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form domain features [52] (e.g., Fourier, Wavelet, Hadamard coefficients), regional features such
as SIFT keypoints [54] and local binary patterns [55], and shape descriptors such as chain codes [56].

Classification methods for manifold-modeled data

The above classification methods are generic and they do not rely on any specific assumption
on the geometry of data. Meanwhile, when the data is likely to be sampled from a manifold instead
of being arbitrarily spread in the ambient space, it is useful to exploit this special structure in
the learning. We now mention a couple of classification techniques that are based on this hypothesis.

In several classification methods, the exploitation of the manifold structure of data is through
local linearity assumptions and the hypothesis that neighboring samples on the same manifold
have a small distance, as opposed to the usage of a parametric representation of the data manifold.
Therefore, these methods are nonparametric.

Among nonparametric methods, graph-based methods are algorithms that construct a data
graph such that each node of the graph is a data sample, where the weights between connected
nodes are typically set according to the distance between the data samples. In these methods, the
edges between nodes are usually assigned such that each node is connected to a predetermined
number of nearest neighbors (k-nearest neighbors), or its neighbors within a sphere of a predefined
radius (ε-neighborhood). Such a construction of the data graph makes these methods a good choice
when the data is concentrated around a manifold and has a locally flat structure, since neighboring
nodes in the graph correspond to neighboring manifold points in this case. In graph-based methods,
data classification is usually formulated as a semi-supervised learning problem, such that the data
with both known and unknown class labels are used in the construction of the graph. The unknown
class labels are then estimated based on the similarity between the data samples, which is captured
by the edge weights. There are several ways to estimate the unknown class labels. One way is
to use graph mincuts [57]. In a setting with binary class labels, this method seeks a minimum
set of edges such that when these edges are removed, the resulting graph yields two disconnected
components corresponding to the two classes. Another example of a graph-based method is the
label propagation algorithm [58], which proposes to estimate class labels by assigning soft labels
to the nodes and letting all nodes propagate their soft labels to their neighbors according to a
probabilistic transition model. The nodes with known class labels are exploited by setting their
soft labels to the correct class labels at each iteration, which drives the learning. In this way, the
algorithm converges to a solution that gives an estimate of the labels of all nodes.

Next, the classification method proposed in [59] assumes that the data points reside on a
manifold, which contain labeled and unlabeled samples from two classes. It learns a function
on the data graph as a linear combination of the first few eigenvectors of the graph Laplacian such
that the values of the function at labeled data samples approximate well their class labels. The
construction of the classifier function in terms of the eigenvectors of the graph Laplacian is helpful
for controlling its smoothness on the manifold, so that nearby samples are encouraged to have the
same class labels. Finally, the SLLE method presented in [17] proposes the classification of data
samples lying on a manifold via dimensionality reduction. It learns a mapping of the data to a
lower-dimensional space by introducing a separation between different classes. The class labels of
new data samples are then estimated in the lower-dimensional space using a simple method such
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as nearest mean or nearest neighbor classifier.

While all of the above methods are based on the assumption that all data samples lie on a
single manifold, there are also several studies that model different classes with different manifolds
like we do in this thesis. We mention here a few of them. First, the texture classification method
proposed in [60] relies on a clustering algorithm where each cluster is considered as a different
manifold. The clusters are then computed by minimizing the total geodesic distance between data
samples and the representatives of their cluster. Another manifold-based classification method is
presented in [61], which proposes an algorithm for human face recognition in videos. The images
of each person are modeled as a different manifold given by a union of planes that approximate
different poses of that person, where the planes are connected to each other with transition
probabilities. The recognition of faces in the video is then achieved with a maximum a posteriori
estimation, which takes the transitions between consecutive frames into account. Finally, the
recent study in [62] proposes a method to learn multiple manifolds that represent different facial
expressions. Then the facial expression in a query image is estimated by identifying the manifold
that gives the smallest reconstruction error for the image.

In contrast to nonparametric methods described above, parametric methods are algorithms
that explicitly make use of a parametric representation of the manifold model in classification.
Some examples to parametric manifold-based classification methods are the following. The
tangent distance method [3] proposes a solution for transformation-invariant classification by
estimating the manifold distance by making use of a linear approximation of the manifolds, which
is demonstrated in handwritten digit recognition applications. The multiresolution extension of
the tangent distance proposed in [2] is applied in face recognition and semantic video classification
problems. The work in [4] proposes to measure image dissimilarities with a metric called the
joint manifold distance. The joint manifold distance is given by the subspace-to-subspace distance
between linear manifold approximations; however, the proposed formulation involves priors on the
image distributions as well. The method is used to cluster faces in videos. Lastly, a generalized
maximum likelihood classifier is described in [63], where each class is represented by a different
parametrizable image appearance manifold, and the class labels of image observations are estimated
according to their distances to the manifolds as in our framework. This setting is then used for
developing a compressive classifier called the smashed filter, which estimates the class labels of
data samples from compressed measurements.

