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Abstract

We infer a term structure of interbank risk from spreads between rates on interest rate swaps

indexed to LIBOR and overnight indexed swaps. We develop a model of interbank risk to

decompose the term structure into default and non-default (liquidity) components. We find

that, on average, from August 2007 to January 2011, the fraction of total interbank risk

due to default risk increases with maturity. At the short end of the term structure, the

non-default component is important in the first half of the sample period and is correlated

with measures of funding and market liquidity. At longer maturities, the default component

is the dominant driver of interbank risk throughout the sample period. Results hold true

in both the USD and EUR markets and are robust to different model parameterizations

and measures of interbank default risk. The analysis has implications for monetary and

regulatory policy and for pricing, hedging, and risk-management in swap markets.
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“The age of innocence – when banks lent to each other unsecured for three months or longer at only a

small premium to expected policy rates – will not quickly, if ever, return”.

Mervin King, Bank of England Governor, 21 October 2008

1 Introduction

Interbank risk, as defined in this paper, is the risk of direct or indirect loss resulting from lend-

ing in the interbank money market. The recent financial crisis has highlighted the implications

of such risk for financial markets and economic growth. While existing studies have provided

important insights on the determinants of short term interbank risk, we still know very little

about the term structure of interbank risk. In this paper, we provide a comprehensive analysis

of this topic. First, we develop a model of the term structure of interbank risk. Second, we

apply the model to analyze interbank risk since the onset of the financial crisis, decomposing

the term structure of interbank risk into default and non-default (liquidity) components.

To illustrate the importance of the term structure dimension for understanding interbank

risk, consider Figure 1. The solid line shows the spread between 3M LIBOR, which is a

reference rate for unsecured interbank borrowing and lending, and the fixed rate on a 3M

overnight indexed swap (OIS), which is a common risk-free rate proxy. This money market

spread is used in many papers and in the financial press as a measure of interbank risk. The

dotted line shows the spread between the fixed rate on a 5Y regular interest rate swap (IRS)

with floating-leg payments indexed to 3M LIBOR, and the fixed rate on a 5Y OIS. We show

in the paper that this spread essentially reflects expectations about future 3M LIBOR-OIS

spreads and, therefore, provides valuable insights into market participants’ perceptions about

future interbank risk. As such, we can use IRS-OIS spreads at different maturities to infer a

term structure of interbank risk.

Prior to the onset of the credit crisis, the term structure of interbank risk was essentially

flat with swap spreads only a few basis points higher than money market spreads. Then, at

the onset of the crisis in August 2007, money market spreads increased much more than swap

spreads. This resulted in a strongly downward-sloping term structure of interbank risk, indi-

cating that market participants expected the extremely high levels of interbank risk observed

in the money market to be a relatively short-lived phenomenon. Finally, from Fall 2009 to the

end of our sample period, money market spreads were more or less back to pre-crisis levels (ex-

cept for a transitory increase related to the escalation of the European sovereign debt crisis),
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while swap spreads remained well above pre-crisis levels and significantly higher than money

market spreads. The result was an upward-sloping term structure of interbank risk, indicating

that market participants expected interbank risk to increase in the future (and/or required a

large risk premium for bearing future interbank risk). The term structure, therefore, contains

important information about interbank risk that is not contained in money market spreads.

A LIBOR-OIS spread can arise for several reasons. An obvious candidate is default risk.

LIBOR is a benchmark indicating the average rate at which large, creditworthy banks be-

longing to the LIBOR panel can obtain unsecured funding for longer terms (typically 3M or

6M) in the interbank money market. An OIS is a swap with floating payments based on a

reference rate for unsecured overnight funding, which we assume equals the average cost of

unsecured overnight funding for LIBOR panel banks.1 An important feature of the LIBOR

panel is that its composition is updated over time to include only creditworthy banks – a bank

that experiences a significant deterioration in its credit quality will be dropped from the panel

and be replaced by a bank with superior credit quality. Therefore, the OIS rate reflects the

average credit quality of a refreshed pool of creditworthy banks, while LIBOR incorporates

the risk that the average credit quality of an initial set of creditworthy banks will deteriorate

over the term of the loan.2 Consequently, LIBOR exceeds the OIS rate.

To formalize this, we set up a model where, at a given point in time, we distinguish between

the average default intensity of the periodically refreshed panel and the default intensity of an

average bank within an initial panel. Deterioration in the credit quality of this bank relative

to the average credit quality of the periodically refreshed panel occurs according to a jump

process. The first jump time is interpreted as the time when the bank is dropped from the

panel. The risk of credit quality deterioration (i.e., the intensity of the jump process) varies

stochastically over time. In this setting, the default component of the LIBOR-OIS spread is

driven by the expected credit quality deterioration of an average bank within the initial panel.

A LIBOR-OIS spread may also arise due to factors not directly related to default risk,

1While this assumption is true in the EUR market, it is only approximately true in the USD market, since the

reference rate (the effective Federal Funds rate) reflects the average funding cost for a broader set of banks than

the LIBOR panel. Nevertheless, Afonso, Kovner, and Schoar (2009) show that credit risk in the Federal Funds

market is managed via credit rationing rather than interest rates, so that only creditworthy banks participate

in the Federal Funds market. Such credit rationing was particularly prevalent in the aftermath of the Lehman

default.

2We stress that there is negligible default risk in the OIS contract due to collateralization. However, the

OIS rate does reflect default risk due to the indexation of the floating leg to an unsecured overnight rate.
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primarily liquidity. There are several reasons why liquidity in the market for longer-term in-

terbank funding can deteriorate. For instance, banks may refrain from lending long-term for

precautionary reasons, if they fear adverse shocks to their own funding situation, or for spec-

ulative reasons, if they anticipate possible fire-sales of assets by other financial institutions.3

Rather than modeling these mechanisms directly, we posit a “residual” factor that captures

the component of the LIBOR-OIS spread that is not due to default risk. To the extent that

liquidity effects are correlated with default risk, the residual factor captures the component of

liquidity that is unspanned by default risk.

Since a long-term IRS-OIS spread reflects expectations about future short-term LIBOR-

OIS spreads, the term structure of IRS-OIS spreads reflects the term structures of the default

and non-default components of LIBOR-OIS spreads. To infer the default component, we

use information from the credit default swap (CDS) market. At each observation date, we

construct a CDS spread term structure for an average panel bank as a composite of the CDS

spread term structures for the individual panel banks. Assuming that CDS spreads are pure

measures of default risk of the underlying entities, the CDS spread term structure for an

average panel bank identifies the process driving the risk of credit quality deterioration.

Our model is set within a general affine framework. Depending on the specification, two

factors drive the OIS term structure, one or two factors drive the default component of LIBOR-

OIS spreads (i.e., the risk of credit quality deterioration), and one or two factors drive the

non-default component of LIBOR-OIS spreads. The model is highly tractable with analytical

expressions for LIBOR, OIS, IRS, and CDS. In valuing swap contracts, we match as closely

as possible current market practice regarding collateralization.

We apply the model to study interbank risk from the onset of the financial crisis in August

2007 until January 2011. We utilize a panel data set consisting of term structures of OIS rates,

IRS-OIS spreads indexed to 3M and 6M LIBOR, and CDS spreads – all with maturities up to

10Y. The model is estimated by maximum likelihood in conjunction with the Kalman filter.

We conduct a specification analysis, which shows that a specification with two factors

driving the OIS term structure, two factors driving the default component of the LIBOR-OIS

spread, and one factor driving the non-default component of the LIBOR-OIS spread has a

3The precautionary motive for cash hoarding is modeled by Allen, Carletti, and Gale (2009) and Acharya

and Skeie (2010), while the speculative motive for cash hoarding is modeled by Acharya, Gromb, and Yorul-

mazer (2007), Acharya, Shin, and Yorulmazer (2010) and Diamond and Rajan (2010). A recent model by Gale

and Yorulmazer (2011) features both the precautionary and speculative motive for cash holdings.

3



satisfactory fit to the data, while being fairly parsimonious. We then use this specification to

decompose the term structure of interbank risk into default and non-default components. We

find that, on average, the fraction of total interbank risk due to default risk increases with

maturity. At the short end of the term structure, the non-default component is important in

the first half of the sample period, while at longer maturities, the default component is the

dominant driver of interbank risk throughout the sample period.

To understand the determinants of the non-default component of interbank risk, we relate

the residual factor to a number of proxies for funding liquidity and market liquidity, which

tend to be highly intertwined (Brunnermeier and Pedersen (2009)). Given its over-the-counter

structure, we do not have liquidity measures specific to the unsecured interbank term funding

market. Instead, we consider two liquidity measures for the related secured term funding

market: the spread between 3M Agency MBS and Treasury repo rates and the liquidity factor

from Fontaine and Garcia (2011). We also consider several market liquidity measures: the

Treasury market liquidity factor from Hu, Pan, and Wang (2010), the Refcorp-Treasury bond

yield spread suggested by Longstaff (2004), and two corporate bond market liquidity factors

from Dick-Nielsen, Feldhutter, and Lando (2012). Our residual factor is significantly related to

the components of the liquidity measures, which are unspanned by interbank default risk, with

the R2 reaching 64 percent in a multivariate regression specification.4 This strongly suggests

that the non-default component of interbank risk largely captures liquidity effects not spanned

by default risk.

We also provide tentative evidence on the pricing of interbank risk in the interest rate

swap market. We find that swap market participants require compensation for exposure to

variation in interbank default risk, while we are not able to reliably estimate the compensation

required for exposure to the residual factor. This implies that in the first half of the sample

period, when the non-default component dominates, the overall compensation for variation in

interbank risk is low. In contrast, in the second half of the sample period, when the default

component dominates, the overall compensation for variation in interbank risk is significant.

For instance, the instantaneous Sharpe ratio of being long the 5Y IRS-OIS spread (for the IRS

indexed to 3M LIBOR) is estimated to have averaged 0.35 from early 2009 to the end of the

sample period.

4For each liquidity measure, the component that is unspanned by interbank default risk is given by the

residual from a regression of the liquidity measure on the first two principal components of the composite CDS

term structure.
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We perform a variety of robustness checks, which show that the results hold true for

alternative model parameterizations and measures of interbank default risk. By using CDS

spreads to identify the default component of interbank risk, our approach is reminiscent of

Longstaff, Mithal, and Neis (2005), Blanco, Brennan, and Marsh (2005), Beber, Brandt, and

Kavajecz (2009), and Ang and Longstaff (2011), among others, who use CDS spreads as pure

measures of default risk. However, a number of recent papers have found that CDS spreads

may be affected by liquidity effects.5 Since we mostly use CDS contracts written on large

financial institutions, which are among the most liquid contracts in the CDS market, and

since we aggregate individual CDS spreads, which reduces the effect of idiosyncratic noise in

the individual CDS spreads, we believe it is reasonable to use the composite CDS spreads

to measure default risk. Nevertheless, we consider two alternative measures of default risk

that correct for possible liquidity effects. First, we measure default risk by 90 percent of the

composite CDS spreads, which, given the results in Buhler and Trapp (2010), seems to be a

reasonable lower bound on the default component of CDS spreads. And, second, we measure

default risk by composite CDS spreads constructed solely from the banks with the most liquid

CDS contracts. None of these alternative measures substantially change the decomposition of

the term structure interbank risk.

We also address concerns about the integrity of LIBOR during parts of the sample period.6

Note, first, that the procedure for computing LIBOR as well as governance mechanisms in-

tended to identify anomalous rates should minimize the impact of possible strategic behavior

by certain market participants.7 Note, second, that even if LIBOR were affected, this is un-

likely to impact our results, since interbank risk is primarily inferred from the cross-section of

swap rates, which are determined in highly competitive markets. Instead, idiosyncratic varia-

tion in LIBOR rates will show up as a pricing error in our Kalman filter setting. Nonetheless,

5See, e.g., Buhler and Trapp (2010) and Bongaerts, de Jong, and Driessen (2011). While it is possible that

CDS spreads are also affected by counterparty risk, Arora, Gandhi, and Longstaff (2009) find that this effect is

minimal, which is consistent with the widespread use of collateralization and netting agreements.

6The issue is whether certain banks strategically manipulated their LIBOR quotes to signal information about

their credit quality or liquidity needs or to influence LIBOR to benefit positions in LIBOR-linked instruments.

7Indeed, a Bank of International Settlements study finds that “available data do not support the hypothesis

that contributor banks manipulated their quotes to profit from positions based on fixings”, see Gyntelberg and

Wooldridge (2008, p. 70). Likewise, an IMF study finds that “it appears that U.S. dollar LIBOR remains an

accurate measure of a typical creditworthy bank’s marginal cost of unsecured U.S. dollar term funding”, see

IMF (2008, p. 76).
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as an additional check, we reestimate the model using only swap rates but find no significant

changes to the results.

Throughout, we also report results for the EUR market. Not only does this serve as an

additional robustness check, but this market is interesting in its own right. First, by several

measures, the market is even larger than the USD market. Second, the structure of the

EUR market is such that the reference overnight rate in an OIS exactly matches the average

cost of unsecured overnight funding of EURIBOR (the EUR equivalent of LIBOR) panel

banks, providing a check of this assumption. And, third, the main shocks to the interbank

money market in the second half of the sample period emanated from the Eurozone with its

sovereign debt crisis. Indeed, we find that EUR interbank risk is generally higher than USD

interbank risk in the second half of the sample period, while the opposite is true in the first

half. Nevertheless, results on the decomposition of interbank risk, the drivers of the residual

factor, and the risk compensation in the swap market are quite similar to the USD market.

Our analysis has several practical applications. First, the framework could be a valuable

tool for central banks and regulatory authorities, as it provides market expectations about

future stress in the interbank money market. In addition, the decomposition into default and

non-default (liquidity) components can help guide appropriate policy responses (recapitaliza-

tion of banks, termination/introduction of central bank lending facilities, etc). For instance,

our analysis suggests that policy responses in the aftermath of the Lehman Brothers default

were effective at resolving liquidity issues in the interbank market, but have been less effective

at addressing default risk, particularly at longer horizons.8

Second, the model has implications for pricing, hedging, and risk-management in the in-

terest rate swap market. Since the onset of the credit crisis, market participants have been

exposed to significant basis risk : swap cash flows are indexed to LIBOR but, because of collat-

eral agreements, are discounted using rates inferred from the OIS market. Furthermore, swap

portfolios at most financial institutions are composed of swap contracts indexed to LIBOR

rates of various maturities creating another layer of basis risks. Our model provides a useful

framework for managing overall interest rate risk and these basis risks in an integrated way.

Our paper is related to Collin-Dufresne and Solnik (2001), who study the term structure

of spreads between yields on corporate bonds issued by LIBOR banks and IRS rates. In their

8From a regulatory standpoint, the framework could also prove helpful in determining the right discount

curve for the valuation of long-term insurance liabilities, where discount factors are typically allowed to include

a liquidity component but not a default risk component.
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model, a spread arises because bond yields reflect the possibility of deterioration in the credit

quality of current LIBOR banks relative to that of future LIBOR banks. As described above,

in our model a similar mechanism underlies the default component of LIBOR-OIS and IRS-

OIS spreads. Our paper is also related to Liu, Longstaff, and Mandell (2006), Johannes and

Sundaresan (2007), and Feldhutter and Lando (2008), who study the term structure of spreads

between IRS rates and Treasury yields.9 Our paper has a different focus than these papers

and also has the methodological advantage of not using bonds, the prices of which were heavily

influenced by liquidity issues during the financial crisis. By only considering swap contracts,

we expect liquidity to be less of an issue and to be more uniform across instruments leading

to a clean decomposition of the term structure of interbank risk.

A number of papers have analyzed the 3M LIBOR-OIS spread and attempted to decompose

it into default and liquidity components. These papers include Schwartz (2010), Taylor and

Williams (2009), McAndrews, Sarkar, and Wang (2008), Michaud and Upper (2008), and

Eisenschmidt and Tapking (2009). They all study the early phase of the financial crisis before

the collapse of Lehman Brothers and find, with the exception of Taylor and Williams (2009),

that liquidity was a key driver of interbank risk during this period. We find a similar result

for the short end of the term structure of interbank risk. However, at the longer end of the

term structure of interbank risk, default risk appears to have been the dominant driver even

during the early phase of the financial crisis, underscoring the importance of taking the entire

term structure into account when analyzing interbank risk.10

Several papers including Bianchetti (2009), Fujii, Shimada, and Takahashi (2009), Hen-

rard (2009), and Mercurio (2009, 2010) have developed pricing models for interest rate deriva-

tives that take the stochastic IRS-OIS spread into account. These are highly reduced-form

models in that swap spreads indexed to different LIBOR rates are modeled independently of

each other and also not decomposed into different components. In contrast, we provide a uni-

fied model of all such spreads, making it possible to aggregate the risks of large swap portfolios

9Feldhutter and Lando (2008) allow for a non-default component in the spread between LIBOR and the

(unobservable) risk-free rate, which they argue is related to hedging flows in the IRS market. One shortcoming

of their model, when applied to crisis data, is that it does not allow for credit quality deterioration in the

valuation of LIBOR loans.

10Smith (2010) studies LIBOR-OIS spreads of maturities up to 12M within a dynamic term structure model

and attributes the most of the variation in spreads to variation in risk-premia. A somewhat problematic aspect

of her analysis is that the default component of LIBOR-OIS spreads is identified by the spread between LIBOR

and repo rates, which clearly contains a significant liquidity component during much of the period.
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and analyze their underlying determinants.

The rest of the paper is organized as follows: Section 2 describes the market instruments.

Section 3 describes the model of the term structure of interbank risk. Section 4 discusses

the data and the estimation approach. Section 5 presents the results. Section 6 considers a

variety of robustness checks. Section 7 concludes, and several appendices, including an online

appendix, contain additional material.

2 Market instruments

We describe the market instruments that we use in the paper. We first consider the basic

reference rates and then a variety of swap contracts that are indexed to these reference rates.

2.1 Reference rates

A large number of fixed income contracts are tied to an interbank offered rate. The main

reference rate in the USD-denominated fixed income market is the USD London Interbank

Offered Rate (LIBOR), while in the EUR-denominated fixed income market it is the European

Interbank Offered Rate (EURIBOR).11 Both LIBOR and EURIBOR are trimmed averages of

rates submitted by sets of banks. In the case of LIBOR, each contributor bank bases its

submission on the question at what rate could you borrow funds, were you to do so by asking

for and then accepting interbank offers in a reasonable market size. In the case of EURIBOR,

the wording is slightly different and each contributor bank submits the rates at which euro

interbank term deposits are being offered within the euro zone by one prime bank to another.

Therefore, LIBOR is an average of the rates at which banks believe they can obtain unsecured

funding, while EURIBOR is an average of the rates at which banks believe a prime bank can

obtain unsecured funding. This subtle difference becomes important when quantifying the

degree of default risk inherent in the two rates. Both rates are quoted for a range of terms,

with 3M and 6M being the most important and most widely followed. In the following, we let

L(t, T ) denote the (T − t)-maturity LIBOR or EURIBOR rate that fixes at time t.

For both LIBOR and EURIBOR, contributor banks are selected based on their credit

quality and the scale of their market activities. During our sample period, the LIBOR panel

11LIBOR is managed by the British Bankers’ Association, while EURIBOR is managed by the European

Banking Federation. There also exists a EUR LIBOR, although this rate has not received the same benchmark

status as EURIBOR.
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consisted of 16 banks, while the EURIBOR panel was significantly larger and consisted of 42

banks.12 An important feature of both panels is that they are reviewed and revised periodically.

A bank that experiences a significant deterioration in its credit quality (and/or its market

share) will be dropped from the panel and be replaced by a bank with superior credit quality.

