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Abstract

We introduce new sufficient conditions for a numerical method to approximate
with high order of accuracy the invariant measure of an ergodic system of stochastic
differential equations, independently of the weak order of accuracy of the method. We
then present a systematic procedure based on the framework of modified differential
equations for the construction of stochastic integrators that capture the invariant
measure of a wide class of ergodic SDEs (Brownian and Langevin dynamics) with
an accuracy independent of the weak order of the underlying method. Numerical
experiments confirm our theoretical findings.
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1 Introduction

We consider a system of (Itô) stochastic differential equations (SDEs)

dX(t) = f(X(t))dt+ g(X(t))dW (t), X(0) = X0, (1)

where X(t) is the solution in the space E, X0 ∈ E is the initial condition, f : E 7→ E, g :
E 7→ Em, and W (t) is a standard m-dimensional Brownian motion. The space E denotes
either E = R

d or the torus E = T
d, and this is specified when needed. With the exception

of some special cases, the solutions to (1) are not explicitly known, and numerical methods
are needed. We consider a one step numerical integrator for the approximation of (1) at
time t = nh of the form

Xn+1 = Ψ(Xn, h, ξn) (2)

where h denotes the stepsize and ξn is a random vector. The choice behind the numerical
method used to approximate (1), depends crucially on the type of the approximation
that one wants to achieve. In particular, for the approximation of individual trajectories
one is interested in the strong convergence properties of the numerical method, while
for the approximation of the expectation of functionals of the solution, one is interested
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in its weak convergence properties. The numerical approximation (2), starting from the
initial condition X0 of (1) is said to have local weak order p if for all functions1 φ :∈
C

2(p+1)
P (Rd,R),

|E(φ(X1))− E(φ(X(h)))| ≤ C(X0)h
p+1, (3)

for all h sufficiently small, where C(X0) is independent of h. Under appropriate conditions
one can infer “a global weak order p” from the local weak error [15] (see [16, Chap. 2.2]).
This results will be briefly discussed in Theorem 2.6 (we need a slight reformulation of the
existing results).

Strong and weak types of convergence relate to the finite time properties of (1) and
its numerical approximations. We say that the process X(t) is ergodic if it has a unique
invariant measure µ satisfying for each µ−integrable function φ and for any deterministic
initial condition X0 = x,

lim
T→∞

1

T

∫ T

0
φ(X(s))ds =

∫

E
φ(y)dµ(y), almost surely. (4)

Before considering the different sources of error, one needs to make sure that the
numerical approximation is itself ergodic. In particular, the case where the coefficients
are not globally Lipschitz is particularly challenging and it is still an active research area
[17, 13, 19, 20, 22, 9]. This important question is however not the focus of the present
paper as we will rather assume ergodicity of the numerical method. We recall that the
numerical method (2) is called ergodic if it has a unique invariant probability law µh with
finite moments of any order and

lim
N→∞

1

N

N∑

n=1

φ(Xn) =

∫

E
φ(y)dµh(y), almost surely, (5)

for all deterministic initial condition X0 = x and all µh-integrable functions φ.
We will say that the numerical method (2) has order r ≥ 1 with respect to the invariant

measure if

e(φ, h) :=

∣∣∣∣∣ limN→∞

1

N

N∑

n=1

φ(Xn)−
∫

E
φ(y)dµ(y)

∣∣∣∣∣ ≤ Chr. (6)

In the sequel, we will assume that the ergodic measure µ has a density function ρ∞. The
study of the error e(φ, h) in approximating the invariant measure, its relation with the
weak error and the construction of numerical method with high order of convergence with
respect to the invariant measure is the main focus of our paper. We mention that various
papers related to the study of e(φ, h) appeared in the literature. In [21] an error estimate
for e(φ, h) has been established for a variety of different numerical methods. In addition,
in [23] with a use of a global weak error expansion, an expansion of (6) in powers of
h was derived for Euler-Maruyama and the Milstein methods. This allowed the use of
extrapolation techniques to further reduce the bias in the calculation of the error e(φ, h)
between the numerical time average and its true value.

The error e(φ, h) was also the subject of study of [14]. Given an ergodic integrator
of weak order p for an ergodic SDE (1), it is shown that it has order r ≥ p for the

1Here and in what follows, Cℓ
P (R

d,R) denotes the space of ℓ times continuously differentiable functions
R

d
→ R with all partial derivatives with polynomial growth.
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invariant measure (6). In [12] an example of integrator with r > p is given: for the so-
called stochastic θ-method with θ = 1/2 applied to the Orstein-Uhlenbeck process, we
have e(φ, h) = 0 despite the weak order two of the method. Related works where such a
mismatch is mentioned are [3, 2, 10].

In this paper, we present two results for the numerical approximation of ergodic nonlin-
ear systems of SDEs. Firstly, we derive new sufficient conditions for an ergodic integrator
to have high order (6) for the invariant measure, possibly larger than its weak order of
accuracy (3). A crucial ingredient is a new expansion of the error e(φ, h) based on the
work [23], and the analysis in [4] of numerical invariant measures. Secondly, we introduce
a systematic procedure to design high order integrators for the invariant measure based on
modified differential equations for SDEs proposed in [1]. Our new methodology is based
on modified differential equations, which is a fundamental tool for the study of geometric
integrators for ODEs [6, 11]. It was recently extended to SDEs in [24, 4] for the backward
error analysis of stochastic integrators and in [1] for the construction of high weak order
integrators.

The paper is organized as follows. In Section 2, we present the framework and derive
a new expansion of the error e(φ, h). In Section 3, we derive our main results: sufficient
order conditions for the invariant measure of an ergodic integrator and a construction
procedure of high order integrators based on modified differential equations. In Section 4,
we apply our methodology and construct a range of new integrators based on the stochastic
θ-method for Brownian dynamics. Finally in Section 5, we present various numerical
investigations, that illustrate the behaviour of our new integrators and corroborate the
claimed orders of convergence.

2 Preliminaries

In Section 2.1, we describe some preliminary results related to ergodicity of SDEs and
their numerical approximations, using the standard framework of the Fokker-Planck and
backward Kolmogorov equations. In Section 2.2, We discuss a global error expansion for
both the weak error and the error with respect to the invariant measure.

