
SPECIAL ISSUE

High-level dataflow design of signal processing systems
for reconfigurable and multicore heterogeneous platforms

Endri Bezati • Richard Thavot • Ghislain Roquier •

Marco Mattavelli

Received: 30 March 2012 / Accepted: 21 January 2013 / Published online: 13 February 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract The potential computational power of today

multicore processors has drastically improved compared to

the single processor architecture. Since the trend of

increasing the processor frequency is almost over, the

competition for increased performance has moved on the

number of cores. Consequently, the fundamental feature of

system designs and their associated design flows and tools

need to change, so that, to support the scalable parallelism

and the design portability. The same feature can be

exploited to design reconfigurable hardware, such as

FPGAs, which leads to rethink the mapping of sequential

algorithms to HDL. The sequential programming para-

digm, widely used for programming single processor sys-

tems, does not naturally provide explicit or implicit forms

of scalable parallelism. Conversely, dataflow programming

is an approach that naturally provides parallelism and the

potential to unify SW and HDL designs on heterogeneous

platforms. This study describes a dataflow-based design

methodology aiming at a unified co-design and co-syn-

thesis of heterogeneous systems. Experimental results on

the implementation of a JPEG codec and a MPEG 4 SP

decoder on heterogeneous platforms demonstrate the flex-

ibility and capabilities of this design approach.

Keywords Dataflow � FPGA � HW/SW co-design �
Co-synthesis � Multicore computing � Openforge �
ORCC � RVC-CAL

1 Introduction

Since latest generation of platforms includes more and more

clusters of multicore processors and programmable logic

units, portable parallelism, for both SW and reconfigurable

HW, is certainly a key requirement for systems imple-

mentations that aim at efficiently running on such plat-

forms. However, the traditional sequential specification is

certainly not the appropriate design abstraction for the

efficient usage of the underneath processing capabilities. In

addition, the existing processor software and HDL designs,

legacy of several years of development, are not the most

appropriate starting point to program such platforms [1].

Needless to say, such legacy specification can lead to an

inappropriate design abstraction when targeting heteroge-

nous platforms. Parallelizing sequential code is an extre-

mely time-consuming and error-prone process. In addition,

it needs to be redone every time a design is implemented on

a platform that possesses a different level of processing

parallelism. The same considerations can be made for the

portability of the already parallelized code, since the design

process needs to be started from scratch when targeting

another platform. An additional feature that becomes nec-

essary on heterogeneous and parallel platforms, which are

less significant for sequential processors, is a systematic

exploration of the design space. This is due to the combi-

natorial explosion of design options. It requires the design

to be sufficiently modular and portable, without any manual

rewriting. As a matter of fact, manual rewriting practically

reduces design space exploration to extremely limited

E. Bezati (&) � R. Thavot � G. Roquier � M. Mattavelli

EPFL SCI-STI-MM, Lausanne, Switzerland

e-mail: endri.bezati@epfl.ch

R. Thavot

e-mail: richard.thavot@epfl.ch

G. Roquier

e-mail: ghislain.roquier@epfl.ch

M. Mattavelli

e-mail: marco.mattavelli@epfl.ch

123

J Real-Time Image Proc (2014) 9:251–262

DOI 10.1007/s11554-013-0326-5



exploration ranges for the amount of design resources

needed in the case of complex application designs.

In this direction, a dataflow design and programming

paradigm as well as a design flow with the corresponding

tools has been developed. Dataflow naturally exposes the

potential parallelism of applications, which can be used to

distribute computations according to the available paral-

lelism supported by the platforms. This study in particular

describes a methodology for hardware–software co-design.

This methodology uses as an input a high-level dataflow

program that directly yields implementations for heteroge-

neous parallel platforms. This methodology, as is proven by

the experimental results given on this study, provides per-

formance scalability and rapid prototyping by the means of

portability. The study also presents how this dataflow-based

design flow can also rely on the capability of the platform

design environment for code profiling, profile-guided

refactoring, application-to-architecture mapping, and auto-

matic code synthesis of dataflow applications on heteroge-

neous architectures composed of processors and FPGAs.

The article is structured as follows: Sect. 2 summarizes the

most relevant related work on co-synthesis and co-design for

heterogeneous platforms. Section 3.1 introduces the pro-

posed methodology by explaining the different stages that

enable the automatic synthesis of dataflow programs onto the

target platforms. Section 4.1 reminds the fundamental con-

cepts of the dataflow programming approach developed, the

advantages versus the traditional sequential programming

model and the advantages that the features of the formal CAL

dataflow language used for the application specification

provides in terms of abstractions and optimization possibili-

ties. The section also presents the basic components of the

abstraction used to represent the architectural model of the

target platforms. Section 5 describes the main dimensions of

the feasible design space exploration stages. Section 6

describes in details the toolchain implementing the complete

design flow. Section 7 presents some experimental results

consisting of the implementation of well-known video codecs

systems. Finally, Sect. 8 concludes the paper by discussing

the advantages of the approach and some of the remaining

challenges for further improvements as well as some per-

spectives of future work and further extensions for the support

of other design options.

2 Related work

The concepts and fundamentals of HW–SW co-design have

been introduced since the early nineties [2, 3]. Model-

based design was proposed to raise the level of abstraction

when designing digital processing systems. High-level

models provide useful abstractions, such as platform

independency, to ease analysis tasks.

Prior research related to model-based design using data-

and control-dominated models and a combination of both is

the subject of a wide literature. Essentially, the various

methods proposed mainly differ by the model used and

their underlying model of computation (MoC). It mainly

consists of a trade between the expressive power and

analyzability properties of the model. Expressiveness

defines the set of applications that can be represented in

that model. The more a model can express, the harder it

becomes to analyze its inner properties, such as scheduling,

bounded memory usage, liveness and so on.

