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Let T be a torus and B a compact T-manifold. Goresky et al. show in [3] that if B is

(what was subsequently called) a GKM manifold, then there exists a simple combina-

torial description of the equivariant cohomology ring H∗
T (B) as a subring of H∗

T (BT ).

In this paper, we prove an analog of this result for T-equivariant fiber bundles: we

show that if M is a T-manifold and π : M → B a fiber bundle for which π intertwines

the two T-actions, there is a simple combinatorial description of H∗
T (M) as a subring of

H∗
T (π−1(BT )). Using this result, we obtain fiber bundle analogs of results of Guillemin et

al. [4] on GKM theory for homogeneous spaces.

1 Introduction

Let T = (S1)n be an n-dimensional torus and M a compact, connected T-manifold. We

recall that the equivariant cohomology H∗
T (M) = H∗

T (M; R) of M is defined as the usual

cohomology of the quotient (M × E)/T , where E is the total space of the classifying

bundle of the group T . Let

π : M → B (1.1)

be a T-equivariant fiber bundle. We will assume that the base B is simply connected and

that the typical fiber is connected.
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Then one obtains a fiber bundle

(M × E)/T → (B × E)/T (1.2)

and a Serre–Leray spectral sequence relating the equivariant cohomology groups of M

and B; the E2-term of this spectral sequence is the product

H∗(F ) ⊗ H∗((B × E)/T), (1.3)

where F is the fiber of the bundle (1.2) and hence of the bundle (1.1). Thus, if the spectral

sequence collapses at this stage, one obtains an isomorphism of additive cohomology

H∗
T (M) � H∗(F ) ⊗ H∗

T (B). (1.4)

However, this isomorphism does not say much about how the ring structure of H∗
T (B)

and H∗
T (M) are related. One of the main goals of this paper is to address that question.

We begin by recalling that one approach for computing the equivariant cohomology ring

of a T-manifold M is by Kirwan localization. Suppose that H∗
T (M) is free as a module

over H∗
T (pt) � S(t∗), the symmetric algebra of t∗. Then the restriction map

i∗ : H∗
T (M) → H∗

T (MT )

is injective and hence computing H∗
T (M) reduces to computing the image of H∗

T (M) in

H∗
T (MT ). If MT is finite, then

H∗
T (MT ) �

⊕
p∈MT

S(t∗).

Determining where H∗
T (M) sits inside this sum is a challenging combinatorial problem.

However, one class of spaces for which this problem has a simple and elegant solution is

the one introduced by Goresky–Kottwitz–MacPherson in their seminal paper [3]. These

are now known as GKM spaces.

Definition 1.1. A compact T-manifold M is a GKM manifold if:

(a) MT is finite.
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(b) M is equivariantly formal, that is,

H∗
T (M) � H∗(M) ⊗ S(t∗)

as S(t∗)-modules.

(c) For every codimension one subtorus T ′ ⊂ T , the connected components of MT ′

are either points or two-spheres. �

If S is one of the edge two-spheres, then ST consists of exactly two T-fixed points,

p and q (the “North” and “South” poles of S). To each GKM space M we attach a graph

Γ = ΓM with set of vertices VΓ = MT , and edges corresponding to these two-spheres. If

M has an invariant almost complex or symplectic structure, then the isotropy represen-

tations on tangent spaces at fixed points are complex representations and their weights

are well-defined. In particular, condition (c) is equivalent to:

(c’) For every fixed point p∈ MT , the weights of the isotropy representation of T

on TpM are pairwise linearly independent.

These data determine a map

α : EΓ → Z
∗
T

of oriented edges of Γ into the weight lattice of T . This map assigns to the edge

(two-sphere) S, joining p to q and oriented from p to q, the weight of the isotropy rep-

resentation of T on the tangent space to S at p. The map α is called the axial function

of the graph Γ . We use it to define a subring H∗
α (Γ ) of H∗

T (MT ) as follows. Each element

of H∗
T (MT ) can be regarded as a function that assigns to each p∈ MT an element c(p) of

H∗
T (pt) = S(t∗), hence H∗

T (MT ) is identified with the ring Maps(VΓ , S(t∗)).

Definition 1.2. The cohomology ring of (Γ, α), denoted by H∗
α (Γ ), is the subring of

Maps(VΓ , S(t∗)) consisting of the maps c that have the property that for each edge

e of Γ , with vertices p and q as endpoints, c(p) and c(q) have the same image in

S(t∗)/〈αe〉. �

Note that without the invariant almost complex or symplectic structure, the

isotropy representations are only real representations and the weights are defined only

up to sign; however, that does not change the construction of H∗
α (Γ ).
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For GKM spaces, a direct consequence of a theorem of Chang and Skjelbred [2,

Lemma 2.3] is that H∗
α (Γ ) is the image of i∗ (see [3, Theorem 1.2.2]), and therefore there

is an isomorphism of rings
H∗

T (M) � H∗
α (Γ ). (1.5)

One of our main results is a generalization of (1.5) for T-equivariant fiber bundles

π : M → B (1.6)

for which the total space M is equivariantly formal and the base B is a GKM space. By

the Kirwan Theorem, the composite map

H∗
T (M) → H∗

T (π−1(BT )) → H∗
T (MT )

is injective. Hence one has an injective homomorphism of rings

H∗
T (M) →

⊕
p∈BT

H∗
T (π−1(p)), (1.7)

and so to determine the ring structure of H∗
T (M) it suffices to determine the image of

this mapping. This we will do by a GKM type recipe similar to (1.5).

Let (Γ = ΓB, α) be the GKM graph associated to B, and for p∈ BT (i.e., a vertex of

Γ ) let Fp = π−1(p). If e is an edge of Γ joining the vertices p and q, and Te is the subtorus

of T with Lie algebra ker αe, then Fp and Fq are isomorphic as Te-spaces and hence

H∗
T (Fp)/〈αe〉 = H∗

T (Fq)/〈αe〉. (1.8)

We denote the ring (1.8) by Re and we will prove the following generalization of (1.5).

