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ABSTRACT: Recently, age-related hippocampal (HP) volume loss
could be associated with a decrease in general fluid intelligence (gF).
In the present study we investigated whether and how extensive mu-
sical training modulates human HP volume and gF performance. Pre-
viously, some studies demonstrated positive effects of musical
training on higher cognitive functions such as learning and memory,
associated with neural adaptations beyond the auditory domain. In
order to detect possible associations between musical training and
gF, we bilaterally segmented the HP formation and assessed the indi-
vidual gF performance of people with different levels of musical ex-
pertise. Multiple regression analyses revealed that HP volume
predicts gF in musicians but not in nonmusicians; in particular, bilat-
erally enhanced HP volume is associated with increased gF exclu-
sively in musically trained people (amateurs and experts). This result
suggests that musical training facilitates the recruitment of cognitive
resources, which are essential for gF and linked to HP functioning.
Musical training, even at a moderate level of intensity, can thus be
considered as a potential strategy to decelerate age-related effects of
cognitive decline. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The hippocampal (HP) formation is a highly plas-
tic brain structure that generates neurons over the
whole lifespan (Lledo et al., 2006). Investigations on
HP function in healthy human adults could demon-
strate that age-related HP volume loss predicts
decrease in general fluid intelligence (gF) performance
(Reuben et al., 2011). Therefore, it is of pertinent in-
terest to ascertain possible interventions that could
countervail HP volume loss and thus decelerate this
effect of cognitive decline. Different positive factors,
such as cognitive stimulation, meditation and physical
exercises may modify HP structure and volume
(review by Fotuhi et al., 2012). Musical activities con-
stitute another promising influential factor due to the
highly complex multimodal features of musical
performance.

Extensive musical practice promotes functional and
structural brain plasticity in auditory areas (auditory
cortex: Schneider et al., 2002; Hyde et al., 2009;
Meyer et al., 2012b; Oechslin et al., 2010b), auditory
pathway microstructure (arcute fasciculus: Bengtsson
et al., 2005; Oechslin et al., 2010a; Halwani et al.,
2011), the motor system (somatosensory cortex:
Elbert et al., 1995; corpus callosum: Schmithorst and
Wilke, 2002; primary motor cortex: Hyde et al.,
2009; corticospinal tract: Imfeld et al., 2009) and in
areas involved in multisensory integration (Lee and
Noppeney, 2011; Luo et al., 2012; James et al., in
press). Previous reviews outlined the full panoply of
training induced cortical adaptations; highlighting the
role of the musical brain as one of the most promi-
nent models in neuroscience to study brain plasticity
(Schellenberg, 2001; M€unte et al., 2002; J€ancke,
2009; Trainor et al., 2009; Kraus and Chandrase-
karan, 2010; Wan and Schlaug, 2010; Besson et al.,
2011; Pantev and Herholz, 2011; Penhune, 2011;
Herholz and Zatorre, 2012; Meyer et al., 2012a;
Schulze and Koelsch, 2012).

With respect to auditory cognition, it has been
demonstrated that musical training changes the
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memory structure of tonal representations (Oechslin et al.,
2012) and furthermore, enhances tonal working memory (WM)
(Parbery-Clark et al., 2011; Schulze et al., 2011) and attention
(Strait and Kraus, 2011). Additionally, a recent study demon-
strated enhanced visual WM capacities in professional musicians,
and moreover, that individual training intensity predicted WM
performance (Oechslin et al., in press). Far transfer effects (Bar-
nett and Ceci, 2002) beyond the auditory domain have been
infrequently reported in the literature. For instance, orchestral
musicians showed enhanced visuospatial discrimination perform-
ance compared to nonmusicians (Sluming et al., 2007). With
respect to the relationship between gF and musical training,
Lynn et al. (1989) unveiled a positive correlation between the
performance in several analytical musical tasks (chord analysis,
pitch change perception and pitch memory) and matrix reason-
ing in school children. In a longitudinal approach Schellenberg
(2004) demonstrated that musical training yields an increase in
intelligence (WISC-III; Wechsler, 1991) compared to drama
exercises. Forgeard et al. (2008) found that duration of musical
training in children is positively correlated with vocabulary (subt-
est of WISC-III; Wechsler, 1991) and nonverbal logical reason-
ing (Raven’s progressive matrices; Raven, 1995). Such beneficial
effects of musical practice could be due to a relation between
intelligence and executive control (Jaeggi et al., 2008). This hy-
pothesis is supported by a recent study demonstrating improved
executive functions as a result of short-term 20-day musical train-
ing (Moreno et al., 2012). In sum, transfer effects induced by
musical training most likely occur if processing networks overlap
anatomically, either on the level of sensory decoding (Patel,
2011), or, as presumed by the present investigation, on the level
of higher cognitive functions.