For brevity reasons and without claiming to be

exhaustive, we can mention the POLIS [4], a Codesign

Finite State Machine (CFSM)-based framework which

enables FSMs to communicate asynchronously. Such

model has limited expressiveness, but a useful analyz-

ability property. Indeed, the more a model can express, the

harder it becomes to analyze its features such as liveness or

bounded execution. By contrast to control-dominated

models, when dealing with stream processing algorithms, it

is preferable to use data-dominated models such as com-

municating sequential processes (CSP) [5], dataflow [6] or

Kahn process networks (KPN) [7].

The INRIA’s AAA methodology and its associated tool

SynDEx are examples of such a design approach. The

AAA is based on a restricted dataflow model that supports

conditional statements using the hierarchy of the dataflow

graph. The SynDEx model is deliberately restricted to

enforce real-time constraints; consequently, it is not

adapted to model more general class of applications.

Moreover, the High-Level Synthesis (HLS) that turns the

SynDEx model to an HDL implementation is not clearly

defined, and results on that are not extensively reported in

the literature.

A KPN-based approach called Compaan/Laura from

Leiden University [8] is using a subset of MATLAB code

to model applications. The HW back-end, Laura, transform

the KPN model expressed by MATLAB code to VHDL.

KPN-based models are much more expressive than more

restricted MoC and can cover a much broader set of

applications. However, since analyzability is, in most of the

cases, inversely related to the expressiveness of a MoC, it

is somehow difficult to figure out the ability to produce the

corresponding KPN models of more complex applications

written in MATLAB.

PeaCE from the Seoul National University can be con-

sidered a midway approach between synchronous dataflow

(SDF) and FSM [9]. This model raises the level of

expressiveness, by enabling the usage of control structures

using FSM inside SDF nodes and vice versa. However,

whereas PeaCE generates code for composing blocks of the

model for both SW and HW components, it lacks the

automatic code generation of the code inside the processing

252 J Real-Time Image Proc (2014) 9:251–262

123



blocks. In this case, the user should define HW–SW blocks

in a later stage, an operation which can result resource

consuming and error prone.

Another interesting approach in the field is System-

CoDesigner from the University of Erlangen-Nuremberg

[10]. SystemCoDesigner is an actor-oriented approach

using a high-level language, built on top of SystemC,

named SysteMoC. It generates HW–SW SoC with auto-

matic design space exploration techniques. The model is

translated into behavioral SystemC model as a starting

point for HW and SW synthesis. The HW synthesis is

delegated to a commercial tool, viz., Forte’s Cynthesizer,

which generates RTL code from their SystemC interme-

diate model. In essence, the approach presented in the

study is remarkably similar to the SystemCoDesigner

design flow. A comparison highlighting the differences

between the two approaches is provided in Sect. 7.

The system design approach presented in this study

presents several innovative aspects. Those are built around

and on top of the design flow tools developed through the

years after the initial formal specification of the CAL

language [11]. For brevity, only some essential innovations

versus the state of the art related to SW/HW co-design

portability are fully developed in the paper. As mentioned,

the first innovation, which is also the base of all other steps

of the design flow, is the usage of a formal high-level

dataflow language. This language unifies the description of

several dataflow classes and their associated MoC. Thus,

the formal dataflow language can be used for both SW

(single-core and multicore) and HW component syntheses.

In fact this formal language has a domain-specific property

and originates several techniques capable of removing

most of the scheduling overhead that is theoretically nee-

ded for implementing dynamic dataflow programs [12–14].

A second fundamental innovation, which has been

demonstrated, is that a standardized subset of the dataflow

language, does not only offers scalability from a single

core to multicore but is also synthesizable to HW. To

achieve that, a specific modeling of the target platform has

been given, a dataflow profiling tool has been created and

different optimizations have been developed for the effi-

cient usage of a targeted platform. For the metrics and

heuristics driving the design space exploration, the reader

can refer to [15, 16].

3 Methodology

3.1 Proposed design flow

The proposed methodology and associated design flow

essentially consist of six steps as illustrated in Fig. 1. The

initial step is the specification of the application and the

definition of the platform architecture. The application

specification expressed using the CAL dataflow program-

ming language is entirely agnostic of the target platform. In

other words, the specification is the same for partitions that

finally will run on a single core processor, multicore or

programmable logic unit (FPGA).

In a second step, the application is functionally validated

by a set of behavioral simulations employing meaningful

(for the specific application) input stimuli. This process can

also provide inputs for the third stage in terms of profiling

measures extracted during the simulations. Architecture-

aware simulations (using the mapping of the third step) can

also be done. They may be used to discover bottlenecks

early in the design process and to refactor the application

and/or the architecture mapping accordingly.

The third step consists of the design space exploration

stage. In broad outline, this stage provides the mapping of

the algorithm onto the architecture. The mapping is

obtained by transforming (viz., scheduling and partition-

ing) the application according to the architecture. Profiling

metrics (first-order approximations from simulations, cycle

accurate from the platform execution, etc.) is used to find

the close-to-optimal mapping according to a desired

criteria.

The fourth step consists of taking each partition of the

mapping (a subset of the application associated to a pro-

cessing element of the architecture) including the interfaces

Fig. 1 Overview of the CAL dataflow design flow steps

J Real-Time Image Proc (2014) 9:251–262 253

123



necessary for the platform component interconnections and

synthesize them by the corresponding implementation

source code generator (C/C?? for SW, HDL for HW).

Then the generated implementation source code for each

SW or HW processing element of the platform is compiled

using the native platform compilers. The execution of the

application is the final validation step. Besides, this exe-

cution can also be part of an iterative space exploration

process that uses different profiling measures given by

external profiling tools.

3.2 The co-design environment

Section 6 describes in detail the co-design tool used in the

design flow. Those tools sit on the top of two source code

generators, ORCC and OpenForge. The co-design tool is

responsible for the partitioning of a dataflow program only

to Software (multicore, many-core or many systems), only

to Hardware (interconnection of different hardware) or an

interconnection between Software and Hardware. Its input

is a dataflow application and an architecture description.

