + ∂yy p̂(X ′) ∂i y′∂j y′

+ ∂x p̂(X ′) ∂ij x′ + ∂y p̂(X ′) ∂ij y′.
(5.13)

Notice that, in the above equations, the filtering applied on the reference pattern influences only the
spatial derivatives of the reference pattern (∂x p̂, ∂y p̂, ∂xx p̂, ∂xy p̂, ∂yy p̂), whereas the derivatives
of the transformed coordinates (∂i x′, ∂i y′, ∂ij x′, ∂ij y′) depend solely on the transformation model
λ and are constant with respect to the filter size ρ. Therefore, the variation of ‖∂i p̂λ‖ and ‖∂ij p̂λ‖
with ρ is mostly determined by the variation of the spatial derivatives of the pattern with the filter
size. We denote the gradient of p̂ as

∇p̂(X) = [∂x p̂(X) ∂y p̂(X)]T

and the vectorized Hessian of p̂ as

(hp̂)(X) = [∂xx p̂(X) ∂xy p̂(X) ∂xy p̂(X) ∂yy p̂(X)]T . (5.14)

We then define the functions N∇p̂, Nhp̂ : R2 → R

N∇p̂ (X) = ‖∇p̂(X)‖, Nhp̂ (X) = ‖(hp̂)(X)‖

which give the `2-norms of the gradient and the Hessian of p̂ at X. Since we assume that the
spatial derivatives of the pattern are square-integrable, the functions N∇p̂ and Nhp̂ are in L2(R2).
The equations in (5.13) show that the first derivatives of the manifold are proportional to the first
derivatives of the pattern; and the second derivatives of the manifold depend linearly on both the
first and the second derivatives of the pattern. One thus expects the L2-norms of the manifold
derivatives to be related to the L2-norms of N∇p̂ and Nhp̂ as

‖∂i p̂λ‖ = O (‖N∇p̂‖)
‖∂ij p̂λ‖ = O (‖N∇p̂‖+ ‖Nhp̂‖)

(5.15)

from the perspective of their dependence on the filter size ρ. These relations indeed hold and they
are formally shown in Appendix B.2.

Since we have established the connection between the manifold derivatives and the pattern
spatial derivatives, it suffices now to determine how the spatial derivatives ‖N∇p̂‖ and ‖Nhp̂‖
depend on the filter size ρ. In order to examine this, we adopt a parametric representation of the
reference pattern p in the analytic dictionary D defined in (2.10), where we consider the Gaussian
function φ(X) = e−X

TX as the mother function in building the dictionary. Since the linear span
of this dictionary is dense in L2(R2), any pattern p ∈ L2(R2) can be represented as the linear
combination of a sequence of atoms in D. In the rest of our analysis, we adopt a representation of
p in D

p(X) =
∞∑
k=1

ck φγk(X) (5.16)
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where γk are the atom parameters and ck are the atom coefficients. Our derivation of the variations
of ‖N∇p̂‖ and ‖Nhp̂‖ is based on the representation of patterns with Gaussian atoms. Nevertheless,
the conclusions of our analysis are general and valid for all reference patterns in L2(R2) since any
square-integrable pattern can be represented in the above form (5.16).

Now, applying the Gaussian filter in (5.6) on the reference pattern in (5.16), we obtain the
filtered pattern as

1
πρ2

(φρ ∗ p)(X) =
1
πρ2

∞∑
k=1

ck (φρ ∗ φγk)(X)

from the linearity of the convolution operator. In order to evaluate the convolution of two Gaussian
atoms, we use the following proposition [99].

Proposition 4. Let φγ1(X) = φ(σ−1
1 Ψ−1

1 (X − τ1)) and φγ2(X) = φ(σ−1
2 Ψ−1

2 (X − τ2)). Then

(φγ1 ∗ φγ2)(X) =
π|σ1σ2|
|σ3|

φγ3(X) (5.17)

where
φγ3(X) = φ(σ−1

3 Ψ−1
3 (X − τ3))

and the parameters of φγ3 are given by

τ3 = τ1 + τ2, Ψ3 σ
2
3 Ψ−1

3 = Ψ1 σ
2
1 Ψ−1

1 + Ψ2 σ
2
2 Ψ−1

2 .

Proposition 4 implies that, when an atom φγk of p is convolved with the Gaussian kernel, it
becomes

1
πρ2

(φρ ∗ φγk)(X) =
|σk|
|σ̂k|

φγ̂k(X) (5.18)

where φγ̂k(X) = φ(σ̂−1
k Ψ̂−1

k (X − τ̂k)) and

τ̂k = τk, Ψ̂k = Ψk, σ̂k =
√

Υ2 + σ2
k. (5.19)

Hence, when p is smoothed with a Gaussian filter, the atom φγk(X) with coefficient ck is replaced
by the smoothed atom φγ̂k(X) with coefficient

ĉk =
|σk|
|σ̂k|

ck =
|σk|√
|Υ2 + σ2

k|
ck =

σx,k σy,k√
(ρ2 + σ2

x,k)(ρ
2 + σ2

y,k)
ck (5.20)

where σk = diag(σx,k, σy,k). This shows that the change in the pattern parameters due to filtering
can be captured by substituting the scale parameters σk with σ̂k and replacing the coefficients ck
with ĉk. Then, the smoothed pattern p̂ has the following representation in the dictionary D

p̂(X) =
∞∑
k=1

ĉk φγ̂k(X). (5.21)



5.3 Analysis of Tangent Distance 81

One can observe from (5.20) that the atom coefficients ĉk of the filtered pattern p̂ change with
the filter size ρ at a rate

ĉk = O((1 + ρ2)−1). (5.22)

Also, from (5.19), the atom scale parameters of p̂ are given by

σ̂x,k =
√
σ2
x,k + ρ2, σ̂y,k =

√
σ2
y,k + ρ2 (5.23)

which have the rate of increase
σ̂x,k, σ̂y,k = O((1 + ρ2)1/2) (5.24)

with the filter size ρ.
We are now equipped with the necessary tools for examining the variations of ‖N∇p̂‖ and ‖Nhp̂‖

with the filter size ρ. We state these in the following lemma.

Lemma 1. The norms ‖N∇p̂‖ and ‖Nhp̂‖ of the gradient and Hessian magnitudes decrease with
the filter size ρ at the following rates

‖N∇p̂‖ = O((1 + ρ2)−1)

‖Nhp̂‖ = O((1 + ρ2)−3/2).

The proof of Lemma 1 is given in Appendix B.3. The above dependences are shown by deriving
approximations of ‖N∇p̂‖ and ‖Nhp̂‖ in terms of the atom parameters {γk} and coefficients {ck}.
Their variations with the filter size ρ are then determined by building on the relations (5.24) and
(5.22). The lemma not only confirms the intuition that the norms of the pattern gradient and
Hessian should decrease with filtering, but also provides expressions for their rate of decrease with
the filter size ρ.

An immediate consequence of Lemma 1 is the following.

Corollary 1. The norms ‖∂i p̂λ‖, ‖∂ij p̂λ‖ of the first and second-order manifold derivatives de-
crease with the filter size ρ at the following rates

‖∂i p̂λ‖ = O((1 + ρ2)−1)

‖∂ij p̂λ‖ = O
(

(1 + ρ2)−3/2 + (1 + ρ2)−1
)
.

Proof: The corollary follows directly from Lemma 1 and the relation between the manifold deriva-
tives and the pattern derivatives given in (5.15). �

Note that for large values of ρ, the second additive term of O(1 + ρ2)−1 in ‖∂ij p̂λ‖ dominates
the first term of O(1 + ρ2)−3/2, therefore ‖∂ij p̂λ‖ = O((1 + ρ2)−1) for large ρ. However, we keep
both additive terms in ‖∂ij p̂λ‖ as we will see that the first term is important for characterizing
the behavior of the alignment error bound for small values of the filter size. Corollary 1 will be
helpful for determining the dependences of the curvature bound K̂ and the parameters related to
the metric tensor Ĝij on the filter size in our main result Theorem 2.
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Examination of ‖ñ‖
We examine now the variation of ‖ñ‖ with both the filter size ρ and the initial noise level ν of the
unfiltered target pattern. In the following lemma, we summarize the dependence of the noise level
‖ñ‖ of the filtered target pattern on ν and ρ.

Lemma 2. The distance ‖ñ‖ between the filtered target pattern q̂ and the transformation manifold
M(p̂) of the filtered reference pattern p̂ has a rate of variation of

‖ñ‖ = O
(

(ν + 1)(1 + ρ2)−1/2
)

with the filter size ρ and the initial noise level ν for geometric transformation models that allow
the change of the scale of the pattern p. The variation of ‖ñ‖ is however given by

‖ñ‖ = O
(
ν(1 + ρ2)−1/2

)
if the geometric transformation model does not include a scale change.

The proof of Lemma 2 is given in Appendix B.4. The presented dependences are obtained by
deriving a relation between the norm of the noise component ñ = q̂− p̂λ̂o and the filtered version n̂
of the initial noise component n = q−pλo . The lemma states that ‖ñ‖ decreases with the filter size
ρ at a rate of O

(
(1 + ρ2)−1/2

)
. Meanwhile, its dependence on the initial noise level ν differs slightly

between transformation models that include a scale change or not. The noise term ‖ñ‖ increases
at a rate of O(ν) for transformations without a scale change; however, transformations with a scale
change introduce an offset to the initial noise level to yield a variation of O(ν+1). This is due to the
following reason. The initial noise level before filtering is given by the norm of n = q − pλo , where
pλo ∈ M(p). Meanwhile, when the transformation model λ includes a scale change, the actions of
filtering and transforming a pattern do not commute, and the filtered version p̂λo of pλo does not
lie on the transformation manifoldM(p̂) of the filtered reference pattern p̂ (see Appendix B.4 for
more details). The “lifting” of the base point p̂λo of q̂ (remember the decomposition q̂ = p̂λo + n̂)
from the manifoldM(p̂) further increases the distance of q̂ toM(p̂), in addition to the deviation
n̂. The overall noise level in case of filtering is therefore larger than the norm of the filtered version
n̂ of n. Note that for transformations involving a scale change, even if the initial noise level ν is
zero, which means q ∈M(p), we have q̂ /∈M(p̂) after filtering. This creates a source of noise when
the filtered versions of the image pair are used in the alignment.

Examination of Ê

We are now ready to present our main result, which states the dependence of the alignment error
Ê on the initial noise level of the target pattern and the filter size.

Theorem 2. The alignment error bound Ê obtained when the smoothed image pair is aligned
with the tangent distance method is given by

Ê = Ê1 + Ê2
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where the error component Ê1 resulting from manifold nonlinearity decreases at rate

Ê1 = O
(

1 + (1 + ρ2)−1/2
)

with the size ρ of the low-pass filter kernel used for smoothing the reference and target images. The
second component Ê2 of the alignment error associated with image noise has the variation

Ê2 = O
(

(ν + 1) (1 + ρ2)1/2
)

with the filter size ρ and the noise level ν if the geometric transformation model includes a scale
change. The variation of Ê2 with ρ and ν is

Ê2 = O
(
ν (1 + ρ2)1/2

)
if the geometric transformation model does not change the scale of the pattern.

Proof: Remember from (5.12) that the alignment error bound is given by

Ê = Ê1 + Ê2

where the error terms

Ê1 =
1
2
d2 K̂ λ−1

min

(
[Ĝij(λr)]

)√
tr([Ĝij(λr)]) ‖λ̂o − λr‖2∞

Ê2 =
√
d K̂ λ−1

min

(
[Ĝij(λr)]

)
‖ñ‖ ‖λ̂o − λr‖1

(5.25)

are associated respectively with the nonzero manifold curvature (lifting of the manifold from the
tangent space) and the noise on the target image. Also, remember that the variation of K̂ with ρ
is the same as that of ‖∂ij p̂λ‖, and that λmin

(
[Ĝij(λr)]

)
and tr([Ĝij(λr)]) have the same variation

with ρ as ‖∂i p̂λr‖2. Hence, using Corollary 1, we obtain

K̂ λ−1
min

(
[Ĝij(λr)]

)
= O

(
1 + (1 + ρ2)−1/2

)
O(1 + ρ2) (5.26)√

tr([Ĝij(λr)]) = O
(
(1 + ρ2)−1

)
(5.27)

which gives
Ê1 = O

(
1 + (1 + ρ2)−1/2

)
.

Then, from Lemma 2 and Equation (5.26), we determine the variation of Ê2 as

Ê2 = O
(

(ν + 1) (1 + ρ2)1/2
)
O
(

1 + (1 + ρ2)−1/2
)
≈ O

(
(ν + 1) (1 + ρ2)1/2

)
for transformations involving a scale change, and as

Ê2 = O
(
ν (1 + ρ2)1/2

)
O
(

1 + (1 + ρ2)−1/2
)
≈ O

(
ν (1 + ρ2)1/2

)
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for transformations without a scale change, which finishes the proof of the theorem. �

Theorem 2 can be interpreted as follows. The first error component Ê1 related to manifold
nonlinearity is of O

(
1 + (1 + ρ2)−1/2

)
. Since filtering the patterns makes the manifold smoother

and decreases the manifold curvature, it improves the accuracy of the first-order approxima-
tion of the manifold used in tangent distance. Therefore, the first component of the align-
ment error decreases with the filter size ρ. Then, we observe that the second error component
Ê2 = O

(
(ν + 1) (1 + ρ2)1/2

)
resulting from image noise, is proportional to the noise level as ex-

pected, but also increases with the filter size ρ. The increase of the error with smoothing is due to
the fact that filtering has the undesired effect of amplifying the alignment error caused by noise.
This result is in line with our study in Chapter 6 and previous works such as [27], [36] examining
Crámer-Rao lower bounds in image registration, which are discussed in more detail in Section 5.5.

The dependence of the overall alignment error on the filter size can be interpreted as follows.
For reasonably small values of the image noise level, the overall error Ê first decreases with
the filter size ρ at small filter sizes due to the decrease in the first term Ê1, since filtering
improves the manifold linearity. As one keeps increasing the filter size, the first error term
Ê1 = O

(
1 + (1 + ρ2)−1/2

)
gradually decreases and finally converges to a constant value . After

that, the second error term Ê2 takes over and the overall alignment error Ê starts to increase with
the filter size. The amplification of the registration error resulting from image noise then becomes
the prominent factor that determines the overall dependence of the error on the filter size. As
the alignment error first decreases and then increases with filtering, there exists an optimal value
of the filter size ρ for a given noise level ν. In the noiseless case where ν = 0, our result shows
that applying a big filter is favorable as it flattens the manifold, provided that the transformation
model does not involve a scale change. Meanwhile, for geometric transformations involving a scale
change, there exists a nontrivial optimal filter size even in the noiseless case ν = 0. In this case, the
non-commutativity of filtering and pattern transformation processes creates a secondary source of
error that is an increasing function of the filter size.

Remark. In hierarchical image registration, in the early stages of alignment where the distance
‖λ̂o − λr‖ between the reference and optimal parameters is relatively large, the image pair is
smoothed with big filters. Then, in the progressive refinement of the transformation estimates, the
reference parameter vector λr of each stage is taken as the estimate λ̂e of the previous stage, while
the filter size is decreased gradually at the same time [2], [100]. We now interpret this strategy
in the light of Theorem 2 by deriving the optimal filter size that minimizes the alignment error in
terms of the distance between the optimal and reference transformation parameters.

Observe that, from the expressions of the error components Ê1 and Ê2 in (5.25) and the vari-
ations of Ê1 and Ê2 with ν and ρ derived in Theorem 2, the alignment error is roughly given
by

Ê ≈
(

1 + (1 + ρ2)−1/2
)
‖λ̂o − λr‖2 + (ν + 1) (1 + ρ2)1/2 ‖λ̂o − λr‖. (5.28)

In this approximate expression, we ignore the constants. We rely on the equivalence of norms and
replace the `∞ and `1-norms of λ̂o−λr by its `2-norm. Then, the optimal filter size ρopt minimizing
Ê satisfies

1 + ρ2
opt =

‖λ̂o − λr‖
ν + 1

(5.29)



5.4 Experimental Results 85

so that the dependence of the optimal filter size on the distance ‖λ̂o − λr‖ and the noise level ν is
given by

ρopt ≈ O

√‖λ̂o − λr‖
ν + 1

 . (5.30)

Hence, the filter size should be chosen proportionally to the square root of the distance ‖λ̂o−λr‖
between the reference transformation parameters and the optimal ones in each stage of hierarchical
registration. This provides a justification of the strategy of reducing the filter size gradually in
coarse-to-fine alignment, since the estimate λ̂e, which is used as the reference parameter vector
λr in the next stage, is expected to approach the optimal solution progressively, i.e., the distance
‖λ̂o−λr‖ decreases throughout the hierarchical alignment process. Another observation is that the
noise level of the target image also influences the optimal filter size. The filter size must be chosen
inversely proportional to the square root

√
ν of the noise level, which is due to the increase in the

alignment error with filtering in the presence of noise.

5.4 Experimental Results

We now present experimental results that illustrate our alignment error bounds. In all settings, we
experiment on three different geometric transformation models, namely a two-dimensional transla-
tion manifold

M(p) = {Aλ(p) : λ = (tx, ty) ∈ Λ}, (5.31)

a three-dimensional manifold given by the translations and rotations of a reference pattern

M(p) = {Aλ(p) : λ = (θ, tx, ty) ∈ Λ}, (5.32)

and a four-dimensional manifold generated by the translations, rotations and isotropic scalings of
a reference pattern

M(p) = {Aλ(p) : λ = (θ, tx, ty, s) ∈ Λ}. (5.33)

In the above models, tx and ty represent translations in x and y directions, θ denotes a rotation
parameter, and s is a scale change parameter. The parameters θ and s are normalized versions
of the actual rotation angle θ and scale change factor s, so that the magnitudes of the manifold
derivatives with respect to tx, ty, θ, and s are proportional.

In all experiments, several target patterns are generated from a reference pattern by applying
a random geometric transformation according to the above models. The target patterns are then
corrupted with additive noise patterns at different noise levels ν. For each reference and target
pattern pair (p, q), a sequence of image pairs (p̂, q̂) are obtained by smoothing p and q with low-
pass filters having a range of kernel size ρ. Then, the target pattern q̂ in each image pair is aligned
with the reference pattern p̂ using the tangent distance method, where the reference parameter
vector λr is taken as identity such that p̂λr = p̂. The experimental alignment error is measured
as the parameter domain distance ‖λ̂e− λ̂o‖ between the optimal transformation parameter vector
λ̂o and its estimate λ̂e. Then, the experimental alignment error is compared to its theoretical
upper bound Ê given in Theorem 1. The curvature parameter K is computed numerically in the
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Figure 5.2: Alignment errors of random patterns for 2-D manifolds generated by translations.

implementation of the theorem.
In the first set of experiments, we experiment on 50 different reference patterns that consist of

20 atoms randomly selected from the Gaussian dictionary D. The atom parameters are randomly
drawn from the intervals ψ ∈ [−π, π); τx, τy ∈ [−4, 4]; σx, σy ∈ [0.3, 2.3]; and the atom coefficients
are randomly selected within the range [−1, 1]. Then, for each one of the models (5.31)-(5.33),
10 target patterns are generated for each reference pattern. The transformation parameters of
target patterns are selected randomly within the ranges θ ∈ [−0.4, 0.4]; tx, ty ∈ [−0.4, 0.4]; and
s ∈ [0.4, 1.6]. The above ranges for the normalized rotation and scale parameters θ and s correspond
to the actual rotation angles θ ∈ [−0.04π, 0.04π] and scale change factors s ∈ [0.87, 1.13]. Each
target pattern is corrupted with a different realization of a noise pattern that consists of 100
small-scale Gaussian atoms with random coefficients drawn from a normal distribution, which
demonstrates a random noise pattern in the continuous domain. The noise patterns are normalized
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Figure 5.3: Alignment errors of random patterns for 3-D manifolds generated by translations and rotations.

to match a range of noise levels ν.
The results obtained for the transformation models (5.31), (5.32), and (5.33) are presented

respectively in Figures 5.2, 5.3 and 5.4, where the performance is averaged over all reference and
target patterns. In all figures, the experimental alignment errors and their theoretical upper bounds
are plotted with respect to the noise level ν in panels (a) and (b), where the noise level ν is nor-
malized with the norm ‖p‖ of the reference pattern. The same experimental errors and theoretical
bounds are plotted as functions of the filter size ρ in panels (c) and (d) of all figures.

The results of this experiment can be interpreted as follows. First, the plots in panels (a) and
(b) of Figures 5.2-5.4 show that the variation of the alignment error with the noise level ν generally
follows approximately a linear rate both in the empirical and the theoretical plots. This confirms
the estimations Ê = O(ν), Ê = O(ν+1) of Theorem 2. Next, the plots in (c) and (d) of the figures
show that the actual alignment error and its theoretical upper bound decrease with filtering at
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small filter sizes ρ, as smoothing decreases the nonlinearity of the manifold. The error then begins
to increase with the filter size ρ at larger values of ρ in the presence of noise. This confirms that
the filter size has an optimal value when the target image is noisy, as predicted by Theorem 2. The
shift in the optimal value of the filter size with the increase in the noise level is observable especially
in Figures 5.2 and 5.3, which is in agreement with the approximate relation between ρopt and ν
given in (5.30). Moreover, in most plots, the optimal value of the filter size that minimizes the
theoretical upper bound in (d) is seen to be in the vicinity of the optimal filter size minimizing the
actual alignment error in (c), which shows that the theoretical bound provides a good prediction
of suitable filter sizes in alignment. The results also show that the variation of the alignment error
with the filter size matches the approximately linear rate Ê = O

(
(1 + ρ2)1/2

)
≈ O(ρ) at large filter

sizes in most plots.
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Figure 5.4: Alignment errors of random patterns for 4-D manifolds generated by translations, rotations,
and scale changes.
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It is also interesting to compare the behavior of the alignment error between different transforma-
tion models. To begin with, one can observe in Figures 5.2(c) and 5.2(d) that, for two-dimensional
translation manifolds, the alignment error and its theoretical bound asymptotically approach 0
when the filter size ρ increases in the noiseless setting ν = 0. The monotonic decay of the error
with filtering is expected since Theorem 2 predicts a variation of Ê = O

(
1 + (1 + ρ2)−1/2

)
for the

noiseless case. Meanwhile, the convergence of the error to 0 for the specific transformation model of
translations can be explained as follows. In this special case, the variation of the second derivatives
of the manifold with the filter size is given by ‖∂ij p̂λ‖ = O

(
(1 + ρ2)−3/2

)
, which follows from the

fact that the second derivatives of the transformed coordinates in (5.13) vanish; i.e., ∂ij x′, ∂ij y′ = 0.
This gives the rate of decrease of the alignment error with ρ as Ê = O

(
(1 + ρ2)−1/2

)
for translation

manifolds in the noiseless case. Therefore, the alignment error approaches 0 as ρ increases.

