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Abstract. Given a geometrically unirational variety over an infinite base field, we show that
every finite separable extension of the base field that splits the variety is the residue field of
a closed point. As an application, we obtain a characterization of function fields of smooth
conics in which every sum of squares is a sum of two squares.

1. Introduction

Let K be a field. The first aim of this article is to prove the following result, which
will be achieved in Theorem 2.7.

Theorem A. Assume that K is infinite. Let L/K be a finite separable extension
and V a geometrically integral variety over K such that VL is unirational. Then
there exists a regular point P ∈ V such that K (P) ∼=K L.

The result applies in particular to smooth conics. It was obtained as a tool to
study sums of squares in their function fields. The study of sums of squares of
algebraic function fields is the second main aspect of this article.

We say that K is real if −1 is not a sum of squares in K , and nonreal otherwise.
The pythagoras number of K , denoted p(K ), is defined as the smallest positive
integer n such that every sum of squares in K is equal to a sum of n squares; if no
such integer exists we set p(K ) = ∞. If p(K ) = 1 we say that K is pythagorean.
If K is real and every finite real extension of K is pythagorean, we say that K is
hereditarily pythagorean. Note that any field of characteristic 2 is pythagorean. In
the sequel we assume that the characteristic of K is different from 2. We refer to [8,
Chap. 7] and [5, Chap. XI, Sect. 6 and Chap. XIII, Sections 3 & 5] for an overview
of known results on pythagoras numbers of fields.

Let F/K be an algebraic function field; by this we mean that F is a finitely gen-
erated extension of transcendence degree one over K . We refer to [9, Chap. I] for
the basic theory of algebraic function fields, including the definition of the genus.

Let us further assume that K is relatively algebraically closed in F . We want
to study the pythagoras number of F in terms of properties of K and in particular
relate p(F) and p(K ). This problem is widely open in general. In particular, it
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is not known whether p(F) can be bounded in terms of p(K ). It follows from
[5, Chap.VIII, 5.7] that p(F) ≥ 2. In this article, we study the situation where
p(F) = 2. The following result will be obtained in Theorem 3.2.

Theorem B. Assume that F/K has genus zero and that −1 is not a square in K .
Then p(F) = 2 if and only if K is hereditarily pythagorean and, in case F is
nonreal, uniquely ordered.

Note that if −1 is a square in K then p(F) = 2. Theorem B generalizes [2,
Chap. III, Thm. 4], which treats the case where F/K is rational. The ‘if’ implication
in Theorem B was shown in [10, Theorems 2 & 3]. The main point here is to show
the ‘only if’ implication.

In [1, 4.4] it was asked whether an algebraic function field can only have py-
thagoras number two if the field of constants either contains a square root of −1
or is hereditarily pythagorean. Theorem B gives a positive answer for algebraic
function fields of genus zero. The next result, which will be obtained in Theorem
4.7, extends this to function fields of Cassels–Catalan curves.

A plane curve over K defined by 1 = aXn + bY m where n,m ∈ N are prime
to the characteristic of K and a, b ∈ K × is called a Cassels–Catalan curve.

Theorem C. Assume that K is not hereditarily pythagorean and that −1 is not a
square in K . Assume that F is the function field of a Cassels–Catalan curve over
K . Then p(F) ≥ 3.

The method in the proofs of Theorems B and C is to search a point on the curve
having a nonreal residue field in which −1 is not a square. Given such a point, we
relate a minimal representation of −1 as a sums of squares in its residue field to a
sum of squares in F that is not a sum of two squares, using a valuation argument
formulated in Proposition 3.1. In general, finding such a point on a Cassels–Cata-
lan curve is technical. In the special case n = m = 2, that is, for smooth conics,
Theorem A yields a more conceptual argument for the existence of such a point.

2. Points on geometrically unirational varieties

The main goal of this section is to prove Theorem A. I am indebted to Adrian
Wadsworth for contributing a key idea to its proof.

An integral variety over a field is called unirational, if there exists a dominant
morphism from an open subscheme of an affine space to the variety (or equivalently,
if the function field of the variety embeds over the base field into a rational function
field), and moreover rational if this morphism has an inverse that is defined on an
open subscheme of the variety (or equivalently, if the function field is isomorphic
over the base field to a rational function field).

