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Rock fractures filled with viscoelastic materials, such as sand, usually contribute to rock mass instability under
the influence of seismic waves and dynamic loads. The purpose of this study is to verify that the specific fracture
stiffness and the specific initial mass of the filling sand are two key fracture parameters in interrelating the phys-
ical, mechanical and seismic properties of a rock fracture filled with dry sand. A series of dynamic tests using a
split Hopkinson rock bar was conducted on a simulated sand-filled fracture. The experimental results show
that stress wave attenuation across the filled fracture is strongly affected by wave reflection and transmission
at the fracture interfaces and the dynamic compaction of the filling sand. With the comparison between the an-
alytical predictions by the displacement discontinuity model and the displacement and stress discontinuity
model and the experimental results from the laboratory tests, it is found that both models can predict a filled
fracture with a smaller thickness (i.e., less than 10 mm). The displacement and stress discontinuity model may
be used to predict a fracture with a larger thickness by considering the specific initial mass of filling materials.
The wave transmission coefficient for a filled fracture generally increases with increasing specific fracture
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1. Introduction

Rock fractures, including the non-welded contact and filled fractures,
universally exist in rock masses. Fracture displacement (e.g. opening,
closure, and slip) has long been recognized as resulting in rock mass in-
stability (Zhao, 1997; Indraratna et al,, 2010). When stress waves prop-
agate across fractured rock masses, fractures are commonly considered
as displacement discontinuity boundaries (Schoenberg, 1980; Cai and
Zhao, 2000). Each fracture is treated as a non-welded contact with neg-
ligible thickness compared with the incident wavelength. The specific
fracture stiffness is the link parameter between continuous stresses
and discontinuous displacements.

Although the displacement discontinuity model (DDM) has been
widely adopted to investigate the dynamic response of a rock fracture,
it may be imprecise to study a fracture filled with viscoelastic materials,
such as weathered rock, sand and clay. Rokhlin and Wang (1991) used a
mass per unit area of filling materials in the boundary conditions of two
solid semi-spaces separated by a viscoelastic layer. The stress across the
filling layer thus becomes discontinuous, due to the viscoelasticity that
expressed by an imaginary part in the elastic constants. Meanwhile, the
thickness of filling materials may not be overlooked compared with the
wavelength. A newer and more precise model to describe the boundary
conditions of a filled fracture, the displacement and stress discontinuity
model (DSDM), has been developed by Zhu et al. (2011). It proposes

* Corresponding author. Tel.: +41 216933962; fax: +41 216934153.
E-mail address: wei.wu@epfl.ch (W. Wu).

0013-7952/% - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.enggeo.2013.03.022

that the stress discontinuity across a filled fracture is caused by the spe-
cific initial mass of filling materials and the displacement discontinuity is
determined by the transmitted stress and the specific fracture stiffness.

There are many experimental methods to investigate stress wave
generation and propagation across artificial rock fractures, such as an
ultrasonic wave (Zhao et al., 2006a; Li and Zhu, 2012) and a pendulum
hammer (Leucci and Giorgi, 2006; Li and Ma, 2009). In this study, a split
Hopkinson rock bar (SHRB) apparatus (Wu et al., 2012, 2013) was used
to study the effects of fracture properties and loading conditions on the
dynamic response of a rock fracture filled with dry sand. The advantages
of this technique include the following: (1) characterization of the inter-
action between a stress wave and rock fractures; (2) observation of a
low-frequency wave generation and propagation in a rock medium;
(3) measurement of the stress—time responses of fracture interfaces inde-
pendently, considering dynamic stress non-equilibrium across a filled
fracture. Furthermore, the low tensile strength of rock materials can with-
stand a low loading rate impact, which is suitable for the study of stress
wave propagation across rock fractures. A high loading rate impact is
usually provided by a conventional split Hopkinson pressure bar
(SHPB) (Wu et al., 2010; Chen and Song, 2011), which may induce
fracturing and fragmentation of rock materials. It is thus unnecessary
to consider the fracture response and should focus on the material
behavior.

