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Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain
activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the
targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized
brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic
causal modeling in order to provide feedback information based on connectivity between brain areas rather than
activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can volun-
tarily control a feedback signal that is based on the Bayesian model comparison between two predefinedmodel al-
ternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right
visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific
functional brain networks. Becausemost mental functions andmost neurological disorders are associatedwith net-
work activity rather than with activity in a single brain region, this novel approach is an important methodological
innovation in order to more directly target functionally relevant brain networks.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

Neurofeedback is a technique that provides moment-to-moment in-
formation about the current level of brain activity, towhichwe otherwise
do not have conscious access to. Such information can be used to learn
voluntary self-regulation of brain activity. Until recently, neurofeedback
was mainly used to train self-regulation of autonomic bodily functions
(Kimmel, 1974; Miller, 1969; Shearn, 1962), or of specific electroenceph-
alography (EEG) components, for example, in order to communicatewith
severely paralyzed patients (Birbaumer et al., 1999; Kübler et al., 2001), to
suppress epileptic activity (Kotchoubey et al., 2001), or to treat symptoms
of attention deficit hyperactivity disorder (Fuchs et al., 2003). However,
neurofeedback with EEG is limited with respect to spatial specificity and
thus the choice of brain regions that can be targeted.
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Recent technological advances in the field of functional magnetic
resonance imaging (fMRI) have now made it possible to analyze the
data in real-time and thus to provide neurofeedback based on real-
time fMRI (rtfMRI). Neurofeedback based on rtfMRI offers the advan-
tage of targeting spatially localized activity in the range of millimeters
across the entire brain (deCharms, 2007, 2008; Weiskopf et al., 2004,
2007). Several studies have applied this technically challenging
method and demonstrated the feasibility of self-regulating activation
in specific brain areas (Bray et al., 2007; Caria et al., 2007, 2010;
Chiew et al., 2012; deCharms et al., 2004, 2005; Haller et al., 2010;
Hamilton et al., 2011; Hampson et al., 2011; Johnson et al.,
2012; Johnston et al., 2010, 2011; Koush et al., 2012; LaConte et al.,
2007; Mathiak et al., 2010; Rota et al., 2009; Scharnowski et al.,
2012; Shibata et al., 2011; Subramanian et al., 2011; Veit et al., 2012;
Weiskopf et al., 2003; Yoo et al., 2007, 2008). The brain regions
targeted by these studies are involved in a variety of functions such
as perception, motor control, linguistics, and emotional control.
Some studies have shown that self-regulation leads to behavioral ef-
fects that are specific to the functional role of the targeted cortical
area, e.g. improved visual perception due to self-regulation of visual
cortex activity (Scharnowski et al., 2012; Shibata et al., 2011), or faster
served.
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motor responses due to neurofeedback training of the primary motor
cortex (Bray et al., 2007); see also (Caria et al., 2007; deCharms et al.,
2005; Rota et al., 2009; Weiskopf et al., 2003, 2004). A few studies
even demonstrated therapeutic effects of rtfMRI-based neurofeedback
training in chronic pain patients (deCharms et al., 2005), Parkinson's
disease (Subramanian et al., 2011), tinnitus (Haller et al., 2010), and
depression (Linden et al., 2012). Further, it has been shown that learn-
ing voluntary control over activity within an ROI indirectly induces
also network changes (Lee et al., 2011, 2012; Rota et al., 2011;
Scharnowski et al., 2012; Zotev et al., 2011).

Apart from a few studies that targeted multivariate patterns of
brain activity (Chiew et al., 2012; LaConte et al., 2007; Shibata et al.,
2011), all of the above mentioned rtfMRI-based neurofeedback stud-
ies trained participants to control localized brain activity within a re-
gion of interest (ROI). However, although neuroimaging studies have
firmly established functional specialization as a principle of brain or-
ganization, most mental functions and most neurological conditions
are associated with functional integration of interconnected networks
(Bullmore, 2012; Desseilles et al., 2011; Lynall et al., 2010; Seghier
et al., 2010). Such integration between different brain areas has prov-
en more difficult to assess, but recent developments in data analysis
techniques now make the study of such functional connectivity feasi-
ble (Friston et al., 2003; McKeown et al., 1998; Roebroeck et al., 2005).
Two fundamental approaches to study brain connectivity can be distin-
guished: data-driven approaches and hypothesis-driven approaches.
The former is purely explorative and does not require a priori hypothe-
ses about the functional network. For example, independent com-
ponent analysis (ICA) can be used to decompose the fMRI data into a
set of functionally relevant maps without having to define ROIs a priori
(Calhoun et al., 2001; Damoiseaux et al., 2006; Esposito et al., 2003;
Greicius et al., 2003; McKeown et al., 1998; Xie et al., 2011). On the
other hand, the hypothesis-driven approach makes use of prior knowl-
edge about the underlying network and requires a model describing
how neural dynamics propagates through a set of interconnected ROIs.

A particularly influential hypothesis-driven approach in fMRI is dy-
namic causal modeling (DCM) (Friston et al., 2003, 2007; Kiebel et al.,
2007; Stephan et al., 2007a, 2010). DCM requires defining hypotheses
about the neural mechanisms underlying a specific fMRI measure-
ment in terms of ROIs, connections between these ROIs, external in-
puts to the network (e.g., visual stimulation), and context dependent
manipulations of the network (e.g., attention). Using Bayesian model
comparison, DCM allows for comparing which model architecture ex-
plains the data best (Penny et al., 2004). DCM also allows for estimat-
ing the individual model parameters and thus, for example, shedding
light on the dynamic connectivity changes during an experiment.

