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Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these
processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural
and functional plasticity and is required to modulate cognitive and emotional behaviors. However, whether aging is asso-
ciated with NCAM alterations that might contribute to age-related cognitive decline is not currently known. In this study,
we determined whether conditional NCAM-deficient mice display increased vulnerability to age-related cognitive and emo-
tional alterations. We assessed the NCAM expression levels in the hippocampus and medial prefrontal cortex (mPFC) and
characterized the performance of adult and aged conditional NCAM-deficient mice and their age-matched wild-type litter-
mates in a delayed matching-to-place test in the Morris water maze and a delayed reinforced alternation test in the T-maze.
Although aging in wild-type mice is associated with an isoform-specific reduction of NCAM expression levels in the hippo-
campus and mPFC, these mice exhibited only mild impairments in working/episodic-like memory performance. However,
aged conditional NCAM-deficient mice displayed pronounced impairments in both the delayed matching-to-place and the
delayed reinforced alternation tests. Importantly, the deficits of aged NCAM-deficient mice in these working/episodic-like
memory tasks could not be attributed to increased anxiety-like behaviors or to differences in locomotor activity. Taken
together, these data indicate that reduced NCAM expression in the forebrain might be a critical factor for the occurrence

of cognitive impairments during aging.

[Supplemental material is available for this article.]

One of the hallmarks of normal aging is a gradual decline in cogni-
tive function associated with the progressive reduction of struc-
tural and functional plasticity in brain regions that play a key role
in cognitive functions, such as the hippocampus and the prefrontal
cortex (Seki and Arai 1995; Rapp and Gallagher 1996; Seki 2002;
Hedden and Gabrieli 2004; Driscoll and Sutherland 2005; Burke
and Barnes 2006; Driscoll et al. 2006). The neuronal networks
of the prefrontal cortex (PFC) that mediate executive functions
and goal-directed behavior are particularly vulnerable to aging.
Recent morphological studies in rats and nonhuman primates
have demonstrated that aging impairs the functional integrity of
PFC neurons (Morrison and Baxter 2012) associated with age-
related impairments in cognitive performance (Dumitriu et al.
2010; Bloss et al. 2013) and structural plasticity (Bloss et al. 2011).
However, the molecular changes that lead to age-related deficits
in cognitive PFC-dependent tasks remain largely unknown.
NCAM is an abundant cell adhesion macromolecule that ex-
ists in three major isoforms (NCAM-180, NCAM-140, and NCAM-
120), which differ in molecular weight, distribution, and function
(Schuster et al. 2001; Kolkova 2010). NCAM, which plays a key
role in neural development, has also been implicated in synaptic
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plasticity and cognitive and emotional processes in adulthood
(Kiss and Muller 2001; Venero et al. 2006; Maness and Schachner
2007; Conboy et al. 2010; Muller et al. 2010). NCAM mediates
activity-dependent synaptic rearrangements through a variety of
mechanisms, including the activation of intracellular signaling
cascades through fibroblast growth factor receptors (FGFRs) (Butt-
ner and Horstkorte 2010; Ditlevsen and Kolkova 2010), post-
translational modifications involving the attachment of long
homopolymers of «-2,8-linked sialic acid residues known as poly-
sialic acid (PSA) (Rutishauser 2008) and alterations in NCAM
expression at the cell surface (Panicker et al. 2003; Sandi 2004).

In rodents, behavioral manipulations associated with struc-
tural and functional alterations in the hippocampus, such as
chronic stress, are reportedly accompanied by a reduction of
NCAM expression levels, predominately in the hippocampus,
but also in other forebrain areas (Sandi et al. 2001; Venero et al.
2002; Alfonso et al. 2006; Sandi and Touyarot 2006; Huang et al.
2008; Bisaz et al. 2011). Thus, NCAM reduction has been proposed
to contribute to cognitive disturbances induced by stress (Sandi
2004; Sandi and Bisaz 2007).

There are striking similarities in the structural and functional
alterations observed in the rodent hippocampus and PFC in re-
sponse to chronic stress and aging. Both conditions show similar
structural alterations in the hippocampus and the PFC, including
atrophy and reduced branching of apical dendrites (Watanabe
et al. 1992; Magarinos and McEwen 19935; Radley et al. 2004;
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Cerqueira et al. 2007; Holmes and Wellman 2009), loss of synaptic
spines (Sousa et al. 2000; Sandi et al. 2003; Stewart et al. 2005;
Radley et al. 2006; Dumitriu et al. 2010; Bloss et al. 2013), and
changes in synaptic morphology (Smith et al. 2000; Sousa et al.
2000; Nicholson et al. 2004; Stewart et al. 2005; Donohue et al.
2006; Dumitriu et al. 2010; Bloss et al. 2013). They are both asso-
ciated with cognitive impairments in hippocampus- and PFC-de-
pendent learning and memory tasks (Barense et al. 2002; McEwen
2002; Ramos et al. 2003; Rosenzweig and Barnes 2003; Sandi 2004;
Touyarot et al. 2004; Liston et al. 2006; Conrad 2010; Morrison
and Baxter 2012) and with impaired synaptic plasticity (Barnes
1979; Barnes and McNaughton 1980; Pavlides et al. 2002; Al-
farez et al. 2003; Dieguez and Barea-Rodriguez 2004; Gerges
et al. 2004).

Similar to chronic stress, an isoform-specific reduction of the
predominantly neuronal expressed isoform NCAM-180 has been
reported in the brain of 2-yr-old rats (Linnemann et al. 1993)
and mice (Bahr et al. 1993) and in the hippocampus of early-aged
(18-mo-old) rats, which were chronically stressed for 3 wk at the
age of 12 mo (Sandi and Touyarot 2006). Interestingly, reduced
hippocampal NCAM-180 expression was associated with poor per-
formance in a spatial learning and memory task, indicating a pos-
sible link between reduced NCAM expression levels and cognitive
impairments associated with aging. Several studies have also re-
ported reduced levels of polysialylated neural cell adhesion mole-
cule (PSA-NCAM) in the aging rodent hippocampus and medial
PFC (Fox et al. 1995; Seki and Arai 1995; Abrous et al. 1997; Seki
2002; Varea et al. 2009), further suggesting the potential role of
NCAM alterations in the reduced structural and functional plas-
ticity observed in the aging brain. Strikingly, systemic treatment
of aged rats with the NCAM-derived peptide FGL (FG-loop, syn-
thetic NCAM mimetic peptide for the activation of FGFRs), which
mimics the NCAM interactions with FGFR1 and facilitates AMPA
receptor synaptic delivery (Knafo et al. 2012) to improve memory
formation (Cambon et al. 2004), exerts neuroprotective effects in
a number of aging-associated cellular and molecular alterations
(Popov et al. 2008; Ojo et al. 2011, 2012).