Above introduced findings imply that deliberate musical
training yields beneficial adaptations in brain structures related
to learning and memory. The following additional reports back
up this assumption related to HP adaptive plasticity. Musical
expertise yielded enhanced HP responsiveness following unex-
pected musical closures by means of event-related potential
source imaging (James et al., 2008). A longitudinal study
revealed that after 1 yr of intensive aural training, HP reactivity
was enhanced in musical students during temporal novelty
processing (Herdener et al., 2010). Furthermore, increased left
HP gray matter density was found in musicians compared to

nonmusicians (Groussard et al., 2010). The HP formation can
thus be considered as susceptible to musical training-induced
neuroplasticity, both on functional and structural bases.

In this context, we hypothesized that musical training modu-
lates the relationship between HP volume and gF. To test this
hypothesis we carried out structural brain imaging and subse-
quent manual HP segmentation in subjects with different levels
of musical expertise and collected measures of gF performance.
We used multiple regression analyses to examine the relation-
ship between HP volume and gF performance and its modula-
tions by musical training.

MATERIALS AND METHODS

According to strict inclusion and exclusion criteria, we
recruited three groups (n 5 20 each) of right-handed (Oldfield,
1971), normal hearing subjects of either sex, representing three
distinct levels of musical expertise. Groups were matched for
age and sex and consisted of nonmusicians (N), amateur (A)
and expert musicians (E). All A and E practiced the piano and
started training at age 10 at the latest. Age at training onset
was not significantly different between A and E (Table 1).

E were essentially advanced conservatory students but also
established artists or teachers, who received their training at the
Conservatoires of Geneva, Lausanne, Paris and Zurich. The cri-
terion for being part of group A was defined as being still
musically active at the moment of participating in this study,
however, musical practice should have never exceeded 10 h per
week (Table 2).

The concept of gF represents the ability to solve novel prob-
lems independently of prior knowledge (Cattell, 1971). Here
we assessed the participants’ gF performance by means of logi-
cal (inductive) reasoning in the visual modality by applying the
standard measure of Raven’s Advanced Progressive Matrices
(Raven, 1995) in a time limited version (15 min). Test items

TABLE 1.

Participant Information

Groups Age Sex (f/m) Start of musical training (age)

E 24.5 (64.5) 10/10 6.2 (61.9)

A 22.2 (63.1) 10/10 7 (61.4)

N 24.3 (64.4) 10/10 –

Mean values (6SD); groups are matched by gender, age (F2,56 5 2.013,
P 5 0.143) and start of musical training (F1,39 5 2.224, P 5 0.144). Age of be-
ginning was not significantly different between the two musician groups
(t38 5 1.5, P 5 0.19).

TABLE 2.

Musical Training Intensity

Training intensity

Age period A (h/week) E (h/week) t-Values

6–8 3.0 (6 1.9) 3.1 (6 1.7) 1.1

8–10 3.5 (6 0.5) 4.2 (6 0.5) 1.1

10–12 4 (6 2.3) 6.5 (6 4.3) 2.7*

12–14 4.7 (6 2.6) 9 (6 5.3) 3.3**

14–16 5.3 (6 3.2) 14.8 (6 7.7) 5.1***

16–18 4.7 (6 2.2) 19.9 (6 9.3) 7.1***

18–25 4.4 (6 2.9) 30.7 (6 8.5) 12.4***

Training intensities of the two groups of musicians (A/E) are reported in mean
(6 SD) number of hours/week (h/w) within certain periods of life, and differ-
ences are tested by t-tests for independent samples [two-tailed, asterisks indicate
level of significance: P(*)< 0.05, P(**)< 0.01, P(***) <0.001] (for more
details, see Oechslin et al., in press).
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require the examinee to infer a rule relating to a collection of
elements, with which the corresponding element, among sev-
eral others, related to the correct rule shall be verified (Alder-
ton and Larson, 1990). A single test item is characterized by a
set of eight black-and-white elements, arranged in a 3 3 3 ma-
trix. The missing ninth element completing the pattern has to
be selected. Raven’s test therefore probes for nonverbal intelli-
gence in a multiple-choice manner. Subjects performed the
original paper-pencil version of the Raven’s test. Every test item
was presented on a single page (36 items in total). Subjects
were instructed to proceed in the predefined order without
skipping single test items, since the preceding ones served as
learning experience for later ones which became increasingly
difficult (Spreen and Strauss, 1991).

