
USING SCALABLE VIDEO CODING FOR 
DYNAMIC ADAPTIVE STREAMING OVER HTTP IN MOBILE ENVIRONMENTS 

 
Christopher Müller1, Daniele Renzi2, Stefan Lederer1, Stefano Battista2, and Christian Timmerer1 

 
1Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria, {firstname.lastname}@itec.aau.at 

2bSoft ltd, 156 via Velini, 62100 Macerata, Italy, {firstname.lastname}@bsoft.net 
 
 

ABSTRACT 

 
Dynamic Adaptive Streaming over HTTP (DASH) is a 
convenient approach to transfer videos in an adaptive and 
dynamic way to the user. As a consequence, this system 
provides high bandwidth flexibility and is especially 
suitable for mobile use cases where the bandwidth variations 
are tremendous. In this paper we have integrated the 
Scalable Video Coding (SVC) extensions of the Advanced 
Video Coding (AVC) standard into the recently ratified 
MPEG-DASH standard. Furthermore, we have evaluated 
our solution under restricted conditions using bandwidth 
traces from mobile environments and compared it with an 
improved version of our MPEG-DASH implementation 
using AVC as well as major industry solutions. 
 

Index Terms— Dynamic Adaptive Streaming over 
HTTP, MPEG-DASH, Scalable Video Coding, Evaluation, 
Mobile Networks, Vehicular Mobility 
 

1 INTRODUCTION 
 
Dynamic Adaptive Streaming over HTTP (DASH) has the 
potential to play a major role in networks with fluctuating 
bandwidth. It has been already adopted by the major 
industry players (e.g., Microsoft, Apple, and Adobe) and 
several streaming providers like Netflix, Hulu, Vudu, and 
Amazon, which are using the HyperText Transfer Protocol 
(HTTP) for their streaming service. One major advantage of 
HTTP is its convenience for the end user, as well as for the 
streaming provider. Nevertheless, TCP and HTTP 
introduces a significant overhead compared to RTP and 
UDP, which is definitely a disadvantage [1]. Another fact 
that cannot be handled by traditional HTTP streaming (i.e., 
progressive download) are varying bandwidth conditions. 

Dynamic Adaptive Streaming over HTTP tries now to 
address this fact with a quite simple but effective approach. 
Instead of having one media file encoded at a single bitrate, 
the same media file will be encoded at several bitrates, 
resolutions, etc. These multiple versions of same media will 
be then chopped into segments that can be individually 
requested by the client through HTTP. This enables the 
client to switch between different qualities, resolutions, etc. 
during the streaming session. Furthermore, the clients can be 

served through ordinary Web servers, which let the system 
scale very well. As mentioned at the beginning the industry 
has already deployed several solutions and also MPEG has 
recently ratified DASH as international standard [2]. 

Typically, AVC will be used to generate multiple 
qualities of the media for DASH but also the scalable 
extensions [3] of AVC are suitable and can potentially bring 
some major advantages due to its layered architecture, 
which enhances the flexibility of the segment selection. That 
is, in comparison to AVC it is possible to cancel a segment 
request at the layer boundaries. That advantage could 
simplify the adaptation process because this allows the 
client trying to download up to the highest quality and in 
case of insufficient bandwidth it could cancel the request at 
the segment boundaries. This is not possible with AVC 
because when the client cancels a segment it could not use 
the video data of the segment anymore. 

The goal of this paper is to improve our existing MPEG-
DASH implementation using AVC [4] and evaluate a SVC-
based solution on top of it. In particular, we have compared 
both solutions among themselves as well as with the major 
industry solutions. In anticipation of the results we can 
conclude that we have achieved a major improvement of our 
own implementation [4], which performs now better than all 
industry solutions. Furthermore, our SVC-based solution 
could utilize a higher overall bandwidth compared to AVC. 

The remainder of this paper is organized as follows. 
Section 2 describes related work and Section 3 describes our 
integration of SVC into MPEG-DASH. The experimental 
setup and results are described and discussed in Section 4. 
Finally, the paper is concluded in Section 5. 
 