The purpose of this study is to verify that the specific fracture stiffness
and the specific initial mass of filling materials interrelate the physical,
mechanical and seismic properties of a fracture filled with viscoelastic
materials. The fracture thickness is a fracture physical property, the
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filling material type determines the specific fracture stiffness, which
reflects a fracture mechanical property, and the wave transmission coef-
ficient represents a fracture seismic property. Dry quartz sand was used
to represent viscoelastic materials. The experimental investigation on
the filled fracture was performed with various fracture properties and
under different loading conditions, including fracture thickness, particle
size of the filling sand, and loading rate of an incident wave. The experi-
mental results are then compared with the analytical predictions by the
DDM and the DSDM. This study lastly discusses the key fracture param-
eters in interrelating the physical, mechanical and seismic properties of a
filled fracture.

2. Analytical models

In the DDM (Cai and Zhao, 2000), a rock fracture is considered as
an interface between two elastic half-spaces with the same seismic
impedance. When a normally incident P-wave propagates across a
single rock fracture, the stresses across the fracture are continuous,
whereas the displacements are discontinuous and equal to the stress
divided by a constant normal specific stiffness

o (t)=0"(t)=0(t)
= (6)—ut(6) = 70 (1)

ky

where o is the normal stress, u is the displacement along the normal
direction, k, denotes the specific fracture stiffness, which is the stress
change per unit fracture closure, and the superscripts “—” and “+”"
denote the front and rear fracture interfaces, respectively.

The wave transmission coefficient for one-dimensional P-wave
propagation across the fracture with linear deformation is described as

Ty = M (2)
—i+ 2<kn/zpw>

where i is the imaginary unit, Z, is the seismic impedance of the rock
material for the P-wave, which is the product of the rock density, p,
and the longitudinal wave velocity, ¢, and o is the wave angular
frequency.

In the DSDM (Zhu et al.,, 2011), for a rock fracture filled with dry
sand, the Kelvin model, consisting of one spring and one dashpot in par-
allel, can be adopted to describe the dynamic response of the filled frac-
ture. The specific viscosity is set to zero for a fracture filled with dry
sand. Thus the stress and displacement boundary conditions become

o (=0T (t) = —*myu’(t)

w (- = 4 Y ?

where the specific initial mass of the filling sand along the normal direc-
tion, my, is equal to the product of the sand density, ps, and the initial
thickness of the fracture, h. The specific initial mass is defined as the
initial mass per unit area (i.e., the cross-section of the bars).

The wave transmission coefficient for the filled fracture can be
written as

_— 2
P 2—id —i/ (kn/Zpa))

(4)

where d,, is the impedance ratio between the filling sand and the rock
material and expressed as

dy = 2o = O _ 00N )
p p

where Z, is the effective seismic impedance of the filling sand.

The calculation process of the DDM and DSDM predictions is shown in
Fig. 1. The recorded incident wave in the time domain from an SHRB test
is first transformed into the frequency domain by the fast Fourier trans-
form (FFT). The derived wave transmission coefficient (i.e., Tq or T) mul-
tiplies the incident wave amplitude corresponding to each frequency to
obtain the related transmitted wave amplitude. The transmitted wave
amplitude is then transformed back to the time domain by the inverse
fast Fourier transform (IFFT) to calculate the wave transmission coeffi-
cient. The wave transmission coefficient is defined as the ratio of the max-
imum strain of the transmitted wave to that of the corresponding incident
wave in the time domain.