An increasing number of fixed income contracts are tied to an index of overnight rates. In

the USD market, the benchmark is the effective Federal Funds (FF) rate, which is a transaction-

weighted average of the rates on overnight unsecured loans of reserve balances held at the

Federal Reserve that banks make to one another. In the EUR market, the benchmark is the

Euro Overnight Index Average (EONIA) rate, computed as a transaction-weighted average

of the rates on all overnight unsecured loans in the interbank money market initiated by

EURIBOR panel banks. Therefore, in the EUR market, the benchmark overnight rate reflects

the average cost of unsecured overnight funding of panel banks. We assume that the same

holds for the USD market, although the set of banks from which the effective Federal Funds

rate is computed does not exactly match the LIBOR panel.13

For the sake of convenience we will from now on use “LIBOR” as a generic term for

an interbank offered rate, comprising both LIBOR and EURIBOR, whenever there is no

ambiguity.

2.2 Pricing collateralized contracts

Swap contracts between major financial institutions are virtually always collateralized to the

extent that counterparty risk is negligible.14 In this section, we provide the generic pricing

formula of collateralized cashflows that we will use below to price swap contracts.15 Consider

a contract with a contractual nominal cashflow X at maturity T . Its present value at t < T

is denoted by V (t). We assume that the two parties in the contract agree on posting cash-

collateral on a continuous marking-to-market basis. We also assume that, at any time t < T ,

12After the end of our sample period, the USD LIBOR panel was expanded to 20 banks and the EURIBOR

panel was expanded to 44 banks.

13Participants in the Federal Funds market are those with accounts at Federal Reserve Banks, which include

US depository institutions, US branches of foreign banks, and government-sponsored enterprises.

14Even in the absence of collateralization, counterparty risk usually has only a very small effect on the

valuation of swap contracts; see, e.g., Duffie and Huang (1996). This led to the approach to interest rate swap

pricing in Duffie and Singleton (1997).

15Similar formulas have been derived in various contexts by Johannes and Sundaresan (2007), Fujii, Shimada,

and Takahashi (2009), and Piterbarg (2010).
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the posted amount of collateral equals 100% of the contract’s present value V (t). The receiver

of the collateral can invest it at the risk-free rate r(t) and has to pay an agreed rate rc(t) to

the poster of collateral. The present value thus satisfies the following integral equation

V (t) = EQ
t

[
e−

∫ T
t

r(s)dsX +

∫ T

t

e−
∫ u

t
r(s)ds (r(u) − rc(u))V (u) du

]
, (1)

where EQ
t ≡ EQ[· | Ft] denotes conditional expectation under the risk-neutral measure Q.16

It is shown in Appendix A that this implies the pricing formula

V (t) = EQ
t

[
e−

∫ T
t

rc(s)dsX
]
. (2)

For X = 1, we obtain the price of a collateralized zero-coupon bond

Pc(t, T ) = EQ
t

[
e−

∫ T
t

rc(s)ds
]
. (3)

In the sequel, we assume that the collateral rate rc(t) is equal to an instantaneous proxy L(t, t)

of the overnight rate, which we define as

rc(t) = L(t, t) = lim
T→t

L(t, T ). (4)

In reality, best practice among major financial institutions is daily mark-to-market and

adjustment of collateral. Furthermore, cash collateral is the most popular form of collateral,

since it is free from the issues associated with rehypothecation and allows for faster settlement

times. Finally, FF and EONIA are typically the contractual interest rates earned by cash

collateral in the USD and EUR markets, respectively. The assumptions we make above,

therefore, closely approximate current market reality.17

2.3 Interest rate swaps (IRS)

In a regular interest rate swap (IRS), counterparties exchange a stream of fixed-rate payments

for a stream of floating-rate payments indexed to LIBOR of a particular maturity. More

specifically, consider two discrete tenor structures

t = t0 < t1 < · · · < tN = T (5)

16Throughout, we assume a filtered probability space (Ω,F ,Ft, Q), where Q is a risk-neutral pricing measure.

17ISDA (2010) is a detailed survey of current market practice. Further evidence for the pricing formula

given in this section is provided by Whittall (2010), who reports that the main clearing-house of interbank

swap contracts now uses discount factors extracted from the OIS term structure to discount collateralized swap

cashflows.
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and

t = T0 < T1 < · · · < Tn = T, (6)

and let δ = ti − ti−1 and ∆ = Ti −Ti−1 denote the lengths between tenor dates, with δ < ∆.18

At every time ti, i = 1, ..., N , one party pays δL(ti−1, ti), while at every time Ti, i = 1, ..., n,

the other party pays ∆K, where K denotes the fixed rate on the swap. The swap rate,

IRSδ,∆(t, T ), is the value of K that makes the IRS value equal to zero at inception and is

given by

IRSδ,∆(t, T ) =

∑N
i=1E

Q
t

[
e−

∫ ti
t rc(s)dsδL(ti−1, ti)

]

∑n
i=1 ∆Pc(t, Ti)

. (7)

In the USD market, the benchmark IRS pays 3M LIBOR floating vs. 6M fixed, while in the

EUR market, the benchmark IRS pays 6M EURIBOR floating vs. 1Y fixed. Rates on IRS

indexed to LIBOR of other maturities are obtained via basis swaps as discussed below.

2.4 Basis swaps (BS)

In a basis swap (BS), counterparties exchange two streams of floating-rate payments indexed

to LIBOR of different maturities, plus a stream of fixed payments. The quotation convention

for basis swaps differs across brokers, across markets, and may also have changed over time.19

However, as demonstrated in the online appendix, the differences between the conventions are

negligible. Consider a basis swap in which one party pays the δ1-maturity LIBOR while the

other party pays the δ2-maturity LIBOR with δ1 < δ2. We use the quotation convention in

which the basis swap rate, BSδ1,δ2(t, T ), is given as the difference between the fixed rates on

two IRS indexed to δ2- and δ1-maturity LIBOR, respectively. That is,

BSδ1,δ2(t, T ) = IRSδ2,∆(t, T ) − IRSδ1,∆(t, T ). (8)

This convention has the advantage that rates on non-benchmark IRS are very easily obtained

via basis swaps.

2.5 Overnight indexed swaps (OIS)

In an overnight indexed swap (OIS), counterparties exchange a stream of fixed-rate payments

for a stream of floating-rate payments indexed to a compounded overnight rate (FF or EONIA).

18In practice, the length between dates will vary slightly depending on the day-count convention. To simplify

notation, we suppress this dependence.

19We thank Fabio Mercurio for discussions about basis swap market conventions.
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More specifically, consider the tenor structure (6) with ∆ = Ti − Ti−1.
20 At every time Ti,

i = 1, ..., N , one party pays ∆K, while the other party pays ∆L(Ti−1, Ti), where L(Ti−1, Ti)

is the compounded overnight rate for the period [Ti−1, Ti]. This rate is given by

L(Ti−1, Ti) =
1

∆




Ki∏

j=1

(1 + (tj − tj−1)L(tj−1, tj)) − 1


 , (9)

where Ti−1 = t0 < t1 < · · · < tKi
= Ti denotes the partition of the period [Ti−1, Ti] into

Ki business days, and L(tj−1, tj) denotes the respective overnight rate. As in Andersen and

Piterbarg (2010, Section 5.5), we approximate simple by continuous compounding and the

overnight rate by the instantaneous rate L(t, t) given in (4), in which case L(Ti−1, Ti) becomes

L(Ti−1, Ti) =
1

∆

(
e
∫ Ti

Ti−1
rc(s)ds

− 1

)
. (10)

The OIS rate is the value of K that makes the OIS value equal to zero at inception and is

given by

OIS(t, T ) =

∑n
i=1E

Q
t

[
e−

∫ Ti
t rc(s)ds∆L(Ti−1, Ti)

]

∑n
i=1 ∆Pc(t, Ti)

=
1 − Pc(t, Tn)∑n
i=1 ∆Pc(t, Ti)

. (11)

In both the USD and EUR markets, OIS payments occur at a 1Y frequency, i.e. ∆ = 1. For

OISs with maturities less than one year, there is only one payment at maturity.

2.6 The IRS-OIS spread

Combining (7) and (11), a few calculations yield

IRSδ,∆(t, T ) −OIS(t, T ) =

∑N
i=1E

Q
t

[
e−

∫ ti
t rc(s)dsδ

(
L(ti−1, ti) −OIS(ti−1, ti)

)]

∑n
i=1 ∆Pc(t, Ti)

. (12)

This equation shows that the spread between the rates on, say, a 5Y IRS indexed to δ-

maturity LIBOR and a 5Y OIS reflects (risk-neutral) expectations about future δ-maturity

LIBOR-OIS spreads during the next 5 years.21 To the extent that the LIBOR-OIS spread

20In contrast to an IRS, an OIS typically has fixed-rate payments and floating-rate payments occurring at

the same frequency.

21Note that (12) only holds true if the fixed payments are made with the same frequency in the two swaps,

which is the case in the EUR market but not in the USD market. For the more general case, suppose that the

payments in the OIS are made on the tenor structure t = T ′
0 < T ′

1 < · · · < T ′
n′ = T , with ∆′ = T ′

i −T ′
i−1. Then

one can show that (12) holds with OIS(ti−1, ti) replaced by w(t)OIS(ti−1, ti), where w(t) =
∑

n

i=1
∆Pc(t,Ti)∑

n′

i=1
∆′Pc(t,T ′

i
)
.

In the USD market, where ∆ = 1/2 and ∆′ = 1, w(t) is always very close to one and (12) holds up to a very

small approximation error.
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measures short-term interbank risk, the IRS-OIS spread reflects expectations about future

short-term interbank risks – more specifically, about short-term interbank risks among the

banks that constitute the LIBOR panel at future tenor dates, which may vary due to the

periodic updating of the LIBOR panel. Consequently, we refer to the term structure of IRS-

OIS spreads as the term structure of interbank risk.

2.7 Credit default swaps (CDS)

In a credit default swap (CDS), counterparties exchange a stream of coupon payments for a

single default protection payment in the event of default by a reference entity. As such, the

swap comprises a premium leg (the coupon stream) and a protection leg (the contingent default

protection payment). More specifically, consider the tenor structure (5) and let τ denote the

default time of the reference entity.22 The present value of the premium leg with coupon rate

C is given by

Vprem(t, T ) = C I1(t, T ) + C I2(t, T ),

where C I1(t, T ) with

I1(t, T ) = EQ
t

[
N∑

i=1

e−
∫ ti
t rc(s)ds(ti − ti−1)1{ti<τ}

]
(13)

is the value of the coupon payments prior to default time τ , and C I2(t, T ) with

I2(t, T ) = EQ
t

[
N∑

i=1

e−
∫ τ
t

rc(s)ds(τ − ti−1)1{ti−1<τ≤ti}

]
(14)

is the accrued coupon payment at default time τ . The present value of the protection leg is

Vprot(t, T ) = EQ
t

[
e−

∫ τ

t
rc(s)ds (1 −R(τ)) 1{τ≤T}

]
, (15)

where R(τ) denotes the recovery rate at default time τ . The CDS spread, CDS(t, T ), is the

value of C that makes the premium and protection leg equal in value at inception and is given

22CDS contracts are traded with maturity dates falling on one of four roll dates, March 20, June 20, September

20, or December 20. At initiation, therefore, the actual time to maturity of a CDS contract will be close to, but

rarely the same as, the specified time to maturity. Coupon payments are made on a quarterly basis coinciding

with the CDS roll dates.
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by23

CDS(t, T ) =
Vprot(t, T )

I1(t, T ) + I2(t, T )
.

3 Modeling the term structure of interbank risk

We describe our model of the term structure of interbank risk. We first consider the general

framework and then specialize to a tractable model with analytical pricing formulas.

3.1 The general framework

Rather than modeling the funding costs of individual panel banks, we consider an average

bank which represents the panel at a given point in time. More specifically, we assume the

extended doubly stochastic framework provided in Appendix B below, where for any t0 ≥ 0,

the default time of an average bank within the t0-panel is modeled by some random time

τ(t0) > t0. This default time admits a nonnegative intensity process λ(t0, t), for t > t0, with

initial value λ(t0, t0) = Λ(t0). In other words, at a given point in time t > t0, Λ(t) is the

average default intensity of the current t-panel, while λ(t0, t) is the default intensity of an

average bank within the initial t0-panel.

In view of the doubly stochastic property (39), the time t0-value of an unsecured loan with

notional 1 to an average bank within the t0-panel over period [t0, T ] equals

B(t0, T ) = EQ
t0

[
e
−
∫ T

t0
r(s)ds

1{τ(t0)>T}

]
= EQ

t0

[
e
−
∫ T

t0
(r(s)+λ(t0 ,s))ds

]
. (16)

Note that here we assume zero recovery of interbank loans, which is necessary to keep the

subsequent affine transform analysis tractable.24 Absent market frictions, the (T−t0)-maturity

LIBOR rate L(t0, T ) satisfies 1 + (T − t0)L(t0, T ) = 1/B(t0, T ).

In practice, LIBOR may be affected by factors not directly related to default risk. For in-

stance, banks may refrain from lending long-term for precautionary reasons as in the models of

Allen, Carletti, and Gale (2009) and Acharya and Skeie (2010), or for speculative reasons as in

23While these “par spreads” are quoted in the market, CDS contracts have been executed since 2009 with a

standardized coupon and an upfront payment to compensate for the difference between the par spread and the

coupon. However, our CDS database consists of par spreads throughout the sample period.

24Alternatively, we could follow Duffie and Singleton (1999) and let λ(t0, s) = h(t0, s)l(t0, s) be the product

of a default intensity process, h(t0, s), and a fractional default loss process, l(t0, s). That is, l(t0, s) ∈ [0, 1]

defines the fraction of market value of the loan that is lost upon default.
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the models of Acharya, Gromb, and Yorulmazer (2007), Acharya, Shin, and Yorulmazer (2010),

and Diamond and Rajan (2010). Either way, the volume of longer term interbank loans de-

creases and the rates on such loans increase beyond the levels justified by default risk. We

allow for a non-default component in LIBOR by setting

L(t0, T ) =
1

T − t0

(
1

B(t0, T )
− 1

)
Ξ(t0, T ), (17)

where Ξ(t0, T ) is a multiplicative residual term that satisfies

lim
T→t0

Ξ(t0, T ) = 1.

It follows from (4) that the collateral rate rc(t0) becomes

rc(t0) = lim
T→t0

1

T − t0

(
1

B(t0, T )
− 1

)
Ξ(t0, T ) = −

d

dT
B(t0, T )|T=t0 = r(t0) + Λ(t0). (18)

Combining (11) (in the case of a single payment) and (17), we get the following expression

for the LIBOR-OIS spread

L(t0, T )−OIS(t0, T ) =
1

T − t0

([
1

B(t0, T )
−

1

Pc(t0, T )

]
+

[(
1

B(t0, T )
− 1

)
(Ξ(t0, T ) − 1)

])
.

(19)

The first bracketed term in (19) is the default component. The periodic updating of the

LIBOR panel implies that λ(t0, t) ≥ Λ(t), for t > t0. From (16) and (3) in conjunction with

(18) it follows that B(t0, T ) > Pc(t0, T ), which implies that the default component is positive.

The second bracketed term in (19) is the non-default component, which is positive provided

that Ξ(t0, T ) > 1.

For the analysis, we also need expressions for the CDS spreads of an average bank within

the t0-panel. The factors I1(t0, T ) and I2(t0, T ) in the present value of the premium leg given

in (13) and (14) become

I1(t0, T ) =
N∑

i=1

(ti − ti−1)E
Q
t0

[
e−

∫ ti
t0

rc(s)ds1{ti<τ(t0)}

]
=

N∑

i=1

(ti − ti−1)E
Q
t0

[
e−

∫ ti
t0

(rc(s)+λ(t0,s))ds

]

(20)

and25

I2(t0, T ) =

N∑

i=1

EQ
t0

[
e−

∫ τ(t0)
t0

rc(s)ds(τ(t0) − ti−1)1{ti−1<τ(t0)≤ti}

]

=

N∑

i=1

∫ ti

ti−1

(u− ti−1)E
Q
t0

[
e
−
∫ u
t0

(rc(s)+λ(t0,s))ds
λ(t0, u)

]
du.

(21)

25Here we use the fact that, using the terminology of Appendix B below, e
−
∫

u

t0
λ(t0,s)ds

λ(t0, u) is the F∞∨Ht0 -

conditional density function of τ (t0), see e.g. Filipović (2009, Section 12.3).
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In line with the assumption of zero recovery of interbank loans in the derivation of (16), we

shall assume zero recovery for the CDS protection leg. Its present value (15) thus becomes

Vprot(t0, T ) = EQ
t0

[
e−

∫ τ(t0)
t0

rc(s)ds1{τ(t0)≤T}

]
=

∫ T

t0

EQ
t0

[
e
−
∫ u
t0

(rc(s)+λ(t0,s))ds
λ(t0, u)

]
du. (22)

3.2 An affine factor model

We now introduce an affine factor model of r(t), the intensities Λ(t) and λ(t0, t), and the

residual Ξ(t0, T ). We assume that the risk-free short rate, r(t), is driven by a two-factor

Gaussian process26

dr(t) = κr(γ(t) − r(t)) dt + σr dWr(t)

dγ(t) = κγ(θγ − γ(t)) dt + σγ

(
ρ dWr(t) +

√
1 − ρ2 dWγ(t)

)
,

(23)

where γ(t) is the stochastic mean-reversion level of r(t), and ρ is the correlation between

innovations to r(t) and γ(t).

We have investigated several specifications for the average default intensity of the period-

ically refreshed panel, Λ(t). In the interest of parsimony, we assume that Λ(t) is constant

Λ(t) ≡ Λ.

In Section 6, we analyze a setting, where Λ(t) is stochastic. This adds complexity to the model

without materially affecting the results.

The default intensity of an average bank within the t0-panel, λ(t0, t), is modeled by

λ(t0, t) = Λ +

∫ t

t0

κλ(Λ − λ(t0, s)) ds +

N(t)∑

j=N(t0)+1

Zλ,j , (24)

where N(t) is a simple counting process with jump intensity ν(t) and Zλ,1, Zλ,2, . . . are i.i.d.

exponential jump sizes with mean 1
ζλ

. That is, we assume that deterioration in the credit

quality of an average bank within the t0-panel relative to the average credit quality of the

periodically refreshed panel occurs according to a jump process. The first jump time of λ(t0, t)

is interpreted as the time, when the bank is dropped from the panel. Between jumps, we allow

for λ(t0, t) to mean-revert towards Λ.27

26The model is equally tractable with r(t) being driven by a two-factor square-root process. While this may

seem more appropriate given the low interest rate environment during much of the sample period, we found

that the fit to the OIS term structure is slightly worse with this specification. Nevertheless, the decomposition

of the term structure of interbank risk is almost identical for two specifications.

27In Section 6, we explore an alternative specification, where deterioration in credit quality is permanent.
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The intensity of credit quality deterioration, ν(t), is stochastic and evolves according to

either a one-factor square-root process

dν(t) = κν(θν − ν(t)) dt + σν

√
ν(t) dWν(t), (25)

or a two-factor square-root process

dν(t) = κν(µ(t) − ν(t)) dt + σν

√
ν(t) dWν(t)

dµ(t) = κµ(θµ − µ(t)) dt + σµ

√
µ(t) dWµ(t),

(26)

where µ(t) is the stochastic mean-reversion level of ν(t).

Finally, the multiplicative residual term, Ξ(t0, T ), is modeled by28

1

Ξ(t0, T )
= EQ

t0

[
e
−
∫ T
t0

ξ(s)ds

]
, (27)

where ξ(t) evolves according to either a one-factor square-root process

dξ(t) = κξ(θξ − ξ(t)) dt + σξ

√
ξ(t) dWξ(t), (28)

or a two-factor square-root process

dξ(t) = κξ(ǫ(t) − ξ(t)) dt + σξ

√
ξ(t) dWξ(t)

dǫ(t) = κǫ(θǫ − ǫ(t)) dt + σǫ

√
ǫ(t) dWǫ(t),

(29)

where ǫ(t) is the stochastic mean-reversion level of ξ(t).