Finally, we remark the following about the classification of image sets with geometric transfor-
mations, which is studied in this thesis. This kind of image data has a highly nonlinear structure;
therefore, linear classifiers fail for such data. One may get slightly better results through the use
of nonlinear classifiers; however, the generic kernels used in these classifiers do not necessarily
match well the particular geometric structure of such image sets. Since geometrically transformed
image sets can be assumed to be concentrated around transformation manifolds, manifold-based
methods give better results for their classification in general. Meanwhile, manifold-based classi-
fication methods have some limitations as well. First, graph-based or nonparametric algorithms
are susceptible to the sampling conditions of data, such as the sampling density and noise. The
sampling density becomes an important issue especially when the dimension of the manifold is
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high.3 Parametric methods such as [3], [2], [4] provide an analytic way to estimate the manifold
distance; however, they have the drawback that their estimation is accurate only for small trans-
formations. In this thesis, we aim at developing efficient image classification methods based on
parametric transformation-manifold models that can handle large transformations as well. We thus
study the approximation of manifold distance with manifold samplings in Chapter 3 and propose
methods to construct transformation manifolds that are good for classification in Chapter 4. Then,
in Chapters 5 and 6 we theoretically examine how the performance of parametric methods relying
on the estimation of the manifold distance can be improved with a multiscale analysis.

3The analysis in our recent study [64] shows that, for the local linearity assumptions to hold, the ambient space
distance between data samples must decrease at a rate of O(d−3/2) with the dimension d of the manifold.



Chapter 3

Sampling Parametrizable Manifolds

3.1 Fast Manifold Distance Estimation with Sampling

In this chapter, we address the problem of sampling transformation manifolds for accurate esti-
mation of the manifold distance in image registration and classification. The exact computation
of the manifold distance is in general a complicated problem, mainly due to the variety and com-
plexity of the involved transformation models. Among the previous works that propose solutions
for the manifold distance computation problem, studies such as [2], [3], [4] are based on first-order
approximations of the manifold. However, such methods perform well especially when the rela-
tive transformation between the target image and the reference image is small, and the first-order
approximation loses accuracy for large transformations. There are also some works that study
the estimation of transformation parameters for specific types of geometric transformation mod-
els, e.g., [18], [65]. Meanwhile, there is no known solution for the computation of the manifold
distance optimally for generic transformation models. A simple and practical way to estimate the
manifold distance is then to represent the manifold with a finite grid of manifold samples, where
the distance between a query image and its projection onto the manifold is approximated by the
distance between the image and the nearest manifold sample. The usage of such a grid improves
the complexity of distance estimation immensely, possibly at the price of a lower distance accuracy.

In image analysis applications, it is common practice to sample manifolds in a straightforward
way by generating a grid regular in the parameter domain. However, a regular discretization in
the parameter space is not guaranteed to offer a good performance, especially when the number
of samples is limited. While the choice of the manifold grid has considerable influence on the
accuracy of manifold distance estimation, the manifold sampling problem has not been given much
consideration so far within the context of image analysis. Structured grid generation has been well-
studied especially for analytical two-dimensional surfaces in R3, mostly for the purpose of obtaining
finite-difference solutions to partial differential equations [66]. It is also possible to find sampling
solutions for surfaces represented in non-analytical forms such as meshes [67]. Even though some of
these sampling methods may in principle be generalized for image manifolds of arbitrary dimension,
the targeted applications must be taken into account in grid generation.

In this chapter, we study the distance-based discretization of transformation manifolds of known
parameterization. We first present a manifold discretization algorithm that minimizes the manifold
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distance estimation error stemming from the representation of the manifold by finitely many grid
points. Our discretization method bears some resemblance to the LBG vector quantization algo-
rithm [68] due to the alternating optimization steps it involves, where the representative samples
for a given partition of the space are computed, and then the space is repartitioned for the updated
set of samples. However, the proposed method differs essentially from the LBG algorithm, since
it targets the minimization of the manifold distance with samples positioned on the manifold and
does not have a signal approximation objective.