3. Experimental investigation

The experimental study was conducted using an SHRB apparatus
(Fig. 2). Similar to a conventional SHPB, the apparatus consists of a pair
of square norite bars with the cross-section of 40 mm x 40 mm and
1500 mm in length, a low-rate loading system with a striker bar with
the same cross-section and 200 mm in length and a LabVIEW data acqui-
sition unit for signal triggering, recording and storage. The high-quality
norite material is an ideal material to study stress wave propagation
due to the high density (i.e. 2900 kg/m?), the high compressive strength
(i.e., 284 MPa), a homogenous grain size and few visible cracks. In
order to ensure that the bars have few defects that may influence
stress wave propagation, the bars are carefully screened under an
ultrasonic device. A spring with a stiffness coefficient of 9.52 N/mm
is compressed as the energy source to instantaneously launch the
striker bar at a low loading rate and to maintain elastic deformation
of the bars during the test.

The one-dimensional wave propagation theory is applicable to
square bars, if the lateral dimensions of the bars are much smaller
than the wavelength (Kolsky, 1953). Two groups of strain gauges are
mounted on each long bar, which are connected in the Wheatstone
full-bridge to average out the bending strain and to reduce the signal
noise. The strain gauge stations are 200 mm and 400 mm away from
the fracture interfaces (the rear end of the incident bar and the front
end of the transmitted bar). A rubber disc with 10 mm in diameter
and 1 mm in thickness is employed as a pulse shaper. It is stuck at the
impact end center of the incident bar to generate a non-dispersive
low-rate loading pulse and to protect the contacting ends of the striker
and incident bars.

As the half-wavelength of a generated sinusoidal pulse is 3000 mm,
the short length of the incident and transmitted bars leads to the super-
position of the positive and negative waves, which are denoted as waves
along and opposite to the loading direction, respectively (Fig. 2). A wave
separation method (Zhao and Gary, 1997) is adopted to separate the
recorded signal into the positive and negative waves. The strain-time
responses at the fracture interfaces can be calculated separately by
time shifting the positive and negative waves at the strain gauge sta-
tions on each long bar. The stress-time responses at the front and rear
interfaces of the filled fracture, 0~ (t) and o™ (t), can then be deter-
mined by the Young’s modulus of the norite, E, 63.6 GPa, multiplying
the strain-time responses at the fracture interfaces on the incident and
transmitted bars, ¢~ (t) and £7(t), respectively

C()=Ee () =E(" () +&" (1))

o
o' (t) =Eg"(t) = E(e"(t) + " (1)) ®)

where &P~ (t) and &P (t) are the positive waves at the front and rear
interfaces, respectively, and " (t) and " 7(t) are the negative waves
at the front and rear interfaces, respectively.

The fracture closure-time response, Au(t), can be obtained by the ini-

tial thickness of the filled fracture multiplying the strain-time response of
the fracture, which is equal to the time integral of the difference of the
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Time domain

Fig. 1. The calculation process of the analytical predictions.

particle velocity-time responses at the front and rear interfaces, v (t) and
v (1), respectively, over the initial thickness of the fracture

Au(t) = h x %jg (v* (t)—v*(t))dt
=cff [(s"* (=" (1) — (e"*(t)—e"*(t))] dt

where c is the longitudinal wave velocity in the norite, 6000 m/s.

More details about the SHRB apparatus and the data analysis
method can be obtained from Wu et al. (2012).

The validation test was performed on the SHRB system without the
filling sand. Fig. 3 shows a successfully generated half-cycle sinusoidal
pulse with a frequency of 2 kHz and the nearly identical stress-time
responses at the front and rear interfaces during the first loading. After-
wards, the long bar ends lose the contact, which is not taken into ac-
count in the study. The dynamic stress equilibrium across the direct-
contact interfaces indicates the integrity of the bars and the limited
stress wave attenuation in the measuring range.

