000189581 001__ 189581
000189581 005__ 20180913062103.0
000189581 022__ $$a0391-173X
000189581 02470 $$2ISI$$a000322857800002
000189581 037__ $$aARTICLE
000189581 245__ $$aHecke modifications, wonderful compactifications and moduli of principal bundles
000189581 260__ $$aPisa$$bScuola Normale Superiore$$c2013
000189581 269__ $$a2013
000189581 300__ $$a59
000189581 336__ $$aJournal Articles
000189581 520__ $$aIn this paper we obtain parametrizations of the moduli space of principal bundles over a compact Riemann surface using spaces of Hecke modifications in several cases. We begin with a discussion of Hecke modifications for principal bundles and give constructions of "universal" Hecke modifications of a fixed bundle of fixed type. This is followed by an overview of the construction of the "wonderful," or De Concini-Procesi, compactification of a semi-simple algebraic group of adjoint type. The compactification plays an important role in the deformation theory used in constructing the parametrizations. A general outline to construct parametrizations is given and verifications for specific structure groups are carried out.
000189581 700__ $$0246610$$aWong, Michael Lennox$$g223913
000189581 773__ $$j12$$k2$$q309-367$$tAnnali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze
000189581 909C0 $$0252345$$pGEOM$$xU10122
000189581 909CO $$ooai:infoscience.tind.io:189581$$pSB$$particle
000189581 917Z8 $$x224282
000189581 937__ $$aEPFL-ARTICLE-189581
000189581 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000189581 980__ $$aARTICLE