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Abstract
We report on the Gouy phase anomaly of light in the focus of cylindrical and spherical
microlenses. The prime subject of our study concerns a discussion of how the very small size
of microlenses affects the phase properties of light in their foci. We put emphasis on
determining the amount of the Gouy phase shift for line and point foci within the limited axial
space. Contrary to macroscopic lenses, the optical properties of microlenses are strongly
governed by the effect of diffraction when their size tends to be comparable to the operation
wavelength. In our study, we clearly show how such diffraction features affect the axial phase
shift. For instance, phase singularities, which occur at discrete points on the optical axis where
the total intensity vanishes for spherical microlenses, cause an additional axial phase shift
when compared to the cylindrical microlens where those axial phase singularities are absent.
The rotational symmetry of the Fresnel zones is the origin of such a difference between point
and line foci.

Keywords: Gouy phase anomaly, microlens, micro-optics, longitudinal-differential
interferometry

(Some figures may appear in colour only in the online journal)

1. Introduction

Light fields in the focal region of optical systems are
of significant interest in many applications, not only for
fundamental optical problems but also for advanced optical
systems. In high-resolution optical systems for example, light
is tightly focused where it interacts with a micro- or nano-size
specimen. Particularly, it is known that the axial phase shift,
e.g., the Gouy phase which occurs when light is focused [1–3],
plays an important role in defining the optical response of
many optical systems. Consequently, great attention led to
profound studies in the past on the properties of focused light
in general and on the Gouy phase in particular. The study of
such anomalous phase features is of cardinal importance not

just for conventional optical systems but also for micro- and
nano-optical devices.

In general, the Gouy phase anomaly is characterized
by α · π/2 axial phase shift for a converging light wave
passing through its focus upon propagation from minus
infinity (−∞) to plus infinity (+∞). This Gouy phase is the
additional phase advance the field experiences on axis when
compared to a plane wave of the same frequency. The factor
α is a dimension-related value, which equals 1 for a line
focus, representing the 2D case (i.e., a cylindrical lens) and
equals 2 for a point focus, representing the 3D case (i.e., a
spherical lens). The physical meanings and the origin of this
peculiar phase phenomenon continually induces discussions
in which arguments are provided from different theoretical
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perspectives. For instance, an earlier study tended to seek
an intuitive explanation of the phase anomaly based on the
geometrical properties of Gaussian beams [4]. However, that
approach is not sufficient to explain the π/2 phase shift
for a 2D focusing. Therefore, more advanced, sometimes
sophisticated, theories were necessary to cover 2D and 3D
focusing cases. Berry’s geometrical (i.e., topological) phase,
which is an additional geometric phase acquired by a system
after a cyclic adiabatic evolution in parameter space, was
applied to uncover its origin [5–8]. Even quantum mechanics
has been considered to obtain insights into this anomalous
effect [9–11]. More specifically, the study of Feng and
Winful [10] relates Heisenberg’s uncertainty principle to the
Gouy phase with the spread in the transverse momenta.
Since the Gouy phase exists for all waves, including sound
waves, it is not necessary to introduce quantum mechanics to
explain the physical insights and the origin of such a phase
anomaly. Recently, the Gouy phase has been also explored in
the context of more complicated wavefields, i.e., astigmatic
wavefields, by theory [12] and by experiments [13]. There,
the emergence is a natural consequence of two 2D focusing
cases, such as sagittal and tangential foci. The 2D and 3D
foci cases have been analyzed by applying corresponding
mathematical functions that demonstrate different wavefront
spacing for each focus case [14]. The Gouy phase anomaly has
been intensively investigated for classical optical problems
but also in new fields of science, such as the converging
spherical terahertz (THz) beam [15], matter waves [11],
and photonic nanojets [16, 17]. However, for classical
micro-optical focusing devices that generate a focal spot
in free space, the Gouy phase has never been thoroughly
discussed and we intend to close this gap with our study. Such
devices represent a miniaturized version of Gouy’s historical
study [1, 2] where the mechanism of the light confinement
mechanism is comparable, i.e. a spherical phase front is
imprinted on an incident field that causes a light concentration
due to constructive interference in the focal region. The
mechanism that is used to explain the field confinement in
such an optical focus is different when compared to other
kinds of confined hotspots, such as e.g., photonic nanojets
by the Mie scattering [16, 17], the spot of Arago by pure
diffraction and interference of light [18], or the Talbot images
by a grating’s self-imaging effect [19].