The following steps are performed by the co-design tool:

– the mapping of the dataflow program according to the

architecture (automatically or user-defined),

– the co-synthesis to generate software source code and

synthesizable hardware,

– the synthesis of the inter-partition communications as

well as their interfaces.

The dataflow application is transformed into an imple-

mentation model according to the platform architecture.

The transformation consists of inserting additional nodes

that represent inter-partition communications, according to

the PE interconnections. Such transformation introduces

distinct nodes in the dataflow program, which has the

objective of encapsulating at a later stage the multiplexing

and demultiplexing of tokens as well as the implementation

of the corresponding interfaces between partitions. The

multiplexing stage schedules the communications between

actors (the processing elements of a CAL dataflow net-

work) that are allocated on a different platform partitions.

The demultiplexing is the reverse process. The inter-par-

tition communication stage is also illustrated in Fig. 2,

where gray blocks are inserted to represent the connections

between partitions. For instance, the orange partition has

two incoming channels from the blue partitions. Those

FIFOs are going to be multiplexed on the blue partition and

demultiplexed on the orange one. Then, the communication

with other components is done via I/O with an associated

communication protocol. Interfaces are introduced during

the synthesis stage and are supported by libraries according

to the nature of the interconnection component present on

the processing platform. Currently, PCIe, Ethernet and

UART have been tested, validate and are currently sup-

ported in the co-design tool.

4 Application and architecture models

Architecture modeling, in the proposed design flow, is

based on the model developed in Ref. [17]. The platform

architecture is modeled by an undirected graph where each

node represents an operator [a processing element such as a

CPU or an FPGA in the terms of [17]) or a communication

element (bus, memories, etc...)]. An edge represents an

interconnection interpreted as a transfer of data from/to

operator and to/from communication elements. The archi-

tecture description is serialized into an IP-XACT descrip-

tion, an XML format developed by the SPIRIT

Consortium, which defines the description of electronic

components. The architecture description is hierarchical

and enables us to specify architectures with different levels

of granularity. For instance, a multicore processor can be

represented as an atomic node or hierarchically by expos-

ing lower level details, in which processing elements and

memories become in turn atomic nodes. Figure 3 depicts as

an example an architectural description of the QorIQ

P4080 platform from Freescale. Such platform includes

eight PowerPC e500mc cores with three-level of cache

hierarchy, L1 and L2 as a private cache and L3 as a shared

one.

4.1 Application model: dataflow with firing

Dataflow programming models have a rich history dating

back to at least the early 1970s, including seminal work by

Dennis [6] and Kahn [7]. For the purposes of this work, a

dataflow program is a directed graph in which nodes rep-

resent computational units (called actors), while edges

represent connections between actors used to communicate

sequences of data packets (tokens). Several models that

describe a dataflow application have been introduced in

literature [7, 18–20], often referred to as different dataflow

models of computation. Each Moc gives the behavior of an

actor. Also, it indicated which techniques should be used

for the actor execution, which results in different trade-offs

between expressiveness and implementation efficiency.

One common characteristic across all these dataflow

models is that individual actors encapsulate their own state,

and thus do not share memory with one another. Instead,

actors communicate with each other exclusively by sending

and receiving tokens along the channels connecting them.

The resulting absence of race conditions [21] makes the

behavior of dataflow programs more robust to different

execution policies, whether those be truly parallel or some

interleaving of the individual actors.

254 J Real-Time Image Proc (2014) 9:251–262

123



4.1.1 Dataflow process networks

The design flow and co-design component described in this

work are based on a dataflow model of computation called

dataflow process networks (DPN) [20]. In addition to the

properties of dataflow mentioned above, each DPN actor

executes by performing a sequence of discrete computa-

tional steps, called firings. In each such step, an actor may

(a) consume a finite number of input tokens, (b) produce a

finite number of output tokens, and (c) modify its internal

state, if it has any.

The behavior of a DPN actor is specified as a pair of

firing rule and firing function. The firing rule determines

when the actor may fire, by describing the input sequences

and actor state that need to be present for the actor to be

able to make a step, i.e., for it to be eligible. The firing

function determines, for each input sequence/state combi-

nation for which the actor is eligible according to the firing

rule, the output tokens produced at that step and, if appli-

cable, the new actor state. In general, an actor may be non-

deterministic, which means that the firing function may

yield more than one combination of output and next state

for any given enabled actor.

4.1.2 The RMC dataflow language: RVC-CAL

The CAL actor language [11] directly captures the

description of DPN actors as making discrete steps trig-

gered by conditions on actor state and available input

tokens. In it, an actor is defined as a set of actions, each

action capturing a part of the firing rule of an actor along

with the part of the firing function that pertains to the input/

state combinations enabled by that partial rule.

An action is enabled according to its input patterns and

guard expressions. Input patterns define the amount of data

that are required on the input sequences, whereas guards

are boolean expressions on the current state and/or on input

sequences that need to be satisfied for enabling the exe-

cution of an action.

CAL is a domain-specific language designed to support code

analysis techniques due to its DPN MoC nature. Thus, a set of

directives is provided to a compiler code so that it can apply

numerous optimizations during code synthesis. An example of

such optimizations is the static scheduling of actors (a series of

firings that can be executed without testing their firing rules) for

some network partitions at compile time [12, 14, 22, 23]. As

already mentioned, CAL can also be directly synthesized to

software and hardware [21, 24, 25]. Within MPEG RMC, a

subset of the more general CAL language, called RVC-CAL,

has been standardized by ISO/IEC MPEG [26].

As an example, Fig. 4 depicts a CAL actor which is part

of the JPEG encoder presented in Sect. 7.