The filled fracture was simulated by filling the quartz sand with a par-
ticle density of 2620 kg/m? in a pre-set gap between the long bars. The
quartz sand has a single mineral composition and zero viscosity under
an air-dry condition. The quartz sand was sieved into three groups, coarse
size (1-2 mm), medium size (0.5-1 mm) and fine size (0.25-0.5 mm).
The initial porosity is determined by the volume of void space, V,, over
the volume of the sand layer, V

_ & _ V-V _ V—my,/ps

where V; is the volume of the quartz sand, which is equal to the initial
mass, my,, over the sand density, ps. The volume of the sand layer is
equal to the inner cross-section of the confining box multiplying the
initial thickness of the fracture.

The filling sand was held by an aluminum box between the long bar
ends to simulate the filled fracture. The inner cross-section of the confin-
ing box is 41 mm x 41 mm, the length is 20 mm and the thickness is
15 mm (Fig. 3 inset). A small grease layer was filled in the gap between
the long bar surface and the box inner surface to reduce undesired fric-
tion. Fig. 3 also shows that the existence of the confining box does not
obviously affect one-dimensional P-wave propagation across the direct-
contact interfaces. All of the tests were conducted on a fracture filled
with dry sand in a uniaxial strain state.

4. Results

Table 1 shows the experimental program on the dynamic response
of a rock fracture filled with dry sand. Seven cases were investigated,
and four tests were conducted for each case.

Fig. 4 shows the stress-time responses at the front and rear inter-
faces for various fracture thicknesses, such as 2 mm (Test No. 1-2),
4 mm (Test No. 2-1), and 8 mm (Test No. 3-2). Dynamic stress non-
equilibrium across the filled fracture is observed. The stress-time
response at the rear interface is clearly delayed and attenuated by the
filling sand compared with that at the front interface. When the dynam-
ic stress increases at the front interface, the uncompacted sand is com-
pressed first, and then gradually transmits the incident energy to the

€o Vv Vv Vv ®) rear interface. Felice et al. (1987) performed a series of SHPB tests on
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Fig. 2. Schematic view of the split Hopkinson rock bar and the x-t diagram of P-wave propagation in the system.
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Fig. 3. Validation test and effect of the confining box on P-wave propagation in the
system. The inset shows the photo and the schematic section of the confining box.

sand and found that when the compressive strain of the sand layer
reaches its initial porosity, the sand layer can be in a stress equilibrium
state. However, when the stress at the rear interface is rising and the
void space is closing, the stress at the front interface in this test attains
the maximum value and starts to decrease. The low loading rate impact
limits the stress increase and the void closure. The dynamic compaction
of the filling sand consumes a considerable amount of the incident
energy and causes less energy to be transmitted through the filled frac-
ture. Therefore, the dynamic stress non-equilibrium is mainly due to the
existence of the filling sand, which delays the arrival time of the stress at
the rear interface and consumes a considerable amount of the incident
energy during the dynamic compaction.

In Fig. 5, the strains at the front and rear interfaces are discontinu-
ous, where Test No. 2-1 is also taken as an example. The displacement
discontinuity accounts for the stress discontinuity and the difference
in the asperity deformation at the fracture interfaces. The P-wave
induces different elastic deformation of asperities with uneven heights
at the sawed unpolished surface (Fig. 5 inset). But the elastic deforma-
tion is quite small at the low stress levels due to the Young's modulus
of the norite. It is evident that the compressive strain of the filling
sand is about 1000 times larger than that of the fracture interfaces.
Therefore, the closure of the fracture is dominated by the filling sand
and the asperity deformation at the fracture interfaces can be neglected.

The complete stress—closure relation of a rock fracture filled with
dry sand is shown in Fig. 6. The examples in Fig. 4 are used. The filled
fracture exhibits a nearly linear stress—closure relation before the peak
stress. When the quartz sand is filled in the fracture, the viscous proper-
ty is restricted by the long bar ends and the confining box. The elastic
property is responsible for wave transmission at the low stress levels.
The specific fracture stiffness is defined as the slope of the tangent to
the stress—closure curve. In this study, the specific fracture stiffness rep-
resents the normal stiffness of a filled fracture. The specific fracture
stiffness decreases with increasing thickness of the filled fracture. The
effects of fracture properties and loading conditions on the dynamic
response of a filled fracture are discussed in the following section.