Theorem 1.3. A function

c : VΓ →
⊕
p∈BT

H∗
T (Fp), c(p) ∈ H∗

T (Fp)

is in the image of (1.7) if and only if for every edge e = (p, q) of Γ , the images of c(p) and

c(q) in Re coincide. �

One of our main applications of this result will be a fiber bundle version of

the main result in [4]. In [4], it is shown that if G is a compact semisimple Lie group,

T a Cartan subgroup, and K a closed subgroup of G, then the following conditions
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are equivalent:

(1) the action of T on G/K is GKM;

(2) the Euler characteristic of G/K is nonzero;

(3) K is of maximal rank, that is, T ⊂ K.

Moreover, for homogeneous spaces of the form G/K one has a description, due

to Borel, of the equivariant cohomology ring of G/K as a tensor product

H∗
T (G/K) = S(t∗)WK ⊗S(t∗)WG S(t∗) (1.9)

and in [4] it is shown how to reconcile (1.9) with the description (1.5).

Suppose now that M → B is a T-equivariant fiber bundle with M equivariantly

formal and B a GKM space. Let p∈ BT be a fixed point for the T-action on B and π1(Γ, p)

the group of paths (e1, e2, . . . , ek) of oriented edges on Γ starting and ending at p. Modulo

some hypotheses which we will spell out more carefully in Section 4, the group π1(Γ, p)

induces an action of a group Wp (which we will call the Weyl group of p) both on H∗
T (Fp)

and on S(t∗). Fiber bundles satisfying those conditions will be called balanced. We will

then show that there is a canonical embedding of H∗
T (Fp)

Wp into H∗
T (M) and its image

generates H∗
T (M) as a module over H∗

T (B). One of the main results of this paper (see

Theorem 4.2) is the following: if ΓB is the GKM graph of B, then there is a canonical

isomorphism of rings

H∗
T (M) � H∗

T (Fp)
Wp ⊗S(t∗)Wp Hα(ΓB). (1.10)

We apply this result to fiber bundles of the type G/K1 → G/K, with K1 ⊂ K, and

obtain a description of the cohomology ring of G/K1 that will be of Borel type on the

fibers and of GKM type on the base. This result will enable one to interpolate between

two (in principle) very different descriptions of the ring H∗
T (G/K), as we have already

shown in special cases in [5].

A few words about the organization of this paper. In Section 2, we generalize

the Chang–Skjelbred theorem to equivariant fiber bundles, and in Section 3 we use this

result to prove Theorem 1.3. In Section 4, we construct the group Wp and prove the

isomorphism (1.10). In Section 5, we describe in more detail the results of Guillemin et al.

[4] alluded to above and show that the fiber bundles G/K1 → G/K satisfy the conditions

of Theorem 4.2, and in Section 6 we describe some connections between the results of

this paper and results of Guillemin et al. [5], where we work out the implications of this

theory in much greater detail for the classical flag varieties of type An, Bn, Cn, and Dn.

The results of Section 6 are also related to those of [9], in which the authors

use symplectic techniques to compute the equivariant cohomology ring of a compact
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symplectic manifold with a Hamiltonian torus action that fibers equivariantly over

another compact symplectic manifold with a Hamiltonian action of the same torus. In

particular, the details of classical flag varieties are also analyzed.

The results of this paper are closely related to the results of [6? ], the topic of

which is K-theoretic aspects of GKM theory. In particular, in [6], we have shown how the

graph theoretical analogs of the results of this paper can be extended to the K-theoretic

setting, and in some work-in-progress we have also been able to show that there is

K-theoretic version of the Chang–Skjelbred theorem of Section 2 and that it gives one an

effective way of computing the K-groups of balanced fiber bundles.

To conclude we would like to thank Sue Tolman, Allen Knutson, and Tara Holm

for helpful comments and, above all, thank the referee for a number of expositional

suggestions that have considerably improved the readability of Sections 4 and 6.

2 The Chang–Skjelbred Theorem for Fiber Bundles

Before proving the main theorem of this section, we recall the Chang–Skjelbred theorem

[2, Lemma 2.3].

Let M be a compact manifold with a smooth action of a compact torus T , and

assume that M is equivariantly formal. Let K ⊂ T be an isotropy group of M, that is,

there exists x ∈ M such that K = {g ∈ T | g · x = x}. From the compactness of M it follows

that the family of groups which occur as isotropy groups of M is finite. Let K1, . . . , KN

be the family of codimension one isotropy groups of M, and MK j the subset of points of

M fixed by Kj, for every j = 1, . . . , N. From the commutativity of the diagram given by

inclusions of T-invariant spaces

MT
i

��

iK j
����

��
��

��
M

MK j

����������

we obtain the following commutative diagram in equivariant cohomology:

H∗
T (M)

i∗
��

�����������
H∗

T (MT )

H∗
T (MK j )

i∗
K j

�����������
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which implies that

i∗(H∗
T (M)) ⊆

N⋂
j=1

i∗
K j

(H∗
T (MK j )).

Lemma 2.3 in [2] asserts that the opposite inclusion holds as well.

Theorem 2.1 (Chang–Skjelbred). Let M be a compact T-manifold, and assume that M

is equivariantly formal. Let K1 . . . , KN be the subtori of codimension one which occur as

isotropy groups of points of M. Then

i∗(H∗
T (M)) =

N⋂
j=1

i∗
K j

(H∗
T (MK j )). (2.1)

�

Before proving the main theorem of this section we recall some standard facts

about T-manifolds. (For a detailed exposition we refer to [7, Sections 11.3-4]; see also [1].)

