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1. INTRODUCTION

Throughout history, and much to the misfortune of humankind, epidemics have proved
fast, efficient, and hard to disrupt. They have inspired, hopefully to the benefit of
humankind, efficient and robust mechanisms for disseminating information in dis-
tributed systems. Such mechanisms are usually called epidemic, or gossip protocols,
for they also resemble the way rumors are spread among a population.

Abstractly speaking, processes start with initial values, called rumors, and a
gossip protocol seeks to efficiently spread those rumors among all processes. Gossip
protocols have long been studied in various distributed computing contexts; see,
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for example, Demers et al. [1987] (database consistency), Van Renesse et al. [1998]
(failure detection), [Birman et al. 1999; Eugster et al. 2003; Gupta et al. 2002; Luo
et al. 2003] (group multicast), Kermarrec et al. [2003] (group membership), Chlebus
and Kowalski [2006a, 2006b] (consensus), [Georgiou et al. 2005; Georgiou and Shvarts-
man 2008] (load balancing), and Kempe et al. [2004] (resource location). All such
protocols are essentially variants of the same simple scheme in which each process
periodically sends its rumor—along with any new rumors that it has learned—to
another randomly selected process. Such a scheme is quite robust due to the random
pattern of communication. Two natural questions, however, arise with respect to such
a scheme: how often should a process transmit its rumor, and when should a process
stop?

In a synchronous system, assuming bounds on communication delays and relative
process speeds, both questions are readily answered: each process sends one message
per round of communication, and the processes can halt, with high probability, after a
certain number of rounds. In a seminal paper, Karp et al. [2000] show indeed that, in
a system of n processes, a single rumor can be disseminated in O(log n) rounds using
O(n log log n) messages, with high probability.

But how reasonable is it to assume synchrony? Gossip protocols are considered effec-
tive means to disseminate information in large scale distributed applications but is it
realistic to assume that such applications are synchronous? Think of that e-mail that
took two days to arrive.

While it is common to argue that distributed applications are synchronous most of the
time, it is however good practice to devise algorithms that can tolerate asynchronous
situations where there is no a priori bound on the communication delay d and the
relative process speed δ. In some cases, these bounds may be unknown; in other cases,
the only known bound may be very conservative, resulting in inefficient protocols; in
yet other cases, there may be pathological situations in which such bounds are violated.
Clearly, it is appealing to devise asynchronous gossip algorithms that do not make use
of any known bound on synchrony.

The simple gossip scheme sketched here can be engineered to work in an asyn-
chronous environment via a simple transformation: the gossip period can be based on
a local counter, rather than on bounds d and δ; every fixed number of local steps, each
process sends gossip to a randomly selected process. The question remains, however,
to determine when to stop gossiping; the challenge arises in part since failed processes
can be confused with slow ones in the absence of synchrony bounds. Unlike in the case
of a synchronous system, it is not sufficient to simply repeat the gossip step a pre-
determined number of times. For example, consider the time at which two processes
begin their rth iteration of gossip; because of asynchrony, for large r, it may be that
one of the processes begins its rth iteration long after the other has completed that
iteration. Thus, if we rely on a fixed number of iterations of gossip, data may not be
propagated.

These two questions—how often to gossip and when to stop—might appear simple,
yet they are fundamental and challenging. We argue that these questions lie at the
heart of determining the complexity of asynchronous gossip and hence are important
for understanding when gossip is and is not effective. These questions are challenging,
which might explain why theoretical work on gossip protocols focuses predominantly
on synchronous systems. In fact, the very definition of the complexity of gossip in
asynchronous systems with (potentially) infinitely increasing process relative speed
and communication delays is unclear. We make the question more precise as follows: is
it possible to devise an asynchronous gossip algorithm that tolerates 0 < f < n crash
failures, yet behaves efficiently when some bounds on d and δ indeed hold? (Processes
may fail by crashing at any time, permanently halting their execution.) In the parlance
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of Dwork et al. [1988], we are looking for asynchronous gossip algorithms with low
partially synchronous complexity. This captures the efficiency of the algorithms in
the subset of executions where synchrony bounds hold but are not known to the
algorithm [Dwork et al. 1988]. However, the algorithm is indeed asynchronous and
the processes have no global clocks, nor do they manipulate the synchrony bounds.

We focus in this article on two different adversarial models. In both models, an
“adversary” is responsible for determining when the processes are scheduled, when
processes fail, and the latency of each message. In the first model, we think of the ad-
versary as adaptive, that is, it determines the schedule, failures, and message latencies
in an on-line fashion, as the execution proceeds. In the second model, the adversary is
oblivious, that is, it decides the schedule, failures, and message latencies prior to the
beginning of the execution (and it cannot adapt to decisions made by the algorithm).
An adaptive adversary effectively captures the worst-case performance. By contrast,
an oblivious adversarial model implicitly assumes a certain amount of independence
between the choices made by the algorithm and the random choices made by the algo-
rithm. In some cases, an oblivious adversary well reflects reality, while in other cases,
the choices made by the algorithm (e.g., how many messages to send) may be corre-
lated with the choices made by the adversary (e.g., speed at which a process takes
steps).

Contributions

(1) An adaptive adversary can impose significant delays or large number of messages
in asynchronous gossip. Our first result demonstrates the inherent cost of asynchrony
and crashes. Indirectly, this result indicates that the techniques from the synchronous
world developed in Chlebus and Kowalski [2006a, 2006b] (for example), cannot be effi-
ciently brought to an asynchronous environment. Specifically, we show in Theorem 3.1
(Section 3) that any asynchronous gossip protocol—either deterministic, or against an
adaptive adversary—that tolerates f faults has either �(n + f 2) message complexity
or �( f (d + δ)) time complexity. Notice that the trivial gossip algorithm in which each
process sends its rumor directly to everyone else has �(n2) message complexity and
time complexity O(d + δ). Thus, if f = �(n), then any protocol that improves on the
trivial solution in message complexity requires time complexity linear in f , the number
of possible faults. This is in contrast to deterministic algorithms for synchronous net-
works that complete in only O(polylog(n)) rounds using only O(n polylog(n)) messages,
despite tolerating f = n − 1 failures [Chlebus and Kowalski 2006b].

In many ways, the lower bound is quite surprising, as epidemic-style algorithms
appear relatively timing independent. Underlying our lower bound proof lies a strategy
for the adversary to fight the spread of a rumor by adaptively choosing how to delay
computation and when to fail processes. The strategy forces the processes to keep
spreading the rumor for a long period of time, or to inflate the number of times the
rumor needs to be spread.

In fact, by manipulating the relative process speeds, the adversary can trick a large
number of processes into believing that the remaining processes have failed. These
remaining processes are now in a quandary: if they send too many messages, then the
message complexity is high; if they send too few messages, then the adversary can
isolate a set of processes, resulting in a slow completion time.

As a corollary of our lower bound (Corollary 3.2), we derive the inherent cost of
asynchrony in gossiping. Specifically, we contrast synchronous algorithms that know
a priori that d = δ = 1 to algorithms that are asynchronous, in which d and δ are
unknown to the algorithm. We show that in the worst case, if there are f possible
failures, then the most efficient asynchronous algorithm is either a factor of f slower
or uses a factor of 1 + f 2/n more messages than the most efficient synchronous
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Table I. Comparing Gossip Protocols under Adaptive (Ad) or Oblivious (Ob) Adversaries, for Synchronous
(Syn.) and Partially Synchronous (Part. Syn.) Models

Algorithm Time Messages Model Adv.

[Chlebus and Kowalski 2006b] O(polylog(n)) O(n polylog(n)) Syn. Ad
Trivial O(d + δ) �

(
n2)

Part. Syn. Ad
Lower Bound
(Section 3)

�
(

f (d + δ)
)

or �
(
n + f 2)

Part. Syn. Ad

EARS (Section 4) O( n
n− f log2 n(d + δ)) O(n log3 n(d + δ)) Part. Syn. Ob

SEARS (Section 5) O( n
ε(n− f ) (d + δ)) O( n2+ε

ε(n− f ) log n(d + δ)) Part. Syn. Ob

TEARS (Section 6) O(d + δ) O(n7/4 log2 n) Part. Syn. Ob

algorithm. When f = �(n), this implies a factor of �(n) loss either in time or message
complexity.

(2) An oblivious adversary cannot impose significant delays or large number of mes-
sages in asynchronous gossip. We proceed to ask whether efficient asynchronous gossip
is possible in the context of an oblivious adversary. We present three different algo-
rithms that encompass different trade-offs between time and message complexity. The
results are summarized in Table I.

The first algorithm (see Section 4), called EARS (Epidemic Asynchronous Ru-
mor Spreading), combines a traditional epidemic-style dissemination scheme with a
progress control scheme for collecting additional information; this additional data is
necessary to decide when to stop, hence avoiding unnecessary messages. We show that
this algorithm achieves O( n

n− f log2 n(d+ δ)) time complexity, and O(n log3 n(d+ δ)) mes-
sage complexity, with high probability. Thus, when f is a constant fraction of n, this
epidemic-style protocol is competitive with the best synchronous gossip protocols. (Note
that the results in Karp et al. [2000] refer to disseminating only a single rumor.)

Conducting the performance analysis of such an asynchronous algorithm is not
straightforward; it requires examining the information gathering (typically found in
synchronous gossip protocols), procedures like shooting (transmitting information from
a core to the entire set of processes), and information exchange among pairs of pro-
cesses. The technical difficulty in the analysis is related to evaluating the cost of these
procedures, with respect to the unknown parameters d and δ.

The second algorithm (see Section 5), called SEARS (Spamming Epidemic Asyn-
chronous Rumor Spreading), diverges from the pure “epidemic” style by sending more
messages during each gossip period. The resulting algorithm is an asynchronous
constant-time gossip algorithm with subquadratic message complexity. More specif-
ically, we show that for every constant ε < 1, and for f < n/2, algorithm SEARS has
time-complexity O( 1

ε
(d + δ)) and message-complexity O( 1

ε
n1+ε log n(d + δ)).

The third algorithm (see Section 6), called TEARS (Two-hop Epidemic Asynchronous
Rumor Spreading), solves a weaker variant of gossip, which we call majority gossip, in
which each process receives a majority of the rumors (rather than the rumor of each
correct process). The resulting protocol achieves, for f < n/2, asymptotically optimal
constant time O(d+δ), with respect to n, and strictly subquadratic message-complexity
O(n7/4 log2 n), with no dependence on d or δ.

(3) Applications to consensus. As an application of these message-efficient gossip pro-
tocols, we present three randomized asynchronous consensus protocols. Our consensus
algorithms derive from combining each of our gossip protocols with the Canetti-Rabin
framework (see Canetti and Rabin [1993], or Attiya and Welch [2004, Section 14.3]).
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Table II. Consensus Protocols under an Oblivious Adversary

Algorithm Time Messages

Canetti-Rabin [Canetti and Rabin 1993] O(d + δ) O(n2)

CR-EARS (Sections 3,6) O(log2 n(d + δ)) O(n log3 n(d + δ))

CR-SEARS (Sections 4,6) O( 1
ε
(d + δ)) O( 1

ε
n1+ε log n(d + δ))

CR-TEARS (Sections 5,6) O(d + δ) O(n7/4 log2 n)

(For consensus f < n/2 is assumed.) The resulting protocols have time and message-
complexity asymptotically equal to our gossip protocols (see Section 7). The results are
summarized in Table II; CR-G stands for the Canetti-Rabin algorithm when used with
gossip algorithm G.

We particularly highlight the third consensus protocol as it is the first asynchronous
randomized consensus algorithm that terminates in expected constant time (with re-
spect to n) and has strictly subquadradic message-complexity. This application also mo-
tivates the further study of majority gossip, a weakening of the classic gossip problem.

To contrast our consensus algorithms to existing randomized protocols, we note that
the first randomized protocol for consensus in asynchronous message-passing systems
was given by Ben-Or [1983]; it tolerates Byzantine failures and has exponential ex-
pected time complexity. Many other randomized algorithms have followed, considering
consensus under different adversarial assumptions and failure models. See the excel-
lent surveys of Chor and Dwork [1989], Aspnes [2003] and the book by Attiya and
Welch [2004]. To the best of our knowledge, none of the previous randomized con-
sensus algorithms designed for an asynchronous, message-passing network achieves
asymptotically subquadratic message-complexity.

Other Related Work
As recalled earlier, in a synchronous system, a single rumor can be disseminated
in O(log n) rounds using O(n log log n) messages, with high probability [Karp et al.
2000]. One could achieve a derandomized deterministic synchronous protocol, based on
expander graphs that approximate random interactions, that needs only O(polylog(n))
rounds of communication and only O(n polylog(n)) messages [Chlebus and Kowalski
2006b], even when up to n − 1 processes may crash. (See also Chlebus and Kowalski
[2006a] and Georgiou et al. [2005].) Perhaps unsurprisingly, globally synchronized
gossip periods are key to obtaining such good performance.

In the context of asynchronous networks, Verma and Ooi [2005] consider an environ-
ment that resembles a partially synchronous system, but assumes an a priori probabil-
ity distribution on the communication delay; moreover, there are no crash failures. The
work of Boyd et al. [2006] considers gossip protocols (in the context of aggregation) in an
“asynchronous” environment where local clocks are modeled as Poisson processes; there
are also no crash failures in this case. Our work fundamentally differs from Verma and
Ooi [2005] and Boyd et al. [2006] in that we consider a fully asynchronous environment
with crashes. More details on prior work on gossip in fault-prone distributed networks
can be found in Pelc [1996] and Hromkovic et al. [2005].

Recently, Censor Hillel and Shachnai [2010] considered a variation of gossip which
they call partial information spreading: instead of requiring each rumor to be received
by all n processes, they consider a relaxed requirement where only n/c processes need
to receive each rumor, and every process should receive n/c rumors, for some c ≥ 1.
The majority gossip we consider in the present work can be viewed as a special case
of partial spreading (when c ∈ (1, 2)). However, they consider partial spreading in a
fault-free synchronous environment.
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2. SYSTEM MODEL

Processes. We consider a system consisting of n message-passing, asynchronous,
crash-prone processes, each with a unique identifier in a fixed set [n] = {1, 2, . . . , n}.
Up to f < n processes may crash. Each process can communicate directly with all
other processes; messages are not corrupted or lost in transit. The model introduced
here is derived from the classical one in Dwork et al. [1988].

Timing. For the purpose of analysis, we assume that time proceeds in discrete steps.
At every time step, some arbitrary subset of the processes are scheduled to take a local
step. In each local step: (1) a process receives some subset of the messages sent to it;
(2) it performs some computation; and (3) it sends one (or more) message(s) to other
process(es).