2 RELATED WORK 
 
Sanchez et al. [5] has already described potential benefits of 
SVC with DASH. However, their main focus is on cache 
performance and encoding while we focus on the adaption 
process itself within mobile environments. Kofler et al. [6] 
has evaluated the implications of the ISO Base Media File 
Format (ISOBMFF) on adaptive HTTP Streaming of SVC 
and shown that the ISOBMFF is not suitable for SVC 
streams below 1 Mbps. Akhsabi et al. [7] evaluated 
Microsoft Smooth Streaming, Adobe HTTP Dynamic 
Streaming, and the Netflix Player using simulated 



bandwidth traces. They used different test content for each 
system in question and, thus, the results are difficult to 
compare. Yao et al. [8] evaluated the possibility of using 
HTTP streaming under vehicular mobility within 3G mobile 
networks. The evaluation is based on real-world bandwidth 
traces using their own, proprietary client. However, their 
evaluation focused on the comparison of their system with 
non-adaptive HTTP streaming, i.e., progressive download 
whereas our evaluation compares AVC and SVC as well as 
the major industry solutions with real-world bandwidth 
traces under vehicular mobility. In our previous work [4] we 
have already evaluated our MPEG-DASH implementation 
using AVC with the major industry solutions. In this paper 
we have improved our solution and compared it also with 
SVC. 
 

3 INTEGRATION OF SVC INTO MPEG-DASH 
 
This section describes the integration of SVC into MPEG-
DASH. Kofler et al. [6] have already shown that the ISO 
Base Media File Format in combination with SVC is 
ineffective for adaptive HTTP streaming with streams lower 
than 1 Mbps. Therefore, we have only used elementary 
streams and described the layer dependency in the Media 
Presentation Description (MPD) as depicted in Figure 1 
which shows a simplified MPD. The MPD contains one 
base layer with a bandwidth of 451231 bps and an 
enhancement layer with a cumulative bandwidth of 550737 
bps that depends on the base layer. The segments in Figure 1 
correspond to 2 seconds of video data, which can be 
obtained through byte range requests, e.g., the base layer 
segment starts from byte 141 and ends at byte 74012 and 
comprises multiple base layer Network Abstraction Layer 
units (NALU). When the client selects the representation 
with 550737 bps it would initially download the 
corresponding segment of the representation which this 
representation depends on, i.e., the representation with 
451231 bps. This download scheme would produce a 
bitstream that is not valid for the decoder due to the fact that 
the decoder would get a bunch of base layer NALUs 
followed by a bunch of enhancement layer NALUs and 
therefore looses all dependencies. As a consequence we had 
to reorder the NAL units at the client within our C++ 
dynamic link library (DLL) libdash that is open source 
available at [9]. The DLL handles the whole connection 

setup, XML parsing, and bandwidth adaptation process. 
Furthermore, with its internal buffer it provides a stable 
stream for the caller of the library and it supports HTTP/1.1 
persistent connections and pipelining. We have modified 
this library so that it could also handle the described SVC 
case and would produce a valid bitstream, e.g., in our 
example this would mean that the output of libdash is 
always one base layer NALU followed by the corresponding 
enhancement layer NALU. Without that modification we 
would have to describe each NALU in the MPD and request 
each NALU with an individual byte range request which is 
very ineffective due to the fact that each of these HTTP 
requests contains a header. This modification enables the 
efficient streaming of media with a lower bitrate than 1 
Mbps which is needed for our experiments described in the 
following. 
 

4 EXPERIMENTS 
 
Please note that in this paper we have adopted the 
experimental setup, methodology, and content from our 
previous paper [4]. The most important aspects are 
described here for the sake of completeness but for details 
the interested reader is referred to [4]. 
 