In a previous study, we asked subjects to perform a visual
three-back letter task (Ludwig et al., 2008), since underlying
working memory (WM) mechanisms have been suggested to
be closely related to gF assessed by matrix reasoning (Jaeggi
et al., 2008, 2011; Jausovec and Jausovec, 2012). We adminis-
tered this n-back test to verify similar correlational effects and

possible differences between musicians and non-musicians. For
further details about the experimental set-up of this n-back par-
adigm, performed by the same participant groups as in the cur-
rent study, we refer to the original communication (Oechslin
et al., in press).

For each participant we recorded a T1-weighted rapid gra-
dient-echo structural image (3-T scanner, Siemens TRIO,
Erlangen Germany: TE 5 2.27 ms, TR 5 1900 ms, flip
angle 5 9 deg., FOV 5 256 3 256 mm2, slice thickness 5 1
mm, inversion time (TI) 5 900 ms, voxel size 5 1 mm3). Left
(lHP) and right (rHP) HP formations were manually seg-
mented for all subjects (example in Fig. 1A), resulting in vol-
umes expressed in total number of voxels. Performing manual
segmentation of the hippocampal structure represents the gold
standard for most accurate volumetric measurement. A physi-
cian trained in neurology performed the segmentations after
receiving intensive coaching for this procedure by a highly
experienced neurologist. The investigator, blinded for group
belonging and subjects’ identity, performed segmentations
both in the coronal and the sagittal plans to improve accuracy
(using the software MRIcroN [http://www.mccauslandcenter.-
sc.edu/mricro/]). For the regression analyses we calculated the
mean number of voxels taking into account both evaluations.
The segmentation included hippocampus proper, dentate
gyrus and subiculum and was performed in rostral to caudal
direction. To clearly dissociate between hippocampus and
amygdala we used the alveus (Hasboun et al., 1996; Tae
et al., 2008), and the uncal recess of the inferior horn of the
lateral ventricle as anterior landmarks (Watson et al., 1992;
Pruessner et al., 2000). The hippocampal (choroid) fissure
was used to determine the border with the entorhinal cortex
along the coronal slices (Insausti et al., 1998). We delineated
the tail completely, with the aid of the sagittal plane which
makes the HP tail surround by white matter more apparent
(McHugh et al., 2007); meaning inferior medially to the tri-
gone of the lateral ventricle (Pruessner et al., 2000). One N
subject was excluded from all analyses, since structural data
acquisition was corrupted.

In order to analyze (i) to what extent we can predict gF per-
formance by HP volume, and (ii) whether this prediction is
modulated by the factor of musical training, we performed ro-
bust multiple regression analyses with lHP and rHP volume as
predictors for gF.

RESULTS

In the robust multiple regression analyses amateurs (A) and
expert musicians (E) were pooled into one group of
“musicians” (M, n 5 40), because correlations between gF and
lHP/rHP volume did not significantly differ between both
groups [unveiled by Fisher’s r to z transformations testing the
following correlations between A and E: gF vs. lHP: A
(r 5 0.700, P 5 0.005), E (r 5 0.521, P 5 0.019); gF vs. rHP:
A (r 5 0.590, P 5 0.006), E (r 5 0.479, P 5 0.033). Fisher’s r

FIGURE 1. A. Segmentations of left and right hippocampus
(lHP, rHP) of a single subject brain are highlighted in red. B. The
individual hippocampal volume (number of voxels) is plotted
against general fluid intelligence (gF) performance (absolute
scores); linear regression lines are fitted. Left panels show lHP,
right panels rHP. The upper panel shows musicians [amateurs
(blue) and professionals (green)]. Non-musicians (black) are dis-
played in the lower panel.
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to z transformation A vs. E: LH: z50.158, P 5 0.437; RH:
z5-0.295, P 5 0.382]. Levene’s test for equality of variances
revealed no significant differences between N and M in gF and
HP volumes (gF: F1,57 50.360, P 5 0.545; lHP:
F1,57 5 1.077, P 5 0.304; rHP: F1,57 5 0.027, P 5 0.870). Pre-
liminary analyses revealed that neither mean gF performance,
nor lHP and rHP volume significantly differed between M and
N (gF: F1,58 50.723, P 5 0.195; lHP: F1,58 5 0.104,
P 5 0.748; rHP: F1,58 5 0.199, P 5 0.658).