Next, Figures 5.3(c) and 5.3(d) obtained with three-dimensional manifolds generated by transla-
tions and rotations show that the experimental and theoretical alignment errors approach a nonzero
value in the noiseless case ν = 0 as suggested by the prediction Ê = O(1 +

(
1 + ρ2)−1/2

)
. However,

there is a slight increase in the error at large values of the filter size ρ. This can be explained as
follows. In the derivations of ‖∂i p̂λ‖ and ‖∂ij p̂λ‖ in Appendix B.2, we have defined a support region
Ω outside which the intensities of the pattern and its derivatives are insignificant, and ignored the
dependence of this region on the filter size by assuming that a sufficiently large Ω is selected with
respect to the largest realistic value of the filter size. Meanwhile, since a tightly selected support
region should expand with the filter size, the behavior of the exact value of the alignment error
may deviate slightly from the theoretical prediction for the noiseless case Ê = O(1 +

(
1 + ρ2)−1/2

)
,

which is obtained under the assumption that Ω is fixed. This deviation is especially observable
for transformation models where the transformed coordinates x′, y′ have large derivatives close to
the support boundary, where the expansion of Ω with filtering gets important. This is indeed the
case for image rotations. However, the plots in Figure 5.3 show that this effect remains negligible.
Lastly, we comment on the plots in Figure 5.4 obtained for four-dimensional transformation mani-
folds generated by translations, rotations, and isotropic scale changes. One can observe in Figures
5.4(c) and 5.4(d) that both the experimental alignment error and its theoretical upper bound in-
crease significantly with the filter size ρ in the noiseless case ν = 0 when transformations include
scale changes. This is due to the secondary source of noise demonstrated in Lemma 2. Theorem 2
suggests that the error increases with filtering at a rate Ê = O

(
(ν + 1)(1 + ρ2)1/2

)
at large values

of ρ, which corresponds to a variation Ê = O
(
(1 + ρ2)1/2

)
in the noiseless case.

We perform a second set of experiments on five real images, which are shown in Figure 5.5. The
images are resized to the resolution of 60×60 pixels, and for each image an analytical approximation
in the Gaussian dictionary D is computed with 100 atoms. The dictionary is defined over the
parameter domain ψ ∈ [−π, π); τx, τy ∈ [−6, 6]; σx, σy ∈ [0.05, 3.5]. Two reference patterns are
considered for each image; namely, the digital image itself, and its analytical approximation in D.
For each one of the transformation models (5.31)-(5.33), 40 test patterns are generated for each
reference pattern by applying a geometric transformation and adding with a digital Gaussian noise
image that is i.i.d. for each pixel. The geometric transformations are randomly selected from the
transformation parameter domain θ ∈ [−0.6, 0.6]; tx, ty ∈ [−0.6, 0.6]; s ∈ [0.1, 2.1]. The normalized
rotation and scale parameters θ and s correspond to the actual rotation angle and scale change
factors θ ∈ [−0.07π, 0.07π] and s ∈ [0.89, 1.13]. The experimental alignment errors ‖λ̂e − λ̂o‖ are
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Figure 5.5: Images used in the second set of experiments
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Figure 5.6: Alignment errors of real images for 2-D manifolds generated by translations.

computed by aligning the target patterns with the reference patterns, for both the original digital
images and their approximations in the analytical dictionary D. The theoretical upper bounds
Ê are computed based on the analytical representations of the reference patterns. The alignment
errors are plotted in Figures 5.6-5.8, which are averaged over all reference and target patterns.
Figures 5.6, 5.7, and 5.8 show the errors obtained with the 2-D, 3-D and 4-D manifold models given
respectively in (5.31), (5.32), and (5.33). In all figures, the alignment errors of the digital images,
the alignment errors of the analytical approximations of images, and the theoretical upper bounds
for the alignment error are plotted with respect to the noise level ν in panels (a)-(c), and with
respect to the filter size ρ in panels (d)-(f).

The results of the experiment show that the behavior of the alignment error for digital image
representations is very similar to the behavior of the error obtained with the analytical approx-
imations of the images in D. They mostly agree with the theoretical curves as well. The plots
confirm that the increase in the alignment error with the noise level converges to a linear rate as
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Figure 5.7: Alignment errors of real images for 3-D manifolds generated by translations and rotations.

predicted by the theoretical results. The variation of the error with filtering is also in agreement
with Theorem 2, and different transformation models lead to different behaviors for the alignment
error as in the previous set of experiments. Meanwhile, it is observable that the dependence of the
alignment error Ê on the filter size ρ in these experiments is mostly determined by its first compo-
nent Ê1 related to manifold nonlinearity, even at large filter sizes. This is in contrast to the results
obtained in the first setup with synthetically generated random patterns. The difference between
the two setups can be explained as follows. Real images generally contain more high-frequency
components than synthetical images generated in the smooth dictionary D. These are captured
with fine, small-scale atoms in the analytical approximations (the smallest atom scale used in this
setup is 0.05, while it is 0.3 in the previous setup). The high-frequency components increase the
manifold nonlinearity, which causes the error Ê1 to be the determining factor in the overall error.
In return, the positive effect of filtering that reduces the alignment error is more prominent in these
experiments, while the non-monotonic variation of the error with the filter size is still observable at
large noise levels or for the transformation model (5.33) involving a scale change. The comparison
of the two experimental setups shows that the exact variation of the error with filtering is influenced
by the frequency characteristics of the reference patterns.

The plots in panels (d)-(f) of the figures also show that, at small filter sizes, experimental
errors are relatively high and very similar for different noise levels, while this is not the case in
the theoretical plots. This suggests that numerical errors in the estimation of the tangent vectors
with finite differences must have some influence on the overall error in practice, which is not
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Figure 5.8: Alignment errors of real images for 4-D manifolds generated by translations, rotations, and
scale changes.

taken into account in the theoretical bound. This error is higher for images with stronger high-
frequency components and diminishes with smoothing (see the study in [39] for example). Lastly,
one can observe that the alignment errors obtained with digital images are slightly larger than the
alignment errors given by the analytic approximations of the images. This can be explained by the
difference in the numerical computation of the tangent vectors in these two experimental settings.
The analytic representation of the images in terms of parametric Gaussian atoms allows a more
accurate computation of the tangent vectors, while the numerical interpolations employed in the
computation of the tangents in the digital setting create an additional error source.

The overall conclusions of the experiments can be summarized as follows. The theoretical
alignment error upper bound given in Theorem 1 gives a numerically pessimistic estimate of the
alignment error as it is obtained with a worst-case analysis. However, it reflects well the actual
dependence of the true alignment error both on the noise level and the filter size, and the results
confirm the approximate variation rates given in Theorem 2. The theoretical upper bounds can be
used in the determination of appropriate filter sizes in image registration with tangent distance.

5.5 Discussion of Results

We have derived an upper bound for the alignment error of the tangent distance method for generic
transformation models. Our analysis shows that the alignment error decreases with the filter size
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ρ for small values of ρ. However, in the presence of noise, the error starts increasing with ρ at
relatively large filter sizes and there exists an optimal value of ρ that minimizes the alignment
error. We have also shown that the alignment error bound is linearly proportional to the noise level
of the target image.

We now discuss some previous studies about the performance of image registration. We begin
with the works that analyze the dependence of the alignment error on noise. First, the study in
[27] derives the Crámer-Rao lower bound (CRLB) for the registration of two images that differ by
a 2-D translation. The CRLB gives a general lower bound for the MSE of any estimator; therefore,
the lower bounds derived in [27] are valid for all registration algorithms that aim to recover the
translation between two images. A Gaussian noise model is assumed in [27], and the CRLB of a
translation estimator is shown to be proportional to the noise variance. One can consider the noise
standard deviation in the analysis in [27] to be proportional to our noise level parameter ν, which
implies that the alignment error has a lower bound of O(ν). Then, the study in [36] explores the
CRLB of registration for a variety of geometric transformation models and shows that the linear
variation of the CRLB with the noise level derived in [27] for translations can be generalized to
several other models such as rigid, shear and affine transformations. Being a generic bound valid
for any estimator, the Crámer-Rao lower bound is also valid for the tangent distance method. In
our main result Theorem 2, the second component Ê2 of the alignment error, which is related to
image noise, increases at a rate of O(ν) with the noise level ν for any geometric transformation
model. Therefore, the results in [27] and [36] are consistent with ours. Finally, let us remark
the following about the variation of Ê2 with the filter size. The studies [27] and [36] show that
the CRLB of transformation estimators increases when the magnitudes of the spatial derivatives of
patterns decrease. Since low-pass filtering reduces the magnitudes of spatial derivatives, it increases
the MSE of estimators that compute the transformation parameters between an image pair. Our
main result, which indicates that the error component Ê2 associated with image noise increases
with filtering, is in line with these previous works.

Let us now compare our results with some previous analyses on the performance of gradient-
based methods in optical flow computation, which can be regarded as the restriction of the tangent
distance method to estimate 2-D translations between image patches. First, the work [27] studies
the bias on gradient-based estimators, which employ a first-order approximation of the image
intensity function. The bias is the difference between the expectation of the translation parameter
estimates and the true translation parameters, and it results from the first-order approximation of
the image intensity function. It is therefore associated with the first error term Ê1 in Theorem 2
in our analysis. Note that the second error term Ê2 results from image noise and is related to the
variance of the estimator when a zero-mean random noise model is assumed. It is shown in [27]
that the bias is more severe if the image has larger bandwidth, i.e., if it has stronger high-frequency
components. Hence, as smoothing the images with a low-pass filter reduces the image bandwidth,
it decreases the bias. The studies in [38] and [39] furthermore report that smoothing diminishes
the systematic error in the estimation of the image gradients from finite differences in optical flow
computation, as it reduces the second and higher-order derivatives of the image intensity function.
The results in [27] are consistent with our analysis, which shows that the component of the alignment
error associated with manifold nonlinearity decreases with the filter size ρ. Our result is however
valid not only for translations, but for other transformation models as well. Moreover, it provides
an exact rate of decrease for the error, which is given by O

(
(1 + ρ2)−1/2

)
for translations, and
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O
(
1 + (1 + ρ2)−1/2

)
for other transformation models. Lastly, the analysis in [27] reports that the

bias due to series truncation has a polynomial dependence on the amount of translation. In the
bound given in Theorem 1, the alignment error term E1 associated with manifold nonlinearity is seen
to be proportional to the square ‖λo−λr‖2∞ of the distance between the transformation parameters.
This quadratic dependence is due to the fact that we have used a second-order approximation of
the transformation manifold; a higher-order approximation clearly yields a polynomial dependence
of higher-degree as obtained in [27].

5.6 Conclusion

In this chapter, we have presented a performance analysis of hierarchical image registration with
the tangent distance method, which uses a first-order approximation of the transformation manifold
in the estimation of the geometric transformation between two images. We have derived an upper
bound for the alignment error and analyzed its variation with the noise level and the size of the low-
pass filter used for smoothing the images in hierarchical algorithms. Our main finding is that the
alignment error decreases with filtering for small filters, as filtering reduces manifold nonlinearity.
It however increases with filtering for large filters due to the effect of image noise, while it is
linearly proportional to the noise level. Therefore, there exists an optimal value of the filter size
that minimizes the alignment error, which depends on the noise level and the geometric structure
of the manifold. Our treatment is generic and valid for arbitrary geometric transformation models,
and provides an exact prediction for the joint rate of variation of the alignment error with the filter
size and the noise level. The presented study provides insight for the understanding of multiscale
registration methods that are based on manifold linearizations, and are helpful for obtaining a
better performance with these methods in image registration and transformation-invariant image
analysis applications.



Chapter 6

Analysis of Image Registration with
Descent Methods

6.1 Overview of Image Registration Analysis

Manifold distance computation is a difficult problem, which is tightly linked to the image registra-
tion problem. In Chapter 5, we have studied the registration of images with the tangent distance
method, which gives an easy solution based on minimizing the distance to the linear approximation
of the manifold. In this chapter, we focus on another simple and fast method for solving the reg-
istration problem, which is the minimization of the actual distance to the manifold with a simple
local optimizer. We consider the particular transformation model of 2-D translations and study a
rather basic problem concerning the performance of multiscale image registration algorithms that
use local optimization methods. Smoothing the images is heuristically known to improve the well-
behavedness of the dissimilarity function in image registration by reducing the local minima [42],
[24], [101]. Meanwhile, it also causes an increase in the alignment error in a noisy setting, which has
already been observed in studies such as [27] examining the CRLB of registration. The selection of
good low-pass filters in image registration requires the consideration of these two effects together.

Despite the awareness of the link between smoothing and the ease of registration, the influence
of smoothing on the density of local minima of the dissimilarity function has never been theoreti-
cally studied before. Moreover, none of the previous studies characterize the exact relation between
the properties of the low-pass filter used in smoothing and the alignment error inherent in and
common to all region-based methods, which is the change in the location of the global minimum of
the dissimilarity function due to the perturbation caused by the additive noise on the images. In
this chapter, we present a study that aims to respond to these two important issues, which influ-
ence the performance of all region-based registration methods. The density of the local minima of
the dissimilarity function is directly related to the effectiveness of local descent-type optimizers in
registration. Also, assuming that the translation between two images is sufficiently small, the per-
turbation in the global minimum of the dissimilarity function corresponds exactly to the alignment
error of descent methods in image registration. Hence, in order to provide a solid illustration of our
alignment analysis, we consider the gradient descent method as the optimization technique. Note
however that the alignment error bounds derived in this chapter are relevant to the performance of
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not only gradient descent, but other registration methods as well. For instance, it has been seen in
Section 5.3.2 of Chapter 5 that the actual error of the tangent distance method is affected by the
perturbation in the global minimum of the distance function.

Although the registration problem is formulated for the estimation of the global 2-D translation
between a reference image and a target image in this chapter, one can equivalently assume that
the considered reference and target patterns are image patches rather than complete images. For
this reason, our study is of interest not only for registration applications where the transformation
between the image pair is modeled by a pure translation (e.g., as in satellite images), but also
for various motion estimation techniques, such as block-matching algorithms and region-based
matching techniques in optical flow that assign constant displacement vectors to image subregions.
We adopt an analytic and parametric model for the reference and target patterns and formulate the
registration problem in the continuous domain of square-integrable functions L2(R2). We use the
squared-distance between the image intensity functions as the dissimilarity measure. This distance
function is the continuous domain equivalent of SSD. We study two different aspects of image
registration; namely, alignment regularity and alignment accuracy.

We first look at alignment regularity ; i.e., the well-behavedness of the distance function, and
estimate the largest neighborhood of translations such that the distance function has only one
local minimum, which is also the global minimum. Then we study the influence of smoothing the
reference and target patterns on the neighborhood of translations recoverable with local minimizers
such as descent-type algorithms without getting trapped in a local minimum. In more details, we
consider the translation manifold of the reference pattern, which is the set of patterns generated by
its translations. In the examination of the alignment regularity, we assume that the target pattern
lies on the translation manifold of the reference pattern. We then consider the distance function
f(λ) = ‖pλ−q‖2 between the target pattern q and the translated version pλ of the reference pattern
p, where λ denotes a translation parameter. The global minimum of f is at the origin λ = 0. Then,
in the translation parameter domain, we consider the largest open neighborhood around the origin
within which f is an increasing function along any ray starting out from the origin. We call this
neighborhood the Single Distance Extremum Neighborhood (SIDEN). The SIDEN of a reference
pattern is important in the sense that it defines the translations that can be correctly recovered by
minimizing f with a descent method. We derive an analytic estimation of the SIDEN. Then, in
order to study the effect of smoothing on the alignment regularity, we consider the registration of
low-pass filtered versions of the reference and target patterns and examine how the SIDEN varies
with the filter size. Our main result is that the volume (area) of the SIDEN increases at a rate of
at least O(1 + ρ2) with respect to the size ρ of the low-pass filter kernel, which controls the level
of smoothing. This formally shows that, when the patterns are low-pass filtered, a wider range
of translation values can be recovered with descent-type methods; hence, smoothing improves the
regularity of alignment. Then, we demonstrate the usage of our SIDEN estimate for constructing a
regular multiresolution grid in the translation parameter domain with exact alignment guarantees.
Based on our estimation of the neighborhood of translations that are recoverable with descent
methods, we design an adaptive search grid in the translation parameter domain such that large
translations can be recovered by locating the closest solution on the grid and then refining this
estimation with a descent method.

Then we look at alignment accuracy and study the effect of image noise on the accuracy of
image alignment. We also characterize the influence of low-pass filtering on the alignment accuracy
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in a noisy setting. This is an important matter, as the target image is rarely an exactly translated
version of the reference image in practice. When the target pattern is noisy, it is not exactly on
the translation manifold of the reference pattern. The noise on the target pattern causes the global
minimum of the distance function to deviate from the solution λ = 0. We formulate the alignment
error as the perturbation in the global minimum of the distance function, which corresponds to
the misalignment between the image pair due to noise. We focus on two different noise models. In
the first setting, we look at Gaussian noise. In the second setting, we examine arbitrary square-
integrable noise patterns, where we consider general noise patterns and noise patterns that have
small correlation with the points on the translation manifold of the reference pattern. We derive
upper bounds on the alignment error in terms of the noise level and the pattern parameters in both
settings. We then consider the smoothing of the reference and target patterns in these settings and
look at the variation of the alignment error with the noise level and the filter size. It turns out
that the alignment error bound increases at a rate of O

(
η1/2 (1− η)−1/2

)
and O

(
ν1/2 (1− ν)−1/2

)
in respectively the first and second settings with respect to the noise level, where η is the standard
deviation of the Gaussian noise, and ν is the norm of the noise pattern. Another observation is that
the alignment error is small if the noise pattern has small correlation with translated versions of the
reference pattern. Moreover, the alignment error bounds increase at the rates O

(
ρ3/2 (1− ρ)−1/2

)
and O

(
(1 + ρ2)1/2

)
in the first and second settings, with respect to the filter size ρ. Therefore,

our main finding is that smoothing the image pair tends to increase the alignment error when the
target pattern does not lie on the translation manifold of the reference pattern. The experimental
results confirm that the behavior of the theoretical bound as a function of the noise level and filter
size reflects well the behavior of the actual error.

This chapter is is organized as follows. In Section 6.2, we focus on the alignment regularity
problem, where we first derive an estimation of the SIDEN and then examine its variation with
filtering. Then in Section 6.3, we look into the alignment accuracy problem and present our results
regarding the influence of noise on the alignment accuracy. In Section 6.4, we present experimental
results. In Section 6.5, we give a discussion of our results and interpret them in comparison with
the previous studies in the literature. Finally, we conclude in Section 6.6.

6.2 Analysis of Alignment Regularity

6.2.1 Notation and problem formulation

Let p ∈ L2(R2) be a visual pattern with a non-trivial support on R2 (i.e., p(X) is not equal to 0
almost everywhere on R2). In order to study the image registration problem analytically, we adopt
a representation of p in the analytic and parametric dictionary manifold D defined in (2.10) with
the Gaussian function φ(X) = e−X

TX = e−(x2+y2) as the mother function. We assume that a
sufficiently accurate approximation of p with finitely many atoms in D is available; i.e.,

p(X) ≈
K∑
k=1

ck φγk(X) (6.1)
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where K is the number of atoms used in the representation of p, γk are the atom parameters and
ck are the atom coefficients.

Throughout this chapter, T = [Tx Ty]T ∈ S1 denotes a unit-norm vector and S1 is the unit
circle in R2. We use the notation tT for translation vectors, where t ≥ 0 denotes the magnitude of
the vector (amount of translation) and T defines the direction of translation. Then, the translation
manifoldM(p) of p is the set of patterns generated by translating p

M(p) = {p(X − t T ) : T ∈ S1, t ∈ [0,+∞)} ⊂ L2(R2). (6.2)

We consider the squared-distance between the reference pattern p(X) and its translated version
p(X − tT ). This distance is the continuous domain equivalent of the SSD measure that is widely
used in registration methods. The squared-distance in the continuous domain is given by

f(tT ) = ‖p(X)− p(X − tT )‖2 =
∫
R2

(p(X)− p(X − tT ))2dX. (6.3)

The global minimum of f is at the origin tT = 0. Therefore, there exists a region around the
origin within which the restriction of f to a ray tTa starting out from the origin along an arbitrary
direction Ta is an increasing function of t > 0 for all Ta. This allows us to define the Single Distance
Extremum Neighborhood (SIDEN) as follows.

Definition 8. We call the set of translation vectors

S = {0} ∪ {ωTT : T ∈ S1, ωT > 0, and
df(tT )
dt

> 0 for all 0 < t ≤ ωT} (6.4)

the Single Distance Extremum Neighborhood (SIDEN) of the pattern p.

Note that the origin {0} is included separately in the definition of SIDEN since the gradient
of f vanishes at the origin and therefore df(tT )/dt|t=0 = 0 for all T . The SIDEN S ⊂ R2 is an
open neighborhood of the origin such that the only stationary point of f inside S is the origin. We
formulate this in the following proposition.

Proposition 5. Let tT ∈ S. Then ∇f(tT ) = 0 if and only if tT = 0.