4.1 DASH Content 
 
We have encoded Big Buck Bunny for the AVC experiment 
with x264 at 14 different bitrates (100, 200, 350, 500, 700, 
900, 1100, 1300, 1600, 1900, 2300, 2800, 3400, and 4500 
kbps) with a Group of Pictures (GOP) size of 48 frames 
resulting into segments of 2 seconds length. For the SVC 
experiment the same content has been encoded with our 
own decoder using a GOP size of 48 frames and at 13 
different bitrates with one base layer at 450 kbps and 12 
enhancement layers (550, 650, 700, 1100, 1300, 1500, 1800, 
2300, 2600, 3000, 3500 and 4700 kbps) where each layer 
depends on the previous one. An optimal combined 
selection of Coarse-Grain (CGS) and Medium-Grain 
Scalability (MGS) has been used, in order to act only on the 
fidelity of the encoded video stream, as we did in the AVC 
experiment, instead of on resolution or framerate. 
 
4.2 Bandwidth Traces 
 
All experiments have been evaluated under three different 
network emulation settings that have been recorded during 

 

Figure 1. Excerpt of a Simplified MDP for SVC. 

 

Figure 2. Experimental Setup [4]. 



separate freeway car drives with a HUAWEI E169 HSPDA 
USB Stick using a SIM-card of the Austrian cellular 
network provider A1. 
 
4.3 Evaluation Metrics 
 
Our main metric is the average bitrate that could be seen as 
the overall performance of the system at a particular test 
setup. The number of quality switches is another metric 
that describes the variance of the session. High values 
indicate very frequent switching which can lead to a 
decreased Quality of Experience (QoE) [10]. The buffer 
level describes the current fill state of the buffer and is an 
indicator for the stability of the system. The number of 
unsmooth seconds describes the smoothness of the session 
and may also influence the QoE. It can be derived from the 
buffer level and describes the time when the buffer is empty. 
Therefore, a high value of unsmooth seconds indicates a 
more jerky session. 
 
4.4 Experimental Setup 
 
The experiments have been performed using the setup 
depicted in Figure 2. This setup comprises four nodes, 
namely the evaluation client, bandwidth shaping, network 
emulation, and HTTP server. 

The bandwidth shaping controls the maximum 
achievable bandwidth for the client and the network 
emulation controls all network related parameters such as 
round trip time (RTT). Based on our measurements the RTT 
has been set to 150ms [11]. For the HTTP server we used 
the Apache Web server which handles the HTTP requests 
from the client. The HTTP server, the bandwidth shaping 
node, and the network emulation node are based on Ubuntu 
10.04. The evaluation client slightly differs for the 
individual experiments using AVC and SVC and will be 
described in the following subsections. 

4.5 MPEG-DASH and AVC 
 
The evaluation of MPEG-DASH AVC is based on our VLC 
plugin and the content has been generated using our 
DASHEncoder – both available at [9] – which is a wrapper 
tool for x264 and MP4Box. The client for the experiment is 
based on Ubuntu 10.04 and the DASH VLC Plugin has been 
modified to support HTTP/1.1 persistent connections and 
pipelining. Furthermore, we have improved our 
implementation from [4] and used a new buffer model 
which is depicted in Figure 3 in combination with the 
average measured bandwidth for the adaptation. 

The buffer model has an exponential characteristic with 
the aim to reduce the number of quality switches and to 
enable a smooth playback. The model has been specified 
following an explorative approach where we have tested 
different models, e.g., linear, exponential, etc. In particular, 
the model must be fitted to the network conditions but this 
could also be done on demand, e.g., the client could start 

 

Figure 3. MPEG-DASH Buffer Model for AVC. 

 

Figure 4. Results for MPEG-DASH AVC Experiment. 



with a conservative approach which means that the turning 
point of the curve is near to 100% of the buffer. When the 
client is able to fill the buffer with that curve it could shift 
the curve to left until the buffer reaches a predefined 
minimum. 

Our adaption logic is mainly based on the buffer model 
depicted in Figure 3 and the average measured bandwidth. 
The first step is that the adaption logic identifies the quality 
levels that are allowed due to the buffer state, e.g., when the 
buffer is exactly at 40% all quality levels below 900 kbps 
are allowed by the buffer model. The second step would be 
to find a matching quality level based on the average 
bandwidth inside the range of the lowest quality level and a 
quality level that is below 900 kbps. 