In the present study we adapted DCM for use in neurofeedback ex-
periments. Near real-time DCM (rtDCM)was accomplished by (1) op-
timizing the trade-off between model convergence precision and
computational speed, by (2) integrating rtDCM into the real-time
analysis pipeline with rigorous pre-processing of the ROI time courses
(Koush et al., 2012), and by (3) generating a feedback signal from the
results of a Bayesian model comparison between two predefined
model alternatives. In contrast to conventional offline DCM, where
one seeks to find the model that explains the data best, our approach
requires the participants to modulate the data (i.e. effective connec-
tivity) so that one of two predefined models dominates over the
other. Our approach thus allows for training a very specific model
with a pre-defined connectivity architecture.

Here, in a proof-of-concept experiment, we asked participants to
voluntarily modulate the connectivity either between left visual
cortex and left parietal cortex, or between right visual cortex and
right parietal cortex. Modulation of connectivity was accomplished
by shifting visual–spatial attention either to the left or to the right vi-
sual field. During shifts of attention to the left/right, connectivity be-
tween the right/left visual and parietal cortices will be increased.
The connectivity between visual and parietal areas has been studied
intensely and can be voluntarilymodulated by visual–spatial attention
(Blankenburg et al., 2010; Bressler et al., 2008; Greenberg et al., 2010;
Hopfinger et al., 2000; Kastner et al., 1999; Kelley et al., 2008;
Lauritzen et al., 2009; Ruff et al., 2006, 2009; Silver et al., 2005,
2007; Vossel et al., 2012; Yantis et al., 2002); it is thus a well suited
paradigm to explore the feasibility of near real-time connectivity feed-
back based on DCM in a proof-of-concept study.We hypothesized that
(a) the connectivity difference due to attentional modulation can be
determined in near real-time using rtDCM, and that (b) the partici-
pants will be able to control the connectivity-based feedback signal.

Our new approach goes beyond previous neurofeedback studies
that only provided feedback from activity in specific ROIs. By adapting
state-of-the-art connectivity measures such as DCM for neurofeed-
back, it is now possible to learn voluntary control over functional
brain networks. Becausemostmental functions andmost neurological
disorders are associated with network activity rather than with activ-
ity in single ROIs, this novel approach is an important methodological
innovation in order to more specifically target such brain networks.

Material and methods

Data acquisition

MRI data were acquired on a Siemens 3 T Trio scanner (Siemens
Healthcare, Erlangen, Germany) at the Brain and Behavior Laboratory
(University of Geneva). Functional images were obtained with a
single-shot gradient-echo T2*-weighted EPI sequence (TR = 1000 ms,
16 slices volumes, matrix size 64 × 64, voxel size = 3 × 3 × 3.75 mm3,
flip angle α = 77°, bandwidth 2.23 kHz/pixel, TE = 30 ms), using a
12-channel phased array coil. The first 10 EPI volumes were discarded
to account for T1 saturation effects. At the beginning of the scanning
session, a T1-weighted structural image was acquired for every partici-
pant (MPRAGE, 1 mm isotopic resolution). Heart rate, respiration, and
eye movements were continuously monitored throughout the experi-
ment with a modular data acquisition system (MP150, 1 kHz sampling
rate, BIOPAC Systems Inc.) and with an infrared eye-tracking system
(ASL 450, 60 Hz sampling rate, LRO System), respectively. Heart rate
was measured using a pulse oximetry sensor and respiration was
measured using an elastic belt around the participant's chest. Visual
stimuli and instructions were displayed using a rectangular projection
screen at the rear of the scanner bore with a mirror positioned within
the head-coil.

Participants

Fourteen healthy human volunteers (5 male, 9 female, age 27.2 ±
5.2 years) with normal or corrected-to normal vision gave written in-
formed consent to participate in the experiment, which was approved
by the local ethics committee. Participants were naïve to neuro-
feedback and were paid 25 CHF/h for their participation. Six pilot par-
ticipants (2 male, 4 female, age 26.5 ± 7.1 years) performed only the
functional localizer runs. Data from these localizer runs was used to
optimize the rtDCM pipeline. Seven participants (3 male, 4 female,
age 27.7 ± 3.3 years) performed the complete experiment. One of
the participants had to be excluded from the analysis because of
poor compliance. Before the experiment, participants received in-
structions that theywill attempt to control their connectivity between
brain areas and receive neurofeedback information about their suc-
cess. The instructions included an explanation of the task conditions
as well as the neurofeedback display, and recommended the use of
shifting visual-spatial attention as a potential regulation strategy.
However, it was emphasized that participants should find an individ-
ual strategy that worked best. It was also explained to the participant,
that theywill receive an additional reward of 1 CHF for each successful
neurofeedback trial. Further, they were instructed to fixate on the
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central fixation point throughout the experiment, to breathe steadily,
and to remain as still as possible.

Functional localizer runs

Before the neurofeedback runs, we ran a functional localizer that
consisted of three successive runs to delineate each participant's left
and right early visual cortex (VC), and the left and right superior
parietal lobule (SPL), respectively. The first localizer run delineated
the early visual cortex of the left and right hemisphere. It consisted
of 11 baseline blocks interleaved with 10 blocks of flickering circular
checkerboards. All blocks were 10 s long. The checkerboards were
presented simultaneously in the left and right visual field (diameter
of 5° visual angle; eccentricity 5° visual angle; 100% contrast, 8 Hz
contrast reversal).