Noting the dependency between the registration and classification performances, we then extend
this sampling solution to the joint discretization of multiple transformation manifolds representing
different classes. As discussed in Chapter 2, the estimation of the class label m of a query image
x requires the determination of the approximation region Hm it lies in. We assume that the exact
knowledge of the manifolds determines the class label of an image perfectly. A discrete representa-
tion of the manifolds reduces the complexity of the classification problem, while the classification
performance in the discrete setting depends significantly on the sampling. We propose a discretiza-
tion method where all manifolds are jointly sampled such that the relative geometries of different
manifolds are taken into account to yield a good classification accuracy. Experimental results show
that the proposed discretization methods yield better registration and classification performance
than basic discretizations such as random grids or regular grids. Moreover, the consideration of the
relative properties of manifolds in the sampling in addition to their individual properties improves
the classification accuracy.

In the manifold discretization study presented in this chapter, we essentially focus on transfor-
mation manifolds. However, we maintain a generic formulation that it is applicable to arbitrary
parametric signal manifolds. We also note that parametrizable signal manifolds are not restricted
to image manifolds, which could find examples within acoustic and seismic signals for instance [8],
[69].

This chapter is organized as follows. In Section 3.2 we overview the discretization of para-
metric manifolds based on distance estimation, and in Section 3.3 we propose an extension of the
registration-based sampling solution for classification. We present experimental results in Section
3.4, and conclude in Section 3.5.

3.2 Manifold Discretization for Minimal Distance Estimation Error

In this section, we present an iterative method for the optimization of manifold samples such that
the manifold distance estimation error caused by representing the manifold with a finite number
of samples is minimized. Note that the main purpose of the sampling scheme proposed here
is the accurate estimation of the manifold distance for registration applications rather than the
approximation of the manifold, which are not necessarily equivalent.

We consider signal manifolds residing in Rn that are defined by a parametric model as in (2.1).
We assume that a generating signal pattern p, a compact parameter domain Λ and a bounded
mapping U(·)(p) between Λ and Rn are given. Considering the pattern p to be fixed, we denote the
manifoldM(p) simply asM. We formulate the discretization of the manifoldM as the selection
of a predetermined number N of manifold points; i.e., a sample set S = {Si} = {Uλi(p)} ⊂ M,
i = 1, · · · , N for some {λ1, · · · , λN} ⊂ Λ. We would like to select a set of samples that minimizes
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the total manifold distance estimation error E over R, where R is a bounded region in the space
Rn. We consider R to be a region of interest, which depends on the application. We define the
error E as

E =
∫
R

(
d2(x,S)− d2(x,M)

)
dx (3.1)

where
d(x,S) = min

i∈{1,2,··· ,N}
‖x− Si‖ (3.2)

denotes the distance between x and the sample set S. The formulation of the error in terms of
squared distances is for the ease of analytical manipulation.

For a given sample set, one can partition R into N regions as R =
⋃N
i=1Ri, where each Ri is a

region consisting of points with smallest `2-distance to Si among all samples, i.e.,

Ri = {x ∈ R : ‖x− Si‖ ≤ ‖x− Sj‖,∀j ∈ {1, · · · , N}}. (3.3)

The regions Ri are thus defined similarly to the Voronoi cells in the LBG vector quantization
method or Lloyd’s quantization algorithm [68]. Then, the total manifold distance estimation error
can be written as

E =
N∑
i=1

Ei =
N∑
i=1

∫
Ri

(
‖x− Si‖2 − d2(x,M)

)
dx. (3.4)

In order to minimize the error E, we follow an iterative optimization procedure. In each iteration
of the algorithm a two-stage optimization is employed: In the first stage, we fix the samples Si and
determine the partition regions Ri corresponding to the samples. In the actual implementation of
the method, we numerically determine the regions Ri with the help of training data. Then, in the
second stage, we fix the regions Ri and optimize each sample Si individually such that the error Ei
in the regarding region is minimized. The minimization of the manifold distance estimation error
Ei within a specific region Ri is achieved as follows. The error term Ei can be rearranged as

Ei =
∫
Ri

‖x− Si‖2 dx−
∫
Ri

d2(x,M) dx

where the second integration depends only on Ri, and is constant with respect to Si as Ri is treated
as a fixed parameter. Therefore, Ei is given by

Ei =
∫
Ri

‖x− Si‖2 dx+ ci =
∫
Ri

xTx dx− 2ST
i

∫
Ri

x dx+ ViS
T
i Si + ci,

where ci is a constant independent of Si, and Vi =
∫
Ri
dx is the volume of the region Ri. Denoting

the centroid of Ri by Gi = (
∫
Ri
x dx)/(

∫
Ri
dx), we get

Ei =
∫
Ri

xTx dx+ Vi(−2ST
i Gi + ST

i Si) + ci = Vi(ST
i Si − 2ST

i Gi) + c′i,