Let A be a finitely generated S(t∗)-module. The annihilator ideal IA of A is

IA = { f ∈ S(t∗), f A= 0},

and the support of A is the algebraic variety in t ⊗ C associated with this ideal, that is,

supp A= {x ∈ t ⊗ C, f(x) = 0 for all f ∈ IA}.

Theorem 2.2 ([7, Theorem 11.4.1]). Let M be a compact T-manifold and X a closed

T-invariant submanifold. Then the supports of the modules H∗
T (M \ X) and H∗

T (M \ X)c

are contained in the set ⋃
K

k ⊗ C (2.2)

the union being over the subgroups K which occur as isotropy groups of points of

M \ X. �

Here, H∗
T (·)c denotes the equivariant cohomology with compact supports. More-

over, the following sequence:

Hk
T (M \ XT )c −→ Hk

T (M) −→ Hk
T (XT ) −→ Hk+1

T (M \ XT )c (2.3)
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is exact.

Theorem 2.3 ([7, Theorem 11.4.2]). Let M and X be as in Theorem 2.2, and i : X → M the

inclusion. The kernel and cokerel of the map i∗ : H∗
T (M) → H∗

T (X) are supported in the set

(2.2). �

Let π : M → B be a T-equivariant fiber bundle with M equivariantly formal and

B a GKM space. Let Kj, j = 1, . . . , N be the codimension one isotropy groups of B and let

k j be the Lie algebra of Kj.

Lemma 2.4. Let x ∈ B, K = {g ∈ T | g · x = x} its isotropy group, and k the Lie algebra of

K. Then

k =
m⋂

r=1

k jr

for some multi-index 1 � j1 < · · · < jm � N. �

Proof. Let Y ⊂ BK ⊂ B be the connected component through x of the subspace fixed by

K. The tangent space at x, TxB, has a natural T action, and can be written as the direct

sum of two T-invariant subspaces TxY ⊕ Nx, where TxY denotes the tangent space of Y

at x, and N is the normal bundle with respect to a T-invariant metric on B. On the other

hand,

TxB =
n⊕

j=1

Lα j

for some α1, . . . , αn ∈ t∗, where Lα j denotes the tangent space to the T-invariant sphere

containing x, fixed by exp(ker(α j)) ⊂ T , for every j = 1, . . . , n. Thus

TxY =
m⊕

r=1

Lα jr

for some multi-index 1 � j1 < · · · < jm � N and

k =
m⋂

r=1

ker(α jr ) =
m⋂

r=1

k jr . �

For any subgroup K of T let XK = π−1(BK), where BK ⊂ B is the set of points

in B fixed by K. Then XK is a closed T-invariant submanifold of M. In particular,
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XT = π−1(BT ), the inverse image of the T-fixed points of B. From Lemma 2.4 and

Theorem 2.2 one obtains the following.

Theorem 2.5. The S(t∗)-module H∗
T (M \ XT ) is supported on the set

N⋃
i=1

ki ⊗ C. (2.4)

�

Since H∗
T (M) is a free S(t∗)-module, by the exactness of (2.3) and Theorem 2.5 we

have the following theorem.

Theorem 2.6. Let i : XT → M be the inclusion, and i∗ : HT (M) → HT (XT ) the induced

map in equivariant cohomology. Then i∗ is injective and coker(i∗) is supported on⋃N
i=1 ki ⊗ C. �

As a consequence, we obtain the following corollary.

Corollary 2.7. If e ∈ H∗
T (XT ), then there exist nonzero weights α1, . . . , αr such that α j = 0

on some k j and

α1 · · · αre ∈ i∗(H∗
T (M)). (2.5)

�

The next theorem is a fiber bundle version of the Chang–Skjelbred theorem.

Theorem 2.8. Let i : XT → M be the inclusion, and i∗ : HT (M) → HT (XT ) the induced

map in equivariant cohomology. Then the image of i∗ is the ring

N⋂
j=1

i∗
K j

H∗
T (XK j ), (2.6)

where iK j denotes the inclusion of XT into XK j . �

Proof. Via the inclusion i∗ we can view H∗
T (M) as a submodule of H∗

T (XT ). Let e1, . . . , em

be a basis of H∗
T (M) as a free module over S(t∗). Then by Corollary 2.7 for any e ∈ H∗

T (XT )
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we have

α1 · · · αre =
∑

fjej, fj ∈ S(t∗).

Then e = ∑ fj

p ej, where p= α1 · · · αr. If fj and p have a common factor we can

eliminate it and write e uniquely as

e =
∑ gj

pj
ej (2.7)

with gj ∈ S(t∗), pj a product of a subset of the weights α1, . . . , αr and pj and gj rela-

tively prime.

Suppose that K is an isotropy subgroup of B of codimension one and e is in

the image of H∗
T (XK). By Theorem 2.3 the cokernel of the map H∗

T (M) → H∗
T (XK) is sup-

ported on the subset ∪k j ⊗ C, k j �= k of (2.4), and hence there exists weights β1, . . . , βr, β j

vanishing on some k j but not on k, such that

βi · · · βre =
∑

fjej.

Thus the pj in (2.7), which is a product of a subset of the weights α1, . . . , αr, is a product

of a subset of weights none of which vanish on k. Repeating this argument for all the

codimension one isotropy groups of B we conclude that the weights in this subset cannot

vanish on any of these k’s, and hence is the empty set, that is, pj = 1. Then if e is in the

intersection (2.6), e is in H∗
T (M). �

Remark 2.9. Observe that Theorem 2.1 in the case in which M is GKM is a special case

of Theorem 2.8, obtained for M = B and π the identity. �

3 Fiber Bundles over GKM Spaces

We can now prove Theorem 1.3, the fiber bundle version of the GKM result.