The second and third localizer runs delineated the right and left
SPL, respectively. Each SPL localizer run consisted of 11 baseline blocks
interleaved with 10 blocks of shifting attention covertly (i.e. without
moving their eyes) to the left or right visual field. Changes in the fixa-
tion point instructed participants to shift attention to the left or right
visual field. The target location for shifting attention was illustrated
by low-contrast dashed circles, which were presented at the same
location as the visual checkerboards during the VC localizer run. The
total duration of the visual and the attention localizer runs was
10.3 min.

Immediately after acquiring the localizer runs, the images were
pre-processed with SPM8 (Wellcome Trust Centre for Neuroimaging,
Queen Square, London, UK), i.e. they were corrected for slice time ac-
quisition differences, realigned to the first scan of each run, smoothed
with an isotropic Gaussian kernel with 4 mm full-width-at-half-
maximum (FWHM), and coregistered to the structural scan. Next,
we specified a general linear model (GLM) with regressors for the ex-
perimental conditions. Using the MarsBar toolbox (Brett et al., 2002),
the ROIswere then defined as those voxels in left/right occipital cortex
and left/right SPL that exhibited a significant positive BOLD response
to the visual stimulation or the shifts of attention, respectively
(Fig. 1; p b 0.05 corrected for multiple comparisons using FWE).

Neurofeedback runs

In three subsequent neurofeedback runs, we then tested the abil-
ity of participants to voluntarily control the feedback signal by covert-
ly shifting their visual–spatial attention. Each of the neurofeedback
runs consisted of 8 neurofeedback trials. Each neurofeedback trial
Fig. 1. Illustration of the ROIs. Left and right (A) SPL and (B) VC ROIs of a representative par
tural scan. The left/right SPL ROI enclosed on average 24.4 ± 12.6 voxels, and the left/right
consisted of 5 baseline blocks interleaved with either 4 blocks of at-
tention to the left (aL) or to the right (aR) (Fig. 2; all blocks were
10 s; attention left/right conditions alternated).

The attention conditions were indicated by changes in the fixation
point, i.e. participants were informed whether attention to the left or
attention to the right will be most effective in order to control the
feedback signal. The target location for shifting attention was illus-
trated by low-contrast dashed circles. They were present on both
sides during all trials. No other visual stimuli were presented. Each
neurofeedback trial was followed by a 60 s block of resting state ac-
quisition (during this time the feedback signal was computed) and
a 5 s block during which the feedback signal was presented to the
participant. During baseline blocks, participants were instructed to
count backwards. During the resting state blocks, participants were
asked to close their eyes. After the resting state block, 3 auditory
beeps and 3 visual flashes indicated to the participant that the feed-
back and reward values were displayed on the screen. The feedback
display signal consisted of either the word UP (in red), which indicat-
ed aL trials, or DOWN (in blue), which indicated aR trials, the rounded
logarithmic Bayes factor value in brackets (which in case of success
was positive for aL trials and negative for aR trials), and the total re-
ward that had been earned until the present trial. Details about the
logarithmic Bayes factor values are provided below.

Real-time data processing and computation of the connectivity-based
neurofeedback signal

Immediately after the acquisition of an fMRI image, the image was
exported to a standard local PC (CPU Intel Core i7-2620 M 2.7 GHz,
4 GB RAM) and processed with custom-made real-time fMRI soft-
ware (Koush et al., 2012) running on MATLAB (Mathworks Inc.,
Natick, MA, USA). This software was used to perform online motion
correction, to extract the time courses from the ROI masks, to remove
signal drift, spikes, as well as high frequency noise, and to calculate
the feedback signal (for details see Koush et al., 2012; the toolbox
with the rtDCM extension is available on request from the corre-
sponding author).

The connectivity-based neurofeedback signal was calculated by
adapting DCM10 (as implemented in SPM8) for near real-time pur-
poses. DCM is a mathematical framework for modeling effective con-
nectivity between interacting brain regions at the neuronal level as a
set of coupled differential equations (Friston et al., 2003; Stephan
et al., 2007a, 2010). These equations describe how the putative neu-
ronal population activity in ROIs changes over time, depending on
ticipant are shown on sagittal, transverse and coronal planes of this participant's struc-
VC 16.3 ± 8.2 ROI voxels. SPL — superior parietal lobule, VC — visual cortex.



Fig. 2. Neurofeedback trials. Shown is an aL trial followed by an aR trial. Each individual
trial consisted of 5 baseline blocks interleaved with 4 blocks of shifting attention to the
left for aL (red curve) and to the right for aR trials (blue curve). Following 60 s of rest-
ing state acquisition during which the neurofeedback value was computed (black
timeline), the feedback signal was displayed to the participant for 5 s (green timeline).
The feedback display indicated the condition (UP in red for aL; DOWN in blue for aR),
the rounded logarithmic Bayes factor, and the cumulative reward. For illustration pur-
poses, the fixation point is enlarged and the dashed circles are of higher contrast.
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the connectivity architecture of the model, and on experimentally
controlled inputs. The inputs can be direct input acting on specific
ROIs (e.g. sensory stimulation), or they can be contextual modula-
tions of the connections between ROIs (e.g. attention). Using a hemo-
dynamic forward model, the neuronal dynamics is translated into
BOLD signal (Buxton et al., 1998; Friston et al., 2000; Stephan et al.,
2007b), and the a posteriori parameters of the model can be estimat-
ed within a Bayesian framework (Friston, 2002; Friston et al., 2007).
In order to compare between multiple hypothetical brain network
models, Bayesian model comparison can be used to determine the
most likely model given the measured BOLD signal (Penny et al.,
2004; Stephan et al., 2009).