Finally, we tested the predictability of gF by HP volume.
The factor Expertise was represented by two levels of musical
expertise in the regression models (N, n 5 19; M, n 5 40).
Scatter plots and fitted linear regressions are delineated in Fig-
ure 1B. Significant interactions with Expertise in the left
[t 5 2.221, P 5 0.030; N (beta 5 0.03), M (beta 5 0.46)] and
the right hemisphere [t 5 2.003, P 5 0.050; N (beta 5 0.01),
M (beta 50.38)] revealed that bilateral HP volumes predict gF
performance exclusively in musically trained people.

E subjects (mean 5 84.4 [SD 5 7.1]) exhibited significantly
enhanced WM (t38 5 2.6, P 5 0.015) compared to N subjects
(mean 5 72.1 [SD 5 19.7]), as assessed by the visual three-
back letter task (max. score 5 108); A subjects (mean 5 75.8
[SD 5 19]) performed on an intermediate level (previously
reported by Oechslin et al., in press).

Supplementary analyses in the present context yielded a posi-
tive correlation between gF and WM in M [r 5 0.473,
P 5 0.001] but not in N (r 5 0.225, P 5 0.177). One subject
of group A has been excluded from this analysis due to low
performance (score: 14 out of 108), probably induced by non-
comprehension of the task instructions. Additional independent
robust multiple regression analyses (including all subjects)
revealed that the relationship between gF and WM interacts
significantly with the factor Expertise (N, M), controlled for
left (t 5 6.409, P< 0.001) and right HP volume (t 5 3.295,
P 5 0.002). No significant direct relationship was found
between WM and HP volume.

DISCUSSION

For a deeper understanding of this finding and its underly-
ing rationales, we would like to put forward two lines of expla-
nation. First, previous investigations demonstrated that gF
performance, especially when evaluated by matrix reasoning,
correlated with WM capacity (as tested by means of a n-back
task; (Jaeggi et al., 2010)). Moreover, gF performance even
improved as a function of WM training intensity (Jaeggi et al.,
2008). An overlap of cognitive processes involved in WM and
gF may explain this transfer effect. For instance, attentional
control plays a similar role both in WM and gF, namely to
maintain bindings of different spatial and temporal elements in
memory (review by Halford et al., 2007). Thus, gF perform-
ance may be mediated by shared cognitive functions also

involved in WM performance and learning (Jaeggi et al.,
2010).

Second, in a previous study including the same participants
(Oechslin et al., in press), we hypothesized that musical train-
ing itself yields enhanced working memory capacities that
apply not only to the auditory (Parbery-Clark et al., 2011;
Schulze et al., 2011) but as well to the visual domain. In this
previous work, we found (i) that musicians show enhanced vis-
ual WM capacities compared to non-musicians, and (ii) that
individual performance could be predicted by training intensity
(hours/week). This is in line with the assumption that complex
musical behavior exceeds auditory perception, strengthening
also audiovisual binding, multisensory and motor integration
(Hodges et al., 2005; Lahav et al., 2007) as well as attention
(Strait and Kraus, 2011), probably partially as a consequence
of on-stage performance.

These two lines of explanation indicate an indirect relation-
ship between musical training and gF. Given that instrumental
practice represents an implicit way to hone WM capacity, a
transfer effect to gF, mediated by shared attentional control
mechanisms, may take place as described above. Supplementary
analyses confirmed this relationship by revealing a significant
correlation between visual WM and gF in musicians but not in
non-musicians. Accordingly, we assume that intensive musical
practice entails indirect training of WM that benefits gF
performance.

On the other hand, the present data revealed no statistically
significant relationship between WM and HC volume in none
of our subject groups. Diverging findings in literature either
evidenced such a relationship (Olson et al., 2006; Ezzyat and
Olson, 2008) or not (Cowey and Green, 1996; Baddeley et al.,
2010; Jeneson et al., 2010). Finally, the recent work by Li
et al. (2010, in press), who assessed WM as well by n-back
tasks, strongly suggests, that this dependency is modulated by a
specific dopamine regulating gene polymorphism (NTSR1).
The interaction between gene factors and certain training strat-
egies that enhance WM or decelerate the decay of WM capaci-
ties over the lifespan needs to be addressed in future studies.