The goal of our study is to demonstrate, for the first time,
the Gouy phase anomaly of light in the focus of microlenses,
whose size is smaller than 10 µm. By using cylindrical and
spherical microlenses we intend to compare the observable
Gouy phase to the anticipated values in more macroscopic
optical systems—i.e. the well-known quantities of π/2 for a
line focus and π for a point focus. Experimentally, we apply
longitudinal-differential (LD) interferometry [18] to measure
directly the phase anomaly in real-space. For theoretical
verification of the measurements, we use the finite-difference
time-domain (FDTD) method [20] that solves Maxwell’s
equations for the geometries of interest. This provides the
means to compare our measurements to simulations. The
remainder of this contribution is organized as follows. In
section 2, the microlens and the measured geometrical

parameters are briefly discussed. In section 3, the details
of the experimental setup and the numerical simulations
are explained. The intensity and phase distributions near
the foci of the spherical microlens array are presented and
discussed in section 4. Section 5 is dedicated to the case of a
cylindrical microlens, namely, a line focus (i.e., 2D focusing).
In section 6, an overall discussion and summary of the Gouy
phase of cylindrical and spherical microlenses will be given
before conclusions are drawn in section 7.

2. Microlens conception and fabrication

There are various types of micro-optical elements, refractive
and diffractive. Among them, potentially the most popular and
standardized element is the refractive microlens. Refractive
microlenses find a variety of applications, including basic
functions such as focusing and collimation. When compared
to a conventional macro-sized lens, a microlens is usually
defined as having a relatively small size, i.e. a diameter
smaller than 1 mm. However, the definition of the microlens
or the microlens array is quite broad. For example, the
International Organization for Standardization (ISO 14880-1,
2001) [21] says that a lens in an array with an aperture of
less than a few millimeters, including lenses which work by
refraction at the surface, refraction in the bulk of the substrate,
diffraction or a combination thereof, is a microlens.

During the last two decades, a large number of
fabrication techniques have been developed in order to
achieve smaller and better micro-optical elements. One of
the standard techniques is the micromachining process that
uses photolithography followed by photoresist reflow and dry
etching. It leads to plano-convex lenses and the fabrication
processes require a substrate, usually a wafer, which the
microlenses sit on [22]. There are equally several standard
methods to characterize microlenses (see reviews in [23, 24]),
such as a non-contact optical profiler, Twyman–Green
interferometer and Mach–Zehnder interferometer. However,
the characterization of small-sized microlenses is severely
influenced by diffraction and scattering because of their
low Fresnel numbers [25]. Moreover, the spatial resolution
of the characterization system becomes a fundamental
limitation. Recent progresses in micro- and nano-technologies
allow better resolution for both measurement systems
and fabrication systems. This boosts more precise and
detailed investigations in micro- and nano-optical elements.
For instance, recently, a 20-µm diameter microlens has
been fully characterized by multi-wavelength high-resolution
interference microscope (HRIM) [26]. The surface shape,
aberrations, and the 3D amplitude and phase field distributions
near both the front and back foci have been investigated.

Such plano-convex microlenses are mainly applied to
moderate or low numerical aperture (NA) applications.
Aspherical microlenses (conic constant k 6= 0) are also
obtainable by RIE-transfer of the reflow microlens into the
wafer bulk material, typically fused silica or silicon. For the
context of the present study, the Gouy phase of such a low-NA
lens has to be considered along a relatively large propagation
distance when compared to the lens size. This leads to
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Table 1. Geometrical parameters of the fabricated microlenses.