2.1 Exact and numerical invariant measure for ergodic SDEs

Let us denote by ρ(x, t) the probability density of X(t) defined by (1) with initial condition
X0 = x. Then we have

E (φ(X(t))|X0 = x) =

∫

E
φ(y)ρ(y, t)dy, (7)

where ρ(y, t) is the solution of the Fokker-Planck equation

∂ρ

∂t
= L∗ρ, (8a)

ρ(y, 0) = ρ0(y), (8b)

here ρ0(y) = δ(y − x) (Dirac mass) for the deterministic initial condition of X(t) and L∗

is given by

L∗ρ = −∇y · (f(y)ρ) +
1

2
∇y · ∇y · (gT (y)g(y)ρ). (9)
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This operator is the L2-adjoint of

L := f(x) · ∇x +
1

2
g(x)gT (x) : ∇x∇x, (10)

the generator of the Markov process X(t) defined by (1). Recall that if ρ∞ is the density
of the invariant measure of (1) (assuming ergodicity), then ρ∞ is the unique stationary
solution of (8) and thus satisfies

L∗ρ∞ = 0. (11)

Next, we consider
u(x, t) = E (φ(X(t))|X0 = x) , (12)

where X(t) is the solution of (1). We note that u(x, t) is the solution of the backward
Kolmogorov equation

∂u

∂t
= Lu, (13a)

u(x, 0) = φ(x). (13b)

A formal Taylor series expansion in terms of the generator operator L of the Markov
process is derived in [24] for u and a rigorous finite term expansion is proposed in [4]
namely

u(x, h)− φ(x) =

l∑

j=1

hj

j!
Ljφ(x) + hl+1rl(f, g, φ)(x), (14)

for all positive integer l, with a bound of the form |rl(f, g, φ)(x)| ≤ cl(1 + |x|κl).

Remark 2.1. One way to turn u(x, h) = φ(x) + hLφ + h2

2 L2φ + · · · into a rigorous
expansion (14) is to restrict (1) to E = T

d as it was done in [4]. Another way is to follow
the approach in [23, Lemma 2] and assume that f, g are C∞ where derivatives of any order
are bounded. This together with the assumption that

|φ(x)| ≤ C(1 + |x|s) (15)

for some positive integer s are enough to prove that the solution u of (13) has derivatives
in space of any order that have a polynomial growth of the form (15), with other constants
C, s that are independent of t ∈ [0, T ], and this implies that (14) holds.

In terms of the numerical solution (2) one can define

U(x, h) = E(φ(X1)|X0 = x)), (16)

for the expectation at time h, where again for simplicity one assumes that the initial con-
dition X0 is deterministic. We make the following regularity and consistency assumption
on the integrator, which is easily satisfied by any reasonable numerical method.

Assumption 2.2. Let f, g be C∞ with bounded derivatives of any order. We assume for
all deterministic initial conditions X0 that

|E(X1 −X0)| ≤ C(1 + |X0|)h, |X1 −X0| ≤Mn(1 + |X0|)
√
h, (17)
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where C is independent of h small enough and Mn has bounded moments of all orders
independent of h. We assume that (16) has a weak Taylor series expansion of the form,

U(x, h) = φ(x) + hA0(f, g)φ(x) + h2A1(f, g)φ(x) + . . . , (18)

where Ai(f, g), i = 0, 1, 2, . . . are linear differential operators with coefficients depending
smoothly on the drift and diffusion functions f, g, and their derivatives (and depending
on the choice of the integrator). In addition, we assume that A0(f, g) coincides with the
generator L given in (10), which means that the method has (at least) weak order one,

A0(f, g) = L. (19)

Example 2.3. Consider the stochastic θ-method [8] for (1) where g = σI and d = m
(additive noise case) defined as

Xn+1 = Xn + h(1− θ)f(Xn) + θf(Xn+1) + σ
√
hξn. (20)

For θ = 0, this scheme coincides with the explicit Euler-Maruyama method while for θ 6= 0
it is implicit, i.e. it requires the resolution of a nonlinear system at each timestep. A
straightforward calculation yields that the differential operator A1 in (18) is given by

A1φ =
1

2
φ′′(f, f) +

σ2

2

d∑

i=1

φ′′′(ei, ei, f) +
σ4

8

d∑

i,j=1

φ(4)(ei, ei, ej , ej)

+ θφ′(f ′f +
σ2

2

d∑

i=1

f ′′(ei, ei)) +
θσ2

2

d∑

i=1

φ′′(f ′ei, ei), (21)

where e1, . . . , ed denotes the canonical basis of Rd and φ′(·), φ′′(·, ·), φ′′′(·, ·, ·), . . ., are the
derivatives of φ which are linear, symmetric bilinear, trilinear, . . . , forms, respectively. In
dimension d = 1, it reduces to A1φ = 1

2f
2φ′′+ σ2

2 fφ
′′′+ σ4

8 φ
(4)+θ(f ′fφ′+ σ2

2 f
′′φ′+ σ2

2 f
′φ′′).

Assumption 2.2 immediately implies that we have the rigorous expansion

U(x, h) = φ(x) +

l∑

i=0

hi+1Ai(f, g)φ(x) + hl+2Rl(f, g, φ)(x) (22)

for all positive integers l, with a remainder satisfying |Rl(f, g, φ)(x)| ≤ Cl(1 + |x|kl). We
also deduce that the moments of the numerical solution are uniformly bounded, as stated
in the following result, shown in the proof of [16, Lemma 2.2, p. 102]. We observe that if
the numerical solution (2) has local weak order p (see (3)) and satisfies Assumption 2.2
then

E(φ(X(h))) − E(φ(X1)) = hp+1

( Lp+1

(p+ 1)!
−Ap

)
φ(X0) +O(hp+2). (23)

Proposition 2.4. Assume (17). Then, for all positive integers k, there exist constants
Ck,Dk such that

E
(
|Xn|k

)
≤ Cke

DkT , for all nh ≤ T. (24)
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2.2 Global error expansion for the weak error

We now study how accurate the numerical invariant measure ρh∞ is compared to the true
invariant measure ρ∞. The first step to show this is the establishment of a global error
expansion for the weak error

E(φ, h, T ) = |E(φ(X(T ))) − E(φ(XN ))|, (25)

where XN denotes the numerical solution at the final time T = Nh calculated with a time
step h with a numerical method of weak order p.

In the sequel, we assume that solution X(t) of (1) ergodic. We recall in Remark 2.5
some necessary conditions in order for X(t) to be ergodic.

Remark 2.5. Let X(t) the solution of (1). The following assumptions implies that (X(t))
is ergodic (see [7]),

1. f, g are of class C∞, with bounded derivatives of any order, and g is a bounded
function;

2. The generator L in (10) is a uniformly elliptic operator, i.e. there exists α > 0 such
that ∀ x, ξ ∈ R

d, xT g(ξ)g(ξ)T x ≥ α|x|2;

3. there exists β > 0 and a compact set K in R
d such that ∀ x ∈ R

d −K, 〈x, f(x)〉 ≤
−βx2.