5 Design space exploration

CAL language, by means of its operators, expresses the

intrinsic parallelism of algorithms in the dataflow programs

Fig. 2 The proposed design flow. From the application and platform modeling to co-synthesis

Fig. 3 An example of architectural description specifying a Freescale

QorIQ P4080 platform

J Real-Time Image Proc (2014) 9:251–262 255

123



at different granularity levels. However, when dealing with

highly complex signal processing and communication

applications, which are usually specified by several tenths

of thousands of source code, it is not always easy to

understand if the exposed degree of parallelism is appro-

priate or not for the chosen processing platform. In addi-

tion, the combinatorial explosion of the possible

partitioning and scheduling options that a dataflow network

offers, when its executed and mapped on a platform

composed of several processing units, opens a large design

space for the final implementation. Such design space is

certainly an opportunity for searching the best implemen-

tation following a given criteria.

This is the reason why the design of a dataflow model,

without any tool assisted or automatic design space

exploration, may results in bad quality implementations.

Indeed, nowadays, the design space exploration from da-

taflow abstraction is in itself a very active and wide subject

of research. In this study, only some key elements and

results show how such fundamental stage can be naturally

integrated in the design flow.

More results can be found in [15] and related references.

The following sections introduce two crucial dimensions

of the space exploration that are more related to the defi-

nition of the co-design components: the scheduling/

partitioning problem and the satisfaction of implementa-

tion constraints. Section 5.1 introduces the scheduling/

partitioning problem. Section 5.2 describes an approach

developed with the purpose of reducing the scheduling

overhead. Finally, Sect. 5.3 describes the approach capable

of minimizing the memory size requirement [27] of

achievable implementations.

5.1 Mapping

The mapping stage consists in partitioning and scheduling

the dataflow program according to the architecture. Par-

titioning consists of assigning a processing element (PE)

for each actor of the dataflow program. Scheduling con-

sists of ordering the execution of actors assigned to a

given partition. In general, the number of processing

elements is often lower than the number of dataflow

actors. This implies that several actors can be assigned to

a single PE, thus requiring the definition of a sequencer to

schedule them in time. The problem of scheduling and

partitioning a dataflow graph onto architecture with mul-

tiple PEs is NP-complete [28]. Therefore, heuristics with

polynomial-time complexity are widely used when dealing

with large-scale dataflow graphs. The scheduling/parti-

tioning is illustrated in the second step of Fig. 2, where

the color of actors on the dataflow program corresponds to

the PE assignment.

There are several possible strategies for scheduling and

partitioning a dataflow graph. Using the taxonomy of

[29], the static assignment strategy consists of a parti-

tioning defined at compile time, whereas scheduling is

done at runtime. Indeed, since CAL belongs to the DPN

MoC, actors have to be scheduled at runtime in the

general case.

In the proposed methodology, the static assignment

strategy is chosen for scheduling/partitioning dataflow

programs. A heuristic-based technique is applied to

the execution trace, which represents the execution of the

dataflow graph, to determine the partitioning using the

metrics extracted during the profiling stage. More pre-

cisely, an execution trace is a directed acyclic graph

(DAG), obtained during the simulation of the application,

where nodes represent executed actions, and edges rep-

resent dependencies on a state variable, a guard, a port or

a token. More details about traced-based heuristics for

yielding efficient partitioning and scheduling are given in

Ref. [30].

5.2 Static scheduling

Once the partitioning is determined by the mapping, actors

assigned on a given PE are scheduled dynamically, since

all of them are in general assumed to belong to the DPN

Fig. 4 The Quantization (Q) actor in the JPEG encoder written in

RVC-Cal

256 J Real-Time Image Proc (2014) 9:251–262

123



MoC. This may result in an unnecessary runtime overhead,

since actors are scheduled dynamically at runtime. How-

ever, scheduling statically (a subset of) those actors is

sometimes possible when they belong to more restricted

MoCs, viz., SDF and CSDF MoCs, which enable one to

reduce the unnecessary overhead. Several approaches have

been proposed to statically schedule CAL program [31].

Initial version of detecting and scheduling sub-partitions

classified as SSRs has been integrated in the dataflow

toolset known as ORCC (see Sect.*6.1). A method to

classify actors (MoC of an actor) as well as a static

scheduler that merges SDF/CSDF into coarse-grain actors

has been developed in ORCC [23].

5.3 Buffer dimensioning

According to the DPN MoC, actors communicate through

unbounded channels (it is a key property to guarantee

liveness). Nevertheless, channel capacity must be bounded

in the real world applications. Unfortunately, bounding

channels may introduce artificial deadlocks. A buffer

dimensioning stage has been developed with the objective

of minimizing the channel capacity, without introducing

deadlocks. To this end, a simulation-based analysis is

conducted where channels capacities are determined by

updating their status after each firing. Statistically, repre-

sentative input stimuli representing typical usage scenarios

are used to drive the simulation analysis. A demand-driven

scheduling [32] strategy for a dataflow network, known to

minimize the buffer size requirement is used in the

dimensioning procedure. It consists of selecting actors

from the sinks (actors without output channels) to the

sources (actor without input channels) via predecessors

until the first one can fire. Once an actor has fired, the

scheduler restarts from the sinks.

6 Code generation

The described design flow aims at generating both software

components and hardware descriptions for the different

partitions. On one hand, the software synthesis consists of

generating pieces of code for the different application

partitions assigned on processor-based PEs. C and C??

are the target language, since they can be ported on

numerous architectures. On the other hand, the hardware

synthesis has the objective of automatically generating the

HDL code ready for RTL synthesis from the different

application partitions assigned to FPGAs.

The following section describes the code generation

tools which support the code generation of CAL programs

onto different platforms. ORCC and OpenForge are pre-

sented in Fig. 5. Their input is a partition of the dataflow

program. The input dataflow program is serialized in an

XDF network, an XML format for the definition of hier-

archical dataflow graphs. The outputs of the toolchains are

both implementation software components and hardware

descriptions which are automatically generated and ready

for compilation or RTL synthesis.