Table 1
Experimental program on dynamic response of a rock fracture filled with dry sand.

Experiments  Fracture thickness  Particle size ~ Number of  Loading rate
(mm) (mm) tests (GPa/s)
1 2 1-2 4 40
2 4 1-2 4 40
3 8 1-2 4 40
4 4 0.5-1 4 40
5 4 0.25-0.5 4 40
6 4 1-2 4 30
7 4 1-2 4 60

—=a— Front interface

4+ —e— Rear interface (2 mm)
—a— Rear interface (4 mm)
| —#— Rear interface (8 mm)

Stress (MPa)

1
[}
L

-4 T T T T g T T
0 500 1000 1500 2000
Time (us)

Fig. 4. Stress time histories of fracture interfaces (Tests No. 1-2, No. 2-1 and No. 3-2 as
examples).

Table 2 summarizes the analytical predictions based on the DDM
and the DSDM and the experimental results. The predicted wave trans-
mission coefficients by the DDM and the DSDM agree well. The analyt-
ical predictions of the wave transmission coefficients derived by the
two models and the experimental results are close to each other.
The wave transmission coefficient generally increases with increasing
specific fracture stiffness. The difference between the two models in
the description of the dynamic response of a filled fracture is further
discussed below.

5. Discussion

The effects of fracture properties and loading conditions on the
dynamic response of a rock fracture filled with dry sand are discussed
in this section, including fracture thickness, particle size of the filling
sand, and loading rate of an incident wave, based on the analytical
predictions and the experimental results. This section also discusses
the key fracture parameters in interrelating the physical, mechanical
and seismic properties of a filled fracture.

5.1. Effect of fracture thickness

The thickness of the filling sand has a great effect on the dynamic re-
sponse of a filled fracture. For a filled fracture with a smaller thickness
(e.g. 2 mm, 4 mm, and 8 mm), as shown in the experimental results
(Fig. 6), the fracture exhibits lower specific stiffness with increasing
thickness. In Fig. 7, both analytical and experimental results show that

w  80- —=—Front interface 80000
3 —e— Rear interface
&£ —a— Filling sand =z
a g
E 404 40000 g
L =
3 &,
k: o
0 b 5
pe 2
g Filling sand 0%
=] .- | -
§ 40| ™ Rear interface | Front interface --40000 §
3 prosiiteh - SN -
Rock bar
-80 . T T T T T -80000
0 500 1000 1500 2000
Time (us)

Fig. 5. Strain time histories of fracture interfaces and the filling sand (Test No. 2-1 as an
example). The inset shows the schematic view of the filling sand and asperities at
fracture interfaces.
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Fig. 6. Stress—closure relations of filled fractures with various thicknesses (Tests No.
1-2, No. 2-1 and No. 3-2 as examples).

the wave transmission coefficient increases with increasing specific
fracture stiffness. The SHRB test is unable to generate a high-amplitude
P-wave that propagates across a filled fracture with a larger thickness
(e.g. larger than 50 mm), so the analysis for these cases is based on the
analytical models. Fig. 7 also compares the analytical results of the
DDM and the DSDM for a series of fracture thicknesses and various spe-
cific fracture stiffnesses. An incident wave with a loading rate of 40 GPa/s
(Test No. 2-1) is used for this calculation. As mentioned above, the DSDM
considers the specific initial mass of the filling sand, including the sand
density and the fracture thickness, besides the parameters used in the
DDM, i.e., the specific fracture stiffness, the seismic impedance of the
rock material, and the wave angular frequency. For a fracture with a
smaller thickness, e.g. 2 mm or 10 mm, the wave transmission coeffi-
cients predicted by the DDM and the DSDM match well for the specific

Table 2
Analytical predictions and experimental results of wave transmission coefficient as a
function of specific fracture stiffness.