In the following, we will use the notation A(X,Y,Z) to denote a specification where r(t),

ν(t), and ξ(t) are driven by X, Y , and Z factors, respectively. We analyze three progressively

more complex model specifications: A(2,1,1), where the state vector is given by (23), (25), and

(28), A(2,2,1), where the state vector is given by (23), (26), and (28), and A(2,2,2), where the

state vector is given by (23), (26), and (29). All specifications have analytical pricing formulas

for LIBOR, OIS, IRS, and CDS. These formulas are given in Appendix C, which also contains

sufficient admissability conditions on the parameter values (Lemma C.4).

For the empirical part, we also need the dynamics of the state vector under the objective

probability measure P ∼ Q. Given our relatively short sample period, we assume a parsimo-

nious market price of risk process

Γ(t) =
(
Γr,Γγ ,Γν

√
ν(t),Γµ

√
µ(t),Γξ

√
ξ(t),Γǫ

√
ǫ(t)
)⊤

(30)

28We specify Ξ(t0, T ) to be non-decreasing in T . This is consistent with the economic fact that in the

absence of negative rates the non-annualized LIBOR, (T − t0)L(t0, T ), which in our framework (17) factorizes

as (T − t0)L(t0, T ) =
(

1
B(t0,T )

− 1
)

Ξ(t0, T ), is non-decreasing in T .
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such that dW (t)−Γ(t) dt becomes a standard Brownian motion under P with Radon–Nikodym

density process29

dP

dQ
|Ft = exp

(∫ t

0
Γ(s)⊤dW (s) −

1

2

∫ t

0
‖Γ(s)‖2 ds

)
.

4 Data and estimation

We estimate the model on a panel data set that covers the period starting with the onset of

the credit crisis on August 09, 2007 and ending on January 12, 2011. We do not include the

pre-crisis period, given that a regime switch in the perception of interbank risk appear to have

occurred at the onset of the crisis, see Figure 1.

4.1 Interest rate data

The interest rate data is from Bloomberg. We collect daily OIS rates with maturities 3M, 6M,

1Y, 2Y, 3Y, 4Y, 5Y, 7Y, and 10Y.30 We also collect daily IRS and BS rates with maturities

of 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, and 10Y as well as 3M and 6M LIBOR and EURIBOR rates.

The rates on OIS, IRS, and BS are composite quotes computed from quotes that Bloomberg

collects from major banks and inter-dealer brokers.

In the USD market, the benchmark IRS is indexed to 3M LIBOR (with fixed-rate payments

occurring at a 6M frequency), and the rate on an IRS indexed to 6M LIBOR is obtained via

a BS as

IRS6M,6M(t, T ) = IRS3M,6M (t, T ) +BS3M,6M(t, T ). (31)

Conversely, in the EUR market, the benchmark IRS is indexed to 6M EURIBOR (with fixed-

rate payments occurring at a 1Y frequency), and the rate on an IRS indexed to 3M EURIBOR

is obtained via a BS as

IRS3M,1Y (t, T ) = IRS6M,1Y (t, T ) −BS3M,6M (t, T ). (32)

In the paper, we focus on the spreads between rates on IRS and OIS with the same

maturities. Therefore, for each currency and on each day in the sample, we have two spread

29We charge no explicit premium for the jump intensity and size risk of λ(t0, t) in (24).

30In Bloomberg, there is no USD 7Y OIS rate. Also, the time series for the USD 10Y OIS rate starts July

28, 2008.
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term structures given by

SPREADδ(t, T ) = IRSδ,∆(t, T ) −OIS(t, T ), (33)

for δ = 3M or δ = 6M and ∆ = 6M (1Y) in the USD (EUR) market.

Table 1 shows summary statistics of the data. For a given maturity, interest rate spreads

are always increasing in the tenor (the maturity of the LIBOR rate to which an IRS is indexed).

This is consistent with the idea that a 6M LIBOR loan contains more default and liquidity risk

than two consecutive 3M LIBOR loans. For a given tenor, the mean and volatility of spreads

decrease with maturity. While the mean spreads are similar across the two markets, spread

volatility tends to be higher in the USD market.

4.2 CDS spread data

The CDS data is from Markit, which is the leading provider of CDS quotes. Markit collects

quotes from major market participants and constructs daily composite quotes. Since data

supplied by Markit is widely used for marking-to-market CDS contracts, its quotes are closely

watched by market participants. For each bank in the LIBOR and EURIBOR panels, we

collect daily spread term structures for CDS contracts written on senior obligations. The term

structures consist of 6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, and 10Y maturities.

Tables 2 and 3 shows summary statistics for the CDS spreads of the constituents of the

LIBOR and EURIBOR panels, respectively.31 The tables also show the currency of the CDS

contracts32, the size of the banks’ balance sheets as reported in the 2009 annual reports, a

measure of liquidity of the CDS contracts, and the date from which CDS data is available in

the Markit database.

31During our sample period, there were no revisions to the LIBOR and EURIBOR panels. As mentioned in

Section 2.1, the EURIBOR panel consisted of 42 banks. Three of the smaller panel banks – Bank of Ireland,

Banque et Caisse d’Epargne de l’Etat, and Confederacion Espanola de Cajas de Ahorros – were not in the

Markit database.

32For European-based banks, the CDS contracts in the database supplied by Markit are denominated in

EUR and subject to the Modified-Restructuring (MR) clause. For US-based banks, the CDS contracts are

denominated in USD and subject to the MR clause until Dec 31, 2008 and the No-Restructuring (XR) clause

thereafter. Finally, for Japan-based banks, the CDS contracts are denominated in JPY until Dec 31, 2008

and USD thereafter, and are subject to the Complete-Restructuring (CR) clause. Even though the currency

denomination differs across CDS contracts, the CDS spreads are expressed as a rate and are, therefore, free of

units of account.
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Our measure of liquidity is the average daily trading volume in terms of notional, as

reported by the Depository Trust and Clearing Corporation (DTCC), a global repository that

records the details of virtually all CDS trades in the global market. The data covers the period

from June 20, 2009 to March 19, 2011 (data was not available prior to this period) and only

includes trading activity that involves a transfer of risk between market participants. Also,

the data only covers the top 1000 reference entities (in terms of the notional of outstanding

contracts) and some banks, particularly from the EURIBOR panel, are not covered (or only

covered during parts of the period, in which case we also do not report numbers).

We see that the LIBOR panel mainly consists of very large banks with significant trading

activity in their CDS contracts, although it also includes some medium-sized banks for which

the CDS contracts are traded less actively. For the EURIBOR panel, there is a larger cross-

sectional dispersion of the size of the member banks and the trading activity in their CDS

contracts, which is natural given that the panel consists of significantly more banks than the

LIBOR panel.

4.3 Measures of interbank default risk

To measure interbank default risk, we initially assume that CDS spreads are pure measures of

the default risk of the underlying entities. At each point in time, we construct a CDS spread

term structure for an average bank within the panel as a composite of the CDS spread term

structures for the individual panel banks.

The LIBOR panel As discussed in Section 2.1, LIBOR is a trimmed mean of the rates at

which banks estimate they can obtain unsecured funding for a given term. Since the submitted

rates depend on the banks’ own default risks, LIBOR itself presumably reflects a trimmed mean

of the default risks of the panel banks. Therefore, we measure the default risk of an average

bank within the LIBOR panel by aggregating the CDS spreads of the individual LIBOR panel

banks in the same way that LIBOR is computed from the submitted rates, namely by removing

the top and bottom 25 percent of spreads and computing a simple average of the remaining

spreads. The resulting default risk measure is denoted CDSTrMean.

The EURIBOR panel As we also discussed in Section 2.1, EURIBOR is a trimmed mean

of the rates at which banks estimate a prime bank (not necessarily themselves) can obtain

unsecured funding for a given term. While the notion of a prime bank is ambiguous, we
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interpret it as a representative bank among the panel. Since the median rather than the mean

seems to be the appropriate statistics in this case, it is plausible that the submitted rates

reflect what each bank perceives is the median default risk in the panel. Being a trimmed

mean of the submitted rates, EURIBOR itself then also reflects the median default risk in

the panel. Therefore, we measure the default risk of an average bank within the EURIBOR

panel by taking the median of the CDS spreads of the individual EURIBOR panel banks. We

denote this default risk measure CDSMedian.

Correcting for possible liquidity effects The assumption that CDS spreads are pure

measures of default risk is made in several papers, including Longstaff, Mithal, and Neis (2005),

Blanco, Brennan, and Marsh (2005), Beber, Brandt, and Kavajecz (2009), and Ang and

Longstaff (2011). However, a number of recent papers have found that CDS spreads may

be affected by liquidity effects. For instance, Buhler and Trapp (2010) find that, on average,

95 percent of the observed mid CDS spread is due to default risk, while the remaining is due

to liquidity risk and the correlation between default and liquidity risk. This implies that the

premium due to liquidity is earned by the seller of default protection and that CDS spreads

are upward-biased measures of default risk. Similar results are reached by Bongaerts, de Jong,

and Driessen (2011) and others.

In the case of LIBOR, liquidity may be less of an issue since the panel mainly consists of

banks with relatively liquid CDS contracts, and since we use a trimmed mean of the individual

CDS spreads, which reduces the effect of idiosyncratic noise at the level of the individual

spreads. In the case of EURIBOR, where there is larger cross-sectional dispersion in the

liquidity of the banks’ CDS contracts, and where we work with a median spread, liquidity

issues may be more important.

For both panels, we consider two alternative measures of default risks that correct for

possible liquidity effects. First, we measure default risk by 90 percent of the composite CDS

spreads, corresponding to a situation where protection sellers earn a significant liquidity pre-

mium. Given the results in Buhler and Trapp (2010), this is likely to be a lower bound on

the default component of CDS spreads. Second, we measure default risk by constructing the

composite CDS spreads as described above, but only using data from those banks where the

average daily notional of CDS transactions are larger than 50 million USD equivalent.33 In

33To put these numbers into perspective, we computed summary statistics for the trading activity among the

top 1000 reference entities that were not sovereigns. On a quarterly basis, the median varies between 15.0 and
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each market, the two alternative default risk measures are denoted CDSLIQ1 and CDSLIQ2.

iTraxx Senior Financials index As an alternative to computing composite CDS spreads

from the panel constituents, for the EUR market we also consider the iTraxx Senior Financials

CDS index. This index is quoted directly in the market and tracks the spreads on CDS

contracts written on senior obligations of 25 large European financial institutions. The index

tends to be more liquid than the individual contracts, but clearly both its construction and the

fact that some of the underlying institutions are not part of EURIBOR34 makes it an imperfect

measure of the default risk inherent in EURIBOR. Also, it is only available for maturities of

5Y and 10Y. Nevertheless, it serves as an interesting robustness check.

Summary statistics Table 1 shows summary statistics of the composite CDS spreads. On

average, the level of CDS spreads increase with maturity, while CDS spread volatility de-

crease with maturity. In the USD market, we have, on average, CDSLIQ1 < CDSTrMean <

CDSLIQ2, while in the EUR market, we have, on average, CDSLIQ1 < CDSLIQ2 < CDSMedian <

CDSiT raxx. The magnitudes of CDSTrMean in the USD market and CDSMedian in the EUR

market are rather similar despite the EURIBOR panel being composed of significantly more

banks than the LIBOR panel.

Our main sets of results will be based on the original default risk measures, while in

Section 6 we investigate the sensitivity of the results to taking possible CDS liquidity effects

into account.

4.4 Maximum-likelihood estimation

We estimate the specifications using maximum-likelihood in conjunction with Kalman filtering.

Due to the non-linearities in the relation between observations and state variables, we apply

the non-linear unscented Kalman filter, which is found by Christoffersen et al. (2009) to have

very good finite-sample properties in the context of estimating dynamic term structure models

with swap rates. Details on the estimation approach are provided in Appendix D.

In terms of identification, we face several issues. First, we show in the online appendix that

20.8 million USD, while the mean varies between 25.0 and 33.6 million USD. With a cutoff of 50 million USD,

we are clearly focusing on the most liquid segment of the CDS market.

34For instance, for the iTraxx series 14, launched in September 2010, 14 of the 25 financial institutions were

also members of the EURIBOR panel.
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it is very difficult to separately identify ζλ (with 1
ζλ

being the mean jump size in the default

intensity) and the process for ν(t) (the intensity of credit quality deterioration). Rather, it is

the mean rate of credit quality deterioration of an average panel bank, 1
ζλ
ν(t), that matters

for valuation. In the estimation, we fix ζλ at 10, but the implied process for the mean rate of

credit quality deterioration is invariant to the choice of ζλ.

Second, in a preliminary analysis, we find that it is difficult to reliably estimate the default

intensity of the periodically refreshed panel, Λ. Its value is not identified from the OIS term

structure and, in the absence of very short-term CDS spreads, is also hard to pin down from

the CDS term structure. From (4) and (18), we have that Λ is the difference between the

instantaneous proxy of the overnight unsecured interbank rate, L(t, t), and the truly risk-free

rate, r(t). Therefore, one can get an idea about the magnitude of Λ by examining the spread

between short-term OIS rates and repo rates, which are virtually riskfree due to the practice

of overcollateralization of repo loans; see, e.g., Longstaff (2000). The sample averages of the

1W OIS-repo spreads for Treasury, Agency, Agency MBS, and European general collateral

are 13 bp, 3 bp, -1 bp, and 0 bp, respectively.35 ,36 Plots of these spreads can be found in the

online appendix. In the case of Treasury collateral, the spread spikes at the beginning of the

crisis and around the Bear Stearns and Lehman Brothers episodes. However, movements in

the spread likely reflect periodic scarcity of Treasury collateral, rather than variation in default

risk, since the spikes are mostly due to downward spikes in the Treasury repo rate rather than

upward spikes in the OIS rate. Also, the correlation between the OIS-Treasury repo spread

and short-maturity (6M) bank CDS spreads is virtually zero.37 In the cases of Agency and

Agency MBS collateral, the spreads are volatile in the first half of the sample period, but

without systematic patterns around crisis events, while in the case of the EUR market, the

35For the EUR market, we use the Eurepo rate, which is a benchmark reflecting the rate on interbank

borrowing secured by “the best collateral within the most actively traded European repo market.”

36Similar results are obtained by examining the spreads between FF and overnight repo rates for Treasury,

Agency, and Agency MBS general collateral as well as the spread between EONIA and the overnight Eurepo

rate. The sample averages of these spreads are 15 bp, 5 bp, 2 bp, and 1 bp, respectively. Since overnight rates

are highly volatile with predictable liquidity-driven jumps (see, e.g., Bartolini et al. (2011)), we believe the 1W

OIS-repo spreads are more informative.

37In their analysis of the repo market, Hordahl and King (2008) also notes scarcity of Treasury collateral as

the main factor driving repo spreads: “As the available supply of Treasury collateral dropped, those market

participants willing to lend out Treasuries were able to borrow cash at increasingly cheap rates. At times, this

effect pushed US GC repo rates down to levels only a few basis points above zero”.
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spread is very stable throughout the sample period. Taken together, these results suggest that

there is very little default risk in the market for overnight interbank deposits. We fix Λ at 5

bp, but reasonable variations in the value of Λ do not change our results. In Section 6, we

show that our results are robust to extending the model with a stochastic Λ(t) identified via

OIS-Treasury repo spreads.

Third, given the relatively short sample period, many of the market price of risk parameters

are imprecisely estimated (in contrasts to the risk-neutral parameters, most of which are

strongly identified with low standard errors). For each model specification, we obtain a more

parsimonious risk premium structure by reestimating the model after setting to zero those

market price of risk parameters for which the absolute t-statistics did not exceed one.38 The

likelihood functions were virtually unaffected by this, so we henceforth study these constrained

model specifications.

5 Results

5.1 Maximum-likelihood estimates

Table 4 displays parameter estimates and their asymptotic standard errors.39 The estimates

are strikingly similar across the two markets and, therefore, we focus on the USD estimates.

In the A(2,2,1) and A(2,2,2) specifications, ν(t) is relatively volatile and displays fast mean-

reversion towards µ(t), which in turn is less volatile and has much slower mean-reversion.

Hence, ν(t) captures transitory shocks to the intensity of credit quality deterioration, while

µ(t) captures more persistent shocks. In the A(2,1,1) specification, the speed of mean-reversion

and volatility lie between those of ν(t) and µ(t) in the more general specifications. Also,

between jumps, the reversion of the default intensity towards Λ occurs relatively fast. Although

estimated with some uncertainty, the market prices of risk Γν and Γµ are negative in all

specifications. This implies that the long-run mean of credit quality deterioration is lower under

the physical measure than under the risk-neutral measure, indicating that market participants

require a premium for bearing exposure to variation in default risk.40 We return to this issue

38A similar approach is taken by Duffee (2002) and Dai and Singleton (2002) and others.

39It is straightforward to verify that for all the specifications, the parameter values satisfy the sufficient

admissability conditions in Lemma C.4 in the Appendix.

40In the A(2,1,1) specification, the long-run mean under the physical measure is given by θνκν/(κν − σνΓν),

while in the A(2,2,1) and A(2,2,2) specifications, it is given by θµκνκµ/ [(κν − σνΓν)(κµ − σµΓµ)].
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in Section 5.6.

In all specifications, the residual factor, ξ(t), is very volatile, exhibits very fast mean-

reversion, and has a long-run mean of essentially zero. In the A(2,2,2) specifications, ξ(t)

is mean-reverting towards ǫ(t) which is less volatile and has slower mean-reversion. Hence,

ξ(t) captures transitory shocks to the non-default component, while ǫ(t) captures moderately

persistent shocks. In none of the specifications, were we able to reliably estimate Γξ and Γǫ.

Consequently, these parameters were constrained to zero in our two-step estimation procedure.

5.2 State variables

Figure 2 displays the state variables for the three specifications estimated on USD data. The

corresponding figure for the EUR market is similar and available in the online appendix. It

is instructive to see the reaction of the state variables to the three most important shocks to

the interbank money market during the sample period: the Bear Stearns near-bankruptcy on

March 16, 2008, the Lehman Brothers bankruptcy on September 15, 2008, and the escalation

of the European sovereign debt crisis often marked by the downgrade of Greece’s debt to non-

investment grade status by Standard and Poor’s on April 27, 2010. The figure shows that ν(t)

increases leading up to the Bear Stearns near-default but quickly decreases after the take-over

by J.P. Morgan. If anything, the opposite is true of ξ(t). Immediately following the Lehman

default, ξ(t) spikes while ν(t) increases more gradually and does not reach its maximum until

March 2009. Finally, with the escalation of the European sovereign debt crisis, ν(t) increases

while ξ(t) does not react. These dynamics hold true regardless of the model specification and

suggest that an increase in the risk of credit quality deterioration was the main factor driving

interbank risk around the first and third episode, while an increase in risk factors not directly

related to default risk was the main driver in the aftermath of the Lehman default.

In order to better interpret the model’s implications for current and future interbank default

risk, we compute risk-neutral 3M and 6M expected default probabilities (EDPs) for an average

bank within the current panel as well as for an average bank within the refreshed panel in five

year’s time.41 These are displayed in Figure 3 for the USD market, with the corresponding

figure for the EUR market available in the online appendix. Taking the A(2,2,1) specification

as an example, over our sample period, the spot 3M EDP averaged 0.09 percent but peaked at

41Specifically, we compute EQ
t

[
1t<τ(t)≤t+∆}

]
and EQ

t

[
1T<τ(T )≤T+∆}

]
, where ∆ equals 3M or 6M and T

equals t plus 5Y. Both expressions have analytical solutions in our affine framework.
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0.32 percent in March 2009 (Panel A2). Because of mean-reversion in the intensity of credit

quality deterioration, the forward 3M EDP is much less volatile, averaging 0.07 percent and

peaking at 0.11 percent.42 Until the Lehman Brothers default, the term structure of EDPs

was mostly upward-sloping, implying that risk-neutral expectations were for interbank default

risk to increase in the future. This contrasts with the downward-sloping spread term structure

during this period (Figure 1), indicating an important role for non-default risk factors in

determining short-term spreads. From the Lehman Brothers default until Fall 2009, the term

structure of EDPs was downward-sloping, while it is again mostly upward-sloping during the

last part of the sample period.

