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The non-linear turbulent regimes in the tokamak scrape-off layer (SOL) are identified according

to the linear instability responsible for the perpendicular transport. Four regions of the

SOL operational parameters are determined where turbulence is driven by the inertial or

resistive branches of the ballooning mode or of drift waves. The analysis, based on the

linear electrostatic drift-reduced Braginskii equations, evaluates the pressure scale length self-

consistently from the balance between plasma losses at the vessel and perpendicular turbulent

transport. The latter is estimated by assuming that turbulence saturation occurs due to a local

flattening of the plasma gradients and associated removal of the linear instability drive; it

is also shown that transport is led by the mode that maximizes the ratio of the linear

growth to the poloidal wavenumber. The methodology used to identify the turbulent regimes

is confirmed by the results of non-linear simulations of SOL turbulence. The identification

of the turbulent regimes, the predicted pressure scale length, and the poloidal

wavenumber of the leading mode are in reasonable agreement with non-linear simulation

results. [http://dx.doi.org/10.1063/1.4821597]

I. INTRODUCTION

By governing the heat load on the plasma facing com-

ponents, controlling the power and particle balance, and

regulating the impurity dynamics, the scrape-off layer

(SOL) is of fundamental importance to determine the per-

formance of a tokamak.1 The plasma dynamics in this

region results from the plasma outflow from the core, tur-

bulent transport across the magnetic field lines, parallel

flow, and losses at the limiter or divertor plates. The

understanding of the interplay between those phenomena is

necessary to optimally operate present and future tokamak

devices.

A number of instabilities, driven by magnetic unfavour-

able curvature and plasma gradients, are possibly responsible

of SOL plasma turbulence2–6 and different turbulent regimes

have been experimentally identified.7 These regimes have

also been identified by low-frequency, non-linear electro-

magnetic models.2,3,8–12 Among these instabilities, balloon-

ing modes (BMs) and drift waves (DWs) are thought to play

the most important role.

BMs are curvature driven instabilities destabilized

when the plasma pressure gradient points in the same direc-

tion as the magnetic field line curvature, in the presence of

finite resistivity, electron mass, or plasma b.13–15 DWs are

caused by a pressure gradient and are destabilized by either

finite electron mass or resistivity.16–18 The linear and non-

linear behaviors of these modes have been extensively

studied.2,3,8–11,13–27 Both BMs and DWs can be active in

the SOL, but the knowledge of the conditions under which

one or the other dominates is still lacking, despite the fact

that this is essential to understand and predict the plasma

dynamics in the SOL region. The goal of the present paper

is to identify the SOL turbulent regimes, determining the

driving instability, as a function of the SOL operational

parameters.

In a previous work,28 we have presented a detailed

description of the linear properties of the BM and DW

modes, providing also a tool to identify the nature of the

fastest growing linear modes, once the SOL pressure gradi-

ent length is known. This is a starting point of the present

work, where we determine the instability dominating the

non-linear plasma dynamics, i.e., the mode that leads to the

major contribution to turbulent transport. Our analysis con-

siders the pressure scale length as the self-consistent result

of the interplay between plasma losses and turbulent trans-

port, and that the mode dominating the non-linear plasma

dynamics does not necessarily correspond to the fastest

growing mode.

Our study is made possible by the investigation of the

mechanisms leading to the saturation of the linearly unstable

modes.29 For typical SOL parameters, the saturation is pro-

vided by the gradient removal mechanism, i.e., the saturation

of the linear mode due to the non-linear flattening of the

driving plasma gradients. The gradient removal theory pro-

vides an estimate of the plasma pressure scale length as a

function of the SOL operational parameters, in quantitative

good agreement with simulation29 and experimental

results.30 It also allows us to identify the instability that dom-

inates the non-linear dynamics. By studying the nature of
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this instability, we can determine the SOL turbulent regimes

as a function of the SOL operational parameters, i.e., the

safety factor, q, the magnetic shear, ŝ, the resistivity, �, and

the ion to electron mass ratio, mi/me. Our work concentrates

on a relatively simple, circular, inner-wall limited configura-

tion. Understanding a circular configuration is a departure

point for studying more complicated geometries and

regimes.

We also report on a set of non-linear simulations that

support our methodology to identify the SOL turbulent

regimes. The simulations are performed by using the GBS

code,29 a flux-driven code that implements the drift-reduced

Braginskii equations (see, e.g., Refs. 2 and 31) with a set of

boundary conditions describing the magnetic pre-sheath en-

trance.32 The main feature of GBS is the capability of evolv-

ing fluctuations and background self-consistently, without

imposing a fixed background gradient, and with no scale sep-

aration between fluctuations and equilibrium quantities. The

code is therefore ideal to study the self-consistent formation

of the plasma pressure gradient and, as a consequence, the

SOL turbulent regimes as a function of the operational

parameters.