We start with the case B = CP 1. Let π : M → B = CP 1 be a T-equivariant fiber

bundle with M equivariantly formal. If T acts on CP 1 with weight αe, then the codi-

mension one subtorus Te = exp(ker αe) ⊂ T fixes the points of B, and the action of the

quotient group T/Te is effective. The fixed point set BT consists of two points, p and q

and its inverse image under π , XT = π−1(BT ), consists of the two fibers Fp = π−1(p) and

Fq = π−1(q). If i : XT → M is the inclusion, then the map i∗ : H∗
T (M) → H∗

T (XT ) is injective
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(see (1.7)). Recall that Fp and Fq are isomorphic as Te-spaces and that (see (1.8))

H∗
T (Fp)/〈αe〉 = H∗

Te
(Fp) = H∗

Te
(Fq) = H∗

T (Fq)/〈αe〉 =Re.

Let rp and rq be the projections of H∗
T (Fp) and H∗

T (Fq), respectively, onto Re.

Theorem 3.1. The image of the map

H∗
T (M) → H∗

T (XT )

is the set of pairs ( fp, fq) ∈ H∗
T (Fp) ⊕ H∗

T (Fq) satisfying rp( fp) = rq( fq). �

Proof. Let S1 be a circle complement of Te in T , that is, T = Te × S1. Then S1 acts freely

on CP 1 \ {p, q} and the quotient by S1 of this action is the interval (0, 1), so one has an

isomorphism of Te spaces

(M \ XT )/S1 = F × (0, 1), (3.1)

where, as Te-spaces, F = Fp = Fq.

Consider now the long exact sequence (2.3). Since i∗ is injective this becomes a

short exact sequence

0 → Hk
T (M) → Hk

T (XT ) → Hk+1
T (M \ XT )c → 0. (3.2)

Since S1 acts freely on M \ XT , we have

Hk+1
T (M \ XT )c = Hk+1

Te
((M \ XT )/S1)c

and by fiber integration one obtains from (3.1)

Hk+1
Te

((M \ XT )/S1)c = Hk
Te

(F ).

Then the sequence (3.2) becomes

0 → Hk
T (M) → Hk

T (Fp) ⊕ Hk
T (Fq) → Hk

Te
(F ) → 0, (3.3)
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where the third arrow is the map

H∗
T (XT ) = H∗

T (Fp) ⊕ H∗
T (Fq) → H∗

Te
(F )

sending fp ⊕ fq to −rp( fp) + rq( fq). (The −rp in the first term is due to the fact that the

fiber integral

Hk+1
c (F × (0, 1)) → Hk(F )

depends on the orientation of (0, 1): the standard orientation for Fq × (0, 1) → Fq and the

reverse orientation for Fp × (0, 1) → Fp.) �

Theorem 1.3 follows from Theorem 2.8 by applying Theorem 3.1 to all edges of

the GKM graph of B.

4 Holonomy for Balanced Bundles

The goal of this section is to prove one of the main results of this paper, namely the fiber

bundle analog of (1.9) we mentioned in the introduction (see (1.10)).

We begin by recalling the Cartan model for equivariant cohomology, consider-

ing the special case of torus actions. Let M be a smooth manifold and ρ : T × M → M a

smooth action of a torus T on M. Let t be the Lie algebra of T , and for ξ ∈ t, let ξM be the

corresponding vector field on M, given at x ∈ M by

ξM(x) = d

dt

∣∣∣∣
t=0

ρ(exp(tξ), x).

The space of cochains

ΩT (M) = Ω(M)T ⊗ S(t∗)

can be regarded as the space of T-invariant polynomial maps

p : t → Ω(M), (4.1)

from t to the space of differential forms Ω(M).
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The coboundary operator dT : ΩT (M) → ΩT (M) is given by

(dT p)(ξ) = d(p(ξ)) + ι(ξM)p(ξ), (4.2)

where d is the usual differential and ι is the interior product of a form by a vector field.

Then H∗
T (M) is the cohomology of the complex (ΩT (M), dT ).

If τ : T → T is an automorphism of T , then we define a second action of T on

M, ρτ : T × M → M, ρτ (a, x) = ρ(τ(a), x). Let (ΩT (M)τ , dτ
T ) be the complex associated to ρτ

and H∗
T (M)τ the corresponding equivariant cohomology ring. The invariant forms are the

same, ΩT (M)τ = ΩT (M), but the coboundary operators are in general different:

(dτ
T (p))(ξ) = d(p(ξ)) + ι(ξ τ

M)p(ξ) = d(p(ξ)) + ι((τ∗(ξ))M)p(ξ),

where τ∗ : t → t is the corresponding automorphism of the Lie algebra t.

The automorphism τ induces an isomorphism τ ∗ : ΩT (M) → ΩT (M),

(τ ∗(p))(ξ) = p(τ∗(ξ))

and the isomorphism τ ∗ commutes with the coboundary operators,

τ ∗dT = dτ
Tτ ∗, (4.3)

and therefore it induces an isomorphism τ ∗ : H∗
T (M) → H∗

T (M)τ .

Suppose now that M and N are T-manifolds and f : M → N is a smooth map that

intertwines the T-action on M with the τ -twisted action on N,

f(a · x) = τ(a) · f(x),

for all a∈ T and x ∈ M. The pull-back map f∗ : Ω(N) → Ω(M) satisfies

ρ∗
M,a ◦ f∗ = f∗ ◦ ρ∗

N,τ (a),

and extends to a map f∗ : ΩT (N) → ΩT (M) by ( f∗ p)(ξ) = f∗(p(ξ)), and this map inter-

twines the τ ∗ operations for M and N,

τ ∗ f∗ = f∗τ ∗. (4.4)
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Moreover, ι(ξM) f∗ = f∗ι(τ∗(ξ)N) implies that

dT f∗ = f∗dτ
T , (4.5)

where dT is on M and dτ
T on N.