For a given execution, we define d to be the maximum delivery time of any mes-
sage, and δ to be the maximum step length: if a nonfailed process p sends a message
m to process q, and if process q is scheduled for a local step at any time t′ ≥ t + d,
then process q receives message m no later than time t′; during any sequence of δ
time steps, each noncrashed process is scheduled at least once. Note that in the asyn-
chronous environment we consider, there might be no such bound d or δ in certain
executions.

An adversary determines the set of processes scheduled for each time step, and
the set of processes that crash during each time step (subject to the restriction that
throughout the entire execution, no more than f processes are crashed). We say that
an execution is controlled by a (d, δ)-adversary if d and δ are the maximum delivery
time and maximum step size, respectively, of that execution. An oblivious adversary
determines the schedule and failures in advance, while an adaptive adversary
schedules and fails processes dynamically in response to the algorithm’s behavior
(which may depend on random choices made by the processes during the execution of
the protocol up to this point).

Gossip. In this gossip problem, every process p begins with a rumor rp unknown to
the other processes, and maintains a collection of rumors that it has received. Initially,
the collection of rumors at process p holds only rumor rp, that is, p’s initial rumor.

A gossip protocol should satisfy the following three requirements:

(1) Rumor Gathering. Eventually, every correct process has added to its collection every
rumor that initiated at a correct process;

(2) Validity. If a rumor is added to a process’ collection, then it is the initial rumor for
some process; and

(3) Quiescence. Eventually, every process stops sending messages forever.

These properties are required to hold, regardless of the timing properties of the system,
regardless of d and δ, as long as every correct process continues to take steps and every
message is eventually delivered.

We say that gossip completes when each process has either crashed or both
(a) received the rumor of every correct process and also (b) stopped sending messages.
Note that it is impossible in an asynchronous system for a process to terminate, since a
process can never be certain that it has received every correct rumor. It can, however,
stop sending messages after some point.

Complexity Measures. For a given asynchronous algorithm A, we say that A has
time complexity T asynch

A (d, δ) and message complexity Masynch
A (d, δ) if for every f < n,

for every infinite execution of A with bounds d and δ, every correct process completes
by (expected) time T asynch

A (d, δ), and the (expected) number of point-to-point messages
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sent by all the processes combined is no more than Masynch
A (d, δ). Where it is clear

from the context, we simply use M and T to abbreviate Masynch
A (d, δ) and T asynch

A (d, δ).
For a synchronous algorithm Â, where by assumption d = δ = 1 and this is known a

priori by the algorithm, we define T synch
Â

and Msynch
Â

: for every f < n, for every infinite
execution of Â with bounds d = 1 and δ = 1, every correct process completes by
(expected) time T synch

Â
, and the (expected) number of point-to-point messages sent by

all the processes combined is no more than Msynch
Â

.
Note that we count only the number of messages sent, not the total number of bits

transmitted, which depends on the message size; this remains a subject for future
work.

3. THE COST OF ASYNCHRONY

We now show that no randomized gossip protocol can be both time and message effi-
cient with an adaptive adversary. This result also establishes the cost of asynchrony:
when there are f = �(n) possible failures, any asynchronous gossip algorithm, when
compared to an optimal synchronous algorithm, either suffers a slow-down of a factor
of �(n), or an inflation of message-complexity by a factor of �(n).

Underlying the lower bound lies a strategy for the adversary to fight the spreading of
a rumor by adaptively choosing how to delay communication and when to fail processes.
The main idea is to notice that there are two types of rumor spreading techniques:
either processes send many messages in an attempt to rapidly distribute their rumors,
or they rely on the cascading of messages in an attempt to send only a few. In the
former case, it is easy for the adversary to construct an execution in which the protocol
is not message-efficient. In the latter case, the adversary selects two processes that
do not communicate directly, and prevents them from communicating by selectively
failing processes that may attempt to help them. As a result, these two processes
cannot terminate and hence the algorithm is slow. In both cases, we use the eventual
quiescence of some of the processes to reduce the number of processes that fail in the
constructed execution.

THEOREM 3.1. For every asynchronous gossip algorithm A, there exists d, δ ≥ 1 and
an adaptive adversary that causes up to f < n failures, such that, in expectation, either:
(1) Masynch

A (d, δ) = �(n + f 2); or (2) T asynch
A (d, δ) = �( f (d + δ)).

PROOF. Consider some asynchronous gossip algorithm A. An �(n) lower bound for the
number of messages is straightforward as each rumor needs to be sent at least once.
Thus, we show that there is either a lower bound of �( f 2) on the number of messages
or a lower bound of �( f (d + δ)) on the time complexity.

We assume without loss of generality that f ≤ n/4; otherwise, the adversary proceeds
according to the same strategy described below with f = n/4. Partition the n processes
into two sets: S1, of size n − f/2 and S2, of size f/2.

The adversary allows the processes in set S1 to run the algorithm A with d = 1 and
δ = 1 (from the perspective of processes in S1) until every process in S1 completes the
protocol and ceases sending messages. Let t be the (global) time at which this occurs.
If t > f , then we are done: the adversary can design an indistinguishable execution in
which the processes in S2 fail at time 0, resulting in an execution in which d = δ = 1
and t = �( f (d + δ)). We thus assume for the remainder of this proof that t ≤ f .

Next, consider set S2. By choosing δ = f , the adversary can delay all the processes
in S2 until time t, scheduling only processes in S1 during this interval of time. Next,
for each process p ∈ S2, the adversary precomputes the result of process p acting as
follows: (i) receiving all the messages sent to it from S1, and then (ii) executing f/2 local
steps in isolation, that is, during which p receives no other messages from any other
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Fig. 1. Illustration of the construction in Theorem 3.1.

process (i.e., processes in S2). The adversary “simulates” this hypothetical scenario to
determine what would happen if such a schedule were chosen.

Since the behavior of p is probabilistic, this “precomputation” yields a distribution
over the set of messages sent by p during these f/2 steps. We say that p is promiscuous
if, in expectation, p sends at least f/32 messages during the f/2 (isolated) local steps.
Let P ⊆ S2 denote the set of promiscuous processes.

There are now two cases to consider depending on number of promiscuous processes
in S2. If there are at least f/4 promiscuous processes (i.e., |P| ≥ f/4), then we construct
an execution in which M(d, δ) = �( f 2). Otherwise (i.e., |P| < f/4), we construct an
execution in which T (d, δ) = �( f (d + δ)).

Case 1. |P| ≥ f/4. Assume there are at least f/4 promiscuous processes. Then, after
time t, the adversary schedules all of the processes in S2 in each of the following f/2 time
steps (i.e., δ = 1 from the perspective of these processes in S2). The adversary ensures
that none of the messages sent during these steps are delivered, that is, d ≥ f/2 + 1.
Thus, the f/4 promiscuous processes send, in expectation, f/32 messages each (and
receive no messages), resulting in an expected message complexity Masynch

A (d, δ) =
�( f 2), as desired. Notice that in this case, the adversary does not fail any processes.

Case 2. |P| < f/4. Assume that fewer than f/4 processes are promiscuous. Let
S = S2 \ P (the set of nonpromiscuous processes), and let ν = |S|. The adversary
proceeds to identify two nonpromiscuous processes that have a constant probability of
not communicating with each other; all other processes in S2 are failed. (See Figure 1
for an illustration.)

In order to identify two such nonpromiscuous processes, for each nonpromiscuous
p ∈ S, we define the set N(p) to be the set of processes that p sends a message to with
probability smaller than 1/4 during f/2 (isolated) local steps. If p is nonpromiscuous,
then the expected number of messages sent by p is smaller than f/32. Thus, |N(p)| >
7 f/8: if not, then there exist (at least) (n−7 f/8) ≥ f/8 processes that p sends (at least)
one message with probability at least 1/4, implying that in expectation p sends at least
f/32 messages, resulting in a contradiction.

Also, notice that there are at least f/4 nonpromiscuous processes: by definition
ν = |S2|−|P|; by the way in which the partitions were chosen, |S2| = f/2; by assumption,
|P| < f/4; thus, we conclude that ν ≥ f/4.
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Next, for a given non-promiscuous p ∈ S2: since at most f/8 processes are not in
N(p), and since there are at least f/4 nonpromiscuous processes (i.e., ν ≥ f/4), we
conclude that there are at least ν/2 nonpromiscuous processes in N(p). Thus, for each
non-promiscuous p ∈ S2, there are at least ν/2 nonpromiscuous processes in S2 that
are sent a message by p with probability < 1/4.

We claim, then, that there exist two nonpromiscuous processes p, q ∈ S2 such that
q ∈ N(p) and p ∈ N(q): Consider the (logical) directed graph on ν nonpromiscuous
nodes in which there is an edge from p to q if q ∈ N(p). Since each p has at least ν/2
outgoing edges, there are a total of at least ν2/2 edges in the graph. However, there
are only

(
ν

2

) = ν(ν − 1)/2 pairs of nodes in the graph, implying that there must exist
a pair of nodes with edges in both directions, as required. Fix such a p and q for the
remainder of the proof.

The adversary fails all the nodes in S2 except p and q immediately at time t, prior
to taking any local steps. The adversary then executes p and q for f/2 local steps,
delivering all messages with delay 1, that is, d = 1. Since p and q have not coordinated
via previous messages, they choose to send their messages independently, and thus we
have established that with probability at least (1 − 1/4)(1 − 1/4) = 9/16, p does not
send a message to q and q does not send a message to p. The adversary fails every
other process in S1 to which p or q sends a message. (Notice that these processes in S1
are currently dormant, believing that the protocol has terminated; a message from p
or q might cause them to wake up, and hence the adversary fails them to prevent this.)
All other processes in S2 have already been failed, and hence no action is taken if p or
q sends one of them a message.

Since p and q are not promiscuous, each in expectation sends no more than f/32
messages. By Markov’s inequality, we conclude that each, with probability at least 3/4,
sends no more than f/8 messages. (Let X be the random variable for the number of
messages sent by p. Then, Pr(X ≥ f/8) ≤ f/32

f/8 = 1/4. Hence, Pr(X < f/8) > 3/4.) Thus,
since the processes are independent, with probability 9/16, the two processes p and q
together send at most f/4 messages, resulting in the total number of failed processes
being no more than 3 f/4−2 < 3 f/4 < f : f/4 processes in S1 and f/2−2 processes in S2.

Finally, using a union bound, we observe that p and q do not communicate with each
other, and do not send more than f/4 combined messages, with probability at least
(1−(7/16+7/16)) = 1/8. In this case, p and q cannot terminate during the f/2 (isolated)
local steps: they have not received each other’s rumors. Since, in this case, d = 1 and
each local step takes time δ, we conclude that p and q run for time at least (d+δ) f/2 with
probability at least 1/8. Thus, in expectation, T asynch

A (d, δ) = �( f (d+ δ)), as desired.

As a corollary, we consider the worst-case ratio of the cost of asynchronous and
synchronous algorithms. For a given asynchronous algorithm A, we define the time
and message cost-of-asynchrony (CoA) as follows:

T (A)CoA = max
d,δ

(
T asynch

A (d, δ)

minÂ T synch
Â

)

M(A)CoA = max
d,δ

(
Masynch

A (d, δ)

minÂ Msynch
Â

)
.

We conclude from Theorem 3.1 that there is an inherent cost to tolerating asynchrony.
In particular, the most efficient asynchronous gossip algorithms are significantly less
efficient than the most efficient synchronous gossip algorithms.
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COROLLARY 3.2 (COST OF ASYNCHRONY). For every asynchronous gossip algorithm A,
subject to an adaptive adversary, either:

T (A)CoA = �( f )
or

M(A)CoA = �(1 + f 2/n).

4. EFFICIENT EPIDEMIC GOSSIP

We have shown that in the context of an adaptive adversary, asynchronous gossip is
inherently inefficient. In this section, we focus on gossip in the context of an oblivious
adversary, and give an efficient asynchronous gossip protocol.

We begin in Section 4.1 by presenting an epidemic-style asynchronous gossip
algorithm, called EARS (Epidemic Asynchronous Rumor Spreading), that can tolerate
up to f < n failures. We then show in Section 4.2 that in the context of an oblivious ad-
versary, the algorithm is both time and message efficient, achieving O( n

n− f log2 n(d+δ))

time complexity and O(n log3 n(d + δ)) message complexity.

4.1. Algorithm EARS

The algorithm presented in this section is based on the well-known epidemic
paradigm, augmented to maintain and propagate additional information about the
ongoing progress in distributing the rumors. In each step, a process chooses a target
at random and sends it all the information that it has collected. This procedure is
devised to achieve three properties: (1) Gathering. After some period of time, every
rumor originating at a correct process is known to every process in a large core of
correct processes; (2) Shooting. Every so often, every rumor known to the large core is
sent to every other process in the system; and (3) Exchange. Every so often, every pair
of correct processes in the core exchange information about who has been shot. We re-
mark that similar techniques of gathering&exchange followed by shooting&exchange
were used in for example, Chlebus and Kowalski [2006a], however, they were used in a
fully synchronized context where switching between specific activities was scheduled
to specific rounds; in our work, these techniques needed to be appended with more
adaptive mechanisms to cope with the asynchrony of the system.

Overview. At a high level, the algorithm works as follows: Whenever a process p is
scheduled, it randomly chooses a process q and sends it a message containing all the
rumors previously known to p. At this point, p records the fact that q has been informed
of this set of rumors. This information regarding which processes have been informed of
which rumors is also attached to every message. When a process p discovers that every
other process in the system has already been informed of every rumor that it knows
about, then it enters a shut-down phase. During the shut-down phase, which continues
for �( n

n− f log n) iterations, the process p continues to behave in the normal fashion,
processing incoming messages and sending messages to randomly chosen processes.
During this shut-down phase, p propagates to the other processes the fact that every
process has already been informed. If the process completes �( n

n− f log n) consecutive
shut-down iterations, then it becomes quiescent and stops sending messages. If at
any time, either during the shut-down phase or after becoming quiescent, process p
discovers a new rumor that some process has not been informed of, then it exits the
shut-down/quiescent mode and continues as before.

Details. In more detail, the algorithm proceeds as follows. (Its pseudocode is presented
in Figure 2.) Each process p maintains a set V (p) containing all the rumors known
to p. Initially V (p) contains only p’s initial rumor. Each process also maintains an
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Fig. 2. The Epidemic-style gossip algorithm EARS, stated for process p; rp denotes the rumor of p. Every
time p is scheduled to take a step, it executes one iteration of the main loop.

informed-list I(p) which contains pairs of rumors and processes: when (r, q) ∈ I(p),
this implies that p knows that rumor r has been sent to process q by some process.