The paper is organized as follows. After the

Introduction, in Sec. II, we introduce the SOL plasma

model used throughout our study. In Sec. III, we describe

the non-linear saturation mechanism at play in the SOL,

and we calculate the equilibrium pressure scale length

depending on the SOL operational parameters. In Sec. IV,

we describe the SOL turbulent regimes, and we present the

investigation of the transitions among those. Section V is

focused on the description of non-linear simulations carried

out with the GBS code, supporting the methodology that we

have previously described. Finally, we draw our conclusions

in Sec. VI.

II. THE MODEL

Our study of plasma turbulence in the SOL is based on

the two-fluid, electrostatic, non-linear, drift-reduced

Braginskii equations.29 The fluid approach is justified by the

high plasma collisionality in the SOL.

For the sake of simplicity, we consider Ti � Te, since

the fundamental properties of the dominant SOL instabil-

ities, BMs, and DWs can be captured within a cold-ion

model. The ion temperature gradient instability will be the

subject of a forthcoming study and it is believed to be of

secondary importance at the high resistivity characterizing

the tokamak SOL.22 We also consider the electrostatic

limit, neglecting the ideal branch of the BM. The role

of the ideal BM in SOL turbulence is investigated in

Ref. 30.

In the drift-reduced limit, we assume for the perpendicu-

lar velocities V?i ¼ VE�B þ Vpol and V?e ¼ VE�B þ V�e,

where VE�B ¼ ð�r/� bÞ=B is the E� B drift velocity,

V�e ¼ b�rpe=ðenBÞ is the electron diamagnetic drift ve-

locity and Vpol is the ion polarization velocity (see, e.g., Ref.

33). The equations that describe the evolution of density, n,

potential, /, electron parallel velocity, Vke, electron tempera-

ture, Te, and ion parallel velocity, Vki, are

@n

@t
¼ �R½/;n� þ 2½ĈðpeÞ � nĈð/Þ� �rkðnVkeÞ

þ Sn þDnðnÞ
@r2
?/
@t

¼ �R½/;r2
?/� � Vkirkðr2

?/Þ þ
2ĈðpeÞ

n
þ 1

n
rkjk

þ 1

3n
ĈðGiÞ þDxðr2

?/Þ

@Vke
@t
¼ �R½/;Vke� � VkerkVke þDVkeðVkeÞ (1)

þmi

me
rk/�

1

n
Terkn� 1:71rkTe þ

�

n
jk �

2

3n
Ge

� �
@Te

@t
¼ �R½/;Te� þ

4

3

7

2
TeĈðTeÞ þ

T2
e

n
ĈðnÞ � TeĈð/Þ

� �

þ 2

3

Te

n
0:71rkjk �

2

3
TerkVke � VkerkTe

þDTe
ðTeÞ þ STe

@Vki
@t
¼ �R½/;Vki� � VkirkVki �

1

n
rkpe

� 2

3n
rkGi þDVkiðVkiÞ;

where R is the tokamak major radius, � ¼ Re2n0=ðcs0mirkÞ
is the normalized parallel resistivity, being rk ¼ 1:96

n0e2se=me the parallel Spitzer conductivity. The source

terms Sn and STe
mimic the flow of plasma into the SOL

through the last closed flux surface. The terms Df ðf Þ repre-

sent small perpendicular diffusion added for numerical rea-

sons. Ge and Gi are the gyroviscous part of the pressure

tensor (see Ref. 31 for their explicit expression). The Poisson

brackets are expressed as ½f ; g� ¼ b � ðrf �rgÞ, where b is

the unit magnetic field vector and the curvature operator is

Ĉðf Þ ¼ B=2½r �ðb=BÞ� � rf . In Eqs. (1), and in the remain-

der of the present paper, we normalize n to the reference den-

sity n0, Te to the reference temperature Te0; / to Te0=e; Vke
and Vki to cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
(and therefore cs to cs0), and time t

to R=cs0. Lengths in the perpendicular direction are adimen-

sionalized to qs0 ¼ cs0=Xci and in the parallel direction to R.

For simplicity, we consider the system of Eqs. (1) in s�
a circular geometry34 with a toroidal limiter positioned on the

high field side equatorial midplane of the device. In this ge-

ometry, operators are computed in the � ¼ a=R! 0 limit (a
is the tokamak minor radius). Therefore, the Poisson brackets

reduce to ½f ; g� ¼ @yf@rg� @rf@yg, where r is the flux coordi-

nate and corresponds, in a circular magnetic flux surface con-

figuration, to the radial direction, while y is the coordinate

perpendicular to r and B. In the �! 0 limit, the plane (r,y)

coincides with the poloidal plane and, as a consequence,

y ¼ ah, where 0 < h < 2p is the poloidal angle, with h ¼ 0

and h ¼ 2p at the outer midplane. Moreover, the expression

of the curvature operator is Ĉðf Þ ¼ sin h@rf þ ðŝh sin h
þ cos hÞ@yf , where ŝ ¼ ða=qÞdq=dr is the magnetic shear, the

perpendicular Laplace operator is r2
?f ¼ @2

r f þ 2ŝh@2
r;yf

þ ½1þ ðŝhÞ2�@2
y f , and the parallel gradient reads as

rkf ¼ @zf , where z is the direction parallel to the field lines,

0 < z < 2pq. The system of Eqs. (1) is completed by an

appropriate set of boundary conditions at the limiter plates,

derived in Ref. 32:
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Vki ¼ 6cs

