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Supplementary Figure S1: Two-dimensional potential profile. Band bending in the vicinity of head-to-head and tail-
to-tail sCDW, and electrodes with identical work function as BaTiO3. Polarization divergence at head-to-head sCDW induces
band banding into an extent when the bottom of the conduction band, EC, drops bellow the Fermi level EF, allowing the
presence of screening free electrons. Top of the valence band, EV, rises over the Fermi level at tail-to-tail sCDW, screening
polarization charge by holes. Electrodes (anode and cathode) dictate flat potential profile which results in formation of transient
regions between sCDW and electrodes. These regions are exposed to high built-in electric fields which nucleate wedge domains
at junctions between head-to-head sCDW and anode and tail-to-tail sCDW and cathode. Dielectric gaps are created at the
remaining two types of junctions. Note that this simulation is valid for ideal defect-free material.
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Supplementary Figure S2: Potential profile and charge-carrier and defect densities. 1-D phase field simulation of
charge carrier and defect densities (left axis) and electric potential φ (right axis) across the head-to-head and tail-to-tail domain
walls. Compensation of polarization charge at head-to-head wall requires accumulation of electrons, n, and depletion of oxygen
vacancies ND. The negligible remaining density of vacancies is not ionized which lowers the charge carrier density, nD/q. The
head-to-head wall accumulates holes p and almost fully ionized oxygen vacancies ND. The electric potential φ forms a zig-zag
profile across the domain walls. The oxygen vacancies almost fully replace screening holes at the tail-to-tail domain wall after
∼ 101 hours with initial defect concentration ND|t=0 = 1018 m−3. It makes the tail-to-tail walls significantly less conductive.
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Supplementary Figure S3: Scanning probe micrographs. The atomic force (AFM) and piezo-response (PFM) scans of
[110]c sample surface near a head-to-head sCDW were taken after removing the Pt electrodes. PFM amplitude, (a ), and phase,
(b), together with change of slope at AFM topography, (c), suggest that the straight boundary B is 90◦ ferroelectric/ferroelastic
domain wall while the curved boundary A is 180◦ domain wall as illustrated in (d).
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Supplementary Figure S4: Charge/defect densities by the cathode. 1-D phase field simulation of charge and defect
densities (left axis) and electric potential along the head-to-head domain wall in the vicinity of the cathode. The electron
concentration n almost fully screens the polarization charge at the wall. The presence of the Pt electrode causes a drop of the
electron concentration n and potential φ in the region 100 nm bellow the anode. This region, on the other hand, accumulates
oxygen vacancies ND which carry charge nD/q and holes p.
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Supplementary Figure S5: Tunneling current. Dependence of tunneling current on barrier thickness for barrier heights
ϕb = 1, 2, 3 V. Voltage V=100 V.
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Supplementary Figure S6: Tunneling current. Tunneling current against voltage for barrier heights ϕb = 1, 2, 3 V when
the barrier thickness is d=50 nm.
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Supplementary Figure S7: Tunneling current. Tunneling current against barrier height for thicknesses d = 50, 100, 150
nm. Voltage V=100 V.
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SUPPLEMENTARY TABLES

Parameter Value Unit Ref.
α1 (T − 381)3.34× 105 Jm/C2

α11 (T − 393)4.69× 106 − 2.02× 108 Jm5/C4

α12 3.23× 108 Jm5/C4 [36]
α111 (393− T )5.52× 107 + 2.76× 109 Jm9/C6

α112 4.47× 109 Jm9/C6

α123 4.91× 109 Jm9/C6

c11 27.5× 1010 J/m3

c12 17.9× 1010 J/m3 [36]
c44 5.43× 1010 J/m3

q11 14.2× 109 Jm/C2

q12 −0.74× 109 Jm/C2 [36]
q44 6.28× 109 Jm/C2

G11 51× 10−11 Jm3/C2

G12 −2× 10−11 Jm3/C2 [36]
G44 2× 10−11 Jm3/C2

Γ 4× 104 C2/(Jms) [36]
εB 7.35 1 [36]

µn, µp 0.01 cm2/(V s) [40]
β 1× 10−8 cm2/(V s) ⋆
τ 100 ps [41]
EC −3.6 eV
EV −6.6 eV
ED −4.0 eV [33]
EF −3.98 eV

−5.1 (ideally defect-free case) eV
N 1× 1024 m−3 [33]

ND|t=0 1× 1018 m−3 ⋆
0 (ideally defect-free case) m−3

z 2 1
g 2 1 [33]

⋆ Values of Vö mobility β and concentration ND|t=0 of undoped BaTiO3vary in literature by many orders of magnitude. We
choose higher estimate of β from [38, 42, 43] for 400 K, which is counterbalanced with very low estimate of ND|t=0 compared
to Refs. [22, 33].