Likewise, we assume that the Markov chain defined by our numerical solution is ergodic
(see equation (5)). The following theorem combines results derived by Talay and Milstein.
Precisely, the expression (26) has been proved in [23] for specific methods (e.g., he Euler-
Maruyama or the Milstein methods), while the general procedure to infer the global weak
order from the local weak order is due to Milstein [15] (see [16, Chap. 2.2]). The novelty
here is the new formulation of the error function (27) in terms of the operator Ai in
Assumption 2.2 and generator L that will be useful for our main results.

Theorem 2.6. Assume the hypotheses on f, g in Remark 2.5. Let XN be a numerical
solution of (1) on [0, T ] (E = R

d) satisfying Assumption 2.2 and the local weak order
p estimate (3) where C(x) satisfies (15). Then, we have the following expansion of the
global error (25), for all φ ∈ C2p+4

P (Rd,R),

E(φ, h, T ) = hp
∫ T

0
E(ψe(X(s), s))ds +O(hp+1) (26)

where ψe(x, t) satisfies

ψe(x, t) =

(
1

(p+ 1)!
Lp+1 −Ap

)
v(x, t), (27)

with v(x, t) = E(φ(X(T ))|X(t) = x) satisfying

∂v

∂t
+ Lv = 0, (28a)

v(x, T ) = φ(x). (28b)

Proof. The proof, similar to the one found in [23] and [16, Chap. 2.2], is provided for
completeness in the Appendix. �
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Using Theorem 2.6 one can obtain a similar expansion to (26) for the difference between
the true and the numerical ergodic averages. In particular we have the following theorem.

Theorem 2.7. Assume that the conditions 1.,2.,3. from Remark 2.5 hold, and let φ :
R
d → R a smooth function satisfying (15). Then, if a numerical method of weak order p

is ergodic, it satisfies

lim
N→∞

1

N

N∑

i=1

φ(Xi)−
∫

Rd

φ(y)ρ∞(y)dy = −λphp +O(hp+1) (29)

for any deterministic initial condition, with λp defined as

λp =

∫ +∞

0

∫

Rd

ψe(t, y)ρ∞(y)dydt (30)

with ψe satisfying (27).

Proof. The proof is similar to the one found in [23, Theorem 4], with the main difference
being that now (26) is used as the starting point of the proof instead of the specific formula
for the Euler-Maruyama method used in [23]. �

Theorem 2.7 provides an explicit expression of the first term in the error e(φ, h) in (6)
for the invariant measure. It will thus be the key result in deriving integrators that have
an order for the invariant measure strictly larger than the weak order of accuracy.

3 Main results: high order approximation of invariant mea-

sures

In this section, we present our methodology for constructing integrators of weak order
p that approximate the ergodic averages with order p + k, with k ≥ 1. In Section 3.1,
we provide a characterization of numerical methods with high order invariant measure on
E = R

d with k = 1 and then on E = T
d with arbitrary k ≥ 1. We then introduce in

Section 3.2 a framework based on modified equations to construct numerical method with
high order invariant measure.

3.1 A characterization of high order numerical invariant measure

An immediate consequence of Theorem 2.7 is the following result in R
d which gives nec-

essary conditions for an ergodic integrator of weak order p to have the higher order p+ 1
for the invariant measure.

Theorem 3.1. Assume the hypothesis of Theorem 2.7. If an ergodic integrator of weak
order p satisfies A∗

pρ∞ = 0 in the weak Taylor expansion (18), then it has ergodic order
r = p+ 1 in (6).

Proof. We consider the identity (27) and denote Dp = ( 1
(p+1)!Lp+1 − Ap). The idea is to

use the adjoint operator of Dp in (29), i.e., (Dpv, ρ∞) = (v,D∗
pρ∞). Using (11), we deduce

from (29) in Theorem 2.7,

e(φ, h) = hp
∣∣∣∣
∫ +∞

0

∫

Rd

v(y, t)A∗
pρ∞(y)dydt

∣∣∣∣+O(hp+1),
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where v is the solution of (28). Using the assumption A∗
pρ∞ = 0 yields the result e(φ, h) =

O(hp+1). �

We next show that sufficient conditions up to arbitrarily high order can be derived
for the invariant measure error (6) on the torus E = T

d. To this aim, we first recall a
result from [4], which permits to expand the numerical invariant measure µh of an ergodic
method in series with respect to h. The idea originating from backward error analysis is
to construction a modified generator given as a formal series

L̃ = L+
∑

i≥1

hiLi

such that U(h, x) in (18) satisfies formally

U(x, h) − φ(x) =
∑

j≥1

hj

j!
L̃jφ(x).

The operators Ln can be computed recursively as

Ln = An − 1

2
(LLn−1 + Ln−1L)− · · · − 1

(n+ 1)!
Ln+1 (31)

where Ai, i = 1, · · · , n are the differential operators defined in (18). Equation (31)
has been derived in [24] in the framework of modified equations and coincides with an
expression used in [4] involving the Bernoulli numbers.

Lemma 3.2. [4] Let E = T
d and assume Assumption 2.2. Consider Ln the operators

defined in (31). Then there exists a sequence of functions (ρn(x))n>0 such that ρ0 = ρ∞
and for all n ≥ 1,

∫
Td ρn(x)dx = 0 and

L∗ρn = −
n∑

l=1

(Ll)
∗ρn−l. (32)

For any positive integer M , if ρhM (x) = ρ∞(x) +
∑M

n=1 h
nρn(x), then

∫

Td

ρhM (x)dx = 1, (33)

and there exists a constant C(M) such that for all smooth φ : Rd → R,

∣∣∣∣
∫

Td

φ(x)dµh(x)−
∫

Td

φ(x)ρhM (x)dx

∣∣∣∣ ≤ C(M)hM+1, (34)

where C(M) is independent of h and µh(x) is the unique invariant probability measure of
the numerical method (16).

We observe that Lemma 3.2 not only provides an expansion for the numerical invariant
measure in powers of h, but also provides an explicit way for calculating the corrections
ρn. For example, ρ2 satisfies

L∗ρ2 = −L∗
1ρ1 − L∗

2ρ∞
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and since ρ1 = 0 (assuming A∗
1ρ∞ = 0) we have that

L∗ρ2 = A∗
2ρ∞ − 1

2
(L∗L∗

1 + L∗
1L∗) ρ∞ − 1

6
(L∗)3ρ∞.