Similar dynamics are observed for the 6M EDPs (Panel B2). Note that the risk of credit

quality deterioration combined with the potential for “refreshment” of the LIBOR panel implies

that a strategy of lending for 6M to a LIBOR counterparty involves more default risk than

lending for two consecutive 3M periods, as the latter strategy includes the option of switching

to a more creditworthy counterparty after 3M. Indeed, the spot 6M EDP is consistently larger

than the sum of the spot 3M EDP and the 3M forward 3M EDP for a refreshed panel. The

sample mean of the former is 0.27 percent, while the sample mean of the latter sum is only

0.17 percent.

5.3 Specification analysis

For each of the model specifications, we compute the fitted OIS rates, interest rate spreads,

and CDS spreads based on the filtered state variables. For each day in the sample and within

each category – OIS, SPREAD3M , SPREAD6M , and CDS – we then compute the root

mean squared pricing errors (RMSEs) of the available rates or spreads, thereby constructing

time series of RMSEs.

The first three rows of Panel A in Table 5 display the means of the RMSE time series

in the USD market. The next two rows report the mean difference in RMSEs between two

model specifications along with the associated t-statistics. Given that all specifications have

two factors driving the OIS term structure, they obviously produce almost the same fit to OIS

rates. However, they differ significantly in their fit to interest rate spreads and CDS spreads.

A(2,2,1) has a significantly better fit than A(2,1,1) to the CDS term structure, with the mean

42Obviously, the expected default probabilities depend on our assumption of zero recovery (or 100% loss rate).

As a rule of thumb, halving the loss rate is nearly the same as doubling the expected default probabilities.
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RMSE decreasing from 11.6 bp to 6.6 bp. It also appears to trade off a statistically significant

better fit to the term structure of swap spreads indexed to 6M LIBOR, for a statistically

insignificant worse fit to the term structure of swap spreads indexed to 3M LIBOR. A(2,2,2)

improves upon A(2,2,1) with a statistically significant better fit to the term structures of CDS

spreads and swap spreads indexed to 6M LIBOR, and a marginally statistically significant

better fit to the term structure of swap spreads indexed to 3M LIBOR. Economically, however,

the improvement of A(2,2,2) over A(2,2,1) is modest (about 0.5 bp in terms of average RMSEs),

and we do not expect more elaborate models to perform much better.

Panel B in Table 5 display the results for the EUR market, which are similar to those

obtained for the USD market.43 In general, the model tends to have a slightly better fit to the

EUR data than the USD data. This is also apparent from Table 4 where, for each specification,

the estimated variance on the pricing errors is smaller for the EUR market.

More information about pricing errors are provided in the online appendix, where we

display RMSEs for each point on the term structures of OIS rates, interest rate spreads, and

CDS spreads. For the A(2,2,1) and A(2,2,2) specifications, the fit is generally rather uniform

along the term structures, although in some cases we observe a deterioration in the fit at very

short or very long maturities – an issue that is often encountered in term structure modeling.44

Since we value parsimony, in the following we will use the A(2,2,1) specification to analyze

the term structure of interbank risk in more detail.

5.4 Decomposing the term structure of interbank risk

We measure the default component as the hypothetical swap spread that would materialize

if default risk were the only risk factor in the interbank money market. This is computed by

43The main difference is that for the EUR market, the more elaborate specifications generate an improvement

in the fit to the OIS term structure, which is statistically significant if still economically small.

44In our model, we assume that the OIS reference rate equals the average cost of unsecured overnight funding

for LIBOR panel banks, which implies that the LIBOR-OIS spread goes to zero as maturity goes to zero. In

principle, an interesting out-of-sample test of the model is the extent to which very short term LIBOR-OIS

spreads implied by the model correspond to those observed in the data. In practice, however, very short-term

LIBOR-OIS spreads are extremely noisy and display little correlation with longer term spreads. For instance, in

the USD market, the shortest LIBOR maturity is overnight and the correlation between changes in the overnight

LIBOR-FF spread and changes in the 3M and 6M LIBOR-OIS spreads are 0.08 and -0.01, respectively. One

would need to add additional factors to the model to capture the largely idiosyncratic behavior at the very

short end of the spread curve.
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setting the residual term to one, Ξ(t0, T ) = 1. The non-default component is then given by

the difference between the fitted swap spread and the default-induced swap spread.

Table 6 displays, for each maturity, summary statistics of the two components. Focus

first on the USD market. Panel A1 shows the decomposition of swap spreads indexed to 3M

LIBOR. At the short end of the term structure, the default component is, on average, slightly

smaller than the non-default component. As maturity increases, the default component, on

average, first decreases and then increases for maturities beyond 4 years. On the other hand,

the non-default component, on average, decreases rapidly with maturity. The upshot is that, as

maturity increases, default increasingly becomes the dominant component. Panel A2 shows the

decomposition of swap spreads indexed to 6M LIBOR. At the short end of the term structure,

the default component is, on average, larger than the non-default component. Otherwise, the

pattern is the same, with default increasingly becoming the dominant component as maturity

increases.

Another observation from Table 6 is that both components are very volatile, particularly

at the short end of the term structure. Figure 4 displays the time-series of the default and

non-default components of the 3M and 6M LIBOR-OIS spreads (Panels A and B) and the 5Y

swap spreads indexed to 3M or 6M LIBOR (Panels C and D). Consider first the money market

spreads. Prior to the Lehman default, the default component constitutes a relatively small part

of spreads, except for a brief period around the Bear Stearns near-default. In the aftermath of

the Lehman default, the non-default component increases rapidly but then declines, while the

default component increases gradually. The result is that by March 2009 and for the rest of

the sample period, including the European sovereign debt crisis, spreads are almost exclusively

driven by the default component. Consider next the 5Y swap spreads. Clearly, default is the

overall more important component. Even prior to the Lehman default, the default component

is the dominant driver of spreads. Immediately after the Lehman default both the default and

non-default components increase after which the default component gradually becomes the

exclusive driver of spreads.

Focus next on the EUR market. The summary statistics of the default and non-default

components in Panels B1 and B2 in Table 6 are quite similar to those of the USD market.

However, comparing Figure 5 with Figure 4 shows that EUR interbank risk is generally lower

than USD interbank risk in the first half of the sample period, while the opposite is true in the

second half. This is consistent with the observation that banks’ exposures to US structured

credit products was an important source of interbank risk in the first half of the sample period,
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while their exposures to European sovereign debt was a major source of interbank risk in the

second half.

5.5 Understanding the non-default component

To understand the determinants of the non-default component, we investigate its relation

with funding liquidity and market liquidity, which tend to be highly interconnected; see, e.g.,

Brunnermeier and Pedersen (2009).

Funding liquidity Given its over-the-counter structure, we do not have liquidity proxies

that are specific to the market for unsecured interbank term funding.45 However, it is likely

that liquidity in this market is correlated with liquidity in the market for secured term funding,

which is another vital source of financing for banks. We consider two liquidity proxies for term

repos. The first proxy is the spread between the 3M Agency MBS general collateral (GC)

repo rate and the 3M Treasury GC repo rate. This measure reflects funding cost differentials

between securities that differ in their market liquidity.46 The second proxy is the Fontaine and

Garcia (2011) liquidity factor. This factor is estimated from the cross-section of on-the-run

premia for Treasuries, which in turn depend on the funding advantage (or “specialness”) of on-

the-run Treasuries in the repo market; see, e.g., Duffie (1996) and Jordan and Jordan (1997).

These liquidity proxies, denoted Reposprt and FGt, respectively, are displayed in Panels A

and B in Figure 6.

Government bond market liquidity We consider two proxies for government bond mar-

ket liquidity. The first proxy is the Hu, Pan, and Wang (2010) liquidity factor, which is a

daily aggregate of Treasury price deviations from “fair-value”. Their argument is that lower

liquidity allows more “noise” in the yield curve, as prices can deviate more from fundamental

values before arbitrageurs step in to profit from mis-valuations. The second proxy is the spread

between government bonds and government-sponsored agency bonds with lower liquidity but

45There does exist a trading platform for EUR interbank deposits, e-Mid. However, the maturities of the

traded deposits are almost exclusively overnight (see Angelini, Nobili, and Picillo (2009)), while we are interested

in liquidity measures for longer term deposits.

46In additional to wider spreads, larger initial margins (or “haircuts”) would also indicate lower repo market

liquidity. However, in contrasts to haircuts on structured product collateral, haircuts on Treasury and Agency

MBS collateral were fairly stable throughout the crisis; see, e.g., Copeland, Martin, and Walker (2010) and

Krishnamurthy, Nagel, and Orlov (2011).
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the same credit risk. Following Longstaff (2004), we use the spread between yields on Refcorp

bonds and off-the-run Treasuries (specifically, we use the 10Y par yield spread).47 These liq-

uidity proxies, denoted HPWt and RCsprt, respectively, are displayed in Panels C and D in

Figure 6.

Corporate bond market liquidity As proxies for corporate bond market liquidity, we use

the Dick-Nielsen, Feldhutter, and Lando (2012) liquidity factors. These factors are aggregates

of several bond-specific liquidity and liquidity risk measures. We consider both their liquidity

factor for the overall corporate bond market and their liquidity factor for bonds issued by

financial institutions. The latter liquidity factor is particularly interesting since bond issuance

(covered or uncovered) represents an important source of longer-term funding for banks. These

liquidity proxies are displayed in Panels E and F in Figure 6 and are denote DFLt and

DFLfint, respectively.

Approach We now relate the non-default component to these funding and market liquidity

proxies. As in the previous sections, we focus on the A(2,2,1) specification, where the non-

default component is driven by ξt. Since ξt captures the part of interbank risk that is unspanned

by default risk, the relevant question is the extent to which ξt is related to the parts of funding

and market liquidity, which are unspanned by default risk. For this reason, we first regress

the liquidity proxies on the first two principal components of the CDS term structure of the

panel.48 By construction, the regression residuals measure the variation in liquidity that is

orthogonal to default risk. We then regress ξt on these unspanned liquidity components.

Since FGt, HPWt, DFLt, and DFLfint are only available until December 31, 2009, we

use data up to this date in all regressions. Furthermore, since FGt, DFLt, and DFLfint are

only available at a monthly frequency, we run all regressions on monthly data.49 Finally, to

47In her analysis of the 3M Euribor-OIS spread, Schwartz (2010) uses a similar spread between yields on

KfW bonds (guaranteed by the German government) and German government bonds as a proxy for liquidity.

We have experimented with this spread (again, the 10Y par yield spread) in our analysis of the EUR market,

but found that the Refcorp-Treasury spread had better explanatory power.

48The first two principal components explain more than 99 percent of the variation in the CDS term structure

of the LIBOR and EURIBOR panels. Regressing on a larger number of principal components does not change

the results in any significant way.

49We convert daily time-series to monthly by averaging the daily observations over the month. This mirrors

the construction of DFLt, and DFLfint. Very similar results are obtained by using end-of-month observations.
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avoid spurious result due to the high persistence of the unspanned liquidity components, we

run the second-step regressions in first differences.50

Results Table 7 displays pairwise correlations between monthly changes in the unspanned

liquidity components and monthly changes in ξt. In general, the unspanned liquidity com-

ponents are moderately correlated, except for HPWt and RCsprt which are relatively highly

correlated, and DFLt and DFLfint which are almost perfectly correlated.

Table 8 displays results from univariate and multivariate regressions of monthly changes

in ξt on monthly changes in the unspanned liquidity components. Consider first the USD

market (Panel A of Table 8). In the univariate regressions, the coefficients on all the liquidity

proxies are positive. FGt is marginally significant, DFLt and DFLfint are significant at

conventional levels, and the rest are highly significant. Adjusted R2s lie between 0.10 and

0.49. In a multivariate regression with all liquidity proxies except DFLfint,
51 the adjusted

R2 increases to 0.62 but, due to multicollinearity, several of the liquidity proxies become

insignificant and have the wrong sign. Removing the least significant regressors results in a

specification with only Reposprt and RCsprt, both highly significant, and an adjusted R2 of

0.64.

Consider next the EUR market (Panel B of Table 8). The results are generally consistent

with those of the USD market. In the univariate regressions the adjusted R2s vary between

0.03 and 0.44, with all but the two corporate bond liquidity proxies being significant. In the

regression specification with only Reposprt and RCsprt, both are highly significant and the

adjusted R2 reaches 0.70.

Taken together, the results lend support to the conjecture that the non-default component

of interbank risk largely captures liquidity effects not spanned by default risk.

5.6 Pricing of interbank risk

The model allows us to estimate the compensation that market participants require for bearing

interbank risk. These results are necessarily tentative, since the relatively short sample period

implies that the market price of risk parameters are estimated with some uncertainty.

50Unit root tests are available upon request.

51We only include one of the corporate bond liquidity proxies in the multivariate regression, because of their

near-perfect correlation.
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When discussing risk premia, it is important to distinguish between the swap market and

the unsecured interbank money market. In both markets, there are premia associated with

interest rate risk, variation in default risk, and unspanned liquidity risk. These premia are

captured by the market prices of risk on the Wiener processes. However, in the unsecured

interbank market, there is also a jump risk premium on the default event itself (to the extent

that the mean loss rate differs under the objective and risk-neutral measures, see Yu (2002)

and Jarrow, Lando, and Yu (2005)). Since our data set does not allow us to estimate the

default event risk premium, we will focus on the risk premia that are available in the swap

market.

As we are interested in the compensation for exposure to interbank risk, we consider a

swap spread strategy consisting of receiving the fixed rate in an IRS indexed to 3M LIBOR

and paying the fixed rate in an OIS of the same maturity. This strategy is expected to be

approximately delta-neutral with respect to pure interest rate risk. The time-t value of the

strategy is V SPR
t = V IRS

t − V OIS
t , where V IRS

t and V OIS
t denote the time-t values of an IRS

and OIS, respectively, from the perspective of the party who receives the fixed rate and pays

the floating rate. The risk-neutral dynamics of the marked-to-market value of this strategy

are given by52

dV SPR
t = r(t)V SPR

t dt+
∂V SPR

t

∂r
σrdWr(t) +

∂V SPR
t

∂γ
σγdWγ(t)

+
V IRS

t

∂ν
σν

√
ν(t)dWν(t) +

V IRS
t

∂µ
σµ

√
µ(t)dWµ(t) +

V IRS
t

∂ξ
σξ

√
ξ(t)dWξ(t).(34)

As expected, in our estimated model
∂V SPR

t

∂r
and

∂V SPR
t

∂γ
are negligible compared to

V IRS
t

∂ν
,

V IRS
t

∂µ
,

and
V IRS

t

∂ξ
. Hence, the strategy has an almost pure exposure to interbank risk. With the market

price of risk specification (30), the instantaneous Sharpe ratio is approximately given by
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V IRS
t
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. (35)

Figure 7 displays time-series of SRSPR
t at the 1Y, 5Y, and 10Y swap maturities in the

USD (results for the EUR market are similar). Due to their fast mean-reversion, ν(t) and

ξ(t) mainly affect near-term forward LIBOR rates. This implies that, for maturities beyond

approximately one year, the spread strategy’s loadings on Wν(t) and Wξ(t) have very little

dependence on maturity. In contrast, µ(t) also impacts long-term forward LIBOR rates, and

52It follows from (11) and (40) that
∂V SPR

t

∂ν
=

∂V IRS
t

∂ν
,

∂V SPR
t

∂µ
=

∂V IRS
t

∂µ
, and

∂V SPR
t

∂ξ
=

∂V IRS
t

∂ξ
.
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the spread strategy’s loading on Wµ(t) increases with maturity over the entire maturity range.

The sample averages of the market prices of risk on Wν(t) and Wµ(t) are -0.28 and -0.20,

respectively, while we are not able to reliably estimate the market price of risk on Wξ(t),

which is set to zero in our two-step estimation procedure, see end of Section 4.4. In the

first half of the sample period, where unspanned liquidity risk is an important component of

interbank risk, the strategy is primarily exposed to Wξ(t) for which there is no compensation.

This is particularly the case for short swap maturities. Therefore, Sharpe ratios are low and

increasing with swap maturity. The sole exceptions is the period around the Bear Stearns

near-bankruptcy, where default risk briefly became the main driver of interbank risk. In the

second half of the sample period, where default risk is the most important component of

interbank risk, the strategy is mainly exposed to Wν(t) and Wµ(t), and Sharpe ratios are,

therefore, larger during this period. For instance, the instantaneous Sharpe ratio at the 5Y

swap maturity is estimated to have averaged 0.35 from early 2009 to the end of the sample

period.53

6 Robustness checks

Most of the results in Section 5 are based on the A(2,2,1) specification along with theCDSTrMean

and CDSMedian measures of interbank default risk in the USD and EUR markets, respectively.

In this section, we investigate the robustness of our results to alternative model specifications

and interbank default risk measures. Throughout, we focus on the USD market and the swap

spread term structure indexed to 3M LIBOR. Decompositions are reported in Table 9, while

plots of the default and non-default components are available in the online appendix. Conclu-

sions for the spread term structure indexed to 6M LIBOR and for the EUR market are very

similar.54

53For comparison, prior to the credit crisis, Duarte, Longstaff, and Yu (2007) report realized Sharpe ratios

between 0.37 and 0.66, depending on maturity, on spread arbitrage strategies between IRS and Treasuries.

54For the EUR market, only in the case where we use CDSiTraxx to measure interbank default risk does the

results differ noticeable from the baseline results. To some extent, this is due to the imperfect overlap between

the set of underlying institutions in the iTraxx index and the EURIBOR panel. But primarily it is due to the

fact that the index is only available for maturities of 5Y and 10Y, leading to a less accurate identification of

the process driving the risk of credit quality deterioration.

33



A(2,1,1) and A(2,2,2) We redo the decomposition of interbank risk using the A(2,1,1)

and A(2,2,2) specifications (Panels A and B, respectively, in Table 9). In both cases, the

decomposition is very similar to the original one (which, for ease of comparison, is reproduced

in the top panel in Table 9). One difference is that for the A(2,1,1) specification, the default

component at the short end of the term structure is somewhat less volatile, which is not

surprising given the one-factor nature of the risk of credit quality deterioration.

A(2,2,1) with κλ = 0 We explore the effect of assuming that shocks to the credit quality

of an average bank within the t0-panel are permanent, which corresponds to setting κλ = 0

in (24). We reestimate the A(2,2,1) specification subject to this constraint. The restricted

specification has a significantly worse fit to the data with the average RMSE for SPREAD3M ,

SPREAD6M , and CDSTrMean increasing to 13.36 bp, 11.72 bp, and 8.55 bp, respectively.

Consequently, we do not consider that specification in greater detail.

A(2,2,1) with stochastic Λ(t) Recall that the total default intensity of an average panel

bank depends on Λ(t) and the jump process representing credit quality deterioration, see (24).

If Λ(t) increases beyond the constant 5 bp that we have assumed so far, the effect of the jump

process has to decrease in order to still match a given level of CDS spreads. The model would

then imply a smaller default component in the LIBOR-OIS and IRS-OIS spreads.