Vke ¼ 6cs expðK� /=TeÞ
@n

@y
¼ 7

n

cs

@Vki
@y

@/
@y
¼ 7cs

@Vki
@y

@Te

@y
¼ 0

r2
?/ ¼ �cos2a

@Vki
@y

� �2

þ cs

@2Vki

@y2

" #
;

(2)

where K ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2pmeÞ

p
’ 3, a is the angle between the

magnetic field and the limiter, and terms related to radial

gradients have been neglected.

The system of Eqs. (1) with the boundary conditions in

Eqs. (2) is able to describe the quasi-steady state SOL regime

which results from the interplay of the plasma outflow from

the core, perpendicular transport, and losses at the limiter

plates. The estimate of the plasma density scale length in this

quasi-steady regime is the focus of Sec. III.

III. ESTIMATE OF THE SOL PLASMA GRADIENT
LENGTH

In the SOL, the plasma pressure scale length results

from a balance between turbulent radial transport and paral-

lel losses. Different possible mechanisms have been pro-

posed to provide saturation of the linear modes during the

non-linear phase (see, e.g., Refs. 8, 11, 29, and 35), therefore

setting the amplitude of the plasma fluctuations and the

related radial turbulence level. In the limit of negligible

E�B shear flow, in Ref. 29, two saturation mechanisms are

shown to play a role in the SOL: the growth of the Kelvin-

Helmholtz (secondary) instability and the gradient removal

mechanism, i.e., the local flattening of the plasma gradients

and associated removal of the instability drive. Analytical

estimates and numerical simulations show that the gradient

removal saturation mechanism is at play in the typical re-

gime of SOL turbulence.29

A complete description of the gradient removal mecha-

nism is given in Ref. 29; here, we summarize its main fea-

tures. Saturation occurs when the radial gradient of the

perturbed density becomes comparable to the radial gradient

of the background density, i.e., kr ~n � �n=Ln, where Ln is the

radial length of the background density and kr denotes the

typical radial wavevector of the instability. (The tilde indi-

cates fluctuating quantities, while the overbar denotes equi-

librium quantities, e.g., n ¼ �n þ ~n.) In the following, we

therefore assume Ln � Lp � LT . The time and poloidal aver-

aged turbulent E� B radial particle flux can be estimated as

Cr ¼ Rh~n@y
~/iy � Rky

~/~n, where ky is the poloidal wave-

number of the mode dominating transport. Since the electric

potential fluctuation can be evaluated from the leading order

terms in the density equation, @tn ’ �R½/; n�, as
~/ � c~nLn=ð�nRkyÞ, where c is the linear growth rate of the

mode that dominates the turbulent dynamics, we obtain an

estimate for the radial flux, Cr � c�n=ðk2
r LnÞ. For both DWs

and BMs, we can assume kr �
ffiffiffiffiffiffiffiffiffiffiffi
ky=Ln

p
, following non-local

linear theory methods outlined in Refs. 24, 36, and 37.

In order to obtain an estimate of Ln, we write a balance

between the radial particle flux and the parallel losses at the

limiter plates, i.e., @rCr � Cr=Ln � �ncs=q, as the plasma flux

to the limiter can be neglected compared to the parallel one.

Substituting the expressions for Cr into the particle balance,

we obtain

Ln �
q

cs

c
ky

� �
max

; (3)

where the ratio of the linear growth rate to the poloidal

wavenumber has to be maximized over the unstable modes

present in the system.

Equation (3) allows us to predict Ln as a function of the

SOL operational parameters: me/mi, �, q, R=qs, and ŝ. For

this purpose, we first evaluate the growth rate of the linear

modes described by the system of Eqs. (1), as a function of

ky and R/Ln, having fixed the SOL operational parameters.

We then maximize c=ky over ky, obtaining ðc=kyÞmax as a

function of R/Ln (with all the other parameters fixed). We

then seek for the value of R/Ln that satisfies Eq. (3), i.e.,

ðc=kyÞmax ¼ Lncs=q, obtaining our Ln prediction. We note

that c is obtained by linearizing Eqs. (1) as

c~n ¼ R

Ln
iky

~/ þ 2Ĉð ~Te þ ~n � ~/Þ � rk ~Vke ;

cr2
?