Therefore, we hypothesize that altered NCAM expression in
the forebrain might be critically involved in age-related impair-
ments in cognitive functions that critically rely on the hippocam-
pus and the PFC. To test this hypothesis, we evaluated working/
episodic-like memory performance in adult (6-9 mo) and aged
(17-21 mo) mice with a conditional ablation of the ncam gene
in the forebrain (Bukalo et al. 2004). First, we assessed their
anxiety-related behaviors and locomotor activity. Next, we tested
their performance in two working/episodic-like memory tests (a
delayed matching-to-place [DMP] task in the Morris water maze
and a delayed reinforced alternation task in the T-maze) that crit-
ically rely on the functional integrity of the hippocampus and PFC
(Steele and Morris 1999; Chen et al. 2000; Runyan et al. 2005;
Yoon et al. 2008). Finally, we measured their NCAM expression
levels in the hippocampus and medial PFC. Our results provide ev-
idence that reduced NCAM expression in the forebrain might be a
critical factor for aging-induced cognitive disturbances in work-
ing/episodic-like memory tasks.

Results

Anxiety-like behaviors and locomotor activity of adult
and aged conditional NCAM-deficient mice

Due to the emerging evidence showing that anxiety and cogni-
tion are closely associated and integrated processes (Beuzen and
Belzung 1995; McNaughton 1997; Herrero et al. 2006) we first
measured the anxiety-like behaviors and locomotor activity of
adult and aged conditional NCAM-deficient mice and their age-
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matched NCAMIf littermates in three different behavioral tests
typically used to assess anxiety-like behaviors and locomotor ac-
tivity in mice: the elevated zero-maze (EZM), the dark/light box
(DLB), and the open field (OF).

In the EZM, anxiety-like behaviors were assessed by measur-
ing the percentage of time mice spent and the number of entries
they made in the open/unprotected sectors during a 5-min testing
period (Fig. 1A,B). A two-way ANOVA for the percentage of time
animals spent in open/unprotected sectors revealed a significant
effect of the “age” factor (F;,38) = 21.691, P < 0.0001), but a lack
of significance in the “genotype” factor (F3s)=3.741, P=
0.06) and the “genotype x age” interaction (F 35y = 0.109, P =
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Figure 1. Behavioral analysis of adult and aged conditional NCAM-de-
ficient male mice (NCAMffcre) and their age-matched NCAM(f littermates
in the elevated zero-maze (EZM), the dark/light box (DLB), and the open
field (OF) tests. Behavioral measurements in the EZM are represented as
(A) the percentage of time spent in and (B) number of entries in the
open sectors of the EZM, and (C) the total distance traveled in the
entire maze. Behavioral measurements in the DLB are represented as
(D) the percentage of time spent, (E) number of entries, and (F) the
total distance traveled in the light compartment of the DLB. In the
open field, behavioral measures are represented as (G) the percentage
of time spent in and (H) number of entries in the center zone, and (/)
the total distance traveled in the whole arena. The results are the
mean £ SEM (N = 8-12/group; post hoc analysis between genotypes:
[**] P<0.01 and [*] P < 0.05 vs. adult NCAMSf; [*¥] P< 0.01 and [*]
P < 0.05 vs. aged NCAM(ff; post hoc analysis between age groups: [*]
P<0.01 and [*] P < 0.05 vs. adult NCAMIff; [°°] P< 0.01 and [°] P<
0.05 vs. adult NCAMffcre).
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0.74). Fisher PLSD post hoc analyses were significant between
adult and aged mice of both genotypes (Fig. 1A; NCAMff: P =
0.002; NCAMffcre: P = 0.002), but no significance was found be-
tween genotypes in either age group (adults: P = 0.25; aged: P =
0.13). A two-way ANOVA of the number of entries in open/unpro-
tected sectors indicated a significant effect in both the “age” factor
(F1,38) = 22.072, P < 0.0001) and the “genotype” factor (Fg 38 =
10.153, P=0.029), but a lack of significance in the “age x ge-
notype” interaction (F43s)=0.001, P=0.97). As shown in
Figure 1B, Fisher PLSD post hoc analyses were significant between
adult and aged mice of both genotypes (NCAMff: P = 0.004;
NCAMffcre: P=0.0008) and between genotypes at both ages
(adults: P=0.024; aged: P =0.037). We also analyzed the total
distance the mice traveled in the EZM using two-way ANOVAs,
which indicated a significant effect in both the “age” (F,3s =
16.076, P = 0.0003) and “genotype” factors (F(1,35) = 10.253, P =
0.003) and a lack of significance in the “age x genotype” interac-
tion (F(1,38) = 0.414, P = 0.52). Fisher PLSD post hoc tests were sig-
nificant between adult NCAMff and NCAMffcre mice (P = 0.008),
but not between both genotypes in the aged mice (P = 0.09). Post
hoc tests were further significant between adult and aged mice of
both genotypes (NCAM{f: P = 0.03; NCAMffcre: P = 0.001), indi-
cating a reduction of locomotor activity with aging in animals
of both genotypes (Fig. 1C).

In the dark/light box (DLB) test, percentage of time and
number of entries in the light compartment were measured dur-
ing 10 min and served as an indicator of anxiety-like behaviors
(Fig. 1D,E). A two-way ANOVA of the percentage of time animals
spent in the light compartment revealed a significant effect in the
“genotype” factor (Fq 35y = 25.569, P < 0.0001) and no significant
effect in either the “age” factor (F 3s) = 0.660, P = 0.42) or the
“age x genotype” interaction (F( 3g = 0.004, P=0.95). Fisher
PLSD post hoc analyses were significant between genotypes at
both ages (Fig. 1D; adults: P = 0.0006; aged: P = 0.001), but not
between genotypes in both age groups (NCAMff: P=0.62;
NCAMffcre: P =0.51). ANOVA analyses of the number of entries
into the light compartment indicated a significant effect of both
the “age” (F(1,38)=5.216, P=0.028) and “genotype” factors
(F(1,38) = 10.749, P=0.002), but a lack of significance in the
“age x genotype” interaction (F(,3s)=3.060, P =0.088). Post
hoc analyses were significant between genotypes in adult mice
(Fig. 1E; P=0.0006), but not between aged NCAMf{f and
NCAMffcre mice (P = 0.3). Post hoc tests were also significant be-
tween adult and aged NCAMffcre mice (Fig. 1E; P = 0.004), but
not between adult and aged mice of NCAMIf (Fig. 1E; P = 0.73).
For locomotor activity in the DLB, ANOVAs of the total distance
traveled in the light compartment revealed a significant effect in
the “genotype” factor (F(1 35y = 15.378, P = 0.0004), but a lack of
significance in the “age” factor (F 38 = 2.025, P =0.16) and in
the “age x genotype” interaction (F; 3g = 3.086, P = 0.087) was
also found. Post hoc tests were significant between genotypes in
adult mice (Fig. 1F; P = 0.0002), but revealed a lack of significance
between aged NCAM({f and NCAMffcre mice (P = 0.15). As shown
in Figure 1F, post hoc tests were also significant between adult and
aged conditional NCAM-deficient mice (P = 0.02), but not be-
tween adult and aged NCAM({f mice (P = 0.83).