To investigate this possibility, while keeping the model tractable, we assume the existence

of a latent default risk factor Λ̃(t), which evolves according to

dΛ̃(t) = κ
Λ̃

(
θ
Λ̃
− Λ̃(t)

)
dt + σ

Λ̃

√
Λ̃(t) dW

Λ̃
(t), (36)

where dWΛ̃(t) is another independent standard Brownian motion. Λ̃(t) generates variation in

Λ(t) and λ(t0, t) via

Λ(t) = Λ(t0) +

∫ t

t0

κΛ

(
Λ̃(s) − Λ(s)

)
ds (37)

and

λ(t0, t) = Λ(t0) +

∫ t

t0

κΛ

(
Λ̃(s) − λ(t0, s)

)
ds+

N(t)∑

j=N(t0)+1

Zλ,j. (38)

That is, Λ(t) and λ(t0, t) fluctuate around the unobservable default risk factor. This specifica-

tion preserves the feature that λ(t0, t) and Λ(t) are identical until the first jump in λ(t0, t).
55

55The resulting pricing formulas are available upon request. Note that with κΛ = κλ and Λ̃(t) = Λ(t) = Λ

this model reduces to our baseline model.
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To identify the additional dimensions of the model, we add the 1W and 1M OIS-Treasury

repo spreads to our original data set. These spreads directly depend on the Λ(t)-process. As

discussed in Section 4.4, use of Treasury repo rates likely overstates Λ(t) and this analysis,

therefore, provides a lower bound on the effect of credit quality deterioration.56

The Λ̃(t)-process is volatile (σΛ̃ = 0.46), displays fast mean-reversion (κΛ̃ = 7.65), and has

a low long-run mean of 7 bp. The associated market price of risk parameter is imprecisely

estimated and, therefore, is set to zero in the final estimation. With κΛ estimated at 2.35,

Λ(t) tracks much of the variation in Λ̃(t). As expected, when Λ(t) spikes, we observe a

small decrease (increase) in the default (non-default) component of the LIBOR-OIS spread.

However, because of the fast mean-reversion of Λ(t) towards a low long-run mean, the impact

on longer-term IRS-OIS spreads is negligible. The decomposition is reported in Panel C in

Table 9. On average, the default (non-default) component is slightly smaller (larger) at the

short end of the term structure, while indeed there is virtually no effect at longer maturities.

A(2,2,1) without LIBOR rates To address concerns about the integrity of LIBOR during

parts of the sample period, we reestimate the A(2,2,1) specification without using LIBOR

rates. In this case, interbank risk is identified purely from swap rates, which are determined in

highly competitive markets. Panel D in Table 9 reports the decomposition, which is similar to

the original one, except that the non-default component of the LIBOR-OIS spread is slightly

smaller and less volatile.

A(2,2,1) with alternative default risk measures To investigate the sensitivity to possi-

ble liquidity effects in the CDS market, we reestimate the A(2,2,1) specification with the two

liquidity-corrected default risk measures CDSLIQ1 and CDSLIQ2 described in Section 4.3.

Panels E and F in Table 9 report the decomposition of the spread term structure in these two

cases. At the short end of the term structure, the decomposition using CDSLIQ1 (Panel E) on

average attributes a slightly smaller fraction of interbank risk to default risk compared with

the original decomposition, while the decomposition using CDSLIQ2 (Panel F) on average

attributes a slightly larger fraction of interbank risk to default risk. This is consistent with

the fact that, on average, CDSLIQ1 < CDSTrMean < CDSLIQ2. At longer maturities, the

differences are very small.

56Parameter estimates and state variables are available upon request. For the estimation, we assume a market

price of risk process ΓΛ̃

√
Λ̃(t) such that dWΛ̃(t)− ΓΛ̃

√
Λ̃(t) dt becomes a standard Brownian motion under P .
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7 Conclusion

In this paper, we contribute to the rapidly growing literature on the interbank money market

by studying the term structure of interbank risk. We follow most existing studies by measuring

interbank risk by the spread between a LIBOR rate and the rate on an overnight indexed swap

(OIS) of identical maturity. We show that the spread between the fixed rate on a long-term

interest rate swap indexed to, say, 3M LIBOR, and a similar long-term OIS reflects risk-neutral

expectations about future 3M LIBOR-OIS spreads. This allows us to infer a term structure of

interbank risk from swap spreads of different maturities. We develop a dynamic term structure

model with default risk in the interbank market that, in conjunction with information from the

credit default swap market, allows us to decompose the term structure of interbank risk into

default and non-default components. We apply the model to study interbank risk from the

onset of the financial crisis in August 2007 until January 2011. We find that, on average, the

fraction of total interbank risk due to default risk increases with maturity. At the short end

of the term structure, the non-default component is important in the first half of the sample

period and is correlated with various measures of funding liquidity and market liquidity. At

longer maturities, the default component is the dominant driver of interbank risk throughout

the sample period. We also provide tentative results indicating that swap market participants

require compensation for exposure to variation in interbank default risk. Our results hold true

in both the USD and EUR markets and are robust to different model parameterizations and

measures of interbank default risk. Our analysis has implications for monetary and regulatory

policy as well as for pricing, hedging, and risk-management in the interest rate swap market.
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A Proof of (2)

Discounting the integral equation (1) gives

e−
∫ t
0 r(s)dsV (t) = EQ

t

[
e−

∫ T
0 r(s)dsX +

∫ T

t

e−
∫ u
0 r(s)ds (r(u) − rc(u))V (u) du

]
.

Hence

M(t) = e−
∫ t
0 r(s)dsV (t) +

∫ t

0
e−

∫ u
0 r(s)ds (r(u) − rc(u))V (u) du

is a Q-martingale. We obtain

d
(
e−

∫ t
0 r(s)dsV (t)

)
= − (r(t) − rc(t))

(
e−

∫ t
0 r(s)dsV (t)

)
dt+ dM(t).

Integration by parts then implies

d
(
e−

∫ t
0 rc(s)dsV (t)

)
= d

(
e
∫ t
0 (r(s)−rc(s))dse−

∫ t
0 r(s)dsV (t)

)

= e−
∫ t

0
r(s)dsV (t)e

∫ t

0
(r(s)−rc(s))ds (r(t) − rc(t)) dt

+ e
∫ t
0 (r(s)−rc(s))ds

(
− (r(t) − rc(t))

(
e−

∫ t
0 r(s)dsV (t)

)
dt+ dM(t)

)

= e
∫ t
0 (r(s)−rc(s))dsdM(t).

Hence e−
∫ t

0
rc(s)dsV (t) is a Q-martingale, and since V (T ) = X we conclude that

e−
∫ t
0 rc(s)dsV (t) = EQ

t

[
e−

∫ T
0 rc(s)dsX

]
,

which proves (2).

B Extended doubly stochastic framework

Here, we briefly recap and extend the standard doubly stochastic framework for modeling

default times in our setting.57 The main aspect of our extension is that we can incorporate an

arbitrary number of default times in one framework. We assume that the filtered probability

space (Ω,F ,Ft, Q) carries an i.i.d. sequence of standard exponential random variables ε(t0) ∼

Exp(1), for t0 ≥ 0, which are independent of F∞. For every t0 ≥ 0, we let λ(t0, t) be a

nonnegative Ft-adapted intensity process with the property

∫ t

t0

λ(t0, s) ds <∞

57Standard references are Duffie and Singleton (2003) and Lando (2004).
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for all finite t ≥ t0. We then define the random time

τ(t0) = inf

{
t > t0 |

∫ t

t0

λ(t0, s) ds ≥ ε(t0)

}
> t0.

Note that τ(t0) is not an Ft-stopping time but becomes a stopping time with respect to the

enlarged filtration Gt = Ft ∨Ht where Ht = ∨t0≥0σ (H(t0, s) | s ≤ t) is the filtration generated

by all τ(t0)-indicator processes H(t0, t) = 1{τ(t0)≤t}. The Gt-stopping times τ(t0) are then

Ft-doubly stochastic in the sense that

EQ
[
Y 1{τ(t0)>T} | Gt0

]
= EQ

t0

[
Y e

−
∫ T

t0
λ(t0,s) ds

]
(39)

for all FT -measurable nonnegative random variables Y , see e.g. Filipović (2009, Lemma 12.2).

C Pricing formulas for the affine model

In this section we derive the pricing formulas for the affine model used in this paper. It

is evident from the system of stochastic differential equations composed of (23), (26), and

(29) that the partial state vectors (r(t), γ(t))⊤, (ν(t), µ(t), λ(t0, t))
⊤, and (ξ(t), ǫ(t))⊤ form

independent autonomous affine jump-diffusion processes. Hence the subsequent exponential-

affine expressions (40), (42), (46) follow directly from the general affine transform formula in

Duffie, Filipović, and Schachermayer (2003, Section 2), and the fact that rc(t) = r(t) + Λ, see

(18). The following formulas are for the full A(2, 2, 2) model. The nested versions, A(2, 2, 1)

and A(2, 1, 1), are obtained by setting the respective model parameters, κǫ, θǫ, σǫ and κµ, θµ, σµ,

equal to zero, and setting ǫ(t) ≡ θξ and µ(t) ≡ θν , respectively.

Lemma C.1. The time t price of the collateralized zero-coupon bond maturing at T equals

Pc(t, T ) = EQ
t

[
e−

∫ T

t
rc(s)ds

]

= exp [A(T − t) +Br(T − t)r(t) +Bγ(T − t)γ(t)]
(40)

where the functions A and B = (Br, BΛ)⊤ solve the system of Riccati equations

∂τA(τ) =
σ2

r

2
Br(τ)

2 + ρσrσγBr(τ)Bγ(τ) +
σ2

γ

2
Bγ(τ)2 + κγθγBγ(τ) − Λ

∂τBr(τ) = −κrBr(τ) − 1

∂τBγ(τ) = −κγBγ(τ) + κrBr(τ)

A(0) = 0, B(0) = 0.

(41)
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Lemma C.2. The time t0-value of an unsecured loan with notional 1 in (16) equals

B(t0, T ) = EQ
t0

[
e
−
∫ T

t0
(r(s)+λ(t0,s))ds

]

= Pc(t0, T ) exp [C(T − t0) +Dν(T − t0)ν(t0) +Dµ(T − t0)µ(t0) +Dλ(T − t0)Λ]

(42)

where the functions C and D = (Dν ,Dµ,Dλ)⊤ solve the system of Riccati equations

∂τC(τ) = κµθµDµ(τ) + κλΛDλ(τ) + Λ

∂τDν(τ) =
σ2

ν

2
Dν(τ)

2 − κνDν(τ) +
Dλ(τ)

ζλ −Dλ(τ)

∂τDµ(τ) =
σ2

µ

2
Dµ(τ)2 − κµDµ(τ) + κνDν(τ)

∂τDλ(τ) = −κλDλ(τ) − 1

C(0) = 0, D(0) = 0.

(43)

Proof. We write

B(t0, T ) = EQ
t0

[
e
−
∫ T

t0
(rc(s)−Λ+λ(t0,s))ds

]

= EQ
t0

[
e
−
∫ T

t0
rc(s)ds

]
EQ

t0

[
e
−
∫ T
t0

(λ(t0,s)−Λ)ds

]
.

Now the claim follows from the general affine transform formula in Duffie, Filipović, and

Schachermayer (2003, Section 2). Note that Dλ(τ) < 0 for all τ > 0. Hence the rational

function on the right hand side of the equation for ∂τDν(τ) is well defined and derived by
∫ ∞

0

(
eDλ(τ)ξ − 1

)
ζλ e

−ζλξ dξ = ζλ

∫ ∞

0
e−(ζλ−Dλ(τ))ξ dξ − 1

=
ζλ

ζλ −Dλ(τ)
− 1

=
Dλ(τ)

ζλ −Dλ(τ)
.

We obtain the following exponential affine expression for the (T −t0)-maturity LIBOR rate

L(t0, T ).

Corollary C.3. The (T − t0)-maturity LIBOR rate given in (17) equals

L(t0, T ) =
1

T − t0

(
Pc(t0, T )−1 exp [−C(T − t0) −Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0) −Dλ(T − t0)Λ] − 1

)

× exp [−E(T − t0) − Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]

(44)
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with C(T−t0) and D(T−t0) given in Lemma C.2, and where the functions E and F = (Fξ , Fǫ)
⊤

solve the Riccati equations

∂τE(τ) = κǫθǫFǫ(τ)

∂τFξ(τ) =
σ2

ξ

2
Fξ(τ)

2 − κξFξ(τ) − 1

∂τFǫ(τ) =
σ2

ǫ

2
Fǫ(τ)

2 − κǫFǫ(τ) + κξFξ(τ)

E(0) = 0, F (0) = 0.

(45)

Proof. In view of (27) and the affine transform formula in Duffie, Filipović, and Schacher-

mayer (2003, Section 2), the multiplicative residual term is given by

1

Ξ(t0, T )
= exp [E(T − t0) + Fξ(T − t0)ξ(t0) + Fǫ(T − t0)ǫ(t0)] (46)

where the functions E and F = (Fξ, Fǫ)
⊤ solve the Riccati equations (45). The corollary now

follows from (17) and Lemma C.2.

In view of (7) we also need a closed form expression for

I = EQ
t

[
e−

∫ T
t

rc(s)ds(T − t0)L(t0, T )
]

for time points t ≤ t0 < T . Using the tower property of conditional expectations we calculate

I = EQ
t

[
e−

∫ t0
t rc(s)dsEQ

t0

[
e
−
∫ T

t0
rc(s)ds

]
(T − t0)L(t0, T )

]

= EQ
t

[
e−

∫ t0
t rc(s)dsPc(t0, T )(T − t0)L(t0, T )

]

=
(
EQ

t

[
e−

∫ t0
t rc(s)ds exp [−C(T − t0) −Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0) −Dλ(T − t0)Λ]

]

−EQ
t

[
e−

∫ t0
t rc(s)dsPc(t0, T )

])

× EQ
t [exp [−E(T − t0) − Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]]

=
(
Pc(t, t0)e

−C(T−t0)−Dλ(T−t0)ΛEQ
t [exp [−Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0)]] − Pc(t, T )

)

× EQ
t [exp [−E(T − t0) − Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]] .

The conditional expectations on the right hand side of the last equality can easily be obtained

in closed form using the affine transform formula in Duffie, Filipović, and Schachermayer (2003,

Section 2).

It remains to be checked whether the above conditional expectations are well defined.

Sufficient admissibility conditions on the model parameters are provided by the following

lemma, the proof of which is in the online appendix.
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Lemma C.4. (i) Suppose κλ ≥ 0, and define

Θν =

√

κ2
ν + 2

σ2
ν

ζλκλ + 1
, (47)

Cν =

2
ζλκλ+1

(
eΘν(T−t0) − 1

)

Θν

(
eΘν(T−t0) + 1

)
+ κν

(
eΘν(T−t0) − 1

) ,

Θµ =
√
κ2

µ + 2σ2
µκνCν , (48)

Cµ =
2κνCν

(
eΘµ(T−t0) − 1

)

Θµ

(
eΘµ(T−t0) + 1

)
+ κµ

(
eΘµ(T−t0) − 1

) .

If

κν >
1

2
σ2

νCν (49)

and

κµ ≥ σ2
µCµe

−κµ
2

τ∗

+
4κ2

νσ
2
µ

κµσ2
ν

(

2F1

(
1,
κµ

2κν
;
κµ + 2κν

2κν
;

(
σ2

νCν − 2κν

)
eκντ∗

σ2
νCν

)

−e−
κµ
2

τ∗

2F1

(
1,
κµ

2κν
;
κµ + 2κν

2κν
;
σ2

νCν − 2κν

σ2
νCν

))
(50)

where 2F1 denotes the Gauss hypergeometric function and

τ∗ =
1

κν
log max





(
2κν − σ2

ν
κ2

µ

2κνσ2
µ

)
2κνσ2

µ

κ2
µ
Cν

2κν − σ2
νCν

, 1




, (51)

then

EQ [exp [−Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0)]] <∞.

(ii) Define

Θξ =
√
κ2

ξ + 2σ2
ξ ,

Cξ =
2
(
eΘξ(T−t0) − 1

)

Θξ

(
eΘξ(T−t0) + 1

)
+ κξ

(
eΘξ(T−t0) − 1

) ,

Θǫ =
√
κ2

ǫ + 2σ2
ǫκξCξ,

Cǫ =
2κξCξ

(
eΘǫ(T−t0) − 1

)

Θǫ

(
eΘǫ(T−t0) + 1

)
+ κǫ

(
eΘǫ(T−t0) − 1

) .

If conditions (49) and (50) hold for Cν , κν , σν , Cµ, κµ, σµ replaced by Cξ, κξ , σξ, Cǫ, κǫ, σǫ,

respectively, then

EQ [exp [−Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]] <∞.
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Remark C.5. Note that τ∗ = 0 if and only if
κ2

µ

2κνσ2
µ

≥ Cν. In this case, (50) reads as

κµ ≥ σ2
µCµ, which is automatically satisfied as is shown at the end of the proof of Lemma C.4.

For the CDS coupon rate calculations, we need the respective exponential affine expressions

for (20), (21) and (22). For I1(t0, T ) we obtain

I1(t0, T ) =
N∑

i=1

(ti − ti−1)e
−(ti−t0)ΛB(t0, ti). (52)

In both formulas for I2(t0, T ) and Vprot(t0, T ) the following expression shows up

J(t0, u) = EQ
t0

[
e
−
∫ u
t0

(rc(s)+λ(t0,s))ds
λ(t0, u)

]
.

Lemma C.6. We have

J(t0, u) = (g(u− t0) + hν(u− t0)ν(t0) + hµ(u− t0)µ(t0) + hλ(u− t0)Λ) e−(u−t0)ΛB(t0, u)

where the functions g and h = (hν , hµ, hλ)⊤ solve the linear inhomogeneous system of ordinary

differential equations

∂τg(τ) = κµθµhµ(τ) + κλΛhλ(τ)

∂τhν(τ) = σ2
νDν(τ)hν(τ) − κνhν(τ) +

ζλhλ(τ)

(ζλ −Dλ(τ))2

∂τhµ(τ) = σ2
µDµ(τ)hµ(τ) − κµhµ(τ) + κνhν(τ)

∂τhλ(τ) = −κλhλ(τ)

g(0) = 0, h(0) = (0, 0, 1)⊤.

(53)

and where the functions D = (Dν ,Dµ,Dλ)⊤ are given in Lemma C.2.

Proof. We first decompose J(t0, u) = Pc(t0, u)I(t0, u) with

I(t0, u) = EQ
t0

[
e
−
∫ u

t0
λ(t0,s)ds

λ(t0, u)
]
,

which we can compute by differentiating the respective moment generating function58:

I(t0, u) =
d

dv
EQ

t0

[
e
−
∫ u

t0
λ(t0,s)ds

evλ(t0 ,u)
]
|v=0. (54)

58Note that the change of order of differentiation and expectation is justified by dominated convergence. In-

deed, it follows from Duffie, Filipović, and Schachermayer (2003, Theorem 2.16) that EQ
t0

[
e
−
∫

u

t0
λ(t0,s)ds

evλ(t0,u)
]

is finite for all v in some neighborhood of zero.
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The affine transform formula in Duffie, Filipović, and Schachermayer (2003, Section 2), gives

us

EQ
t0

[
e
−
∫ u
t0

λ(t0,s)ds
evλ(t0 ,u)

]

= exp [G(u− t0, v) +Hν(u− t0, v)ν(t0) +Hµ(u− t0, v)µ(t0) +Hλ(u− t0, v)Λ]

where the functions G and H = (Hν ,Hµ,Hλ)⊤ solve the system of Riccati equations

∂τG(τ, v) = κµθµHµ(τ, v) + κλΛHλ(τ, v)

∂τHν(τ, v) =
σ2

ν

2
Hν(τ, v)

2 − κνHν(τ, v) +
Hλ(τ, v)

ζλ −Hλ(τ, v)

∂τHµ(τ, v) =
σ2

µ

2
Hµ(τ, v)2 − κµHµ(τ, v) + κνHν(τ, v)

∂τHλ(τ, v) = −κλHλ(τ, v) − 1

G(0, v) = 0, H(0, v) = (0, 0, v)⊤.