Experiment no. Specific fracture Wave transmission coefficient

stiffness (MPa/mm)

Analytical Experimental

prediction result

DDM DSDM
1-1 33518 0.418 0.418 0.400
1-2 39.759 0.449 0.449 0.437
1-3 37.047 0.445 0.445 0.440
1-4 35.870 0.435 0.435 0.421
2-1 26.468 0.358 0.358 0.369
2-2 22.327 0.352 0.352 0.329
2-3 28.155 0.368 0.368 0.382
2-4 26.306 0.365 0.365 0.346
3-1 12.110 0.238 0.238 0.209
3-2 13.011 0.254 0.254 0.215
3-3 11.144 0.242 0.242 0.216
3-4 14.678 0.257 0.257 0.253
4-1 25.542 0.346 0.346 0.322
4-2 24.573 0.332 0.332 0.343
4-3 25.133 0.340 0.340 0.341
4-4 24.649 0.342 0.342 0.345
5-1 20.690 0.309 0.308 0.295
5-2 20.319 0.310 0.310 0.285
5-3 21.014 0.314 0.314 0.302
5-4 18.181 0.290 0.290 0.261
6-1 18.018 0.290 0.290 0324
6-2 17.927 0.286 0.286 0.303
6-3 18.176 0.287 0.287 0312
6-4 17.737 0.303 0.303 0.308
7-1 40.275 0.364 0.364 0.391
7-2 36.470 0.387 0.387 0.381
7-3 37.877 0.397 0.397 0.389
7-4 36.879 0.395 0.395 0.383

1 n 1 " 1

0.6

—=—DDM
—e— DSDM (2 mm)
—&— DSDM (10 mm)
0.54 —*— DSDM (50 mm)
~¢—DSDM (250 mm)
O SHRB (2 mm)
O SHRB (4 mm)
0.4 4 SHRB (8 mm)

0.3

y = 0.0085x +0.1234

y R*=0.9714

0.2 T T T T - T

0 20 40 60
Specific fracture stiffness (MPa/mm)

Wave transmission coefficient

Fig. 7. Effect of fracture thickness and specific fracture stiffness on wave transmission
coefficient.

fracture stiffness from 10 MPa/mm to 60 MPa/mm. The discrepancy is
less than 0.5%. For a fracture with a larger thickness (e.g. 50 mm), the
wave transmission coefficient predicted by the DSDM becomes smaller
than that predicted by the DDM. The discrepancy increases from 0.3%
for 20 MPa/mm to 0.5% for 30 MPa and to 0.9% for 60 MPa/mm. For a
fracture with a thickness of 250 mm, the two models may not be able
to describe the boundary conditions. The discrepancy of the wave trans-
mission coefficients between the two models is larger than 1% when the
specific fracture stiffness is larger than 20 MPa/mm. This is because the
fracture thickness cannot be treated as a thin layer compared with the
wavelength. This suggests that both the DDM and the DSDM can pre-
cisely describe a filled fracture with a smaller thickness (i.e., less than
10 mm), while the DSDM may be used to predict the dynamic response
of a filled fracture with a larger thickness.

The wave transmission coefficient for a filled fracture with a larger
thickness predicted by the DSDM is smaller than that predicted by the
DDM, which is attributed to the filling sand compaction. A filled fracture
with a larger thickness has more void space and more grain contacts.
The sand compaction process in the filled fracture attenuates more inci-
dent energy and takes a longer time, because of the closure of void space
and the friction between grain contacts. The transmitted waves at the
rear interfaces thus show lower loading rates and lower amplitudes
(Fig. 4). Therefore, stress wave attenuation in the filling sand must be
taken into account for a filled fracture, besides the attenuation at the
fracture interfaces. The attenuation becomes more obvious for a frac-
ture with a larger thickness.