Using (11) and L∗
1ρ∞ = A∗

1ρ∞ − 1
2L

2
0ρ∞ = 0, this implies that

L∗ρ2 = A∗
2ρ∞.

We thus see with a similar argument as before that if a weak first order method satisfies
A∗

1ρ∞ = A∗
2ρ∞ = 0 then its order of convergence for the ergodic averages is 3. Similarly,

as generalized in the next theorem, we see that a sufficient condition for a numerical
integrator of weak order p to have r-th order of convergence for the ergodic averages is

A∗
jρ∞ = 0, for j = 1, · · · r − 1. (35)

Of course an obvious way for achieving this is by choosing a method of weak order r
(which implies A∗

j = 0 for all j < r, since (j + 1)!Aj = Lj+1), but as we will see in the
next section for a certain class of ergodic SDEs we can achieve this by using a numerical
integrator only of weak order one.

Theorem 3.3. Consider equation (1) on T
d solved by an ergodic numerical method sat-

isfying Assumption 2.2 and (35). Then it has order r in (6) for the invariant measure.

Proof. We start our proof by noticing on the one hand that since our numerical method
is ergodic then

lim
N→∞

1

N

N∑

i=1

φ(Xi) =

∫

Td

φ(y)dµh(y),

for all deterministic initial conditions X0 = x. Thus, in order to prove the theorem one
needs to bound the difference

∫

Td

φ(y)dµh(y)−
∫

Td

φ(y)ρ∞(y)dy. (36)

On the other hand, Lemma 3.2 allows to expand ρhM (y) in powers of h and allows for an
explicit characterization of each term in the expansion. Using (11), (31), and (32), we
prove by induction on j that L∗ρj = A∗

jρ∞ = 0 and ρj = 0 for j = 1, . . . , r − 1. Finally,

using equation (34) with M = r − 1, observing that ρ∞(y) = ρhr−1(y) implies that

∣∣∣∣
∫

Td

φ(y)dµh(y)−
∫

Td

φ(y)ρ∞(y)dy

∣∣∣∣ ≤ Chr,

where C depends on r but is independent of h. Thus the proof is complete. �

Remark 3.4. One can extend to arbitrarily high order the extrapolation results described
in [23] for the Euler and the Milstein methods. In particular, under the hypotheses of
Theorem 2.6, a straightforward calculation shows that if one considers the Romberg ex-
trapolation

Zh
n =

2p

2p − 1
φ(X

h/2
2n )− 1

2p − 1
φ(Xh

n), (37)
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where Xh
n denotes the numerical solution at time T = nh with stepsizes h, then Zh

n yields
an approximation of weak order p+ 1, i.e. |E(φ(X(T ))) − E(Zh

n)| ≤ Chp+1. Analogously,
considering an ergodic method Xh

n of order p for the invariant measure and under the
assumptions of Theorem 3.3, the Romberg extrapolation (37) yields an approximation of
order p+ 1 for the invariant measure, i.e.

∣∣∣∣∣ limN→∞

1

N

N∑

n=1

Zh
n −

∫

Td

φ(y)ρ∞(y)dy

∣∣∣∣∣ ≤ Chp+1.

3.2 High order numerical methods for the invariant measure based on

modified equations

Our second main result is the derivation of a framework for the construction of numerical
methods with high order (6) for the numerical invariant measure. We explain how Theorem
3.3 permits to construct high order integrators for the invariant measure by considering
the framework of modified differential equations, an approach first considered in [24, 4] in
the context of backward error analysis for the study of numerical integrators, and extended
in [1] for the construction of high weak order integrators.

Precisely, given an ergodic integrator (2) with weak order p for an ergodic system of
SDEs (1), we search for modified vector fields fh and gh of the form

fh = f + hpfp + . . .+ hp+m−1fp+m−1, gh = g + hpgp + . . .+ hp+m−1gp+m−1,

such that the integrator (2) applied to the modified SDE

dX = fhdt+ ghdW

has order r = p+m in (6) with respect to the invariant measure. To this aim, we consider
an ergodic SDE (1) and assume that it has an invariant measure whose Gibbs density
function has the form

ρ∞(x) = Ze−V (x) (38)

where Z = (
∫
E e

−V (x)dx)−1 is a normalization constant. Again, we assume that it has
bounded moments of any order, i.e. for all n ≥ 0,

∫

E
|x|nρ∞(x)dx <∞

and we assume that the potential function V : E → R is a smooth function in C∞
P (E,R).

Notice that the above assumptions on ρ∞ are automatically satisfied if ρ∞ is a smooth
positive function on the torus E = T

d. Furthermore, in the case E = R
d, such an

assumption is satisfied in the case of Brownian and Langevin dynamics (see Section 4).

Lemma 3.5. Let E = R
d or Td. For all φ,w ∈ C∞

P (Rd,R), consider the linear differential
operator

Bφ := w
∂jφ

∂xk1 · · · ∂xkj
, (39)

where ki, i = 1, . . . , j are indices with 1 ≤ ki ≤ d. Then, the following identity holds
∫

E
(Bφ)ρ∞dx =

∫

E
(B̃φ)ρ∞dx, for all φ ∈ C∞

P (Rd,R), (40)
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where B̃ is the order one linear differential operator given by

B̃φ :=
(
Dk2 ◦ · · · ◦Dkj (w)

) ∂φ
∂xk1

with Di, 1 ≤ i ≤ d the linear differential operator defined as

Diw := w
∂V

∂xi
− ∂w

∂xi
, (41)

where V is the potential involved in the density (38).

Proof. Integrating by parts successively with respect to xk2 , . . . , xkj , we obtain

∫

E
Bφρ∞dx =

∫

E

∂jφ

∂xk1 · · · ∂xkj
wρ∞dx = (−1)j−1

∫

E

∂φ

∂xk1

∂j−1(wρ∞)

∂xk2 · · · ∂xkj
dx

We conclude using repeatedly the identity

∂(wρ∞)

∂xi
= −(Diw)ρ∞

for all w and all i = k2, . . . , kj (a consequence of ∂ρ∞
∂xi

= − ∂V
∂xi
ρ∞). �

The above lemma is a crucial ingredient to prove the following two theorems (for the
space E = R

d and E = T
d, respectively) on the construction of numerical integrators that

approximate (1) with high order for the invariant measure.