(55)

Hence from (54) we obtain

I(t0, u) = (g(u − t0) + hν(u− t0)ν(t0) + hµ(u− t0)µ(t0) + hλ(u− t0)Λ)

× exp [G(u− t0, 0) +Hν(u− t0, 0)ν(t0) +Hµ(u− t0, 0)µ(t0) +Hλ(u− t0, 0)Λ]

where g(τ) = d
dv
G(τ, v)|v=0 , and h = (hν , hµ, hλ)⊤ is given by h(τ) = d

dv
H(τ, v)|v=0. Note

that G(τ, 0) = C(τ) − τΛ and H(τ, 0) = D(τ), see Lemma C.2. Differentiating both sides of

the system (55) in v at v = 0 shows that the functions g and h solve the linear inhomogeneous

system of ordinary differential equations (53). Thus the lemma is proved.

D Maximum likelihood estimation

D.1 The state space form

We cast the model in state space form, which consists of a measurement equation and a

transition equation. The measurement equation describes the relation between the state vari-

ables and the OIS rates, interest rate spreads, and CDS spreads, while the transition equation

describes the discrete-time dynamics of the state variables.

Let Xt denote the vector of state variables. While the transition density of Xt is unknown,

its conditional mean and variance is known in closed form, since Xt follows an affine diffusion
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process. We approximate the transition density with a Gaussian density with identical first

and second moments, in which case the transition equation becomes

Xt = Φ0 + ΦXXt−1 + wt, wt ∼ N(0, Qt), (56)

with Φ0, ΦX , and Qt given in closed form.59

The measurement equation is given by

Zt = h(Xt) + ut, ut ∼ N(0,Ω), (57)

where Zt is the vector of OIS rates, interest rate spreads, and CDS spreads observed at time

t, h is the pricing function, and ut is a vector of iid. Gaussian pricing errors with covariance

matrix Ω. To reduce the number of parameters in Ω, we follow usual practice in the empirical

term structure literature in assuming that the pricing errors are cross-sectionally uncorrelated

(that is, Ω is diagonal), and that the same variance, σ2
err, applies to all pricing errors.

D.2 The unscented Kalman filter

If the pricing function were linear h(Xt) = h0 +HXt, the Kalman filter would provide efficient

estimates of the conditional mean and variance of the state vector. Let X̂t|t−1 = Et−1[Xt] and

Ẑt|t−1 = Et−1[Zt] denote the expectation of Xt and Zt, respectively, using information up to

and including time t − 1, and let Pt|t−1 and Ft|t−1 denote the corresponding error covariance

matrices. Furthermore, let X̂t = Et[Xt] denote the expectation of Xt including information

at time t, and let Pt denote the corresponding error covariance matrix. The Kalman filter

consists of two steps: prediction and update. In the prediction step, X̂t|t−1 and Pt|t−1 are

given by

X̂t|t−1 = Φ0 + ΦXX̂t−1 (58)

Pt|t−1 = ΦXPt−1Φ
′
X +Qt, (59)

and Ẑt|t−1 and Ft|t−1 are in turn given by

Ẑt|t−1 = h(X̂t|t−1) (60)

Ft|t−1 = HPt|t−1H
′ + Ω. (61)

59Approximating the true transition density with a Gaussian makes this a QML procedure. While QML

estimation has been shown to be consistent in many settings, it is in fact not consistent in a Kalman filter

setting, since the conditional covariance matrix Qt in the recursions depends on the Kalman filter estimates of

the volatility state variables rather than the true, but unobservable, values; see, e.g., Duan and Simonato (1999).

However, simulation results in several papers have shown this issue to be negligible in practice.
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In the update step, the estimate of the state vector is refined based on the difference between

predicted and observed quantities, with X̂t = Et[Xt] and Pt given by

X̂t = X̂t|t−1 +Wt(Zt − Ẑt|t−1) (62)

Pt = Pt|t−1 −WtFt|t−1W
′
t , (63)

where

Wt = Pt|t−1H
′F−1

t|t−1 (64)

is the covariance between pricing and filtering errors.

In our setting, the pricing function is non-linear for all the instruments included in the

estimation, and the Kalman filter has to be modified. Non-linear state space systems have

traditionally been handled with the extended Kalman filter, which effectively linearizes the

measure equation around the predicted state. However, in recent years the unscented Kalman

filter has emerged as a very attractive alternative. Rather than approximating the measure-

ment equation, it uses the true non-linear measurement equation and instead approximates

the distribution of the state vector with a deterministically chosen set of sample points, called

“sigma points”, that completely capture the true mean and covariance of the state vector.

When propagated through the non-linear pricing function, the sigma points capture the mean

and covariance of the data accurately to the 2nd order (3rd order for true Gaussian states) for

any nonlinearity.60

More specifically, a set of 2L+1 sigma points and associated weights are selected according

to the following scheme

X̂ 0
t|t−1 = X̂t|t−1 w0 = κ

L+κ

X̂ i
t|t−1 = X̂t|t−1 +

(√
(L+ κ)Pt|t−1

)

i
wi = 1

2(L+κ) i = 1, ..., L

X̂ i
t|t−1 = X̂t|t−1 −

(√
(L+ κ)Pt|t−1

)

i
wi = 1

2(L+κ) i = L+ 1, ..., 2L,

(65)

where L is the dimension of X̂t|t−1, κ is a scaling parameter, wi is the weight associated with

the i’th sigma-point, and
(√

(L+ κ)Pt|t−1

)

i
is the i’th column of the matrix square root.

60For comparison, the extended Kalman filter estimates the mean and covariance accurately to the 1st order.

Note that the computational costs of the extended Kalman filter and the unscented Kalman filter are of the

same order of magnitude.
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Then, in the prediction step, (60) and (61) are replaced by

Ẑt|t−1 =

2L∑

i=0

wih(X̂ i
t|t−1) (66)

Ft|t−1 =
2L∑

i=0

wi(h(X̂ i
t|t−1) − Ẑt|t−1)(h(X̂

i
t|t−1) − Ẑt|t−1)

′ + Ω. (67)

The update step is still given by (62) and (63), but with Wt computed as

Wt =

2L∑

i=0

wi(X̂ i
t|t−1 − X̂t|t−1)(h(X̂

i
t|t−1) − Ẑt|t−1)

′F−1
t|t−1. (68)

Finally, the log-likelihood function is given by

logL = −
1

2
log2π

T∑

t=1

Nt −
1

2

T∑

t=1

log|Ft|t−1| −
1

2

T∑

t=1

(Zt − Ẑt|t−1)
′F−1

t|t−1(Zt − Ẑt|t−1), (69)

where T is the number of observation dates, and Nt is the dimension of Zt.
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Maturity

3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: USD market

OIS 1.17
(1.48)

1.17
(1.43)

1.26
(1.35)

1.63
(1.21)

2.06
(1.12)

2.42
(1.03)

2.72
(0.96)

3.17
(0.55)

†

SPREAD3M 58.7
(57.5)

51.2
(34.6)

43.8
(23.2)

39.0
(17.2)

35.4
(14.0)

32.5
(11.9)

28.7
(8.2)

†

SPREAD6M 79.1
(57.4)

70.0
(42.7)

58.0
(28.2)

50.8
(20.8)

45.8
(16.9)

41.9
(14.2)

38.1
(7.7)

†

CDSTrMean 67.8
(46.5)

70.2
(44.9)

78.7
(41.2)

85.3
(37.9)

93.4
(37.0)

99.1
(35.9)

102.1
(34.5)

104.8
(33.3)

CDSLIQ1 61.1
(41.9)

63.2
(40.4)

70.9
(37.1)

76.8
(34.1)

84.1
(33.3)

89.2
(32.3)

91.9
(31.0)

94.3
(30.0)

CDSLIQ2 78.7
(55.1)

82.9
(53.4)

91.2
(48.4)

98.8
(45.0)

106.2
(43.0)

113.1
(42.0)

114.6
(40.7)

116.6
(39.2)

Panel B: EUR market

OIS 1.91
(1.67)

1.93
(1.65)

2.00
(1.58)

2.21
(1.38)

2.45
(1.23)

2.67
(1.13)

2.85
(1.02)

3.14
(0.87)

3.44
(0.74)

SPREAD3M 58.7
(35.6)

49.6
(21.7)

43.0
(15.2)

39.6
(12.2)

36.0
(11.3)

34.3
(10.0)

32.0
(8.6)

29.9
(7.4)

SPREAD6M 73.5
(36.2)

66.3
(24.4)

55.9
(16.1)

50.6
(13.0)

45.7
(12.9)

43.1
(11.8)

39.6
(10.5)

36.2
(9.2)

CDSMedian 70.5
(43.0)

72.9
(40.5)

81.3
(37.7)

88.6
(35.9)

95.8
(35.2)

102.3
(34.8)

104.8
(34.4)

107.3
(33.9)

CDSLIQ1 63.4
(38.7)

65.6
(36.4)

73.2
(33.9)

79.7
(32.3)

86.2
(31.7)

92.1
(31.3)

94.3
(31.0)

96.6
(30.5)

CDSLIQ2 64.9
(39.3)

67.8
(38.6)

76.1
(36.2)

83.8
(35.2)

90.9
(35.0)

97.4
(35.3)

99.6
(34.9)

102.1
(34.5)

CDSiT raxx 104.0
(39.0)

109.0
(37.2)

Notes: The table shows means and, in parentheses, standard deviations. SPREAD3M denotes the difference
between the fixed rates on an IRS indexed to 3M LIBOR/EURIBOR and an OIS with the same maturity.
SPREAD6M denotes the difference between the fixed rates on an IRS indexed to 6M LIBOR/EURIBOR and
an OIS with the same maturity. CDSTrMean and CDSMedian are the CDS spread term structures for an
average bank within the LIBOR and EURIBOR panels, respectively. CDSLIQ1, and CDSLIQ2 are the CDS
spread term structures corrected for possible liquidity effects as described in the main text. CDSiTraxx is the
iTraxx Senior Financials CDS index. OIS rates are measured in percentages, while interest rate spreads and
CDS spreads are measured in basis points. Each time series consists of 895 daily observations from August 09,
2007 to January 12, 2011, except those marked with † which consist of 643 daily observations from July 28,
2008 to January 12, 2011.

Table 1: Summary statistics of data



Bank Currency Mean CDS Std CDS Balance Liquidity Start date

Bank of America USD 136 62 2230 203 09-Aug-2007

Bank of Tokyo Mitsubishi USD 71 28 1619 17 09-Aug-2007

Barclays EUR 111 46 2227 117 09-Aug-2007

Citigroup USD 201 122 1857 155 09-Aug-2007

Credit Suisse EUR 108 40 997 71 06-May-2008

Deutsche Bank EUR 95 32 2151 159 09-Aug-2007

HSBC EUR 75 29 2364 38 09-Aug-2007

J. P. Morgan Chase USD 92 36 2032 174 09-Aug-2007

Lloyds TSB EUR 122 58 925 58 09-Aug-2007

Rabobank EUR 77 39 871 —— 09-Aug-2007

Royal Bank of Canada USD 75 36 606 —— 09-Aug-2007

Societe Generale EUR 93 34 1467 66 09-Aug-2007

Norinchukin Bank USD 85 41 630 2 09-Aug-2007

RBS EUR 134 53 2739 117 09-Aug-2007

UBS EUR 120 62 1296 81 09-Aug-2007

WestLB EUR 118 41 347 16 09-Aug-2007

Notes: The table displays data on the banks that are members of the LIBOR panel. For each bank, it shows
the currency of the CDS contracts, the mean and standard deviation of the 5Y CDS spread in basis points
per annum, the size of the balance sheet in billion USD equivalent as reported in the 2009 annual report, the
average daily notional of CDS transactions in million USD equivalent as reported by the Depository Trust and
Clearing Corporation, and the date from which the 5Y CDS contract is available in the Markit database.

Table 2: LIBOR panel



Bank Currency Mean CDS Std CDS Balance Liquidity Start date

Erste Bank EUR 186 70 202 8 11-Aug-2008

Raiffeisen Zentralbank EUR 174 93 148 8 09-Aug-2007

Dexia Bank EUR 216 103 578 14 09-Aug-2007

KBC EUR 143 76 324 3 09-Aug-2007

Nordea EUR 74 31 508 —— 09-Aug-2007

BNP-Paribas EUR 71 27 2058 72 09-Aug-2007

Societe Generale EUR 93 34 1024 66 09-Aug-2007

Natixis EUR 161 76 449 5 09-Aug-2007

Credit Agricole EUR 95 37 1557 74 09-Aug-2007

CIC EUR 92 34 236 —— 09-Aug-2007

Landesbank Berlin EUR 108 32 144 —— 14-Aug-2007

Bayerische Landesbank EUR 101 30 339 6 09-Aug-2007

Deutsche Bank EUR 95 32 1501 159 09-Aug-2007

WestLB EUR 118 41 242 16 09-Aug-2007

Commerzbank EUR 88 29 844 91 09-Aug-2007

DZ Bank EUR 106 32 389 —— 09-Aug-2007

Genossenschaftsbank EUR 134 19 68 —— 31-Oct-2008

Norddeutsche Landesbank EUR 99 29 239 —— 09-Aug-2007

Landesbank Baden-Wurttemberg EUR 107 33 412 —— 09-Aug-2007

Landesbank Hessen-Thuringen EUR 111 31 170 —— 09-Aug-2007

National Bank of Greece EUR 342 286 113 —— 09-Aug-2007

Allied Irish Banks EUR 297 265 174 20 09-Aug-2007

Intesa Sanpaolo EUR 83 40 625 117 09-Aug-2007

Monte dei Paschi di Siena EUR 105 57 225 84 09-Aug-2007

Unicredit EUR 121 42 929 114 21-May-2008

ING Bank EUR 91 35 1164 35 09-Aug-2007

RBS EUR 145 20 1912 117 20-Aug-2010

Rabobank EUR 77 39 608 —— 09-Aug-2007

Caixa Geral De Depositos EUR 164 132 121 —— 09-Aug-2007

Banco Bilbao Vizcaya Argentaria EUR 114 62 535 133 09-Aug-2007

Banco Santander EUR 109 52 1111 156 24-Aug-2007

La Caixa EUR 178 87 272 —— 09-Aug-2007

Notes: Continued on next page.

Table 3: EURIBOR panel



Bank Currency Mean CDS Std CDS Balance Liquidity Start date

Barclays EUR 111 46 1554 117 09-Aug-2007

Danske Bank EUR 87 44 416 9 09-Aug-2007

Svenska Handelsbanken EUR 67 29 207 5 09-Aug-2007

UBS EUR 120 62 904 81 09-Aug-2007

Citigroup USD 201 122 1296 155 09-Aug-2007

J.P. Morgan Chase USD 92 36 1418 174 09-Aug-2007

Bank of Tokyo Mitsubishi USD 71 28 1224 17 09-Aug-2007

Notes: The table displays data on the banks that are members of the EURIBOR panel. For each bank, it shows
the currency of the CDS contracts, the mean and standard deviation of the 5Y CDS spread in basis points
per annum, the size of the balance sheet in billion EUR equivalent as reported in the 2009 annual report, the
average daily notional of CDS transactions in million USD equivalent as reported by the Depository Trust and
Clearing Corporation, and the date from which the 5Y CDS contract is available in the Markit database.

Table 3: EURIBOR panel (cont.)



USD market EUR market

A(2,1,1) A(2,2,1) A(2,2,2) A(2,1,1) A(2,2,1) A(2,2,2)

κr 0.1885
(0.0143)

0.2282
(0.0205)

0.3122
(0.1322)

0.2526
(0.0068)

0.2461
(0.0042)

0.2235
(0.0031)

σr 0.0055
(0.0004)

0.0054
(0.0003)

0.0054
(0.0003)

0.0053
(0.0003)

0.0053
(0.0003)

0.0051
(0.0002)

κγ 0.4667
(0.0278)

0.3864
(0.0303)

0.2836
(0.1234)

0.4703
(0.0156)

0.4663
(0.0097)

0.4566
(0.0076)

θγ 0.1340
(0.0031)

0.1304
(0.0022)

0.1263
(0.0020)

0.0503
(0.0003)

0.0514
(0.0003)

0.0603
(0.0009)

σγ 0.2251
(0.0180)

0.1814
(0.0166)

0.1285
(0.0547)

0.0336
(0.0026)

0.0415
(0.0029)

0.0808
(0.0044)

ρ −0.2115
(0.2365)

−0.2286
(0.1771)

−0.1694
(0.1965)

−0.2564
(0.0831)

−0.3198
(0.0813)

−0.2712
(0.1319)

κν 0.3268
(0.0020)

2.0977
(0.0493)

2.1843
(0.0697)

0.2603
(0.0019)

2.6835
(0.0528)

2.8773
(0.0627)

σν 0.3925
(0.0085)

0.6418
(0.0577)

0.5602
(0.0537)

0.3082
(0.0069)

0.6845
(0.0488)

0.5489
(0.0396)

κµ 0.0499
(0.0067)

0.0340
(0.0072)

0.0156
(0.0046)

0.0152
(0.0079)

θν or θµ 0.2326
(0.0019)

0.3844
(0.0258)

0.4634
(0.0635)

0.2162
(0.0012)

0.6196
(0.1268)

0.6285
(0.2555)

σµ 0.2549
(0.0074)

0.2643
(0.0074)

0.2049
(0.0047)

0.2144
(0.0056)

κλ 2.2595
(0.0149)

2.1878
(0.0113)

1.8242
(0.0159)

2.0701
(0.0086)

1.8452
(0.0083)

1.4773
(0.0083)

κξ 7.1547
(0.2180)

6.2883
(0.1114)

7.2128
(0.1187)

6.0240
(0.2739)

5.7965
(0.1982)

6.7061
(0.1504)

σξ 13.9675
(0.4648)

12.2294
(0.2364)

14.0501
(0.2538)

11.7578
(0.5793)

11.4319
(0.4121)

13.1116
(0.3151)

κǫ 1.3112
(0.0594)

0.4801
(0.0252)

θξ or θǫ 0.0001
(0.0002)

0.0010
(0.0005)

0.0002
(0.0001)

0.0001
(0.0001)

0.0027
(0.0008)

0.0001
(0.0002)

σǫ 1.9325
(0.1089)

0.6564
(0.0415)

Γr −0.1499
(0.1324)

−0.1843
(0.1562)

0 0 0 0

Γγ −0.2332
(0.1154)

−0.2123
(0.1298)

−0.1756
(0.1256)

−0.1348
(0.0781)

−0.1802
(0.1187)

−0.1599
(0.0985)

Γν −0.3734
(0.3354)

−0.5687
(0.4377)

−0.6559
(0.4177)

−0.4675
(0.4243)

−0.5476
(0.3911)

−0.5210
(0.3576)

Γµ −0.4467
(0.1765)

−0.5397
(0.2332)

−0.3567
(0.3124)

0

σerr (bp) 10.4255
(0.0235)

8.6173
(0.0223)

8.1734
(0.0216)

10.0982
(0.0207)

8.1173
(0.0166)

7.3956
(0.0154)

logL ×10−4 -10.0436 -9.5909 -9.4830 -11.1765 -10.5827 -10.3603

Notes: The sample period is August 09, 2007 to January 12, 2011. Asymptotic standard errors are in paren-
theses. For identification purposes, we fix ζλ at 10 and Λ at 5 bp. We constrain to zero those market price of
risk parameters for which the absolute t-statistic does not exceed one. σerr denotes the standard deviation of
pricing errors.