Proof: Let ∇f(tT ) = 0 for some tT ∈ S. Then, ∇T f(tT ) = 0, which is the directional derivative
of f along the direction T at tT . This gives

∇T f(tT ) =
d

du
f(tT + uT )

∣∣∣∣
u=0

=
d

du
f ((t+ u)T )

∣∣∣∣
u=0

=
d

du
f(uT )

∣∣∣∣
u=t

=
df(tT )
dt

= 0

which implies that t = 0, as tT ∈ S. The second part ∇f(0) = 0 of the statement also holds clearly,
since the global minimum of f is at 0. �

Proposition 5 can be interpreted as follows. The only local minimum of the distance function
f is at the origin in S. Therefore, when a translated version p(X − tT ) of the reference pattern
is aligned with p(X) with a local optimization method like a gradient descent algorithm, the local
minimum achieved in S is necessarily also the global minimum.
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Q
S

δTωT

f(tT)

R2
0

Figure 6.1: SIDEN S is the largest open neighborhood around the origin within which the distance f is
increasing along all rays starting out from the origin. Along each unit direction T , S covers points ωTT
such that f(tT ) is increasing between 0 and ωTT . The estimate Q of S is obtained by computing a lower
bound δT for the first zero-crossing of df(tT )/dt.

The goal of our analysis is now the following. Given a reference pattern p, we would like to find
an analytical estimation of S. However, the exact derivation of S requires the calculation of the
exact zero-crossings of df(tT )/dt, which is not easy to do analytically. Instead, one can characterize
the SIDEN by computing a neighborhood Q of 0 that lies completely in S; i.e., Q ⊂ S. Q can be
derived by using a polynomial approximation of f and calculating, for all unit directions T , a lower
bound δT for the supremum of ωT such that ωTT is in S. This does not only provide an analytic
estimation of the SIDEN, but also defines a set that is known to be completely inside the SIDEN.
The regions S and Q are illustrated in Figure 6.1.

In Section 6.2.2 we derive Q. In particular, Q is obtained in the form of a compact analytic set
and f is a differentiable function. This guarantees that, if the translation that aligns the image pair
perfectly is in the set Q, the distance function f can be minimized with gradient descent algorithms;
the solution converges to a local minimum of f in Q, which is necessarily the global minimum of f ,
resulting in a perfect alignment. Moreover, we will see in Section 6.4 that the knowledge of a set
Q ⊂ S permits us to design a registration algorithm that can recover large translations perfectly.

Finally, as Q is obtained analytically and parametrically, it is simple to examine its variation
with the low-pass filtering applied to p. This is helpful for gaining an understanding of the relation
between the alignment regularity and smoothing. We study this relation in Section 6.2.3.

6.2.2 Estimation of SIDEN

We now derive an estimationQ for the Single Distance Extremum Neighborhood S. In the following,
we consider T to be a fixed unit direction in S1. We derive Q ⊂ S by computing a δT which
guarantees that df(tT )/dt > 0 for all 0 < t ≤ δT . In the derivation of Q, we need a closed-form
expression for df(tT )/dt. Since f is the distance between the patterns p(X) and p(X − tT ) that
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are represented in terms of Gaussian atoms, its derivation requires the integration of products of
Gaussian atom pairs. We thus use the formula provided by Proposition 8 given in Appendix B.3
in the examination of the distance function f .

The terms

Σjk =
1
2

(
Ψj σ

2
j Ψ−1

j + Ψk σ
2
k Ψ−1

k

)
Qjk =

π |σjσk|√
|Σjk|

exp
(
−1

2
(τk − τj)T Σ−1

jk (τk − τj)
)

defined in Proposition 8 are functions of the parameters of the j-th and k-th atoms. We also denote

ajk :=
1
2
T T Σ−1

jk T, bjk :=
1
2
T T Σ−1

jk (τk − τj)

cjk :=
1
2

(τk − τj)T Σ−1
jk (τk − τj).

(6.5)

Notice that ajk > 0 and cjk ≥ 0 since ‖T‖ = 1 and Σjk, Σ−1
jk are positive definite matrices. By

definition, Qjk > 0 as well. Note also that ajk and bjk are functions of the unit direction T ; how-
ever, for the sake of simplicity we avoid expressing their dependence on T explicitly in our notation.

We can now give our result about the estimation of the SIDEN.

Theorem 3. The region Q ⊂ R2 is a subset of the SIDEN S of the pattern p if

Q = {tT : T ∈ S1, 0 ≤ t ≤ δT }

where δT is the only positive root of the polynomial |α4|t3 − α3t
2 − α1 and

α1 =
K∑
j=1

K∑
k=1

cjckQjk (2 ajk − 4 b2jk)

α3 =
K∑
j=1

K∑
k=1

cjckQjk

(
−8

3
b4jk + 8 b2jk ajk − 2 a2

jk

)

α4 = −1.37
K∑
j=1

K∑
k=1

|cjck|Qjk exp

(
b2jk
ajk

)
a

5/2
jk

are constants depending on T and on the parameters γk of the atoms in p.

The proof of Theorem 3 is given in the technical report [102, Appendix A.1]. The proof applies
a Taylor expansion of df(tT )/dt and derives δT such that df(tT )/dt is positive for all t ≤ δT . There-
fore, along each direction T , δT constitutes a lower bound for the first zero-crossing of df(tT )/dt
(see Figure 6.1 for an illustration of δT ). By varying T over the unit circle, one obtains a closed
neighborhood Q of 0 that is a subset of S. This region can be analytically computed using only
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the parametric representation of p and provides an estimate for the range of translations tT over
which p(X) can be exactly aligned with p(X − tT ).

6.2.3 Variation of SIDEN with smoothing

We now examine how smoothing the reference pattern p with a low-pass filter influences its SIDEN.
We consider the Gaussian filter kernel we have studied in Chapter 5, which is given in (5.6).
Remember from Chapter 5 that the smoothed version p̂ of the reference pattern p can be obtained
by replacing the original atom coefficients ck and atom scale matrices σk by ĉk and σ̂k, whose
expressions are given in (5.20) and (5.19). Therefore, the filtered version of the reference pattern
in (6.1) is given in the form

p̂(X) =
K∑
k=1

ĉkφγ̂k(X). (6.6)

Considering the same setting as in Section 6.2.1, where the target pattern p(X−tT ) is exactly a
translated version of the reference pattern p(X), we now assume that both the reference and target
patterns are low-pass filtered as it is typically done in hierarchical image registration algorithms.
When a pattern is low-pass filtered, the scale parameters of its atoms increase and the atom
coefficients decrease proportionally to the filter kernel size, leading to a spatial diffusion of the
image intensity function. The goal of this section is to show that this diffusion increases the volume
of the SIDEN. We achieve this by analyzing the variation of the smoothed SIDEN estimate Q̂
corresponding to the smoothed distance

f̂(tT ) =
∫
R2

(
p̂(X)− p̂(X − tT )

)2
dX (6.7)

with respect to the filter size ρ. Since the smoothed pattern has the same parametric form (6.6) as
the original pattern, the variation of Q̂ with ρ can be analyzed easily by examining the dependence
of the parameters involved in the derivation of Q̂ on ρ. In the following, we express the terms in
Section 6.2.2 that have a dependence on ρ with the notation (̂.), such as âjk, b̂jk, ĉk, σ̂k. We write
the terms that do not depend on ρ in the same way as before; e.g., t, T , τk, Ψk.

Now, we can use Theorem 3 for the smoothed pattern p̂(X). For a given kernel size ρ, the
smoothed versions âjk, b̂jk, ĉjk, Q̂jk of the parameters in Section 6.2.2 can be obtained by replacing
the scale parameters σk with σ̂k defined in (5.19). Then, the smoothed SIDEN corresponding to
ρ is given as Q̂ = {tT : T ∈ S1, 0 ≤ t ≤ δ̂T } where δ̂T is the positive root of the polynomial
|α̂4|t3 − α̂3t

2 − α̂1 such that

α̂1 =
K∑
j=1

K∑
k=1

ĉj ĉk Q̂jk (2 âjk − 4 b̂2jk), α̂3 =
K∑
j=1

K∑
k=1

ĉj ĉk Q̂jk

(
−8

3
b̂4jk + 8 b̂2jk âjk − 2 â2

jk

)

α̂4 = −1.37
K∑
j=1

K∑
k=1

|ĉj ĉk| Q̂jk exp

(
b̂2jk
âjk

)
â

5/2
jk .

Similarly to the derivation in Section 6.2.2, the terms âjk, b̂jk, ĉjk, Q̂jk are associated with the
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integration of the products of smoothed Gaussian atom pairs, and they appear in the closed-form
expression of df̂(tT )/dt.

We are now ready to give the following result, which summarizes the dependence of the smoothed
SIDEN estimate on the filter size ρ.

Theorem 4. Let V (Q̂) denote the volume (area) of the SIDEN estimate Q̂ for the smoothed
pattern p̂. Then, the order of dependence of the volume of Q̂ on ρ is given by V (Q̂) = O(1 + ρ2).

Theorem 4 is proved in [102, Appendix A.2]. The proof is based on the examination of the
order of variation of âjk, b̂jk, ĉjk, Q̂jk with ρ, which is then used to derive the dependence of δ̂T on
ρ.

Theorem 4 is the main result of this section. It states that the volume of the SIDEN estimate
increases with the size of the filter applied on the patterns to be aligned. The theorem shows that
the area of the region of translation vectors for which the reference pattern p̂(X) can be perfectly
aligned with p̂(X − tT ) using a descent method expands at the rate O(1 + ρ2) with respect to the
increase in the filter size ρ. Here, the order of variation O(1 + ρ2) is obtained for the estimate Q̂ of
the SIDEN. Hence, one may wonder if the volume V (Ŝ) of the SIDEN Ŝ has the same dependence
on ρ. Remembering that Q̂ ⊂ Ŝ for all ρ, one immediate observation is that the rate of expansion
of Ŝ must be at least O(1 + ρ2); otherwise, there would exist a sufficiently large value of ρ such
that Q̂ is not included in Ŝ. One can therefore conclude that V (Ŝ) ≥ V (Q̂) = O(1 + ρ2). However,
this only gives a lower bound for the rate of expansion of Ŝ and the exact rate of expansion of Ŝ
may be larger. In the following, we make a few comments about the variation of Ŝ with ρ.

Remark. As shown in the proof of Theorem 3, the derivative of the distance function f(tT ) is
of the form

df(tT )
dt

=
K∑
j=1

K∑
k=1

cjck Qjk sjk(t) (6.8)

where
sjk(t) = e−(ajk t2 + 2 bjk t) (ajk t + bjk) + e−(ajk t2− 2 bjk t) (ajk t − bjk) . (6.9)

In order to derive S, one needs to exactly locate the smallest zero-crossing of df(tT )
dt . This is not

easy to do analytically due to the complicated form of the functions sjk(t), which we handle with
polynomial approximations in the derivation of Q. However, in order to gain an intuition about
how the zero-crossings change with filtering, one can look at the dependence of the extrema of the
two additive terms in sjk(t) on ρ. The function e−(ajk t2 + 2 bjk t) (ajk t + bjk) has two extrema at

µ0 =
1
ajk

(
−
√
ajk
2
− bjk

)
, µ1 =

1
ajk

(√
ajk
2
− bjk

)
(6.10)

and e−(ajk t2− 2 bjk t) (ajk t − bjk) has two extrema at

µ2 =
1
ajk

(
−
√
ajk
2

+ bjk

)
, µ3 =

1
ajk

(√
ajk
2

+ bjk

)
. (6.11)

Now replacing the original parameters ajk, bjk with their smoothed versions âjk, b̂jk and using the
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result from the proof of Theorem 4 that âjk and b̂jk decrease at a rate of O
(
(1 + ρ2)−1

)
, it is easy

to show that the locations of the extrema µ̂0, µ̂1, µ̂2, µ̂3 change with a rate of O
(
(1 + ρ2)1/2

)
. One

may thus conjecture that the zero-crossings of df(tT )/dt along a fixed direction T might also move
at the same rate, which gives the volume of Ŝ as V (Ŝ) = O(1 + ρ2).

On the other hand, V (Ŝ) may also exhibit a different type of variation with ρ depending on
the atom parameters of p. In particular, V (Ŝ) may expand at a rate greater than O(1 + ρ2) for
some patterns. For example, as shown in [102, Proposition 4], there exists a threshold value ρ0

of the filter size such that for all ρ > ρ0, Ŝ = R2 and thus V (Ŝ) = ∞ for patterns that consist
of atoms with coefficients of the same sign. In addition, patterns whose atoms with positive (or
negative) coefficients are dominant over the atoms with the opposite sign are likely to have this
property due to their resemblance to patterns consisting of atoms with coefficients of the same sign.

Theorem 4 describes the effect of smoothing images before alignment. One may then wonder
what the optimal filter size to be applied to the patterns before alignment is, given a reference
and a target pattern. Theorem 4 suggests that, if the target pattern is on the translation manifold
of the reference pattern, applying a large filter is always preferable as it provides a large range of
translations recoverable by descent algorithms. The accuracy of alignment does not change with
the filter size in this noiseless setting, since a perfect alignment is always guaranteed with descent
methods as long as the amount of translation is inside the SIDEN. However, the assumption that
the target pattern is exactly of the form p(X − tT ) is not realistic in practice; i.e., in real image
processing applications, the target image is likely to deviate fromM(p) due to the noise caused by
image capture conditions, imaging model characteristics, etc. Hence, we examine in Section 6.3 if
filtering affects the accuracy of alignment when the target image deviates fromM(p).

6.3 Analysis of Alignment Accuracy in Noisy Settings

We now analyze the effect of noise and smoothing on the accuracy of the estimation of translation
parameters. In general, noise causes a perturbation in the location of the global minimum of the
distance function. The perturbed version of the single global minimum of the noiseless distance
function f will remain in the form of a single global minimum for the noisy distance function with
high probability if the noise level is sufficiently small. The noise similarly introduces a perturbation
on the SIDEN as well. The exact derivation of the SIDEN in the noisy setting requires the exam-
ination of the first zero-crossings of the derivative of the noisy distance function along arbitrary
directions T around its global minimum. At small noise levels, these zero-crossings are expected to
be perturbed versions of the first zero-crossings of df(tT )/dT around the origin, which define the
boundary of the noiseless SIDEN S. The perturbation on the zero-crossings depends on the noise
level. If the noise level is sufficiently small, the perturbation on the zero-crossings will be smaller
than the distance between S and its estimate Q. This is due to the fact that Q is a worst-case
estimate for S and its boundary is sufficiently distant from the boundary of S in practice, which
is also confirmed by the experiments in Section 6.4. In this case, the estimate Q obtained from
the noiseless distance function f is also a subset of the noisy SIDEN. Therefore, under the small
noise assumption, Q can be considered as an estimate of the noisy SIDEN as well and it can be
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used in the alignment of noisy images in practice.1 Our alignment analysis in this section relies
on this assumption. Since we consider that the reference and target patterns are aligned with a
descent-type optimization method, the solution will converge to the global minimum of the noisy
distance function in the noisy setting. The alignment error is then given by the change in the global
minimum of the distance function, which we analyze now.

The selection of the noise model for the representation of the deviation of the target pattern
from the translation manifold of the reference pattern depends on the imaging application. It is
common practice to represent non-predictable deviations of the image intensity function from the
image model with additive Gaussian noise. This noise model fits well the image intensity variations
due to imperfections of the image capture system, sensor noise, etc. Meanwhile, in some settings,
one may have a prior knowledge of the type of the deviation of the target image from the translation
manifold of the reference image. For instance, the deviation from the translation manifold may be
due to some geometric image deformations, non-planar scene structures, etc. In such settings, one
may be able to bound the magnitude of the deviation of the image intensity function from the
translation model. Considering these, we examine two different noise models in our analysis. We
first focus on a setting where the target pattern is corrupted with respect to an analytic noise model
in the continuous space L2(R2). The analytic noise model is inspired by the i.i.d. Gaussian noise
in the discrete space Rn. In Section 6.3.1, we derive a probabilistic upper bound on the alignment
error for this setting in terms of the parameters of the reference pattern and the noise model. Then,
in Section 6.3.2, we generalize the results of Section 6.3.1 to arbitrary noise patterns in L2(R2) and
derive an error bound in terms of the norm of the noise pattern. The influence of smoothing the
reference and target patterns on the alignment error is discussed in Section 6.3.3.

Throughout Section 6.3, we use the notations (·) and (·) to refer respectively to upper and lower
bounds on a variable (·). The parameters corresponding to smoothed patterns are written as (̂.) as
in Section 6.2.3. The notations R(.) and C(.) are used to denote important upper bounds appearing
in the main results, which are associated with the parameter in the subscript.

6.3.1 Derivation of an upper bound on alignment error for Gaussian noise

We consider the noiseless reference pattern p in (6.1) and a target pattern that is a noisy observation
of a translated version of p. We assume an analytical noise model given by

w(X) =
L∑
l=1

ζl φξl(X), (6.12)

where the noise units φξl(X) are Gaussian atoms of scale ε. The coefficients ζl and the noise
atom parameters ξl are assumed to be independent. The noise atoms are of the form φξl(X) =
φ
(
E−1(X − δl)

)
where

E =
[
ε 0
0 ε

]
, δl =

[
δx,l
δy,l

]
.

The vector δl is the random translation parameter of the noise atom φξl such that the random vari-
ables {δx,l}Ll=1, {δy,l}Ll=1 ∼ U [−b, b] have an i.i.d. uniform distribution. Here, b is a fixed parameter

1The validity of this approximation is confirmed by the numerical simulation results in Section 6.4.
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used to define a region [−b, b] × [−b, b] ⊂ R2 in the image plane, which is considered as a support
region capturing a substantial part of the energy of reference and target images. The centers of
the noise atoms are assumed to be uniformly distributed in this region. In order to have a realistic
noise model, the number of noise units L � K is considered to be a very large number and the
scale ε > 0 of noise atoms is very small. The parameters L and ε will be treated as noise model
constants throughout the analysis. The coefficients ζl ∼ N(0, η2) of the noise atoms are assumed
to be i.i.d. with a normal distribution of variance η2.

The continuous-space noise model w(X) is chosen in analogy with the digital i.i.d. Gaussian
noise in the discrete space Rn. The single isotropic scale parameter ε of noise units bears resemblance
to the one-pixel support of digital noise units. The uniform distribution of the position δl of noise
units is similar to the way digital noise is defined on a uniform pixel grid. The noise coefficients ζl
have an i.i.d. normal distribution as in the digital case. If our noise model w(X) has to approximate
the digital Gaussian noise in a continuous setting, the noise atom scale ε is chosen comparably to
the pixel width and L corresponds to the resolution of the discrete image.

Let now pn be a noisy observation of p such that pn(X) = p(X) + w(X), where w and p are
independent according to the noise model (6.12). We assume that the target pattern is a translated
version of pn(X) so that it takes the form pn(X − tT ). Then, the noisy distance function between
p(X) and pn(X − tT ) is given by

g(tT ) =
∫
R2

(
p(X)− pn(X − tT )

)2
dX =

∫
R2

(
p(X)− p(X − tT )− w(X − tT )

)2
dX. (6.13)

This can be written as g(tT ) = f(tT ) + h(tT ), where

h(tT ) := −2
∫
R2

(
p(X)− p(X − tT )

)
w(X − tT ) dX +

∫
R2

w2(X − tT ) dX. (6.14)

The function h represents the deviation of g from f . We call h the distance deviation function.
The expected value of h is independent of the translation tT and given by

µh := E[h(tT )] =
π

2
Lη2ε2

where E[.] denotes the expectation [102, Appendix B.1]. Therefore, E[g(tT )] = f(tT ) +µh and the
global minimum of E[g(tT )] is at tT = 0. However, due to the probabilistic perturbation caused
by the noise w, the global minimum of g is not at tT = 0 in general. We consider g to have a
single global minimum and denote its location by t0T0. Nevertheless, the single global minimum
assumption is not a strict hypothesis of our analysis technique; i.e., the upper bound that we derive
for the distance between t0T0 and the origin is still valid if g has more than one global minimum.
In this case, the obtained upper bound is valid for all global minima.

We now continue with the derivation of a probabilistic upper bound on the distance t0 between
the location t0T0 of the global minimum of g and the location 0 of the global minimum of f . We
show in [102, Appendix B.2] that t0 satisfies the equation

t20
2

(
d2f(tT0)
dt2

∣∣∣∣
t=t1

+
d2f(tT0)
dt2

∣∣∣∣
t=t2

+
d2h(tT0)
dt2

∣∣∣∣
t=t1

)
= |h(0)− h(t0T0)| (6.15)
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for some t1 ∈ [0, t0] and t2 ∈ [0, t0]. Our derivation of an upper bound for t0 will be based on (6.15).
The above equation shows that t0 can be upper bounded by finding a lower bound on the term

d2f(tT0)
dt2

∣∣∣∣
t=t1

+
d2f(tT0)
dt2

∣∣∣∣
t=t2

+
d2h(tT0)
dt2

∣∣∣∣
t=t1

(6.16)

and an upper bound on the term |h(0)−h(t0T0)|. However, h is a probabilistic function; i.e., h(tT )
and its derivatives are random variables. Therefore, the upper bound that we will obtain for t0 is
a probabilistic bound given in terms of the variances of h(0)− h(t0T0) and d2h(tT0)/dt2.

In the rest of this section, we proceed as follows. First, in order to be able to bound |h(0)−h(tT )|
probabilistically, we present in Lemma 3 an upper bound on the variance of h(0) − h(tT ). Next,
in order to bound the term in (6.16), we state a lower bound for d2f(tT )/dt2 in Lemma 4 and an
upper bound for the variance of d2h(tT )/dt2 in Lemma 5. These results are finally put together in
the main result of this section, namely Theorem 5, where an upper bound on t0 is obtained based
on (6.15). Theorem 5 applies Chebyshev’s inequality to employ the bounds derived in Lemmas 3
and 5 to define probabilistic upper bounds on the terms |h(0)−h(t0T0)| and |d2h(tT0)/dt2|. Then,
this is combined with the bound on d2f(tT )/dt2 in Lemma 4 to obtain a probabilistic upper bound
on t0 from the relation (6.15).