6.1 ORCC

The Open RVC-CAL Compiler or ORCC [33] is a com-

piler infrastructure dedicated to the CAL language of

which the paper authors are contributors to the main effort

provided by the INSA of Rennes. ORCC can be seen as a

collection of eclipse plug-ins that enable to synthesize code

from CAL (see Fig. 5). The front-end consists in parsing

the dataflow program and translating it to an intermediate

representation (IR) in static single assignment (SSA) form.

Transformations may be applied depending on the target

language and platform. Finally, the back-ends generate

code from IR. Several back-ends target various imple-

mentation languages (C, C??, LLVM, etc.). For the co-

design tool, two back-ends have been developed by the

paper authors.

6.1.1 C?? back-end

A first back-end translates the IR into C?? code. A naive

implementation of a dataflow program would be to create

one thread per actor of the application. However, distrib-

uting the application among too many threads results in too

much overhead due to too many context switches. Instead,

a more appropriate solution that avoids generating too

many threads per core has been developed. The execution

of actors is done by a single thread, which represents a

user-defined scheduler. This scheduler selects the sequence

of the actors to be executed. In addition, if desired by the

user, the scheduler can create as many threads as existing

cores on multicore platform. Finally, the generated code

has dependencies to a portable support library. This library

enables the application to instantiate actors and FIFOs, to

schedule actors at runtime using a user-defined scheduler

as well as to support the inter-partition communications

by instantiating multiplexers, demultiplexers and I/O

interfaces.

6.1.2 XLIM back-end

To generate synthesizable HDL code, a low-level IR called

XLIM (XML language-independent model) has been

defined for the generation of the input to the HDL synthesis

tool. The front-end (OpenForge) that parses and translates

CAL to XLIM was used in Ref. [21]. Since then it has been

J Real-Time Image Proc (2014) 9:251–262 257

123



substituted by a new tool. The new XLIM back-end has

been developed with the objective of an extended language

support and to improve performance on the generated HDL

code. This back-end is described in full details in Ref. [34].

Also, it should be mentioned that the XLIM back-end

offers the automatic instantiation of different Xilinx IP-

Core for different interfaces like Ethernet and PCI-Express.

6.2 OpenForge

OpenForge [35] is a behavioral synthesis tool that trans-

lates the XLIM IR into a hardware description expressed in

Verilog. Initially it was developed by Xilinx, but since

2009, it has been released to the public domain. Since then,

the papers authors have maintained and extended the

OpenForge’s capabilities to fully support the ISO standard

version of CAL. OpenForge turns the XLIM into a web of

circuits built from a set of basic operators (arithmetic,

logic, flow control, memory accesses and the like). The

synthesis stage can also receive directives driving the

unrolling of loops, or the insertion of registers to improve

the maximal clock rate of the generated circuit. The final

result is a synthesizable Verilog file that can be synthesized

to RTL for Xilinx FPGAs. The generated Verilog contains

the circuit of the actor and exposes asynchronous hand-

shake style interfaces for each of its ports. The generated

Verilog actors are connected in the same way as in the

XDF network graph using FIFO buffers into complete

systems. Finally, the FIFO buffers can be synchronous or

asynchronous, thus making the support of multi-clock-

domain dataflow designs a feature out of the box.

7 Experiments

Two different image processing models were developed for

the experiments: a motion JPEG codec and an MPEG 4 SP

decoder. The experiments are separated in three categories:

the first one is focusing on the reconfigurable hardware, the

second one is on multicore, and finally the third one is

highlighting the co-synthesis for heterogeneous platforms.

7.1 Hardware synthesis

This experiment compares the automatically generated HDL

code of a CAL application with a handwritten HDL code in

terms of throughput and resource occupation. A comparison

between two models is given. The first one is a baseline

profile JPEG encoder written in CAL, and the second one is a

VHDL JPEG encoder from the OpenCores project [36].

Figure 6a depicts the CAL JPEG encoder where actors are at

the encoding DCT, quantization and zigzag scan (Q-ZZ),

variable-length encoding (Huffman) and the bitstream

organizer and writer which generates a 4:2:0 JPEG file

(Syntax Writer). As for the VHDL encoder, which is repre-

sented in Fig. 6b, the DCT, Q and ZZ are processed in par-

allel for the luminance and chrominance blocks. Finally, this

VHDL encoder uses FIFO for its functional blocks, and this

is reason why it was chosen for this experiment.

Both encoders use a Xilinx Virtex 6 FPGA. Table 1

indicates the throughput of both encoders for encoding two

images with different resolutions and the throughput of this

images for two different clock frequencies. The result of

this experiment shows that the handwritten VHDL JPEG

encoder is only 1.5 times faster when compared with the

automatically generated HDL. The VHDL encoder is faster

because of two reasons. Firstly, it uses the FDCT IP core

accelerator from Xilinx and secondly, the Y-UV blocks are

processed in parallel. The splitting of the Y, U and V

components for DCT, Q, ZZ and VLC blocks is a possible

optimization for the CAL encoder.

Table 2 compares the resource usage of the VHDL and

CAL encoders. The CAL encoder uses 3.65 times less regis-

ters, 1.6 times less LUTs pairs and 4 times more of DSP48E1

than the former one. The number of DSP blocks used is neg-

ligible because it represents only 1.6 % of the available DSP

Fig. 5 The ORCC compilation flow and the OpenForge synthesizer

258 J Real-Time Image Proc (2014) 9:251–262

123



blocks. Thus, it requires less FPGA logic resources than the

handwritten VHDL one in the given configuration. The

topology of the two designs explains the difference of the

results. The handwritten encoder is parallelized according to

color components, while the CAL one is not.

Another important comparison between both designs is

the number of source code lines. The handwritten VHDL

encoder requires 5.4 times more source code lines than the

CAL one, while the functionality blocks are the intercon-

nection between them are almost the same. We can also

notice that it can encode 4 Full HD images (1920 9 1080) in

less than a second at 80 MHz, and it can encode in real-time

512 9 512 images, which is decent performance, keeping in

mind that no optimization has been performed yet.