Theorem 3.6. Let E = R
d. Consider an ergodic system of SDEs (1) with an invariant

measure of the form (38) and a numerical method (2) or order p for the invariant measure,
and satisfying Assumption 2.2. Then, there exists fp such that if the numerical method
applied to the modified SDE

dX = (f + hpfp)dt+ gdW (42)

is ergodic then it has order r = p+ 1 in (6) for the invariant measure.

Proof. By Assumption 2.2, the differential operator Ap in (18) is a sum of differential op-
erators of the form (39), where w is an expression involving f and g and their derivatives.2

It follows from Lemma 3.5 that there exists a smooth vector field fp : R
d → R

d such that

A∗
p = Ã∗

pρ∞, where Ãp = −fp · ∇φ, equivalently A∗
pρ∞ = div(fpρ∞). Using (19) and the

definition (10), we deduce

A∗
p(f + hpfp, g)φ = A∗

p(f, g)φ− div(fpφ) = 0.

Applying Theorem 3.1, we obtain that the numerical method applied to (42) yields an
approximation of order p+ 1 for the invariant measure of (1). �

2See for example the expression for A1 in (21) for the θ-method.
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Using Lemma 3.2 and extending the idea of the proof of Theorem (42), we derive the
following result, for the construction of arbitrarily high order integrators for the invariant
measure.

Theorem 3.7. Let E = T
d. Consider an ergodic system of SDEs (1) with an invariant

measure of the form (38) and a numerical method (2) or order p for the invariant measure,
and satisfying Assumption 2.2. Then, for all fixed m ≥ 1, there exist a modified SDE of
the form

dX = (f + hpfp + . . .+ hp+m−1fp+m−1)dt+ gdW (43)

such that the numerical method applied to this modified SDE satisfies

A∗
k(f + hpfp + . . . + hp+m−1fp+m−1, g)ρ∞ = 0 k = p, . . . , p+m− 1. (44)

Furthermore, if the numerical method applied to this modified SDE is ergodic, then this
yields a method of order r = p+m in (6) for the invariant measure of (1).

Proof. The construction of the vector fields fk, k < p + m is made by induction on k.
Assume that fj, j < k has been constructed. Consider the scheme obtained by applying
the numerical method to the modified SDE

dX = (f + . . .+ hk−1fk−1)dt+ gdW

and the corresponding weak expansion (22) involving the differential operators Aj(f +
. . . + hk−1fk−1, g), j = 1, 2, 3, . . .. It follows from Lemma 3.5 that for all differential
operator of the form (39), we have B∗ρ∞ = B̃∗ρ∞ where B̃φ is a differential operator of
order one. Since by Assumption 2.2, Ak is a sum of such differential operator, we obtain
that there exists a vector field fk such that A∗

k(f + . . . + hk−1fk−1, g)ρ∞ = Ã∗
kρ∞ where

Ãkφ = −fk · ∇φ, equivalently

A∗
k(f + . . .+ hk−1fk−1, g)ρ∞ = div(fkρ∞). (45)

Using (19) and the definition (10), we have

A∗
0(f + . . .+ hk−1fk−1 + hkfk, g)φ = A∗

0(f + . . .+ hk−1fk−1, g)φ − hkdiv(fkφ),

which yields

A∗
k(f + . . . + hk−1fk−1 + hkfk, g)φ = A∗

k(f + . . .+ hk−1fk−1, g)φ− div(fkφ).

Using (45), this achieves the proof of (44). Applying Theorem 3.3, we conclude that the
scheme applied to the modified SDE (43) has order p+m for the invariant measure. �

Note that the proofs of Theorems 3.6 and 3.7 not only show the existence of the vector
fields fi, but also provide an explicit way for calculating them. This is exemplified in the
next section, where we discuss long time integrators for Brownian and Langevin dynamics.
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4 Examples of high order integrators

We mention two wide classes of ergodic SDEs that have an invariant measure of the
form (38), with a wide range of applications in different branches of physics, biology and
chemistry.

The first one is the Langevin equation which describes the motion of a particle in the
potential U(q) subject to linear friction and molecular diffusion [18, 5]

dq = pdt, dp = −(γp+∇U(q))dt+ σdW (t) (46)

where q(t), p(t) ∈ R
d U : Rd → R is a smooth potential σ > 0 is a constant, and W =

(W1, . . . ,Wd)
T is a vector of independent Wiener processes. It has the invariant measure

density (38) with V (p, q) = 2γ/σ2H(p, q) and H(p, q) = 1
2p

2 + U(q) is the Hamiltonian.
The second one is the Brownian dynamics equation, describing the motion of a particle

in a potential subject to thermal noise [18, 5]

dX(t) = −∇V (X(t))dt + σdW (t), (47)

where V : Rd → R is a smooth potential, σ > 0 is a constant, andW = (W1, . . . ,Wd)
T is a

vector of independent Wiener processes. Assuming ergodicity, the Gibbs density function
of the invariant measure is given by

ρ∞ = Ze−2V (x)/σ2

,

where Z is a renormalization constant such that
∫
Rd ρ∞dx = 1.

In this section, we shall focus on the class of ergodic SDEs (47) and construct numerical
integrators that have low weak order of accuracy but high order with respect to the
invariant measure (6). We emphasize that similar constructions could be obtained in the
context of the Langevin equation (46).

For the nonlinear system of SDEs (47), consider the standard θ-method defined in
(20) where f = −∇V . For general nonlinear systems (20), it can be checked that the
weak order and the error (6) for the invariant measure coincide: it is 1 for θ 6= 1/2 and 2
for θ = 1/2. In this latter case, it is shown in [12] that the method samples exactly the
invariant measure for linear problems (i.e. e(φ, h) = 0 in (6) if V quadratic), but this is
not true for nonlinear systems in general. In this section, we explain using the strategy of
modified equations introduced in the previous section how the θ-method can be modified
to increase the order (6) of accuracy for the invariant measure for nonlinear systems.

4.1 An illustrative example: linear case

As an example, consider first the linear scalar case where V (x) = γx2, corresponding to
the classical Orstein-Uhlenbeck process,

dX = −γXdt+ σdW. (48)

The exact solution X(t) is a Gaussian random variable satisfying limt→∞ E(X(t)2) = σ2

2γ .

Considering the Euler-Maruyama method, xn+1 = xn−γhxn+
√
hσξn, a calculation yields

lim
n→∞

E(x2n) =
σ2

2γ(1 − γh/2)
.