Let V be a K -vector space of dimension n < ∞. We call a map V → K a
K -polynomial function if it is given by the evaluation of a polynomial in n variables
over K , after identifying V with K n by the choice of an arbitrary basis for V . We
call the zero locus H(g) of a nonzero K -polynomial function g : V → K a K -
hyperplane, and we call the coarsest topology in V in which every K -hyperplane is
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closed, the K -Zariski topology. The K -Zariski topology on K itself is the cofinite
topology.

Given a K -hyperplane H(g) ⊂ V and another finite dimensional vector space
W , a map ϕ : V \ H(g) → W is said to be K -regular if there exists r ∈ N and a
K -polynomial function f : W → K , such that the map V \ H(g) → K given by
v �→ ( f ◦ ϕ)(v) · g(v)r extends to a K -polynomial function on V .

Given two K -regular maps ϕ : V1 \ H1 → V2 and ψ : V2 \ H2 → V3 with
ϕ−1(H2) ∪ H1 �= V1, the composition ψ ◦ ϕ is defined as a K -regular map on the
complement of the hyperplane ϕ−1(H2) ∪ H1 in V1.

Lemma 2.1. Let L/K be a finite field extension. Then multL : L × L → L,
(x, y) �→ xy and invL : L \ {0} → L , x �→ 1

x are K -regular maps.

Proof. We identify L with a K -subalgebra of EndK (L), via the algebra homomor-
phism that assigns to a ∈ L the left-multiplication x �→ ax . The multiplication
on EndK (L) is a K -regular map EndK (L) × EndK (L) → EndK (L), as can be
seen by identifying EndK (L) with a matrix algebra over K . Hence, its restriction
multL : L × L → L to L is also a K -regular map. The subset of noninvertible
elements of EndK (L) is a K -hyperplane given by a determinant polynomial. This
hyperplane restricts to the single point set {0} in L . The inversion map on the invert-
ible elements is a K -regular map on EndK (L) by Cramer’s Rule. Restricting the
map to L \ {0}, we obtain that invL : L \ {0} → L is also a K -regular map. �

For f ∈ K (t), choose g, h ∈ K [t] relatively prime such that f = g
h . We write

f : K → K for the regular map K \ H(h) → K defined by x �→ g(x)
h(x) .

Corollary 2.2. Let L/K be a finite extension and f ∈ L(t). The L-regular map
f : L → L is a K -regular map.

Proof. First, we show this in the case where f ∈ L[t]. Let s = [L : K ] and fix an
arbitrary K -basis (�1, . . . , �s) of L . Write f = f0 + f1t + · · · + fd td with d ∈ N

and f0, . . . , fd ∈ L . For z ∈ L write z = r1�1 + · · · + rs�s with r1, . . . rs ∈ K .
We can consider f (z) = f (r1�1 + · · · + rs�s) as a polynomial function over L in
s variables evaluated at (r1, . . . , rs). We can choose f̃1, . . . , f̃s ∈ K [X1, . . . , Xs]
such that f (r1�1 + · · ·+ rs�s) = f̃1(r1, . . . , rs)�1 + · · ·+ f̃s(r1, . . . , rs)�s . Hence
the map L → L , z �→ f (z) is given by the polynomials f̃1, . . . , f̃s over K . Now
assume that f ∈ L(t). Let g, h ∈ L[t] be relatively prime such that f = g

h . Then
the map L \ H(h) → L given by z �→ f (z) is composed by K -regular maps

f : L \ H(h)
(g,h)−→ L × (L \ H(h))

idL×invL−→ L × L
multL−→ L ,

where (g, h)(x) = (g(x), h(x)) and (idL × invL)(x, y) = (x, y−1). �
Lemma 2.3. Let L/K be a finite field extension. For every f ∈ L(t) there exist
g ∈ L[t] and h ∈ K [t] such that f = g

h .

Proof. Choosing α1, . . . , αn ∈ L such that L = K [α1, . . . , αn], we have that
L(t) = K [α1, . . . , αn](t) = K (t)[α1, . . . , αn]. �



730 D. Grimm

Proposition 2.4. Assume that K is infinite. Let L/K be a proper finite extension
that is not purely inseparable. Let f ∈ L(t) such that f (z) ∈ K for every z ∈ L
where f (z) is defined. Then f ∈ K .

