Résumé

Responses to a target can be sped up or slowed down by a congruent or incongruent prime, respectively. Even though presentations are rapid, the prime and the target are thought to activate motor responses in strict sequence, with prime activation preceding target activation. In feature fusion, the opposite seems to be the case. For example, a vernier offset to the left is immediately followed by a vernier offset to the right at the same location. The two verniers are not perceived as two elements in sequence but as a single, aligned vernier. Here, we ask the question as to how features are integrated: before or after motor activation? We presented two vernier primes with opposite offset directions preceding a single vernier target. No priming effect occurred when the vernier primes were presented at the same location, indicating that verniers integrate before motor activation. There was also no priming effect when the primes were presented simultaneously at different locations, indicating that there is an integration stage different from the perceptual fusion stage. When the second prime is delayed, it determines priming, even for very long delays. To explain these long integration times, we argue that there is a buffer preceding motor activation.

Détails