To compare the results with the state-of-the-art, we need

to extrapolate the results from Ref. [10]. Since JPEG

encoding and decoding process are symmetric, we assume

that their complexities are almost the same. The encoder is

three times faster than the decoder in [10] at 50 MHz. It

uses 4 times less LUTs, 2 times less flip-flops and 1.5 times

less BRAMs.

7.2 Software synthesis

In the literature, it is possible to find different implemen-

tations on the multicore using CAL [25, 37]. The experi-

ment reported here shows the latest designs obtained using

the described design flow in terms of speedup and

throughput. The execution platforms are a desktop com-

puter with an Intel Core i7-870 processor, with 4 cores at

2.93 GHz, and a Freescale P4080 platform, using a Pow-

erPC e500 processor with 8 cores at 1.2 GHz. In both cases,

it is only a single executable that is running up to the four

cores. Foreman (QCIF, 300 frames, 200 kbps), crew (4CIF,

300 frames, 1 Mbps) and Stockholm (720p60, 604 frames,

20 Mbps) are the sequences used. The alternative partitions

are described in Fig. 7. The blocks represented by a striped

background are distributed over different partitions.

Figure 7 represents the MPEG-4 Simple Profile.

Table 3 describes the framerate (in frame per second or

fps) of the decoder from 1 to 4 cores. The resulting speedup

is illustrated in Table 4 which reveals that it is possible to

achieve a significant speedup when more cores are

available.

Table 5 reports that the scalability is preserved when

changing the resolution of the video format. In terms of

speedup factor versus the single-core performance, results

are of the same order of magnitude than the ones presented

in Ref. [37]. In terms of absolute throughput, we experi-

ment a speedup of four compared to [37] for the P4080

when normalized at the same frequency.

7.3 Heterogeneous implementation

Finally, we implemented a complete heterogeneous system

composed of FPGAs and a processor to show the capa-

bilities of the co-synthesis toolchain. Additionally to the

JPEG encoder, we designed a JPEG decoder for creating a

motion JPEG codec, represented in Fig. 8. A Xilinx

Spartan-3 FPGA and a Virtex-6 FPGA are selected plat-

forms for the implementation. TCP/IP Ethernet and PCIe

are used to communicate between the host and the FPGAs.

TCP/IP Ethernet is implemented on the spartan 3 using the

lwIP IP-core while a PCIe IP-core was developed and

ported on the Virtex 6 board. The mapping separates the

encoding on the FPGA and the decoding on the host.

Fig. 6 Description of the RVC-CAL and the handwritten VHDL JPEG encoder

Table 1 JPEG encoder throughput

Type Resolution FPGA frequency

50 MHz 80 MHz

RVC-CAL HDL 512 9 512 48 ms 28.9 ms

Generated code 1920 9 1080 373 ms 223 ms

Handwritten VHDL 512 9 512 31.2 ms 18.7 ms

1920 9 1080 317 ms 190 ms

J Real-Time Image Proc (2014) 9:251–262 259

123



In terms of throughput, we obtained 3.7 fps in the TCP/IP

configuration and 14 fps for the PCIe configuration for a

512 9 512 sequence. Comparing to the state-of-the-art

results, we note that it outperforms the ones from Refs. [8]

and [10] in the PCIe configuration. However, we still face a

communication-bound problem where the bandwidth slows

down the overall system. Indeed, the FPGA can encode at

34 fps and the host decodes at 350 fps. In the experiment, it

was measured that the platform with TCP/IP Ethernet

implementation presents a bandwidth of 6 Mbps, while the

PCIe provides a bandwidth of 8 Mbps. The theoretical

bandwidths are enough for the input test sequence. The

Table 2 FPGA occupation of each actor of the RVC-CAL JPEG encoder versus the handwritten VHDL JPEG encoder

Logic utilization RVC-CAL JPEG Encoder Handwritten VHDL Available On Virtex 6

RasterToMB FDCT Quant-ZZ Huffman Bits Writer Total

Registers 1082 1470 139 1599 625 4893 17869 160000

Slice LUTs 1007 3348 626 4145 1489 10167 16439 80000

BRAMs 8 x x 6 1 30 35 264

DSP48E1s x 2 5 1 x 8 2 480

Freq. (MHz) 93 89 208 90 171 86 74 x

Code Lines 200 579 75 416 416 1701 9242 x

Fig. 7 The MPEG 4 SP YUV-parallel decoder and its partitioning from 1 to 4 cores

Table 3 Framerate of the YUV-parallel MPEG-4 SP decoder at

QCIF, SD and HD resolutions

Platform Resolution Framerate (# of cores)

1 2 3 4

Intel i7-870 176 9 144 1580 2940 4303 5494

704 9 576 104 178 267 340

1280 9 720 34 62 75 89

Freescale P4080 176 9 144 223 465 711 853

704 9 576 15 30 43 52

1280 9 720 5 9 13 18

Table 4 Speedup of the MPEG-4 decoder running on an X86 quad-

core and on a PowerPC e500 8-core processors

Platform Cores

1 2 3 4

Intel Core i7 1 1.86 2.72 3.47

Freescale e500 1 2.08 3.18 3.86

Table 5 Speedup of the MPEG-4 SP decoder on an Intel i7-870

processor at QCIF, SD and HD resolutions

Resolutions Cores

1 2 3 4

QCIF 1 1.86 2.72 3.47

SD 1 1.71 2.56 3.27

HD 1 1.8 2.6 3.6

260 J Real-Time Image Proc (2014) 9:251–262

123



measures tend to indicate that the hand-checking protocol to

synchronize accesses to external memory is (for instance,

the PCIe driver does not yet use DMA to communicate data

to the external memory) the bottleneck for the system per-

formance. Future developments will include improvements

to the bandwidth as well as the hand-checking protocol

(DMA, burst-mode, etc.) that remains library components

of the experimental design flow process.