Adapting DCM for near real-time purposes involved optimizing the
trade-off between DCM model convergence precision and computa-
tional speed, by integrating DCM into the real-time pipeline, and by
generating a feedback signal from the result of a Bayesian model com-
parison between two model alternatives. The two models that we
compared represented covert shifts of visual–spatial attention to the
left or right visual field, i.e. they consisted of 4 ROIs, which are the
interconnected left visual and parietal cortices and the interconnected
right visual and parietal cortices (Fig. 3).

What differed between the models was the external and the mod-
ulatory inputs of attention, which should be stronger on the right SPL
and on the connectivity between the right VC and the right SPL when
attention is covertly shifted to the left visual field (Fig. 3A, model
MaL), and stronger on the left SPL and on the connectivity between
Fig. 3. Models representing (A) attention to the left and (B) attention to the right.
(A) Covert shifts of visual–spatial attention to the left modulate the right SPL, and
the connectivity between the right SPL and the right VC. (B) Covert shifts of visual–
spatial attention to the right modulate the left SPL, and the connectivity between the
left SPL and the left VC. Red and blue arrows represent the external and modulatory
inputs of attention, respectively. SPL — superior parietal lobule, VC — visual cortex,
L — left hemisphere, R — right hemisphere.
left VC and the left SPL when attention is covertly shifted to the
right visual field (Fig. 3B, model MaR).

The model comparison resulted in a logarithmic Bayes factor,
which indicated the relative dominance of one model over the other.
This logarithmic Bayes factor was presented to the participants as
the feedback signal. Dominance of MaL was indicated by positive loga-
rithmic Bayes factors, dominance of MaR was indicated by negative
logarithmic Bayes factors. In order to pool results across aL and aR
conditions, the logarithmic Bayes factors for the aR conditions were
inverted, i.e. in the Results section, positive logarithmic Bayes factors
indicate the dominance of the correct model and hence successful
control over the feedback signal.

Optimization of near real-time DCM

Initially, the optimization of the near real-time DCM approach was
based on the SPL localizer runs of the 6 pilot participants. This initial
optimizationwas used to define the parameters for the neurofeedback
runs of the 7 participants who were scanned subsequently. After the
neurofeedback experiment, the optimization was extended to now
include the localizer runs of all 13 participants. In order to find the op-
timal neurofeedback trial length that allows a fast and stable model
comparison performance, we ran our algorithm for different sliding
window lengths of 30, 50, 70, 90, 110, 130, 150, 170, 190, and 210
scans (the latter constitutes the complete time course). Each of the
sliding windows was shifted across the respective functional localizer
time course in steps of 20 time points. Please note that the slidingwin-
dow length limited the number of possible shifts across the functional
localizer time course. For each sliding window length, we evaluated
how often the near real-time Bayesian model comparison (i.e. the
logarithmic Bayes factor computed for two compared models)
reflected the respective experimental condition, i.e. how often MaL

was dominant during aL conditions and vice versa for MaR and the
aR conditions. Statistically, the performance of each sliding window
was evaluated by a non-parametric sign-statistics (one-tailed, medi-
an > 0). We also evaluated for each sliding window length, how
many iterations were required until the Bayesian model comparison
algorithm converged. Further, we evaluated for each sliding window
length the time it took to compute a single iteration of a single DCM
model estimation algorithm. Based on the results from this analysis
and in order to ensure that the Bayesian model comparison could be
completed within the 60 s resting state blocks, we limited the single
model estimation algorithm during the neurofeedback experiment
to 44 iterations. Near real-time DCMmodel estimationwas performed
based on SPM8 DCM10 module functions.

Offline analyses

In order to evaluate voluntary control over the feedback signal,
we quantified the exceedance probabilities (Stephan et al., 2009;
Pe) in favor of MaL (PeMaL) and MaR (PeMaR) for the aL and aR condi-
tions separately using random effect Bayesian model selection (RFX
BMS, SPM8 DCM10 module). In addition, we analyzed the logarith-
mic Bayed factors by calculating the median (m), the interquartile
range (iqr), and non-parametric sign test statistics (one-tailed,
median > 0). Z-statistics was used to approximate the p-values of
the non-parametric sign test. This approach was used because a
Jarque–Bera test established that the logarithmic Bayes factors
were not normally distributed.

In order to compare the performance of the specific model archi-
tecture that was used in our experiment with other models, we
post-hoc evaluated the feedback signal (i.e. the logarithmic Bayes fac-
tor) for a subset of 11 plausiblemodels. Thesemodels either had direct
input of attention into the SPL, into the VC, or into both (Inline Supple-
mentary Fig. S1). For any of these three model families, all possible
combinations of modulatory inputs of attention on the connections

image of Fig.�3
image of Fig.�2
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were evaluated (top-down and bottom-up, top-down only, bottom-
up only, none). Because we compared performance for the attention
localizer run and for the neurofeedback runs, this analysis was based
on data from the seven participants who performed both, i.e. the
localizer data from the 6 pilot participants who did not perform the
neurofeedback runs were not used in this analysis. As a performance
measure, we compared successful and failed trials by calculating the
z-statistics of a non-parametric sign test.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.05.010.

We also compared the new connectivity-based feedback signal to
classical activity-based differential feedback signals. For this, we cal-
culated for each neurofeedback trial the difference between the left
and right VC and SPL percent signal changes, respectively. The same
statistical analysis as for the connectivity-based feedback was applied
to the activity-based results.