Lens 1 Lens 2 Lens 3 Lens 4 Lens 5 Lens 6

Diameter or aperture
width (µm)

5 6 7 8 9 6

ROC (µm) 3.2 4.11 5.18 6.41 7.84 4.58
Sag height (µm) 1.2 1.3 1.36 1.4 1.42 1.12
Lens shape Spherical Spherical Spherical Spherical Spherical Cylindrical

difficulties in the experimental realization since an axial scan
is required with a long distance but a sub-micron step size
to make axial phase measurements at sufficient precision, i.e.
the phase of the field has to be sampled sufficiently fine. To
circumvent such problems associated with microlenses having
a rather low NA, we designed for the observation of the
Gouy phase in the foci of microlenses a compact experimental
situation using small microlenses with a relatively high NA
(e.g., NA > 0.5), that produce the focal spots close to the lens
surface.

Therefore, in our study we use photolithography and the
resist melting technique to fabricate a spherical microlens
array on a glass substrate (600-µm thick 4 in glass wafer,
n = 1.5). Note that for simplicity the dry etching process
is excluded. Therefore, the lens material is the photoresist
AZ1518 (Microchemical GmbH), whose refractive index after
bleaching is 1.623 at 642 nm wavelength for our preparation
procedure [27]. Figure 1(a) shows the 2D surface data of
the 5 × 5 lens array, measured by confocal microscopy
(NanoFocus AG). In each row, from left to right, the diameter
of the microlenses increases from 5 to 9 µm with increment
of 1 µm. In order to check the production quality, five rows
of the same lens array have been designed. The 1-µm thick
photoresist coating leads to the cylindrical patterns of the
same thickness before the reflow process. The reflow causes
different sag height for each diameter of the cylinder of the
same thickness. We also prepared a cylindrical lens as shown
in figure 1(b) and in this case a relatively long rectangular
pattern with a width of 6 µm has been reflowed, which leads
to the sag of 1.12 µm. Note that the thickness of cylinder and
rectangular patterns before reflow is the same, approximately
1 µm. Table 1 summarizes the geometrical parameters of the
fabricated microlenses: the spherical lenses shown in the third
row of figure 1(a) and the cylindrical lens in figure 1(b). The
cylindrical lens is denoted as lens 6.

3. Experimental setup and procedure of numerical
simulation

High-resolution interference microscopy (HRIM) is a holo-
graphic microscopy in a sense that it records interfero-
grams of an object with a reference field. By measuring
multiple interferograms with an adjustable phase difference
between object and reference field, the amplitude and
phase distributions of the object field can be retrieved. In
general, interferometric testing systems have been developed
for two-dimensional measurements, for example, surface
profiling and wavefront measurements of light fields in a plane
of interest [28]. The major difference of our HRIM when

Figure 1. The measured 3D surface data of the fabricated
microlens array using confocal microscopy: (a) spherical lenses and
(b) a cylindrical lens. The color bar indicates the surface height in
micrometers.

compared to other interference microscopes is the ability
to record amplitude and phase fields in 3D by scanning
the samples along the axial direction and repeating the
measurement procedure. Furthermore, the HRIM is rein-
forced with auxiliary techniques known from conventional
microscopy, which are often difficult to be implemented in
other types of holographic or interferometric microscopes.
The HRIM has been already proven as a powerful tool for
the 3D characterization of macro-, micro-, and nano-optical
elements. The HRIM operates in transmission with an in-line
geometry by employing a Mach–Zehnder interferometer. A
single-mode polarized laser diode is used for a light source
(CrystaLaser, 642 nm: DL640-050-3). The first beam splitter
(BS1) divides intensities to be sent in a reference and an
object arm. In the reference arm, a piezo-electrically driven
mirror is mounted to change the optical path length. The
phase distribution of the wavefield is obtained by measuring
the interference fringes at different mirror positions and
employing a classical five-frame algorithm, which is called
the Schwider–Hariharan method [29, 30]. In this scheme,
five frames of the intensity pattern are recorded from which
the spatially resolved transmitted phase is reconstructed,
each frame being shifted by adding an optical path of λ/4.
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Figure 2. (a) Schematic of the longitudinal-differential interferometer based on the HRIM system. (b) A close-up illustration that shows the
scanning situation near the sample, where the in situ self-reference wave (i.e., unperturbed incident plane wave) and the object wave
(i.e., perturbed wave by the sample) are demonstrated. Scanning the sample along the z-axis leads to the 3D measurements.