8 Conclusions and future work

The paper presented a high-level dataflow-based method-

ology that provides a unified and portable approach for the

hardware–software co-design. The portability of applica-

tions has been demonstrated by validating several config-

urations onto different platform architectures. This design

feature makes possible to test and validate the performance

of a large number of design option, fundamental feature

enabling the rapid prototyping of applications onto heter-

ogeneous architectures.

From the design space exploration side, future works of

the design flow will focus on the improvement of the

scheduling and partitioning heuristics. Particularly, some

performance improvements may result from a refinement of

the simple assumptions on the communication model

between partitions. Another intriguing research direction

consists of exploiting finer granularity and architecture-

aware parallelism such as SIMD and MIMD within the

source code synthesis of actor executions. Such opportunity

may enable to take advantage of instruction-level parallelism

of VLIW or GPU architectures. From the implementation

side and synthesis of interconnections, works are in progress

for improving the communication bandwidth obtainable

between PEs for the most used interface components.

References

1. De Micheli, G.: Hardware synthesis from C/C?? models. In:

Proceedings of Design, Automation and Test in Europe Confer-

ence and Exhibition, pp. 382–383 (1999)

2. Gupta, R., De Micheli, G.: Hardware–software cosynthesis for

digital systems. Des. Test Comput. IEEE 10, 29–41 (1993)

3. Kalavade, A., Lee, E.: A hardware–software codesign method-

ology for DSP applications. Des. Test Comput. IEEE 10, 16–28

(1993)

4. Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A.,

Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A., Sento-

vich, E., Suzuki, K., Tabbara, B.: Hardware–software co-design of

embedded systems: the POLIS approach. Kluwer, Norwell (1997)

5. Hoare, C.A.R.: Communicating sequential processes. Commun.

ACM 21, 666–677 (1978)

6. Dennis, J.B.: First version of a data flow procedure language. In:

Symposium on Programming, pp. 362–376 (1974)

7. Kahn, G.: The Semantics of simple language for parallel pro-

gramming. In: IFIP Congress, pp. 471–475 (1974)

8. Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., Deprette,

E.: System design using Khan process networks: the Compaan/

Laura approach. In: Proceedings of Design, Automation and Test

in Europe Conference and Exhibition, vol. 1, pp. 340–345 (2004)

9. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.-P.: Peace: a

hardware–software codesign environment for multimedia

embedded systems. ACM Trans. Des. Autom. Electron. Syst. 12,

24:1–24:25 (2008)

10. Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J.,

Haubelt, C., Teich, J., Meredith, M.: SystemCoDesigner—an

automatic ESL synthesis approach by design space exploration

and behavioral synthesis for streaming applications. ACM Trans.

Des. Autom. Electron. Syst. 14, 1:1–1:23 (2009)

11. Eker, J., Janneck, J.: CAL Language Report, Tech. Rep. ERL

Technical Memo UCB/ERL M03/48, University of California at

Berkeley (2003)

12. Ersfolk, J., Roquier, G., Jokhio, F., Lilius, J., Mattavelli, M.:

Scheduling of dynamic dataflow programs with model checking.

In: IEEE Workshop on Signal Processing Systems (SiPS),

pp. 37–42 (2011)

13. Ersfolk, J., Roquier, G., Lilius, J., Mattavelli, M.: Scheduling of

dynamic dataflow programs based on state space analysis. In:

IEEE Workshop on International Conference on Acoustics,

Speech, and Signal Processing (ICASSP) (2012)

14. Janneck, J.: A machine model for dataflow actors and its appli-

cations. In: 45th Annual Asilomar Conference on Signals, Sys-

tems, and Computers (2011)

15. Lucarz, C.: Dataflow programming for systems design space

exploration for multicore platforms. PhD thesis, Lausanne, (2011)

16. Ab Rahman, A.A.-H., Prihozhy, A., Mattavelli, M.: Pipeline

synthesis and optimization of FPGA-based video processing

applications with CAL. EURASIP J. Image Video Process.

2011(1), 19 (2011)

17. Pelcat, M., Nezan, J., Piat, J., Croizer, J., Aridhi, S.: A system-

level architecture model for rapid prototyping of heterogeneous

multicore embedded systems. In: Conference on Design and

Architectures for Signal and Image Processing (DASIP) (2009)

18. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous

data flow programs for digital signal processing. IEEE Trans.

Comput. 36(1), 24–35 (1987)

19. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cyclo-

static data flow. In: International Conference on Acoustics,

Fig. 8 The RVC-CAL JPEG codec

J Real-Time Image Proc (2014) 9:251–262 261

123



Speech, and Signal Processing (ICASSP-95), vol. 5, pp. 3255–

3258 (1995)

20. Lee, E., Parks, T.: Dataflow process networks. Proc. IEEE 83,

773–801 (1995)

21. Janneck, J., Miller, I., Parlour, D., Roquier, G., Wipliez, M.,

Raulet, M.: Synthesizing hardware from dataflow programs: an

MPEG-4 simple profile decoder case study. J. Signal Process.