Results

Optimization of near real-time DCM

In order to achieve a fast and stable Bayesian model comparison
performance, we first optimized the length of the sliding window
over which the data were analyzed, and thus the length of a single
neurofeedback trial. We found that a sliding window of 90 scans was
sufficient to reliably determine the dominant model (i.e. MaL vs. MaR;
Table 1). In our experiment, such a sliding window corresponded to
five 10 s baseline blocks interleaved with four 10 s blocks of self-
regulation. For large sliding windows of 190 and 210 scans (which
corresponded to the complete localizer run and thus to a standard
offline DCM analysis), the model comparison performance decreased.

Besides the length of a neurofeedback trial, the number of itera-
tions of the model estimation algorithm until it converged and the
computational time per iteration were further parameters that we
optimized. We found that the number of iterations remained at
around 20 ± 20 for sliding window lengths of less than 110 scans
(Inline Supplementary Fig. S2A). For longer sliding window lengths,
the number of iterations and especially their variance increased.
This might lead to delays in computing the feedback signal because
more iterations might be required. The computational time per itera-
tion increased linearly for increasing sliding window lengths (Inline
Supplementary Fig. S2B). For the sliding window lengths comprising
90 scans, which we used for the neurofeedback experiment, a single
iteration on a standard PC took 0.61 ± 0.02 s.

Inline Supplementary Fig. S2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.05.010.

In our neurofeedback experiment, we limited the number of iter-
ations to 44 for a single model estimation. This threshold was reached
Table 1
Optimization of the sliding window. For each sliding window length, we determined
how often the real-time Bayesian model comparison reflected the respective experi-
mental condition of the localizer runs, i.e. how often MaL was dominant during aL con-
ditions and vice versa for MaR and the aR condition. The shortest possible sliding
window comprised 90 scans, the best one 150 scans, and performance surprisingly de-
creases for longer sliding windows. For the neurofeedback runs, we used a sliding win-
dow of 90 scans (highlighted in gray). Z represents the z-score, p indicates significance
of the applied sign test, and sign represents the number of positive samples based on the
sign test. Asterisks denote statistical significance.
in 16.7% of all neurofeedback trials, meaning that only a minority of
trials were estimated sub-optimally. However, the premature termi-
nation of the algorithm only affected the precision of the resulting
logarithmic Bayes factor but not its sign, i.e. the classification into cor-
rect/incorrect trial and thus the feedback reward was not affected.

Voluntary control over the connectivity-based neurofeedback signal

Participants in our experimentwere able to control the connectivity-
based feedback signal. Specifically, the exceedance probability of
MaL during aL was higher than those of MaR and vice versa during
aR (Fig. 4; aL: PeMaL = 0.97, PeMaR = 0.03; aR: PeMaL = 0.36,
PeMaR = 0.64).

Furthermore, the feedback signal (i.e. the logarithmic Bayes factor)
was significantly greater than zero (m = 0.8, fq = −10.5, iqr =
25.6; one-tailed sign test and z-statistics, sign = 97, z = 1.93, p =
0.03). To investigate if the ability to control the feedback signal
changed during the course of the experiment, we evaluated perfor-
mance in terms of the logarithmic Bayes factors across runs (Inline
Supplementary Fig. S3). The feedback signal was greater than zero in
the first and in the second neurofeedback run, and significantly great-
er than zero in the third run (one-tailed sign test and z-statistics;
m1 = 1.3, fq1 = −11.6, iqr1 = 28.1, sign1 = 32, z1 = 0.9, p1 =
0.18; m2 = 0.4, fq2 = −14.5, iqr2 = 26.3, sign2 = 29, z2 = 0.13,
p2 = 0.45; m3 = 0.85, fq3 = −6.0, iqr3 = 22.3, sign3 = 36, z3 =2.0,
p3 = 0.02). Performance improved slightly but non-significantly across
neurofeedback runs (non-parametric permutation test of the slope of a
linear regression of z-values, N = 999 permutations, p =0.21;
non-parametric permutation test of the slope of linear regression
of medians, N = 999 permutations, p = 0.43).

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.05.010.

To illustrate the individual participant performance, we classified
the Bayes factors according to weak (0–3), positive (3–20), strong and
very strong evidence (>20; Fig. 5) (Penny et al., 2004).Whereas perfor-
mance varied across runs and participants, all but one participant (par-
ticipant 2) achieved more successful than failed trials. On average,
4.6 ± 1.3 successful and 3.4 ± 1.3 failed trials were observed. As can
be expected based on previous behavioral studies that found an atten-
tional bias to the left in healthy participants (Jewell and McCourt,
2000), performance during aL trials is better than performance during
aR trials (Supplementary Methods and Inline Supplementary Fig. S4).

Inline Supplementary Fig. S4 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.05.010.