13



Then, applying the Euler-Maruyama method to the modified SDE

dX = −γ̃hXdt+ σdWt,

where γ̃h satisfies γ̃h(1− γ̃hh/2) = γ, i.e. for all h ≤ 1/(2γ),

γ̃h = h−1(1−
√

1− 2hγ) = γ +
hγ2

2
+
h2γ3

2
+

5h3γ4

8
+

7h4γ5

8
+ . . . (49)

yields a method which is exact for the invariant measure (ρh∞ = ρ∞), i.e. the left hand
side in (6) is zero, even-though the approximation has only weak order 2. Notice also that
truncating (49) after the hp−1 term and applying the Euler-Maryuama yields a scheme of
order p for the invariant measure.

4.2 Nonlinear case: modified theta method of order two for the invariant

measure

Given a vector field f1, consider the θ method applied to the modified SDE dX = (f +
hf1)dt+ σdW , i.e.,

Xn+1 = Xn + (1− θ)(f + hf1)(Xn) + θ(f + hf1)(Xn+1) +
√
hσξn. (50)

The following proposition with proof postponed to Appendix states that order two for the
invariant measure can be achieved if the corrector f1 is appropriately chosen.

Proposition 4.1. Let E = R
d or T

d. Consider the numerical method (50) applied to
(47). If

f1 = −(1− 2θ)
(1
2
f ′f +

σ2

4
∆f
)

(51)

and (50) is ergodic, then it has order r = 2 for the invariant measure in (6).

Remark 4.2. In [1], a modified weak order two θ scheme was constructed for general
systems of SDEs with non-commutative noise. In the context of additive noise (47) it has
the form

Xn+1 = Xn + (1− θ)(f − hf1)(Xn) + θ(f − hf1)(Xn+1) +
√
hσ(ξn + h(

1

2
− θ)f ′(xn)ξn).

It can be observed that both the drift and diffusion functions are modified in contrast to the
scheme (50) where only the drift function is modified. Notice that for θ = 1/2, we have
f1 = 0 in (51) which is not surprising because in this case, the θ-method has weak order
two of accuracy.

Applying the recursive procedure of Theorem 3.7 we may next derive a modification
of the θ method of order 3.

Proposition 4.3. Let E = T
d. Consider the Euler-Maruyama method applied to the

modified SDE dX = (f + hf1 + h2f2)dt+ σdW i.e.

Xn+1 = Xn + hf(Xn) + h2f1(Xn) + h3f2(Xn) +
√
hξn, (52)
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where f = −∇V , f1 is defined in (51) with θ = 0 and f2 is defined by

f2 = −
(1
2
f ′f ′f +

1

6
f ′′(f, f) +

1

3
σ2
∑

i

f ′′(ei, f
′ei) +

1

4
σ2f ′∆f

)
. (53)

Assume that the obtained numerical method applied to (47) is ergodic. Then, it has order
r = 3 for the invariant measure in (6).

The proof of Proposition 4.3 is postponed to Appendix.

Remark 4.4. We highlight that integrators with arbitrarily higher order for the invariant
measure could be constructed analogously using Theorem 3.7. The statement of Proposition
4.3 can be generalized to the θ-method (20) and yield again an order 3 method for the
invariant measure, but the calculation becomes rather tedious. In the linear case (48), the
obtained scheme reduces to

Xn+1 = xn − (hγ + (1− 2θ)h2
γ2

2
+ (1− 2θ)2h3

γ3

2
)
(
(1− θ)Xn + θXn+1

)

+ σ
√
hξn. (54)

For θ = 1/2, it coincides with the standard θ-method (20) which is not surprising because
it samples the invariant measure exactly in this linear context [12].

We shall discuss in the next Section 5 derivative free implementations of the new
derived schemes.

5 Numerical experiments

In this section, we illustrate numerically our main results. We consider first the linear case
(48) where V (x) = x2/2, and compare the Euler-Maruyama method and the modifications
of orders 2 (Proposition 4.3, θ = 0). and 3 (Proposition 4.3, θ = 0). In Figure 1, we
plot the error e(φ, h) defined in (6) for φ(x) = x2 (second moment error) and many
different stepsizes h. In theory computing one long trajectory suffices, however in practice
computing several long trajectories allows also to draw some statistics such as the variance
of the error. We therefore approximate the error using the average over 10 long trajectories
on a time interval of length T = 108 and the deterministic initial condition3 X0 = −2.
We observe the expected lines of slopes 1, 2, 3 for the Euler-Maruyama method and the
modifications of order 2, 3.

We next consider examples of nonlinear problems in E = R
d which have non-globally

Lipschitz coefficients. We emphasize that our results do not apply in this situation. How-
ever, numerical experiments still exhibit the high order convergence of the numerical in-
variant measure predicted in the Lipschitz case.

In Figure 2, we perform the same convergence experiment in the nonlinear with a
quartic potential, either symmetric (left picture) or non-symmetric (right picture). Again,
we observe the expected lines of slopes 1, 2, 3 which corroborates Propositions 4.1 and 4.3.

We finally consider a multi-dimensional case (d = 2) of Brownian dynamics (47) with
the nonlinear potential

V (x) = (1− x21)
2 + (1− x22)

2 +
x1x2
2

+
x2
5
. (55)

3Recall that the choice of the initial condition has no influence on the results.
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Figure 1: Linear case (V (x) = x2/2). Euler-Maruyama method (order 1) and modifications
of orders 2 and 3. Error for the second moment

∫
R
x2ρ(x)dx versus time stepsize h obtained

using 10 trajectories on a long time interval of length T = 108. The vertical bars indicate
the standard deviation intervals.

This potential has one local maximum close to the origin and four local minima represented
by white crosses in Figure 3 where we plot the Gibbs density function (38) together with
10 level curves (left and middle picture). The 105 gray dotes in the right picture indicate
one numerical trajectory of the scheme (57) (discusses below) with stepsize h = 0.02 and
time interval of size T = 2 · 103 (the initial condition is X0 = (−2,−2)).

Since calculating the derivative f ′f and ∆f in (50)-(51) is not convenient in general for
multi-dimensional systems and can be computational expensive, we introduce the following
Runge-Kutta type scheme for (47)

Y1 = Xn +
√
2σ

√
hξn

Y2 = Xn − 3

8
hf(Y1) +

√
2

4
σ
√
hξn

Xn+1 = Xn − 1

3
hf(Y1) +

4

3
hf(Y2) + σ

√
hξn (56)

where f = −∇V , ξn,i ∼ N (0, 1) (or alternatively P(ξn,i = ±
√
3) = 1/6, P(ξn,i = 0) = 2/3),

are independent random variables. It can be checked straightforwardly that the weak
Taylor expansions (18) of the schemes (56) and (50)-(51) coincide up to order 2, i.e. they
have the same operators A0, A1 and thus the same order 2 in (6) for the invariant measure,
and the same weak order 1. This is detailed in the Appendix (see Proposition 6.1).