In each local step, a process sends a message containing V (p) and I(p) to a process q
chosen uniformly at random from [n]. Process p then adds all pairs (r, q), for r ∈ V (p),
to the informed-list I(p). This implies that p can guarantee that q will eventually
be informed of every rumor in V (p). When process q receives a message from p, it
updates its local sets V (q) and I(q), taking the union of the existing sets with the sets
sent in the message.

Let L(p) be the set of processes that p cannot determine (via I(p)) whether they have
been sent every rumor in V (p), that is, L(p) = {q : ∃r ∈ V (p), (r, q) /∈ I(p)}. When L(p)
is empty for process p, then every rumor known to p has been sent to every process.

Notice, however, that processes may be both added and removed from L(p) as the
execution progresses. For example, initially process p only knows about its own rumor
rp. Consider an execution in which it does not receive any messages for a very long
time. During that extended period of time, process p sends rp to every other process
in the system. At this point, L(p) = ∅: process p does not know of any rumor that has
not yet been propagated to everyone. However, as soon as process p receives a message
from some process q, it will learn of rumor rq. Rumor rq, however, may not yet have
been sent to all processes. At this point, process p will add to L(p) every process that
may not yet have received rq.

Journal of the ACM, Vol. 60, No. 2, Article 11, Publication date: April 2013.



11:12 Ch. Georgiou et al.

When L(p) = ∅, process p begins the shut-down phase. That is, if L(p) = ∅, then
p increments a counter sleep cnt; otherwise, the counter sleep cnt is reset to zero (ef-
fectively canceling the shut-down phase). If the sleep cnt reaches �( n

n− f log n), then
process p becomes quiescent, that is, it ceases to send messages. Notice this only hap-
pens if there are �( n

n− f log n) consecutive iterations in which L(p) = ∅. During this
period where 0 < sleep cnt < �( n

n− f log n), we say that p is in shut-down mode. When
sleep cnt ≥ �( n

n− f log n), we say that p is quiescent.
During the shut-down phase, p continues as before, receiving messages from other

processes and sending messages to randomly chosen processes. (The shut-down phase
is long enough to ensure that p distributes its informed-list I(p) to the other processes
in the system.) If, during the shut-down phase, p receives a new rumor that has not
yet been sent to some process, that is, if L(p) becomes nonempty, then p “aborts” the
shut-down phase, resetting sleep cnt to zero.

In the same way, even after p becomes quiescent and stops sending messages, it
continues to receive and process messages from other processes that are still awake.
Again, if p receives a new rumor that has not yet been sent to some process, i.e., if L(p)
becomes nonempty, then p awakens and resumes the normal epidemic process until
L(p) becomes empty again, that is, sleep cnt is reset to zero.

Discussion. Notice that this protocol would continue to work in the context of an
adaptive adversary, however, it would be extremely inefficient. Specifically, every cor-
rect process will eventually be informed of every rumor initiated by a correct process, as
a process only goes quiescent if it has evidence that its rumor has been sent to everyone.
If every message is eventually delivered, then the gossip protocol still behaves correctly.
Unfortunately, an adaptive adversary can induce extremely poor performance. For ex-
ample, assume that the adversary targets a specific process p and fails every process
q that is sent a message by p. By doing this, the adversary can ensure that p has
to send �( f ) messages and the gossip protocol cannot complete for �( f (d + δ)) steps,
where d = 1. Given the lower bound in Section 3, this poor performance in the face of
an adaptive adversary is to be expected.

4.2. Analysis of Algorithm EARS

In this section, we analyze algorithm EARS (see Section 4.1), showing that it has time
complexity O( n

n− f log2 n(d + δ)) and message complexity O(n log3 n(d + δ)), with high
probability, under an oblivious adversary.

Fix a (d, δ)-adversary, and some adversarial scheduling of the epidemic gossip
algorithm for n processes and f < n failures. (Since the adversary is oblivious, this
schedule is fixed prior to the random choices being made.)

Recall that when a process enters the shut-down phase of the protocol, it continues for
�( n

n− f log n) further steps before becoming quiescent. Assume that the hidden constant
is equal to 32c, for some constant c. Throughout the analysis, we assume that c and n
are sufficiently large.

Overview. We begin with a high-level overview of the analysis. First, we divide the
execution into epochs such that at most a constant fraction of the processes fail in each
epoch. We argue that there is some epoch i in which: (i) there are approximately n/2i

processes that have not yet failed, and (ii) each nonfailed process sends �(2i log2 n)
messages. (See Lemma 4.2 and Lemma 4.3.) We define the core A to be the set of
approximately n/2i processes that survive epoch i. Notice that every correct process is,
obviously, a member of the core.

Journal of the ACM, Vol. 60, No. 2, Article 11, Publication date: April 2013.



Asynchronous Gossip 11:13

At this point, we divide epoch i into seven stages of (approximately) equal length,
that is, each process takes �(2i log2 n) steps in each stage. Fix some process p that is
a member of the core. We argue (in Lemma 4.4) that everything known to p at the
beginning of a stage is successfully gossiped to every other member of the core by
the end of that stage. This occurs via the standard epidemic gossip process; the only
difficulty lies in coping with processes that may already have become quiescent.

From this, we conclude that at the end of the second stage, every rumor that is known
to any one nonfailed process is known to every process in the core (Lemma 4.5). This
follows from the fact that by the end of stage 1, every such rumor is known to at least one
member of the core, and hence by the end of the second stage, it is known to all members
of the core. Notice that this shows not just that every rumor initiated by a correct
process is known to the core; to ensure that the shut-down process operates correctly,
we need to ensure that every extant rumor (whether it was initiated at a correct or a
failed process) is known to every member of the core. After the end of stage 2, no member
of the core learns of a new rumor, and hence once a member of the core begins the shut-
down phase, it continues to become irrevocably quiescent (as per Observation 4.6).

Next, we show that by the end of stage 3, every rumor known collectively by the core
has been sent to every process in the system (see Lemma 4.7). This follows, roughly from
the fact that there are �(n/2i) processes each sending �(2i log2 n) random messages,
which is sufficient to ensure that every process is sent at least one message.

From this we conclude that, by the end of stage 4, at least one process has entered
the shut-down phase, as during the phase, processes in the core exchange information
on which messages were sent to which processes (see Lemma 4.8). Once a process
q receives a message from a process p that is already in the shut-down phase, then
process q also enters the shut-down phase, as it learns from p that all the rumors
have been sent to all the processes. Hence, by the end of stage 5, every process in the
core irrevocably enters the shut-down phase (see Lemma 4.10), and no process exits
this phase in the next two stages. Hence, we conclude (see Theorem 4.11) that every
process is irrevocably quiescent (or failed) by the end of stage 7. The time and message
complexity bounds then follow immediately. We now proceed to present the proof in
more detail.

Epochs. We begin the analysis by partitioning the execution into epochs such that
in each epoch, only a constant fraction of the processes fail. Formally, we have the
following definition.

Definition 4.1. Epoch 0 begins at time 0. Epoch i ends (and epoch i + 1 begins) at
the earliest time step such that there are only n/2i+1 non-crashed processes.

We note the following two facts regarding the epoch structure.

LEMMA 4.2. There are at most log n
n− f epochs in an execution.

PROOF. This follows immediately from the fact that at most f processes crash in an
execution.

LEMMA 4.3. By time (7c) n
n− f log2 n(d + δ), there is some epoch i of length at least

(7c)2i log2 n(d + δ).
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PROOF. Assume this is not the case. Then, the sum of the first log( n
n− f ) epoch lengths

is bounded by:

log n
n− f∑

i=0

(7c) · 2i log2 n(d + δ) ≤ (7c)
n

n − f
log2 n(d + δ).

Thus, time (7c) n
n− f log2 n(d + δ) is part of some epoch > log n

n− f , contradicting the fact
that there are only log n

n− f epochs.

Fix i to be the first epoch of length at least (7c)2i log2 n(d + δ). For the remainder of
the proof, we restrict our attention to this epoch. Let A be the set of processes that are
non-faulty through the end of epoch i. By assumption, we have n/2i+1 < |A| ≤ n/2i.
Intuitively, processes in Agather all the rumors in the system and ensure that they are
sent out to all other processes before the epoch completes. By exchanging information
amongst themselves, they determine when it is safe to shut-down.

Partition epoch i into 7 consecutive stages, each of length c · 2i log2 n(d + δ) (ex-
cept possibly the last stage, which may be longer, as the epoch may be longer than
(7c)2i log2 n(d + δ)). Since each process is scheduled for a local step every time δ, we
can be certain that each process in A takes at least c · 2i log n local steps in each stage.
We argue that by the end of the first stage, every rumor that needs to be collected is
known to some process in A, and by the end of the second stage, every process in A has
learned every such rumor. In the third stage, we show that every rumor has been sent
to every process not in A. By the end of the fourth stage, some process has entered the
shut-down phase, and in the remaining stages, every process goes to sleep.

Exchanging Information. We begin by showing that in each stage of epoch i, all the
processes in i exchange information. This resembles the analysis of typical epidemic-
style algorithms, with the additional complication that some processes may be sleeping.
The basic idea is to show that the set of processes aware of a particular rumor continue
to double, until a constant fraction of the processes have learned the rumor; at this
point, the rumor is rapidly distributed to the remaining processes.

LEMMA 4.4 (EXCHANGE PROPERTY). For every process p ∈ A and for every stage j of
epoch i:

(1) All rumors known by process p at the beginning of stage j are known to all other
processes in A at the end of stage j, with probability at least 1 − 1/nc/2.

(2) If no process in A is asleep by the end of stage j, then all pairs known to p in I(p) at
the beginning of stage j are known to all other processes in A at the end of stage j,
with probability at least 1 − 1/nc/2.

PROOF. For the purpose of showing Part (1), define (p, j)-data to be the set of rumors
known by process p at the beginning of stage j; for the purpose of showing Part (2),
define it to be the set of rumors and pairs known by process p at the beginning of stage
j. We estimate the probability that a given (p, j)-data is known to a process in A at the
end of stage j. (We indicate in-line where the proof for Parts (1) and (2) differ.)

First, we deal with the special case for Part (1) where p sleeps at some point prior to
the last d + δ steps of stage j. This implies that L(p) = ∅ at that point, which implies
that every rumor in V (p) has already been sent to every process. In this case, within
d+ δ steps of process p sleeping, every process has received (p, j)-data. Assume for the
remainder of the proof that p is awake throughout stage j, with the possible exception
of the final d + δ time. (Notice that this holds by assumption for Part (2).)
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We now define sets Bk, for 0 ≤ k ≤ log |A|. Each set contains processes that know
(p, j)-data, and as before, if any process in Bk is asleep (after it has learned (p, j)-
data), then we know that (p, j)-data has already been sent to every process, and we are
done (within (d + δ) time). Thus we assume that each of the processes in Bk is awake
throughout stage j, with the possible exception of the final d + δ time. (Again, notice
that this holds by assumption for Part (2).)

Let B0 contain processes in Athat know (p, j)-data at the beginning of stage j. Define
Bk+1 recursively as follows, having defined sets B0, . . . , Bk: let Bk+1 contain processes
in A \ (B0 ∪ · · · ∪ Bk) that were sent a message from some process q in Bk in the first
c · 2i log n − 1 local steps after q has received (p, j)-data. Note that each process does
not sleep for at least c · n

n− f log n ≥ c · 2i log n local steps after receiving any new rumor
or pair, since it has to complete the shutdown phase before it can sleep; therefore the
sets are well defined. Let bk = |B0| + · · · + |Bk|, for 0 ≤ k ≤ log |A|. We show that the
sizes of sets Bk grow at least exponentially in k, with high probability, until Bk reaches
size |A|/8; finally, we show that blog |A| = |A|.

We now show that as long as |Bk| ≤ |A|/8, then |Bk+1| ≥ 2|Bk|. Notice that, trivially,
1 ≤ |B0| ≤ b0 ≤ 2|B0|. Assume, inductively, that 2k ≤ |Bk| ≤ bk ≤ 2|Bk|, and assume
that |Bk| ≤ |A|/8. We calculate a bound on the probability that |Bk+1| ≤ 2|Bk|.

Specifically, this can only be the case if there is some set S of size at most 2|Bk| such
that every message sent by a process in B0 ∪ · · · ∪ Bk is sent either to this set S or
to another process in B0 ∪ · · · ∪ Bk or to a process not in A. For a given set S of 2|Bk|
processes in A\ (B0 ∪ · · · ∪ Bk), the probability that some message is sent to a process
either: in the set S or in B0 ∪ · · · ∪ Bk or not in A is at most

1 − |A| − bk − 2|Bk|
n

.

If |Bk+1| ≤ 2|Bk|, then all messages must satisfy this condition for some set S. The
probability that this is true for all messages sent by processes in Bk is:

≤
(

1 − |A| − bk − 2|Bk|
n

)|Bk|·(c·2i log n−1)

≤
(

1 − |A|/2
n

)|Bk|·c·2i−1 log n

≤
(

1 − 1
2i+2

)|Bk|·c·2i−1 log n

≤ e−(c|Bk|/8) log n.

There are at most
(|A|−bk

2|Bk|
)

such sets S of size 2|Bk|, and:(|A| − bk

2|Bk|
)

≤
(

e(|A| − bk)
2|Bk|

)2|Bk|

≤ e(2|Bk|+1) ln |A|.

Taking a union bound over all such sets, we see that the probability that any set S
satisfies this condition is at most 1/nc, implying that with high probability there is no
such set S, and hence |Bk+1| > 2|Bk|. (Throughout, we assume sufficiently large n and
c.) Note that for any fixed sequence of sets B0, . . . , Bk satisfying condition 2k ≤ |Bk| ≤
bk ≤ 2|Bk| ≤ |A|/8, this estimation of the conditional probability that |Bk+1| ≥ 2|Bk|
holds.
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When |Bk+1| > 2|Bk|, we conclude the following facts: (i) since |Bk| ≥ 2k, this implies
that Bk+1 ≥ 2k+1; and (ii) since bk ≤ 2|Bk|, this implies that bk+1 = bk + |Bk+1| ≤ 2|Bk| +
|Bk+1| ≤ 2|Bk+1|. Putting these facts together, we maintain the inductive invariant:
2k+1 ≤ |Bk+1| ≤ bk+1 ≤ 2|Bk+1|.