Voluntary control of the feedback signal was not related to
cardio-respiratory artifacts or eye movements, which showed no dif-
ference between the experimental conditions in terms of the mean
heart rate, mean respiration, as well as mean horizontal and vertical
eye-position coordinates; this is also the case for the functional
localizer runs (Inline Supplementary Table S1; paired t-test; dfloc =
12; dfnf = 40; heart rate: tloc = −0.1, ploc = 0.94, tnf = 0.2, pnf =
Fig. 4. Voluntary control over the feedback signal. Successful control is reflected by in-
creased model exceedance probabilities of MaL during aL and MaR during aR conditions.
For each condition, the dominant model is indicated in green.
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Fig. 5. Voluntary control over the feedback signal for each participant across neuro-
feedback runs. Successful control over the feedback signal is reflected by the number
of successful trials per run. Note that each run consisted of 8 trials. Following standard
conventions (Penny et al., 2004), the color represents weak (Bayes factor b 3), positive
(3 b Bayes factor b 20), strong and very strong evidence (Bayes factor > 20).
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0.83; respiration, tloc = 0.1, ploc = 0.94, tnf = 0.1, pnf = 0.92; eye
movements, tloc_h = 0.2, ploc_h = 0.88, tloc_v = 0.3, ploc_v = 0.75,
tnf_h = 0.4, pnf_h = 0.68, tnf_v = 0.4, pnf_v = 0.72).

Inline Supplementary Table S1 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.05.010.

Comparison with alternative DCM architectures

In order to compare the performance of the specific model archi-
tecture that was used in our experiment with alternative models, we
post-hoc evaluated the feedback signal (i.e. the logarithmic Bayes
factor) for a subset of 11 plausible models (see Inline Supplementary
Fig. S1 for an overview of the alternative model architectures). We
found that during the attention localizer run, models with direct
input into VC performed best (Fig. 6). Particularly models 5 & 6
achieved logarithmic Bayes factors that were significantly greater
than zero (Fig. 6, one-tailed sign test and z-statistics, zmodel_5 =1.9,
Fig. 6. Performance comparison between alternative DCMmodels. Positive z-values in-
dicate that the respective model architecture reveals control over the feedback signal,
i.e. dominance of MaL during aL and dominance of MaR during aR; negative z-values
indicate the opposite. During the attention localizer run (blue), the models with direct
input of attention into VC worked best (particularly models 5 & 6). During the
neurofeedback runs (red), the model with direct input into VC now showed the oppo-
site pattern of results. Interestingly, the model that was used in the neurofeedback
runs of our experiment (model 1, highlighted green) performed poorly during the
localizer run, but was the only model that performed well during the neurofeedback
runs. Details about the model index are provided in Inline Supplementary Fig. S1.
Models 1–4 received direct input of attention into the SPL, models 5–8 into the VC,
and models 9–12 into the SPL as well as the VC. Asterisks denote statistical significance.
zmodel_6 = 1.9, p b 0.05). However, during the neurofeedback runs,
the models with direct input into VC showed the opposite pattern
by indicating dominance of MaL during aR trials and dominance of
MaR during aL trials, i.e. they showed logarithmic Bayes factors
that were significantly smaller than zero (Fig. 6, one-tailed sign test
and z-statistics, zmodel_5 = −1.8, zmodel_6 = −2.6, zmodel_7 = −2.9,
zmodel_8 = −3.8, zmodel_12 = −3.5, p b 0.05).

Interestingly, the model that was used during the neurofeedback
experiments performed poorly during the attention localizer runs,
but performed well during the neurofeedback runs (Fig. 6, model 1;
one-tailed sign test and z-statistics, neurofeedback runs: z = 1.93,
p = 0.03; PeMaL,aL=0.97, PeMaR,aR=0.64; localizer runs: z=0.27,
p=0.40, PeMaL,aL=0.72, PeMaR,aR=0.62). A similarly good perfor-
mance during the neurofeedback runs was observed for model 3,
which also received direct input of attention into SPL as well as
top-down modulation of attention (Fig. 6, model 3; z = 0.39, p =
0.35; PeMaL,aL = 0.96, PeMaR,aR = 0.64).

Comparison with alternative feedback measures

Based on the percent signal changes of the ROI time courses
(Table 2), we post-hoc evaluated the performance of alternative feed-
back measures such as the differential feedback between the left and
the right SPL, as well as between the left and right VC. Such inter-
hemispheric comparisons reflect the current direction of attention
towards the right or the left side of the visual field (Hopfinger et
al., 2000; Kastner et al., 1999; Silver et al., 2007).

Performance based on the differential feedback signal between
the left and right SPL was not significant (Inline Supplementary
Fig. S5A; one-tailed sign test and z-statistics, sign = 87, z = 0.5,
p = 0.32), and did not change significantly across feedback runs
(m1 = 0.07, m2 = 0.14, m3 = 0.02; non-parametric permutation
test of the slope of linear regression of medians, N = 999 permuta-
tions, p = 0.38). The differential feedback signal between the left
and the right VC showed a performance that was significantly greater
than zero (Inline Supplementary Fig. S5B; one-tailed sign test and
z-statistics, sign = 120, z = 5.5, p b 0.001). Interestingly, the perfor-
mance of the differential VC feedback signal significantly decreased
across runs (m1 = 0.35, m2 = 0.27, m3 = 0.15; non-parametric per-
mutation test of the slope of linear regression of medians, N = 999
permutations, p = 0.02).

Inline Supplementary Fig. S5 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.05.010.

Importantly, there was no correlation between the differential feed-
back measures and the rtDCM feedback measure (paired F-statistics;
differential SPL vs. rtDCM: F b 0.001, p = 0.99; differential VC vs.
rtDCM: F = 0.26, p = 0.61). Hence, successful control of the rtDCM
feedback does not predict performance based on the VC differential
feedback signal, i.e. they appear independent from each other.

Discussion

In this proof-of-principle study, we showed for the first time that
connectivity feedback is possible, and that such a feedback signal
can be voluntarily controlled by participants. Our new approach is
thus suitable to train voluntary control over functional brain net-
works. This is an important extension of the neurofeedback approach
that allows to directly target brain networks underlying mental func-
tions and neurological disorders.