Assuming that optical aberrations in the whole optical
setup are negligible, the lateral resolution d can be stated
as the Abbe limit (1x) = λ/2NA. Therefore, the nominal
lateral resolutions for the 100×/NA 0.9 objective (Leica
Microsystems, HC PL FLUOTAR), which is equipped in the
HRIM, is calculated to be 357 nm at a wavelength of 642 nm.
Along the optical axis, the Rayleigh criterion can be applied
with the simplified formula derived as1z= λn/(NA2), where
n is the refractive index of medium. The calculated axial
resolution at a wavelength of 642 nm is 1z = 793 nm. At
100× magnification, a pixel on our charge-coupled device
(CCD) sensor (Sicon Corporation, CFW1312M camera with
SONY ICX205AK image sensor of 1360 × 1024 pixels)
corresponds to 46.5 nm in the object plane. This leads to
the maximum field of view of the CCD camera of 64 ×
48 µm2, which is sufficiently large to investigate the incident
wavefront and the converging waves from microlenses.
The overall experimental setup is described in detail
elsewhere [26, 31, 32].

Longitudinal-differential (LD) interferometry [18] is
based on the HRIM setup as a specific measurement mode.
Its schematic is given in figure 2. Its purpose is essentially
to directly measure the phase difference of the object field
with respect to a referential plane wave, i.e. exactly the
desired phase anomaly. The detailed measurement procedures
can be found in the literature [18]. A certain fraction
of the measurement domain needs to be reserved for an
unperturbed wavefield to calibrate each measurement as
shown in figure 2(b). In this domain the LD phase is just a
trivial constant. This inclusion of the referential plane wave is
necessary because of fluctuations in the long term stability. If
the phase advance of the referential plane wave is added, the
propagating phase can be retrieved.

To simulate the aforementioned structures, we used
the MEEP software package [33], which is based on the
finite-difference time-domain (FDTD) method [20]. The
FDTD method is commonly used to provide full vectorial
numerical solutions to Maxwell’s equations and it can account
for the near field as well as the far field simultaneously. We

apply the periodic boundaries in the x- and y-axes and the
perfectly matched layer (PML) boundaries in the z-axis. For
the 2D (i.e., cylindrical lens) and 3D (i.e., spherical lens)
simulations, the grid of 400× 435 (x×z) and 400× 400× 330
(x× y× z) points are respectively used. The PML thickness is
50 grid points on the bottom and top of the simulation domain.
A time step of 133 fs has been considered for the simulations.
Stability of the FDTD simulation is guaranteed by considering
a Courant factor of 0.5. Thanks to the linearity of the problem,
we used normalized parameters, i.e., µ0 = ε0 = c = 1. In
the simulations, steady state is usually reached after a few
thousands time steps. The simulations usually take 5–10 h.
For simplicity in simulations using the FDTD method, the
NA of the measurement system is not considered. This NA of
the measurement system filters out diffracted light associated
with large tangential wavevectors. These angular components
either propagate at increased angles or are associated with
evanescent waves bound to the interface between glass and
air. Generally, the finite NA of the imaging system prevents
the collection of information on these fields in our far-field
measurement system. However, this filtering turned out to be
not necessary since the collecting NA of the system in each
case is larger than the critical angular range into which light is
scattered with a notable amplitude by the different considered
lenses. Moreover, leaving the fields as they are not just makes
it possible to observe in the numerical simulations fields in
amplitude and phase as they are collected in our experiments,
but also additional information such as the electromagnetic
field distribution inside the lenses and near their surface can
be provided. Since the natural outcome of the numerical
simulations is the absolute phase map, the LD phase is easily
retrieved by subtracting the phase of a referential plane wave,
which is known analytically, from the phase of the total field.