Now consider the case where |Bk| > |A|/8. The probability that some process q ∈
A\ (B0 ∪ · · · ∪ Bk) is not in Bk+1 is at most

(|A| − bk) ·
(

1 − 1
n

)|Bk|·(c·2i log n−1)

≤ |A| ·
(

1 − 1
n

)(n/2i+4)·c·2i−1 log n

≤ n · e−(c/32) log n ≤ 1/nc.

As in the previous case, this derivation holds for any fixed sequence of sets B0, . . . , Bk
satisfying condition |Bk| > |A|/8.

Putting the two cases together, the probability that, for every 1 ≤ k ≤ log |A|, either:

2k ≤ |Bk| ≤ bk ≤ 2|Bk| ≤ |A|/4
or

(|Bk| > |A|/8) and (bk+1 = |A|)
or

bk = |A|
is at least

1 − log |A| · 1/nc ≥ 1 − 1/nc−1,

which in particular yields that blog |A| = |A| with probability at least 1 − 1/nc−1. Finally
note that each process in B0 ∪ · · · ∪ Blog |A|, which is equal to A, starts having (p, j)-data
no later than time (log |A|·c ·2i log n−1)(d+δ) ≤ c(2i log2 n−1)(d+δ) after the beginning
of stage j, that is, each process learns (p, j)-data at some point during stage j prior to
the last d + δ time.

Since there are at most |A| different (p, j)-data, the probability that each of them is
known to each process in A by time c2i log2 n(d + δ) after the beginning of stage j is at
least 1 − |A| · 1/nc−1 ≥ 1 − 1/nc−2 ≥ 1 − 1/nc/2.

Gathering the Rumors. We now argue that eventually, every process in A learns every
possible rumor by the end of stage 2. This will ensure that after the end of stage 2, any
process that begins the shut-down phase will continue to become irrevocably quiescent.

Let Vall be the set of rumors that are eventually learned by some process in A,
that is, some process that does not fail by the end of the epoch. (Notice that every
correct process always “learns” its own rumor, hence Vall includes the rumor of every
correct process.) When every correct process has learned Vall, the gossip can safely
complete. Since Acontains all the correct processes, this lemma shows that the protocol
successfully distributes the rumors to every correct process. (It remains afterward to
bound the time and message complexity, that is, to show that eventually processes stop
sending messages.) This lemma follows by counting the number of messages sent by
any correct process in stage 1, ensuring that each rumor is received by some process in
A; we then apply Lemma 4.4.

LEMMA 4.5. At the end of stage 2, for every nonfailed process p ∈ A, Vall ⊆ V (p)
with probability at least (1 − 1/nc/4).

PROOF. Fix some rumor r ∈ Vall; we first calculate the probability that rumor r is
not known to a process p ∈ A at the end of stage 1.

Notice that during any interval of length (d + δ), at least one non-failed process that
knows r must be scheduled, and either (1) sleep, knowing rumor r, or (2) succeed in
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transmitting rumor r: otherwise, if all such processes fail, then no process knowing
rumor r remains non-failed after the interval, and the rumor r is not in Vall. In the
former case, if some sleeping process knows rumor r, then it knows that rumor r has
been sent to every process; within time d+ δ, every process q in A receives rumor r and
adds it to V (q).

Consider the complementary case where no correct process that knows rumor r is
asleep. During stage 1, there are at least c · 2i log n messages sent (one during each
interval of d + δ), each to a randomly chosen process in [n]. Since |A| ≥ n/2i+1, the
probability that none of these messages reaches some process in the set A is:(

1 − |A|
n

)c·2i log n

≤
(

1 − 1
2i+1

)c·2i log n

≤ e−c log n/2 ≤ 1/nc/2.

Since rumor r is known to some process in A by the end of stage 1 with probability
(1 − 1/nc/2), and since every process in A stays non-failed until the end of phase i, by
Lemma 4.4, Part (1), applied to stage 2, we conclude that rumor r is known to every
process in A by the end of stage 2 with probability (1 − 2/nc/2).

Since there are at most n rumors in Vall, by a union bound, we conclude that with
probability (1 − 2/nc/2−1) ≥ (1 − 1/nc/4), each rumor in Vall is known to each process
in A by the end of stage 2.

Shut-Down and Quiescence. The key remaining portion of the analysis is to show that
every process sleeps by the end of epoch i and never awakes thereafter. We begin with
an observation: since, with high probability, every process in A has already learned
every rumor in Vall by the end of stage 2—by Lemma 4.5 and by the definition of
Vall—it follows that no process in A learns any new rumors at any later point in the
execution. As a result, if process q /∈ L(p) (for some p) after stage 2, then every rumor
in V (p) has already been sent to q; thus, since no new rumors are added to V (p), we
can concluding the following.

Observation 4.6. For all p ∈ A, no process is added back to the list L(p) after the
end of stage 2 with probability at least 1 − 1/nc/4.

We can now proceed to show that by the end of stage 3, every rumor in Vall has
been sent to every process in [n]. In particular, we show that for every process q, there
is some process p ∈ A that knows that q has been r-informed for every r ∈ Vall, that
is, knows that q has been sent rumor r. This follows simply by counting the number of
messages sent by (non-sleeping) processes in A, and concluding that they are sufficient
to inform every process in the system.

LEMMA 4.7 (SHOOTING PROPERTY). For every process q ∈ [n], there exists some process
p ∈ A such that at the end of stage 3 in epoch i, q /∈ L(p) with probability at least
1 − 1/nc/8.

PROOF. By Lemma 4.5, we know that with probability at least 1 − 1/nc/4, every
process in A knows all the rumors in Vallby the beginning of stage 3. Assume that
this is the case. It suffices then, to show that for every q, there exists some p ∈ A such
that q /∈ L(p) at some point during stage 3: by Observation 4.6, no process is added to
L(p) after the beginning of stage 3.

Also, notice that if any process p ∈ A enters the shut-down phase during stage 3,
then we are done: in this case, L(p) = ∅. Assume, then, that no process in A enters the
shut-down phase during stage 3.

Consider some process q that is in every list L(p), for p ∈ A, in the beginning of
stage 3. Since each process in A sends c · 2i log n messages at random during stage 3,
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the conditional probability that no process in Asends a message to q in stage 3 of epoch
i is at most (

1 − 1
n

)|A|·c·2i log n

≤
(

1 − 1
n

)(c/2)·n log n

≤ e−(c/2) log n ≤ 1/nc/2.

When q is sent a message by some p ∈ A, (q, r) is added to I(p), and as a result, q /∈ L(p),
as required. There are at most n different processes q, therefore the probability that
some process q ∈ L(p) for all p ∈ A is at most n · 1/nc/2 = 1/nc/2−1.

Finally, we calculate the probability of failure: with probability 1/nc/4 Lemma 4.5
fails; with probability 1/nc/2−1 some process q is not sent a message during stage 3;
thus, the probability of failure is at most 1/nc/8.

It is therefore easy to see that by the end of stage 4, as a result of Lemma 4.7 and
Lemma 4.4, at least one process has entered the shut-down phase.

LEMMA 4.8 (SINGLE SHUT-DOWN PROPERTY). By the end of stage 4, at least one process
p ∈ A has L(p) = ∅ and has thus entered the shut-down phase with probability at least
1 − 1/nc/16.

PROOF. Assume for the sake of contradiction that this is not the case, that is, with
some probability greater than 1/nc/16 every process p ∈ A has L(p) 
= ∅ at the end of
stage 4.

First, notice that this holds throughout stage 4, with probability at least (1 − 1/nc/4),
by Observation 4.6. Fix some p ∈ A, and assume that q ∈ L(p). By Lemma 4.7, we
know that there exists some process p′ ∈ A such that at the end of stage 3, q /∈ L(p′)
with probability at least 1 − 1/nc/8. By Lemma 4.4, Part (2), we know that p receives
every pair known by process p′ by the end of stage 4 with probability at least 1−1/nc/2.
The union of these events occurs with probability at least (1 − 1/nc/16), contradicting
the assumption that q ∈ L(p) with probability greater than 1/nc/16.

Finally, we need to show that once one process enters the shut-down phase, soon
thereafter every process enters the shut-down phase (after which all the processes
sleep and the gossip algorithm completes).

We say that a process enters the shut-down phase irrevocably if it never exits the
shut-down phase again. Notice that as soon as a process p in A receives a shut-down
message from another process q in A that has already irrevocably entered the shut-
down phase, process q enters the shut-down phase itself, as it learns that every process
has been informed of every rumor (and since q has entered the shut-down phase
irrevocably, it has already learned every relevant rumor).

Observation 4.9. If a correct process in A receives a shut-down message at time t in
epoch i sent by another process in A that has irrevocably entered the shut-down phase,
then it irrevocably enters the shut-down phase no later than time t.

Moreover, any process that enters the shut-down phase after stage 2 enters the shut-
down phase irrevocably. We thus argue that if one process enters the shut-down phase
by the end of stage 4, then every process enters the shut-down phase by the end of
stage 5.

This follows from an argument similar to Lemma 4.4: Since information is rapidly
exchanged among processes in A, as soon as one process enters the shut-down phase
irrevocably, other processes will soon learn about this and also enter the shut-down
phase irrevocably. The argument is slightly complicated by the fact that processes stop
sending messages after they complete their shut-down phases. Hence, more care is
needed to ensure that there are a sufficient number of shut-down messages to exchange
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the necessary shut-down information. (Even so, the argument is somewhat analogous
to Lemma 4.4, in that we maintain increasing sized sets of processes that have entered
the shut-down phase, but not yet gone to sleep.) We now conclude the following.

LEMMA 4.10 (ALL SHUT-DOWN PROPERTY). Every process enters the shut-down phase
irrevocably by the end of stage 5 with probability at least (1 − 1/nc/128).

PROOF. Let t be the time at which the first process in A enters the shut-down phase
irrevocably. We show that every process in A is asleep by time t + 2c n

n− f log2 n(d + δ)
with probability at least (1 − 1/nc/64). Since, by Lemma 4.8, with probability at least
1 − 1/nc/16 some process enters the shut-down phase by the end of stage 4, and since
by Observation 4.6 that process enters the shut-down irrevocably with probability at
least 1 − 1/nc/4, this is sufficient to prove our claim.

Let t be the time at which the first process in A enters the shut-down phase irrevo-
cably. We maintain a set S ⊆ A of processes that have either entered the shut-down
phase irrevocably or have been sent a shut-down message at a time at least t by a
process that has already entered the shut-down phase irrevocably: prior to time t, the
set S is empty; whenever a process in A enters the shut-down phase irrevocably, it is
added to S; whenever a process in A is sent a shut-down message by a process that has
irrevocably entered the shut-down phase, it is added to S.

We now define the following intervals of time, each of which is associated with a
set of processes that are added to S during that interval: interval 0 begins at time t;
interval k ends (and interval k + 1 begins) at the earliest time such that either (a) 2k

processes not already associated with a previous interval have been added to S during
the interval k, or (b) |S| ≥ |A|/16 processes. In the former case, we associate the first
2k processes added to S during interval k with interval k. (Each of the first |A|/16
processes added to S is associated with exactly one interval such that no interval has
assigned more than 2k processes.)

We argue that interval k ends no later than time t + k · c · (n/(n − f )) log n(d + δ).
This claim clearly holds for interval 0 which ends at time t (when at least one process
is added to S). Consider an interval k, and assume that interval k ends at time tk. We
proceed by induction to consider interval k + 1, and argue that it completes no later
than time t′ = tk + c · (n/(n − f )) log n(d + δ).

We know that during interval k, 2k new processes are added to S. Each of these
2k processes sends c(n/(n − f )) log n ≥ c · 2i log n shut-down messages by time t′. If
|S| ≥ |A|/16 by time t′, then interval k + 1 completes (by definition (b) of a interval)
and the claim holds. Specifically, if 2k ≥ |A|/16, then we can immediately conclude that
|S| ≥ |A|/16, and hence all intervals complete. Hereafter, we assume that k is such that
2k < |A|/16, and that |S| < |A|/16 at time t′.

We argue that during interval k, there are more than 2k + 2k+1 new processes added
to S, that is, enough processes to conclude interval k + 1 (even if some of these new
processes are counted in interval k). If this is not the case, then there is some set of
2k + 2k+1 processes in A\ S such that every shut-down message sent by a process in S
during interval k is sent to one of those processes, or to a process already in S, or to a
process not in A. For a given set of size 2k + 2k+1, the probability of this is at most:(

1 − |A| − |S| − 2k − 2k+1

n

)c·2k·2i log n

≤
(

1 − |A|/4
n

)c·2k·2i log n

≤ e−c·2k−3 log n.
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There are at most
( |A|

2k+2k+1

)
such sets of size 2k + 2k+1, and:( |A|
2k + 2k+1

)
≤

(
e|A|

2k + 2k+1

)2k+2k+1

≤ e(2k+2k+1) log |A|.

We thus conclude, by a union bound, that this occurs for some set of size 2k + 2k+1 with
probability at most 1/nc/64. Since at most 2k processes are associated with interval k,
there are at least 2k+1 additional processes to associate with interval k+1, we conclude
that interval k + 1 completes by time tk+1 = t′ with probability at least (1 − 1/nc/64),
which completes the inductive claim. Since there are at most log n intervals, this holds
for all intervals with probability at least (1 − log n/nc/64).

Finally, consider the largest interval k where |S| < |A|/16 at the end of interval k.
We know that k ≥ log(|A|/16) − 1; otherwise, interval k + 1 ends at latest when there
are |A|/32 processes in S, contradicting our choice of k. Thus, since k ≥ log(|A|/16) − 1,
we conclude that during interval k, there are at least |A|/32 new processes added to S.

Each of these processes added to S sends at least c · 2i log n shut-down messages,
resulting in a total of at least (c/64)n log n (independent) shut-down messages sent
during interval k. Thus with high probability, a shut-down message is sent to every
process by the end of interval k. In particular, for a given process, it receives one
of these shut-down messages with probability at least (1 − 1/nc/64), and hence every
process receives one of these shut-down messages with probability at least (1−n/nc/64).

Thus, within time d+ δ past the end of interval k, each process receives a shut-down
message with high probability. Since a process sleeps no later than time c · (n/(n −
f )) log n(d + δ) after it receives a shut-down message (since it receives no new rumors
after receiving a message from a process that has irrevocably entered the shut-down
phase), we conclude that every process sleeps with high probability by time:

t + c · n
n − f

log2 n(d + δ) + (d + δ) + c · n
n − f

log n(d + δ).

Thus, we conclude that with probability at least (1 − (log n + n)/nc/64) ≥ (1 − 1/nc/128),
every process in A is asleep by time t + 2c n

n− f log2 n(d + δ). This implies that every
process enters the shut-down phase irrevocably by the end of stage 5, as desired.