Proof. We first show that f ∈ K (t). By Lemma 2.3, there exists g ∈ L[t] and
h ∈ K [t] such that f = g

h . Write g = g0 + g1t + · · · + gdtd with d ∈ N and
g0, . . . , gd ∈ L . Evaluating this polynomial in d +1 distinct elements α0, . . . , αd ∈
K \ H(h) yields that

⎛
⎜⎜⎜⎝

1 α0 · · · αd
0

1 α1 · · · αd
1

...
...

...

1 αd · · · αd
d

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

g0
g1
...

gd

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f (α0)h(α0)

f (α1)h(α1)
...

f (αd)h(αd)

⎞
⎟⎟⎟⎠ ∈ K d+1.

Since the matrix on the left is invertible, we have that g0, . . . , gd ∈ K . Hence
g ∈ K [t] and thus f ∈ K (t).

In order to show that f ∈ K , we fix an element β ∈ L \ K that is separable over
K . Let σ be a K -automorphism of the algebraic closure of L such that σ(β) �= β.
Since f (z) ∈ K for all z ∈ L\h−1({0}), it follows that g(r0+r1β)h(r0+r1σ(β)) =
g(r0 + r1σ(β))h(r0 + r1β) for any r0, r1 ∈ K . Since K is infinite, we obtain the
polynomial identity g(X + Yβ)h(X + Yσ(β)) = g(X + Yσ(β))h(X + Yβ) in the
variables X and Y . Since the matrix

(
1 β

1 σ(β)

)

is invertible, we conclude by a linear change of variables the polynomial identity
g(X)h(Y ) = g(Y )h(X). Hence f = g

h ∈ K . �
Proposition 2.5. Assume that K is an infinite field. Let L/K be a finite separable
extension. Let f ∈ L(t) \ L. Then there exists α ∈ L such that f (α) is defined and
K ( f (α)) ∼=K L.

Proof. By Corollary 2.2, the L-regular map f : L → L is K -regular. Note that the
K -open subset in L on which this regular map is defined is K -irreducible. As f is
continuous, the image of the map f : L → L is irreducible. Assume that the image
of f : L → L does not contain a primitive element of L/K , then it is contained in
the finite union of the maximal proper subfields of L that contain K . The latter is a
finite union of K -vector subspaces of L . None of those maximal proper subfields is
contained in the union of the others, hence they are the K -irreducible components
of this finite union. Thus the image of f : L → L is contained in one maximal
proper subfield E of L containing K . By Proposition 2.4, we obtain that f ∈ E ,
which contradicts the assumption that f /∈ L . �
Remark 2.6. If K is a finite field of characteristic p and L/K a proper finite exten-
sion, then the image of the nonconstant map L → L , x �→ x p is a proper subfield
of L .
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Theorem 2.7. Assume that K is infinite. Let L/K be a finite separable extension
and V be a geometrically integral variety over K such that VL is unirational. Then
the set of regular points P ∈ V with K (P) ∼=K L is K -Zariski dense in V .

Proof. Let n ∈ N and U ∈ A
n
L an open L-subvariety and U → VL a dominant

morphism. By [4, Chap. II, 8.16], the subset of regular points on V is open dense.
Hence, by the dominance of the morphism U → VL , we can assume V to be regular
affine. Let V ↪→ A

m
K be a closed immersion for some m ∈ N.

We choose a projection A
m
K → A

1
K such that the composition V ↪→ A

m
K → A

1
K

is not constant. Furthermore, we choose a closed immersion A
1
L ↪→ A

n
L such that

preimage W of U with respect to this immersion is nonempty and such that W is
not mapped to a single point in A

1
L . Considering the commutative diagram

W
� � �� U �� VL

� � ��

��

A
m
L

��

�� A1
L

ϕL

��
V

� � �� Am
K

�� A1
K

whose vertical arrows are the base-change morphisms, we see that it is sufficient
to find a rational point P ∈ W that is mapped to a closed point in A