In the 10-min OF test, percentage of time spent and number
of entries in a virtual square in the middle of the open field box
(center zone) were taken as indicators for anxiety-like behaviors,
while the total distance animals traveled in the whole OF arena
was taken as an indicator of locomotor activity (Fig. 1G-I).
ANOVAs of the percentage of time the animals spent in the center
zone of the OF indicated no significant effect for the “genotype”
factor (F(ng) = 1665, P= 02), the ”age” factor (F(l,gg) = 0004,
P=0.95), or the “age x genotype” interaction (F(3s) = 3.829,
P =0.06). Post hoc tests were significant between genotypes in
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adult animals (Fig. 1G; P = 0.02), but not between genotypes of
aged mice (P = 0.65) or between adult and aged mice of both ge-
notypes (NCAMff: P =0.22; NCAMffcre: P=0.13). A two-way
ANOVA on the number of entries in the center zone revealed a
lack of significance in both the “genotype” (F 3s) = 3.215, P =
0.81) and “age” factors (F1,3s) = 0.009, P = 0.93), but a significant
effect in the “age x genotype” interaction (F 3s) = 6.268, P =
0.017) was found. As shown in Figure 1H, post hoc tests were sig-
nificant between genotypes in adult animals (P = 0.003), but not
between genotypes of aged mice (P = 0.63) or between adult and
aged mice of both genotypes (NCAM(f: P = 0.12; NCAMffcre, P =
0.054). The analysis of the total distance traveled in the OF re-
vealed significance in the “age” factor (F35 =4.984, P=
0.032), but a lack of significance in the “genotype” factor
(F1,38)=3.171, P=0.083) and the “genotype x age” interaction
(F(1,38) = 3.672, P = 0.63). Post hoc tests were significant between
genotypes in adult animals (Fig. 1I; P = 0.01), but not between ge-
notypes in aged mice (P = 0.93). In addition, post hoc tests were
also significant between adult and aged NCAMffcre mice (Fig.
1I; P = 0.003), but not between adult and aged mice of NCAMff
(P=0.84).

Altogether, our behavioral analysis revealed that, overall,
adult and aged NCAMffcre mice show reduced anxiety-like behav-
iors compared with those of their age-matched NCAM(f litter-
mates and that an increase in anxiety levels accompanies aging
in mice of both genotypes. Our results also revealed that, overall,
adult NCAMffcre mice display increased locomotor activity com-
pared with that of adult NCAMff littermates and that aging reduc-
es locomotor activity predominantly in NCAM-deficient mice.

Delayed matching-to-place (DMP) task

in the Morris water maze

To assess whether both aged NCAMffcre and aged NCAMI{f mice
have normal visual perception, we first trained all groups of
mice during 2 d using a visible platform paradigm in which the an-
imals learned to find the hidden platform in response to an at-
tached visual cue (i.e., black flag). Repeated measures ANOVAs
of the distance the mice swam to find the cued platform revealed
no significance in the “genotype” factor (F(,40) = 1.092, P = 0.3),
the “age” factor (F,40) = 1.892, P = 0.2), or the “genotype x age”
interaction (F(1,40) = 0.262, P = 0.6), indicating no visual impair-
ments in the aged mice of both genotypes. Repeated measures
ANOVAs also indicated significance in the “distance” factor for
both ages and genotypes (adult NCAMff: F3 57 = 15.900, P <
0.0001; adult NCAMffcre: F33)=53.076, P <0.0001; aged
NCAM(f: F(3/27) = 9754, rP= 00002, aged NCAMffcre: F(3,33) =
26.406, P < 0.0001), indicating a significant decrease in the aver-
age distance the mice required to swim to find the cued platform
over trial blocks. However, when the trial blocks were analyzed in-
dividually, the ANOVASs revealed a significant effect in the “age”
factor observed in the second (F(;,40) = 21.240, P < 0.0001) and
fourth (F 40) = 5.838, P = 0.02) trial blocks, and post hoc tests re-
vealed a significantly longer distance for aged mice of both geno-
types in the second trial block (NCAM(f: P = 0.008; NCAMffcre:
P =0.0005) and a significantly longer distance for aged NCAM{t
mice in the fourth trial block (P = 0.016) to reach the cued plat-
form compared with that of adult mice of the corresponding ge-
notype (Fig. 2A). No significant effect in either the “genotype”
factor or the “genotype x age” interaction was observed in any
of the four trial blocks (all P> 0.08). When the average swim
speed was analyzed over the four trial blocks during the visual
platform paradigm, ANOVAs revealed significance in the “age”
factor (Fig. 2A; (F(1,40) = 112.435, P < 0.0001), but a lack of signifi-
cance in the “genotype” factor (F(1,40) = 1.444, P = 0.24) and the
“genotype x age” interaction (F( 40)=1.128, P=0.29). Fisher
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NCAM(f; [°°] P < 0.01 vs. adult NCAMffcre).

PLSD post hoc tests were significant between adult and aged mice
of both genotypes (NCAM(f, P < 0.0001; NCAMffcre, P < 0.0001),
indicating a significant lower average swim speed in aged mice
compared with that of adult mice of the same genotype (Fig.
2A). Together, these data indicate that the NCAM deficiency in
the forebrain of NCAM-deficient mice at both ages does not affect
motor activity, vision, or the motivation to escape from the water.

We then assessed working/episodic-like memory in the DMP
task in the Morris water maze for the following six consecutive
days, as previously described (Steele and Morris 1999; Chen
etal. 2000; Zeng et al. 2001). During the DMP task, which requires
the dynamic acquisition of ongoing events and measures hippo-
campus-dependent working/episodic-like memory, mice were
trained daily to navigate to a hidden platform at a fixed location
in the water maze until reaching a criterion (i.e., three consecutive
trials with a latency below 20 sec), or finishing a maximum num-
ber of eight trials. Each mouse performed a minimum of five trials
even if a mouse reached the criterion in fewer than five trials.
Starting the next day, a new training session began in the same
manner except that the platform was moved to a new location
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Performance of adult and aged conditional NCAM-deficient (NCAMffcre) mice and their
NCAM(ff littermates in the delayed matching-to-place (DMP) task in a Morris water maze. (A)
Average distance adult and aged conditional NCAMffcre and NCAMff mice swam to find the sub-
merged cued platform and the average swim speed during the four trial blocks. Average distance the
(B) adult and (C) aged mice swam to find the hidden platform during the first five trials of the DMP
task (averaged over the six daily training sessions) and the average swim speed across all trials and train-
ing sessions. (D) The average number of trials animals required to reach the criterion of three consec-
utive trials in less than 20 sec. The results are the mean = SEM (N = 10-12/group; post hoc analysis
between genotypes: [**] P < 0.01 and [*] P < 0.05 vs. adult NCAMff; [**] P< 0.01 and [*] P < 0.05
vs. aged NCAM(f; post hoc analysis between age groups: [**] P < 0.01 and [*] P< 0.05 vs. adult