We now conclude with the main theorem.

THEOREM 4.11. Algorithm EARS completes gossip with time complexity O( n
n− f

log2 n(d + δ)) and with message complexity O(n log3 n(d + δ)), with high probability,
subject to an oblivious adversary.

PROOF. By Lemma 4.10, we know that every process has entered the shut-down
phase by the end of stage 5 with probability at least (1 − 1/nc/128). By an observation
analogous to Observation 4.6, no process exits the shut-down phase in the next two
stages with probability at least (1 − 1/nc/4), and hence by the end of stage 7 every
process has gone to sleep with probability at least (1 − 1/nc/128 − 1/nc/4). This ensures
that processes eventually sleep by the end of phase i.

By Lemma 4.5, we know that every rumor in Vall has been learned by every process
in A, and thus the gossip protocol succeeds in distributing the rumor of every correct
process to every other correct process with probability at least (1 − 1/nc/4).

Epoch i ends no later than time O( n
n− f log2 n(d + δ)), resulting in the desired time

complexity with high probability.
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We now calculate the number of messages sent. In each epoch k < i, there are at
most n/2k nonfailed processes. Since epoch i is the first “long” epoch, we know that
each process that is alive at the beginning of epoch k sends at most O(2k log2 n(d + δ))
messages in epoch k. Thus, in epoch k, non-failed processes send at most O(n log2 n(d+δ))
messages. The accounting for epoch i is similar: by the time every process sleeps at the
end of stage 7, each of the at most O(n/2i) processes has sent at most O(2i log2 n(d+ δ))
messages, resulting in O(n log2 n(d+ δ)) messages in epoch i. As we already showed, no
messages are sent after stage 7 of epoch i, or in any epoch after i. Since there are at
most log n epochs, the result follows.

5. CONSTANT-TIME GOSSIP

In this section, we present a gossip algorithm, called SEARS (Spamming Epidemic Asyn-
chronous Rumor Spreading), that achieves time complexity O( n/ε

n− f (d+δ)), and message

complexity O( n2+ε

ε(n− f ) log n(d + δ)), for any constant ε < 1. The result is a constant-time
gossip protocol with subquadratic message complexity, in the case where d and δ are
constant, and n − f = �(n).

5.1. Algorithm SEARS

Algorithm SEARS is a variant of EARS in which each process sends a larger number of
messages in each step. In this section, we describe SEARS.

Overview. Recall that in EARS, every time a process p is scheduled, it chooses one
random process q and sends it some information (specifically the sets V and I). In the
SEARS protocol, instead of choosing a single process q, process p chooses a large set of
processes to send messages to. This ensures that the rumors spread more quickly, and
hence the protocol terminates in constant time. In addition, it is no longer necessary
to perform a long shut-down phase; instead, as soon as sleep cnt reaches 2, the process
can enter quiescence (i.e., it stops sending messages).

Some additional care is needed to ensure that processes quiesce quickly. Recall that
whenever a process learns a new rumor, it must wake up and propagate that rumor.
For a rumor that is initiated at a correct process, we can show that in O((1/ε) n

n− f (d+δ))
time, every process that is still alive has received every correct rumor. Hence, a rumor
that is initiated at a correct process cannot waken a quiescent process after this point.
However, a rumor that is initiated at a failing process may create problems: with some
luck, the adversary may prevent such a rumor from reaching everyone sufficiently
quickly, and hence it may improperly awaken quiescent processes.

To cope with this issues, we associate a counter with each rumor. The process that
initiates a rumor r always associates counter value 0 with that rumor. Every other
process that has received rumor r increments the counter associated with rumor r
in every local step. This ensures that every time a rumor is sent by some process p,
its counter is at least one larger than the minimum value of the counter associated
with rumor r that had previously been received by p. When the counter exceeds some
designated threshold τ , it is ignored and no longer awakens quiescent processes. In
this way, the counter bounds the number of times a rumor is propagated, and hence
prevents a failed rumor from preventing quiescence.

At the same time, the threshold is set high enough that it does not prevent the rumor
from spreading to everyone. Specifically, we choose τ = �((1/ε) n

n− f ). This ensures that,
with high probability, the rumor of any correct process is delivered to everyone before
the counter expires.
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It might happen that, with some polynomially small probability, the dissemination
fails to complete before the counter expires. Recall, however, that the process that
initiates rumor r never increments the counter associated with r, and hence only
quiesces when it is certain that every process has received r. Hence, if the process that
initiated r is correct, we can be sure that in every execution, rumor r is disseminated.

In a nutshell, algorithm SEARS differs from algorithm EARS as follows.

—In each local step, each process sends messages to �(nε log n) processes chosen at
random.

—When sleep cnt > 1, no messages are sent.
—Set V now includes pairs of rumors and counters. If a rumor’s counter reaches a

certain threshold τ , then this rumor is no longer disseminated.

Detailed Description. We now proceed to describe the algorithm in more detail. (Its
pseudocode is given in Figure 3.) Each process p maintains a set of V (p) of (rumor,
counter) pairs. It also maintains a set I(p) of informed (rumor, process) pairs. If
(q, r) ∈ I(p), that means that p has proof that rumor r has been previously sent
to process q. Initially, V (p) contains the pair (rp, 0), that is, process p’s rumor with
counter initialized to 0; I(p) initially contains only (p, rp).

Intuitively, the set L(p) is the set of processes that have not yet been sent some non-
expired rumor, to the best of process p’s knowledge. Formally, the set L(p) is defined
as the set of processes q for which there is a rumor r such that (r, c) ∈ V (p) for c < τ
and there is no (q, r) in I(p). (See line 27 where L(p) is updated.) Notice that a rumor
whose counter is larger than the threshold τ is considered expired, and hence has no
impact on the set L(p). As we show later in the analysis, rumors initiated at processes
that fail by time n

n− f (d + δ) expire by time (1 + τ/ n
n− f ) n

n− f (d + δ). As we choose τ to be
�((1/ε) n

n− f ), then such rumors expire by time O((1/ε) n
n− f (d + δ)).

As in algorithm EARS, each process maintains a counter sleep cnt, initialized to 0.
Once sleep cnt becomes equal to 2 at a process p, then p enters quiescence.

We now describe the operation of the algorithm in more detail. Conceptually,
we divided each scheduled step into three parts: (i) processing incoming messages,
(ii) computation, and (iii) sending gossip messages.

First, a process p delivers any message it has received (lines 8–19). Every non-
expired rumor received is added to V (p) (lines 10–18). If r is a new rumor that is
previously unknown to p, then it is simply added together with the associated counter
to V (p), and the sleep counter is reset (line 18). If p has already received rumor r (i.e., if
(r, ·) ∈ V (p)), then p adopts the minimum of the new counter value and its old counter
value. In addition, if process p has already begun to quiesce, even though rumor r
has not yet been spread to everyone, then in this case too, the sleep counter is reset
(lines 12–13). Notice that this latter case can only occur if the counter associated with
rumor r at p has expired, while the counter in the message received has not. Finally,
regardless of what was previously stated process p merges the set I from the message
with its own set I(p).

Second, process p updates its state. It increments the counter associated with every
rumor (lines 23–25), and recomputes set L(p) (line 27). Notice that a process p does not
increment the rumor of the process associated with its own rumor. Finally, if L(p) is
empty, that is, every process has been sent every nonexpired rumor, then p begins the
process of quiescence, incrementing its sleep counter (lines 28–30). If process p incre-
ments its sleep counter in two consecutive local steps, then it stops sending messages.

Third, process p sends its gossip messages. If the sleep counter is at most 1, then
process p sends �(nε log n) messages to processes chosen uniformly at random from [n]
(lines 35–39). This gossip message contains both the set V (p) and I(p). At the same
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Fig. 3. The Epidemic-style gossip algorithm SEARS, stated for process p; rp denotes the rumor of p. Every time
p is scheduled to take a step, it executes one iteration of the main loop. Suitable threshold τ = �((1/ε) n

n− f )
and constant k > 0 are set as in the analysis, c.f., Section 5.2.
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time, it records in its set I(p) that each of these rumors was sent to the designated
processes.

5.2. Analysis of Algorithm SEARS

In this section, we analyze the performance of SEARS. We begin with an overview of the
analysis.

Overview. For the purpose of this overview, consider some particular rumor r that
is initiated by some correct process p. The analysis of SEARS can be divided into three
parts.

In the first part, we show that rumor r reaches a constant fraction of the processes
within O( n

n− f (1/ε)(d + δ)) time. Observe that within O( n
n− f (d + δ)) time, process p has

sent its rumor to �(nε) correct processes, with high probability (or all correct processes,
if �(nε) > n − f ). In every further O( n

n− f (d + δ)) time, the number of correct processes
that know r grows by a factor of nε until, after no more than n

n− f (1/ε) steps, a constant
fraction of the correct processes know r, with high probability. This follows from a
straightforward analysis of the epidemic spreading. At this point, within a further
O( n

n− f (d + δ)) time, these correct processes have, collectively, sent r to every process
in the system, with high probability. This follows from the fact that, at this point, we
have a large number of processes each sending a large number of messages containing
r. Notice that the threshold τ is sufficiently large so that, during this procedure, no
process will quiesce due to the counter expiring; if any process that knows r increments
its sleep counter, it is only because every process has already been sent r. This part of
the analysis is described in Lemma 5.3.

The second part of the analysis shows that within a further O( n
n− f (1/ε)(d + δ)) time,

every process knows that rumor r was sent to every other process. This is a sufficient
condition to allow processes to increment their sleep counter and quiesce. The analysis
now is much like in the first part: the fact that rumor r has been sent to every process
spreads epidemically through the system. Unlike in the first part of the analysis,
processes are becoming quiescent during this procedure, and some care is needed to
ensure that, despite this, the epidemic spreading succeeds. This part of the analysis is
described in Lemma 5.4.

The third part of the analysis shows that every correct process enters quiescence.
We have already shown that good rumors cannot prevent quiescence. We also show
in Lemma 5.2 that “bad” rumors (rumors initiated by processes that fail within the
first n

n− f (d+ δ) time) cannot prevent quiescence, as their counters expire. Putting these
facts together yields the final theorem. The final time and message complexities follow
immediately. We now present the analysis in more detail.

Balls-in-Bins Fact. We begin with a simple fact regarding balls-and-bins that is
useful in the analysis. Imagine that you have some set of n bins, some n − f of which
are “marked” red. (These represent the correct processes.) These are the bins we are
trying to hit. Assume we are throwing some �( n

n− f mlog n) balls, uniformly at random,
into these bins, where m ≤ (n − f )/2. These balls represent the messages containing
a rumor. We show that, with high probability, at least m of the red bins receive at
least one ball. This allows us to relate the number of correct processes that receive a
rumor to the number of messages sent, and follows by straightforward (and standard)
calculation.

FACT 5.1. Assume you have 16c n
n− f mlog n balls thrown uniformly at random into n

bins, out of which n − f are red, where c is a sufficiently large constant and 1 ≤ m ≤
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(n − f )/2. Then the probability that fewer than m red bins have at least one ball is at
most 1/nc.

PROOF. We first argue that at least 8mlog n balls land in red bins, with high
probability. Notice that each ball independently lands in a red bin with probabil-
ity (n − f )/n, and hence in expectation, there are 16cmlog n balls that land in red
bins. Thus, if we consider the Chernoff bound where for any constant 0 < ζ < 1,
Pr(X < (1 − ζ )16cmlog n) < e−(16cmlog n)ζ 2/2, and set ζ = 1/2, we conclude that the prob-
ability that there are fewer than 8cmlog n balls in red bins is < e−16cmlog n/8 < 1/n2c.

Let ρ be the number of red bins that receive at least one ball. Assuming that there
are at least 8cmlog n balls that land in red bins, we calculate the probability that ρ ≤ m.

Pr(ρ ≤ m) ≤
(

m
n − f

)8cmlog n (
n − f

m

)
≤ em

(
m

n − f

)8cmlog n−m

≤ em
(

1
2

)4cmlog (n)

≤
(

1
2

)2cmlog (n)

≤ 1/n2c.

Taking a union bound over the two randomized claims, the result follows.

Terminology. For the remainder of the proof, fix a (d, δ)-adversary, and some
adversarial scheduling of the algorithm for n processes and f failures. For the purpose
of the analysis we divide the execution into stages, each of length n

n− f (d + δ). We say
that a rumor rp is good if the process p that begin with rumor rp does not fail prior to
the end of the first stage. Every rumor that is not good is bad.

Bad Rumors. We begin the analysis by dispensing with the bad rumors. Since the
initiating process of a bad rumor fails by the end of the first stage, we know that from
that point on, the counter associated with a bad rumor is strictly increasing. Hence
eventually, no process q adds a bad rumor to its set V (q), and the bad rumors cease to
delay quiescence.

LEMMA 5.2. Let r be a bad rumor. After the end of stage 1 + τ/ n
n− f : if (r, c) ∈ V (p) for

some process p, then c ≥ τ .

PROOF. We proceed by induction over intervals of time of length (d + δ). Consider
some time t after the end of the first stage. Assume that at time t, counter value c is
the minimum value of any counter associated with rumor r for all nonfailed processes
and for all messages in-transit.

Observe that any process taking a step between time t and t + (d + δ) receives
only messages containing counter values at least c associated with rumor r. Moreover,
observe that every process taking a step between time t and t + (d + δ) increments the
counter associated with rumor r: the only process q that does not increment the counter
associated with rumor r is the process q that began with rumor r initially; however
since rumor r is a bad rumor, this process q has failed prior to time t. Similarly, every
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message that is sent between time t and t + (d+ δ), if it contains rumor r, has a counter
value of at least c + 1, as messages are sent after the counter is incremented.

Finally, notice that every process takes at least one step between time t and time
t + (d + δ), and every message in-transit is delivered between time t and t + (d + δ).
Thus, we conclude that by time t + (d + δ), c + 1 is the minimum value of any counter
associated with rumor r for all nonfailed processes and for all messages in-transit.
Hence, by time n

n− f (d+ δ) + τ (d+ δ), we conclude that c ≥ τ . From this, the claim of the
lemma follows immediately.

From this lemma it follows that if τ is appropriately chosen to be �((1/ε) n
n− f ), then

bad rumors expire by the end of stage 2/ε. (We will need this property later in the
analysis, c.f., Corollary 5.5.) More specifically, we choose τ such that 1 + τ/ n

n− f = 2/ε.
Note that τ > (1/ε) n

n− f .
Spreading the Rumors. Consider a process p. Let r = rp be the rumor of p. Assume

that r is a good rumor, that is, p does not fail before the end of the first stage. The
first lemma states that by the end of stage 1

ε
, a message containing rumor r has been

sent to every process, with high probability. This lemma proceeds by showing that in
every stage, the number of processes that know r increases by a factor of nε, up until a
constant fraction of the processes know r. At that point, the rumor is quickly spread to
everyone in the following stage.