5.2. Effect of particle size

Fig. 8 shows the wave transmission coefficient as a function of the
specific fracture stiffness for three particle sizes of the filling sand. The
number next to each point is the initial porosity of the filling sand for
the corresponding test. The experimental results indicate that a frac-
ture filled with denser sand associated with finer particle size exhibits
lower specific fracture stiffness and smaller wave transmission coeffi-
cient. A nearly linear relation between the wave transmission coeffi-
cient and the specific fracture stiffness is also observed.

For the low stress levels in this study (i.e., less than 3 MPa), the sand
grains are considered under elastic deformation. The dynamic compac-
tion induces grain contacts develop from a low stiffness at a small strain
due to inter-particle contact to a high stiffness at a large strain due to
packing densification (Cho et al., 2006). The coarser sand has a less
number of grain contacts and higher stress per grain contact (Hagerty
et al., 1993). The higher stress increases the contact stiffness between
the sand grains and the global stiffness of the sand layer. On the con-
trary, the finer sand has lower contact stiffness because of more grain
contacts and lower stress per grain contact. This discussion is based
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on the assumption that the sand grains are under elastic deformation at
the low stress levels. The P-wave has a short loading duration and mainly
induces instantaneous grain deformation, but restricts the sand grains to
have long-time self-organization and fracturing as they do under static
loading conditions. The grain fracturing is time consuming and reduces
with increasing loading rate (Omidvar et al,, 2012). Therefore, a fracture
filled with coarser sand exhibits higher specific fracture stiffness and
larger wave transmission coefficient at the stress levels.

5.3. Effect of loading rate

The wave transmission coefficient for a single non-welded contact
fracture increases with increasing incident wave amplitude (Zhao et al.,
2006a,b). Fig. 9 illuminates a similar trend for a fracture filled with dry
sand. A P-wave with a higher loading rate exhibits larger amplitude
and a shorter duration and induces higher specific fracture stiffness
and larger wave transmission coefficient. Note that the linear deforma-
tional behavior is induced at the low stress levels, where the nonlinear
normal deformation of the fracture is not considered.

An inhomogeneous contact network carries the dynamic load in the
form of stress chains (Majmudar and Behringer, 2005). The loading rate
effect on the dynamic response of the filled fracture is related to the
effects of wave amplitude and loading duration on the formation of
stress chains. (a) The incident energy (amplitude) increases with in-
creasing loading rate. The higher incident energy induces a higher

Specific fracture stiffness (MPa/mm)

0 20 40 60
1 5 " 1 A 1 "
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O Transmission cocfficient (LR 40 GPa/s) F0.5 =
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Fig. 9. Wave transmission coefficient as a function of specific fracture stiffness and the
stress—time responses of P-wave under various loading rates.

stiffness between the sand grains and results in stronger stress chains
for wave transmission. (2) The loading duration decreases with increas-
ing loading rate. The short loading duration restricts grain arrangement
and fracturing. Thus few stress chains are broken and the P-wave is less
attenuated. The increase of the specific fracture stiffness under a higher
loading rate is attributed to a better contact and seismic coupling of the
sand grains in the filled fracture. Therefore, a higher loading rate in-
duces higher wave amplitude and a short loading duration that assists
to the formation of stress chains and promotes higher fracture stiffness
and less wave attenuation.