~/ ¼ 2Ĉð~n þ ~TeÞ þ rkð ~Vki � ~VkeÞ;
me

mi
c ~Vke ¼ �ð ~Vki � ~VkeÞ þ rkð~/ � ~n � 1:71 ~TeÞ;

c ~Te ¼ g
R

Ln
iky

~/ þ 4

3
Ĉ

7

2
~Te þ ~n � ~/

� �

þ 2

3
1:71rkð ~Vki � ~VkeÞ �

2

3
rkVki;

c ~Vki ¼ �rkð~n þ ~TeÞ:

(4)

In system (4), the gyroviscous part of the stress tensor is

neglected; g ¼ Ln=LT is the ratio of the density to the elec-

tron temperature scale length. For simplicity, in the follow-

ing, we assume g ¼ 1. This is justified by simulation and

experimental results showing that g is of order unity. In fact,

in the non-linear simulation results presented herein,

g ’ 0:7, which corresponds to the typical value observed in

the simulations.37 Moreover, limited plasmas realized in the

JET, Alcator C-MOD, COMPASS, and Tore Supra tokamaks

(Ref. 38 and references therein), covering a wide range of

parameter, show 0:3 � g � 1:25. We ignore background E�
B flow (�/ is assumed to be independent of the radial coordi-

nate) and, since ky=kr �
ffiffiffiffiffiffiffiffiffi
kyLn

p
> 1, we also ignore the ra-

dial mode dependence. By writing the perturbed quantities in

the form ~f ¼ ~fky
ðzÞexpðikyyþ ctÞ, we reduce the system (4)

to a one-dimensional eigenvalue problem in the z direction,

where the laplacian operator is r2
? ¼ �k2

? ¼ �k2
y ½1

þðz=qŝÞ2�, and the curvature operator is defined as

Ĉ ¼ ikyC, being C ¼ ½cosðz=qÞ þ sinðz=qÞðz=qÞŝ�. We note

that a detailed analysis of the instabilities described by sys-

tem (4) has been presented in Ref. 28.
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The R/Ln estimate as a function of � and ŝ is showed for

q¼ 4 in Fig. 1(a) and for q¼ 8 in Fig. 1(b) (mi/me¼ 1836).

We observe that the gradient is steeper for negative ŝ and

low �, for both the q¼ 4 and the q¼ 8 case. Moreover, for

q¼ 4, R/Ln is higher than in the q¼ 8 case.

IV. THE SCRAPE-OFF LAYER TURBULENT REGIMES

As pointed out by our analysis of the SOL linear

modes,28 the main instabilities expected to play a role in the

SOL are the resistive and inertial branches of the ballooning

modes (RBM and IBM) and of the drift waves (RDW and

IDW). Ballooning modes have an interchange character and

are driven by the presence of magnetic field line curvature

and plasma pressure gradients. The dispersion relation that

describes the fundamental properties of BMs can be obtained

from Eqs. (4) by neglecting coupling with sound waves,

plasma compressibility, parallel flows in the density and tem-

perature equations, and the rkðnþ 1:71TeÞ term in Ohm’s

law. The obtained boundary value problem for / reads as

� 1þ z

q
ŝ

� �2
" #

/c ¼ 2C
R

Ln

ð1þ gÞ
c

/þ 1

�̂

@2/
@z2

; (5)

where �̂ ¼ � þ cme=mi. In the limit � ! 0, Eq. (5) reduces

to the dispersion relation for the IBM, while for me=mi ! 0

the RBM dispersion relation is retrieved. Both the RBM and

IBM growth rates are such that c=cI ! 1, where

cI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=Lp

p
, respectively, for rR ¼ 1=ðcIk

2
y q2�Þ ! 0, and

rI ¼ mi=ðcIkyq
ffiffiffiffiffiffi
me
p Þ ! 0.28 Stabilization of BMs is

observed for ky � 0:3cI, due to plasma compressibility. The

effect of magnetic shear is a reduction of the growth rate for

ŝ � 0 and ŝ � 1.28

The DW instability is driven by the E� B convection of

the background pressure gradient, coupled with the breaking

of the electron adiabaticity due to finite resistivity or finite

electron mass. In order to describe the fundamental proper-

ties of the DW, the following equation for / can be used:

ck2
?/ ¼

1

�̂

@2/
@z2
þ 2:94

�̂

@2ðk2
?/Þ

@z2
� 1

�̂c
½ikyð1þ 1:71gÞ� @

2/
@z2

;

(6)

where the curvature terms in Eqs. (4) are neglected as well

as the coupling with sound waves. In Eq. (6), we retrieve the

dispersion relation for the IDW, in the limit � ! 0, and the

RDW dispersion relation for me=mi ! 0. Typically, c � x�,
where x� ¼ kyR=Ln is the diamagnetic frequency, ky � 1

and kk assumes a finite value.