LEMMA 5.3. Assume p is a correct process at the end of stage 1 and r = rp is the
rumor initiated by p. For every process q ∈ [n]: with high probability, by the end of stage
1
ε
, a message containing rumor r has been sent to q, where the message contains rumor

r with associated counter c < τ . Moreover, at some point prior to the end of stage 1
ε
, there

is some correct process w with (r, q) ∈ I(w) and w has counter c ≤ (1/ε) n
n− f associated

with rumor r.

PROOF. Consider rumor r = rp initiated by a process p that is correct at the end of
stage 1, and any process q. We begin by defining some terminology. Define process p to
be the one and only stage 0 process. Fix a constant k such that in each step, a process
sends knε log n messages (see line 35 in Figure 3).

We say that the first k n
n− f nε log n messages sent by process p are stage 1 messages.

Notice that all stage 1 messages are sent and received by the end of stage 1, since
process p takes at least n

n− f local steps in stage 1, and hence sends at least k n
n− f nε log n

messages during the first stage (since it sends knε log n messages at each local step,
and by assumption, p does not fail prior to the end of stage 1). We say that all correct
processes that receive a stage 1 message are stage 1 processes. (Note that some messages
that are sent in stage 1 may not be stage 1 messages.)

We inductively define stage j messages and stage j processes. Let z be a (correct)
stage j − 1 process, that is, a correct process that receives a stage j − 1 message
(which contains rumor r). Then the next k n

n− f nε log n messages sent by process z after
receiving its first stage j − 1 message are called stage j messages. We say that every
correct process that receives a stage j message is a stage j process. Observe that every
stage j message is sent and also received (as long as the receiver is not faulty) by the
end of stage j (since each stage includes at least n

n− f local steps, and every stage j − 1
message sent to a correct process is received by the beginning of stage j). Note that by
definition, every stage j process is correct.

As an aside, observe that a given message may be a stage j message for more than
one value of j, and a process may be a stage j process for more than one value of j.
(For example, consider a process that receives both a stage 3 and a stage 5 message
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in the same local step.) Thus, different stages are not necessarily independent. All the
messages sent within a given stage, however, are independent.

Notice that every stage j message has rumor r associated with a counter value
c ≤ j · n

n− f . This follows by a simple induction argument: It holds immediately for all
stage 1 messages, as the counter is only incremented once per local step (in which
knε log n messages are sent). If process z is a stage j − 1 process, then it receives rumor
r with counter at most ( j − 1) n

n− f , by induction, and hence during the following n
n− f

steps, the counter remains at most j · n
n− f , as all of the stage j messages sent by process

z are sent in the following n
n− f local steps.

From this, we conclude that if a process z receives a stage j messages for j ≤ 1/ε,
then process z adds rumor r accompanied by the counter to set V (z) by the end of stage
j. This conclusion follows from the fact that τ > (1/ε) n

n− f , and that a rumor is added
as long as the counter does not exceed τ .

We next verify the number of stage j messages that a stage j − 1 process sends.
If a process z is not quiescent, that is, it has not incremented its sleep counter, then
it sends knε log n messages in each step. On the other hand, a quiescent process may
send no further messages. Assume process z is a stage j − 1 process for some j ≤ 1/ε,
and assume z does not send k n

n− f nε log n stage j messages. In this case, it must have
incremented its sleep counter. However, we know that upon receiving its stage j − 1
message, process z has a counter c ≤ ( j − 1) n

n− f < τ associated with rumor r. Thus, it
must be the case that L(z) = ∅, and we conclude that rumor r has been sent to every
process in [n], from which the lemma follows. (Notice that z is correct, since it is a stage
j process, and it has (r, q) ∈ I(z) for every process q.) For the remainder of the proof, we
assume that every stage j process sends all �( n

n− f nε log n) of its stage j + 1 messages.
We now show that for every process q ∈ [n]: with high probability, a stage j message

is sent to q for some j ≤ 1/ε. Thus, every correct process q is a stage j process for some
j ≤ 1/ε. We proceed by arguing that the number of stage j processes grows by a factor
of nε with each increasing stage, until there are sufficiently many stage j + 1 messages
to ensure that rumor r is sent to all n processes, with high probability.

We analyze the number of stage j processes, for j ≥ 1, as follows. Assume, inductively,
that there are at least n( j−1)ε stage j −1 processes. (Note that this is trivially true when
j = 1.) As already discussed above, each stage j − 1 process sends k n

n− f nε log n stage j
messages (as otherwise we are done), that is, there are a total of �(k n

n− f njε log n) stage
j messages. In this case, each of these stage j messages is sent to a process chosen
independently and uniformly at random. There are the following two cases to consider:

(1) First, assume that njε >
n− f

2 . In this case, for an appropriate choice of k, there are
�(n log n) stage j messages sent to randomly chosen processes. The probability that
some process is not hit by one of these messages is (1 − 1/n)�(n log n) ≤ e−�(log n), that
is, every process is sent a message containing rumor r with high probability.

(2) We now consider the case where njε ≤ n− f
2 . By Fact 5.1, for a sufficiently large k,

we conclude that at least njε correct processes receive stage j messages with high
probability. That is, there are at least njε stage j processes, with high probability.

This inductive argument, taking a union bound over all the stages, shows that for
all stages where njε ≤ (n − f )/2, there are njε stage j processes; it also implies that if
j is the smallest stage where njε > (n− f )/2, then with high probability, every process
(whether correct or faulty) is sent a stage j message. It is easy to see that this last
stage j is no later than stage 1/ε, since nε 1

ε = n > (n − f )/2.
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Finally, since a stage j process is correct (by definition), this implies that for every
process q, there is some correct process w that has (r, q) ∈ I(w).

From Lemma 5.3, we can conclude that by the end of stage 1/ε, every correct rumor
has been sent to every process. For processes to quiesce, however, we also have to
show that every process knows that every process has been sent every rumor. This
is complicated by the fact that processes, after quiescing, stop sending messages and
hence stop propagating the necessary information. In Lemma 5.4, we show that by the
end of stage 2/ε, every process has received messages informing it that every other
process has received every rumor. The analysis is quite similar to Lemma 5.3, with a
few additional details to cope with the ongoing quiescence.

LEMMA 5.4. Assume p is a correct process at the end of stage 1 and r = rp is the
rumor initiated by p. For every process q ∈ [n]: with high probability, by the end of stage
2
ε
, for every process u ∈ [n] a message has been sent to u from some correct process w,

where (r, q) ∈ I(w).

PROOF. Consider rumor r = rp initiated by a process p that is correct at the end of
stage 1, and any process q. Recall we have already shown in Lemma 5.3 that at some
point prior to the end of stage 1

ε
, there is some correct process z with (r, q) ∈ I(z) and

z has counter c ≤ (1/ε) n
n− f associated with rumor r. Fix z to be this process for the

remainder of the proof. Fix a constant k such that in each step, a process sends knε log n
messages (see line 35 in Figure 3).

We now define some terminology. We define z to be the one and only stage 0 process.
We say that the first k n

n− f nε log n messages sent by process z immediately after adding
(r, q) to I(z) are stage 1 messages. We say that all correct processes that receive a stage
1 message are stage 1 processes.

We inductively define stage j messages and stage j processes. Let u be a stage j − 1
process, that is, a correct process that receives a stage j−1 message. There are two cases
to consider. First, if u has sleep counter less than 2 after receiving and processing the
stage j − 1 message, then we designate the next k n

n− f nε log n messages sent by process
u after receiving its first stage j − 1 message as stage j messages. The second case
occurs when u has already incremented its sleep counter past 1 and does not reset
it upon receiving the stage j − 1 message; in this case we designate the k n

n− f nε log n
messages sent by process u in the local step in which it incremented its sleep counter
as stage j messages. In either case, we say that every correct process that receives a
stage j message is a stage j process.

Observe that every stage j process, upon receiving and process a stage j message,
has associated with rumor r counter value c ≤ (1/ε) n

n− f + j · n
n− f , as z initially has

counter at most (1/ε) n
n− f immediately after adding (r, q) to I(z).

We now argue that every stage j message contains the fact that q has been sent the
rumor r. This can be seen as follows: Assume inductively that a stage j − 1 process
receives a stage j − 1 message that contains the fact that q has been sent rumor r.
In the first case where the process has not yet incremented its sleep counter, then
it follows immediately that all future messages, including the stage j messages that
it sends, include the information that q has been sent rumor r. In the second case,
consider the messages sent when the sleep counter was incremented. If, at the time,
the process had not already received rumor r, then it would have reset the sleep counter
(and reawakened) on (or prior to) receiving the stage j − 1 message (see line 18). Since
this did not happen, we conclude that the process knew rumor r when it incremented
its sleep counter. Moreover, it only incremented its sleep counter because the set L
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was empty, that is, either: (i) the counter associated with r had passed the threshold
or (ii) it knew that the rumor r had been sent to every process in [n] (including q). If
only condition (i) was true, then again the process would have reset its sleep counter
on or prior to receiving the stage j − 1 message (see lines 12–13). Hence, we conclude
that when the process incremented its sleep counter, it already knew that rumor r had
been send to process q, and the stage j messages that it sent on incrementing its sleep
counter included this fact.

We now analyze the number of stage j processes for j ≥ 1. Assume, inductively,
that there are at least n( j−1)ε stage j − 1 processes, and hence �(k n

n− f njε log n) stage j
messages. (Notice that this is trivially true for j = 1.) Each of these stage j messages is
sent to a process chosen independently and uniformly at random. There are two cases
to consider.

(1) First, assume that njε >
n− f

2 . In this case, for an appropriate choice of k, there are
�(n log n) stage j messages sent to randomly chosen processes. The probability that
some process is not hit by one of these messages is (1 − 1/n)�(n log n) ≤ e−�(log n), i.e.,
every process is sent a stage j message, with high probability.

(2) We now consider the case where njε ≤ n− f
2 . By Fact 5.1, for sufficiently large k,

we conclude that at least njε correct processes receive stage j messages with high
probability. That is, there are at least njε stage j processes, with high probability.

This inductive argument, taking a union bound over all the stages, shows that for all
stages where njε ≤ (n − f )/2, there are njε stage j processes; it also implies that if j
is the smallest stage where njε > (n − f )/2, then with high probability, every process
(whether correct or faulty) is sent a stage j message containing the fact that process q
has already been sent rumor r (with high probability). Since every stage 1/ε message
is received by the end of stage 2/ε, we conclude that the lemma holds.

Quiescence. It remains to argue that every correct process reaches quiescence. By the
end of stage 2/ε, we have shown that no correct process learns a new rumor, and hence
no correct process adds a process to its list L.

COROLLARY 5.5. For all processes p that are correct at the end of stage 2/ε, list
L(p) = ∅ after the end of stage 2

ε
, with high probability.

PROOF. Consider a process p that is correct at the end of stage 2/ε. By definition,
process q is in list L(p) if there exists some pair (r, c) ∈ V (p) where c < τ and (r, q) /∈
I(p). Assume, first, that r is a bad rumor. Then, by Lemma 5.2, we conclude that if
(r, c) ∈ V (p), then c ≥ τ . Assume, then, that r is a good rumor. Then, by Lemma 5.4,
we know that p was sent a message by the end of stage 2/ε where (r, q) ∈ I. Thus, we
know that (r, q) ∈ I(p). We conclude, then, that process q cannot be in list L(p) after
the end of stage 2/ε.

Finally, we conclude that every process is quiescent after stage 2/ε + 1.

LEMMA 5.6. By the end of stage 2
ε

+ 1, all processes are quiescent, with high proba-
bility.

PROOF. The result follows from Corollary 5.5, and the quiescence condition in
lines 27–30.

We now conclude with the main theorem.
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THEOREM 5.7. Algorithm SEARS solves the gossip problem with time complexity
O( 1

ε
( n

n− f )(d+ δ)) and message complexity O( n1+ε

ε
( n

n− f ) log n(d+ δ)), with high probability
under an oblivious adversary.

PROOF. We first argue that, with probability 1, every correct rumor is eventually
delivered to every correct process. This conclusion follows from the fact that the initiator
of rumor r never increments the counter associated with rumor r. Hence, the initiator
of rumor r, if it is correct, only quiesces when: for every process q ∈ [n], (r, q) ∈ I. That
is, it only quiesces when there is a proof that rumor r was sent to every process.

Next, we argue that every correct process eventually quiesces, with probability 1.
When combined with the previous observation, this implies that every correct rumor
is eventually delivered to every correct process. Assume for the sake of contradiction
that q is a correct process that never quiesces. In every step, q sends a message to a set
of randomly chosen processes. Thus, eventually, with probability 1, q sends a message
to every process in the system. At this point, it is either the case that q quiesces, or
q learns of a new rumor to propagate. This can happen at most n times, and hence
eventually q quiesces, with probability 1.

The time complexity follows from Lemma 5.6 and the fact that each stage takes
n

n− f · (d+ δ) time. The message complexity follows from the fact that in each stage, each
process sends at most O( n

n− f nε log n(d + δ)) messages, and there are n processes.

6. CONSTANT-TIME MAJORITY GOSSIP

The previous gossip protocols ensure that eventually every correct rumor is dissemi-
nated. However, for the purpose of various applications, including Consensus [Canetti
and Rabin 1993] and Do-All [Chlebus et al. 2002; Georgiou and Shvartsman 2008],
it suffices to require that each correct process receives only a majority of the rumors
(rather than receiving the rumor of each correct process). We refer to this weaker
version of gossip as majority gossip. By restricting our attention to the problem of
majority gossip, we devise a gossip protocol, called TEARS (Two-hop Epidemic Asyn-
chronous Rumor Spreading), that completes in O(d + δ) time with message complexity
O(n7/4 log2 n), with high probability. Notice that the message complexity does not
depend on d and δ, that is, it is strictly sub-quadratic. In order for majority gossip to be
feasible, we need to assume that f < n/2; otherwise, it is clearly impossible to receive
more than n/2 rumors.

6.1. Algorithm TEARS

We begin with on overview of the algorithm, and proceed to describe TEARS in more
detail.

Overview. The TEARS protocol consists of a two-hop dissemination. In the first stage,
each process initially sends its rumor to approximately �(

√
n log n) randomly chosen

processes. We refer to these as first-level messages, since they directly propagate a
rumor from its initiator to a selection of other processes.