In the derivation of this upper bound, the direction T0 of the global minimum of g is treated as an
arbitrary and unknown unit-norm vector. Moreover, the variances of h(0)−h(tT ) and d2h(tT )/dt2

have a complicated dependence on t, which makes it difficult to use them directly in (6.15) to obtain
a bound on t0. In order to cope with the dependences of these terms on t and T , the upper bounds
presented in Lemmas 3 and 5 are derived as uniform upper bounds over the closed ball of radius
t0 > 0, Bt0(0) = {tT : T ∈ S1, 0 ≤ t ≤ t0}. The upper bounds are thus independent of tT and
valid for all tT vectors in Bt0(0). In these lemmas, the parameter t0 is considered to be a known
threshold for t0, such that t0 ≤ t0. This parameter will be assigned a specific value in Theorem 5.

We begin with bounding the variance of term h(0)− h(tT ) in order to find an upper bound for
the right hand side of (6.15). Let us denote

∆h(tT ) := h(0)− h(tT ).

From (6.14),

∆h(tT ) = h(0)− h(tT ) = 2
∫
R2

(p(X)− p(X − tT ))w(X − tT )dX

where we have used the fact that
∫
R2 w

2(X − tT )dX =
∫
R2 w

2(X)dX. Let σ2
∆h(tT ) denote the

variance of ∆h(tT ). In the following lemma, we state an upper bound on σ2
∆h(tT ). Let us define

beforehand the following constants for the k-th atom of p

Φk := Ψk(σ2
k + E2)−1Ψ−1

k , κk :=
π |σk| |E|√
|σ2
k + E2|

.

Also, let J− = {(j, k) : cjck < 0} and J+ = {(j, k) : cjck > 0} denote the set of pairs (j, k) of atom
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indices with negative and positive coefficient products.

Lemma 3. Let t0 > 0, and let tT ∈ Bt0(0). Then, the variance σ2
∆h(tT ) of ∆h(tT ) can be upper

bounded as

σ2
∆h(tT ) < Rσ2

∆h
:= Cσ2

∆h
η2 (6.17)

where
Cσ2

∆h
:= 4L

( ∑
(j,k)∈J+

cjκj ckκk cjk +
∑

(j,k)∈J−
cjκj ckκk djk

)
.

Here the terms cjk and djk are constants depending on t0 and the atom parameters of p. In
particular, cjk and djk are bounded functions of t0, given in terms of exponentials of second-degree
polynomials of t0 with negative leading coefficients.

The proof of Lemma 3 is presented in [102, Appendix B.4]. In the proof, a uniform upper bound
cjk and a uniform lower bound djk are derived for the additive terms2 constituting the variance of
∆h(tT ). The exact expressions of cjk and djk are given in Appendix C.1.

We have thus stated a uniform upper bound Rσ2
∆h

for the variance of ∆h(tT ) which will be
used to derive an upper bound for the right hand side of (6.15) in Theorem 5. We now continue
with the examination of the left hand side of (6.15). We begin with the term d2f(tT )/dt2. The
following lemma gives a lower bound on the second derivative of the noiseless distance function
f(tT ) in terms of the pattern parameters.

Lemma 4. The second derivative of f(tT ) along the direction T can be uniformly lower bounded
for all t ∈ [0, t0] and for all directions T ∈ S1 as follows

d2f(tT )
dt2

≥ r0 + r2t
2
0 + r3t

3
0. (6.18)

Here r0 > 0, r2 ≤ 0, and r3 < 0 are constants depending on the atom parameters of p. In particular,
r0, r2, r3 are obtained from the eigenvalues of some matrices derived from the parameters cj , τj ,
Qjk, Σjk.

The proof of Lemma 4 is given in [102, Appendix B.5] and the exact expressions of r0, r2, r3 are
given in Appendix C.2. The above lower bound on the second derivative of f(tT ) is independent
of the direction T and the amount t of translation, provided that t is in the interval [0, t0]. In fact,
the statement of Lemma 4 is general in the sense that t0 can be any positive scalar. However, in
the proof of Theorem 5, we use Lemma 4 for the t0 value that represents the deviation between the
global minima of f and g.

Lemma 4 will be used in Theorem 5 in order to lower bound the second derivative of f in
(6.15). We now continue with the term d2h(tT )/dt2 in (6.15). Let h′′(tT ) := d2h(tT )/dt2 denote
the second derivative of the deviation function h along the direction T . Since h′′(tT ) can take both
positive and negative values, in the calculation of a lower bound for the term (6.16), we need a

2
cjk and djk are upper and lower bounds for the terms cjk, djk used in [102, Lemma 1].
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bound on the magnitude |h′′(tT )| of this term. It can be bounded probabilistically in terms of the
variance of h′′(tT ). We thus state the following uniform upper bound on the variance of h′′(tT ).

Lemma 5. Let t0 > 0, and let tT ∈ Bt0(0). Then, the variance σ2
h′′(tT ) of h′′(tT ) can be upper

bounded as

σ2
h′′(tT ) < Rσ2

h′′
:= Cσ2

h′′
η2 (6.19)

where

Cσ2
h′′

:= 4L
( ∑

(j,k)∈J+

cjckκjκk ejk +
∑

(j,k)∈J−
cjckκjκk fjk

)
.

Here ejk is a constant depending on the atom parameters of p; and the term fjk depends on the atom
parameters of p and t0. In particular, ejk is given in terms of rational functions of the eigenvalues
of Φk matrices; and fjk is a bounded function of t0 given in terms of exponentials of second-degree
polynomials of t0 with negative leading coefficients.

The proof of Lemma 5 is given in [102, Appendix B.7]. The proof derives uniform upper and
lower bounds ejk, fjk for the additive terms3 in the representation of σ2

h′′(tT ). The exact expressions
for ejk and fjk are given in Appendix C.3.

Now we are ready to present our main result about the bound on the alignment error. The
following theorem states an upper bound on the distance between the locations of the global
minima of f and g in terms of the noise standard deviation η and the atom parameters of
p, provided that η is smaller a threshold η0. The threshold η0 is obtained from the bounds
derived in Lemmas 3, 4 and 5 such that the condition η < η0 guarantees that the assumption
t0 < t0 holds. In the theorem, the parameter t0, which is treated as a predefined threshold on t0
in the previous lemmas, is also assigned a specific value in terms the constants r0, r2, r3 of Lemma 4.

Theorem 5. Let

t0 :=
√

r0

2|r2|+ 22/3r
1/3
0 |r3|2/3

. (6.20)

Let Rσ∆h
:=
√
Rσ2

∆h
and Rσh′′ :=

√
Rσ2

h′′
, where Rσ2

∆h
and Rσ2

h′′
are as defined in (6.17) and (6.19),

and evaluated at the value of t0 given above. Also, let Cσ∆h
:=
√
Cσ2

∆h
and Cσh′′ :=

√
Cσ2

h′′
.

Assume that for some s >
√

2, the noise standard deviation η is smaller than η0 such that

η ≤ η0 :=
t
2
0 r0

2 sCσ∆h
+ t

2
0 sCσh′′

. (6.21)

Then, with probability at least 1 − 2
s2
, the distance t0 between the global minima of f and g is

bounded as
3
ejk and fjk are upper and lower bounds for the terms ejk, fjk used in [102, Lemma 3].
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t0 < Rt0 :=

√
2sRσ∆h

r0 − sRσh′′
. (6.22)

The proof of Theorem 5 is given in [102, Appendix B.8]. In the proof, we make use of the
upper bounds Rσ2

∆h
, Rσ2

h′′
on σ2

∆h(tT ), σ
2
h′′(tT ), and the lower bound on d2f(tT )/dt2 given in (6.18).

The upper bound Rt0 in (6.22) shows that the alignment error increases with the increase in the
noise level, since Rσ∆h

and Rσh′′ are linearly proportional to the noise standard deviation η. The
increase of the error with the noise is expected. It can also be seen from (6.22) that the increase in
the term r0, which is proportional to the second derivative of the noiseless distance f , reduces the
alignment error; whereas an increase in the term Rσh′′ , which is related to the second derivative of
h, increases the error. This can be explained as follows. If f has a sharp increase around its global
minimum at 0, i.e., f has a large second derivative, the location of its minimum is less affected by
h. Likewise, if the distance deviation function h has a large second derivative, it introduces a larger
alteration around the global minimum of f , which causes a bigger perturbation on the position of
the minimum.

Theorem 5 states a bound on t0 under the condition that the noise standard deviation η is
smaller than the threshold value η0, which depends on the pattern parameters (through the terms
r0, r2, r3, t0) as well as the noise parameters L and ε (through the terms Cσ∆h

and Cσh′′ ). The
threshold η0 thus defines an admissible noise level such that the change in the location of the global
minimum of f can be properly upper bounded. This admissible noise level is derived from the
condition Rt0 ≤ t0, which is partially due to our proof technique. However, we remark that the
existence of such a threshold is intuitive in the sense that it states a limit on the noise power in
comparison with the signal power. Note also that the denominator r0 − sRσh′′ of Rt0 should be
positive, which also yields a condition on the noise level

η < η′0 =
r0

sCσh′′
.

However, this condition is already satisfied due to the hypothesis η ≤ η0 of the theorem, since
η0 < η′0 from (6.21).

6.3.2 Generalization of the alignment error bound to arbitrary noise models

Here, we generalize the results of the previous section in order to derive an alignment error bound
for arbitrary noise patterns. In general, the characteristics of the noise pattern vary depending on
the imaging application. In particular, while the noise pattern may have high correlation with the
reference pattern in some applications (e.g., noise resulting from geometric deformations of the pat-
tern), its correlation with the reference pattern may be small in some other settings where the noise
stems from a source that does not depend on the image. We thus focus on two different scenarios.
In the first and general setting, we do not make any assumption on the noise characteristics and
bound the alignment error in terms of the norm of the noise pattern. Then, in the second setting,
we consider that the noise pattern has small correlation with the points on the translation manifold
of the reference pattern and show that the alignment error bound can be made sharper in this case.
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We assume that the reference pattern p(X) is noiseless and we write the target pattern as
pg(X−tT ), where pg(X) = p(X)+z(X) is a generalized noisy observation of p such that z ∈ L2(R2)
is an arbitrary noise pattern. Then, the generalized noisy distance function is

gg(tT ) =
∫
R2

(
p(X)− pg(X − tT )

)2
dX

and the generalized deviation function is hg = gg(tT )− f(tT ). Let us call u0U0 the point where gg
has its global minimum. Then the distance between the global minima of gg and f is given by u0.

We begin with the first setting and state a generic bound for the alignment error u0 in terms of
the norm of the noise ν := ‖z‖. In our main result, we denote by Rp := ‖p‖ the norm of the pattern
p, and make use of an upper bound Rp′′ for the norm ‖d2p(X + tT )/dt2‖ of the second derivative
of p(X + tT ). The parameter Rp′′ is derived in terms of the atom parameters of p in [102, Lemma
4]. We state below our generalized alignment error result for arbitrary noise patterns.

Theorem 6. Let t0 be defined as in (6.20). Assume that the norm ν of z is smaller than ν0 such
that

ν ≤ ν0 :=
t
2
0r0

8Rp + 2Rp′′t
2
0

(6.23)

where r0 is the constant in Lemma 4. Then, the distance u0 between the global minima of f and
gg is bounded as

u0 ≤ Ru0 :=

√
8Rpν

r0 − 2Rp′′ν
. (6.24)

Theorem 6 is proved in [102, Appendix C.2]. The theorem states an upper bound on the
alignment error for the general case where the only information used about the noise pattern
is its norm. The alignment error bound Ru0 is a generalized and deterministic version of the
probabilistic bound Rt0 derived for the Gaussian noise model. In the proof of the theorem, the
change hg(0) − hg(u0U0) in the distance deviation function is bounded by 4Rpν. The second
derivative of the noiseless distance function f is captured by r0 as in Section 6.3.1. Finally, the
term 2Rp′′ν bounds the second derivative of the deviation hg. Based on these, the above result is
obtained by following similar steps as in Section 6.3.1.

We now continue with the second setting where the noise pattern z has small correlation with
the points on the translation manifoldM(p) of p. We characterize the correlation of two patterns
with their inner product. Assume that a uniform correlation upper bound rpz is available such that∣∣∣∣∫

R2

p(X + tT )z(X)dX
∣∣∣∣ ≤ rpz (6.25)

for all t and T . The following corollary builds on Theorem 6 and states that the bound on the
alignment error can be made sharper if the correlation bound is sufficiently small.

Corollary 2. Let t0 be defined as in (6.20) and let a uniform upper bound rpz for the correlation
be given such that rpz < t

2
0r0/8.
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Assume that the norm ν of z is smaller than ν0 such that

ν ≤ ν0 :=
t
2
0r0 − 8rpz
2Rp′′t

2
0

. (6.26)

Then, the distance u0 between the global minima of f and gg is bounded as

u0 ≤ Qu0 :=

√
8 rpz

r0 − 2Rp′′ν
. (6.27)

The proof of Corollary 2 is given in [102, Appendix C.3]. One can observe that the alignment
error bound Qu0 approaches zero as the uniform correlation bound approaches zero. Therefore, if
rpz is sufficiently small, Qu0 will be smaller than the general bound Ru0 . This shows that, regardless
of the noise level, the alignment error is close to zero if the noise pattern z is almost orthogonal to
the translation manifoldM(p) of the reference pattern.

6.3.3 Influence of filtering on alignment error

In this section, we examine how the alignment error resulting from image noise is affected when
the reference and target patterns are low-pass filtered. We consider the Gaussian kernel in (5.6)
and analyze the dependence of the alignment error bounds obtained for the Gaussian noise and
generalized noise models in Sections 6.3.1 and 6.3.2 on the filter size ρ and the noise level parameters
η and ν.

We begin with the Gaussian noise model w(X). The filtered reference pattern p̂(X) and the
filtered noisy observation p̂n(X) of the reference pattern are given by

p̂(X) =
K∑
k=1

ĉkφγ̂k(X), p̂n(X) = p̂(X) + ŵ(X) =
K∑
k=1

ĉkφγ̂k(X) +
L∑
l=1

ζ̂l φξ̂l(X).

Remember that the rotation and translation parameters of the atoms of p̂ do not depend on ρ;
and the scale matrices vary with ρ such that σ̂2

k = σ2
k + Υ2. The parameters of the smoothed noise

atoms can be obtained similarly to the atom parameters of p̂; i.e., φξ̂l(X) = φ
(
Ê−1(X− δl)

)
, where

Ê2 = E2 + Υ2. This gives the scale parameter of smoothed noise atoms as

ε̂ =
√
ε2 + ρ2. (6.28)

The smoothed noise coefficients are given by

ζ̂l = ζl
|E|
|Ê|

= ζl
ε2

(ε2 + ρ2)
.

Since all the coefficients ζl are multiplied by a factor of ε2/(ε2 +ρ2), the variance of smoothed noise
atom coefficients is

η̂2 =
(

ε2

ε2 + ρ2

)2

η2. (6.29)
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As the noise atom units are considered to have very small scale, one can assume that ρ� ε for
typical values of the filter size ρ. Then the relations in (6.28) and (6.29) give the joint variations
of ε̂ and η̂ with η and ρ as

ε̂ = O(ρ), η̂ = O(ηρ−2). (6.30)

We now state the dependence of the bound R̂t0 on ρ and η in the following main result.

Theorem 7. The joint variation of the alignment error bound R̂t0 for the smoothed image pair
with respect to η and ρ is given by

R̂t0 = O

(√
η ρ−1

(1 + ρ2)−2 − η ρ−3

)
= O

(√
η ρ3

1− η ρ

)
.

Therefore, for a fixed noise level, R̂t0 increases at a rate of O
(
ρ3/2 (1− ρ)−1/2

)
with the increase in

the filter size ρ. Similarly, for a fixed filter size, the rate of increase of R̂t0 with the noise standard
deviation η is O

(
η1/2 (1− η)−1/2

)
.

The proof of Theorem 7 is presented in [102, Appendix D.2]. The stated result is obtained by
using the relations in (6.30) to determine how the terms R̂σ∆h

, r̂0, R̂σh′′ in the expression of R̂t0
vary with ρ and η.

Theorem 7 is the summary of our analysis about the effect of filtering on the alignment accuracy
for the Gaussian noise model. While the aggravation of the alignment error with the increase in the
noise level is an intuitive result, the theorem states that filtering the patterns under the presence of
noise decreases the accuracy of alignment as well. Remember that this is not the case for noiseless
patterns. The result of the theorem can be interpreted as follows. Smoothing the reference and
target patterns diffuses the perturbation on the distance function, which is likely to cause a bigger
shift in the minimum of the distance function and hence reduce the accuracy of alignment. The
estimation R̂t0 = O

(
ρ3/2 (1− ρ)−1/2

)
of the alignment error suggests that the dependence of the

error on ρ is between linear and quadratic for small values of ρ, whereas it starts to increase more
dramatically when ρ takes larger values. Similarly, R̂t0 is proportional to the square root of η for
small η and it increases at a sharper rate as η grows.

Next, we look at the variation of the bounds R̂u0 and Q̂u0 for arbitrary noise patterns, which
are respectively obtained for the general and small-correlation cases. We present the following
theorem, which is the counterpart of Theorem 7 for arbitrary noise models.

Theorem 8. The alignment error bounds R̂u0 and Q̂u0 for arbitrary noise patterns have a variation
of

O

(√
ν (1 + ρ2)

1− ν

)
(6.31)

with the noise level ν and the filter size ρ. Therefore, for a fixed noise level, the errors R̂u0 and
Q̂u0 increase at a rate of O

(
(1 + ρ2)1/2

)
with the increase in the filter size ρ. Similarly, for a fixed

filter size, R̂u0 and Q̂u0 increase at a rate of O
(
ν1/2(1− ν)−1/2

)
with respect to the noise norm ν.
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Figure 6.2: The variations of the true distance ω̂T of the boundary of Ŝ to the origin and its estimate δ̂T
with respect to the filter size

The proof of Theorem 8 is given in [102, Appendix E.1]. The dependence of the generalized
bounds R̂u0 and Q̂u0 on the noise norm ν is the same as the dependence of R̂t0 on η. However,
the variation of R̂u0 and Q̂u0 with ρ is seen to be slightly different from that of R̂t0 . This stems
from the difference between the two models. In the generalized noise model z, we have treated the
norm ν of z as a known fixed number and we have characterized the alignment error in terms of
ν. On the other hand, w is a probabilistic Gaussian noise model; therefore, it is not possible to
bound its norm with a fixed parameter. For this reason, the alignment error for w has been derived
probabilistically in terms of the standard deviations of the involved parameters. Since the filter
size ρ affects the norm of z and the standard deviations of the terms related to w in different ways,
it has a different effect on these two type of alignment error bounds. The reason why the two error
bounds have the same kind of dependence on the noise level parameters η and ν can be explained
similarly. The standard deviations of the terms related to w have a simple linear dependence on η,
which is the same as the dependence of the counterparts of these terms in the generalized model
on ν.

6.4 Experimental Results

6.4.1 Evaluation of alignment regularity analysis

We first evaluate our theoretical results about SIDEN estimation with an experiment that compares
the estimated SIDEN to the true SIDEN. We generate a reference pattern consisting of 40 randomly
selected Gaussian atoms with random coefficients, and choose a random unit direction T for pattern
displacement. Then, we determine the distance ω̂T of the true SIDEN boundary from the origin
along T , and compare it to its estimation δ̂T for a range of filter sizes ρ (With an abuse of notation,
the parameter denoted as ω̂T here corresponds in fact to sup ω̂T in the definition of SIDEN in (6.4)).
The distance ω̂T is computed by searching the first zero-crossing of df̂(tT )/dt numerically, while
its estimate δ̂T is computed according to Theorem 3. We repeat the experiment 300 times with
different random reference patterns p and directions T and average the results of the cases where
df̂(tT )/dt has zero-crossings for all values of ρ (i.e., 56% of the tested cases). The distance ω̂T and
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its estimate δ̂T are plotted in Figure 6.2. The figure shows that δ̂T has an approximately linear
dependence on ρ. This is an expected behavior, since δ̂T = O

(
(1 + ρ2)1/2

)
≈ O(ρ) for large ρ.

The estimate δ̂T is smaller than ω̂T since it is a lower bound for ω̂T . Its variation with ρ is seen to
capture well the variation of the SIDEN boundary ω̂T with ρ.

6.4.2 Evaluation of alignment accuracy analysis

We now present experimental results evaluating the alignment error bounds derived in Section 6.3.
We conduct the experiments on reference and target patterns made up of Gaussian atoms, where the
target pattern is generated by corrupting the reference pattern with noise and applying a random
translation tT . In all experiments, an estimate teTe of tT is computed by aligning the reference and
target images with a gradient descent algorithm4, which gives the experimental alignment error as
‖tT − teTe‖. The experimental error is then compared to the theoretical bounds derived in Section
6.3.

Gaussian noise model

In the first set of experiments, we evaluate the results for the Gaussian noise model. We compare
the experimental alignment error to the theoretical bound given in Theorem 5. 5 In all experiments,
the probability constant s in Theorem 5 is chosen such that t0 < Rt0 holds with probability greater
than 0.5. For each reference pattern, the experiment is repeated for a range of values for noise
variances η2 and filter sizes ρ. The maximum value of the noise standard deviation is taken as the
admissible noise level η0 in Theorem 5.

We first experiment on reference patterns built with 20 Gaussian atoms with randomly chosen
parameters. The atom coefficients ck in the reference patterns are drawn from a uniform distribution
in [−1, 1]; and the position and scale parameters of the atoms are selected such that τx, τy ∈ [−4, 4]
and σx, σy ∈ [0.3, 2]. The noise model parameters are set as L = 750, ε = 0.1. The experiment is
repeated on 50 different reference patterns. Then, 50 noisy target patterns are generated for each
reference pattern according to the Gaussian noise model w in (6.12) with a random translation tT
in the range tTx, tTy ∈ [−4, 4]. The results are averaged over all reference and target patterns. In
Figure 6.3, the experimental and theoretical values of the alignment error are plotted with respect
to the filter size ρ, where different curves correspond to different η values. Figures 6.3(a) and 6.3(b)
show respectively the experimental value ‖tT − teTe‖ and the theoretical upper bound Rt0 of the
alignment error. Figure 6.4 shows the same results, where the error is plotted as a function of η.
The experimental values and the theoretical bounds are given respectively in Figures 6.4(a) and
6.4(b).