1
K with residue

field L . Equivalently, it is sufficient to find a rational point P ∈ W whose image in
Spec(L[Y ]) = A

1
L corresponds to a maximal ideal generated by a linear polynomial

Y − β, where β ∈ L is such that L = K (β), since the preimage of this maximal
ideal under the dual homomorphism to the base change ϕL will be the maximal
ideal in Spec(K [Y ]) = A

1
K generated by the minimal polynomial for β over K .

By shrinking W if necessary, we can assume that W = Spec(L[X ]h), that is,
W is a principal open subscheme of A

1
L = Spec(L[X ]) given by the localization of

L[X ] after the multiplicative set {hi | i ∈ N0} for some h ∈ L[X ]. The nonconstant
map W → A

1
L corresponds to a L-algebra homomorphism

ψ : L[Y ] → L[X ]h

withψ(Y ) /∈ L . Sayψ(Y ) = g
hr for some r ∈ N and g ∈ L[X ]. For arbitrary α ∈ L

such that h(α) �= 0, consider a maximal ideal in L[X ]h containing g
hr − g(α)

h(α) . Its

inverse image in L[Y ] is obviously the maximal ideal generated by Y − g(α)
h(α) . By

Proposition 2.5, there exists α ∈ L with h(α) �= 0 and L = K ( g(α)
h(α) ). This shows

the existence of a regular point P ∈ V with K (P) ∼=K L . Let V ′ denote the com-
plement in V of the closure of the set of regular points P ∈ V with K (P) ∼=K L .
If V ′ is nonempty then V ′

L is unirational and we obtain a contradiction to the first
part applied to V ′. Hence, the set of regular points P ∈ V with K (P) ∼=K L is
dense in V . �

It is not clear whether Theorem 2.7 can be extended to hold for projective
varieties over finite fields. In fact, already the following rational case is unknown.

Question 2.8. Let V be a rational projective variety over a finite field K and L/K
be a finite extension. Is there a point P ∈ V such that K (P) ∼=K L ?
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3. Sums of squares in function fields of conics

The following observation will allow us to show that the field of constants of cer-
tain function fields of pyhagoras number two only allow finite nonreal extensions
in which −1 becomes a square or, equivalently, only allow finite real extensions
that are pythagorean.

Proposition 3.1. Assume that K carries a valuation with value group Z and with
nonreal residue field κ of characteristic different from 2. Let s be the smallest
positive integer such that −1 is a sum of s squares in κ . Then p(K ) > s.

Proof. Let v denote the valuation. By the choice of s, there exist x0, . . . , xs ∈ K
with v(x0) = . . . = v(xs) = 0 and v(x2

0 + . . .+ x2
s ) > 0. If v(x2

0 + . . .+ x2
s ) > 1

we replace x0 by x0 + t for any t ∈ K with v(t) = 1. Hence, we may assume
that v(x2

0 + . . .+ x2
s ) = 1. We claim that x2

0 + . . .+ x2
s is not a sum of s squares

in K . Suppose on the contrary that there exist y1, . . . , ys ∈ K with y2
1 + . . . +

y2
s = x2

0 + . . . + x2
s . We can assume that v(y1) ≤ v(y2) ≤ . . . ≤ v(ys). Then

v(1 + (y−1
1 y2)

2 + . . .+ (y−1
1 ys)

2) > 0, and we obtain a representation of −1 as a
sum of s−1 squares in κ , contradicting the choice of s. �

We recall from [3, 1.3.2 & 1.3.5] that every regular conic over a field of charac-
teristic different from 2 is a generic splitting variety for a quaternion algebra, that
is, the base field extensions that split the quaternion algebra are exactly those over
which the conic becomes rational.

Theorem 3.2. Assume that K is not hereditarily pythagorean and that −1 is not a
square in K . Let F be the function field of a regular conic over K . Then p(F) ≥ 3.

Proof. We shall first observe that there exists a finite separable nonreal extension
K ′′ of K such that −1 is a sum of two squares in K ′′. In the case where K is real,
let K ′ denote a finite real extension of K that is not pythagorean. In the case where
K is nonreal, set K ′ = K . In both cases, there exists a sum of two squares σ in
K ′ that is not a square, and we set K ′′ = K ′(

√−σ), which is a finite separable
extension of K .