186

Repeated measures ANOVAs for the aver-
age distance the mice swam to find the
hidden platform (trials 2-5) indicated a
lack of significance in the “genotype”
factor for adult mice (F(20) = 1.694,
P =0.21), but a significant difference be-
tween genotypes in aged mice (Fig. 2C;
F1,20)=38.129, P=0.01). Additionally,
while repeated measures ANOVAs indi-
cated a significant effect in the “trial” fac-
tor for both ages (adults: F(3 60) = 7.351,
P =0.0003; aged: F(3,60) =8.632, P<
0.0001), a lack of significance in the
“trial x genotype” interaction in both
age groups (adults: F3 60 =0.274, P=
0.84; aged: F3e0=0.648, P=0.59) was also observed.
Substantial data in the literature indicate that NCAM deficiency
manifests as sporadic impairments in individual trials (Bukalo
et al. 2004; Bisaz et al. 2011; Bisaz and Sandi 2012); therefore,
we also applied unpaired Student’s t-tests to individual trial
blocks. Indeed, significant differences between genotypes were
observed in the first trial block in adult mice (Fig. 2B; t = 2.276,
P =0.034), and in the fourth (t=2.611, P =0.017) and fifth (t =
2.784, P = 0.012) trial blocks in aged mice (Fig. 2C). No differences
in the average swim speed were observed between NCAMffcre and
NCAM{f mice at both ages (Fig. 2B; adult: t = 1.066, P = 0.3; Fig.
2C; aged: t = 0.843, P = 0.41). We also analyzed the combined in-
dividual trials by repeated measures ANOVAs for adult and aged
mice individually. As shown in Supplemental Figure S1, repeated
measured ANOVAs for the first trial revealed a significant effect in
the “genotype” factor for adult mice (F,20) = 5.179, P = 0.034).
ANOVAs further revealed no significant effect in the “genotype”
factor for the first, second, third, fourth, and fifth trials (all P >
0.15) for adult mice. However, while repeated measures ANOVAs
revealed no significant effect in the “genotype” factor for the
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second and third trials (P > 0.3) for aged mice, they indicated a
significance difference between genotypes in the fourth
(F1,20)=6.816, P=0.017) and the fifth (F4,0 =7.749, P=
0.012) trials. Importantly, repeated measures ANOVAs also re-
vealed no significance in the “genotype x trial” interaction in
all five trials for both age groups (P > 0.24). We also analyzed
the “age” effects for NCAMff and NCAMffcre mice individually.
For NCAM({f mice, repeated measures ANOVAs revealed no signifi-
cance effect in the “age” factor (F,15) = 0.789, P=0.39) or the
“age x trial” interaction (F(3 s4) = 0.743, P = 0.53). Similarly, for
NCAMffcre mice, no significant effects were observed in either
the “age” factor (F(;22) = 2.848, P=0.11) or the “age x trial” in-
teraction (F3 66 = 0.850, P=0.47). Moreover, the Student’s
t-test applied to individual trial blocks revealed no significant dif-
ference between adult and aged NCAMff (all P> 0.09) and
NCAMffcre mice (all P > 0.061). The Student’s t-test between age
groups of the same genotype on the average swim speed over
the five compacted trial blocks revealed a significantly lower
swim speed for both aged NCAMff (t=7.395, P < 0.0001) and
aged NCAMffcre mice (t=7.580, P <0.0001) compared with
that of adult animals of the same genotype (Fig. 2C).

We also calculated the average number of trials the mice re-
quired to reach the criterion (i.e., <20 sec escape latency) across
all platform locations. Two-way ANOVAs of the number of trials
required to reach the criterion indicated a significant effect in
both the “age” (F(1,40) = 28.851, P < 0.0001) and the “genotype”
factors (F(1,40) = 12.610, P=0.001), but a lack of significance
in the “age x genotype” interaction (F(;40)=1.133, P =0.29).
As shown in Figure 2D, post hoc tests were significant between
adult and aged mice of both genotypes (NCAMff: P < 0.0001;
NCAMffcre: P=0.003) and between genotypes at both ages
(adults: P=0.002; aged: P=0.04), indicating a significantly
slower acquisition of both adult and aged NCAMffcre mice com-
pared to that of age-matched NCAMI{f mice.

Delayed reinforced alternation in the T-maze

One day before training adult and aged NCAMffcre mice and
their age-matched NCAM(f littermates in the delayed reinforced
alternation task in the T-maze, the animals were provided with
10 min of free exploration to habituate to the handling procedure
and testing environment and for the researchers to assess po-
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Figure 3. The performance of adult and aged conditional NCAM-defi-
cient male mice (NCAMffcre) and their NCAM(f littermates in the delayed
reinforced alternation task in a T-maze. (A) The exploration patterns of the
mice during the 10-min free exploration trial 2 d prior to testing are rep-
resented as the percentage of spontaneous alternation (SA), percentage
of same arm returns (SAR), and percentage of alternate arm returns
(AAR). (B) Delayed reinforced alternation performance is represented as
the percentage of correct choices made during the last five trials of the
testing session. The results are the mean £ SEM (N = 8-10/group; post
hoc analysis between genotypes: [*] P < 0.05 vs. aged NCAMIf; post hoc
analysis between age groups: [°P] P < 0.01).
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tential differences in exploration patterns that could critically
interfere with the testing procedure. As shown in Figure 3A, two-
way ANOVAs of the percentage of spontaneous alternations
(SA) revealed no significance in the “genotype” factor (Fg 32 =
0.873, P=0.36), the “age” factor (F(; 32 =0.271, P=0.61), or
the “genotype x age” interaction (F(y,32) = 0.295, P = 0.59). Simi-
larly, for the percentage of same arm returns (SAR), ANOVAs indi-
cated no significant effect in the “genotype” (F,32) = 0.860, P =
0.36) and “age” (F(1,32) = 0.056, P = 0.81) factors or “genotype x
age” interactions (F(,32) = 2.908, P = 0.1). Additionally, ANOVAs
of the percentage of alternate arm returns (AAR) revealed no sig-
nificance in the “genotype” factor (F(; 32) = 0.061, P = 0.81), the
“age” factor (F(1,32)=0.44, P=0.83), or in their interaction
(F(1,32) = 0.980, P = 0.33), indicating no difference in exploration
patterns between “age” and “genotype” groups (Fig. 3A). On the
subsequent day, the animals were subjected to training in which
they were allowed to make four forced choices. To exclude
potential differences in motivational guided behaviors or lethar-
gic behaviors of aged mice, we also analyzed the average latency
required for each mouse to enter the open choice arms during
training (adult NCAM(f: 24.0 £ 6.9 sec; adult NCAM(ffcre: 17.0
3.8 sec; aged NCAM{f: 15.7 £ 4.6 sec; aged NCAMffcre: 8.4 = 1.1
sec; data not shown). Two-way ANOVAs on the latency required
to enter the open arm revealed no significance in the “age” factor
(F1,32) = 3.007, P=0.09), the “genotype” factor (F,32) = 2.166,
P=0.15), or the “age x genotype” interaction (F(;,32) = 0.001,
P=0.98).