Which of these instabilities drives the SOL turbulent dy-

namics? The goal of the present paper is to describe the non-

linear turbulent regimes as a function of the SOL operational

parameters, i.e., to understand the nature of the instability re-

sponsible for the largest fraction of the radial transport. This

is achieved by evaluating the growth rate of the IBM, RBM,

IDW, and RDW, the inertial and resistive limits of Eqs. (5)

and (6), as a function of the SOL operational parameters, at

the ky and R/Ln given by Eq. (3). The turbulent regime is

defined according to the instability among those four that has

the highest c=ky value.

In Fig. 2, different colors are used to represent the non-

linear turbulent regimes at q¼ 4 and q¼ 8. At both values of

q, we retrieve some of the linear results of Ref. 28: DWs are

the dominant instability at low � and negative ŝ, where R/Ln

is high. At �� 10�2, the dominant instability is the IDW. On

the other hand, the BM regime extends in the region where

FIG. 1. Gradient removal estimate of

R/Ln, as a function of ŝ and � for q¼ 4

(a), and for q¼ 8 (b).

FIG. 2. Turbulent regimes for q¼ 4

(a), and for q¼ 8 (b); different colors

identify different regimes: RBM

(black), IBM (grey), IDW (light blue),

and RDW (white). The red symbols

indicate the estimate of the transition

between regimes obtained in Sec. IV.
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gradients are more relaxed (ŝ > 0 and large �). We also

remark that, with respect to q¼ 4, the safety factor q¼ 8

favours BMs. This is in agreement with Ref. 28, which

shows that the R/Ln value at which the transition from BMs

to DWs occurs is a decreasing function of rR and rI, mean-

ing that, at higher q, steeper gradients are needed to develop

DWs. We finally note that, at q¼ 8, the IBM dominates at

the lowest values of � and positive ŝ, while it is not present

at q¼ 4.

In order to provide a complete and general estimate of

the parameter ranges where the different instabilities domi-

nate, we proceed to a more detailed analysis of the transition

between the instabilities. More precisely, we evaluate the

location in the operational parameters space of the five tran-

sitions observed in Fig. 2: RBM and IBM, RBM and IDW,

RBM and RDW, RDW and IDW, and IDW and IBM.

We first consider the transition between the RBM and

the IBM. We use the dispersion relations of the RBM and

IBM [the resistive and inertial limits of Eq. (5)] to obtain,

separately for these two branches, the expected R/Ln and the

c=ky of the mode dominating the non-linear dynamics. The

transition between the RBM and IBM regimes takes place

when their c=ky are equal, at a � value that depends on ŝ and

q, which is plotted in Fig. 3(a). We note that the white region

in Fig. 3(a) represents the parameter region in which the

RBM dominates over the IBM independently of �. This

region extends at ŝ < 0. BMs are, in fact, suppressed by neg-

ative shear, and the stabilisation is more efficient for the

IBM than for the RBM. For ŝ > 0, as the threshold occurs at

� � 1� 10�3, we expect the RBM to prevail over the IBM

in typical experimental conditions, where � � 10�2 � 10�3

Following a similar procedure and considering the resis-

tive and inertial limits of Eqs. (5) and (6), respectively, it is

possible to evaluate the transition between the RBM and the

IDW. This is shown in Fig. 3(b), which provides the value of

� above which the RBM prevails over the IDW. We observe

that the RBM dominates at positive values of ŝ and high q,

which are favourable to its growth, as previously noted.

In Fig. 3(c), we also show the value of � above which

the RBM prevails over the RDW. This is evaluated consider-

ing the resistive limit of Eqs. (5) and (6). The � threshold

diminishes with increasing q and ŝ. In Ref. 28, it is noticed

that the RBM dominates over the RDW for highly positive

and highly negative values of ŝ, and for high values of q,

which corresponds to low rR. These predictions agree with

the findings showed in Fig. 3(c). In the white region, the

RBM prevails on the RDW for all values of �.

In order to accurately describe the transition between

RDW and IDW, we follow a slightly different procedure. In

fact, as the growth rate of IDW is sensitive to ky, and ky can

be affected by the inclusion of even a small resistivity, we

cannot decouple the two instabilities. Therefore, we compute

the expected R/Ln by considering, for the gradient removal

mechanism, the linear growth rate given by Eq. (6), which

includes both RDW and IDW. At the R/Ln and ky found, we

then calculate the RDW and IDW growth rates, which we

compare, finding the value of � above which the RDW pre-

vail over the IDW, as a function of ŝ and q. This is shown in

Fig. 3(d). We note that the transition is symmetric with

respect to ŝ ¼ 0, as a consequence of the symmetry of Eq.

(6). The RDW onsets at values of � decreasing with q. This

is different than the conclusions reported in Ref. 28, where

the transition between the peak growth rate of two instabil-

ities was shown to depend on ŝ and to be independent of q.

Finally, we consider the transition between the IBM and

the IDW. To estimate this transition, we consider the inertial

limits of Eqs. (5) and (6), which are independent of �, as it is

our estimate of the transition between these two instabilities.