Now consider any maximal algebraic field extension M/K ′′ in which −1 is not
a square. By [5, Chap. III, 2.8], every quaternion algebra over M is split, whereby
every conic over M is rational. The conic of the statement already splits over some
finite nonreal extension L/K contained in M . Note that −1 is not a square in L .
In the case where K is real, it is clear that L/K is separable, hence there exists
a point on the conic with residue field L by Theorem 2.7. In the case where K is
nonreal, there exists a point on the conic whose residue field L ′ is a subfield of L
and contains K . Hence, L is nonreal and −1 is not a square in L . In both cases
Proposition 3.1 yields p(F) > 2. �

Recall that function fields of regular conics are exactly the algebraic function
fields of genus zero, by [7, 7.4.1] and [9, Chap. V, 3.3]. The following corollary is
Theorem B of the introduction.
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Corollary 3.3. Assume that −1 is not a square in K . Let F/K be an algebraic
function field of genus zero.

(a) Assume that F is real. Then p(F) = 2 if and only if K is hereditarily pythag-
orean.

(b) Assume that F is nonreal. Then p(F) = 2 if and only if K is hereditarily
pythagorean and uniquely ordered.

Proof. A real algebraic function field of genus zero over a hereditarily pythagorean
field has pythagoras number 2, e.g. by [1, 4.10]. The converse implication follows
with Theorem 3.2. This shows (a). Now assume that K is hereditarily pythagorean
and uniquely ordered. By [2, Chap. III, Lemma 5], a uniquely ordered heredi-
tarily pythagorean field is a so called hereditarily euclidean field. Hence every
algebraic function field has pythagoras number 2, by [1, 4.6]. Assume conversely
that p(F) = 2 for a nonreal algebraic function field of genus zero. It follows by
Theorem 3.2 that K is hereditarily pythagorean. Hence, F is isomorphic to the
function field of the conic X2 + Y 2 + Z2 = 0. By [1, 4.7], it follows that K is
uniquely ordered. This shows (b). �

4. Sums of squares in function fields of Cassels–Catalan curves

We denote by K ×2 the set of nonzero squares in a field K , and by ±K ×2 we denote
the set K ×2 ∪ −K ×2. The algebraic closure of K is denoted Kalg.

Proposition 4.1. Assume that K is infinite. Let L be a finite separable non-pythago-
rean extension of K . Then there exists ξ ∈ L such that L = K (ξ2)and ξ2+1 /∈ L×2.
Moreover, there exists σ ∈ ∑

L2 \ L×2 such that L = K (σ ) and σ + 1 /∈ L×2.

Proof. Fix z ∈ L with z2 + 1 /∈ L×2. For arbitrary ν ∈ L×, consider the terms

α = ν2

z2 , β = ν2 + z2, γ = (z2+1)2

ν2 + z2, δ = (z2+1)2

z2ν2 , and ε = z2+1
ν2 . These

terms are rational functions in ν over L . Let G = {x ∈ L | K (x) = L}. This is a
K -Zariski open subset of L as it is the complement of the finitely many subspac-
es of L that correspond to the finitely many intermediate extensions of L/K . By
Proposition 2.5 the preimage of G under any rational function from L(t)\ L is non-
empty. Moreover, G is K -open in L . As the intersection of finitely many nonempty
K -open subsets of L is nonempty, there exists ν ∈ L×, such that α, β, γ, δ, ε ∈ G.
Note that ε, 1

ε
∈ ∑

L2 \ L×2. If ε + 1 /∈ L×2 we set σ = ε. Otherwise we have
1+ε
ε

= 1
ε

+ 1 /∈ L×2 and set σ = 1
ε
.

Note also that α ∈ L×2 and if α + 1 /∈ L×2, choose ξ = ν
z . Assume now that

α + 1 ∈ L×2. Then β ∈ L×2. If β + 1 /∈ L×2 choose ξ ∈ L such that ξ2 = β.
Assume now that β+1 ∈ L×2. Then ν2 + z2 +1 ∈ L×2 and ν2 + z2 ∈ L×2. It fol-

lows that (z
2+1)2

ν2 + z2 + 1 /∈ L×2 since z2 + 1 /∈ L×2. Remember that δ = (z2+1)2

z2ν2 .