Figure 4 shows the behavior of our MPEG-DASH AVC 
implementation based on the above mentioned adaption 
process. Due to page count limits we only show the 
evaluation of experiment 3 / track 3 but the interested reader 
is referred to our supplemental material [12] which contains 

the evaluations of the other experiments / tracks as well as 
the evaluations of the industry solutions. Figure 4 (a) shows 
the adaption process (adaptation) and the available 
bandwidth (captured bandwidth) and Figure 4 (b) shows the 
buffer fill state in seconds. Interestingly, the buffer never 
falls below 10 seconds during the whole experiment which 
indicates that the adaption process is very stable and the 
probability of producing stalls is very low. Furthermore, the 
adaption reacts very accurately to bandwidth variations, e.g., 
second 190 or 290 where the available bandwidth collapses 
and as a consequence the adaptation process reduces the 
quality to keep the buffer in a stable state and guarantees a 
smooth playback. Additionally, it recovers also fast from 
low quality levels when the available bandwidth increases, 
e.g., second 150 and 300. In comparison to our 
implementation from [4] we have achieved a more accurate 
adaptation with less switches and utilized a higher average 
quality. 
 
4.6 MPEG-DASH and SVC 
 
In comparison to the MPEG-DASH AVC experiment the 
client for the SVC experiment is based on windows, due to 
the fact that we have used our dash library that is only 
available for windows. This library handles the whole 
DASH session management and it also supports HTTP/1.1 
persistent connections and pipelining. This library has been 
integrated into our SVC client application. 

A consequence of the layered architecture of SVC is that 
we are able to cancel requested segments at the layer 
boundaries which make the system more flexible. Therefore, 
we were able to use a more aggressive buffer model as 
depicted in Figure 5. We have also used the buffer model 
from the AVC experiment (cf. Section 4.5) but SVC 
achieved with the AVC buffer model nearly the same 
average bitrate as AVC. Therefore, we have used the 
aggressive buffer model which has been specified following 

 

Figure 5. MPEG-DASH Buffer Model for SVC. 

 

Figure 6. Results for MPEG-DASH SVC Experiment. 



an explorative approach like the AVC buffer model. The 
adaptation process follows the same logic as described in 
Section 4.5 where the buffer model restricts the available 
quality levels. Figure 6 (a) shows the results for experiment 
3 / track 3 and additional results are available at [12]. In 
comparison to the AVC experiment SVC achieves better 
bandwidth utilization with a quite stable buffer. 
Additionally, it also reacts very accurately to bandwidth 
variations, e.g., second 200 and 450 and it recovers fast 
from low quality levels when the available bandwidth 
increases, e.g., second 300 and 220. 
 
4.7 Comparison with Existing Approaches 
 
The overview of all three experiments / tracks are shown in 
Table 1. From left to right the first column depicts the name 
of the system, the average bitrate, the number of quality 
switches, and the number of unsmooth seconds. All values 
have been calculated as an average of all three experiments. 
Interestingly, our improved MPEG-DASH implementation 
using AVC and the smooth buffer model outperforms all 
industry solutions and our previous implementation with 
respect to average bitrate. Finally, the MPEG-DASH SVC-
based solution achieves a higher average bitrate over all 
three experiments as a consequence of the more aggressive 
buffer model but requires more representation switches. 
Please note that using the same buffer model for AVC 
would produce an unsmooth session. 
 

5 CONCLUSIONS AND FUTURE WORK 
 
This paper provides an evaluation of our improved MPEG-
DASH implementation using AVC and SVC. Furthermore, 
both solutions have been compared with the major industry 
solutions that we have already evaluated in [5]. All systems 
have been evaluated under the same conditions with our 
real-world mobile network traces that have been captured 
under vehicular mobility. 

As seen from the experimental results, an exponential 
buffer model allows for a better utilization of the available 
bandwidth and SVC – thanks to its layered coding structure 
– allows for more flexibility and, consequently, a more 
aggressive buffer model. Minor modifications to the MPD 

combined with reordering of NALUs at the client enable 
the efficient usage of SVC for bitrates below 1 Mbps. 

