Direct View of Hot Carrier Dynamics in Graphene

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time-and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of approximate to 2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).


Published in:
Physical Review Letters, 111, 2
Year:
2013
Publisher:
College Pk, American Physical Society
ISSN:
0031-9007
Laboratories:




 Record created 2013-10-01, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)