On the third day, all animals were tested for their delayed re-
inforced alternation performance in the T-maze, a working mem-
ory task that critically depends on both the hippocampus and the
mPFC (Lalonde 2002; Runyan et al. 2005; Yoon et al. 2008). In this
task, the animal had to choose between entering one of two arms
in which a food reinforcer was present in the end of one arm. The
location of the reinforcer shifted to the alternate arm after a suc-
cessful retrieval of the food. In order to perform efficiently in
this task, the animals had to alternate choices on successive trials
(win-shift) in order to minimize the amount of effort required to
locate the food (Kolata et al. 2007, 2008). ANOVAs on the percent-
age of correct choices revealed a significant effect in the “age” fac-
tor (F1,32) = 12.579, P = 0.001), but not in the “genotype” factor
(F1,32)=2.739, P=0.11) or the “genotype x age” interaction
(F(1,32) = 2.379, P = 0.11). Post hoc analyses further revealed a sig-
nificant difference between adult and aged NCAMffcre mice (Fig.
3B; P = 0.0009) and between aged NCAMffcre and NCAMI{f mice
(P =0.033). No significance was observed between the genotypes
in adult mice (P = 0.99) or between adult and aged NCAM(f mice
(Fig. 3B; P = 0.19). Additionally, while the adult animals of both
genotypes and the aged NCAM({f mice performed significantly
above chance levels of 50% correct choices (Univariant ANOVA;
adult NCAMff: P < 0.0001; adult NCAMffcre: P = 0.0003; aged
NCAM(f: P=0.0011), the aged NCAMffcre mice performed at
chance levels (P = 0.75). We also analyzed the average latency re-
quired to enter the choice arms across the six test trials (adult
NCAM(f: 12.7 + 1.7 sec; adult NCAMffcre: 9.4 + 2.1 sec; aged
NCAM(f: 13.1 + 2.6 sec; aged NCAMffcre: 7.6 + 0.7 sec; data not
shown). Two-way ANOVAs of the latency to enter the choice
arms revealed a significant effect in the “genotype” factor (F 32,
=15.267, P=0.03), but no significance was observed in the
“age” factor (F(1,32) = 0.134, P = 0.72) or the “genotype x age” in-
teraction (F,32) = 0.309, P = 0.58). Post hoc analyses, however,
revealed no significant differences between the age and genotype
groups (all P > 0.2). Taken together, the data of the delayed rein-
forced alternation test indicate that aging in animals with reduced
NCAM expression in the forebrain is associated with pronounced
working memory deficits in this task compared with those of wild-
type animals.
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120: F(1,24y=0.309, P=0.58). Subse-
quently, we performed Fisher PLDS post
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Figure 4. NCAM expression levels in the hippocampus (A) and medial prefrontal cortex (B) of naive
adult and aged conditional NCAM-deficient mice (NCAMffcre) and their NCAM(f littermates. The
NCAM expression levels are represented as a percentage of adult NCAM(ff expression levels. The
results are the mean + SEM (N = 5-8 /group; post hoc analysis between genotypes: [**] P < 0.01 vs.
adult NCAMf, [**] P<0.01 and [*] P<0.05 vs. aged NCAMSf; post hoc analysis between age

groups: [**] P < 0.01 and [*] P < 0.05 vs. adult NCAM(f).

NCAM expression in the hippocampus and medial
prefrontal cortex (mPFC)

Hippocampal and mPFC NCAM levels were evaluated in crude
synaptosomal preparations from adult and aged NCAMffcre
mice and their age-matched NCAM(f littermates. The expression
of NCAM was expressed as a percentage of that of adult NCAMff
animals (Fig. 4A,B). Considering the three major NCAM isoforms
together, repeated measures ANOVAs for the three major NCAM
isoforms in the hippocampus revealed a significant effect in
the “genotype” factor (F,24) = 41.630, P < 0.0001), but a lack of
significance in the “age” factor (F4)= 2.049, P=0.16) and
“age x genotype” interaction (F 4= 1.012, P = 0.32). Addition-
ally, repeated measures ANOVAs also indicated a significant effect
in the “isoform” factor (F 4g = 14.544, P <0.0001) and the
“isoform x genotype” interaction (F(z4s = 6.675, P =0.003),
but no significant effect for the other paired interaction between
these factors. When individual isoforms in hippocampal fractions
were analyzed separately using two-way ANOVAs, a significant ef-
fect in the “genotype” factor of all three isoforms (NCAM-180:
F1,24)= 34.824, P<0.0001; NCAM-140: F(j 4 =51.259, P<
0.0001; NCAM-120: F(1 24= 16.456, P =0.0005) was observed.
Additionally, ANOVAs of the individual NCAM isoforms revealed
a significant effect in the “age” factor for the NCAM-180 isoform
(F(1,24)= 4.763, P = 0.04); however, a lack of significance in this
factor was observed for the expression of the NCAM-140
(F1,24=1.289, P=0.27) and NCAM-120 (F(; .4 =0.269, P=
0.61) isoforms. No significance was observed in the “age x geno-
type” interaction for all three isoforms (NCAM-180: F(j 24y =
1.732, P=0.39; NCAM-140: F(; 24, = 0.659, P=0.42; NCAM-
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or the NCAM-120 isoform (both P>
0.2). Moreover, post hoc analyses be-
tween adult and aged NCAMffcre mice
revealed no significance in any of the
three major NCAM isoforms (all P>
0.53).

For NCAM expression levelsin mPFC
fractions, repeated measures ANOVAs
for all three major isoforms revealed a sig-
nificant effectin the “genotype” (F(1 24) =
42.452, P<0.0001) and “age” factors
(F(1,24) = 6706, P= 0016), while no Sig-
nificance was observed for the “geno-
type x age” interaction (F(j 24) = 0.665,
P =0.42). Additionally, repeated mea-
sures ANOVAs also revealed signif-
icance in the “isoform” factor (F »4) =
101.174, P < 0.0001), the “isoform x ge-
notype” (F(z,24) = 18.380, P < 0.0001),
the “isoform x age” (F(z24)=9.925, P=
0.0002), and the “isoform x genotype x age” (F(z4s) =7.117,
P =0.002) interactions. Similarly to hippocampal fractions, sig-
nificant effects in the “genotype” factor were observed for all
three major NCAM isoforms (two-way ANOVA; NCAM-180:
F(1,24) = 44.305, P< 0.0001, NCAM-140: F(1’24) = 77.607, P<
0.0001; NCAM-120: Fq 24y = 9.624, P = 0.005). In addition, signif-
icance in the “age” factor was observed for the NCAM-180
(F(1,24) =8.433, P= 0008) and the NCAM-140 (F(1,24) =17.419,
P =0.0003), but not for the NCAM-120 isoform (F(; 24) = 0.223,
P =0.64). ANOVAs also revealed a significant “genotype x age”
interaction for expression levels of the NCAM-140 isoform
(F(1'24) = 5347, P= 003), but not for the NCAM-180 (F(],24) =
0.93, P=0.34) and the NCAM-120 isoforms (F(1,24) = 0.443, P =
0.51). Fisher PLSD post hoc analyses for each major NCAM
isoform revealed significantly lower expression levels for the
NCAM-180 and NCAM-140 isoforms (P < 0.0001) in adult
NCAMffcre mice and all three isoforms in aged NCAMffcre
mice (all P <0.02) compared with those of their age-matched
NCAMIf littermates (Fig. 4B). Additionally, post hoc analyses
revealed significance between adult and aged NCAMff mice
for the NCAM-180 (Fig. 4B; P=0.015) and the NCAM-140
(Fig. 4B; P =0.0002) isoforms, with lower expression levels of
these isoforms in aged NCAMI{f mice. No differences between
adult and aged NCAMff mice were observed for the expres-
sion levels of the NCAM-120 isoform (P = 0.9) as well as the ex-
pression level of all isoforms between adult and aged NCAMffcre
mice (all P> 0.16). Taken together, these data indicate that
aging in wild-type mice is associated with an isoform-specific re-
duction of NCAM expression levels in the hippocampus and
the mPFC.