Supplementary Table S1: Values of material coefficients for BaTiO3 used in the simulations.
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SUPPLEMENTARY NOTES

Supplementary Note 1: The phase-field model

The phase-field simulation incorporates coupling between ferroelectric and wide-bandgap semiconductor properties
including mobile defects. Model equations are obtained by Lagrange principle from Helmholtz free energy density
[35]:

f [{Pi, Pi,j , eij , Di}] = f
(e)
bulk + fela + fes + fgrad + fele, (S1)

where Pi is the ferroelectric part of polarization, Pi,j its derivatives (the subscript ’ ,i’ represents the operator of
spatial derivatives ∂/∂xi), Di the electric displacement and eij = 1/2(ui,j + uj,i) is the elastic strain where ui is a
displacement vector.
The bulk free energy density

f
(e)
bulk[{Pi}] =

α1

∑
i

P 2
i + α

(e)
11

∑
i

P 4
i + α

(e)
12

∑
i>j

P 2
i P

2
j + α111

∑
i

P 6
i

+α112

∑
i>j

(P 4
i P

2
j + P 4

j P
2
i ) + α123

∏
i

P 2
i (S2)

is expressed for a zero strain as a six-order polynomial expansion [36], where αi, α
(e)
ij , αijk are parameters fitted to the

single crystal properties (Supplementary Table S1). The remaining contributions represent bilinear forms of densities
of elastic energy fela[{eij}] = 1/2cijkleijekl, where cijkl is the elastic stiffness, electrostriction energy fes[{Pi, eij}] =
−qijkleijPkPl, where qijkl are the electrostriction coefficients, gradient energy fwall[{Pi,j}] = 1/2GijklPi,jPk,l, where
Gijkl are the gradient energy coefficients, and electrostatic energy fele[{Pi, Di}] = 1/(2ε0εB)(Di −Pi)

2, where ε0 and

εB are permittivity of vacuum and relative background permittivity, respectively. The zero-strain coefficients α
(e)
ij can

be expressed in terms of usually introduced stress-free coefficients αij as follows:

α
(e)
11 = α11 +

1

6

(
2(q11 − q12)

2

c11 − c12
+

(q11 + 2q12)
2

c11 + 2c12

)
,

α
(e)
12 = α12 +

1

6

(
2(q11 + 2q12)

2

c11 + 2c12
− 2(q11 − q12)

2

c11 − c12
+

3q244
4c44

)
.

By using the Legendre transformation to electric enthalpy

h[{Pi, Pi,j , ui,j , φ,i}] = f [{Pi, Pi,j , eij , Di}]−DiEi,

where Ei = −φ,i is the electric field and φ the electric potential, and using Lagrange principle, we can uniformly
express the set of field equations which govern the kinetics of ferroelectrics:(

∂h

∂eij

)
,j

= 0, (S3)(
∂h

∂Ei

)
,i

= q(p− n) + nD, (S4)

1

Γ

∂Pi

∂t
−
(

∂h

∂Pi,j

)
,j

= − ∂h

∂Pi
. (S5)

Equation (S3) defines the mechanical equilibrium while inertia is neglected. Equation (S4) represents Gauss’s law of
a dielectric including a nonzero concentration of free electrons n, holes p, and charge density of ionized donors nD.
Equation (S5) is the time dependent Landau-Ginzburg-Devonshire equation [37] which governs the spatiotemporal
evolution of spontaneous polarization with kinetics given by coefficient Γ.
Coupling between the ferroelectric/ferroelastic system with its semiconductor properties is introduced by considering

a nonzero density of free carriers (electron-hole) in the electrostatic equation (S4). The distribution of free carriers is
governed by continuity equations:

q
∂n

∂t
+ J

(n)
i,i = qRn, (S6)

q
∂p

∂t
+ J

(p)
i,i = qRp, (S7)
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where electron and hole currents J
(n)
i and J

(p)
i , respectively, are governed by drift and diffusion as follows: J

(n)
i =

µn(qnEi + kBTn,i) and J
(p)
i = µp(qpEi − kBTp,i). Here µn and µp are electron and hole mobilities, respectively.

In the first step of calculation we analyze only the stationary solution in thermal equilibrium. In this step we can
introduce the computationally convenient form of recombination rates Rn and Rp as follows: Rn = −(n − n0)/τ
and Rp = −(p − p0)/τ , where τ is life-time constant and n0 and p0 are electron and hole concentrations in thermal
equilibrium:

n0 = NF1/2

(
−EC − EF − qφ

kBT

)
,

p0 = NF1/2

(
−EF − EV + qφ

kBT

)
.