Syst. 63(2), 241–249 (2009). doi:10.1007/s11265-009-0397-5

22. Eker, J., Janneck, J.W.: A structured description of dataflow

actors and its applications. Tech. Rep. UCB/ERL M03/13, EECS

Department, University of California, Berkeley (2003)

23. Wipliez, M., Raulet, M.: Classification and transformation of

dynamic dataflow programs. In: Conference on Design and

Architectures for Signal and Image Processing (DASIP),

pp. 303–310 (2010)

24. Wipliez, M., Roquier, G., Nezan, J.-F.: Software code generation

for the RVC-CAL language. J. Signal Process. Syst. 63(2),

203–213 (2009). doi:10.1007/s11265-009-0390-z

25. Amer, I., Lucarz, C., Roquier, G., Mattavelli, M., Raulet, M.,

Nezan, J.-F., Déforges, O.: Reconfigurable video coding on

multicore. IEEE Signal Process. Mag. 26, 113–123 (2009)

26. I. 23001-4:2009: Information technology—MPEG systems tech-

nologies—Part 4: Codec configuration representation (2009)

27. Liu, W., Gu, Z., Xu, J., Wang, Y., Yuan, M.: An efficient tech-

nique for analysis of minimal buffer requirements of synchronous

dataflow graphs with model checking. In: Proceedings of the 7th

IEEE/ACM International Conference on Hardware/Software

Codesign and System Synthesis (CODES?ISSS ’09), New York,

NY, USA, pp. 61–70. ACM (2009)

28. Coffman, E.G.: Computer and Job Shop Scheduling Theory.

Wiley, New York (1976)

29. Lee, E., Ha, S.: Scheduling strategies for multiprocessor real-time

DSP. In: Global Telecommunications Conference (GLOBECOM

’89), vol. 2, pp. 1279–1283. IEEE (1989)

30. Casale Brunet, S., Mattavelli, M., Janneck, J.: Profiling of data-

flow programs using post mortem causation traces. In: IEEE

Workshop on Signal Processing Systems (2012, in press)

31. Gu, R., Janneck, J. W., Raulet, M., Bhattacharyya,S.S.:

Exploiting statically schedulable regions in dataflow programs.

In: Proceedings of the 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP’09),

Washington, DC, USA, pp. 565–568. IEEE Computer Society

(2009)

32. Bunt,R.B., Hume, J.N.P.: A simulation study of a demand-driven

scheduling algorithm. In: Proceedings of the 3rd symposium on

Simulation of computer systems (ANSS’75), Piscataway, NJ,

USA, pp. 117–126. IEEE Press (1975)

33. The Open RVC-CAL Compiler Suite. http://orcc.sourceforge.net/

34. Bezati, E., Yviquel, H., Raulet, M., Mattavelli, M.: A unified

hardware/software co-synthesis solution for signal processing

systems. In: Conference on Design and Architectures for Signal

and Image Processing (DASIP), pp. 1–6 (2011)

35. OpenForge. https://openforge.sourceforge.net

36. OpenCores. http://www.opencores.org/

37. Carlsson, A.; Eker, J.; Olsson, T.; von Platen, C.: Scalable par-

allelism using dataflow programming. In: Ericson Review.

http://www.ericsson.com (2011)

Author Biographies

Endri Bezati is a PhD student at the SCI-STI-MM Multimedia

Group, Ecole Polytechnique Federale de Lausanne (EPFL), Switzer-

land. He received his Master Degree in Electrical Engineering and

Computer Science from Institut National des Sciences Appliquees of

Rennes (INSA), France. His research interests include high-level

programming, co-synthesis and massively parallel computing. He is

currently pursuing research on the topic ‘‘High Level Dataflow

Programming of Hybrid Massively-Parallel Architectures’’.

Richard Thavot is a PhD student and research staff at the SCI-STI-

MM Multimedia Group, Swiss Federal Institute of Technology

(EPFL), Switzerland. He received his Bachelor Degree in Electrical

Engineering and Computer science from University of Burgundy,

France. Later, he received his Master Degree in Datatronics from

ESIREM Dijon, France. His research interests include high-level

synthesis, co-design, advanced driver assistance systems, real-time

embedded systems, parallel processing and inter-process communi-

cation. He is currently pursuing research on the topic ‘‘High level

communication interface synthesis for a rapid heterogeneous systems

prototyping’’.

Ghislain Roquier is a post-doc researcher at Swiss Federal Institute

of Technology (EPFL), Switzerland. He is a member of the SCI-STI-

MM Multimedia Group. In 2005, he received the MSc degree in

Signal Processing and Telecommuncation from the Université de

Rennes I, France. Then, he joined the Institut National des Sciences

Appliquees (INSA), France, where he received his PhD in Electronics

in 2008. His main research interests include design and implemen-

tation of heterogeneous real-time embedded systems, rapid prototyp-

ing methodologies, multi-core computing, and multimedia signal

processing.

Marco Mattavelli started his research activity at the ‘‘Philips

Research Laboratories’’ of Eindhoven in 1988. In 1991, he joined

the Swiss Federal Institute of Technology (EPFL), where he got his

PhD in 1996. He has been the chairman of the Implementation Study

Group of MPEG ISO/IEC standardization committee for more than 10

years. For his work, he received the ISO/IEC Award in 1997, 2003

and 2011. He is currently teaching and leading a research team on

multimedia systems and architectures at École Polytechnique Fédé-

rale de Lausanne (EPFL) in Lausanne Switzerland. His current major

research activities include methodologies for specification and

modeling of complex systems and architectures for video coding.

He is the author of more than 100 publications and co-authors of

several books.

262 J Real-Time Image Proc (2014) 9:251–262

123

http://dx.doi.org/10.1007/s11265-009-0397-5
http://dx.doi.org/10.1007/s11265-009-0390-z
http://orcc.sourceforge.net/
https://openforge.sourceforge.net
http://www.opencores.org/
http://www.ericsson.com

	High-level dataflow design of signal processing systems for reconfigurable and multicore heterogeneous platforms
	Abstract
	Introduction
	Related work
	Methodology
	Proposed design flow
	The co-design environment

	Application and architecture models
	Application model: dataflow with firing
	Dataflow process networks
	The RMC dataflow language: RVC-CAL


	Design space exploration
	Mapping
	Static scheduling
	Buffer dimensioning

	Code generation
	ORCC
	C++ back-end
	XLIM back-end

	OpenForge

	Experiments
	Hardware synthesis
	Software synthesis
	Heterogeneous implementation

	Conclusions and future work
	References