Thus by (4.3) and (4.5) τ ∗ f∗ intertwines the dT operators on ΩT (N) and ΩT (M)

and hence defines an morphism on cohomology

τ # f# : H∗
T (N) → H∗

T (M). (4.6)

If the map f : M → N is a diffeomorphism, then τ # f# is an isomorphism.

Another property of f# which we will need if the following. If Te is a closed

subgroup of T , with Lie algebra te, then one has restriction maps

ΩT → ΩTe, p→ p|te,

and these induce maps in cohomology. If τ |Te is the identity, then the diagram

H∗
T (N)

��

τ # f#

�� H∗
T (M)

��

H∗
Te

(N)
f#

�� H∗
Te

(M)

(4.7)

commutes.

We will apply these observations to the fibers of the T-equivariant fiber bundle

M → B, and we begin by recalling a few elementary facts about holonomy. By equipping

M with a T-invariant Riemannian metric, we obtain for each m ∈ M an orthonormal

complement in TmM of the tangent space at m to the fiber of π , that is, an “Ehresman

connection”. Thus, if p and q are points of B and γ is a curve joining p to q we obtain, by

parallel transport, a diffeomorphism fγ : Fp → Fq, where fγ (m) is the terminal point of

the horizontal curve in M projecting onto γ and having m as its initial point. Moreover,

if γ and γ ′ are homotopic curves joining p to q, then the diffeomorphisms fγ and fγ ′ are

isotopic, that is, the isotopy class of fγ depends only on the homotopy class of γ .

Suppose now that the base B is GKM, p and q are adjacent vertices of ΓB , e is

the edge joining them and S the two-sphere corresponding to this edge. We can then
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choose γ to be a longitudinal line on S joining the South pole p to the North pole q;

since this line is unique up to homotopy, we obtain an intrinsically defined isotopy class

of diffeomorphisms of Fp onto Fq. Moreover, since the Ehresman connection on M is

T-invariant and Te fixes γ , the maps in this isotopy class are Te-invariant.

Definition 4.1. Let M → B be a T-equivariant fiber bundle over a GKM space B. Let

e = (p, q) be an edge of the GKM graph ΓB . The T-equivariant fiber bundle M → B is

balanced at e if there exists a diffeomorphism fe in the isotopy class defined above and

an automorphism τe of T such that fe intertwines the T-action on Fp with the τe-twisted

action of T on Fq:

fe(ax) = τe(a) fe(x)

for all a∈ τe and x ∈ Fp. The fiber bundle M → B is balanced if it is balanced at all edges

of ΓB . �

It is clear that this τe, if it exists, is unique and restricts to the identity on Te.

Suppose now that the T-equivariant bundle M → B is balanced. Let Aut(Fp) be

the group of isotopy classes of diffeomorphisms of Fp, Aut(T) the group of automor-

phisms of T , and π1(Γ, p) the group of paths γ = (e1, e2, . . . , ek) of oriented edges in Γ

starting and ending at p. Given a path γ in π1(Γ, p) we have for each j a ring isomor-

phism

τ #
ej

f#
ej

: H∗
T (Fpj+1) → H∗

T (Fpj ), (4.8)

pj and pj+1 being the initial and terminal vertices of ej, and by composing these maps

we obtain a ring automorphism, τ #
ek

f#
ek

◦ · · · ◦ τ #
e1

f#
e1

, of H∗
T (Fp). Moreover, by (4.4) we can

rewrite the factors in this product as τ #
γ f#

γ where τγ = τe1 ◦ · · · ◦ τek and fγ = fe1 ◦ · · · ◦ fek.

Thus the map γ → τ #
γ f#

γ gives one a holonomy action of π1(Γ, p) on H∗
T (Fp). We will

denote the image of this map by Wp and call it the Weyl group of p. As a subgroup

of Aut(Fp) × Aut(T), Wp acts on H∗
T (Fp) and on S(t∗). The main result of this section is

the following theorem.

Theorem 4.2. Let π : M → B be a balanced T-equivariant fiber bundle, such that the

base B is a simply connected GKM space and the total space M is equivariantly formal.

Moreover, suppose that the fiber Fp over a fixed point p∈ BT is also equivariantly formal

as a T-space. Then

H∗
T (M) � H∗

T (Fp)
Wp ⊗S(t∗)Wp Hα(ΓB). �
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Proof. By (1.7), H∗
T (M) is isomorphic to the subring of

Maps0 =
⎧⎨
⎩φ : BT →

⊕
q∈BT

H∗
T (Fq)|φ(q) ∈ H∗

T (Fq) for all q

⎫⎬
⎭

given by the conditions of Theorem 1.3. We identify H∗
T (M) with that subring and con-

sider H∗
T (M) ⊂ Maps0.

Let cp ∈ H∗
T (Fp)

Wp. For q ∈ BT , let γp,q be a path in Γ joining p to q, and let

cq ∈ H∗
T (Fq) be the class obtained by transporting cp along γp,q. Because cp is Wp-

invariant, this class cq is independent of the chosen path γp,q. Consider

c̃ : BT →
⊕
q∈BT

H∗
T (Fq), c̃(q) = cq.

If q1 and q2 are adjacent vertices in ΓB and e is the edge joining q1 to q2, then cq1 = τ ∗
e f∗

e cq2

and hence by the commutative diagram (4.7), the images of cq1 and cq2 in the quotient

space

H∗
T (Fq1)/〈αe〉 = H∗

T (Fq2)/〈αe〉

are the same. Using Theorem 1.3, we conclude that c̃ ∈ H∗
T (M). We have therefore defined

an injective morphism of rings

H∗
T (Fp)

Wp → H∗
T (M),

and this map is also a morphism of S(t∗)Wp-modules. Tensoring with the pull-back

Hα(ΓB) � H∗
T (B)

π∗−→ H∗
T (M),

we obtain a morphism of rings

Φ : H∗
T (Fp)

Wp ⊗S(t∗)Wp Hα(ΓB) → H∗
T (M),

which acts on decomposable elements cp ⊗ ω by

Φ(cp ⊗ ω)(q) = ω(q)cq.