Table 4: Maximum-likelihood estimates



OIS SPREAD3M SPREAD6M CDS

Panel A: USD market

A(2,1,1) 7.14 7.65 7.63 11.55

A(2,2,1) 7.06 8.12 6.99 6.62

A(2,2,2) 7.02 7.65 6.37 6.19

A(2,2,1)-A(2,1,1) −0.09
(−1.71)

∗ 0.47
(0.99)

−0.63
(−2.51)

∗∗ −4.93
(−4.95)

∗∗∗

A(2,2,2)-A(2,2,1) −0.04
(−0.79)

−0.47
(−1.78)

∗ −0.62
(−5.72)

∗∗∗ −0.43
(−3.26)

∗∗∗

Panel B: EUR market

A(2,1,1) 6.16 7.66 8.23 11.77

A(2,2,1) 5.93 7.83 7.16 7.07

A(2,2,2) 5.59 7.13 6.22 6.34

A(2,2,1)-A(2,1,1) −0.23
(−8.12)

∗∗∗ 0.17
(0.63)

−1.06
(−4.04)

∗∗∗ −4.70
(−4.62)

∗∗∗

A(2,2,2)-A(2,2,1) −0.34
(−3.36)

∗∗∗ −0.70
(−1.57)

−0.95
(−4.08)

∗∗∗ −0.73
(−4.18)

∗∗∗

Notes: The table reports means of the root mean squared pricing error (RMSE) time-series of OIS rates, interest
rate spreads, and CDS spreads. SPREAD3M denotes the difference between the fixed rates on an IRS indexed
to 3M LIBOR/EURIBOR and an OIS with the same maturity. SPREAD6M denotes the difference between
the fixed rates on an IRS indexed to 6M LIBOR/EURIBOR and an OIS with the same maturity. Units are
basis points. T-statistics, corrected for heteroscedasticity and serial correlation up to 50 lags using the method
of Newey and West (1987), are in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1%
levels, respectively. Each time series consists of 895 daily observations from August 09, 2007 to January 12,
2011,

Table 5: Comparing model specifications



Maturity

3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A1: SPREAD3M , USD market

Default 28.1
(26.8)

25.2
(17.2)

24.0
(12.5)

23.8
(10.7)

23.9
(9.8)

24.1
(9.2)

28.6
(5.8)

†

Non-default 33.4
(45.2)

20.4
(27.3)

10.6
(14.1)

7.2
(9.5)

5.5
(7.3)

4.5
(6.0)

1.8
(3.5)

†

Panel A2: SPREAD6M , USD market

Default 45.9
(39.7)

43.1
(30.1)

40.9
(21.8)

40.5
(18.5)

40.7
(16.8)

41.0
(15.7)

48.6
(10.0)

†

Non-default 38.3
(53.2)

29.6
(40.5)

15.6
(21.2)

10.6
(14.3)

8.1
(10.9)

6.7
(8.9)

2.9
(5.4)

†

Panel B1: SPREAD3M , EUR market

Default 28.6
(23.1)

24.2
(13.7)

22.5
(10.0)

22.1
(8.8)

22.1
(8.2)

22.2
(7.9)

22.7
(7.5)

23.4
(7.2)

Non-default 30.5
(34.1)

21.9
(22.8)

11.7
(12.0)

8.0
(8.2)

6.2
(6.3)

5.1
(5.1)

3.9
(3.8)

3.0
(2.8)

Panel B2: SPREAD6M , EUR market

Default 46.7
(34.0)

42.4
(24.7)

39.3
(17.9)

38.5
(15.6)

38.5
(14.5)

38.7
(13.8)

39.4
(13.1)

40.8
(12.5)

Non-default 34.1
(36.1)

31.0
(31.2)

17.3
(17.1)

11.9
(11.7)

9.2
(8.9)

7.6
(7.3)

5.8
(5.4)

4.5
(4.0)

Notes: The table shows the decomposition of the spread term structures using the A(2,2,1) specification and
the CDSTrMean and CDSMedian measures of interbank default risk in the USD and EUR markets, respectively.
Each spread is decomposed into a default and a non-default component and the table displays means and, in
parentheses, standard deviations of the two components. SPREAD3M and SPREAD6M denote the spread
term structures indexed to 3M and 6M LIBOR/EURIBOR, respectively. Units are basis points. Each time
series consists of 895 daily observations from August 09, 2007 to January 12, 2011, except those marked with
† which consist of 643 daily observations from July 28, 2008 to January 12, 2011.

Table 6: Decomposition of the term structure of interbank risk



∆Reposprt ∆FGt ∆HPWt ∆RCsprt ∆DFLt ∆DFLfint

Panel A: USD market

∆FGt 0.41

∆HPWt 0.54 0.48

∆RCsprt 0.15 0.53 0.79

∆DFLt 0.41 0.30 0.33 0.21

∆DFLfint 0.41 0.26 0.29 0.14 0.99

∆ξt 0.63 0.44 0.71 0.62 0.43 0.37

Panel B: EUR market

∆FGt 0.42

∆HPWt 0.50 0.45

∆RCsprt 0.10 0.51 0.76

∆DFLt 0.31 0.31 0.26 0.18

∆DFLfint 0.30 0.27 0.21 0.11 0.99

∆ξt 0.63 0.50 0.68 0.63 0.28 0.26

Notes: The table displays pairwise correlations between monthly changes in ξt and the funding and market
liquidity components that are unspanned by default risk. ξt is estimated using the A(2,2,1) specification. The
unspanned liquidity components are the residuals from regressions of liquidity proxies on the first two principal
components of the panel CDS term structure. Reposprt denotes the spread between the 3M Agency MBS
general collateral (GC) repo rate and the 3M Treasury GC repo rate (in basis points). FGt denotes the
Fontaine and Garcia (2011) liquidity factor. HPWt denotes the Hu, Pan, and Wang (2010) liquidity factor.
RCsprt denotes the spread between the 10Y par yields on Refcorp bonds and off-the-run Treasuries. DFLt

and DFLfint denotes the Dick-Nielsen, Feldhutter, and Lando (2012) liquidity factors for the overall corporate
bond market and for bonds issued by financial institutions, respectively.

Table 7: Pairwise correlations



∆Reposprt ∆FGt ∆HPWt ∆RCsprt ∆DFLt ∆DFLfint adj R2

Panel A: USD market

0.039
(4.232)

∗∗∗ 0.370

1.757
(1.852)

∗ 0.160

0.556
(6.926)

∗∗∗ 0.492

0.039
(3.628)

∗∗∗ 0.357

1.092
(2.318)

∗∗ 0.150

0.855
(2.010)

∗∗ 0.104

0.035
(1.907)

∗ −0.523
(−0.652)

−0.041
(−0.185)

0.039
(2.763)

∗∗∗ 0.300
(0.980)

0.619

0.034
(4.407)

∗∗∗ 0.034
(4.511)

∗∗∗ 0.644

Panel B: EUR market

0.025
(4.638)

∗∗∗ 0.377

1.265
(2.536)

∗∗ 0.225

0.358
(4.419)

∗∗∗ 0.442

0.026
(3.633)

∗∗∗ 0.371

0.457
(1.476)

0.045

0.371
(1.373)

0.030

0.028
(3.579)

∗∗∗ −0.202
(−0.475)

−0.104
(−0.704)

0.031
(2.614)

∗∗∗ 0.020
(0.174)

0.670

0.023
(5.924)

∗∗∗ 0.023
(5.918)

∗∗∗ 0.699

Notes: The table displays results from regressing monthly changes in ξ(t) on monthly changes in the funding and
market liquidity components that are unspanned by default risk. ξt is estimated using the A(2,2,1) specification.
The unspanned liquidity components are the residuals from regressions of liquidity proxies on the first two
principal components of the panel CDS term structure. Reposprt denotes the spread between the 3M Agency
MBS general collateral (GC) repo rate and the 3M Treasury GC repo rate (in basis points). FGt denotes the
Fontaine and Garcia (2011) liquidity factor. HPWt denotes the Hu, Pan, and Wang (2010) liquidity factor.
RCsprt denotes the spread between the 10Y par yields on Refcorp bonds and off-the-run Treasuries. DFLt

and DFLfint denotes the Dick-Nielsen, Feldhutter, and Lando (2012) liquidity factors for the overall corporate
bond market and for bonds issued by financial institutions, respectively. Intercepts are not reported. T -statistics
computed from White (1980) standard errors are in parentheses. ∗, ∗∗, and ∗∗∗ denote significance at the 10%,
5%, and 1% levels, respectively.

Table 8: The non-default component and liquidity



Maturity

3M 1Y 2Y 3Y 4Y 5Y 10Y

Original decomposition: A(2, 2, 1), CDSTrMean

Default 28.1
(26.8)

25.2
(17.2)

24.0
(12.5)

23.8
(10.7)

23.9
(9.8)

24.1
(9.2)

28.6
(5.8)

†

Non-default 33.4
(45.2)

20.4
(27.3)

10.6
(14.1)

7.2
(9.5)

5.5
(7.3)

4.5
(6.0)

1.8
(3.5)

†

Panel A: A(2, 1, 1), CDSTrMean

Default 25.1
(17.2)

25.1
(15.3)

25.0
(13.2)

25.0
(11.5)

24.9
(10.2)

24.9
(9.0)

26.8
(5.2)

†

Non-default 35.8
(45.2)

21.3
(26.4)

10.9
(13.5)

7.4
(9.2)

5.7
(7.0)

4.6
(5.7)

1.9
(3.4)

†

Panel B: A(2, 2, 2), CDSTrMean

Default 27.8
(25.2)

23.3
(15.7)

21.5
(11.2)

21.0
(9.5)

21.1
(8.7)

21.3
(8.2)

25.7
(5.2)

†

Non-default 31.9
(45.1)

22.3
(27.2)

13.8
(14.8)

10.1
(10.2)

7.9
(7.9)

6.5
(6.4)

2.9
(3.8)

†

Panel C: A(2, 2, 1), stochastic Λ(t), CDSTrMean

Default 25.7
(26.8)

24.3
(17.8)

23.8
(13.1)

23.9
(11.2)

24.2
(10.2)

24.5
(9.5)

29.4
(5.9)

†

Non-default 35.9
(48.2)

21.7
(28.9)

11.3
(14.9)

7.7
(10.1)

5.9
(7.7)

4.8
(6.3)

1.9
(3.7)

†

Panel D: A(2, 2, 1), no LIBOR, CDSTrMean

Default 29.1
(27.3)

25.4
(17.2)

23.9
(12.5)

23.7
(10.7)

23.8
(9.8)

24.0
(9.2)

28.5
(5.8)

†

Non-default 31.8
(40.9)

20.8
(26.6)

10.8
(13.8)

7.3
(9.3)

5.6
(7.1)

4.6
(5.8)

1.8
(3.3)

†

Panel E: A(2, 2, 1), CDSLIQ1

Default 25.8
(24.9)

24.5
(16.9)

24.0
(12.6)

24.1
(10.9)

24.3
(9.9)

24.6
(9.3)

29.0
(5.9)

†

Non-default 35.7
(46.2)

22.0
(28.0)

11.3
(14.4)

7.7
(9.7)

5.9
(7.4)

4.8
(6.1)

1.9
(3.6)

†

Panel F: A(2, 2, 1), CDSLIQ2

Default 31.0
(28.5)

26.2
(17.8)

24.0
(12.5)

23.3
(10.5)

23.1
(9.5)

23.1
(8.9)

27.1
(5.6)

†

Non-default 31.7
(43.4)

19.7
(26.8)

10.2
(13.8)

7.0
(9.4)

5.4
(7.2)

4.4
(5.9)

1.7
(3.4)

†

Notes: The table shows alternative decompositions, for the USD market, of the spread term structure indexed
to 3M LIBOR, SPREAD3M . Each spread is decomposed into a default and a non-default component and the
table displays means and, in parentheses, standard deviations of the two components. The top panel displays the
original decomposition (i.e. for the A(2,2,1) specification combined with the CDSTrMean measure of interbank
default risk.) Panels A and B display results for the A(2,1,1) and A(2,2,2) specifications, respectively, combined
with the CDSTrMean measure of interbank default risk. Panel C displays results for the A(2,2,1) specification
with a stochastic Λ(t) combined with the CDSTrMean measure of interbank default risk. Panel D displays
results for the A(2,2,1) specification combined with the CDSTrMean measure of interbank default risk, but
without using LIBOR rates in the estimation. Panels E and F display results for the A(2,2,1) specification
combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk, respectively. Units are basis
points. Each time series consists of 895 daily observations from August 09, 2007 to January 12, 2011, except
those marked with † which consist of 643 daily observations from July 28, 2008 to January 12, 2011.

Table 9: Alternative decomposition of the term structure of USD interbank risk
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Figure 1: Money market and swap market spreads

The figures shows time-series of the spread between 3M LIBOR and the 3M OIS rate (solid line) and the spread

between the rate on a 5Y interest rate swap indexed to 3M LIBOR and the 5Y OIS rate (dotted line). Note

that the 3M LIBOR-OIS spread reached a maximum 366 basis points on October 10, 2008. The vertical dotted

lines mark the beginning of the financial crisis on August 9, 2007, the sale of Bear Stearns to J.P. Morgan on

March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s

debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Both time series consists of

1313 daily observations from January 02, 2006 to January 12, 2011.
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Figure 2: State variables, USD

The figure shows the state variables for the three model specifications estimated on USD data The vertical

dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy

filing on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard

and Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to

January 12, 2011.
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Figure 3: Default probabilities, USD

The top panels display the risk-neutral 3M expected default probability (EDP) for an average bank within the

current panel as well as for an average bank within the refreshed panel in five year’s time. The bottom panels

display the corresponding 6M EDPs. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on

March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s

debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of

895 daily observations from August 09, 2007 to January 12, 2011.
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Figure 4: Decomposition of USD interbank risk

Decomposing USD interbank risk into default (dark-grey) and non-default (light-grey) components using the

A(2,2,1) specification and the CDSTrMean measure of interbank default risk. Panels A and B display decom-

positions of the 3M and 6M LIBOR-OIS spread, respectively. Panels C and D display decompositions of the

5Y IRS-OIS spread indexed to 3M and 6M LIBOR, respectively. Units are basis points. The vertical dotted

lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy filing

on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard and

Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to January

12, 2011.
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Panel C: 5Y(3M) spread Panel D: 5Y(6M) spread
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Figure 5: Decomposition of EUR interbank risk

Decomposing EUR interbank risk into default (dark-grey) and non-default (light-grey) components using the

A(2,2,1) specification and the CDSMedian measure of interbank default risk. Panels A and B display decompo-

sitions of the 3M and 6M EURIBOR-OIS spread, respectively. Panels C and D display decompositions of the

5Y IRS-OIS spread indexed to 3M and 6M EURIBOR, respectively. Units are basis points. The vertical dotted

lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy filing

on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard and

Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to January

12, 2011.
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Figure 6: Liquidity proxies

Reposprt denotes the spread between the 3M Agency MBS general collateral (GC) repo rate and the 3M

Treasury GC repo rate (in basis points). FGt denotes the Fontaine and Garcia (2011) liquidity factor. HPWt

denotes the Hu, Pan, and Wang (2010) liquidity factor. RCsprt denotes the spread between the 10Y par

yields on Refcorp bonds and off-the-run Treasuries. DFLt and DFLfint denotes the Dick-Nielsen, Feldhutter,

and Lando (2012) liquidity factors for the overall corporate bond market and for bonds issued by financial

institutions, respectively. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on March

16, 2008, and the Lehman Brothers bankruptcy filing on September 15, 2008. Each time series consists of 27

monthly observations from August, 2007 to December, 2010.
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Figure 7: Pricing of interbank risk in the swap market

The figure displays the model-implied instantaneous Sharpe ratios on a swap spread strategy consisting of

receiving the fixed rate in an IRS indexed to 3M LIBOR and paying the fixed rate in an OIS of the same

maturity. The solid, dashed, and dotted lines correspond to the 1Y, 5Y, and 10Y swap maturities, respectively.

The Sharpe ratios are computed for the A(2,2,1) specification estimated on the USD market. The vertical

dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy

filing on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard

and Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to

January 12, 2011.
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E Proof of Lemma C.4

For the proof of Lemma C.4 we first recall a fundamental comparison result for ordinary

differential equations, which is a special case of a more general theorem proved by Volkmann

(1972):

Lemma E.1. Let R(τ, v) be a continuous real map on R+×R and locally Lipschitz continuous

in v. Let p(τ) and q(τ) be differentiable functions satisfying

∂τp(τ) ≤ R(τ, p(τ))

∂τq(τ) = R(τ, q(τ))

p(0) ≤ q(0).

Then we have p(τ) ≤ q(τ) for all τ ≥ 0.

We only prove the first part of Lemma C.4, the proof of the second part being simi-

lar.61 It follows from Duffie, Filipović, and Schachermayer (2003, Theorem 2.16), see also

Filipović (2009, Theorem 10.3), that the affine transform formula

EQ [exp [uνν(τ) + uµµ(τ)]] = exp [φ(τ, u) + ψν(τ, u)ν(0) + ψµ(τ, u)µ(0)]

holds, and the expectation on the left hand side is finite in particular, for u = (uν , uµ)⊤ ∈ R
2

if φ(τ, u), ψν(τ, u) and ψµ(τ, u) are finite solutions of the corresponding system of Riccati

equations

∂τφ(τ, u) = κµθµψµ(τ, u) + Λ

φ(0, u) = 0

∂τψν(τ, u) =
σ2

ν

2
ψν(τ, u)

2 − κνψν(τ, u)

ψν(0, u) = uν

∂τψµ(τ, u) =
σ2

µ

2
ψµ(τ, u)2 − κµψµ(τ, u) + κνψν(τ, u)

ψµ(0, u) = uµ.

(E.1)

It is thus enough to show that both, ψν(τ, u
∗) and ψµ(τ, u∗), are finite for all τ ≥ 0 and for

u∗ := (−Dν(T − t0),−Dµ(T − t0))
⊤.

61Indeed, after replacing 1
ζλκλ+1

by 1 in (E.2), and in the definition of pν(τ ), Θν and Cν below, the proof of

the second part of Lemma C.4 is literally the same.
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We first provide a bound for u∗. Note that Dλ(τ), defined as solution of (43), is given by

Dλ(τ) = − 1
κλ

(1 − e−κλτ ). This implies − 1
κλ

≤ Dλ(τ) ≤ 0 and thus

−
1

ζλκλ + 1
≤

Dλ(τ)

ζλ −Dλ(τ)
≤ 0.

In view of (43) and Lemma E.1 we conclude that pν(τ) ≤ Dν(τ) ≤ 0 where pν(τ) solves the

Riccati differential equation

∂τpν(τ) =
σ2

ν

2
pν(τ)

2 − κνpν(τ) −
1

ζλκλ + 1

pν(0) = 0.

(E.2)

The explicit solution of (E.2) is well known to be

pν(τ) = −

2
ζλκλ+1

(
eΘντ − 1

)

Θν (eΘντ + 1) + κν (eΘντ − 1)

where Θν is defined in (47), see e.g. Filipović (2009, Lemma 10.12). We thus obtain the

estimate

0 ≤ −Dν(T − t0) ≤ −pν(T − t0) = Cν . (E.3)

Similarly, in view of (43), (E.3) and Lemma E.1, we infer that pµ(τ) ≤ Dµ(τ) ≤ 0 where

pµ(τ) solves the Riccati equation

∂τpµ(τ) =
σ2

µ

2
pµ(τ)2 − κµpµ(τ) − κνCν

pµ(0) = 0.