NCAM-180

NCAM-140
NCAM-120

Learning & Memory


http://learnmem.cshlp.org/
http://www.cshlpress.com

Downloaded from learnmem.cshlp.org on March 19, 2013 - Published by Cold Spring Harbor Laboratory Press

NCAM deficiency and aging

Discussion

Cognitive processes mediated through the hippocampus (declar-
ative memory) and the prefrontal cortex (working/episodic-like
memory) are the most vulnerable to aging (Barense et al. 2002;
Erickson and Barnes 2003; Ramos et al. 2003; Hedden and
Gabrieli 2004; Driscoll and Sutherland 2005; Driscoll et al. 2006;
Morrison and Baxter 2012). Substantial evidence indicates that
age-related cognitive decline is more likely associated with alter-
ations in synaptic connectivity than with neuronal loss (Peters
et al. 2008; Morrison and Baxter 2012). However, the molecu-
lar changes that underlie the vulnerability to cognitive impair-
ments associated with aging are poorly understood. In this
study, using conditional NCAM-deficient mice (NCAMffcre) in
which the ncam gene is ablated in glutamatergic neurons of the
forebrain, we addressed whether NCAM deficiency alters vulnera-
bility for age-related cognitive decline in working/episodic-like
memory tasks.

Our results indicate that aging in conditional NCAM-defi-
cient (NCAMffcre) mice is associated with impairments in two
types of working/episodic-like memory tasks, which critically
depend on the functional integrity of the PFC and the hippocam-
pus (i.e., a delayed matching-to-place and a delayed reinforced al-
ternation tasks [Steele and Morris 1999; Chen et al. 2000; Runyan
et al. 2005; Yoon et al. 2008; Zhang et al. 2008]). We also find that
aging in wild-type (NCAM({f) mice leads to an isoform-specific
reduction of NCAM-180 expression levels in the hippocampus
and the PFC and a further reduction in NCAM-140 in the PFC.
However, aging does not alter the already reduced NCAM expres-
sion displayed by NCAMffcre mice.

The reported cognitive deficits cannot be attributed to in-
creased anxiety-like behaviors or reduced locomotor activity.
While aging in both genotypes was associated with an increase in
anxiety-like behaviors, both adult and aged NCAMffcre mice dis-
played lower anxiety-like behaviors than age-matched NCAMff
littermates. We have previously reported reduced anxiety-like
behaviors in adult conditional NCAM-deficient mice (Bisaz and
Sandi 2010; Bisaz et al. 2011); in this study, we show in addition
that this behavioral characteristic in conditional NCAM-deficient
mice is also manifested during aging. We also observed generally
increased locomotor activity in adult NCAMffcre mice compared
with thatin adult NCAMff mice, but no difference was observed be-
tween genotypes in aged animals.

In the spatial delayed matching-to-place tests in the Morris
water maze, aged NCAM-deficient (NCAMffcre) mice swam longer
distances to find the hidden platform and required a higher num-
ber of trials to reach the training criterion than their age-matched
NCAM(f littermates (adult NCAMffcre mice only showed deficits
as compared to their wild-type littermates in this latter parame-
ter). These deficits seem to be specific to the cognitive domain.
Although aged mice of both genotypes were impaired in getting
access to the cued platform on the second trial block, and aged
NCAMffcre as well in the fourth, as compared with adult animals
of the corresponding genotype, all aged mice performed as adult
mice in the third trial block suggesting that the observed differ-
ence most likely reflects attentional deficits in aged rodents rather
than general visual or locomotor impairments (Rowe et al. 1998;
van der Staay 2002). Importantly, no differences were observed be-
tween genotypes in swim speed.

Age-related working memory impairments of NCAMffcre
mice were also observed in the delayed reinforced alternation
task in the T-maze, in which the animals maintained the location
of the previous visited arm of the T-maze online during the 20-sec
intertrial interval to make a correct choice in the following trial.
While the adult mice of both genotypes and aged NCAMIf litter-
mates performed significantly above chance level and made more
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correct than incorrect choices, the aged NCAMffcre mice only
performed at the chance level. Importantly, differences in explora-
tion patterns in the T-maze cannot account for the poor perfor-
mance of the aged NCAMffcre mice in this test, as the mice of
both genotypes and age groups displayed a comparable percent-
age of spontaneous alternations, same arm returns, and alternate
arm returns. Similarly, no differences were found in the latency
animals needed to enter the choice arms during the four forced-
training trials or the six testing trials, indicating no general move-
ment disorders, lethargic behaviors, or motivational deficits to ob-
tain the food reward.

We also report that adult conditional NCAM-deficient mice
did not exhibit impairments in the spatial working/episodic-
like memory task, which seems at odds with previous reports of
mild deficits in spatial reference memory, manifested as sporadic
impairments on individual trials and of profound impairments
in reversal learning given after training in a spatial reference
memory task (Bisaz et al. 2011; Bisaz and Sandi 2012). The lack
of difference in performance between the two adult genotypes
in the delayed matching-to-place task fits with early reports indi-
cating that the NCAMffcre mice perform well during the initial
stages of learning but were impaired in the fine-tuning of spatial
searching that manifests with increasing training (Bukalo et al.
2004). On the other hand, the higher average number of trials
that the adult NCAMffcre mice required to reach the training
criterion might suggest a slower acquisition rate and/or less pre-
cise spatial searching of these mice than those of their control
littermates.

To our knowledge, this is the first study showing that
reduced NCAM expression in the forebrain is associated with
higher vulnerability to develop cognitive impairments in work-
ing/episodic-like memory tasks with aging. Indirect evidence
for altered NCAM expression and the occurrence of cognitive
decline with aging have also been reported in both clinical and
experimental research studies. For example, increased concen-
trations of proteolytic fragments of NCAM have been observed
in the cerebrospinal fluid (CSF) of patients suffering from de-
mentia and neurodegenerative diseases, increasing with age and
being correlated with the neurodegenerative etiology (Strekalova
et al. 2006).

Aging shows different effects in the hippocampus and PFC.
Synaptic aging and cognitive impairments in the PFC are primar-
ily associated with an extensive loss of thin highly plastic and
dynamic dendritic spines, which might be particularly important
for the temporal coding of information. However, large, complex
synapses in the hippocampus, which are important for the induc-
tion and maintenance of long-term potentiation (LTP), appear
to be the most vulnerable to aging (Morrison and Baxter 2012).
Interestingly, the neuron-specific expression of the NCAM-180
isoform is specifically enriched in the postsynaptic density and
potentially plays an important role in the stabilization of mature,
complex synapses (Polo-Parada et al. 2004; Walmod et al. 2004). It
is tempting to speculate that the reduction in NCAM-180 ob-
served in the hippocampus might be associated with reductions
in the number and length of perforated synapses in the CA1 re-
gion and the dentate gyrus described in aged rats (Smith et al.
2000; Nicholson et al. 2004). Consistent with this hypothesis,
isoform-specific NCAM-180 knockout mice exhibit a dispersed
pyramidal cell layer in the CA3 region.