Our investigations indicate that there does not exist a similar Runge-Kutta type ap-
proximation of the scheme (52) with only 3 evaluations of the function f per timestep. We
thus propose the following Runge-Kutta type method which has order 2 in (6) for general

16



10−3 10−210−5

10−4

10−3

10−2

10−3 10−210−5

10−4

10−3

10−2

symmetric case

stepsize h

se
co
n
d
m
om

en
t
er
ro
r

ord
er 1

or
de
r 2

or
de
r
3

non-symmetric case

stepsize h

se
co
n
d
m
om

en
t
er
ro
r

ord
er 1

or
de
r 2

or
de
r
3

Figure 2: Nonlinear problem with double-well potential. Left picture: V (x) = (1 − x2)2

(symmetric). Right picture: V (x) = (1 − x2)2 − x/2 (non-symmetric). Euler-Maruyama
method (order 1) and modifications of orders 2 and 3. Error for the second moment∫
R
x2ρ(x)dx versus time stepsize h obtained using 10 trajectories on a long time interval

of length T = 108. The vertical bars indicate the standard deviation intervals.

nonlinear multi-dimensional problems (47), but order 3 for linear problems,

Y1 = Xn + σ
√
hξn

Y2 = Xn − h

2
f(Y1) +

σ

2

√
hξn

Y3 = Xn + 3hf(Y1)− 2hf(Y2) + σ
√
hξn

Xn+1 = Xn − 3

2
hf(Y1) + 2hf(Y2) +

1

2
hf(Y3) + σ

√
hξn (57)

where f = −∇V and ξn is a vector of independent random variables with ξn,j ∼ N (0, 1).
We plot in Figure 4 the errors e(φ, h) for φ(x) = x2+ y2 for the Euler-Maruyama method,
and the modifications (56) and (57). We observe the expected lines of slope 1, 2. Notice
that the error constant for the variant (57) is about twice as smaller than the error for
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Figure 3: 2D problem (47)-(55). Left picture: 3D plot of the Gibbs density (38). Middle
picture: ten level curves of the Gibbs density are represented in solid lines (the five extrema
are represented with crosses). Right picture: a numerical trajectory {Xn} of the scheme
(57) (with h = 0.02, T = 2 · 103).
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Figure 4: 2D problem (47)-(55). Errors for φ(x) = x2+y2 for the Euler-Maruyama method
(order 1), and the modifications (56) (order 2) and (57) (order 2 but 3 for linear problems)
with T = 107.

(56). The results for the scheme (50) are not included in this plot, but are nearly identical
to that of (56).

6 Appendix

We provide in this Appendix a proof of Theorem 2.6 for the derivation of a global error
expansion for a weak numerical method of arbitrary order p. We next give the proofs of
Propositions 4.1, 4.3, 6.1.

Proof of Theorem 2.6. Consider u the solution of (13), then v(x, t) = u(x, T − t) is the
solution of the Kolomogorov equation (28) with v(x, t) = E(φ(X(T ))|X(t) = x). Setting
ti = ih, the weak error (25) can be expressed as

E(φ, h, T ) = E(φ(X(T ))) − E(φ(XN ))

= E(v(X0, 0)) − E(v(XN , T ))

=

N∑

i=1

(
E (v(Xi−1, ti−1))− E (v(Xi, ti))

)
(58)

where Nh = T .Now using properties of conditional expectations give

E(φ, h, T ) =
N∑

i=1

(
E
(
v(X(ti), ti)|X(ti−1) = Xi−1

)
− E

(
v(Xi, ti)

))
.

If we denote by gi(x) = e(T−ti)Lφ(x) the solution of (28) at time t = ih, we obtain

E(φ, h, T ) =

N∑

i=1

(
E
(
gi(X(ti))|(X(ti−1) = Xi−1)

)
− E(gi(Xi))

)
.

Using (14),(22) and the weak order of convergence p of the method, we obtain

E(φ, h, T ) =
N∑

i=1

E
(
hp+1Dpgi(Xi−1) + hp+2di

)
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=
N∑

i=1

(
hp+1

E

(
Dpe

−hLgi−1(Xi−1)
)
+ hp+2

E(di)
)

=

N∑

i=1

(
hp+1

E

(
Dpe

−hLv(Xi−1, ti−1)
)
+ hp+2

E(di)
)

where we have used the fact that gi = e−hLgi−1, and for notational brevity we have
dropped the dependence of di on f, g, φ, h and X(t),Xi−1. Next using (23), we see that
Dp =

1
(p+1)!Lp+1 −Ap. Using the regularity of the solution of (28) we obtain

E(φ, T, h) =
N∑

i=1

(
hp+1

E(ψe((Xi−1, ti−1))) + hp+2
E(di)

)
, (59)

= hp
∫ T

0
E(ψe(X(s), s))ds + hp+2

N∑

i=1

E(di) (60)

+ hp

(
h

N∑

i=1

E(ψe(Xi−1, ti−1))−
∫ T

0
E(ψe(X(s), s))ds

)
. (61)

Using Remark 2.1 and Proposition 2.4 we see that E(di) ≤ C(T ). To conclude the proof,
it remains to show

h

N∑

i=1

E(ψe(Xi−1, ti−1))−
∫ T

0
E(ψe(X(s), s))ds = O(h). (62)

Indeed, this term can be bounded by

h

N∑

i=1

|E(ψe(Xi−1, ti−1))− E(ψe(X(ti−1), ti−1))| (63)

+

∣∣∣∣∣h
N∑

i=1

E(ψe(X(ti−1), ti−1))−
∫ T

0
E(ψe(X(s), s))ds

∣∣∣∣∣ . (64)

The first term is bounded by O(h) using E(ψe(·, ti), T, h) = O(h) uniformly in ti ≤ T .
The second term is bounded by O(h) using that s 7→ E(ψe(X(s), s)) has a continuous
derivative. �

Proof of Proposition 4.1. Consider the weak Taylor expansion (18) for the θ method. Ap-
plying Lemma 3.5 to each differential operator of order greater than 1 in A1 given in (21)
and using f = −∇V , we obtain

〈
φ′′(f, f)

〉
=

〈
−φ′(f ′f + (div f)f +

2

σ2
‖f‖2f)