We will show that Φ is an isomorphism.
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We first show that Φ is injective. Consider the double complex (ΩT (Fp), d, δ), with

(dh)(ξ) = d(h(ξ)) and (δh)(ξ) = ιξ# h(ξ). Let γ ∈ π1(Γ, p) be a loop in Γ starting and ending

at p and fγ : Fp → Fp and τγ : T → T the maps obtained by composing the corresponding

transition maps along the edges of γ . The action of γ on ΩT (Fp), given by

(γ · h)(ξ) = f∗
γ h((τγ )∗(ξ)),

preserves the bigrading of the double complex and commutes with the coboundary oper-

ators d and δ. Since Fp is by assumption equivariantly formal,

H∗
T (Fp) � H∗(Fp) ⊗ S(t∗) (4.9)

as S(t∗)-modules. Moreover, since the Wp-action on ΩT (Fp) commutes with the cobound-

ary operators d and δ, the isomorphism (4.9) is Wp-equivariant. Since B is simply con-

nected, the diffeomorphisms fγ : Fp → Fp are (nonequivariantly) isotopic to the identity,

so they act trivially on H∗(Fp), and therefore

H∗
T (Fp)

Wp � H∗(Fp) ⊗ S(t∗)Wp.

Hence a basis c̃1,p, . . . , c̃N,p of H∗(Fp) generates a basis c1,p, . . . , cN,p of H∗
T (Fp)

Wp as a free

module over S(t∗)Wp.

Every element η ∈ H∗
T (Fp)

Wp ⊗S(t∗)Wp Hα(ΓB) is of the form

η =
N∑

k=1

ck,p ⊗ ωk

for some classes ωk ∈ Hα(ΓB). If η ∈ ker Φ, then for every q ∈ BT ,

N∑
k=1

ωk(q)ck,q = Φ(η)(q) = 0.

But for every q the classes {c1,q, . . . , cN,q} are a free set of generators for the

S(t∗)-module H∗
T (Fq), and that implies that ω1 = · · · = ωN = 0, hence η = 0. This proves that

Φ is injective.
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To prove the surjectivity, we keep track of bi-degrees. Consider the composition

Ψ : H∗(Fp) ⊗ H∗
T (B) → H∗

T (Fp)
Wp ⊗S(t∗)Wp Hα(ΓB)

Φ−→ H∗
T (M);

the first arrow is the linear map that sends c̃j,p ⊗ ω to cj,p ⊗ ω for all j = 1, . . . , N. There-

fore, Ψ (c̃j,p ⊗ ω)(q) = cj,p(q)ω(q) for all q ∈ VΓ , for all j = 1, . . . , N.

By assumption, the Serre–Leray spectral sequence associated with the fiber bun-

dle π collapses at its E2 stage. The E2 term of this sequence is H∗(Fp) ⊗ H∗
T (B) and the

E∞ term is H∗
T (M), hence

⊕
j+k=i

H j(Fp) ⊗ Hk
α (ΓB) = Hi

T (M).

Since Ψ preserves the grading and on each homogeneous component is an injec-

tive linear map between spaces of the same dimension, we conclude that Ψ is surjective,

and therefore Φ is surjective as well. �

Apropos of the assumption that the Fp’s are equivariantly formal as T spaces,

we note:

(i) Since the fiber bundle, M → B, is balanced, it suffices to assume this just for

the “base” fiber, Fp0 , above a single p0 ∈ BT .

(ii) If M is a Hamiltonian T-space, then the fibers over points in BT are Hamilto-

nian T-spaces as well, hence are equivariantly formal. (Note that in partic-

ular if M is a Hamiltonian GKM space, then the fibers over points in BT are

Hamiltonian GKM spaces.)

5 Homogeneous Fiber Bundles

We apply the results of the previous section to homogeneous fiber bundles, and we start

by recalling some of the notation and results of Guillemin et al. [4].

Let G be a compact connected semisimple Lie group, T its Cartan subgroup,

and K a closed subgroup of G containing T . Then, as asserted above, G/K is a GKM

space. The proof of this consists essentially of describing explicitly the GKM structure

of G/K in terms of the Weyl groups of G and K. We first note that for K = T , that is,

for the generalized flag variety M = G/T , the fixed point set, MT , is just the orbit of

N(T), the normalizer of T in G, through the identity coset, p0, and hence MT can be
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identified with N(T)/T = WG . Let ΔG be the set of roots, and Δ+
G a choice of positive

roots. To show that M is GK M it suffices to check the GKM condition p0. To do so, we

identify the tangent space Tp0 M with g/t and identify g/t with the sum of the positive

root spaces

g/t =
⊕
α∈Δ+

G

gα, (5.1)

the α’ s being the weights of the isotropy representation of T on g/t. It then follows from

a standard theorem in Lie theory that the weights are pairwise independent and this in

turn implies that condition (c’) is satisfied at p0.

To see what the edges of the GKM graph are at p0 let χα : T → S1 be the character

homomorphism

χα(t) = exp iα(t),

let Hα be its kernel, and Gα the semisimple component of the centralizer C (Hα) of Hα

in G. Then Gα is either SU(2) or SO(3), and in either case Gα p0 � CP 1. However since Gα

centralizes Hα, Gα p0 is Hα-fixed and hence is the connected component of MHα containing

p0. Thus, the oriented edges of the GKM graph of M with initial point p0 can be identified

with the elements of Δ+
G and the axial function becomes the function which labels by α

the oriented edge Gα p0. Moreover, under the identification MT = WG , the vertices that are

joined to p0 by these edges are of the form σα p0, where σα ∈ WG is the reflection which

leaves fixed the hyperplane ker α ⊆ t and maps α to −α.