FIG. 3. Value of �, as a function of ŝ
and q, of the transition between RBM

and IBM (in the white region RBM

prevails on IBM independently of �)

(a), transition between RBM and IDW

(b), transition between RBM and

RDW (in the white region RBM pre-

vails on RDW independently of �) (c),

and transition between RDW and IDW

(d). In all cases, the first instability pre-

vails over the second one at � values

larger than the ones plotted.
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We find that, for ŝ � 1, the IDW prevail over the IBM for all

the values of q. For ŝ � 1, IBM dominates over IDW above a

q values that varies approximately linearly from q ’ 10 at

ŝ ¼ 1 to q ’ 7 at ŝ ¼ 3. The IBM is therefore the leading

instability for high q and for ŝ > 0; this generally agrees

with the observations presented in Ref. 28.

We can now use the transition estimates discussed above

to explain the SOL non-linear regimes displayed in Fig. 2.

Our estimates are plotted by using red symbols, showing a

good agreement with the observed transitions. For q¼ 4 and

for q¼ 8, for ŝ < 0, from low to high values of �, we essen-

tially observe the transition between three regimes: IDW,

RDW, and RBM. According to the results in Figs. 3(d) and

3(c), the transition between the IDW and the RDW, and

between the RDW and the RBM, respectively, occur at

higher � for q¼ 4 with respect to q¼ 8.

For ŝ > 0, we observe that the RDW regime disappears

as the RBM prevails on the RDW [see Fig. 3(c)]. At q¼ 4,

we observe the presence of two regimes; IDW and RBM

from low to high �, while at q¼ 8, at the highest ŝ and lowest

� values, also the IBM instability appears, in agreement with

the results in Fig. 3(a). We also observe that the RBM pre-

vails on the IDW for smaller values of � with respect to the

q¼ 4 case [see Fig. 3(b), where the � threshold between the

RBM and the IDW decreases with increasing q]. Finally, we

note that the application of our SOL turbulent regime analy-

sis for predicting the turbulent regime of a typical L-mode

discharge in the TCV tokamak39 (for � ’ 10�2; q ’ 5 and

ŝ ’ 2) points to the RBM regime.

V. NON-LINEAR SIMULATIONS

In Secs. III and IV, the equilibrium gradient and the

instability regimes are predicted, based on the gradient re-

moval theory and the evaluation of the linear growth rate.

Here, we present the results of non-linear simulations of

SOL turbulence that support our methodology to determine

the SOL turbulent regimes.

The simulations have been performed using the GBS

code, described in Ref. 31. The code was initially conceived

for simulating plasma turbulence in basic plasma physics

devices (see, e.g., Refs. 24, 25, 37, 40–42), and it has been

validated with the experimental results from the TORPEX

device.41,43 It has been further developed in order to describe

SOL turbulence.29–31 Since in the SOL fluctuations are com-

parable to background quantities, the code solves Eqs. (1),

with boundary conditions given by Eqs. (2), without separa-

tion of background and fluctuation quantities. Therefore, the

background pressure gradient is not fixed a priori and it

results from the self-consistent evolution of the plasma

profiles.

Typical SOL simulations results are described in Ref. 31.

The plasma outflow from the core is mimicked by a density

and a temperature source, Sn and ST, defined as

Sn;T ¼ expf�½ðr � rsÞ2=r2
s �g, with rs¼ 30 and rs ¼ 2:5.

Other simulation parameters are the major radius, R¼ 500,

and the domain dimensions, Lr¼ 100 and Ly¼ 800. After an

initial transient, a non-linear quasi-steady regime is reached,

as a balance between plasma outflow from the core, turbulent

transport and parallel losses at the vessel. Our analysis is

focused on this quasi-steady state regime. Among a number of

simulations that we have carried out, we focus and we present

the results of four simulations that belong to the four predicted

instability regimes: RBM, IBM, RDW, and IDW. The plasma

parameters of these four simulations are listed in Table I. We

first estimate the equilibrium R/Ln, using the gradient removal

theory, and we compare our prediction with the results of the

non-linear simulations. As reported in Table I, our estimates

show reasonable agreement with the simulations results, the

maximum relative error ranging from 10% to 25%. In Table I,

we also compare the gradient-removal predicted ky of the

dominant mode with the time averaged ky of the mode leading

to the maximum turbulent flux in the simulations. The uncer-

tainty affecting ky is estimated by considering a 610% varia-

tion of the c=ky value with respect to its maximum at the

predicted R/Ln (for comparison, we note that the standard

deviation of the time averaged particle flux, proportional to

c=ky, is approximately 25% of the time averaged particle

flux). We verify that all the non-linear simulations studied

herein satisfy the inequality
ffiffiffiffiffiffiffiffiffi
kyLn

p
> 1, and that they belong

TABLE I. Overview of the non-linear simulations input parameters and results. The radial window over which the non-linear R/Ln and ky are evaluated is

5 < r � rs < 17. The two values ky,min and ky,max are computed considering the ky range corresponding to a 6 10% variation of the value c=ky with respect to

its maximum at the R/Ln and ky predicted.