The results in Figure 6.3 show that, although the theoretical upper bound is pessimistic (which is
due to the fact that the bound is a worst-case analysis), the variation of the experimental value of the

4In the computation of teTe, in order to be able to handle large translations, before the optimization with gradient
descent we first do a coarse preregistration of the reference and target images with a search on a coarse grid in the
translation parameter domain, whose construction is explained in Section 6.4.3.

5The bound Rσ2
h′′

given in Lemma 5 is derived from the preliminary bound Rσ2
h′′(tT )

in [102, Lemma 3]. In
the implementation of Theorem 5, in order to obtain a sharper estimate of Rσ2

h′′
, we compute it by searching the

maximum value of σ2
h′′(tT ) over t and T from the expressions for Ej and Fj used in the derivation of Rσ2

h′′(tT )
.
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Figure 6.3: Alignment error of random patterns as a function of filter size ρ.
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Figure 6.4: Alignment error of random patterns as a function of noise standard deviation η.
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Figure 6.5: Alignment error of random patterns as functions of the noise standard deviation and the filter
size, at high noise levels.
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(a) Face image
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Figure 6.6: Face pattern and alignment error as a function of filter size ρ.

alignment error as a function of the filter size is in agreement with that of the theoretical bound. The
experimental behavior of the error conforms to the theoretical prediction R̂t0 ≈ O

(
ρ3/2 (1− ρ)−1/2

)
of Theorem 7. Next, the plots of Figure 6.4 suggest that the variation of the theoretical bound
Rt0 as a function of η is consistent with the result of Theorem 7, which can be approximated as
R̂t0 ≈ O(

√
η) for small values of η. On the other hand, the experimental value of the alignment

error seems to exhibit a more linear behavior. However, this type of dependence is not completely
unexpected. Theorem 7 predicts that R̂t0 is of O(

√
η) for small η; and O

(
η1/2(1− η)−1/2

)
for

large η, while the experimental value of the error can be rather described as ‖tT − teTe‖ = O(η),
which is between these two orders of variation. In order to examine the dependence of the error
on η in more detail, we have repeated the same experiments with much higher values of η. The
experimental alignment error is given in Figure 6.5, where the error is plotted with respect to the
noise standard deviation in Figure 6.5(a) and the filter size in Figure 6.5(b). The results show that,
at high noise levels, the variation of the error with η indeed increases above the linear rate O(η).
The noise levels tested in this high-noise experiment are beyond the admissible noise level derived
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(a) Digit image
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Figure 6.7: Digit pattern and alignment error as a function of filter size ρ.

in Theorem 5; therefore, we cannot apply Theorem 5 directly in this experiment. However, in view
of Theorem 7, which states that the error is of O

(
η1/2(1− η)−1/2

)
, these results can be interpreted

to provide a numerical justification of our theoretical finding: at relatively high noise levels, the
error is expected to increase with η at a sharply increasing rational function rate above the linear
rate. The variation of the error with ρ at high noise levels plotted in Figure 6.5(b) is seen to be
similar to that of the previous experiments.

We now evaluate our alignment accuracy results under Gaussian noise on face and digit images.
First, the reference face pattern is obtained by approximating the face image shown in Figure
6.6(a) with 50 Gaussian atoms. The average atom coefficient magnitude of the face pattern is
|c| = 0.14, and the position and scale parameters of its atoms are in the range τx, τy ∈ [−0.9, 0.9]
and σx, σy ∈ [0.04, 1.1]. For the digit experiments, the reference pattern shown in Figure 6.7(a)
is the approximation of a handwritten “5” digit with 20 Gaussian atoms. The pattern parameters
are such that the average atom coefficient magnitude is |c| = 0.87, and the position and scale
parameters of the atoms are in the range τx, τy ∈ [−0.7, 0.7], and σx, σy ∈ [0.05, 1.23]. The range
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of translation values tTx and tTy is selected as [−1, 1] in both settings. Two different noise models
are tested on both images. First, the target patterns are corrupted with respect to the analytical
Gaussian noise model w of (6.12), where the noise parameters are set as L = 750, ε = 0.04. Then,
a digital Gaussian noise model is tested, where the pixels in the discrete representation of the
images are corrupted with additive i.i.d. Gaussian noise having the same standard deviation η as
w. The digital Gaussian noise model is supposed to be well-approximated by the analytical noise
model. Again, 50 target patterns are generated with random translations. The alignment errors
are plotted with respect to ρ in Figures 6.6 and 6.7 respectively for the face and digit patterns.
The experimental error with the analytical noise model, the theoretical upper bound obtained for
the analytical noise model, and the experimental error with the digital noise model are plotted
respectively in panels (b), (c) and (d) in both figures. The results are averaged over all target
patterns.

The plots in Figures 6.6 and 6.7 show that the experimental and theoretical errors have a similar
variation with respect to ρ. The dependence of the error on ρ in these experiments seems to be
different from that of the previous experiment of Figure 6.3. Although the theory predicts the
variation R̂t0 = O

(
ρ3/2 (1− ρ)−1/2

)
, this result is average and approximate. The exact variation of

the error with ρ may change between different individual patterns, as the constants of the variation
function are determined by the actual pattern parameters. The similarity between the plots for the
analytical and digital noise models suggests that the noise model w used in this study provides a
good approximation for the digital Gaussian noise, which is often encountered in digital imaging
applications. In [102], the alignment error for face and digit patterns is also plotted with respect
to η, and the results are similar to those of the previous experiment with random patterns.

Generic noise model

In the second set of experiments we evaluate the results of Theorem 6 and Corollary 2 for the generic
noise model z. In each experiment, the target patterns are generated by corrupting the reference
pattern p with a noise pattern z and by applying random translations in the range tTx, tTy ∈ [−4, 4].
In order to study the effect of the correlation between z and the points on M(p) on the actual
alignment error and on its theoretical bound, we consider two different settings. In the first setting,
the noise pattern z is chosen as a pattern that has high correlation with p. In particular, z is
constructed with a subset of the atoms used in p with the same coefficients. The general bound
Ru0 is used in this setting. In the second setting, the noise z is constructed with randomly selected
Gaussian atoms so that it has small correlation with p. The bound Qu0 for the small correlation case
is used in the second setting, where the correlation parameter rpz in (6.25) is computed numerically
for obtaining the theoretical error bound. In both cases, the atom coefficients of z are normalized
such that the norm ν of z is below the admissible noise level ν0. The theoretical bounds6 are then
compared to the experimental errors for different values of the filter size ρ and the noise level ν.

We conduct the experiment on the random patterns used above, in Figures 6.3-6.5. The noise
pattern z is constructed with 10 atoms. The average alignment errors are plotted with respect to
the filter size ρ in Figure 6.8. The plots in Figure 6.8 show that the variation of the theoretical

6We compute the bound for the second derivative of p numerically by minimizing ‖d2p(X + tT )/dt2‖ over t and
T . While the bound Rp′′ is useful for the theoretical analysis as it has an open-form expression, the numerically
computed bound is sharper.
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Figure 6.8: Alignment error for random patterns and generic noise, as a function of filter size ρ. (a)
and (c) show the error for noise patterns respectively with high and low correlation with p. Corresponding
theoretical bounds Ru0 and Qu0 are given respectively in (b) and (d).

upper bounds with ρ fits well the behavior of the actual error in both settings. The results are
in accordance with Theorem 8, which states that R̂u0 and Q̂u0 are of O((1 + ρ2)1/2). The results
of the experiment show that Q̂u0 is less pessimistic than R̂u0 as an upper bound since it makes
use of the information of the maximum correlation between z and the points onM(p). Moreover,
comparing Figures 6.8(b) and 6.8(d) we see that, when a bound rpz on the correlation is known,
the admissible noise level increases significantly (from around ν0 = 0.01 to ν0 = 0.28). The plots
of the errors with respect to ν are also available in [102]; in short, they show that the variation
of the alignment error with ν bears resemblance to its variation with η observed in the previous
experiment of Figure 6.4. This is an expected result, as it has been seen in Theorem 8 that the
dependences of R̂u0 and Q̂u0 on ν are the same as the dependence of R̂t0 on η. These plots show
also that, at the same noise level, the actual alignment error is slightly smaller when z has small
correlation with the points on M(p). In [102], this experiment is also repeated with the face and
digit patterns, with results that are similar to those obtained with random test patterns.

The overall conclusion of the experiments is that increasing the filter kernel size results in
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a bigger alignment error when the target image deviates from the translation manifold of the
reference image due to noise. The results show also that the theoretical bounds for the alignment
error capture well the order of dependence of the actual error on the noise level and the filter size,
for both the Gaussian noise model and the generalized noise model. Also, the knowledge of the
correlation between the noise pattern and the translated versions of the reference pattern is useful
for improving the theoretical bound for the alignment error in the general setting.

6.4.3 Application: Design of an optimal registration algorithm

We now demonstrate the usage of our SIDEN estimate in the construction of a grid in the translation
parameter domain that is used for image registration. In Section 6.2.2, we have derived a set Q
of translation vectors that can be correctly computed by minimizing the distance function with
descent methods, where Q is a subset of the SIDEN S corresponding to the noiseless distance
function. As discussed in the beginning of Section 6.3, in noisy settings, one can assume that Q
is also a subset of the perturbed SIDEN corresponding to the noisy distance function, provided
that the noise level is sufficiently small. Therefore the estimate Q can be used in the registration
of both noiseless and noisy images; small translations that are inside Q can be recovered with
gradient descent minimization. However, the perfect alignment guarantee is lost for relatively large
translations that are outside Q and the descent method may terminate in a local minimum other
than the global minimum. Hence, in order to overcome this problem, we propose to construct a
grid in the translation parameter domain and estimate large translations with the help of the grid.
In particular, we describe a grid design procedure such that any translation vector tT lies inside the
SIDEN of at least one grid point. Such a grid guarantees the recovery of the translation parameters
if the distance function is minimized with a gradient descent method that is initialized with the
grid points. In order to have a perfect recovery guarantee, each one of the grid points must be
tested. However, as this is computationally costly, we use the following two-stage optimization
instead, which offers a good compromise with respect to the accuracy-complexity tradeoff. First,
we search for the grid vector that gives the smallest distance between the image pair, which results
in a coarse alignment. Then, we refine the alignment with a gradient descent method initialized
with this grid vector. In practice, this method is quite likely to give the optimal solution, which
has been the case in all of our simulations.

We now explain the construction of the grid. First, notice from (6.5) that ajk(T ) = ajk(−T )
and bjk(T ) = −bjk(−T ). Therefore, the function sjk(t) given in (6.9) is the same for T and
−T by symmetry. As Qjk does not depend on T , from the form of df(tT )/dt in (6.8) we have
df(tT )/dt = df(−tT )/dt. Hence, the SIDEN is symmetric with respect to the origin. It is also easy
to check that the estimation δT of the SIDEN boundary along the direction T satisfies δT = δ−T .
One can easily determine a grid unit in the form of a parallelogram that lies completely inside the
estimate Q of the SIDEN and tile the (tTx, tTy)-plane with these grid units. This defines a regular
grid in the (tTx, tTy)-plane such that each point of the plane lies inside the SIDEN of at least one
grid point. Note that the complexity of image registration based on a grid search is given by the
number of grid points. In our case, the number of grid points is determined by the area of Q; and
therefore, the alignment complexity depends on the well-behavedness of the distance function f .
In particular, as V (Q) increases with the filter size, the area of the grid units expand at the rate
O(1 + ρ2) and the number of grid points decrease at the rate O

(
(1 + ρ2)−1

)
with ρ. Therefore, the
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Reference pattern Grid neighbor along 1st direction

Grid neighbor along 2nd direction

(a) Original pattern and grid images

Smoothed reference pattern Grid neighbor along 1st direction

Grid neighbor along 2nd direction

(b) Smoothed pattern and grid images

Figure 6.9: Neighboring grid patterns for the original and smoothed images.
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Figure 6.10: Grid construction
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Figure 6.11: The variation of the distance function with smoothing.
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(c) Digit pattern

Figure 6.12: Number of grid points. The decay rate is of O
(
(1 + ρ2)−1

)
.

alignment complexity with the proposed method is of O
(
(1 + ρ2)−1

)
.

The construction of a regular grid in this manner is demonstrated for the image of the “5”
digit used in the experiments of Section 6.4.2. In Figure 6.9(a), the reference pattern and its
translated versions corresponding to the neighboring grid points in the first and second directions
of sampling are shown. In Figure 6.9(b), the reference pattern is shown when smoothed with a filter
of size ρ = 0.15, as well as the neighboring patterns in the smoothed grid. The original grid and the
smoothed grid for ρ = 0.15 are displayed in Figures 6.10(a) and 6.10(b), where the SIDEN estimates
Q, Q̂ and the grid units are also plotted. One can observe that smoothing the pattern is helpful
for obtaining a coarser grid that reduces the computational complexity of image registration in
hierarchical methods. The corresponding distance functions f(tT ) and f̂(tT ) are plotted in Figure
6.11, which shows that smoothing eliminates undesired local extrema of the distance function and
therefore expands the SIDEN.

Then, in order to demonstrate the relation between alignment complexity and filtering, we build
multiscale grids corresponding to different filter sizes and plot the variation of the number of grid
points with the filter size. The results obtained with the random patterns and the face and digit
patterns used in Section 6.4.2 are presented in Figure 6.12. The results show that the number of
grid points decreases monotonically with the filter size, as predicted by Theorem 4, which suggests
that the number of grid points must be of O

(
(1 + ρ2)−1

)
.

Finally, we remark that the performance guarantee of this two-stage registration approach is
confirmed by the experiments of Section 6.4.2, which use this registration scheme. In the plots
of Figures 6.3-6.8, where the coarse alignment in each experiment is done with the help of a grid
adapted to the filter size using the grid design procedure explained above, we see that the proposed
registration technique results in an alignment error of 0 for the noiseless case (η = 0 or ν = 0) for
all values of the filter size ρ. These alignment error results, together with the grid size plots of
Figure 6.12, show that increasing the filter size reduces the alignment complexity while retaining
the perfect alignment guarantee in the noiseless case. Figures 6.3-6.8 show also that the proposed
grid can be successfully used in noisy settings. The alignment error in these experiments stems
solely from the change in the global minimum of the distance function due to noise, and not
from the grid; otherwise, we would observe much higher alignment errors that are comparable to
the distance between neighboring grid points. This confirms that the estimate Q remains in the
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perturbed SIDEN and its usage does not lead to an additional alignment error if the noise level is
relatively small.

6.5 Discussion of Results

The results of our analysis show that smoothing improves the regularity of alignment by increasing
the range of translation values that are computable with descent-type methods. However, in the
presence of noise, smoothing has a negative influence on the accuracy of alignment as it amplifies
the alignment error caused by the image noise; and this increases with the increase in the filter size.
Therefore, considering the computation cost - accuracy tradeoff, the optimal filter size in image
alignment with descent methods must be chosen by taking into account the deviation between the
target pattern and the translation manifold of the reference pattern; i.e., the expected noise level.

Our study constitutes a theoretical justification of the principle behind hierarchical registration
techniques that use local optimizers. Coarse scales are favorable at the beginning of the alignment
as they permit the computation of large translation amounts with low complexity using simple
local optimizers; however, over-filtering decreases the accuracy of alignment as the target image is
in general not exactly a translated version of the reference image. This is compensated for at finer
scales where less filtering is applied, thus avoiding the amplification of the alignment error resulting
from noise. Since images are already roughly registered at coarse scales, at fine scales the remaining
increment to be added to the translation parameters for fine-tuning the alignment is small; it can
be achieved at a relatively low complexity in a small search region.

We now interpret the findings of our work in comparison with some previous results. We
start with the article [27] by Robinson et al., which studies the Cramér-Rao lower bound (CRLB)
of the registration. Since the CRLB is related to the inverse of the Fisher information matrix
(FIM) J , the authors suggest to use the trace of J−1 as a general lower bound for the MSE of
the translation estimation. Therefore, the square root of tr(J−1) can be considered as a lower
bound for the alignment error. It has been shown in [27] that

√
tr(J−1) = O(η), where η is the

standard deviation of the Gaussian noise. In fact, this result tells that the alignment error with
any estimator is lower bounded by O(η), i.e., its dependence on the noise level is at least linear.
Meanwhile, our study, which focuses on estimators that minimize the SSD with local optimizers,
concludes that the alignment error is at most O(

√
η/(1− η)) for these estimators. Notice that for

small η, O(
√
η/(1− η)) ≈ O(

√
η) > O(η); and for large η, we still have O(

√
η/(1− η)) > O(η)

due to the sharply increasing rational function form of the bound. Therefore, the result in [27] and
our results are consistent and complementary, pointing together to the fact that the error of an
estimator performing a local optimization of the SSD must lie between O(η) and O(

√
η/(1− η)).

Note also that, as it has been seen in the experiments of Figure 6.5(a), the error of this type
of estimators may indeed increase with η at a rate above O(η) in practice, as predicted by our
upper bound. Next, as for the effect of filtering on the estimation accuracy, the authors of [27]
experimentally observe that tr(J−1) decreases as the image bandwidth increases, which suggests
that the lower bound on the MSE of a translation estimator is smaller when the image has more
high-frequency components. This is stated more formally in [40]. It is shown that the estimation
of the x component of the translation has variance larger than η2/‖(∂p/∂x)2‖2, and similarly for
the y component, where ∂p/∂x is the partial derivative of the pattern p with respect to the spatial
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variable x.7 Therefore, as smoothing decreases the norm of the partial derivatives of the pattern, it
leads to an increase in the variance of the estimation. These observations are also consistent with
our theoretical results.

Next, we discuss some results from the recent article [37], which presents a continuous-domain
noise analysis of block-matching. The blocks are assumed to be corrupted with additive Gaussian
noise and the disparity estimate is given by the global minimum of the noisy distance function as
in our work. Although there are differences in their setting and ours, such as the horizontal and
non-constant disparity field assumption in [37], it is interesting to compare their results with ours.
We consider the disparity of the block to be constant in [37], such that it fits our global translation
assumption. In [37], an analysis of the deviation between the estimated disparity and the true
disparity is given, which is similar to the distance t0 between the global minima of f and g in our
work. Sticking to the notation of this chapter, let us denote this deviation by t0. In Theorem 3.2
of [37], t0 is estimated as the sum of three error terms, where the variances of the first and second
terms are respectively of O(η2) and O(η4) with respect to the noise standard deviation η. These
two terms are stated as dominant noise terms. Then, the third term represents the high-order
Taylor terms of some approximations made in the derivations, which however depends on the value
of t0 itself. As the overall estimation of t0 is formulated using the term t0 itself, their main result
is interesting especially for small values of t0, since the third term is then negligible. It can be
concluded from [37] that t0 ≈ O(η + η2 + H.O.), where H.O. represents high-order terms. This
result is consistent with the CRLB of t0 in [27] stating that t0 is at least of O(η), and our upper
bound O(

√
η/
√

1− η). The analysis in [37] and ours can be compared in the following way. First,
since our derivation is rather rigorous and does not neglect high-order terms, these terms manifest
themselves in the rational function form of the resulting bound. Meanwhile, they are represented
as H.O. and not explicitly examined in the estimation O(η + η2 +H.O.) in [37]. For small η, this
result can be approximated as t0 = O(η), while our result states that t0 ≤ O(

√
η). As √η > η for

small η, this also gives a consistent comparison since our estimation is an upper bound and the one
in [37] is not. Indeed, the experimental results in [37] suggest that their derivation gives a slight
underestimation of the error. Lastly, our noise analysis treats the image alignment problem in a
multiscale setting and analyzes the joint variation of the error with the noise level η and the filter
size ρ, whereas the study in [37] only concentrates on the relation between the error and the noise
level.

Finally, we mention some facts from scale-space theory [98], which may be useful for the inter-
pretation of our findings regarding the variation of the SIDEN with the filter size ρ. The scale-space
representation of a signal is given by convolving it with kernels of variable scale. The most popular
convolution kernel is the Gaussian kernel, as it has been shown that under some constraints, it is
the unique kernel for generating a scale-space. An important result in scale-space theory is [103],
which states that the number of local extrema of a 1-D function is a decreasing function of ρ. This
provides a mathematical characterization of the well-known smoothing property of the Gaussian
kernel. However, it is known that this cannot be generalized to higher-dimensional signals; e.g.,
there are no nontrivial kernels on R2 with the property of never introducing new local extrema
when the scale increases [98]. One interesting result that can possibly be related to our analysis is

7This bound is obtained by assuming Gaussian noise on both reference and target patterns and deriving the
CRLB.
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about the density of local extrema of a signal as a function of scale. In order to gain an intuition
about the behavior of local extrema, the variation of the local extrema is examined in [98] for 1-D
continuous white noise and fractal noise processes. It has been shown that the expected density of
the local minima of these signals decreases at rate ρ−1. In the estimation of the SIDEN in our work,
we have analyzed how the first zero crossing of df̂(tT )/dt along a direction T around the origin
varies with the scale. Therefore, what we have examined is the distance f̂ between the scale space
p̂(X) of an image and the scale space p̂(X − tT ) of its translated version. Since this is different
from the scale-space of the distance function f itself, it is not possible to compare the result in
[98] directly to ours. However, we can observe the following. Restricting f̂ to a specific direction
Ta so that we have a 1-D function f̂(tTa) of t as in [98], our estimation for the stationary point
of f̂(tTa) closest to the origin expands at a rate of O((1 + ρ2)1/2), which is O(ρ) for large ρ. One
can reasonably expect this distance to be roughly inversely proportional to the density of the local
extrema of f̂ . This leads to the conclusion that the density of the distance extrema is expected to
be around O(ρ−1), which interestingly matches the density obtained in [98].