In the second stage, every so often, each process upon receiving a sufficient number
of first-level messages, sends a set of second-level messages, forwarding all the rumors
it has received to approximately �(

√
n log n) randomly chosen processes.

The key to the TEARS algorithm is determining how often a process should send
second-level messages. If it sends second-level messages too often, then the message
complexity will grow too high. On the other hand, if it does not send enough second-level
messages, then it is possible that not enough rumors will be propagated.

There are two rules used to determine when to send second-level messages. Through-
out, a process counts the number of first-level messages it has received. When it has
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Fig. 4. Two-hop majority gossip algorithm TEARS, stated for process p; rp denotes the rumor of p.

received at least �((n1/2 − n1/4) log n) first-level messages, it sends a set of second-level
messages every time it receives a new first-level message, up until it has received
�((n1/2 +n1/4) log n) first-level messages. This ensures that a large chunk of rumors are
all forwarded.

Second, from that point on, every time it receives a further �(n1/4 log n) new first-
level messages, it again sends a set of second-level messages. This ensures that if a
large number of rumors trickle in late, they also get forwarded.

Together, this two-stage dissemination ensures that every process receives a
majority of the rumors, with high probability.

Details. We describe algorithm TEARS from the point of view of a process p. (Its pseu-
docode is presented in Figure 4.) We define three additional parameters to simplify
the description of the algorithm: a = 4

√
n log n, μ = a

2 , and κ = 32n1/4 log n.1 Addi-
tionally, each process p selects locally two subsets of processes �1(p),�2(p) in such a
way that every other process q, where q 
= p, is included in set �1(p) (or in set �2(p),
respectively) with probability a/n, independently at random (lines 6–7).

1We also assume that n is sufficiently large; otherwise the asymptotic complexities are all constants.
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In the first local step, each process p sends a message, containing its own rumor
and a flag raised up, to all processes in �1(p) (lines 13–14). Recall that we call such
messages first-level messages. After receiving μ − κ first-level messages, each process
p sends a second-level message, that is, a message consisting of all gathered rumors, to
all processes in set �2(p) (lines 21–22). It does the same after receiving μ+ j first-level
messages, for every −κ < j < κ (lines 21–22), and later after receiving μ+ iκ first-level
messages, for every positive integer i (lines 23–24).

Notice that unlike algorithm EARS, a process does not send a message in every step;
instead, a process sends messages based on how many first-level message have been
received.

6.2. Analysis of Algorithm TEARS

In this section, we analyze algorithm TEARS. Recall the assumption on n to be sufficiently
large; we use it implicitly in the analysis.2

Overview. We begin the analysis by briefly examining the message complexity (Corol-
lary 6.2). This rapidly yields the desired time and message complexity bounds. The main
part of the analysis focuses on the correctness of the algorithm, that is, showing that
each process receives a majority of the rumors. This analysis is divided into two parts.

First, we show that almost a majority of the rumors are sent to every process in the
system, specifically, at least n/2 − 2n

log n of the rumors are well distributed (Lemmas 6.4
and 6.5). Each of these rumors is sent to �(

√
n) correct processes that then redistribute

them with second level messages. This analysis requires analyzing the likelihood that
the adversary’s obliviously chosen schedule leads to too many messages arriving too
late, that is, after a process has already sent all of its second-level messages.

Second, we show that each correct process receives sufficiently many of the other ru-
mors in the system (Lemma 6.6). Here we analyze rumors that are not well distributed,
that is, which arrive too late at too many of the processes in the system. We show that
even so, sufficiently many of these rumors are forwarded to ensure majority gossip.

We then conclude the analysis in Theorem 6.7, summing up the message and time
complexities.

Message Complexity. First, we estimate the number of messages sent by processes
in a single step. This follows by bounding the size of the sets �1 and �2, and is crucial
for estimating the overall message complexity.

LEMMA 6.1. For every process p:

(i) a − κ ≤ �1(p) ≤ a + κ
(ii) a − κ ≤ �2(p) ≤ a + κ

with probability at least 1 − 1/n3.

PROOF. Fix a process p and i ∈ {1, 2}. Let Z be the size of �i(p). Note that E
[
Z
] =

n(a/n) = a. Let ζ = κ/a. Then:

Pr(Z < (1 − ζ )a) ≤ e−aζ 2/2 ≤ e−κ2/(2a) ≤ 1/n5,

2It follows from the analysis that n needs to be large. This is because our goal is to simplify the analysis
without optimizing the constants. In practice, we believe that the threshold value on n could be much
smaller, however showing the result for small n would require more case-sensitive technical analysis, which
we wanted to avoid for clarity of our main arguments.
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as κ2/(2a) > 5 log n. This proves that with high probability Pr(Z ≥ a − κ). For the other
direction, noting that ζ < 1:

Pr(Z > (1 + ζ )a) ≤ e−aζ 2/3 ≤ e−κ2/(3a) ≤ 1/n5,

as κ2/(3a) > 5 log n. This proves that with high probability, Pr(Z ≤ a + κ). Taking a
union bound over the 2n possible values of p and i yields the result.

This yields, as an immediate corollary, a bound on the number of messages each
process sends in each step.

COROLLARY 6.2. Every process sends at most a + κ point-to-point messages in each
step, with probability at least 1 − 1/n3.

PROOF. When process p decides to send messages in a step, it is either to all pro-
cesses in �1(p) or to all processes in �2(p). The result then follows immediately from
Lemma 6.1.

Using Corollary 6.2 and a direct inspection of the pseudocode, one can easily argue
about the time and message complexities of algorithm TEARS; see the proof of Theo-
rem 6.7 at the end of this section for details. The nontrivial part of the analysis is to
prove the correctness of algorithm TEARS.

Correctness. We perform this analysis in four steps, captured by the four following
lemmas, each proved to hold with high probability. Before formulating and proving
these technical results, we introduce useful terminology.

For each process p, let Sp consist of the local steps of process p before sending its
last second-level message; we call it the safe epoch of process p. Note that process p
may receive some first-level messages after that time, but it does not re-send these
in any second-level message. We say that the rumor of process q is safe in process p
if: p receives the rumor of q in some first-level message that is delivered in the safe
period of p. If a rumor is safe (and, by definition, received) in at least

√
n nonfaulty

processes, then we call such rumor well distributed. Note that the property of “being
safe” is conditioned on receiving the rumor by the process, while the property of being
“well distributed” guarantees that the rumor has been actually received by at least

√
n

processes in their safe periods. The intuition behind a safe rumor is that it will be sent
by the process to a set of a random processes (in expectation) as a part of some second-
level message, unless the process becomes faulty; therefore, a rumor that is destined
to be in the safe epoch, if it is sent, in sufficiently many (random) processes will also
be sent to, and received by an a/n fraction of them, on average, and thus—by being
received in safe periods and so forwarded in second-level messages—it will eventually
reach every nonfaulty process.

Next we describe a behavior of the oblivious adversary against our algorithm. Recall
that the adversary determines a priori when processes take local steps and the latencies
of possible point-to-point messages, under the restriction that the schedule satisfies d
and δ. Let L be the (conceptual) set of available point-to-point links generated by
each process taking its first local step, that is, (q, p) ∈ L if the adversarial schedule
satisfies the following: (1) q is allowed by the adversary to take a local step prior to
failing, and (2) if q chooses to send a message to p in its first local step, then the
message is delivered to p prior to p failing. Let Lp be the set of those links in L that
have destination p. According to the adversarial schedule, these links can be sorted
according to the scheduled time of delivery of messages, should they have been sent in
some processes’ first local step. More precisely, (q, p) is before (q′, p) in Lp if a message
sent by q to p in its first local step would arrive before a message sent by q′ to p in
its first local step, if q and q′ respectively should choose to send those two messages.
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Note that if p is nonfaulty, then n/2 < |Lp| ≤ n− 1, because a majority of processes are
non-faulty.

Let �p = max{min{|Lp|, n/2 + n
2aκ}, |Lp| − 2n

a κ}. We conceptually partition positions
on each list Lp, for a correct process p, into three categories: the first n/2 positions are
called left-secure positions, the ones between n/2+1 and �p are called right-secure, and
those bigger than �p are called insecure. Both left- and right-secure positions together
are called secure. We define the weight of process p (or its rumor) as the number of lists
Lq, for correct processes q, for which the rumor of p is in a secure position.

The first of the four technical results relates the notion that p is in a secure position
of Lq with the probability that p is safe in q. Specifically, if p is secure (i.e., it arrives
early enough in the list), then with high probability it is also safe (i.e., it is forwarded in
second-level messages). This relies critically on the fact that the adversary is oblivious,
that is, the adversary has to decide in advance where to schedule p in Lq.

LEMMA 6.3. If p is in a secure position of Lq (that is, p is in position at most �q on list
Lq), and if p sends a first-level message to q, and if q is not faulty, then the probability
that rumor of p is safe in q is at least 1 − 3/n4.

PROOF. Assume that p is in a secure position of Lq, that is, comes no later than
position �q, and it is received by process q. Observe that the rumor of p is safe in q if
q sends at least one second-level message and either of the following events occurs.

(i) There are at least κ first-level messages that arrive at process q after the message
from p. (This probability can be readily estimated when �q > n/2 + n

2aκ, that is,
�q = |Lq| − 2n

a κ.)
(ii) There are fewer than μ+κ first-level messages that arrive at q before the one from

p. (This probability can be readily estimated when n/2 < �q ≤ n/2 + n
2aκ.)

It follows directly from the pseudocode of the algorithm that in both cases, q sends a
set of second-level messages after receiving a message from p.

We first argue that q sends second-level messages at least once with probability at
least 1 − 1/n4.

CLAIM 1. Process q receives at least μ−κ first-level messages with probability at least
1 − 1/n4.

PROOF OF CLAIM. Let Z be the number of first-level messages received by q. Notice that
a process p′ sends a first-level message to process q with probability a/n and hence the
expected number of first-level messages received by q is a = 4

√
n log n. Therefore, since

first-level messages sent to q are mutually independent, we conclude by a Chernoff
bound: Pr(Z < a/2) ≤ e−a/8 ≤ n−4. Since μ = a/2, the claim follows.

We next argue that if �q > n/2 + n
2aκ, then event (i) occurs.

CLAIM 2. If �q > n/2 + n
2aκ, then there are at least κ first-level messages that arrive

at process q after the message from p, with probability at least 1 − 1/n4.

PROOF OF CLAIM. Assume �q > n/2 + n
2aκ, that is, �q = |Lq| − 2n

a κ. We want to
estimate the number of processes positioned among the last 2n

a κ elements of Lq that
send messages to q, as we can be sure that all such messages arrive after the message
from p (which is secure in q). Our goal is to show that there are at least κ such messages.

The probability that a process p′, which is positioned among the last 2n
a κ elements

in Lq, sends a first-level message to q is a/n. Let Z be the expected number of such
processes that send a message to q. Then, E

[
Z
] = 2κ = 64 4

√
n log n.
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Since the first-level messages sent to q by other process are mutually independent,
we conclude by a Chernoff bound: Pr(Z < κ) ≤ e−κ/4 ≤ n−4.

We now consider the second case where n/2 + 1 ≤ �q ≤ n/2 + n
2aκ. We show that the

probability of event (ii) is also at least 1 − 1
n4 .

CLAIM 3. If n/2 + 1 ≤ �q ≤ n/2 + n
2aκ, then there are fewer than μ + κ first-level

messages that arrive at process q before the message from p, with probability at least
1 − 1/n4.

PROOF OF CLAIM. First, if the position of p on list Lq is smaller than μ + κ, then the
claim follows immediately (with probability 1). Assume that this is not the case.

Let Z be the number of first-level messages that arrive at process q prior the first
level message from q. Recall that each process sends a message to q with probability
a/n. Since there are at least μ + κ processes in slots that process p, we know that
E

[
Z
] ≥ (a/n)(μ + κ) ≥ a2

2n (since μ = a/2).
We also know that p is in a secure position in q, and hence there are at most �q

processes that precede q in the list Lq. Hence, E
[
Z
] ≤ �q(a/n) ≤ (n/2 + n

2aκ)(a/n) ≤
μ + κ/2.

As previously mentioned, we note that first-level messages sent to q are mutually
independent, and so we calculate via a Chernoff bound: Pr(Z > (1 + α)E

[
Z
]
), where

α = μ+κ

E[Z] − 1. That is, (1 + α)E
[
Z
] = μ + κ. There are two cases to consider. If α ≤ 1, we

conclude that:

Pr(Z > μ + κ) ≤ e−E[Z]α2/3 ≤ e− (μ+κ−E[Z])2

3E[Z] ≤ e− κ2/4
3E[Z] ≤ e− κ2/4

3(μ+κ) ≤ e− κ2/4
3a ≤ 1/n4

because κ2/(12a) > 4 log n. Otherwise, if α > 1:

Pr(Z > μ + κ) ≤
(

eα

(1 + α)1+α

)E[Z]
≤

( e
4

)E[Z] ≤
( e

4

) a2
2n ≤ 1

n4 ,

since a2/(2n) ≥ 8 log n > 4(log4/e 2) log n. Both derivations are made under the assump-
tions that n is sufficiently large.

Finally, by a union bound, Claims 1, 2, and 3 all hold with probability at least 1−3/n4,
and hence the rumor of p is safe in q with probability at least 1 − 3/n4.

The second key lemma demonstrates that a large fraction of the rumors have large
weight. This follows from a straightforward counting argument: not too many rumors
can be too late in the lists.

LEMMA 6.4. There are more than n/2 − 2n
log n processes of weight at least n/ log n.

PROOF. We show the lemma by contradiction. Let x ≤ n/2 − 2n
log n be the number

of processes of weight at least n/ log n. Let b > n/2 stand for the number of correct
processes. Then the total number of secure positions is at most U = bx + (n− x) · n

log n.
(Specifically: bx is an upper bound on the number of secure positions used by processes
of weight bigger than n/ log n, and (n − x)n/ log n is an upper bound on the number of
secure positions used by processes of weight at most n/ log n.)

On the other hand, the number of secure positions is at least L = bn/2, by the
definition of �p and the fact that |Lp| > n/2. Comparing these two bounds we get a
contradiction, since for x ≤ n/2 − n

log n we get

U = bx + (n − x) · n
log n

< bx + 2b · n
log n

≤ bn/2 = L.
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This completes the proof of the lemma.

The next lemma formalizes the probabilistic intuition that any rumor of weight at
least n/ log n is successfully delivered to all nonfaulty processes in the second hop.