Simulation � me/mi ŝ q ID

R/Ln

simulation

R/Ln

estimated

ky

simulation

ky

estimated

ky,min

estimated

ky,max

estimated cRBM cIBM cRDW cIDW

RBM 0.5 1/800 1 8 on 4.41 3.71 0.09 0.05 0.03 0.07 2.28 ’ 0 0.12 ’ 0

RBM reduced me=mi 0.5 1/1600 1 8 on 4.30 … … … … … … … … …

RBM without ID 0.5 1/800 1 8 off 12.12 … … … … … … … … …

IBM 0.005 1/50 1 8 on 5.23 5.74 0.09 0.14 0.10 0.19 0.64 2.88 0.01 1.05

IBM reduced � 0.0005 1/50 1 8 on 5.64 … … … … … … … … …

IBM without ID 0.005 1/50 1 8 off 14.57 … … … … … … … … …

RDW 0.05 1/800 �0.7 4 on 16.30 12.46 0.13 0.18 0.14 0.24 1.20 ’ 0 1.46 ’ 0

RDW reduced me/mi 0.05 1/1600 �0.7 4 on 17.01 … … … … … … … … …

RDW without ID 0.05 1/800 �0.7 4 off 18.39 … … … … … … … … …

IDW 0.005 1/200 �1 4 on 16.99 12.49 0.18 0.2 0.17 0.25 0.13 ’ 0 0.03 2.92

IDW reduced � 0.0005 1/200 �1 4 on 16.68 … … … … … … … … …

IDW without ID 0.005 1/200 �1 4 off 13.81 … … … … … … … … …
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to the regime where the gradient removal mechanism is re-

sponsible for turbulence saturation. In Table I, we list the

growth rate of each instability separately, in order to identify

the regime of the four simulations. A detailed description and

analysis of the properties of the non-linear simulations fol-

lows, in order to identify and discuss the nature of the

transport.

Figs. 4–7 show the density equilibrium profiles, �n, and

typical snapshots of the density fluctuation, ~n, in the (r,y)

plane, for the identified RBM, IBM, RDW, and IDW simula-

tions, respectively. We define �n as the time and toroidal av-

erage of the density, evaluated during the quasi-steady state

phase of the simulation, and we calculate the fluctuating part

of the density as ~n ¼ n� �n. We now discuss a number of

tests that show that it is justified to identify the turbulent re-

gime according to the procedure used in Sec. IV.

First, for an identified resistive mode, a simulation with

a reduced value of me/mi is performed, or, for an identified

inertial mode, we carry out a simulation with reduced �. As

shown in Figs. 4–7, the change in the radial equilibrium gra-

dient length and the radial extent of the fluctuations is small,

confirming our prediction of being in a resistive or inertial

regime.

Second, in the four simulations considered, we turn off

the interchange drive (ID), i.e., the curvature terms in the

vorticity equation. We can infer the BM nature of turbulence,

by observing major effects following the ID turn off, while

small changes point to a DW regime. For BM simulations,

we remark that the average profiles in Figs. 4 and 5 lose their

ballooning character once the ID is turned off, R/Ln becomes

steeper, and the long streamers are broken into smaller struc-

tures in the case without ID (therefore, kr increases). This is

due to the fact that, while ky does not change significantly,

Ln decreases from the base case to the case without ID, and

therefore kr increases, according to the non-local estimate of

the radial eddy extension. For DW simulations, instead, there

is no observable difference between the equilibrium profiles,

following the ID turn off, and the nature of the fluctuations is

FIG. 4. Density equilibrium profile (top panels) and density fluctuation pro-

file (bottom panels) in the r–y plane for RBM simulation (left), the RBM

with reduced me/mi (center), and the RBM without ID (right). rs radial posi-

tion of the last closed flux surface, where the plasma source is located. FIG. 5. Same as Fig. 4, for the IBM.
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very similar (see Figs. 6 and 7). Moreover, in the simulation

with and without ID, the plasma profile is weakly dependent

on the poloidal angle, showing a non-ballooning character.

We conclude from this analysis that our simulations can be

classified as BM or DW dominated, as pointed out by our

methodology.

Finally, in order to reinforce the validity of our analysis,

we analyze the relation between potential and density fluctu-

ations, according to the methods proposed in Refs. 3 and 8.

For BMs, the vorticity equation imposes a p=2 phase shift

between / and n fluctuations, which are not correlated. In

case of DWs, the electrons are close to adiabaticity and the

amplitudes of / and n fluctuations are clearly correlated.8,9

Following Ref. 8, we introduce two analysis techniques to

investigate the relation between / and n: the phase shift

probability and the cross coherence analysis.