6.6 Conclusion

In this chapter, we have presented a theoretical analysis of image alignment with descent-type
local minimizers, where we have specifically focused on the effect of low-pass filtering and noise
on the regularity and accuracy of alignment. First, we have examined the problem of aligning
with gradient descent a reference and a target pattern that differ by a two-dimensional translation.
We have derived a lower bound for the range of translations for which the reference pattern can
be exactly aligned with its translated versions, and investigated how this region varies with the
filter size when the images are smoothed. Our finding is that the volume of this region increases
quadratically with the filter size, showing that smoothing the patterns improves the regularity of
alignment. Then, we have considered a setting with noisy target images and examined Gaussian
noise and arbitrary noise patterns, which may find use in different imaging applications. We have
derived a bound for the alignment error and searched the dependence of the error on the noise
level and the filter size. Our main results state that the alignment error bound is proportional
to the square root of the noise level at small noise, whereas this order of dependence increases
at larger noise levels. More interestingly, the alignment error is also significantly affected by the
filter size. The probabilistic error bound obtained with the Gaussian noise model has been seen to
increase with the filter size at a sharply increasing rational function rate, whereas the deterministic
bound obtained for arbitrary noise patterns of deterministic norm increases approximately linearly
with the filter size. These theoretical findings are also confirmed by experiments. To the best
of our knowledge, none of the previous works about image registration has studied the alignment
regularity problem. Meanwhile, our alignment accuracy analysis is consistent with previous results,
provides a more rigorous treatment, and studies the problem in a multiscale setting unlike the
previous works. The results of our study show that, in multiscale image registration, filtering the
images with large filter kernels improves the alignment regularity in early phases, while the use
of smaller filters improves the accuracy at later phases. From this aspect, our estimations of the
regularity and accuracy of alignment in terms of the noise and filter parameters provide insight for
the principles behind hierarchical registration techniques and are helpful for the design of efficient,
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low-complexity registration algorithms.



Chapter 7

Conclusions

In this thesis we have studied several problems related to the analysis of image sets with geo-
metric transformations using parametric models. We have mostly focused on the registration and
transformation-invariant classification of visual data with manifold models. We have examined the
sampling and learning of transformation manifolds and derived some performance bounds for the
multiscale registration of images with globally parametrizable transformations.

We have first addressed the problem of sampling transformation manifolds. Since solving the
manifold distance computation problem is computationally complex, we have presented a construc-
tive solution based on sampling data-representative transformation manifolds offline such that the
resulting sample sets give an accurate estimation of the manifold distance. We have proposed
two manifold discretization algorithms, which promote registration and classification accuracy with
the selected sample set. An important observation is that the joint consideration of the relative
structures of different class-representative manifolds in the sampling improves the classification
performance significantly, compared to the individual sampling of each manifold. The sampling of
manifolds has not been studied before in the context of image analysis and grid construction has
typically been achieved with straightforward approaches such as uniform sampling. However, our
results show that there is room for attaining much better performance in data analysis applications
by using more sophisticated sampling schemes such as the methods proposed in this thesis.

Next, we have studied the learning of pattern transformation manifolds (PTMs) from a given
set of image data with geometric transformations. We have presented two PTM building methods
for image approximation and supervised image classification. The proposed methods are based on
a greedy construction of patterns representing image sets or image classes through the selection of
atoms from a parametric dictionary. The proposed algorithms use the knowledge of the type of
geometric transformation that generates the data when learning a parametric model. This brings
several benefits in comparison with classical manifold learning methods, such as robustness to the
conditions of the input data (e.g., small number of data samples, data noise), data parameterization
with a known physical meaning, and flexibility to synthesize novel data samples. The presented
methods learn a representative pattern and estimate the individual transformation parameters of
input images simultaneously. An alternative approach for solving the manifold learning problem
can be to first align the input images with respect to a suitable reference image and then learn
a model from the aligned images. However, experimental results show that the proposed idea of
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simultaneous learning and aligning gives better results in image approximation and classification.
We have finally considered the multiscale alignment of images via globally parametrizable warp-

ing functions and performed a theoretical analysis of image registration performance. We have
focused on two settings, where we have first examined the alignment of an image pair with the
tangent distance method for arbitrary transformation models, and then studied the estimation of
the 2-D translation between an image pair with descent-type local optimizers. In both settings, we
have derived upper bounds for the alignment error and examined the variation of the alignment
error with the image noise level and the size of the low-pass filter used for smoothing the images
in multiscale alignment. The main results of our study show that smoothing has the desired effect
of improving the manifold linearity in the first setting and the well-behavedness of the distance
function in the second setting. However, in both settings smoothing leads to an aggravation of
the alignment error resulting from image noise. This shows that, in both registration settings, the
optimal filter size must be chosen by taking the expected noise level into account. The analyses of
image registration with tangent distance and local optimizers presented in this thesis differ from
previous works in that they provide a joint formulation of the alignment error in terms of the noise
level and the filter size and give expressions for the rate of variation of the error in both settings.
Another main contribution of the thesis is that it presents a first study of the well-behavedness of
the dissimilarity function in alignment problems. In particular, it reports that the area of the region
in the translation parameter domain where the image dissimilarity function is free of undesired local
minima expands at least at a quadratic rate with respect to the size of the low-pass filter.

To sum up, this thesis proposes several approaches and ideas for benefiting from parametrizable
models in an effective way in order to tackle the challenges arising from geometric transformations
in the analysis of image sets. In particular, the main contributions of the thesis can be summa-
rized as the development of novel image analysis methods designed particularly for geometrically
transformed image data sets, and new insights into the performance limits of popular image align-
ment methods, which are helpful for employing these techniques more efficiently towards achieving
transformation-invariance in image analysis.

The thesis opens a few future directions of research. First, the manifold sampling methods that
we have presented rely on the assumption that the total number of samples to be selected from the
manifolds is fixed and given a priori. However, in a sampling scenario where a predefined registration
or classification accuracy constraint is to be met, the number of samples needs to be determined
with respect to performance criteria. Therefore, it is important to investigate the relations between
the registration and classification accuracy and the sampling density, or the number of manifold
samples. The sampling density and the precision of the manifold representation are expected to be
linked by the geometric properties of the manifold such as its nonlinearity. However, contrary to our
initial intuition, we have observed that the curvature of the manifold may fail to characterize the
registration accuracy of the sampling. This is because curvature is a very local property, whereas
the accuracy of the estimation of the manifold distance with a sample set depends on the variation
of the manifold geometry at a relatively large scale. One may perhaps consider analyzing the
nonlinearity of smoothed versions of the manifold rather than the original manifold to understand
the relation between registration accuracy and curvature.

Then, we have constructed our PTM learning methods only with generic dictionaries, which
are derived from Gaussian or multiquadric mother functions. However, one can possibly obtain
better performance with dictionaries adapted to the type of images under construction. Therefore,
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an extension of the presented study is the learning of parametric dictionaries that facilitate the
approximation and classification of signals with manifold models. Furthermore, the manifolds
considered in this thesis are defined in the original image space. This approach gives a good
classification performance if the dissimilarity between data samples can be well identified with the
ambient space distance. If this is not the case, one usually seeks alternative data representations by
changing the basis, projecting the data to suitable subspaces or treating the data in a feature space.
Hence, the generalization of the ideas used in this thesis to the construction of class-representative
parametric models based on arbitrary data representations is an interesting open problem.

Next, our analysis of the tangent distance method focuses on its registration accuracy. The
extension of the presented study to examine the classification accuracy of this method remains as
future work. In particular, the analysis of the influence of filtering on the classification performance
of tangent distance would provide useful insights in many image analysis and pattern recognition
applications. Finally, in our performance analysis of multiscale image registration with local op-
timizers, we have only considered the geometric transformation model of 2-D translations. The
influences of smoothing on the alignment regularity and the alignment accuracy of descent meth-
ods are likely to be dependent on the global geometric transformation model. Therefore, a future
research direction resides in the extension of our multiscale registration analysis to cover other
transformation models as well. Such future efforts would generalize and extend the approaches pre-
sented in this thesis for applicability to a wider range of data representations and models, towards
the development of strong and robust tools for the analysis of image data sets.
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Appendix

A.1 Proof of Proposition 2

Before showing the DC property of the objective function, we list below some useful properties of
DC functions from [87] and [18].

Proposition 6. (a) Let {fi}mi=1 be a set of DC functions with decompositions fi = gi−hi and let
{λi}mi=1 ⊂ R. Then

∑m
i=1 λifi has the following DC decomposition [87], [18].

m∑
i=1

λifi =

 ∑
i:λi>0

λigi −
∑
i:λi<0

λihi

−
 ∑
i:λi>0

λihi −
∑
i:λi<0

λigi


(b) Let f1 = g1−h1 and f2 = g2−h2 be DC functions with nonnegative convex parts g1, h1, g2, h2.

Then the product f1 f2 has the DC decomposition

f1f2 =
1
2
(
(g1 + g2)2 + (h1 + h2)2

)
− 1

2
(
(g1 + h2)2 + (g2 + h1)2

)
,

which has nonnegative convex parts [87], [18].

Now we can give a proof of Proposition 2.

Proof: Let ẽ = v − cUλ(φγ) denote the difference vector between an image v and an atom φγ
transformed by λ with a coefficient c. We first show that the components (pixels) of Uλ(φγ)
are DC functions of γ and c. Remember that Uλ(φγ) has been defined as a discretization of
Aλ(φγ) = Aλ(Bγ(φ)). We can write

Aλ(Bγ(φ))(X) = Bγ(φ)(X ′) = φ(X̃)

where all coordinate variables are related by

X̃ = bγ(X ′) = (bγ ◦ aλ)(X).
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Then, we get
Aλ(Bγ(φ))(X) = φ(bγ(aλ(X))).

The l-th component Uλ(φγ)(l) of Uλ(φγ) corresponds to a certain point with coordinate vector X
such that

Uλ(φγ)(l) = Aλ(Bγ(φ))(X) = φ(bγ(aλ(X))).

Here, b is a smooth function of γ, and φ is also a smooth function. Therefore, being a composition of
two smooth functions, Uλ(φγ)(l) is smooth as well ([104], Corollary 7.2), and thus DC by Proposition
1.

In the following, we show the DC property of Ẽ. We describe at the same time a procedure to
compute the DC decomposition of Ẽ if a DC decomposition of Uλ(φγ)(l) is available. We expand
‖ẽ‖2 in terms of the errors at individual pixels as

‖ẽ‖2 = ‖v − cUλ(φγ)‖2 =
n∑
l=1

(
v2(l)− 2 v(l) cUλ(φγ)(l) + c2 U2

λ(φγ)(l)
)

(A.1)

where v(l) is the l-th component of v. The term v(l) is constant with respect to γ and c. Using
the DC decomposition of Uλ(φγ)(l) and decomposing c as c = 0.5 (c + 1)2 − 0.5 (c2 + 1), we can
compute the DC decomposition of the second term −2 v(l) cUλ(φγ)(l) from Propositions 6.b and
6.a. One can also obtain the decomposition of the last term c2 U2

λ(φγ)(l) by applying Proposition
6.b. Finally, the DC decompositions of ‖ẽ‖2 and

Ẽ =
N∑
i=1

‖ẽi‖2 (A.2)

simply follow from Proposition 6.a. �

A.2 Derivation of total squared tangent distance Ê

The first order approximation of the manifoldM(pj) around the point Uλi(pj) is given by

M(pj) ≈ Si(pj) = {Uλi(pj) + Ti z : z ∈ R
d×1}

where Ti is an n × d matrix consisting of tangent vectors. The k-th column of Ti is the tangent
vector that is the derivative of the manifold point Uλi(pj) with respect to the k-th transformation
parameter λi(k). The orthogonal projection of ui on Si(pj) is given by ûi = Uλi(pj) + Tiz

∗, where
the coefficient vector z∗ of the projection is

z∗ = (T Ti Ti)
−1 T Ti (ui − Uλi(pj)).

Hence, the difference vector êi between ui and ûi is

êi = ui − ûi = ui − Uλi(pj)− Ti(T Ti Ti)−1 T Ti (ui − Uλi(pj)).
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Letting wi = ui − Uλi(pj), we get Ê as

Ê =
N∑
i=1

‖wi − Ti(T Ti Ti)−1 T Ti wi‖2. (A.3)

A.3 Computation of the DC Decompositions in Section 4.2.3

In the derivation of the DC decompositions of Uλ(φγ)(l) and Ẽ, we build on the results from
[18], where a DC decomposition of the distance between a query pattern and the 4-dimensional
transformation manifold of a reference pattern is derived. We first give the following results from
[18].

Proposition 7. (a) Let f : Rs → R be a DC function with decomposition f(x) = g(x)−h(x) and
q : R→ R be a convex function. Then q(f(x)) is DC and has the decomposition

q(f(x)) = p(x)−K[g(x) + h(x)],

where p(x) = q(f(x)) + K[g(x) + h(x)] is a convex function and K is a constant satisfying
K > |q′(f(x))|.

(b) Let ψ ∈ [0, 2π) and σ ∈ R+. Then the following functions have DC decompositions with
nonnegative convex parts: cos(ψ), sin(ψ), cos(ψ)

σ , sin(ψ)
σ (see [18] for computation details).

The relation between the transformed atom and the mother Gaussian function is given by the
change of variables

Aλ(φγ)(X) = φ(X̃) =

√
2
π
e−(x̃2+ỹ2)

where X̃ = [x̃ ỹ]T . Let the l-th pixel of Uλ(φγ) correspond to the coordinate vector X in Aλ(φγ)
and the coordinate vector X̃ in φ. From (4.10) and (2.10), (x̃, ỹ) can be derived in the form

x̃ = ν
cos(ψ)
σx

+ ξ
sin(ψ)
σx

− cos(ψ)τx
σx

− sin(ψ)τy
σx

ỹ = ξ
cos(ψ)
σy

− ν sin(ψ)
σy

− cos(ψ)τy
σy

+
sin(ψ)τx
σy

where

ν =
cos(θ)x+ sin(θ)y − cos(θ)tx − sin(θ)ty

sx

ξ =
− sin(θ)x+ cos(θ)y + sin(θ)tx − cos(θ)ty

sy
.
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Here ν and ξ are functions of the transformation parameters λ and the coordinates (x, y) but they
stay constant with respect to the atom parameters γ. Now we explain how the coordinate variables
x̃ and ỹ can be expanded in the DC form in terms of the atom parameter variables.

First, from Proposition 7.b, notice that the decompositions of the functions
{ cos(ψ)

σx
, sin(ψ)

σx
, cos(ψ)

σy
, sin(ψ)

σy
} can be computed as explained in [18]. The first two terms in x̃

and ỹ are given by the product of one of these functions with a constant term (ν or ξ). Therefore,
we can get the decompositions of these terms using Proposition 6.a.

Then, observe that τx has a decomposition as τx = 0.5 (τx + 1)2 − 0.5 (τ2
x + 1) [18] and the

decomposition of τy is obtained in the same manner. Thus, one can obtain the DC decompositions
of the last two terms { cos(ψ)τx

σx
,

sin(ψ)τy
σx

,
cos(ψ)τy

σy
, sin(ψ)τx

σy
} in x̃ and ỹ by applying the product property

in Proposition 6.b on the decompositions of the terms in { cos(ψ)
σx

, sin(ψ)
σx

, cos(ψ)
σy

, sin(ψ)
σy
} and {τx, τy}.

Hence, having computed the decompositions of all additive terms in x̃ and ỹ, one can obtain the
decompositions of x̃ and ỹ from Proposition 6.a.

Let z̃ = x̃2 + ỹ2. The decompositions of x̃2 and ỹ2 can be obtained by applying the product
property in Proposition 6.b on the decompositions of x̃ and ỹ. Then, the decomposition of z̃ follows
from Proposition 6.a. Expressing the mother function

φ(X̃) =

√
2
π
e−z̃

as a convex function of z̃, Proposition 7.a provides the decomposition of φ(X̃). Thus, we obtain
the decomposition of Uλ(φγ)(l).

After this point, the decomposition of Ẽ can be computed based on the description in Appendix
A.1. However, notice that for this special case of Gaussian mother function, the decomposition of
the term U2

λ(φγ)(l) in (A.1) can also be obtained by writing A2
λ(φγ)(X) = 2/π exp(−2 z̃), and using

the decomposition of z̃ and Proposition 7.a.

Now, let us describe the computation of the DC decomposition for the inverse multiquadric
mother function φ(X) = (1+x2 +y2)µ, µ < 0. Notice that the decomposition of the terms x̃ and ỹ
depend only on the PTM and dictionary models (4.10) and (2.10); therefore, they are the same as
in the previous case. Since φ(X̃) = (1 + z̃)µ is a convex function of z̃ for z̃ ≥ 0, the decomposition
of φ(X̃) can be obtained using Proposition 7.a. (Although the domain of the function q is R in
Proposition 7.a, an examination of the proof in [18] shows that the property can still be applied
for a convex function q defined on a domain that is a subset of R.) This gives the decomposition
of Uλ(φγ)(l). The decomposition of U2

λ(φγ)(l) can be similarly computed by applying Proposition
7.a to the function φ2(X̃) = (1 + z̃)2µ. Then, the computation of Ẽ is the same as in the previous
case.
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A.4 Proof of Proposition 3

Proof: We rearrange Ẽ in the following form

Ẽ =
M∑
m=1

Nm∑
i=1

(1 + αηmi ) ‖vmi − cm Uλmi (φγm)‖2 −
M∑
m=1

∑
(i,k)∈Rm

αηki ‖vk,mi − cm U
λk,mi

(φγm)‖2.

(A.4)

Equivalently, one can write

Ẽ =
M∑
m=1

Ẽm(γm, cm)

where

Ẽm(γm, cm) =
Nm∑
i=1

(1 + αηmi ) ‖vmi − cm Uλmi (φγm)‖2 −
∑

(i,k)∈Rm
αηki ‖vk,mi − cm U

λk,mi
(φγm)‖2.

From Proposition 6.a, in order to show that Ẽ is a DC function of γ and c, it is enough to show
that Ẽm(γm, cm) is a DC function of γm and cm for all m = 1, . . . ,M .

In the proof of Proposition 2 we have already shown that the squared norm of the difference
vector ẽ = v−cUλ(φγ) is a DC function of c and γ, and we have described a way to compute its DC
decomposition when a DC decomposition of the components of Uλ(φγ) is available. Therefore, one
can obtain the DC decompositions of the terms ‖vmi −cm Uλmi (φγm)‖2 and ‖vk,mi −cm U

λk,mi
(φγm)‖2

in Ẽm(γm, cm). Then, Ẽm(γm, cm) is a DC function of γm and cm as it is a linear combination of
these terms, and its decomposition is simply given by Proposition 6.a.

�
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Appendix

B.1 Proof of Theorem 1

Proof: Now we derive the upper bound on the alignment error given in Theorem 1. First, notice
from (5.5) that the difference between the optimal and estimated transformation parameters is
given by

λe − λo = [Gij(λr)]−1[〈q − pλr , ∂i pλr〉]− (λo − λr).
Using the second-order approximation of the manifold given in (5.10), one can write the target
pattern as

q = pλo + n = pλr + lλo + κλo + n

where

lλo =
d∑
i=1

∂i pλr(λ
i
o − λir) (B.1)

is the linear term and

κλo =
1
2

d∑
i=1

d∑
j=1

∂ij pλr(λ
i
o − λir)(λjo − λjr)

is the quadratic term in the expansion of pλo around pλr . In particular, the linear component
lλo ∈ TλrM(p) belongs to the tangent space of the manifold at pλr , and κλo is the component
of pλo that represents the deviation of pλo from the linear approximation Sλr(p) as a result of
curvature. The alignment error is thus obtained as

λe − λo = [Gij(λr)]−1[〈lλo + κλo + n, ∂i pλr〉]− (λo − λr)
= [Gij(λr)]−1[〈lλo , ∂i pλr〉]− (λo − λr)
+ [Gij(λr)]−1[〈κλo + n, ∂i pλr〉].

(B.2)

One can show from (5.2) that the orthogonal projection of a vector v ∈ L2(R2) onto the subspace
TλM(p) is represented in the basis {∂i pλ}di=1 with the coefficient vector

ζ = [Gij(λ)]−1[〈v, ∂i pλ〉].
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Therefore, in (B.2), the term [Gij(λr)]−1[〈lλo , ∂i pλr〉] corresponds to the coordinates of lλo ∈
TλrM(p) in the basis {∂i pλr}di=1. However, one can observe from (B.1) that this coordinate vector
is given by λo − λr. Hence, using the equality

[Gij(λr)]−1[〈lλo , ∂i pλr〉] = λo − λr

in (B.2), we obtain the alignment error as

λe − λo = [Gij(λr)]−1[〈κλo , ∂i pλr〉] + [Gij(λr)]−1[〈n, ∂i pλr〉].

The above equality shows that the alignment error is given by the sums of the projections of
the quadratic component κλo and the noise component n onto the tangent space TλrM(p). The
norm of the alignment error can thus be upper bounded as

‖λe − λo‖ ≤
∥∥[Gij(λr)]−1[〈κλo , ∂i pλr〉]

∥∥+
∥∥[Gij(λr)]−1[〈n, ∂i pλr〉]

∥∥ . (B.3)

In the rest of our derivation, we proceed by finding an upper bound for the two terms in the
above expression. We begin with the norm of [Gij(λr)]−1[〈κλo , ∂i pλr〉]. We have∥∥[Gij(λr)]−1[〈κλo , ∂i pλr〉]

∥∥ ≤ λmax

(
[Gij(λr)]−1

) ∥∥[〈κλo , ∂i pλr〉]
∥∥

= λ−1
min ([Gij(λr)])

∥∥[〈κλo , ∂i pλr〉]
∥∥

where λmax(·) and λmin(·) denote respectively the maximum and minimum eigenvalues of a matrix.
We have

∥∥[〈κλo , ∂i pλr〉]
∥∥ =

(
d∑
i=1

|〈κλo , ∂i pλr〉|2
)1/2

≤
(

d∑
i=1

‖κλo‖2‖∂i pλr‖2
)1/2

= ‖κλo‖
√

tr
(
[Gij(λr)]

)
which gives ∥∥[Gij(λr)]−1[〈κλo , ∂i pλr〉]

∥∥ ≤ λ−1
min ([Gij(λr)])

√
tr
(
[Gij(λr)]

)
‖κλo‖. (B.4)

One can upper bound the norm of the quadratic term κλo as

‖κλo‖ =
1
2

∥∥∥∥∥∥
d∑
i=1

d∑
j=1

∂ij pλr(λ
i
o − λir)(λjo − λjr)

∥∥∥∥∥∥ ≤ 1
2

d∑
i=1

d∑
j=1

‖∂ij pλr‖‖λo − λr‖2∞

≤ 1
2
d2K ‖λo − λr‖2∞.