Letting a∈ N(T) and letting p= ap0 one obtains essentially the same description

of the GKM graph at p. Namely, denoting this graph by Γ , the following are true:

(1) the maps, a∈ N(T) → ap0 and a∈ N(T) → w ∈ N(T)/T , set up a 1-to-1 corre-

spondence between the vertices, MT , of Γ and the elements of WG ;

(2) two vertices, w and w′, are on a common edge if and only if w′ = wσα for some

α ∈ Δ+
G ;

(3) the edges of Γ containing p= ap0 are in one-one correspondence with ele-

ments of Δ+
G ;

(4) for α ∈ Δ+
G the stabilizer group of the edge corresponding to α is aHαa−1.

Via the fiber bundle G/T → G/K one obtains essentially the same picture for G/K.

Namely let Δ+
G,K = Δ+

G \ Δ+
K .
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Theorem 5.1 ([4, Theorem 2.4]). The homogeneous space G/K is a GKM space with

GKM graph Γ , where

(1) the vertices of Γ are in 1-to-1 correspondence with the elements of WG/WK ;

(2) two vertices [w] and [w′] are on a common edge if and only if [w′] = [wσα] for

some α ∈ Δ+
G,K ;

(3) the edges of Γ containing the vertex [w] are in 1-to-1 correspondence with

the roots in Δ+
G,K ;

(4) if α is such a root the the stabilizer group of the CP 1 corresponding to the

edge is aHαa−1 where a is a preimage in N(T) of w ∈ WG . �

Remark 5.2. The GKM graph that we have just described is not simple in general, that

is, it will in general have more than one edge joining two adjacent vertices. There is,

however, a simple sufficient condition for simplicity. �

Theorem 5.3 ([4]). If K is a stabilizer group of an element of t∗, that is, if G/K is a

coadjoint orbit, then the graph we have constructed above is simple. �

Proposition 5.4. Let K1 be a closed subgroup of K. Then the fiber bundle

G/K1 → G/K (5.2)

is balanced. �

Proof. To show that this is balanced it suffices to show that it is balanced at the edges

going out of the identity coset, p0. However, if e is the edge joining p0 to σα p0 and a is

the preimage of σα in N(T) then conjugation by a maps the fiber, Fp0 = K/K0 of (5.2) at p0

onto the fiber Fp := aK/aK0 of (5.2) at p= σα p0, and conjugates the action of Γ on Fp0 to

the twisted action, aTa−1, of T on Fp. Moreover, since a is in the centralizer of Hα, this

twisted action, restricted to Hα, coincides with the given action of Hα, that is, if Te = Hα,

conjugation by a is a Te-equivariant isomorphism of Fp0 onto Fp. Hence the fiber bundle

(5.2) is balanced. �

For the homogeneous fiber bundles described in this section, the assumption

that the fibers Fp are equivariantly formal as T-spaces is equivalent to the assumption

that the Fp’s are GKM. To see this, we note that if G/K is equivariantly formal then

(G/K)T has to be nonempty by Guillemin and Sternberg [7, Theorem 11.4.5] and hence
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for some g ∈ G, g−1Tg ⊆ K. In other words K is of maximal rank and hence by the theorem

in [4] that we cited above G/K is GKM.

6 Examples

The results of this paper are closely related to the combinatorial results of our recent

article [5]. More explicitly, in [5] we develop a GKM theory for fiber bundles in which

the objects involved: the base, the fiber and the total space of the fiber bundle, are GKM

graphs. We then formulate, in this context, a combinatorial notion of “balanced”, show

that one has an analog of the isomorphism (1.11) and use this fact to define some new

combinatorial invariants for the classical flag varieties of type An, Bn, Cn, and Dn. In this

section, we will give a brief account of how these invariants can be defined geometrically

by means of the techniques developed above.

Example 1. Let G = SU(n+ 1), K = T , the Cartan subgroup of diagonal matrices in

SU(n+ 1), and K1 = S(S1 × U (n)). Then G/K1 � CP n, the complex projective space. The

Weyl group of SU(n+ 1) is isomorphic to Sn+1, the group of permutations on n+ 1 ele-

ments. Let An = G/K be the generic coadjoint orbit of type An; then An �Fl(Cn+1), the

variety of complete flags in C
n+1. The fiber bundle

π :An � G/K → G/K1 � CP n

sends a flag V• to its one-dimensional subspace V1. The fiber over a line L in CP n is

Fl(Cn+1/L) �Fl(Cn) � SU(n)/T ′, where T ′ is the Cartan subgroup of diagonal matrices in

SU(n). The fibers inherit a T-action from Fl(Cn+1), but are not T-equivariantly isomor-

phic. If p and q are fixed points for the T-action on CP n, then the fibers Fp and Fq are

Te-equivariantly isomorphic, where Te is the subtorus fixing the CP 1 in CP n with poles

p and q. The Weyl group Wp of the fiber at p is isomorphic to Sn, the Weyl group of SU(n),

and the holonomy action of Wp on the equivariant cohomology of the fiber is equivalent

to the induced action of Sn on the equivariant cohomology of the flag variety Fl(Cn).

We can iterate this fiber bundle and construct a tower of fiber bundles

pt −−−−→ A1 −−−−→ A2 −−−−→ . . . −−−−→ An−1 −−−−→ An⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

CP 1
CP 2

CP n−1
CP n
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Using this tower, we construct a basis of invariant classes on An by repeatedly

applying the isomorphism (1.10). A typical stage in the process is the following. By (1.10),

we have

HT (Ak) = HT (Ak−1)
Sk ⊗S(t∗)Sk HT (CP k).