If δ + 1 /∈ L×2, choose ξ = z2+1
zν . Otherwise, if δ + 1 ∈ L×2, then γ ∈ L×2 and

γ + 1 /∈ L×2 and we choose ξ ∈ L such that ξ2 = γ in this last case. �
Lemma 4.2. Let u ∈ K × \ ±K ×2 and r ≥ 1. Let γ ∈ Kalg be such that γ 2r = u.
Then K × ∩ K (γ )×2 = K ×2 ∪ uK ×2.
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Proof. As −u /∈ K ×2, and thus −u /∈ 4K ×4, the polynomial T 2r− u is irreducible
by [6, Chap. VI, 9.1]. Write d = γ 2, L = K (d) and M = K (γ ). Note that M/L is
a quadratic extension. As T 2r−1−u is the minimal polynomial of d over K , the norm
of d with respect to L/K is ±u. As u /∈ ±K ×2, it follows that K × ∩ d L×2 = ∅.
As L× ∩ M×2 = L×2 ∪ d L×2, we have that

K × ∩ M×2 = K × ∩ (L×2 ∪ d L×2) = K × ∩ L×2.

The statement thus follows by induction on r . �
Corollary 4.3. Suppose −1 /∈ K ×2. Let u ∈ K × \ ±K ×2 and n ∈ N. There exists
x ∈ Kalg with xn = u and K × ∩ K (x)×2 ⊆ K ×2 ∪ uK ×2.

Proof. If n is odd, we can choose x ∈ Kalg with xn = u such that [K (x) : K ] is
odd, whereby K × ∩ K (x)×2 ⊆ K ×2. Assume now that n is even. If u /∈ K ×2, then
we write n = 2r m with m odd and r ≥ 1, and apply Lemma 4.2 together with the
previous case. �
Corollary 4.4. Suppose −1 /∈ K ×2. Let v ∈ K × \ −K ×2 and m ∈ N. There exists
y ∈ Kalg such that ym = v and −1 /∈ K (y)×2.

Proof. Let r ∈ N be maximal such that 2r |m and v ∈ K ×2r
. Let u ∈ K be such

that u2r = v. We write m = n2r . If n is odd, then we can choose y ∈ Kalg such
that ym = v and [K (y) : K ] is odd, and it follows trivially that −1 /∈ K (y)×2.

Assume that n is even. Then u /∈ K ×2 by the maximality of r . Furthermore,
we claim that u /∈ −K ×2. If r = 0 we have that u = v /∈ ±K ×2. If r > 0 then
u /∈ −K ×2 by the maximality of r and the fact that (−u)2

r = v. Using Corollary
4.3, we choose y ∈ Kalg such that yn = u and K × ∩ K (y)×2 ⊆ K ×2 ∪ uK ×2.
Then ym = v and −1 /∈ K (y)×2, since u /∈ −K ×2. �
Proposition 4.5. Suppose −1 /∈ K ×2. Let u ∈ K ×\±K ×2 and v ∈ K ×\(−K ×2∪
−uK ×2). Let n,m ≥ 1. Then there exists a finite extension M/K such that −1 /∈
M×2, with x, y ∈ M such that xn = u and ym = v, and such that M = K (x, y).

Proof. We choose x ∈ Kalg such that xn = u and K × ∩ K (x)×2 ⊆ K ×2 ∪ uK ×2.
Then −1,−v /∈ K (x)×2. By Corollary 4.4 there exists y ∈ Kalg such that ym = v

and −1 /∈ K (x, y)×2. Set M = K (x, y). �
Corollary 4.6. Let L/K be a finite field extension such that L is real and not
pythagorean. Let a, b ∈ K such that a, b ∈ L×2 ∪ −L×2. For integers n,m ≥ 1,
there exists a finite extension M/L, such that −1 /∈ M×2, and with x, y ∈ M such
that 1 = axn + bym and M = K (x, y). Moreover, if n or m is even, we can choose
M to be nonreal.