We also observed a pronounced reduction of the NCAM-140
isoform in the PFC of aged wild-type mice. A reduction in the ex-
pression levels of the NCAM-140 isoform have also been reported
in the hippocampus of rats chronically stressed for 3 wk, a con-
dition that is accompanied by a loss of excitatory glutamatergic
synapses and a reduction in the surface area of postsynaptic den-
sities (Sousa et al. 2000; Sandi et al. 2003; Stewart et al. 2005).
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Similar morphological alterations were recently reported to occur
with aging in the PFC (Bloss et al. 2013), suggesting the potential
involvement of reduced NCAM expression in the morphological
alterations that occur with aging in the PFC.

Whereas constitutive NCAM knockout mice have been much
characterized (Theodosis et al. 2004; Tereshchenko et al. 2011;
Kochlamazashvili et al. 2012), information regarding the (neuro)-
physiological impact of the mutation in NCAMffcre mice is
scarce. However, available information indicates an existing vul-
nerability in these mice. In nonaged adult mice, long-term poten-
tiation (LTP) in the CA1, but not CA3, region of the hippocampus
was found to be reduced in NCAMffcre mice, in agreement with
their normal mossy fiber lamination (Bukalo et al. 2004). More-
over, these mice display an enhanced vulnerability to develop
deficits in hippocampus-dependent (note that functional changes
in PFC-dependent tasks were not evaluated) learning tasks when
exposed to stress (Bisaz and Sandi 2012). Our study extends the
implications of reduced forebrain NCAM expression to functional
deficits in both hippocampus- and PFC-dependent functions with
aging. Further studies should be addressed to understand the
mechanisms involved at cellular and network levels.

In conclusion, the results of this study indicate that de-
creased NCAM expression in the forebrain critically enhances
the vulnerability to develop aging-induced cognitive disturbances
in learning and memory tasks that critically rely on the functional
integrity of the PFC and the hippocampus. NCAM deficits in the
forebrain might result in a reduced capacity for structural plastic-
ity in relevant neuronal networks, which are necessary to mediate
working/episodic-like memory processes. In addition, the aging-
induced reduction of NCAM expression levels in the mPFC might
be critically involved in the structural alterations in aged rodents
and nonhuman primates. Although further work is needed to
elucidate the precise role of NCAM in age-related cognitive im-
pairments, intervention studies using systemic and/or region-
specific treatments with NCAM mimetic peptides should be con-
ducted to further verify this conclusion.

Materials and Methods

Subjects

Experiments were conducted on adult (6-9 mo old) and aged
(17-21 mo old) in-house bred conditional NCAM-deficient
male mice (NCAMffcre) and their age-matched wild-type male lit-
termates (NCAMIf). The generation of conditional NCAM-defi-
cient mice has been previously described (Bukalo et al. 2004).
Briefly, homozygous ncam-floxed female mice were bred with ho-
mozygous ncam-floxed male mice expressing the cre-recombinase
under the control of the promoter of the a-subunit of the cacium-
calmodulin-dependent protein kinase II («CaMKII). The progeny
were homozygous for the ncam-floxed alleles; half of these mice
carried the aCaMKII-cre transgene (NCAMffcre), and the rest were
wild-type littermates (NCAMI(f). All mice were backcrossed for
more than 10 generations into the C57BL/6] background and
were housed in groups of 2-6 in standard plastic cages on a 12-h
light/dark cycle (lightson at07.30). The temperature in the animal
housing room was maintained at 21 = 1°C. Throughout the exper-
imental period, the mice were provided ad libitum access to water
and food, except during the T-maze experimental period, when the
mice were subjected to a food restriction schedule to maintain a
body weight of ~90% of the freely fed weight (adult NCAMI{f:
374+ 1.5 g adult NCAMffcre: 32.5+0.8 g aged NCAMIf:
38.1 £2.5 g; aged NCAMffcre: 36.6 + 1.6 g). All animal experi-
ments were performed in accordance with the Swiss National
Institutional Guidelines on Animal Experimentation, and the
Swiss Cantonal Committee for Animal Experimentation approved
all experimental procedures. The number of mice used in this study
and the animal suffering in all procedures was maintained at a
minimum.
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Elevated zero-maze

In the elevated zero-maze (EZM), a white plastic elevated (46 cm
above the ground) annular runway (5.5-cm wide, 46-cm outer
diameter, and 35-cm inner diameter) was used for testing mice
anxiety levels, as previously described (Bisaz et al. 2011). Two op-
posing 90° sectors of the runway were protected with 13.5-cm-
high inner and outer walls, and the three zones were defined as
follows: an intermediate zone comprising four 30° segments at
the ends of the protection walls separated by the two 50°-wide
closed/protected and two 70°-wide open/unprotected explora-
tion zones. The mice were observed for 5 min in the EZM under
dim and dispersed light conditions, and the trajectories of
each mouse were automatically recorded using video tracking
(EthoVision 3.0, Noldus). The entries into the open sectors were
detected only when the animal entered with all four paws.
Under this criterion, the percentage of time and number of entries
into the open sectors and the total distance the animals traveled
during the entire testing period were analyzed. The total distance
traveled served as an indicator of spontaneous locomotor activity,
while differences in frequency and time spent in the open sectors
were considered to be indicators of anxiety-related behaviors.
Between experimental sessions, the maze was cleaned with 5%
ethanol/water.

Dark/light box

Anxiety-like behaviors were also evaluated in a light/dark box
(DLB), as previously described (Bisaz and Sandi 2010). A 27 x
27 x 26-cm lit (room light 45-50 Ix) white compartment with
open top was connected through an opening entrance (5 x 5
cm) to a 27 x 27 x 26-cm black box compartment covered with
a lid. Each subject was placed in the center of the dark compart-
ment and total distance traveled, frequency of entries, and per-
cent time in the light compartment were recorded using video
tracking for 10 min (EthoVision 3.0, Noldus). Differences in
the number of entries and the time spent in the light compart-
ment were considered as indicators of anxiety-related behaviors.
Between sessions, both compartments were cleaned with 5% eth-
anol/water.

Open field

The behavior of the mice was also assessed in the open field (OF)
test as previously described (Jakobsson et al. 2008; Bisaz and Sandi
2010). Briefly, the mice were placed in the center of a white qua-
dratic box (50 x 50 x 37 cm) and allowed to move freely for 10
min under dim and dispersed light conditions while their trajec-
tories were recorded using a video tracking system (EthoVision
3.0, Noldus). The total number of entries and time spent in the
center zone (25 x 25-cm virtual square in the middle of the OF)
were interpreted as anxiety-like behaviors, whereas the total dis-
tance was used as an index of locomotor activity.