Using this in (B.4) we bound the norm of the projection of κλo on TλrM(p) as follows∥∥[Gij(λr)]−1[〈κλo , ∂i pλr〉]
∥∥ ≤ 1

2
d2 K λ−1

min ([Gij(λr)])
√

tr
(
[Gij(λr)]

)
‖λo − λr‖2∞. (B.5)
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Having thus obtained an upper bound for the first additive term in (B.3), we now continue with
the second term

∥∥[Gij(λr)]−1[〈n, ∂i pλr〉]
∥∥. First, remember from (5.9) that the noise component

n is orthogonal to the tangent space TλoM(p) at pλo . The term [Gij(λr)]−1[〈n, ∂i pλr〉] represents
the coordinates of the projection of n onto the tangent space TλrM(p) at pλr . Due to manifold
curvature, there is a nonzero angle between these two tangent spaces; therefore, the orthogonal
projection of n onto TλrM(p) is a nonzero vector in general. In the following, we derive an upper
bound for the magnitude of this projection by looking at the change in the tangent vectors between
the two manifold points pλr and pλo . Let us define

∆i := ∂i pλr − ∂i pλo

which gives the change in the i-th tangent vector between the points pλr and pλo . We have

[Gij(λr)]−1[〈n, ∂i pλr〉] = [Gij(λr)]−1[〈n, ∂i pλo〉] + [Gij(λr)]−1[〈n, ∆i〉]
= [Gij(λr)]−1[〈n, ∆i〉]

(B.6)

since 〈n, ∂i pλo〉 = 0 for all i = 1, · · · , d. We now derive an upper bound for the norm of ∆i as
follows. Let us define a curve

pλ(t) : [0, 1]→M(p)

such that
λ(t) = λo + t(λr − λo).

Hence, pλ(0) = pλo and pλ(1) = pλr . For each i = 1, · · · , d we have

∂i pλr = ∂i pλo +
∫ 1

0

d ∂ipλ(t)

dt
dt = ∂i pλo +

∫ 1

0

d∑
j=1

∂ijpλ(t)
dλj(t)
dt

dt

= ∂i pλo +
∫ 1

0

d∑
j=1

∂ijpλ(t)(λr − λo)j dt.

We thus get the following upper bound on ‖∆i‖

‖∆i‖ =

∥∥∥∥∥∥
∫ 1

0

d∑
j=1

∂ijpλ(t)(λr − λo)j dt

∥∥∥∥∥∥ =

∥∥∥∥∥∥
d∑
j=1

∫ 1

0
∂ijpλ(t)(λr − λo)j dt

∥∥∥∥∥∥
≤

d∑
j=1

∫ 1

0

∥∥∂ijpλ(t)

∥∥ |(λr − λo)j | dt ≤
d∑
j=1

K |(λr − λo)j |

= K ‖λr − λo‖1.

It follows from (B.6) that∥∥[Gij(λr)]−1[〈n, ∂i pλr〉]
∥∥ =

∥∥[Gij(λr)]−1[〈n, ∆i〉]
∥∥ ≤ λ−1

min ([Gij(λr)])
∥∥[〈n, ∆i〉]

∥∥
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where ∥∥[〈n, ∆i〉]
∥∥ =

(
d∑
i=1

|〈n, ∆i〉|2
)1/2

≤
(

d∑
i=1

ν2 ‖∆i‖2
)1/2

.

Using the bound ‖∆i‖ ≤ K ‖λr − λo‖1 above we get∥∥[〈n, ∆i〉]
∥∥ ≤ K√d ν ‖λr − λo‖1

which gives ∥∥[Gij(λr)]−1[〈n, ∂i pλr〉]
∥∥ ≤ K√d ν λ−1

min ([Gij(λr)]) ‖λr − λo‖1. (B.7)

This finishes the derivation of the upper bound for the norm of the projection of the noise component
on TλrM(p). We finally put together the results (B.5) and (B.7) in (B.3) and get the stated bound
on the norm of the alignment error ‖λe − λo‖

‖λe − λo‖ ≤ K λ−1
min

(
[Gij(λr)]

)(1
2
d2
√

tr([Gij(λr)]) ‖λo − λr‖2∞ +
√
d ν ‖λo − λr‖1

)
which concludes the proof.

�

B.2 Derivations of ‖∂i p̂λ‖ and ‖∂ij p̂λ‖ in terms of pattern spatial
derivatives

As the pattern p̂ and its derivatives are square-integrable, there exists a bounded support Ω ∈ R2

such that the intensities of p̂ and its derivatives are significantly reduced outside Ω; i.e., 1

p̂(X), ∂x p̂(X), ∂y p̂(X), ∂xx p̂(X), ∂xy p̂(X), ∂yy p̂(X) ≈ 0

for X /∈ Ω. Since the coordinate change function a is C2-smooth, the derivatives of the transformed
coordinates are bounded over Ω. Hence, there exists a constant M > 0 such that

|∂i x′|, |∂i y′|, |∂ij x′|, |∂ij y′| ≤M

for all i, j = 1, · · · , d and X ′ ∈ Ω.
Let us first clarify the notation used in the rest of our derivations. For a vector-valued function

g : R2 → Rn, the notation g denotes the function considered as an element of the function space it
belongs to, while the notation g(X) always stands for the value of g evaluated at X; i.e., a vector
in Rn.

We begin with the term ‖∂i p̂λ‖. For all X, we have

|∂i p̂λ(X)| = |∇p̂(X ′)T∂iX ′| ≤ ‖∇p̂(X ′)‖‖∂iX ′‖
1As filtering leads to a spatial diffusion in the intensity functions of the pattern and its derivatives, the size of

the support Ω in fact depends on the filter size ρ. However, for the sake of simplicity of analysis, we ignore the
dependence of Ω on ρ and assume a single and sufficiently large support region Ω, which can be selected with respect
to the largest value of the filter size used in a hierarchical registration application.
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where ∂iX ′ = [∂i x′ ∂i y′]T . Then, for X ∈ a−1
λ (Ω), |∂i p̂λ(X)| can be upper bounded as

|∂i p̂λ(X)| ≤
√

2M ‖∇p̂(X ′)‖.

We thus get

‖∂i p̂λ‖2 =
∫
R2

|∂i p̂λ(X)|2dX =
∫
R2

|∇p̂(X ′)T∂iX ′|2dX

≈
∫
a−1
λ (Ω)

|∇p̂(X ′)T∂iX ′|2dX ≤ 2M2

∫
a−1
λ (Ω)

‖∇p̂(X ′)‖2dX

= 2M2

∫
Ω
‖∇p̂(X)‖2 | det(Da−1

λ )(X)| dX

where det(Da−1
λ )(X) is the Jacobian of the coordinate change function a−1

λ . In the above equations,
when approximating the integration on R2 with the integration on a−1

λ (Ω), we implicitly assume
that ∇p̂(X ′)T∂iX ′ ≈ 0 outside the inverse image of the support region Ω. Such an assumption
is reasonable as the transformed coordinates X ′ are typically polynomial functions of the original
coordinates X and their rate of increase with X is therefore dominated by the decay of the image
intensity function with X in a typical representation in L2(R2) such as the Gaussian dictionary we
use in this work, which is introduced in Section 5.3.2. Since the function aλ is a smooth bijection
on R2, the Jacobian det(Da−1

λ )(X) is bounded on the bounded region Ω. Therefore, there exists a
constant C > 0 such that | det(Da−1

λ )(X)| ≤ C for X ∈ Ω. Hence, we obtain

‖∂i p̂λ‖ ≤
√

2M2C

(∫
R2

‖∇p̂(X)‖2dX
)1/2

=
√

2M2C ‖N∇p̂‖

which shows that ‖∂i p̂λ‖ and ‖N∇p̂‖ have approximately the same rate of change with the filter
size ρ; i.e.,

‖∂i p̂λ‖ = O(‖N∇p̂‖).

Next, we look at the term ‖∂ij p̂λ‖. From triangle inequality we have

‖∂ij p̂λ‖ ≤ ‖v‖+ ‖w‖

where

v(X) = ∂xx p̂(X ′) ∂i x′∂j x′ + ∂xy p̂(X ′) (∂i x′∂j y′ + ∂j x
′∂i y′) + ∂yy p̂(X ′) ∂i y′∂j y′

w(X) = ∂x p̂(X ′) ∂ij x′ + ∂y p̂(X ′) ∂ij y′.

Since w is in the same form as ∂i p̂λ, one can upper bound it in the same way.

‖w‖ ≤
√

2M2C ‖N∇p̂‖. (B.8)

We now examine the term ‖v‖. Defining the derivative product vector

B(X ′) = [∂i x′∂j x′ ∂i x′∂j y′ ∂j x′∂i y′ ∂i y′∂j y′]T ,
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we have
|v(X)| = |(hp̂)(X ′)T B(X ′)| ≤ ‖(hp̂)(X ′)‖ ‖B(X ′)‖.

At X ∈ a−1
λ (Ω), the upper bound ‖B(X ′)‖ ≤ 2M2 yields

|v(X)| ≤ 2M2 ‖(hp̂)(X ′)‖.

Hence,

‖v‖2 =
∫
R2

|v(X)|2dX =
∫
R2

|(hp̂)(X ′)T B(X ′)|2dX

≈
∫
a−1
λ (Ω)

|(hp̂)(X ′)T B(X ′)|2dX ≤ 4M4

∫
a−1
λ (Ω)

‖(hp̂)(X ′)‖2dX

= 4M4

∫
Ω
‖(hp̂)(X)‖2 | det(Da−1

λ )(X)| dX ≤ 4M4C

∫
Ω
‖(hp̂)(X)‖2dX

and therefore

‖v‖ ≤ 2M2
√
C

(∫
R2

‖(hp̂)(X)‖2dX
)1/2

= 2M2
√
C ‖Nhp̂‖. (B.9)

Finally, putting together (B.8) and (B.9), we obtain the following upper bound on ‖∂ij p̂λ‖

‖∂ij p̂λ‖ ≤ 2M2
√
C ‖Nhp̂‖+

√
2M2C ‖N∇p̂‖

which gives
‖∂ij p̂λ‖ = O

(
‖N∇p̂‖+ ‖Nhp̂‖

)
.

B.3 Proof of Lemma 1

Since the reference pattern consists of Gaussian atoms, the derivation of the norms of its gradient
and Hessian involves the integration of products of Gaussian atom pairs. Therefore, in our analysis
we make use of the following proposition, which gives the expression for the integration of the
product of two Gaussian atoms [99].

Proposition 8. Let φγj (X) = φ(σ−1
j Ψ−1

j (X − τj)) and φγk(X) = φ(σ−1
k Ψ−1

k (X − τk)). Then∫
R2

φγj (X)φγk(X)dX =
Qjk

2

where

Qjk :=
π |σjσk|√
|Σjk|

exp
(
−1

2
(τk − τj)T Σ−1

jk (τk − τj)
)

Σjk :=
1
2

(
Ψj σ

2
j Ψ−1

j + Ψk σ
2
k Ψ−1

k

)
.

(B.10)
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We now prove Lemma 1.

Proof: In order to determine the variations of ‖N∇p̂‖ and ‖Nhp̂‖ with the filter size ρ, we first
derive approximations for these terms in terms of the atom parameters of the reference pattern,
which makes it easier to analyze them analytically. We then examine the dependence of these
terms on ρ with the help of their approximations.

Derivation of ‖N∇p̂‖

We begin with the norm ‖N∇p̂‖ of the gradient magnitude. In order to lighten the notation,
we do the derivations for the unfiltered reference pattern p, which are directly generalizable for its
filtered versions. We have

‖N∇p‖2 =
∫
R2

‖∇p(X)‖2dX =
∫
R2

 ∞∑
j=1

cj(∇φγj (X))T

( ∞∑
k=1

ck∇φγk(X)

)
dX.

It is easy to show that the gradient ∇φγj (X) of the atom φγj (X) is given by

∇φγj (X) = −2φγj (X) Ψj σ
−2
j Ψ−1

j (X − τj)

which yields

(∇φγj (X))T∇φγk(X) = 4φγj (X)φγk(X) (X − τj)TΘT
j Θk(X − τk)

where Θj := Ψj σ
−2
j Ψ−1

j . Putting this in the expression of ‖N∇p‖2, we obtain

‖N∇p‖2 = 4
∞∑
j=1

∞∑
k=1

cjck Ljk (B.11)

where
Ljk =

∫
R2

φγj (X)φγk(X) (X − τj)TΘT
j Θk(X − τk) dX. (B.12)

The evaluation of the above integral would give the exact expression of Ljk in terms of the
atom parameters of p, which would however have a quite complicated form. On the other hand,
we are interested in determining the variation of Ljk with filtering rather than obtaining its exact
expression. Hence, in order to make the derivation simpler, we approximate the above expression
for Ljk with another term Ljk, which is easier to evaluate analytically and provides an upper bound
for Ljk at the same time. Let us denote the smaller and greater eigenvalues of Θj as

ιj = λmin(Θj), ϑj = λmax(Θj).

From Cauchy-Schwarz inequality,

|(X − τj)TΘT
j Θk(X − τk)| ≤ ‖Θj(X − τj)‖ ‖Θk(X − τk)‖ ≤ ϑj‖X − τj‖ϑk‖X − τk‖.
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Using this in the expression of Ljk, we get

Ljk ≤ |Ljk| ≤
∫
R2

φγj (X)φγk(X)ϑjϑk ‖X − τj‖‖X − τk‖ dX

≤ Ljk := ϑjϑk

√
Lj

√
Lk

where
Lj =

∫
R2

φ2
γj (X) ‖X − τj‖2dX.

Evaluating the above integral, we obtain

Lj =
π

8
|σj | (σ2

x,j + σ2
y,j).

This gives the following upper bound for Ljk

Ljk =
π

8
ϑjϑk

(
|σjσk| (σ2

x,j + σ2
y,j)(σ

2
x,k + σ2

y,k)
)1/2

. (B.13)

Now, generalizing (B.11) to filtered versions of the reference pattern, we have

‖N∇p̂‖2 = 4
∞∑
j=1

∞∑
k=1

ĉj ĉk L̂jk. (B.14)

We now determine the dependence of ‖N∇p̂‖ on the filter size ρ. First, from (5.22), the coefficient
products have the variation

ĉj ĉk = O((1 + ρ2)−2) (B.15)

with the filter size. Next, we look at the term L̂jk. Note that the low-pass filter applied on the
pattern p increases the atom scale parameters σx,j , σy,j and therefore decreases the eigenvalues
of the matrices Θj , Θk in the exact expression for Ljk in (B.12). Filtering also influences the
terms φγj (X) and φγk(X) in (B.12). The variations of these terms with ρ are captured in the
approximation Ljk through the terms ϑj , ϑk, Lj , and Lk. Therefore, Ljk and Ljk have the same
rate of change with the filter size ρ. From (B.13), the approximation L̂jk of L̂jk is given by

L̂jk =
π

8
ϑ̂jϑ̂k

(
|σ̂j σ̂k| (σ̂2

x,j + σ̂2
y,j)(σ̂

2
x,k + σ̂2

y,k)
)1/2 (B.16)

which is simply obtained by replacing the parameters σj and ϑj with their filtered versions σ̂j and
ϑ̂j . From (5.24), we have

σ̂x,j , σ̂y,j = O((1 + ρ2)1/2)

|σ̂j σ̂k| = O((1 + ρ2)2)

ϑ̂j = max(σ̂−2
x,j , σ̂

−2
y,j ) = O((1 + ρ2)−1).

(B.17)
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Putting these relations together in (B.16), we obtain

L̂jk = O(1)

with respect to ρ. Combining this with the rate of change of the coefficient product ĉj ĉk in (B.15)
yields ĉj ĉkL̂jk = O((1 + ρ2)−2). Since each one the additive terms in the expression of ‖N∇p̂‖2 in
(B.14) has the same rate of decrease with ρ, the infinite sum also decreases with ρ at the same rate.
Therefore, we get ‖N∇p̂‖2 = O((1 + ρ2)−2), which gives

‖N∇p̂‖ = O((1 + ρ2)−1).

Derivation of ‖Nhp̂‖

We now continue with the norm ‖Nhp̂‖ of the Hessian magnitude. From (5.14),

(Nhp (X))2 = ‖(hp)(X)‖2 = (∂xx p(X))2 + 2(∂xy p(X))2 + (∂yy p(X))2.

Hence,

‖Nhp‖2 =
∫
R2

(Nhp (X))2 dX =
∫
R2

(∂xx p(X))2 + 2(∂xy p(X))2 + (∂yy p(X))2dX.

The second derivatives of the pattern are of the form

∂xx p(X) =
∞∑
k=1

ck
∂2φγk(X)
∂x2

and ∂xy p(X), ∂yy p(X) are obtained similarly. Then, ‖Nhp‖2 is given by

‖Nhp‖2 =
∞∑
j=1

∞∑
k=1

cjck

∫
R2

(
∂2φγj (X)
∂x2

∂2φγk(X)
∂x2

+ 2
∂2φγj (X)
∂x∂y

∂2φγk(X)
∂x∂y

+
∂2φγj (X)
∂y2

∂2φγk(X)
∂y2

)
dX

=
∞∑
j=1

∞∑
k=1

cjck

∫
R2

tr
(
H(φγj (X))H(φγk(X))

)
dX

where

H(φγj (X)) =

 ∂2φγj (X)

∂x2

∂2φγj (X)

∂x∂y
∂2φγj (X)

∂x∂y

∂2φγj (X)

∂y2


denotes the Hessian matrix of φγj (X). It is easy to show that

H(φγj (X)) = −2Θj(X − τj)∇Tφγj (X)− 2φγj (X)Θj

= φγj (X)
(
4Θj(X − τj)(X − τj)TΘj − 2Θj

)
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which yields

tr
(
H(φγj (X))H(φγk(X))

)
= φγj (X)φγk(X)

[
16 tr

(
Θj(X − τj)(X − τj)TΘjΘk(X − τk)(X − τk)TΘk

)
− 8 tr

(
Θj(X − τj)(X − τj)TΘjΘk

)
− 8 tr

(
ΘjΘk(X − τk)(X − τk)TΘk

)
+ 4 tr

(
ΘjΘk

)]
.

The squared norm of the Hessian magnitude can then be written as

‖Nhp‖2 =
∞∑
j=1

∞∑
k=1

cjck (16Mjk − 8Njk − 8Nkj + 4Pjk) (B.18)

where

Mjk =
∫
R2

φγj (X)φγk(X) tr
(
Θj(X − τj)(X − τj)TΘjΘk(X − τk)(X − τk)TΘk

)
dX

Njk =
∫
R2

φγj (X)φγk(X) tr
(
Θj(X − τj)(X − τj)TΘjΘk

)
dX

Pjk =
∫
R2

φγj (X)φγk(X) tr
(
ΘjΘk

)
dX.

(B.19)

We now derive approximations M jk, N jk, P jk for the terms written above, which are easier to
treat analytically and constitute upper bounds for these terms as well.

We begin with Mjk. Denoting Aj = Θj(X − τj)(X − τj)TΘj ,

Mjk ≤ |Mjk| ≤
∫
R2

φγj (X)φγk(X) |tr(AjAk)|dX. (B.20)

Since Aj is a rank-1 matrix,

|tr(AjAk)| = |λmax(AjAk)| ≤ ‖AjAk‖ ≤ ‖Aj‖ ‖Ak‖

where ‖ · ‖ denotes the operator norm for matrices. The first inequality above follows from the fact
that the spectral radius of a matrix is smaller than its operator norm, and the second inequality
comes from the submultiplicative property of the operator norm. From the inequality

‖Aj‖ = ‖Θj(X − τj)(X − τj)TΘj‖ ≤ ϑ2
j ‖X − τj‖2

we get
|tr(AjAk)| ≤ ϑ2

jϑ
2
k ‖X − τj‖2‖X − τk‖2.

Using this bound in (B.20) yields

Mjk ≤ ϑ2
jϑ

2
k

∫
R2

φγj (X)φγk(X)‖X − τj‖2‖X − τk‖2dX
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which gives the upper bound

Mjk ≤M jk := ϑ2
jϑ

2
k

√
M j

√
Mk

where
M j =

∫
R2

φ2
γj (X)‖X − τj‖4dX.

Evaluating the above integral, we get

M j = π|σj |
(

3
32
σ4
x,j +

1
16
σ2
x,jσ

2
y,j +

3
32
σ4
y,j

)
.

This finishes the derivation of M jk.

Next, we look at the term Njk. Performing similar steps as in Mjk, we obtain

|tr(AjΘk)| ≤ ϑ2
jϑk‖X − τj‖2.

This gives Njk ≤ ϑ2
jϑk

√
M j ‖φγk‖. The norm ‖φγk‖ of the atom φγk is

‖φγk‖ =

√
π|σk|

2
.

Hence, the term Njk is upper bounded as

Njk ≤ N jk :=

√
π|σk|

2
ϑ2
jϑk

√
M j .