Proof. By Proposition 4.1 there exists ξ ∈ L with ξ2 +1 ∈ ∑
L×2 \ L×2 and L =

K (ξ2), and further σ ∈ ∑
L×2 \ L×2 with L = K (σ ) and σ + 1 ∈ ∑

L×2 \ L×2.
In the case where a, b ∈ L×2, set u = − 1

aσ and v = 1
b (1+ 1

σ
). Then u /∈ ±L×2

and −v /∈ L×2 ∪ uL×2, as −uv = 1
ab
σ+1
σ 2 . Moreover, 1 = au + bv.
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In the case where −a,−b ∈ L×2, set u = ξ2+1
a and v = −ξ2

b . Then u /∈ ±L×2

and −v /∈ L×2 ∪ uL×2. Moreover, 1 = au + bv.
In the case where −a, b ∈ L×2 set u = σ+1

a and v = −σ
b . Then u /∈ ±L×2 and

−v /∈ L×2 ∪ uL×2. Moreover, 1 = au + bv.
In the case where a,−b ∈ L×2 set u = −σ

a and v = σ+1
b . Then u /∈ ±L×2 and

−v /∈ L×2 ∪ uL×2. Moreover, 1 = au + bv.
In each case, by Proposition 4.5, there exist x, y ∈ Lalg such that xn = u and

ym = v and
√−1 /∈ L(x, y). Moreover, since u ∈ L(x, y) and K (u) = L , it

follows that L(x, y) = K (x, y). Obviously 1 = axn + bym as 1 = au + bv. Set
M = L(x, y). Now suppose that n or m is even. By symmetry, we can assume that
n is even. Then xn = u is both a square in M and, by the choices of u in each case,
a negative sum of squares in M . Thus M is not real. �

Note that Cassels–Catalan curves are smooth. In particular, the local ring of
any closed point is a discrete valuation ring. We now prove Theorem C of the
introduction.

Theorem 4.7. Assume that K is not hereditarily pythagorean and that −1 is not a
square in K . Let F be the function field of a Cassels–Catalan curve over K . Then
p(F) ≥ 3.

Proof. Assume that F is the function field of the curve 1 = aXn + bY m for some
a, b ∈ K × and n,m ≥ 1 prime to the characteristic of K . Assume first that K
is nonreal. If −a is not a square in K , choose x ∈ Kalg such that xn = 1

a and√−1 /∈ K (x) as in Corollary 4.4. Then P = (x, 0) is a point on the curve and −1
is not a square in K (P). If −b is not a square in K we can proceed analogous. So
we assume that both −a and −b are not squares in K . Choose z ∈ K such that
z2 +1 is not a square in K . Choose again x ∈ Kalg such that xn = z2

−a and −1 is not

a square in K (x). Then 1
b is not a square in K (x) and we also find some y ∈ Kalg

such that ym = −1
b and that −1 is not a square in K (x, y), as in Proposition 4.5.

Again P is a point on the curve for which −1 is not a square in K (P). In either
case, we obtain that p(F) ≥ 3 by Proposition 3.1 in the case where K is not real.

Now we assume that K is real. Let us first consider the case where n is odd.
Then F is clearly an odd degree extension of the rational algebraic function field
K (X). Then 3 ≤ p(K (X)) ≤ p(F) by Springer’s Theorem [5, Chap. VII, 2.7] and
Corollary 3.3. Hence we assume that n is even. Suppose there exists a finite real
extension L/K that is not pythagorean. We can assume that a or −a, as well as one
of b or −b is a square in L , since we can replace L by one of the four extensions
L

(√±a
) (√±b

)
if necessary; note that none of those extensions is pythagorean,

by [5, Chap. VIII, 5.7], and at least one of them is real. By Corollary 4.6 there exists
a point P on the curve such that K (P) is nonreal and −1 is not a square in K (P).
Again, Proposition 3.1 yields that p(F) ≥ 3. �

In [1, 4.3], it was shown that p(F) ≥ 3 for any algebraic function field F/K
having divisors of odd degree when K is not hereditarily pythagorean and −1 is
not a square in F . For a, b ∈ K × such that the conic 1 = aX2 + bY 2 is not split,
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the Cassels–Catalan curve 1 = aXn + bY m with n,m even has no divisor of odd
degree.
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