5.4. Interrelations among filled fracture properties

According to the experimental results, the fracture properties and
the loading conditions, such as the fracture thickness, the particle size
of the filling sand, and the loading rate of an incident wave, are strongly
related to the specific fracture stiffness. Pyrak-Nolte (1996) reported
that the specific fracture stiffness is the key link of the interrelations
among the physical, mechanical, and seismic properties of natural
fractures, i.e., a non-welded contact fracture. The boundary conditions
of the fracture are well described by the displacement discontinuity
model. It is assumed that the fracture is plane, large in extent and
small in thickness compared with the wavelength. The P-wave is atten-
uated due to wave reflection and transmission at the fracture interfaces.
Nevertheless, for a fracture filled with viscoelastic materials, some char-
acteristics are different from a non-welded contact fracture, for exam-
ple, the specific initial mass of filling materials (including the density
and the material thickness), the impedance jump between the rock me-
dium and the filling materials (i.e., the wave velocity and the material
density) and the increase in the fracture aperture (i.e., the distance
between the front and rear interfaces). For a filled fracture with a larger
thickness, the fracture thickness cannot be simply neglected compared
with the wavelength and the filling material density is not negligible
compared with the rock density. Eq. (3) shows that the stress discontinu-
ity across a filled fracture is determined by the wave angular frequency
and the specific initial mass of filling materials. Therefore, the displace-
ment discontinuity model may be not appropriate to describe a filled
fracture, in which the stress is discontinuous across the fracture.

Similar to a non-welded contact fracture, it is found that the specific
fracture stiffness is also the key parameter of the interrelations among
the physical, mechanical, and seismic properties of a fracture filled with
dry sand. There is a nearly linear relation between the wave transmission
coefficient and the specific fracture stiffness, as shown in Figs. 7-9. In ad-
dition, the specific initial mass of the filling sand is another key parameter
to connect the physical and mechanical properties with the seismic prop-
erty of the filled fracture. For example, the specific initial mass of the fill-
ing sand is related to the fracture thickness and the filling material type,
which are related to the physical and mechanical properties, respectively.
The two key parameters provide a precise description on the boundary
conditions of the fracture and an exact prediction of the seismic property
of the fracture. Stress wave attenuation in the filling sand is taken into
account, besides the attenuation at the fracture interfaces. It is concluded
that the specific fracture stiffness and the specific initial mass of the filling
sand are two key parameters in interrelating the physical, mechanical and
seismic properties of a fracture filled with dry sand. Note that this conclu-
sion is based on a normally incident P-wave propagates across a single
fracture filled with dry sand. Whether the conclusion is applicable to
other cases, for instance, an oblique P-wave incidence, a fracture filled
with saturated sand and a set of parallel fractures filled with viscoelastic
materials, needs to be further investigated.

6. Conclusions
The dynamic response of a rock fracture filled with dry sand is

analytically predicted by the DDM and the DSDM and experimentally
investigated using an SHRB apparatus. It is verified that the specific
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fracture stiffness and the specific initial mass of the filling sand are two
key fracture parameters of the interrelations among the physical,
mechanical and seismic properties of a filled fracture. A comparison be-
tween the analytical predictions and the experimental results shows
that both the DDM and the DSDM can predict the dynamic response
of a filled fracture with a smaller thickness (i.e., less than 10 mm). The
DSDM may be applied to predict a fracture with a larger thickness by
considering the specific initial mass of filling materials.

In general, the wave transmission coefficient increases with increas-
ing specific fracture stiffness. Stress wave attenuation in a filled fracture
is strongly affected by wave reflection and transmission at the fracture
interfaces and the dynamic compaction of filling materials.

The SHRB test results exhibit that both stress and displacement
are discontinuous over the filled fracture at the low stress levels.
Although it is unable to reach high stress levels, the study extends cur-
rent understanding of the dynamic response of a filled single fracture.
The findings can be used to characterize the dynamic responses of a
set of filled parallel fractures. Besides the dynamic compaction of filling
materials, multiple wave reflections among fractures need to be consid-
ered for estimating the dynamic responses of filled parallel fractures.
The analytical and experimental studies provide useful tools and rea-
sonable parameters for numerical modeling on rock mass instability
under the effect of seismic waves and dynamic loads. The understand-
ing of the dynamic response of a filled fracture can also be used to inter-
pret logging data from site investigation.

For some rock fractures filled with saturated sand or clay, or a liquid
film, there may be some additional key parameters to be considered,
such as the viscosity of filling materials and the hydraulic pressure.
This is an area for the future study.
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