Suppose we have constructed a basis of invariant classes on Ak−1; this is triv-

ial for A0 =pt. We use, as a basis for HT (CP k), classes represented by powers of the

equivariant symplectic form ω − τ ∈ Ω2
T (CP k). The pull-backs of these classes to Ak are

invariant under the holonomy action, and the classes given by the isomorphism (1.10)

form a basis of the equivariant cohomology of Ak. As shown in [5], this basis consists

of classes that are invariant under the corresponding holonomy action. By iterating this

process, we obtain an S(t∗)-basis of HT (An) consisting of Sn+1-invariant classes. The

combinatorial version of this construction is given in [5, Section 5.1]. �

Example 2. Let G = SO(2n+ 1), K = T a maximal torus in G, and K1=SO(2)× SO(2n− 1).

Then G/K1 � Gr+
2 (R2n+1), the Grassmannian of oriented two planes in R

2n+1. Let Wn be

the Weyl group of SO(2n+ 1), that is, the group of signed permutations on n elements.

Let Bn = G/K be the generic coadjoint orbit of type Bn and

π :Bn � G/K → G/K1 � Gr+
2 (R2n+1)

the natural projection. Note that the fibers are isomorphic to Bn−1, but not isomorphic

as T-spaces, since the T-action on the pre-image of the T-fixed points of Gr+
2 (R2n+1)

changes. Moreover, for every T-fixed point p∈ Gr+
2 (R2n+1), the Weyl group Wp of the fiber

Fp is isomorphic to Wn−1. Just as in the previous example, we have the following tower

of fiber bundles:

pt −−−−→ CP 1 −−−−→ B2 −−−−→ · · ·−−−−→ Bn−1 −−−−→ Bn⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

CP 1 Gr+
2 (R5) Gr+

2 (R2n−1) Gr+
2 (R2n+1)

and we can use this tower to produce a basis of invariant classes on Bn. Namely, by

(1.10), we have

HT (Bk) = HT (Bk−1)
Wk−1 ⊗S(t∗)Wk−1 HT (Gr+

2 (R2k+1)).

Since the classes represented by powers of the equivariant symplectic form

ω − τ ∈ Ω2
T (Gr+

2 (R2k+1)) are a Wk-invariant basis for HT (Gr+
2 (R2k+1)), their pull-backs are
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classes on Bk invariant under the holonomy action. Thus, we can repeat the same argu-

ment of the previous example and produce a basis for HT (Bn) consisting of Wn-invariant

classes. �

Example 3. Let G = Sp(n) be the symplectic group, K = T a maximal torus in G, and

K1 = S1 × Sp(n− 1). Then G/K1 � CP 2n−1. Let Wn be the Weyl group of Sp(n), that is, the

group of signed permutations on n elements. Let Cn = G/K be the generic coadjoint orbit

of type Cn and

π : Cn � G/K → G/K1 � CP 2n−1

the natural projection. For every T-fixed point p∈ CP 2n−1, the Weyl group acting on the

fiber Fp is isomorphic to Wn−1. Since the fibers are isomorphic to Cn−1, we obtain the

following tower of fiber bundles:

pt −−−−→ CP 1 −−−−→ C2 −−−−→ · · · −−−−→ Cn−1 −−−−→ Cn⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

CP 1
CP 3

CP 2n−3
CP 2n−1

By (1.10), we have that

HT (Ck) = HT (Ck−1)
Wk−1 ⊗S(t∗)Wk−1 HT (CP 2k−1).

By taking classes represented by powers of the equivariant symplectic form

ω − τ ∈ Ω2
T (CP 2k−1) we obtain a Wk-invariant basis of HT (CP 2k−1), and iterating the same

procedure as before, a Wn-invariant basis of HT (Cn). �

Example 4. Let G = SO(2n), K = T a maximal torus in G, and K1 = SO(2) × SO(2n− 2).

Then G/K1 � Gr+
2 (R2n), the Grassmannian of oriented two planes in R

2n. Let Wn be the

Weyl group of SO(2n), that is, the subgroup of the signed permutation group of n ele-

ments, consisting of an even number of sign changes. Let Dn = G/K be the generic coad-

joint orbit of type Dn and

π :Dn � G/K → G/K1 � Gr+
2 (R2n)

the natural projection. For every T-fixed point p∈ Gr+
2 (R2n), the Weyl group acting on

the fiber Fp is isomorphic to Wn−1. Since the fibers are isomorphic to Dn−1, we obtain the
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following tower of fiber bundles:

pt −−−−→ CP 1 × CP 1 −−−−→ D3 −−−−→ · · · −−−−→ Dn−1 −−−−→ Dn⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

CP 1 × CP 1 Gr+
2 (R6) Gr+

2 (R2n−2) Gr+
2 (R2n)

By (1.10), we have that

HT (Dk) = HT (Dk−1)
Wk−1 ⊗S(t∗)Wk−1 HT (Gr+

2 (R2k)).

By repeating an argument similar to the other examples, in order to produce a

Wn-invariant basis of HT (Dn), it is sufficient to exhibit a Wk-invariant basis of

HT (Gr+
2 (R2k)) for every k� 2. To do this, let x1 − x2, . . . , xk−1 − xk, xk−1 + xk be a choice

of simple roots of type Dk. Then the classes represented by powers of the equivari-

ant symplectic form ω − τ ∈ Ω2
T (Gr+

2 (R2n)) together with the class η ∈ H2n−2
T (Gr+

2 (R2n))

whose restriction at the fixed points is given by x1 · · · xkτ
−1, form a Wk-invariant basis of

HT (Gr+
2 (R2n)). �

In [5], we also show how these iterated invariant classes relate to a better known

family of classes generating the equivariant cohomology of flag varieties, namely the

equivariant Schubert classes.
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