LEMMA 6.5. All rumors of weight at least n/ log n are well distributed and eventually
received by each nonfaulty process, with probability at least 1 − 2/n2.

PROOF. We first show that each rumor of weight at least n/ log n is well distributed,
with probability at least 1 − 1/n3. Consider a process p of weight at least n/ log n.
Note that (n/ log n) · (a/n) = 4

√
n is the lower bound on expected number of (nonfaulty)

processes q that have process p in secure position and are sent—and receive—the
rumor from p in the first-level message corresponding to this position. By Chernoff
bound, there are at least 2

√
n such processes with probability at least 1 − e−4

√
n/12 ≥

1 − 1/n4, for sufficiently large n. This immediately implies, by Lemma 6.3, that the
rumor of process p is safe in these (nonfaulty) processes. Consequently, it is well
distributed (again, with probability at least 1 − 1/n4). By the union bound over all
rumors of weight at least n/ log n, they are all well distributed with probability at least
1 − n · 1/n4 = 1 − 1/n3.

Next, we prove that each well-distributed rumor is eventually received by each non-
faulty process, with probability at least 1 − (1/n3 + 1/n2). Recall that each rumor that
is safe in process p is sent by process p to its set �2(p). By Lemma 6.1, we know
that �2(p) ≥ a − κ (for all p) with probability at least 1 − 1/n3. Hence, for every well
distributed rumor, there are at least

√
n · (a − κ) randomly and independently selected

process ids to which this rumor is sent, with probability at least 1 − 1/n3. There are at
most n non-faulty processes, and thus the probability that there is one to which some
safe rumor has not been sent is at most:

1/n3 + n · (1 − 1/n)
√

n(a−κ) ≤ 1/n3 + 1/n2 ,

as desired.
To summarize, all rumors of weight at least n/ log n are well distributed, and thus

sent to (and received by) every nonfaulty process, with probability at least 1 − 1/n3 −
(1/n3 + 1/n2) ≥ 1 − 2/n2, for sufficiently large n.

Note that since the number of rumors of weight at least n/ log n is bigger than
n/2 − 2n/ log n but at most n, by Lemma 6.4, all of them are well distributed and
delivered to all nonfaulty processes with probability at least 1− 2

n2 , by Lemma 6.5. That
is, each non-faulty process gathers more than n/2 − 2n/ log n rumors with probability
at least 1 − 2/n2. This is however not sufficient for our purpose, as we need to deliver
a majority of the rumors.

It can be shown that there are a large number of rumors that are not well distributed
after the first hop. Moreover, each nonfaulty process receives in its second-level mes-
sages a number of such rumors that complements the number of well-distributed ones,
reaching a majority of all rumors.

Specifically, we focus on the case where there are at most n/2 processes of weight
n/ log n. (Otherwise, we are already done, as per Lemma 6.5.) We show that each process
receives a sufficient number of rumors from processes with weight less than n/ log n.

LEMMA 6.6. Let x denote the number of process of weight at least n/ log n. If x ≤ n/2,
then each nonfaulty process receives at least n/2 + 1 − x rumors of weight smaller than
n/ log n with probability at least 1 − 5/n2.

PROOF. The basic idea of the proof is to count triples (p, q, u) of processes such
that: (i) process p is non-faulty and receives the rumor of process u in a second-level
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message sent by process q, and (ii) process q is non-faulty and rumor of u is in a
secure position in Lq, and (iii) the rumor of u is of weight smaller than n/ log n. We call
such triples securely-relaying triples. We estimate from above the number of securely-
relaying triples for fixed processes p, u, and later the number of securely-relaying
triples for fixed process p from below. This will allow us to estimate the number of
small-weight rumors received by a non-faulty process p, all with high probability.

Consider a rumor of process u of weight smaller than n/ log n and a nonfaulty process
p. Rumor u is received by at most 6 · n

log n · a
n = 6 · a

log n nonfaulty processes q having u in a
secure position, with probability at least 1 − 2−5a/ log n ≥ 1 − 1/n3, by a Chernoff bound.
Therefore, a nonfaulty process p receives the rumor of u from at most 6 · 6a

log n · a
n ≤

36a2

n log n nonfaulty processes q having u in a secure position, with probability at least

1 − 1/n3 − 2−30a2/(n log n) ≥ 1 − 2/n3, again by Chernoff bound and a union bound. Hence,
for fixed processes p, u, the number of securely relaying triples (p, q, u) is at most 36a2

n log n

with probability at least 1 − 2/n3.
Next we estimate the number of securely-relaying triples with only the first coor-

dinate fixed on p, for a nonfaulty process p. Notice that every correct process sends
second-level messages at least once with probability at least 1 − 1/n3, by Claim 1 in
the proof of Lemma 6.3. Under this condition, a nonfaulty process p should expect to
receive second-level messages from at least n

2 · a
n processes; thus, by a Chernoff bound,

process p receives second-level messages from at least 1
2 · n

2 · a
n = μ/2 relaying non-

faulty processes q, with probability at least 1 − e−μ/8 ≥ 1 − 1/n3. After removing the
conditioning event, the probability that process p receives second-level messages from
at least μ/2 relaying non-faulty processes q is at least 1 − 1/n3 − 1/n3 = 1 − 2/n3.

Notice that there are at least n− x processes with weight less than n/ log n, and for a
given relay, there are at most n/2 − 1 insecure positions. Hence, for a given relay, there
are at least n/2 + 1 − x processes of weight less than n/ log n in secure positions. Each
of these sends a first-level message to that relay with probability a/n.

Thus, since there are at least μ/2 relayed messages received by p (with probability
at least 1 − 1/n3), we know that the (at least) μ/2 second-level messages received by
p collectively carry at least 1

2 · μ

2 · (n/2 + 1 − x) a
n = a2

8n · (n/2 + 1 − x) “copies” of rumors
with weight smaller than n/ log n stored on secure positions in the relaying processes,
with probability at least 1 − e−(μ/2)·(n/2+1−x)·(a/n)/8 ≥ 1 − 1/n3, by a Chernoff bound (for
sufficiently large n). Consequently, the probability that each nonfaulty process p is
counted in at least a2

8n · (n/2 + 1 − x) different securely relaying triples (p, q, u), is at
least 1 − 2/n3 − 1/n3 = 1 − 3/n3.

Using these upper and lower bounds, we conclude that a nonfaulty process p receives
at least

(a2/8n) · (n/2 + 1 − x)
(36a2/n log n)

≥ n
2

+ 1 − x

different rumors u of weight smaller than n/ log n (for sufficiently large n), with proba-
bility at least 1−2/n3 −3/n3 ≥ 1−5/n3. By union bound, this holds for every nonfaulty
process p with probability at least 1 − 5/n2.

We now conclude the following.

THEOREM 6.7. Algorithm TEARS completes majority gossip with time complexity O(d+
δ) and message complexity O(n7/4 log2 n), with high probability subject to an oblivious
adversary.
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PROOF. The correctness is guaranteed by Lemmas 6.4, 6.5, and 6.6 with probability
at least 1 − 2

n2 − 5
n2 ≥ 1 − 7

n2 . It remains to prove the complexity bounds. Let n be
sufficiently large.

Time Complexity. All first-level messages arrive by time d + δ, by time d + 2δ every
second-level message is sent, and it arrives by time 2d+ 2δ. Hence, the bound O(d+ δ)
follows.

Message Complexity. Each nonfaulty process sends a+κ ≤ 10
√

n log n first-level mes-
sages, by Corollary 6.2, and thus receives at most 20

√
n log n first-level point-to-point

messages on average (because of the upper bound n/2 on the number of failures), which
by Chernoff bound guarantees receiving no more than 40

√
n log n received messages,

all with high probability. Therefore it sends fewer than(
2κ + 1 + 40

√
n log n
κ

)
· (a + κ) = O(n3/4 log2 n)

second-level point-to-point messages, all with high probability (again by Corollary 6.2
and a union bound applied to this and the previous events). By applying union bound
to all processes, the bound O(n7/4 log2 n) follows, also with high probability.

7. RANDOMIZED CONSENSUS

In this section, we show how we implement message-efficient fault-tolerant consensus,
based on the gossip protocols presented in Sections 3–5. Recall that consensus consists
of n nodes, each with an initial value vi, trying to choose an output (i.e., decision)
satisfying the following.

(1) Agreement. Every value output by a process is the same.
(2) Validity. Every value output is some process’s initial value.
(3) Termination. Every correct process eventually outputs a value, with high

probability.

The key contribution of this section is showing how gossip (and majority gossip) can
be used in the context of the Canetti-Rabin framework to produce an efficient consensus
protocol.

We begin by recalling the Canetti-Rabin framework introduced in Canetti and Rabin
[1993], and we follow the simplified presentation of Attiya and Welch [2004, Section
14.3] for crash-prone networks. Throughout the protocol, each process repeats three
rounds of voting until a decision is reached:

(1) Each process votes on its estimate (originally, its initial value); if one estimate
receives all the votes, then that value is decided; if some estimate is voted on by a
majority, then that estimate is preferred.

(2) In the second election, each process votes on its preferred value; if everyone votes
to prefer the same value, then that value is adopted as the estimate; otherwise,
a process proceeds to the third round of voting which simulates a shared random
coin. (See Attiya and Welch [2004] for more details.)

Voting is implemented by a routine get-core which exchanges information among the
processes. It returns a set of votes to each participant satisfying the following: there
exists some set S containing at least a majority of the votes such that each call to
get-core returns at least the votes in S. As presented in Attiya and Welch [2004],
get-core is implemented by three sequential phases of all-to-all communication in which
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Fig. 5. Asynchronous consensus protocol that tolerates an oblivious adversary.

each process sends all the votes it has received in that round of voting to everyone else,
leading to O(n2) message complexity.

Efficient (majority) gossip can be used to reduce the message complexity. The detailed
protocol is included in Figures 5 and 6.

Specifically, we implement get-core via three sequential instances of asynchronous
(majority) gossip, each of which terminates when a process receives �n/2 + 1 rumors.
Notice, though, that gossip is initiated here asynchronously; previously, we had as-
sumed that gossip began simultaneously. Assume that as soon as a process receives a
gossip message, it begins to gossip itself. If any process begins gossip using algorithm
EARS then within time O((d + δ) log2 n), every nonfailed process begins to gossip; this
follows immediately from the epidemic spread of the initiator’s rumor. Similarly, with
algorithm SEARS (respectively, TEARS), every nonfailed process begins to gossip within
O( 1

ε
(d + δ)) time (respectively, O(d + δ)). Thus, asynchronous gossip initiation has no

asymptotic impact on time or message complexity.
It remains to ensure that each process begins to gossip immediately upon receiving

a gossip message. In order to achieve this, each gossip message includes a history of
all prior completed calls to gossip and get-core. As soon as a process receives a gossip
message, it can use the received history log to “catch up” with the sender of that
message, adopting the sender’s outcome for each completed gossip and get-core.

From this explanation, we conclude the following theorem.
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Fig. 6. get core routine for process i. All sets and arrays begin initially empty.

THEOREM 7.1. For an oblivious adversary and a minority of failures, in expectation,

—Algorithm CR-EARS has O(log2 n(d+δ)) time and O(n log3 n(d+δ)) message complexity;
—Algorithm CR-SEARS has, ∀ε < 1, O( 1

ε
(d + δ)) time and O(n1+ε log n(d + δ)) message

complexity;
—Algorithm CR-TEARS has O(d + δ) time and O(n7/4 log2 n) message complexity.

8. CONCLUSIONS

This article studies the complexity of gossip in an asynchronous, message-passing dis-
tributed system subject to processes crash failures. We have demonstrated that gossip
is inherently inefficient in the context of an adaptive adversary, but that it is possible
to develop efficient, randomized, asynchronous gossip algorithms subject to an obliv-
ious adversary. The main challenge of developing such algorithms is overcoming the
unknown bound on communication delay and process speed, both of which are typically
used in synchronous algorithms to decide when a process should stop sending messages
or whether a process has crashed. Under an oblivious adversary, our gossip algorithms
can be used to implement efficient asynchronous randomized consensus protocols; one
variant terminates in constant time and has strictly subquadratic message complexity.
This last result was achieved by considering a weaker version of gossip, called majority
gossip.
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One interesting open question is whether our gossip algorithms are optimal. What
are the lower bounds on time and message complexities for gossiping under an obliv-
ious adversary? In fact, notice that both of our gossip protocols (but not the weaker
majority gossip protocol) have message complexity that depends on d and δ, that is, the
latency of the network. Can this be avoided? Practical systems often attempt to adjust
the frequency of sending gossip in order to approximate a synchronous environment.
When network latencies are predictable or readily measurable, such strategies often
yield message complexity that is independent of the network latency. Are there gossip
protocols that can achieve this adaptivity, in the worst-case, or is a dependence on
network latency inherent?

There are many interesting open questions related to majority gossip. This weaker
gossip primitive appears easier to implement efficiently, and yet sufficiently powerful to
solve a variety of problems. This conjecture, which we first proposed in Georgiou et al.
[2008], has been further supported by Censor Hillel and Shachnai [2010] in their work
on partial information spreading. Over the long-term, we would like to understand
where we can use majority gossip, instead of full gossip, and we expect to find a variety
of new applications for majority gossip, for example, load balancing and distributed
shared memory implementations.

There are three immediate questions. First, can the message complexity of majority
gossip be improved further? While the protocol presented here ensures sub-quadratic
message complexity, there seems no inherent reason that this cannot be further re-
duced. Moreover, any improvements in the message complexity of majority gossip will
immediately translate to more efficient constant-round consensus protocols. The ques-
tion of optimal message complexity for asynchronous, oblivious consensus protocols
remains open. The second immediate question regrading majority gossip is whether it
is possible to show a separation between majority gossip and full gossip. Can we show
that majority gossip is, in fact, inherently more efficient that full gossip? How efficient
is majority gossip in the context of an adaptive adversary? Finally, the third question
regarding majority gossip is whether there are any efficient deterministic majority
gossip algorithms. In synchronous systems, many randomized gossip protocols can
be derandomized via expander graphs and other similar techniques. Majority gossip
seems potentially amenable to such techniques in an asynchronous environment.

Finally, an important open question is the communication complexity of asyn-
chronous gossip, that is, the total number of bits exchanged in a given computation. In
this article, we have focused on message complexity, as in many applications aggrega-
tion and compression techniques allow for fixed-sized messages. In some applications,
however, this is not possible, and the overall communication complexity becomes crit-
ical. In real systems, bandwidth is often the limiting resource and minimizing the
communication complexity is the best way to ensure efficient operation.
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