Finally, the actual impact on the QoE is subject to future 
work which may help us to improve our adaptation logic for 
the dynamic adaptive streaming over HTTP. 
 

6 ACKNOWLEDGMENTS 
 
This work was supported in part by the EC in the context of the 
ALICANTE (FP7-ICT-248652), SocialSensor (FP7-ICT-287975) 
projects and partly performed in the Lakeside Labs research 
cluster at AAU. 
 

7 REFERENCES 
 
[1] B. Wang et al., “Multimedia Streaming via TCP: An Analytic 

Performance Study,” ACM Transactions on Multimedia 
Computing, Communication and Applications, vol. 4, no. 2, 
May 2008, pp. 16:1-16:22. 

[2] I. Sodagar, “The MPEG-DASH Standard for Multimedia 
Streaming Over the Internet”, IEEE Multimedia, vol. 18, no. 
4, Oct.-Dec. 2011, pp. 62-67. 

[3] H. Schwarz et al., “Overview of the Scalable Video Coding 
Extensions of the H.264/AVC Standard,” IEEE Trans. on 
CSVT, vol. 17, no. 9, Sep. 2007, pp. 1103-1120. 

[4] C. Müller, S. Lederer, C. Timmerer, “An Evaluation of 
Dynamic Adaptive Streaming over HTTP in Vehicular 
Environments,” In Proce. of 4th Workshop on Mobile Video, 
Chapel Hill, NC, USA, Feb. 2012. 

[5] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. 
D. Vleeschauwer, W. V. Leekwijck, Y. L. Leuedec, “iDASH: 
Improved Dynamic Adaptive Streaming over HTTP using 
Scaleable Video Coding,” In Proc. of ACM Multimedia 
Systems, San Jose, CA, USA, Feb. 2011. 

[6] I. Kofler, R. Kuschnig, H. Hellwagner, “Implications of the 
ISO Base Media File Format on Adaptive HTTP Streaming of 
H.264/SVC,” In Proc. of 9th IEEE Consumer 
Communications and Networking Conference, Los Alamitos, 
CA, USA, Jan. 2012. 

[7] S. Akhshabi, A. Begen, C. Dovrolis, “An Experimental 
Evaluation of Rate-Adaptation Algorithms in Adaptive 
Streaming over HTTP,” In Proc. of ACM Multimedia Systems, 
San Jose, CA, USA, Feb. 2011. 

[8] J. Yao, S. Kanhere, I. Hossain, M. Hassan, “Empirical 
evaluation of HTTP adaptive streaming under vehicular 
mobility,” In Proc. of 10th Int’l IFIP TC 6 Conference on 
Networking, Valencia, Spain, May 2011, pp. 92-105. 

[9] MPEG-DASH at ITEC/AAU, http://dash.itec.aau.at, (last 
access: Mar. 2012). 

[10] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, P. Halvorsen, “Spatial 
Flicker Effect in Video Scaling,” In Proc. of 3rd Int’l 
Workshop on Quality of Multimedia Experience, Mechelen, 
Belgium, Sep. 2011, pp. 55-60. 

[11] P. Romirer-Maierhofer, A. Coluccia, T. Witek, “On the Use of 
TCP Passive Measurements for Anomaly Detection: A Case 
Study from an Operational 3G Network,” Traffic Monitoring 
and Analysis Workshop TMA 2010, Zürich, Switzerland, Apr. 
2010, pp. 183-197. 

[12] Additional Results, http://www-itec.uni-
klu.ac.at/dash/eusipco/additional_results.pdf (last access: Mar. 
2012). 

Table 1. Comparison with Existing Approaches. 

Name 
Average 
Bitrate 
[kbps] 

Average Switches 
[Number of 
Switches] 

Average Un-
smoothness 
[Seconds] 

Microsoft Smooth 
Streaming 

1522 51 0 

Adobe HTTP 
Dynamic Streaming 

1239 97 64 

Apple HTTP Live 
Streaming 

1162 7 0 

DASH AVC [4] 1464 166 0 
DASH AVC 2341 81 0 
DASH SVC 2738 101 0 

 