Delayed matching-to-place (DMP) task in a Morris

water maze

The DMP task took place in a white circular water maze (140-cm
diameter) filled with opaque-colored water (26 = 1°C) and a hid-
den platform (10 x 10 cm) submerged ~1.3 cm under the water
surface, as previously described (Bisaz et al. 2011; Bisaz and
Sandi 2012). The DMP task was conducted as previously described
(Chen et al. 2000; Zhang et al. 2008), with minor modifications.
Adult and aged NCAMffcre mice and their NCAMIf littermates
were first pretrained using a visible platform paradigm (four trials
per day for two consecutive days with an intertrial interval [ITI] of
~30min). On the third day, the mice were trained to find a hidden
platform with a fixed location until they reached the criterion of
three consecutive trials with an average escape latency of less
than 20 sec or until a maximum of eight trials were completed
(ITT ~30 min). If a mouse reached the criterion in fewer than
five trials, it was continuously trained to complete five trials to ob-
tain a complete set of data for all mice for the first five trials. The
next day, the mice were trained to a new hidden platform location
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in the same manner as that used for the first location. This pro-
tocol was repeated four more times until a total of six platform
locations were learned. The data were collected using a video cam-
era fixed to the ceiling connected to a video tracking system
(EthoVision 3.0, Noldus). For the analysis, individual trials from
the six training days were collapsed into first, second, third,
fourth, and fifth trials, as previously described (Zeng et al. 2001;
Zhang et al. 2008). To minimize the possible confounds caused
by motivational, motor, and sensory effects, the performance in
the visual platform and the DMP were analyzed in terms of the
swimming distance required to find the hidden platform.

Delayed reinforced alternation

In this task, the animals had to choose between one of two arms of
a T-maze, which consisted of a start arm (10-cm wide x 70-cm
long) and two choice arms (10-cm wide x 33-cm long). The entire
maze was enclosed in 12-cm-high walls. The initial segment of the
start arm was segregated using a guillotine door, which defined
the start box. At the entry of each choice arm, there was another
experimenter-operated door. A food container (2-cm diameter x
1.5-cm high) was located at the end of each choice arm. One
day before training, the animals were allowed 10 min of free ex-
ploration with all doors open and none of the choice arms baited.
This trial was later analyzed for differences in exploration pattern,
including the percentage of spontaneous alternations (SA), same
arm returns (SAR), and alternate arm returns (AAR). The percent-
age of spontaneous alternations was defined as a ratio of the arm
choices that differed from the previous two choices to the total of
possible choices during the run (i.e., total arm entries minus two),
as previously described (Wietrzych et al. 2005; Yamada et al.
2005). The alternate arm returns and same arm returns were also
scored for each animal to assess differences in exploration pat-
terns. The training in delayed reinforced alternation task proceed-
ed as previously described (Kolata et al. 2007, 2008).

Briefly, one day after their 10-min habituation to the T-maze,
the animals were acclimated to the training conditions and al-
lowed to make four forced choices. For the first exposure, the an-
imal was held in the start box for 30 sec, after which the mouse
was allowed to traverse the maze; the door of the right choice
arm was closed, whereas the left door was open. A 50-p.L drop of
50% condensed milk in water was located in the food container
and served as the reinforcer. Upon entry into the left (open)
choice arm, the guillotine door at the entrance was lowered and
the animal was allowed to consume the food, after which the
mouse was returned to the start box for a 20-sec intertrial interval
(ITI). For the second exposure, this procedure was repeated but the
right arm was open and the left arm was closed. After a 20-sec ITI,
this sequence was repeated for two additional exposures. The av-
erage latency of the animals to enter the choice arm was analyzed
and served as an indicator of motivational behaviors. On the sub-
sequent day, the animals were tested for delayed reinforced alter-
nation performance. Briefly, in the first trial, a reinforcer was
available in both food containers and the animal could make a
free choice. In the second trial, a reinforcer was available only in
the arm not entered in the first trial. If the animal chose the cor-
rect arm, it was allowed to consume the food reinforcer and the lo-
cation of the reinforcer alternated on the following trial. If an
incorrect choice was made, the animal was kept in the choice
arm for 60 sec. In either case, after the reinforcer was consumed
or after 60 sec, the animal was placed back in the start box to begin
a 20-sec ITI. Animals’ correct/incorrect choices were recorded on
each of the five trials. If an animal did not consume the food rein-
forcer inside the choice arm within 300 sec, it was placed back into
its home cage and excluded from further testing and analysis (two
adult NCAMffcre and four aged NCAMffcre).

Tissue preparation and Western blot analysis

The expression levels of the three main NCAM isoforms
(NCAM-180, NCAM-140, and NCAM-120) were measured in
Western blots of crude synaptosomal preparations of freshly dis-
sected whole hippocampal and mPFC (including the infralimbic
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and prelimbic cortex) fractions of naive adult (N = 8/group) and
aged (N = 5-7/group) NCAMffcre and NCAMff mice, as previously
described (Conboy and Sandi 2010; Bisaz et al. 2011; Bisaz and
Sandi 2012). Briefly, synaptosomes from each mouse were incubat-
ed overnight at room temperature with endoneuraminidase-N
(AbCys, final dilution 1:120) to selectively cleave the polysialic
acid moiety of NCAM. The samples were boiled at 100°C for 5
min in 70 mM Tris—HCI (pH 6.8), 33 mM NaCl, 1 mM ethylenedi-
aminetetraacetic acid, 2% sodium dodecyl sulfate (SDS), 0.01%
bromophenol blue, 10% glycerol, and 3% dithiothreitol. Approx-
imately 5 mg of total protein from each sample was separated using
7.5% SDS-polyacrylamide gel electrophoresis and transferred to
a nitrocellulose membrane (Protran, Whatman GmbH). After
saturation of the nonspecific sites with 5% nonfat dry milk in
10-mM Tris—HCI (pH 7.4) containing 150-mM NaCl and 0.05%
Tween-20 (TBST), the membranes were probed overnight at 4°C
with primary antibodies against NCAM (1:5000, Millipore) oractin
(1:20,000, Sigma), washed with TBST, incubated for 2 h with the ap-
propriate secondary horseradish peroxidase-linked antibodies
(NCAM, 1:1000 goat anti-rabbit IgG, Molecular Probes; actin,
1:10,000 goat anti-mouse IgG, Calbiochem), and finally developed
using the SuperSignal West Dura Substrate (Pierce). The bands were
detected using the ChemiDoc XRS system (Bio-Rad), and the den-
sitometric analysis of the bands was calculated using NIH ImageJ
1.44p software (http://imagej.nih.gov). Following normalization
to within-lane actin, the expression of all three main NCAM iso-
forms was expressed as the percentage of the adult NCAM({f mice.
Thelinearrange of the specificantibody signal detection was deter-
mined at the outset of these experiments, and all experimental
samples were loaded at a concentration within the linear range of
the antibody signal detection.

Statistical analysis

All results are expressed as the mean * standard error of the
mean (SEM) analyzed using StatView software version 5.0 (SAS
Institute). The data were analyzed using analysis of variance
(ANOVA) with or without repeated measures, as appropriate. Post
hoc tests (Fisher’s protected least significant difference [PLSD])
were applied whenever ANOVAs yielded significance. The signifi-
cance of the results was accepted at P < 0.05.
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