Lastly, we derive a bound for the term Pjk. The magnitude of the trace of ΘjΘk can be bounded
as

|tr(ΘjΘk)| = |λmin(ΘjΘk) + λmax(ΘjΘk)| ≤ 2 r(ΘjΘk) ≤ 2 ‖ΘjΘk‖ ≤ 2 ‖Θj‖ ‖Θk‖ = 2ϑjϑk

where r(·) denotes the spectral radius of a matrix. The term Pjk can thus be bounded as

Pjk ≤ 2ϑjϑk

∫
R2

φγj (X)φγk(X)dX.

From Proposition 8, we get
Pjk ≤ P jk := ϑjϑkQjk

where Qjk is as defined in (B.10).

Having thus derived approximations M jk, N jk, P jk for the terms Mjk, Njk, Pjk in (B.18), we
now have an analytical approximation of the norm ‖Nhp‖ of the Hessian magnitude in terms of the
atom parameters of the pattern. We now determine the order of variation of ‖Nhp‖ with the filter
size ρ using this approximation. From (B.18), we obtain the norm of the Hessian magnitude of the
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filtered pattern p̂ as

‖Nhp̂‖2 =
∞∑
j=1

∞∑
k=1

ĉj ĉk (16M̂jk − 8N̂jk − 8N̂kj + 4P̂jk). (B.21)

In the expressions of Mjk, Njk, Pjk in (B.19), we see that filtering affects the terms Θj and the
atoms φγj (X). Comparing these terms with their approximations M jk, N jk, P jk, we observe that
the influence of smoothing on the matrices Θj is captured in the approximations via its influence
on their eigenvalues ϑj , while the influence of smoothing on the atoms is also preserved in the
approximations as the atoms appear in the expressions of M jk, N jk, P jk. Hence, the terms M̂jk,
N̂jk, P̂jk have the same rate of change with the filter size ρ as their approximations M̂ jk, N̂ jk, P̂ jk.
In the following, we determine the order of dependence of these terms on ρ.

We begin with M̂jk. The relations in (B.17) imply that

M̂ j = π|σ̂j |
(

3
32
σ̂4
x,j +

1
16
σ̂2
x,j σ̂

2
y,j +

3
32
σ̂4
y,j

)
increases with ρ at a rate of O((1 + ρ2)3) and the product ϑ̂2

j ϑ̂
2
k decreases with ρ at a rate of

O((1 + ρ2)−4). Therefore, the overall rate of variation of

M̂ jk = ϑ̂2
j ϑ̂

2
k

√
M̂ j

√
M̂k

with the filter size is given by
M̂ jk = O((1 + ρ2)−1). (B.22)

We similarly obtain the dependence of

N̂ jk =

√
π|σ̂k|

2
ϑ̂2
j ϑ̂k

√
M̂ j

on the filter size as
N̂ jk = O((1 + ρ2)−1). (B.23)

Lastly,
P̂ jk = ϑ̂jϑ̂kQ̂jk

where

Q̂jk =
π |σ̂j σ̂k|√
|Σ̂jk|

exp
(
−1

2
(τk − τj)T Σ̂−1

jk (τk − τj)
)

Σ̂jk =
1
2

(
Ψj σ̂

2
j Ψ−1

j + Ψk σ̂
2
k Ψ−1

k

)
.

One can determine the rate of change of Q̂jk with ρ as follows. First, since the eigenvalues of the
matrix Σ̂jk increase with ρ, the term in the exponential approaches 0 as ρ increases. The variation
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of Q̂jk is thus given by the variation of π |σ̂j σ̂k|/
√
|Σ̂jk|. The term

√
|Σ̂jk| has the same rate of

change with ρ as |σ̂j |; therefore,
√
|Σ̂jk| = O(1 + ρ2). This gives

Q̂jk = O(1 + ρ2) (B.24)

and
P̂ jk = O((1 + ρ2)−1). (B.25)

Finally, combining the results (B.22), (B.23) and (B.25) in (B.21), and remembering that the
coefficient products vary with ρ as ĉj ĉk = O((1 + ρ2)−2), we conclude that the norm ‖Nhp̂‖ of the
Hessian magnitude decreases with the filter size ρ at a rate of

‖Nhp̂‖ = O((1 + ρ2)−3/2)

which finishes the proof of the lemma.
�

B.4 Proof of Lemma 2

Proof: Remember from (5.3) and (5.8) that the projection of the unfiltered target pattern q onto
M(p) is pλo , and the projection of the filtered target pattern q̂ onto M(p̂) is p̂λ̂o . Since p̂λ̂o is
the point onM(p̂) that has the smallest distance to q̂, we have the following for the distance ‖ñ‖
between q̂ andM(p̂)

‖ñ‖ = ‖q̂ − p̂λ̂o‖ ≤ ‖q̂ − p̂λo‖
where p̂λo is the filtered pattern p̂ transformed by the transformation vector λo that is optimal in
the alignment of the unfiltered patterns.

As discussed in Section 5.3.2, the deviation between the transformations λo and λ̂o depends on
the transformation model. Here we do not go into the investigation of the difference between p̂λ̂o
and p̂λo , and content ourselves with the upper bound ‖q̂− p̂λo‖ for ‖ñ‖ in order to keep our analysis
generic and valid for arbitrary transformation models. Our purpose is then to determine how the
distance ‖q̂ − p̂λo‖ depends on the initial noise level

ν = ‖n‖ = ‖q − pλo‖

and the filter size ρ. The noise pattern n becomes

n̂ = q̂ − p̂λo

when filtered by the filter kernel in (5.6), where p̂λo is the filtered version of pλo with the same
kernel. Now, an important observation is that n̂ 6= q̂ − p̂λo for geometric transformations that
change the scale of the pattern, because

p̂λo 6= p̂λo (B.26)
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i.e., the operations of filtering a pattern and applying it a geometric transformation do not commute
for such transformation models. The reason is that filtering modifies the scale matrices σk of atoms,
and when the geometric transformation involves a scale change, the commutativity of these two
operations fails. For geometric transformations that do not involve a scale change, the equality
p̂λo = p̂λo holds. This is explained in more detail in the rest of this section. For the sake of
generality, we base our derivation on the hypothesis (B.26) and proceed by bounding the deviation
of q̂ − p̂λo from n̂. We thus use the following inequality for bounding ‖ñ‖

‖ñ‖ ≤ ‖q̂ − p̂λo‖ ≤ ‖q̂ − p̂λo‖+ ‖p̂λo − p̂λo‖
= ‖n̂‖+ ‖p̂λo − p̂λo‖.

(B.27)

Hence, we achieve the examination of ‖ñ‖ in two steps. We first determine the variation of ‖n̂‖
with the initial noise level ν and the filter size ρ. Then, we study the second term ‖p̂λo − p̂λo‖ as a
function of the filter size. We finally put together these two results in order to obtain the variation
of the term ‖ñ‖.

Derivation of ‖n̂‖

We begin with deriving an analytical expression for the norm ν of the noise pattern n, whose
variation with filtering is then easy to determine. Since the noise pattern n is in L2(R2), and the
linear span of the Gaussian dictionary D is dense in L2(R2), n can be represented as the linear
combination of a sequence of atoms in D

n(X) =
∞∑
k=1

ςk φχk(X)

where ςk are the atom coefficients and χk are the atom parameters. Then,

ν2 = ‖n‖2 =
∞∑
j=1

∞∑
k=1

ςjςk

∫
R2

φχj (X)φχk(X)dX =
∞∑
j=1

∞∑
k=1

ςjςkRjk

where the term Rjk is in the same form as the term Qjk given in (B.10) and obtained with the
atom parameters of n. Then, the squared norm of the filtered version of n is

‖n̂‖2 =
∞∑
j=1

∞∑
k=1

ς̂j ς̂kR̂jk.

Now, the coefficients ς̂j have the same variation with ρ as ĉj ; therefore, from (5.22), we obtain

ς̂j ς̂k = O((1 + ρ2)−2).

Next, R̂jk and Q̂jk have the same variation with ρ since they are of the same form. Thus, the
relation in (B.24) implies that

R̂jk = O(1 + ρ2). (B.28)
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Putting these results in the expression of ‖n̂‖2, we see that the norm ‖n̂‖ of the filtered noise
pattern decreases with ρ at a rate

‖n̂‖ = O((1 + ρ2)−1/2).

Lastly, we look at the dependence of ‖n̂‖ on the initial noise level ν = ‖n‖. Since convolution with
a filter kernel is a linear operator, the norm of the filtered noise pattern is linearly proportional to
the norm of the initial noise pattern. Therefore, ‖n̂‖ varies linearly with ν. Combining this with
the above result, we obtain the joint variation of ‖n̂‖ with ν and ρ as

‖n̂‖ = O(ν (1 + ρ2)−1/2). (B.29)

Derivation of ‖p̂λo − p̂λo‖

In order to study the variation of the term ‖p̂λo − p̂λo‖ with the filter size in a convenient way,
we assume that the composition of the geometric transformation λ ∈ Λ generating the manifold
M(p) and the geometric transformation γ ∈ Γ generating the dictionary D can be represented as
a transformation vector in Γ; i.e., for all λ ∈ Λ and γ ∈ Γ, there exists γ ◦ λ ∈ Γ such that

Aλ(φγ)(X) = φγ◦λ(X).

Note that this assumption holds for common geometric transformation models λ such as transla-
tions, rotations, scale changes and their combinations.

In order to ease the notation, we derive the variation of ‖p̂λ−p̂λ‖ for an arbitrary transformation
vector λ, which is also valid for the optimal transformation vector λo. The transformed version pλ
of p can be represented as

pλ(X) =
∞∑
k=1

ck φγk◦λ(X).

Let us denote the scale, rotation and translation matrices corresponding to the composite trans-
formation vector γk ◦ λ respectively as σk � λ, Ψk � λ, and τk � λ. Then the filtered version of the
transformed pattern pλ is given by

p̂λ(X) =
∞∑
k=1

ck
|σk � λ|
|σ̂k � λ|

φ
γ̂k◦λ(X)

where σ̂k � λ =
√

(σk � λ)2 + Υ2 is the scale matrix of the filtered atom parameters γ̂k ◦ λ. The
rotation and translation matrices Ψk � λ and τk � λ do not change as filtering affects only the scale
matrix.

Now we derive the expression of p̂λ, which is obtained by filtering p first, and then applying it
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a geometric transformation. Remember from Section 5.3.2 that the filtered pattern p̂ is

p̂(X) =
∞∑
k=1

ck
|σk|
|σ̂k|

φγ̂k(X)

and the transformed version of p̂ by λ is

p̂λ(X) =
∞∑
k=1

ck
|σk|
|σ̂k|

φγ̂k◦λ(X)

where the atom parameter vector γ̂k ◦λ has the scale matrix σ̂k �λ =
√
σ2
k + Υ2 �λ, rotation matrix

Ψk � λ and translation vector τk � λ. Comparing the expressions of p̂λ and p̂λ, we see that these
patterns have different atom scale matrices and atom coefficients if the transformation λ involves
a scale change. The atoms of p̂λ and p̂λ have the same rotation and translation matrices. Hence,
if λ does not modify the scale matrices of atoms, we have σk � λ = σk; therefore, p̂λ = p̂λ.

The modification that the transformation λ makes in the atom scale parameters can be repre-
sented with a scale change matrix

S =
[
sx 0
0 sy

]
such that

σk � λ = S σk.

Here we avoid writing the dependence of S on λ for notational convenience. We also represent the
scale change of all atoms with the same matrix S to ease the notation. However, this is not a strict
hypothesis; i.e., since we treat the scale change parameters sx and sy as constants when examining
the variation of ‖p̂λ− p̂λ‖ with the filter size ρ, our result is generalizable to the case when different
atoms have different scale change matrices Sk.

With this representation, the atom scale matrices of p̂λ and p̂λ are respectively obtained as

σ̂k � λ =
√
S2σ2

k + Υ2, σ̂k � λ = S
√
σ2
k + Υ2

and the atom coefficients in these two patterns are respectively given by

ck
|σk � λ|
|σ̂k � λ|

= ck
|Sσk|

|
√
S2σ2

k + Υ2|
, ck

|σk|
|σ̂k|

= ck
|σk|

|
√
σ2
k + Υ2|

.

The difference between the two patterns can then be upper bounded as

‖p̂λ − p̂λ‖ =

∥∥∥∥∥∥
∞∑
k=1

ck
|Sσk|

|
√
S2σ2

k + Υ2|
φ
γ̂k◦λ −

∞∑
k=1

ck
|σk|

|
√
σ2
k + Υ2|

φγ̂k◦λ

∥∥∥∥∥∥
≤ ‖e1‖+ ‖e2‖

(B.30)



B.4 Proof of Lemma 2 151

where

e1 =
∞∑
k=1

ck
|Sσk|

|
√
S2σ2

k + Υ2|
(φ
γ̂k◦λ − φγ̂k◦λ)

e2 =
∞∑
k=1

ck

 |Sσk|
|
√
S2σ2

k + Υ2|
− |σk|
|
√
σ2
k + Υ2|

φγ̂k◦λ.

In the following, we determine the rate of change of the terms ‖e1‖ and ‖e2‖ with the filter size ρ,
which will then be used to estimate the dependence of ‖p̂λ−p̂λ‖ using (B.30). We momentarily omit
the atom index k for lightening the notation. We begin with ‖e1‖. Since e1 is a linear combination
of atom differences, its variation with ρ is given by the product of the variations of the coefficients
and the atom difference norms with ρ.

‖e1‖ = O

(
c

|Sσ|
|
√
S2σ2 + Υ2|

)
O
(
‖φ̂

γ◦λ − φγ̂◦λ‖
)
. (B.31)

The coefficients decrease with ρ at a rate

c
|Sσ|

|
√
S2σ2 + Υ2|

= O((1 + ρ2)−1). (B.32)

Next, we look at the dependence of the term ‖φ̂
γ◦λ − φγ̂◦λ‖ on ρ.

‖φ̂
γ◦λ − φγ̂◦λ‖

2 =
∫
R2

[
φ
(

(S2σ2 + Υ2)−1/2(Ψ � λ)−1(X − τ � λ)
)

− φ
(

(S2σ2 + S2Υ2)−1/2(Ψ � λ)−1(X − τ � λ)
)]2

dX

Defining ax := s2
xσ

2
x + ρ2, bx := s2

x(σ2
x + ρ2), and defining ay and by similarly, the evaluation of the

above integral yields

‖φ̂
γ◦λ − φγ̂◦λ‖

2 =
π

2
(
√
axay +

√
bxby)− 2π

√
axaybxby

(ax + bx)(ay + by)
.

As the parameters ax, bx, ay, by increase with ρ at a rate of O(1 + ρ2), the rate of increase of the
squared norm of the atom difference φ̂

γ◦λ − φγ̂◦λ with ρ is given by

‖φ̂
γ◦λ − φγ̂◦λ‖

2 = O(1 + ρ2).

Putting this result in (B.31) together with the decay rate of coefficients given in (B.32) yields

‖e1‖ = O((1 + ρ2)−1/2). (B.33)
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Let us now examine the term ‖e2‖. The rate of change of ‖e2‖ can be estimated from the variation
of the coefficients and the atom norms as follows

‖e2‖ = O

(
c

[ |Sσ|
|
√
S2σ2 + Υ2|

− |σ|
|
√
σ2 + Υ2|

])
O(‖φγ̂◦λ‖).

The coefficients decay with ρ at a rate

c

( |Sσ|
|
√
S2σ2 + Υ2|

− |σ|
|
√
σ2 + Υ2|

)
= O((1 + ρ2)−1).

Next, the squared norm of the atom is calculated as

‖φγ̂◦λ‖2 =
∫
R2

φ2
(

(S2σ2 + S2Υ2)−1/2(Ψ � λ)−1(X − τ � λ)
)
dX

=
π

2
sxsy

√
(σ2
x + ρ2)(σ2

y + ρ2)

which shows that the atom norm increases with ρ at a rate

‖φγ̂◦λ‖ = O((1 + ρ2)1/2).

Hence, we obtain the order of dependence of ‖e2‖ on ρ as

‖e2‖ = O((1 + ρ2)−1/2). (B.34)

Finally, from (B.33), (B.34), and the inequality in (B.30), we obtain the variation of the error term
‖p̂λ − p̂λ‖ with ρ as

‖p̂λ − p̂λ‖ = O((1 + ρ2)−1/2). (B.35)

Variation of ‖ñ‖ with noise level and filter size

We can now put together the results obtained so far to determine the variation of the noise
term ‖ñ‖. Using the upper bound on ‖ñ‖ given in (B.27) and the variations of ‖n̂‖ and ‖p̂λo − p̂λo‖
given in (B.29) and (B.35), the joint variation of the noise term ‖ñ‖ with the initial noise level ν
and the filter size ρ is obtained as

‖ñ‖ = O
(

(ν + 1)(1 + ρ2)−1/2
)

for geometric transformations that change the scale of the pattern. We see that the initial noise
level ν is augmented by an offset term, which results from the fact that the operations of filtering
and applying a geometric transformation do not commute when the transformation involves a
scale change. Since filtering and transforming commute for transformation models that do not
modify the scales of atoms, the second error term ‖p̂λo − p̂λo‖ in (B.27) vanishes for such geometric
transformations. Thus, if the transformation model λ does not involve a scale change, the variation
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of ‖ñ‖ is given by
‖ñ‖ = O

(
ν(1 + ρ2)−1/2

)
.

This finishes the proof of the lemma.

�



Appendix C

Appendix

C.1 Exact expressions for the parameters in Lemma 3

Here we present the expressions for the terms cjk and djk used in Lemma 3. Let αk = λmin(Φk)
and βk = λmax(Φk) denote respectively the smaller and greater eigenvalues of Φk. Since Φk is a
positive definite matrix, βk ≥ αk > 0. Let τk = [τx,k τy,k]T ,

bxjk = (βj + βk) max

{(
b+ t0 −

βjτx,j + βkτx,k
βj + βk

)2

,

(
−b− t0 −

βjτx,j + βkτx,k
βj + βk

)2
}

cxjk = (βj + βk) max

{(
b+ t0

βj
βj + βk

− βjτx,j + βkτx,k
βj + βk

)2

,

(
−b− t0

βj
βj + βk

− βjτx,j + βkτx,k
βj + βk

)2
}

dxjk =
βjβk
βj + βk

max
{

(−t0 + τx,k − τx,j)2, (t0 + τx,k − τx,j)2
}

and b
y
jk, c

y
jk and d

y
jk be defined similarly by replacing x with y in the above expressions. Let

Hx
jk = −βj τx,j + βk τx,k

βj + βk
, Gxjk =

βj τ
2
x,j + βk τ

2
x,k

βj + βk

and Hy
jk, G

y
jk be defined similarly by replacing x with y in the above expressions. Also, let Hx

jk,
H
y
jk, G

x
jk, G

y
jk denote the terms obtained by substituting βj , βk with αj , αk in the expressions of

respectively Hx
jk, H

y
jk, G

x
jk, G

y
jk.

1 Then, let

Dxjk =
√
π

4b
1√

βj + βk
exp

(
−(βj + βk)

(
Gxjk − (Hx

jk)
2
))

·
[
erf
(√

βj + βk (b+Hx
jk)
)
− erf

(√
βj + βk (−b+Hx

jk)
)]

1The terms written as Hx
jk, . . . , G

y
jk here correspond to the terms Hx

jk(0, 0), . . . , G
y
jk(0, 0) in [102].
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and Dyjk be defined similarly, and let us denote by Dxjk, D
y
jk the terms obtained by replacing βj , βk

with αj , αk in the expressions of Dxjk, Dyjk. Then defining

B
jk

= exp
(
−bxjk − b

y
jk −

βjβk ‖τk − τj‖2
(βj + βk)

)
, Bjk =

π

4b2 (αj + αk)
exp

(
−αjαk ‖τk − τj‖

2

(αj + αk)

)
C
jk

= exp
(
−cxjk − c

y
jk − dxjk − d

y
jk

)
, Cjk =

π

4b2 (αj + αk)
, Djk = Dxjk Dyjk, Djk = Dxjk D

y
jk

the parameters cjk and djk are given by

cjk = Bjk − 2C
jk

+Djk
djk = B

jk
− 2Cjk +Djk.

C.2 Exact expressions for the parameters in Lemma 4

We now give the expressions for the terms r0, r2 and r3 used in Lemma 4. Let r0 be the smaller
eigenvalue of the following positive definite matrix

R0 =
K∑
j=1

K∑
k=1

cjckQjk

(
Σ−1
jk − Σ−1

jk (τk − τj)(τk − τj)TΣ−1
jk

)
.

Next, as shown in [102], the following upper and lower bounds can be obtained

a2
jk ≥ a2

jk =
1
4
λ2

min(Σ−1
jk ), a2

jk ≤ a2
jk =

1
4
λ2

max(Σ−1
jk )

b2jkajk ≤ b2jkajk =
1
8
λmax(Rjk2 )λmax(Σ−1

jk ), b4jk ≤ b
4
jk =

1
16
λ2

max(Rjk2 )

where Rjk2 = Σ−1
jk (τk − τj)(τk − τj)TΣ−1

jk . Then, we have

r′2 =
∑

(j,k)∈J+

cjckQjk(−8 b4jk +−6 a2
jk) +

∑
(j,k)∈J−

cjckQjk(24 b2jkajk − 6 a2
jk)

and r2 is given by r2 = min(r′2, 0). Finally,

r3 = −
K∑
j=1

K∑
k=1

5.46
25/2

|cjck|
π|σjσk|√
|Σjk|

(λmax(Σ−1
jk ))5/2.
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C.3 Exact expressions for the parameters in Lemma 5

Now we present the terms ejk and fjk used in Lemma 5. Let

Lj =

(
(33/4 + 35/4)e−

√
3

2

16
+

3
√
π

29/2

)
1

α
5/2
j

, M j =
√

π

2αj
, N j :=

(
e−

1
2

4
+
√
π

25/2

)
1

α
3/2
j

Ej =
β4
j

4b2
(

2LjM j + 2N2
j

)
, F j =

1
4b2

M
2
j .

Then, the terms ejk and fjk are given by

ejk = 16
√
EjEk + 4βjβk Bjk, fjk = −8 βk

√
EjFk − 8 βj

√
F jEk + 4αjαk Bjk.
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