(E.4)

Again, the explicit solution of (E.4) is readily available, see e.g. Filipović (2009, Lemma 10.12):

pµ(τ) = −
2κνCν

(
eΘµτ − 1

)

Θµ (eΘµτ + 1) + κµ (eΘµτ − 1)

where Θµ is defined in (48). Moreover, it follows by inspection that pµ(τ) ↓ P1 as τ → ∞ for

the left critical point

P1 =
κµ −

√
κ2

µ + 2σ2
µκνCν

σ2
µ

of the differential equation (E.4), and we obtain the estimates

0 ≤ −Dµ(T − t0) ≤ −pµ(T − t0) = Cµ ≤ −P1. (E.5)
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Next, we give a priori bounds on ψν(τ, u∗) and ψµ(τ, u∗). Denote by P2 = 2κν

σ2
ν

the right

critical point of the homogeneous Riccati differential equation (E.1) for ψν(τ, u), and denote

by

qν(τ) =
2κνCν

(2κν − σ2
νCν) eκντ + σ2

νCν
(E.6)

the solution of (E.1) for ψν(τ, u) with initial condition uν = Cν , see e.g. Filipović (2009,

Lemma 10.12). It then follows from Lemma E.1 and by inspection that

0 ≤ ψν(τ, u∗) ≤ qν(τ) and qν(τ) ↓ 0 for τ → ∞ if Cν < P2, (E.7)

which is (49).

Now suppose that (49) holds, that is, Cν < P2. Combining (E.7) with (E.1), (E.5) and

Lemma E.1 implies

0 ≤ ψµ(τ, u∗) ≤ qµ(τ)

where qµ(τ) solves the time-inhomogeneous Riccati equation

∂τqµ(τ) =
σ2

µ

2
qµ(τ)2 − κµqµ(τ) + κνqν(τ)

qµ(0) = Cµ.

If σµ = 0 then obviously qµ(τ) is finite for all τ ≥ 0, and there is nothing left to prove. So

from now on we assume that σµ > 0 and κµ ≥ 0. Since there is no closed form expression

for qµ(τ) available in general, we are going to control qµ from above by a time-inhomogeneous

linear differential equation. Hereto note the elementary fact that

σ2
µ

2
x2 − κµx+ κνqν(τ) ≤ −

κµ

2
x+ κνqν(τ) for all 0 ≤ x ≤

κµ

σ2
µ

.

Hence, by Lemma E.1, the solution f of

∂τf(τ) = −
κµ

2
f(τ) + κνqν(τ)

f(0) = Cµ

dominates qµ, that is, 0 ≤ qµ(τ) ≤ f(τ) for all τ ≥ 0, if

f(τ) ≤
κµ

σ2
µ

(E.8)

for all τ ≥ 0.
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We now claim that (E.8) holds for any fixed τ ≥ 0 if and only if

∫ τ

0
e

κµ
2

s

(
κνqν(s) −

κ2
µ

2σ2
µ

)
ds ≤

κµ

σ2
µ

−Cµ. (E.9)

Indeed, f can be represented by the variation of constants formula

f(τ) = e−
κµ
2

τCµ +

∫ τ

0
e−

κµ
2

(τ−s)κνqν(s) ds. (E.10)

Hence (E.8) is equivalent to

Cµ +

∫ τ

0
e

κµ

2
sκνqν(s) ds ≤

κµ

σ2
µ

e
κµ

2
τ . (E.11)

The right hand side of (E.11) can be rewritten as

κµ

σ2
µ

e
κµ
2

τ =
κµ

σ2
µ

(
e

κµ
2

τ − 1
)

+ e
κµ
2

τ =
κ2

µ

2σ2
µ

∫ τ

0
e

κµ
2

s ds+
κµ

σ2
µ

.

Plugging this in (E.11) and rearrange terms yields (E.9).

In view of (E.7) we infer that the maximum of the left hand side of (E.9) is attained at

τ = τ∗ where

τ∗ = inf
{
τ ≥ 0 | κ2

µ − 2σ2
µκνqν(τ) ≥ 0

}
<∞,

and which by (E.6) can be written as in (51). Hence the bound (E.8) holds for all τ ≥ 0 if and

only if (E.8) holds for τ = τ∗. This again is equivalent to (50), since the integral in (E.10) can

be expressed as62

∫ τ

0
e−

κµ
2

(τ−s)κνqν(s) ds =
4κ2

ν

κµσ2
ν

(

2F1

(
1,
κµ

2κν
;
κµ + 2κν

2κν
;

(
σ2

νCν − 2κν

)
eκντ

σ2
νCν

)

−e−
κµ
2

τ
2F1

(
1,
κµ

2κν
;
κµ + 2κν

2κν
;
σ2

νCν − 2κν

σ2
νCν

))

where 2F1 is the Gauss hypergeometric function. Finally, note that τ∗ = 0 if and only if
κ2

µ

2κνσ2
µ
≥ Cν . In this case, (E.5) implies

σ2
µCµ ≤

√
κ2

µ + 2σ2
µκνCν − κµ ≤

√
2κ2

µ − κµ ≤ κµ,

so that (50) automatically holds. This finishes the proof of Lemma C.4.

62We obtained the integral formula from the computational software program Mathematica.
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Filipović, D. (2009): Term Structure Models – A Graduate Course, Springer.
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F On quotation conventions for basis swaps

As discussed in Section 2.4, there is no universally accepted quotation convention for basis

swaps. The two most common conventions are the following. In the first convention (I), and

the one we use in the paper, the cash flow in a basis swap is the difference between the cash

flows in two IRS indexed to different floating rates. In the case of a 3M/6M basis swap and

with δ = 3M, this implies that one party pays δL(t− δ, t) quarterly, while the other party pays

2δL(t − 2δ, t) semi-annually, with the fixed spread payments made semi-annually in the USD

market and annually in the EUR market. Given that our model has an analytical solution to

an IRS, it also has an analytical solution to a basis swap defined according to this convention.

In the second convention (II), all payments occur at the frequency of the longer floating

rate with the shorter floating rate paid compounded. In the case of a 3M/6M basis swap,

this implies for both markets that on a semi-annual basis one party pays δL(t− 2δ, t− δ)(1 +

δL(t− δ, t)) + δL(t− δ, t) plus a fixed spread, while the other party pays 2δL(t − 2δ, t). If we

assume that payments are made on tenor structure (5) with ti = ti−1 +2δ, the basis swap rate

according to this convention is given by

BSδ,2δ(t, T ) =
1

∑N
i=1 2δPc(t, ti)

(
N∑

i=1

EQ
t

[
e−

∫ ti
t rc(s)ds

(
2δL(ti−1, ti) −

(
δL(ti−1, ti−1 + δ)(1 + δL(ti−1 + δ, ti)) + δL(ti−1 + δ, ti)

))]
)
. (F.1)

We now quantify the difference between the two market conventions. For a given param-

eter set and state vector, we compute 3M/6M basis swap rates implied by conventions (I)

analytically, and by convention (II) via simulation.63 We consider both markets and for each

market two state vectors: the mean state vector and the state vector on the day of the widest

1Y basis swap rate. Table F.1 shows the spread term structures implied by convention (I).

It also shows the differences between the spread term structures implied by convention (II)

and (I) along with the standard errors of the simulated basis swap rates in parentheses. On a

typical day, the differences between the spreads implied by the two conventions are very small

both in absolute and relative terms. Even on the day of the widest 1Y basis swap rate, the

differences between the spreads remain very small in relative terms.

63In principle, one can compute basis swap rates for convention (II) analytically as well. However, the

expressions are fairly involved, and as the spreads can be simulated very accurately using a low number of

simulations, we opt for this approach.
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Maturity

1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: USD market, typical day

(I) 22.087 15.449 12.525 10.864 9.791 8.496 7.482

(II)-(I) −0.125
(0.003)

−0.118
(0.004)

−0.121
(0.005)

−0.126
(0.006)

−0.131
(0.007)

−0.143
(0.007)

−0.168
(0.008)

Panel B: USD market, day of widest 1Y spread

(I) 39.629 23.089 16.881 13.865 12.114 10.179 8.759

(II)-(I) −0.601
(0.008)

−0.347
(0.005)

−0.265
(0.005)

−0.233
(0.005)

−0.217
(0.006)

−0.208
(0.006)

−0.219
(0.008)

Panel C: EUR market, typical day

(I) 14.546 12.793 11.862 11.211 10.681 9.788 8.687

(II)-(I) −0.215
(0.002)

−0.202
(0.003)

−0.203
(0.004)

−0.207
(0.005)

−0.209
(0.005)

−0.213
(0.007)

−0.210
(0.008)

Panel D: EUR market, day of widest 1Y spread

(I) 36.655 26.557 22.032 19.435 17.684 15.310 12.996

(II)-(I) −0.836
(0.004)

−0.583
(0.005)

−0.482
(0.006)

−0.431
(0.007)

−0.400
(0.008)

−0.361
(0.010)

−0.322
(0.011)

Notes: In this table, we asses the difference between the 3M/6M basis swap rates implied by market conventions
(I) and (II). The former can be computed analytically within our model, while the latter is computed by
simulation. For the simulation, we use 2000 paths (1000 plus 1000 antithetic) and the basis swap rate implied
by convention (I) as a very efficient control variate. In each panel, the first line shows the term structure of basis
swap rates implied by convention (I). The second line shows the difference between the term structure of basis
swap rates implied by conventions (II) and (I), with standard errors of the simulated basis swap rates reported
in parentheses. Panels A and C show results using the mean state vector, while Panels B and D show results
using the state vector on the day of the widest 1Y basis swap rate (October 14, 2008 in USD and October 13,
2008 in EUR) We use the A(2,2,1) specification, with parameter estimates reported in Table 4. Basis swap
rates are reported in basis points.

Table F.1: Impact of differences in market convention for basis swaps



G On the (lack of) identification of ζλ

Here, we show that it is very difficult to separately identify ζλ (where 1
ζλ

is the mean jump size in

the default intensity) and the process for ν(t) (the intensity of credit quality deterioration). We

consider the A(2, 2, 1) specification, but the results also hold true for the other specifications.

Let ν(t) = 1
ζλ
ν(t) denote the mean rate of deterioration in the credit quality of an average

panel bank. Its dynamics are given by

dν(t) = κν(µ(t) − ν(t)) dt + σν

√
ν(t) dWν(t)

dµ(t) = κµ(θµ − µ(t)) dt + σµ

√
µ(t) dWµ(t),

(G.1)

where µ(t) = 1
ζλ
µ(t), θµ = 1

ζλ
θµ, σµ = 1√

ζλ
σµ, and σν = 1√

ζλ
σν .

We price interest rate spreads and CDS spreads for different values of ζλ keeping the level

of ν(t) and its process unchanged. That is, variation in ζλ is accompanied by adjustments to

ν(t), µ(t), θµ, σµ, and σν . We use the parameters reported in Table 4 for the USD market and

assume that the state vector equals its sample average. We then vary ζλ between 10 and 1000

corresponding to mean jump sizes between 1000 bp and 10 bp.

Figure G.1 shows interest rate and CDS spreads for the 1Y and 10Y maturities as a function

of 1
ζλ

. Overall, the spreads are quite insensitive to the mean jump size, although it appears

that combinations of high mean jump sizes and low intensity of credit quality deterioration

produce slightly lower spreads than combinations of low jump sizes and high intensity of credit

quality deterioration.64 This illustrate that, for valuation of spreads, it is the mean rate of

deterioration in credit quality that matters, and that it would be very difficult to disentangle

ζλ and the process for ν(t).

64A similar conclusion was reached by Collin-Dufresne and Solnik (2001), albeit within a simpler model, in

their study of spreads between nonrefreshed and refreshed credit quality corporate-bond yields (see their Figure

2).
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Figure G.1: Sensitivity of spreads to 1
ζλ

Sensitivity of interest rate spreads and CDS spreads to variation in the mean jump in the default intensity, 1
ζλ

,

keeping the process for the mean rate of deterioration in credit quality, ν(t), unchanged. SPREAD3M denotes

the difference between the fixed rates on an IRS indexed to 3M LIBOR and an OIS with the same maturity.

SPREAD6M denotes the difference between the fixed rates on an IRS indexed to 6M LIBOR and an OIS with

the same maturity. Solid lines correspond to the 1Y maturity while dash-dotted lines correspond to the 10Y

maturity.
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H Additional tables and figures

Individual RMSEs Tables H.1 and H.2 show individual root mean squared pricing errors

(RMSEs) in the USD and EUR markets, respectively, thus complementing Table 5 in the

paper.

OIS and repo rates Figure H.1 displays 1W OIS and repo rates, while Figure H.2 displays

spreads between 1W OIS and repo rates.

State variables and default probabilities, EUR Figures H.3 and H.4 display the state

variables and the default probabilities, respectively, for the three model specifications estimated

on EUR data. They are the EUR counterparts to Figures 2 and 3 in the paper.

Time series of alternative decompositions Figures H.5 and H.6 show time series of the

alternative decompositions of USD interbank risk at the short end and long end of the term

structure, respectively. They complement Table 9 in the paper.
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Maturity

3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: A(2, 1, 1)

OIS 7.42 5.61 7.83 7.72 7.69 5.42 6.09 11.16

SPREAD3M 12.13 8.96 10.67 8.90 7.23 6.22 5.47

SPREAD6M 10.53 7.98 5.50 6.72 8.09 9.94 12.56

CDS 23.09 9.73 9.25 9.23 8.15 9.95 12.05 15.52

Panel B: A(2, 2, 1)

OIS 7.27 5.29 7.51 7.68 7.66 5.24 6.15 11.09

SPREAD3M 11.40 9.67 9.90 9.81 7.65 5.86 4.75

SPREAD6M 8.68 8.49 5.39 4.91 5.93 8.02 11.76

CDS 13.28 5.52 7.00 5.95 3.90 5.68 5.66 6.28

Panel C: A(2, 2, 2)

OIS 7.36 5.20 7.50 7.64 7.58 5.13 5.96 10.98

SPREAD3M 10.25 9.84 9.10 8.37 7.65 6.07 4.07

SPREAD6M 10.44 7.79 3.72 3.84 5.11 7.00 9.88

CDS 14.27 4.47 6.22 5.29 3.35 5.16 4.34 4.54

Notes: The table reports root mean squared pricing errors (RMSEs) for each point on the term structures of
OIS rates, interest rate spreads, and CDS spreads. SPREAD3M denotes the difference between the fixed rates
on an IRS indexed to 3M LIBOR and an OIS with the same maturity. SPREAD6M denotes the difference
between the fixed rates on an IRS indexed to 6M LIBOR and an OIS with the same maturity. Units are basis
points.

Table H.1: Individual RMSEs, USD market



Maturity

3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: A(2, 1, 1)

OIS 8.02 3.88 10.20 9.74 5.72 4.10 3.98 5.48 9.08

SPREAD3M 11.37 8.26 9.26 9.26 8.93 8.09 7.07 6.10

SPREAD6M 9.81 7.94 7.10 8.04 9.14 9.32 9.91 10.90

CDS 24.35 11.15 9.75 8.39 6.48 9.31 11.17 14.96

Panel B: A(2, 2, 1)

OIS 8.43 3.55 9.76 9.46 5.49 3.76 3.60 5.22 8.75

SPREAD3M 8.49 7.76 9.81 10.11 9.62 8.64 7.23 5.75

SPREAD6M 9.23 7.10 3.93 4.44 5.61 6.09 7.93 10.92

CDS 11.86 5.79 6.97 5.74 3.97 5.76 5.32 5.62

Panel C: A(2, 2, 2)

OIS 8.41 3.52 9.25 9.02 5.44 3.38 2.83 4.95 8.12

SPREAD3M 6.63 8.40 8.78 8.64 8.15 7.47 6.61 5.58

SPREAD6M 9.74 5.94 3.31 3.42 4.64 5.11 6.54 8.91

CDS 11.62 4.79 6.19 4.75 3.05 5.54 3.95 3.99

Notes: The table reports root mean squared pricing errors (RMSEs) for each point on the term structures of
OIS rates, interest rate spreads, and CDS spreads. SPREAD3M denotes the difference between the fixed rates
on an IRS indexed to 3M EURIBOR and an OIS with the same maturity. SPREAD6M denotes the difference
between the fixed rates on an IRS indexed to 6M EURIBOR and an OIS with the same maturity. Units are
basis points.

Table H.2: Individual RMSEs, EUR market



Panel A: 1W OIS and Treasury GC repo rates Panel B: 1W OIS and Agency GC repo rates

Panel C: 1W OIS and Agency MBS GC repo rates Panel D: 1W EUR OIS and GC repo rates
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Figure H.1: OIS and repo rates

The figure shows the 1W USD OIS rate along with the 1W repo rates for Treasury, Agency, and Agency MBS

general collateral (Panels A, B, and C, respectively) as well as the 1W EUR OIS rate along with the 1W Eurepo

rate (Panel D). Grey lines mark OIS rates, while black lines mark repo rates. The vertical dotted lines mark the

sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy filing on September

15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard and Poor’s on April

27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to January 12, 2011.
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Panel A: 1W OIS - Treasury GC repo spread
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Panel D: 1W EUR OIS - GC repo spread
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Figure H.2: Spreads between OIS and repo rates

The figure shows the spread between the 1W USD OIS rate and the 1W repo rates for Treasury, Agency, and

Agency MBS general collateral (Panels A, B, and C, respectively) as well as the spread between the 1W EUR

OIS rate and the 1W Eurepo rate (Panel D). The vertical dotted lines mark the sale of Bear Stearns to J.P.

Morgan on March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade

of Greece’s debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Each time series

consists of 895 daily observations from August 09, 2007 to January 12, 2011.
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Figure H.3: State variables, EUR

The figure shows the state variables for the three model specifications estimated on EUR data The vertical

dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy

filing on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard

and Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to

January 12, 2011.
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Figure H.4: Default probabilities, EUR

The top panels display the risk-neutral 3M expected default probability (EDP) for an average bank within the

current panel as well as for an average bank within the refreshed panel in five year’s time. The bottom panels

display the corresponding 6M EDPs. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on

March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s

debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of

895 daily observations from August 09, 2007 to January 12, 2011.
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Panel A: A(2, 1, 1), CDSTrMean Panel B: A(2, 2, 2), CDSTrMean

Panel C: A(2, 2, 1), stochastic Λ(t), CDSTrMean Panel D: A(2, 2, 1), no LIBOR, CDSTrMean

Panel E: A(2, 2, 1), CDSLIQ1 Panel F: A(2, 2, 1), CDSLIQ2
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Figure H.5: Alternative decompositions of USD interbank risk, 3M horizon

Alternative decompositions of the 3M LIBOR-OIS spread into default (dark-grey) and non-default (light-grey)

components. Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications, respectively, com-

bined with the CDSTrMean measure of interbank default risk. Panel C displays results for the A(2,2,1) spec-

ification with a stochastic Λ(t), combined with the CDSTrMean measure of interbank default risk. Panel D

displays results for the A(2,2,1) specification, combined with the CDSTrMean measure of interbank default risk,

but without using LIBOR rates in the estimation. Panels E and F display results using the A(2,2,1) specification

combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk, respectively. Units are basis

points. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman

Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s debt to non-investment

grade status by Standard and Poor’s on April 27, 2010. Each time series consists of 895 daily observations from

August 09, 2007 to January 12, 2011.
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Figure H.6: Alternative decompositions of USD interbank risk, 5Y horizon

Alternative decompositions of the 5Y IRS-OIS spread indexed to 3M LIBOR into default (dark-grey) and non-

default (light-grey) components. Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications,

respectively, combined with the CDSTrMean measure of interbank default risk. Panel C displays results for the

A(2,2,1) specification with a stochastic Λ(t), combined with the CDSTrMean measure of interbank default risk.

Panel D displays results for the A(2,2,1) specification, combined with the CDSTrMean measure of interbank

default risk, but without using LIBOR rates in the estimation. Panels E and F display results using the A(2,2,1)

specification combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk, respectively. Units

are basis points. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008,

the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s debt to non-

investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of 895 daily

observations from August 09, 2007 to January 12, 2011.
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