〉
,

〈
σ2
∑

i

φ′′′(f, ei, ei)

〉
=

〈
φ′(σ2

∑

i

f ′′(ei, ei) + 4f ′f + 2(div f)f +
4

σ2
‖f‖2f)

〉
,

〈
σ2
∑

ij

φ(4)(ei, ei, ej , ej)

〉
=

〈
−
∑

i

2φ′′′(f, ei, ei)

〉
,
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〈
σ2

2

∑

i

φ′′(f ′ei, ei)

〉
=

〈
−φ′(σ2

∑

i

f ′′(ei, ei) + 2f ′f)

〉
,

where we use the notation 〈u〉 =
∫
E u(x)ρ∞(x)dx and the sums are for i, j = 1, . . . , d and

ei is the canonical basis of Rd. Using the above identities, a straightforward calculation
then yields that f1 in (51) satisfies 〈A1φ〉 = 〈f1 · ∇φ〉, equivalently A∗

1ρ∞ = div(f1ρ∞).
Theorem 3.1 (for E = R

d) and Theorem 3.7 (for E = T
d) conclude the proof. �

Proof of Proposition 4.3. Consider the weak Taylor expansion (18) for the modified θ
method (50) (θ = 0). We have A0 = L because the method has weak order 1, and
by the construction of Theorem 3.7, A∗

1ρ∞ = 0. A calculation of A2 yields

A2φ = −1

2
φ′′(f, f ′f)−

∑

i

σ2

4
φ′′(f, f ′′(ei, ei))

−
∑

ij

σ4

8
φ(3)(f ′′(ei, ei), ej , ej)−

∑

i

σ2
1

4
φ(3)(f ′f, ei, ei)

+
1

6
φ(3)(f, f, f) +

∑

i

σ2

4
φ(4)(f, f, ei, ei) +

∑

ij

σ4

8
φ(5)(f, ei, ei, ej , ej)

+
∑

ijk

σ6

48
φ(6)(ei, ei, ej , ej , ek, ek).

Applying repeatedly integration by parts as in Lemma 3.5 (see the proof of Proposition
4.1) then yields

〈
σ2φ′′(f ′ei, f

′ei)
〉

=
〈
φ′(−σ2f ′′(ei, f ′ei)− f ′∇(σ2div f + ‖f‖2))

〉

〈
φ′′(f, f ′f)

〉
=

〈
−φ′(f ′f ′f + f ′′(f, f) + (div f)f ′f +

2

σ2
‖f‖2f ′f)

〉

〈
φ′′(f, f ′′(ei, ei))

〉
=

〈
−φ′(f ′′′(f, ei, ei) + (div f)f ′′(ei, ei) +

2

σ2
‖f‖2f ′′(ei, ei))

〉

〈
σ4φ(3)(f ′′(ei, ei), ej , ej)

〉
=

〈
−φ′(σ4f (4)(ei, ei, ej , ej) + 4σ2f ′′′(f, ei, ei)

+ 2(div f)f ′′(ei, ei) + 4‖f‖2f ′′(ei, ei))
〉

〈
σ2φ(3)(f ′f, ei, ei)

〉
=

〈
φ′(σ2f ′′′(f, ei, ei) + 2σ2f ′′(f ′ei, ei) + σ2f ′f ′′(ei, ei)

+ 4(f ′f ′f + f ′′(f, f)) + 2(div f)f ′f +
4

σ2
‖f‖2f ′f)

〉

〈
σ2φ(3)(f, f ′ei, ei)

〉
=

〈
−σ2φ′′(f, f ′′(ei, ei))− σ2φ′′(f ′ei, f

′ei)− 2φ′′(f ′f, f)
〉

〈
σ4φ(4)(ei, ei, f

′ej , ej)
〉

=
〈
−σ4φ(3)(f ′′(ei, ei), ej , ej)− 2σ2φ(3)(f ′f, ei, ei)

〉

〈
σ2φ(4)(f, f, ei, ei)

〉
=

〈
−2φ(3)(f, f, f)− 2σ2φ(3)(f, f ′ei, ei)

〉

〈
σ4φ(5)(f, ei, ei, ej , ej)

〉
=

〈
−2σ2φ(4)(f, f, ei, ei)− σ4φ(4)(ei, ei, f

′ej , ej)
〉

〈
σ6φ(6)(ei, ei, ej , ej , ek, ek)

〉
=

〈
−2σ4φ(5)(f, ei, ei, ej , ej)

〉
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where sums should be taken over all indices i, j, k = 1, . . . , d in the above formulas (omitted
for brevity of the notation). Using the symmetry of f ′ = −∇2V , we have ∇div f = ∆f
and ∇(‖f‖2) = 2f ′f in the first equality and we obtain A∗

2ρ∞ = div(f2ρ∞). We conclude
the proof using Theorem 3.7. �

Proposition 6.1. Consider the method (56) for (47) on the space E = R
d or T

d and
assume that it is ergodic. Then, it has order order r = 2 in (6) for the invariant measure.

Proof. We justify the construction of the derivative free implementation (56) of the scheme
(50) (θ = 0). Consider a Runge-Kutta type scheme of the form

Yi = Xn + h

s∑

j=1

aijf(Yj) + ci
√
hξn, Xn+1 = Xn + h

s∑

i=1

bif(Yi) + σ
√
hξn,

with coefficients aij, bj , ci, with i, j = 1, . . . , s. Setting ci =
∑s

j=1 aij , we expand in Taylor
series the numerical solution,

X1 = X0 + h(
s∑

i=1

bi)f +
√
hσξn + h3/2σ(

s∑

i=1

bici)f
′ξn

+ h2(

s∑

i=1

bici)f
′f +

h2σ2

2
(

s∑

i=1

bic
2
i )f

′′(ξn, ξn) + . . .

and we deduce the differential operators in the weak Taylor expansion (18),

A0φ = (

s∑

i=1

bi)f · ∇φ+
1

2
σ2∆φ,

A1φ =
(
(

s∑

i=1

bici)f
′f + (

s∑

i=1

bici)σdivf +
σ2

2
(

s∑

i=1

bic
2
i )∆f

)
· ∇φ.

Then, imposing the order conditions

s∑

i=1

bi = 1,

s∑

i=1

bici = −1

2
,

s∑

i=1

bici = 0,

s∑

i=1

bic
2
i = −1

2
,

yields the same operators A0 = L and A1φ = −
(
1
2f

′f + σ2

4 ∆f
)
·∇φ as for the scheme (50)

(θ = 0) and thus the same order two for the invariant measure. �
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