So far a number of studies reported different conditions
under which HP growth has been observed (review by Fotuhi
et al., 2012): cognitive stimulation (Maguire et al., 2000; Dra-
ganski et al., 2006; Fortin et al., 2008), physical exercises
(Erickson et al., 2010; Pajonk et al., 2010) and meditation
(Luders et al., 2009; Holzel et al., 2011) yield increased HP
neurogenesis. Recent research support the assumption that the
present finding, namely that piano practice could promote HP
growth, is rather related to cognitive-perceptual than motor
aspects: Using an implicit learning task (finger tapping
sequence), Rose et al. (2011) demonstrated bilateral learning-
related increase of HP activations as a consequence of percep-
tual sequence learning but not motor sequence learning. In
case of musicians, this dissociation therefore indicates that
aspects of auditory learning and related cognitive mechanisms
are crucial for HP plasticity. The possible nature of these
mechanisms has been further enlightened by a very recent
study revealing that HP grey matter density is positively
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correlated with years of piano tuning (Teki et al., 2012). In
contrast to pianists, piano tuners do not especially train their
hand-motor skills. Nevertheless, both populations share honed
auditory competence due to intensive auditory training, con-
solidated as a cognitive representation of acoustic and harmonic
features. As previously evidenced, this harmonic system is topo-
graphically organized and quantifiable by spatial characteristics
(Janata et al., 2002; Toiviainen and Krumhansl, 2003). The
resulting cognitive tonal map is relatively stable across skilled
listeners and, moreover, can be acquired even by implicit per-
ceptual learning (Oechslin et al., 2012). We thus argue, that
active listening and playing music is constantly accompanied
by tonal referencing or navigating through a cognitive represen-
tation, a mental soundscape defined by the stored harmonic
system. As already pointed out by Teki et al. (2012), conceptu-
ally, mental navigation in tonal space is very similar to spatial
navigation, whereas the latter as well has been associated with
expertise-dependent HP plasticity (Woollett and Maguire,
2011). We therefore conclude that deliberate musical practice
stimulates similar mechanisms yielding increased HP neurogen-
esis. Additionally, the underlying cellular mechanisms of HP
growth might be supported by positive experiences related to
musical performance: Takahashi and colleagues (2009) demon-
strated that enhanced HP neurogenesis is linked to reward.
Therefore, the dopaminergic system could play a supportive
role in HP growth associated with musical training, a relation-
ship that might be based on pleasurable listening and perform-
ance experiences (Blood and Zatorre, 2001; Menon and
Levitin, 2005) in combination with specific rewards linked to
musical activities (Berridge and Robinson, 2003).

Although the macroscopic level of our analyses does not
allow drawing any direct conclusions on the nature of the
underlying microscopic mechanisms involved, HP volume
increase is assumed to be a consequence of increased neurogen-
esis, basically as a result of promoting newborn cell survival in
the subgranular zone of the HP dentate gyrus (reviews by
Gage, 2000; Lledo et al., 2006).

The fact that A and E musicians expressed a similar relation-
ship between HC volume and gF performance can be
explained by their equal training intensity of A musicians in
relation to E musicians (cf. Table 2): Between the age of 6 and
10 yr, training intensity between these two groups was equal in
magnitude (cf. Table 1, James et al., in press). These retrospec-
tive data thus speak in favor that increased HC volume growth
has been initiated most likely within this period. Previous
investigations outlined that the brain in early childhood is
most susceptible to experience driven plasticity (i.e., Schlaug
et al., 1995; Imfeld et al., 2009; Pascual-Leone et al., 2012).
Accordingly, a number of findings give rise to the assumption
that the age of seven is critical with respect to the acquisition
of advanced musical abilities and associated neural correlates
(Penhune, 2011; Bailey and Penhune, 2012; Steele et al.,
2013). Our data suggest that musical training before a certain
critical age induces benefits for gF performance, analogous
with language acquisition (Sakai, 2005) or development of
absolute pitch (rare ability to identify a musical tone without

any external reference (Russo et al., 2003; Deutsch et al.,
2006)).

The observation that HC volume and gF do not simply
increase with musical training (no mean group differences) but
only in conjunction, implies an inhomogeneity in musicians
with respect to the efficacy of deliberate practice: apparently,
not everybody profits of musical training in the same way.
Whether this is the consequence of different training strategies
or predisposition cannot be disentangled by cross sectional
investigations.

In sum, the present findings suggest that musical training,
even at amateur level, can facilitate the recruitment of cognitive
resources (working memory) that essentially contribute to gF
and are linked to HP functioning. This discovery provides an
additional corroboration of musicians’ brain plasticity that even
impacts on daily routines requiring conclusive thinking. The
possible decelerating potential of musical training on age-
related cognitive decline, or its favorable effects during child-
hood and adolescence, needs further investigations within the
context of lifespan development.
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