The phase shift probability is calculated at a fixed radial

position, by considering the FFT along y of the / and n fluc-

tuations, as a function of toroidal position and time. From

the FFT, we then compute the phase shift, �p 	 v < p,

corresponding to each ky, and we bin them as a function of

the toroidal position and time, with the proper weight given

by the power spectral density of the / and n fluctuations.

The phase shift probability between / and n is showed in

Fig. 8. As expected, for the BM simulations [Figs. 8(a) and

8(b)], the phase shift has a maximum at v 
 0:5p for the

dominant mode ky 
 0:1. For DW simulations [Figs. 8(c)

and 8(d)], we observe a phase shift with a maximum at v 
 0

for the dominant mode ky 
 0:1.

The cross coherence is computed at a fixed radial posi-

tion. The / and n fluctuations are considered as a function of

the poloidal and toroidal directions, and time, and normal-

ized to their standard deviation. We then evaluate the proba-

bility of finding both fluctuations at a certain ordered pair of

amplitudes and we display it in Fig. 9. The cross coherence

in Fig. 9(a), for the RBM, and Fig. 9(b), for the IBM, does

not show correlation between / and n, while the cross coher-

ence in Fig. 9(c), for the RDW, and Fig. 9(d), for the IDW,

shows a high correlation between / and n fluctuations. This

additional analysis supports our methodology to identify the

turbulent regime of the non-linear simulations.

FIG. 6. Same as Fig. 4, for the RDW. FIG. 7. Same as Fig. 4, for the IDW.
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VI. CONCLUSIONS

In the present paper, we have identified the non-linear

SOL turbulent regimes as a function of the SOL operational

parameters (q; �; ŝ, and mi=me) depending on the instability

responsible for the non-linear transport. The SOL plasma dy-

namics has been described by the electrostatic drift-reduced

Braginskii equations with cold ions, in the infinite aspect ra-

tio limit with a toroidal limiter at the equatorial high-field

side midplane. We have assumed that the linear instabilities

are saturated when the plasma pressure gradient is non-

linearly flattened by the growth of the unstable modes. This

has allowed us to predict the time-averaged plasma gradient

length, which is proportional to c=ky, where c is the linear

growth rate and ky the poloidal wavenumber of the instability

that dominates the non-linear dynamics.

We note that a number of modes are possibly unstable

in the edge and SOL regions of tokamak plasmas. While the

FIG. 8. Phase shift probability between
~/ and ~n weighted according to the

power spectral density for the RBM

(a), IBM (b), RDW (c), and IDW (d).

FIG. 9. Cross coherence between ~/
and ~n for the RBM (a), IBM (b), RDW

(c), and IDW (d).
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instabilities playing a major role in the tokamak SOL are

believed to be the resistive and inertial branches of BMs and

DWs, peeling-ballooning modes, external kinks, and sheath

modes4–6 might also become unstable. In the cold-ion regime

considered here, ion temperature gradient modes2,22 are

excluded, while trapped electron modes are also stable in the

SOL due to the fact that the bounce frequency of trapped

electrons is smaller than the collision frequency.

In the present study, we have focused our attention exclu-

sively on the resistive and inertial branches of BMs and DWs.

Using simplified models that retain the basic linear characteris-

tics of these instabilities, we have built a map in the operational

parameter space, defining the region in which each instability

drives transport [see Figs. 2(a) and 2(b) for q¼ 4 and q¼ 8]. We

have observed that DWs prevail at negative shear, IDW domi-

nates at low �, while positive shear and high q are favourable for

BMs. We have investigated the transition among the different

instabilities (the RBM-IBM, the RBM-IDW, the RBM-RDW,

and the RDW-IDW transitions) determining, in general, the

threshold value of � at which they take place. This is shown in

Fig. 3. Being the transition between the IBM and the IDW inde-

pendent of �, we have estimated the value of q at which this tran-

sition takes place as a function of ŝ. The estimates are in good

agreement with the transitions observed with the full model.

In order to verify the validity of our methodology, we

have performed a set of non-linear simulations, and we have

presented four of those, each belonging to a different insta-

bility regime. The simulations have been carried out with

GBS, a global, non-linear code that solves the drift-reduced

Braginskii equations. For each set of SOL parameters of the

non-linear simulations, we have predicted the instability

regime, R/Ln, and the ky of the saturated non-linear mode,

according to the gradient removal hypothesis. The predic-

tions and the results of the non-linear simulations show

reasonable agreement. In particular, the analysis of the turbu-

lence character (see Figs. 4–9) supports our methodology to

identify the non-linear turbulent regimes.

We remark that our analysis leads not only to the identifi-

cation of the SOL turbulence regimes but also to the prediction

of the steady state gradient and poloidal wavelength at satura-

tion, and therefore to the prediction of the main turbulence

properties. The model that we have presented is relatively sim-

ple and constitutes a framework which can be generalized to

the analysis of more complicated SOL configurations.
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