Near real-time DCM

Our implementation of effective connectivity feedback was based
on rtDCM. DCM is a hypothesis driven approach that requires the
formulation of a specific network of connectivity between ROIs and
of experimental factors that modulate these connections. Compared

http://dx.doi.org/10.1016/j.neuroimage.2013.05.010
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Table 2
Percent signal changes in the ROIs during the neurofeedback runs.

Condition aL aR

Run 1 2 3 1 2 3

Left SPL 0.22 ± 0.47 0.47 ± 0.46 0.35 ± 0.40 0.13 ± 0.47 0.46 ± 0.42 0.37 ± 0.48
Right SPL 0.05 ± 0.54 0.18 ± 0.53 0.11 ± 0.39 0.0 ± 0.51 −0.02 ± 0.50 −0.02 ± 0.64
Left VC −0.60 ± 0.75 −0.67 ± 1.10 −0.60 ± 0.69 −0.15 ± 0.40 −0.22 ± 0.56 −0.33 ± 0.54
Right VC −0.28 ± 0.55 −0.18 ± 0.92 −0.40 ± 0.77 −0.58 ± 0.63 −0.44 ± 0.86 −0.47 ± 0.63
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to purely explorative approaches to connectivity, DCM makes use of
prior knowledge about the connectivity between ROIs and of how
such connectivity might be modulated by cognitive factors. This
bears the advantage that the hard problem of assessing and training
real-time connectivity can be reduced to training the dominance of
a very specific pattern of connectivity over another.

Conceptually, our new approach differs from the conventional DCM
analysis. With conventional DCM analysis one seeks to find a plausible
model that describes the given data best. Near real-time DCM neuro-
feedback requires the opposite; it requires modulating the data (i.e.
brain connectivity) so that a given predefined model dominates. This
new approach allows for training a specific model of functional or clin-
ical relevance. In the case of clinical rehabilitation therapy, for example,
one can feed back the result of a rtDCM Bayesianmodel comparison be-
tween themodel that corresponds to the healthy condition and amodel
that corresponds to the neurological condition.

To adapt DCM for near real-time purposes, we needed to optimize
the trade-off between robustness of the DCM estimation and compu-
tational speed. For our specific visual–spatial attention paradigm, a
minimum of 90 scans was necessary to achieve a robust estimate
(Table 1, Inline Supplementary Fig. S2). The time it took to compute
the feedback signal for these 90 scans was less than 1 min. Such a
delay seems quite long and is similar to the feedback delays in the
early days of activity-based feedback using rtfMRI (Posse et al., 2003;
Yoo and Jolesz, 2002; Yoo et al., 2004). However, it is not yet clear
how the temporal contiguity affects neurofeedback learning. Intui-
tively, onemight assume that continuous feedback is superior over in-
termittent feedback, because reinforcement is more directly linked to
efforts of the participant, because it provides more opportunities to
evaluate training success, and because it keeps the task engagement
high. In the field of EEG-based feedback, a few studies indeed reported
that a shorter temporal contiguity facilitates learning (Rockstroh et al.,
1990; Travis et al., 1974). However, because of the different temporal
resolutions of EEG and fMRI, these findings might not be transferable.
A recent study, which compared continuous and intermittent neuro-
feedback based on rtfMRI, found that intermittent presentation of feed-
backwasmore effective (Johnson et al., 2012). Thismight be because of
improved signal quality due tomore scans being available for averaging,
because the intrinsic hemodynamic delay does not have to be taken into
account, and because there is no more dual task interference between
self-regulation and evaluation of the feedback signal. Hence, although
the delay seems long, it remains an empirical question if such a delay
precludes or even facilitates efficient neurofeedback training.

We found that performance peaks for a sliding window length of
150 scans, and then decreases again for longer periods. Hence, taking
into account the entire time series as it is usually done for conventional
offline DCM analyses is suboptimal at least for our experimental
task. This might reflect attentional fluctuations and fatigue, which are
frequently observed in attention and other cognitive tasks (Weissman
et al., 2006), but which are not taken into account by DCM. Because
attentional modulation is often an experimental factor in DCM and be-
cause other modulating factors also vary over time, DCMmight lead to
better results when the time courses are sub-sampled with temporal
windows over which the modulating factor is stable.

We deliberately did not optimize themodel architecture, for exam-
ple, by choosing the model that achieved the best performance based
on the attention localizer run (whichwas similar to the neurofeedback
runs). The purpose of rtDCM neurofeedback training is to modulate
brain networks in ways that are defined by the experimenter for sci-
entific or clinical reasons. Optimizing the model architecture might
improve control over the feedback signal, but the optimal model
based on localizer runsmight (a) not be suitable to achieve the desired
neurofeedback training effects (e.g. increasing top-down attention),
and (b) might not be optimal in the neurofeedback situation. For
example, in our study, the most promising models based on the atten-
tion localizer runweremodelswith direct input into VC (Fig. 6, models
5–7), but we were primarily interested in providing feedback from a
top-down attention model (Fig. 6; model 1). Moreover, the model
architecture that we used during the neurofeedback runs performed
poorly during the attention localizer run (Fig. 6; model 1), even
though the experimental design and task were very similar between
attention localizer and neurofeedback runs, i.e. they only differed in
that the individual neurofeedback runs were longer, and in that the
neurofeedback runs contained resting state as well as obviously feed-
back display conditions. Despite their similarity, our data show that vi-
sual–parietal connectivity during the neurofeedback runs cannot
simply be predicted by connectivity patterns obtained during the at-
tention localizer run. We can only speculate about the reasons why
models with direct input into VC performed well during the attention
localizer run, but showed the opposite pattern of results during the
neurofeedback runs by significantly more often predicting dominance
of MaR during aL and dominance of MaL during aR (Fig. 6). During the
attention localizer run, activity in the VC did not change (Supplemen-
tary Methods and Inline Supplementary Table S3). However, during
the neurofeedback runs, activity and CNR in both VCs decreased
during the aL and the aR conditions (Table 2, Inline Supplementary
Table S2). Moreover, it decreased more in the left compared to the
right VC during aL, and vice versa during aR. Such a decrease of VC ac-
tivity is surprising because previous studies found that attention in-
creases activity in the contralateral visual cortex (Brefczynski and
DeYoe, 1999; Hopfinger et al., 2000; Kastner et al., 1999; Lauritzen et
al., 2009; Li et al., 2008; Silver et al., 2007).