Here F1/2 is the Fermi-Dirac integral. Density of states is given by the effective mass approximation:

N ≃ 2

(
meffkBT

2π~2

) 3
2

,

where effective mass meff = cme is assumed equal for electrons and holes. Results presented in the graphs correspond
to c = 0.117, i.e. N = 1024 m−3 [33].
The charge density of ionized donors is obtained as nD = qzf(φ)ND, where z is the donor valency,

f(φ) = 1−
(
1 +

1

g
exp

(
ED − EF − qφ

kBT

))−1

is the fraction of ionized donors with the donor level ED and the ground state degeneracy of the donor impurity level
g [33].
The donor density ND evolves through diffusion,

∂ND

∂t
−∇ ·

(
βND∇

(
∂WD

∂ND
+ qzf(φ)φ

))
= 0, (S8)

where β is the donor mobility [38], and WD is the contribution to the free energy due to defects which is assumed to
be the usual free energy of mixing at small concentrations [39]. Values of the simulation parameter are introduced in
Tab. S1.
The two-dimensional simulations (Fig. 4, Supplementary Fig. S1 and squares in Supplementary Fig. S4) were

performed with zero defect concentration ND = 0, on a simulation domain of 20×6 µm2 (Fig. 4 and Supplementary
Fig. S4) and 6×6 µm2 (Supplementary Fig. S1). The numerical solution of equations (S3)-(S7) on the defined
subdomain was performed by a finite element method with linear triangular elements of size 4 nm in the vicinity of
domain walls and 40 nm inside domains. The boundary conditions are set to potential φ = ∆ϕ = 0 in Fig. 4 and
Supplementary Fig. S1, and φ = ∆ϕ = −0.8 V in Supplementary Fig. S4, zero free-carrier flux, zero stress, and
zero polarization gradient. Periodic boundary conditions in x-direction were applied in case of simulation shown in
Supplementary Fig. S1. The simulations start from initial conditions that are defined as zero for all variables except
polarization which is P =

√
2(1,−1)P0 for x < 0 and P =

√
2(−1,−1)P0 for x > 0, P0 = 0.262 C/m

2
in the reference

frame of Fig. 4. The initial condition in case of Supplementary Fig. S1 is P =
√
2(1,−1)P0 for |x| > 1.5 µm and

P =
√
2(−1,−1)P0 for |x| < 1.5 µm. The simulations reach thermal equilibrium in < 5 ns and gives solutions for

the spatial distribution of polarization Pi, mechanical displacement ui, electric potential φ, and concentrations of
electrons n and holes p.
The calculation with applied voltage uses the thermal equilibrium as an initial condition and continues with re-

combination given by Rn = Rp = −np/(τ(n + p)) + G where G = 1020 s−1 is a small free carrier generation. The
boundary potential is applied as φ = V y/6× 10−6 V.
The one-dimensional calculation involves also equation (S8) which gives drift and ionization of donors and excludes

the elasticity equation (S3) by putting qij = 0, α
(e)
11 = α11 and α

(e)
12 = α12. Since the defect drift is orders of magnitude

slower than the polarization changes, the simulation is split into two steps. First, the distribution of polarization P1,
potential φ, and free carrier densities n, p are calculated and, second, the polarization is frozen and drift of donors ND

is calculated. The thermal equilibrium is reached after 105 s. The result of this simulation is shown in Supplementary
Fig. S2.
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The one-dimensional calculation along the domain wall (Supplementary Fig. S4) uses the polarization charge
distribution extracted from two-dimensional simulation and continues with calculation of potential φ, free carrier
densities n, p, and donor density ND. The results are shown in Supplementary Fig. S4 for head-to-head wall in the
vicinity of the cathode.

Supplementary Note 2: Electron tunneling

To estimate the tunneling current we assumed the triangular potential barrier and the Wentzel - Kramers - Brillouin
approximation of the transmission probability for the Fowler-Nordheim tunneling. Tunneling current is calculated as
[44]

Jt = A
4πmeq

h3

∫ Emax

Emin

TC(E)Sf(E)dE , (S9)

where A is the effective area of the tunneling (assumed 100 nm × 200 µm), Emin is the bottom of the conduction
band in metal, Emax is the top of the potential barrier and h is the Plank constant. The supply function Sf(E) is for
Fermi-Dirac distribution calculated as

Sf(E) = kBT ln
1 + exp

(
−E−EF1

kBT

)
1 + exp

(
−E−EF2

kBT

)
where EF1 is the Fermi level position in the metal when the external voltage is applied and EF2 is the Fermi level at
the head-to-head sCDW. The transmission probability for the Wentzel-Kramers-Brillouin approximation is

TC(E) = exp

(
−4

√
2med

3~qV
(q∆ϕ− E)3/2

)
where d is the barrier thickness.
The tunneling current equation (S9) is calculated numerically and the results summarized in Supplementary Figs.

S5-S7. The Fowler-Nordheim tunneling (without assistance of defects) exceeds the measured currents for barrier
thickness d ∼ 90 nm, and barrier height ϕb ∼ 2V .
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