Inline Supplementary Tables S2 and S3 can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2013.05.010.

Achieving control over the feedback signal

In order to show the feasibility of rtDCM, we used a visual–spatial
attention paradigm. It has been shown previously that shifting and
maintaining visual–spatial attention can induce changes in connectiv-
ity between visual and parietal cortices that are detectable with DCM
(Vossel et al., 2012). Also, visual–spatial attention is a cognitive factor
that can easily be modulated by participants. Indeed, we found that
participants were able to control the feedback signal by covertly
shifting visual attention to the left during aL trials, and to the right
during aR trials. The former led to dominance of MaL, and the latter
to dominance of MaR (Fig. 4). We did not find any significant DCM pa-
rameter changes that would help us to understand what model pa-
rameters underlie successful control of the connectivity feedback
signal (Supplementary Methods and Inline Supplementary Fig. S6).

Inline Supplementary Fig. S6 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.05.010.
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Even though there is no evidence for a statistically significant
learning curve, voluntary control over the feedback signal improved
across the neurofeedback runs and became statistically significant
only in the last neurofeedback run (Inline Supplementary Fig. S3).
However, our study was designed as a proof-of-principle study to
show that the rtDCM-based feedback signal can be controlled, and
not primarily to establish rtDCM-based neurofeedback learning. The
relatively limited number of neurofeedback runs (i.e. 3 runs with a
total of only 24 individual trials) was probably too short to determine
significant learning effects. Also, we did not provide feedback from
one specific model, but we assessed control over a feedback signal
that involved dominance of one model in one condition and of anoth-
er model in another condition, i.e. dominance of MaL during aL and
dominance of MaR during aR. In addition, the sample size of 7 partic-
ipants might have been too small to detect potential learning effects.

The shifts of attention that participants performed in order to control
the feedback signal were also reflected in more conventional feedback
measures based on brain activity. For example, differential feedback be-
tween the left and right visual cortices predicted the experimental condi-
tion, i.e. attention to the left or right (Inline Supplementary Fig. S5). This
was expected because such activity changes have been reported to be as-
sociatedwith lateralized visual attention (Hopfinger et al., 2000; Kastner
et al., 1999; Silver et al., 2007). However, there was no correlation
between performance based on the differential feedback measures and
performance based on rtDCM. This indicates that rtDCM provides a
new and distinctive feedbackmeasure; one that reflects connectivity be-
tween brain areas and that is qualitatively different from activity-based
feedback from within a brain area.

Future improvements of connectivity-based neurofeedback

Our study shows that connectivity-based neurofeedback is feasi-
ble. However, further improvements of our new approach will make
neurofeedback training based on rtDCM more efficient. In general,
performance levels and the delay of the feedback signal are very spe-
cific to the respective experimental paradigm. However, some key
points likely affect most rtDCM paradigms. One of them is the choice
of models and thus the ROIs that are being compared. For our specific
paradigm, it is likely that a more careful choice or ROIs would have led
to better control over the feedback signal. For example, the SPL ROI can
bemappedmore precisely (Silver et al., 2005), and the voxels in the visual
ROI can be restricted to those voxels that show strong attentional modu-
lation. It might also be beneficial to define all ROIs in a single localizer run
so that they are based on the same cognitive process. Further, it is possi-
ble, that a visual target stimulus on which attention can be covertly
shifted might improve the control over the feedback signal as well as re-
duce the time it takes to compute the feedback signal. Such a visual stim-
ulusmightmake the task easier to perform, and it also adds another direct
input variable to the DCM that might facilitate model convergence and
stability. In the present experiment, we did not include visual stimulation
because we focused on a top-down attention model that eventually al-
lows for transferring the learned control to a situation outside the fMRI
scanner where there is no specific visual stimulation.

Besides factors related to the experimental paradigm, several other,
more general factors will make rtDCM more efficient. For example,
higher field strengths in principle increase the fMRI contrast-to-noise
ratio and thus may increase control over the rtDCM feedback signal as
well as computational speed. In addition, increased computational
power will help to further reduce the time it takes to compute the
rtDCM feedback signal (Moore, 1965).

Conclusions

Neurofeedback studies based on rtfMRI so far have been limited by
training activity only within a single brain area. However, most mental
functions and most neurological disorders are associated with changes
in connectivity between brain areas. The present study is the first report
of successful connectivity feedback based on rtfMRI. This important
extension of the neurofeedback approach allows to non-invasively
and non-pharmacologically manipulate brain connectivity directly.
It will thus contribute to the development of neurofeedback as a prom-
ising research tool and will lay the foundations for important clinical
applications.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.05.010.
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