4. Intensity and phase distributions of spherical
microlenses

The field distributions emerging from microlenses of diameter
from 5 to 8 µm are measured by the HRIM. The illumination
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Figure 3. The measured x–z intensity distribution. A plane wave of
λ = 642 nm illuminates the microlenses of diameter = 5–8 µm
(from left to right), which propagates along the positive z-axis. Each
lens focuses the incident light at different focal points where the
peak intensity is proportionally increasing with the lens diameter.
The region x = 0–15 µm is where the in situ reference plane passes.
The z = 0 µm plane is the top surface of the substrate, on which the
microlenses sit. The intensity is normalized to the maximal value.

is an x-polarized plane wave of 642 nm wavelength
propagating along the positive z-axis and shines the lens from
the substrate side. Figure 3 shows the measured intensity
distributions in the x–z plane, where one can observe the
focal spot of each lens. The white spherical caps represent
the microlenses. Since the focal length is extremely short, the
back focus (i.e., the substrate side focus) stays in the substrate.
Therefore, in this study, we investigate only the front focus,
which stays in air. The magnitude of the intensity in each focal
spot differs and the larger lens (i.e., 8-µm diameter) exhibits
the focal spot with highest intensity because more light passes
through the larger lens aperture.

LD interferometry requires an in situ reference plane
wave, which is the unperturbed incident light passing aside
of the sample. Therefore, we designed particular microlens
array samples with a wide opening area to include the
unperturbed illumination in the region of interest. In figure 3,
the x = 0–15 µm is a region where the reference wave
passes undisturbed. In order to image this large open area,
the microlens array is shifted to the right side in the viewing
field of the HRIM. This translation omits lens 5 (i.e., 9-µm
spherical lens) in the phase measurements. However, since
there is no significant necessity for lens 5, we concentrate
on studying lenses 1–4 for the spherical lens and lens 6 for
the cylindrical lens, which will be shown in section 5. In
experiments, the phase measurement originally leads to the
LD phase map as shown in figure 4(a). The experimental
errors due to vibration and the laser source instability can now
be corrected by using the in situ reference plane wave that
is present in the region of x = 0–15 µm and which appears
as a constant phase in the LD phase map. By wrapping this
constant phase of the reference plane wave with a modulo
of 2π , a propagation phase map, which is the counterpart of
the simulated absolute phase map, is obtained and added in
figure 4(b).

In figure 4, four microlenses show distinct phase
distributions due to the different focal properties. In general,
the light in the focal region demonstrates the shift from
the converging wavefront to the diverging one. In the LD
phase map, this change is shown as a triangular shape of
a caustic-like phase feature flipping over. The merit of the

Figure 4. The measured x–z phase distributions: (a) the
longitudinal-differential phase map and (b) the propagation phase
map. The reference plane wave passing the opening is shown in
x = 0–15 µm of both maps. Note that in the region of the reference
plane wave the longitudinal-differential phase map is constant and
independent on the propagation distance. In the remaining space,
the figure shows the difference of the actual phase to the phase of
that plane wave. The propagation phase is obtained by adding the
phase advance of a plane wave in free space to each distance that
can be calculated analytically according to kz and unwrapping it
with a modulo of 2π . The color bar indicates the phase in radians.

propagation phase map is to directly visualize such wavefront
shapes. Therefore, one can more straightforwardly identify
spatial domains where such a change occurs.

Each column of figure 1(a) shows five microlenses
of the same diameter. This setup was designed to verify
the homogeneity of the fabrication and the corresponding
optical response of the lenses. Since the Gouy phase of
the 6-µm cylindrical lens will be compared with that of a
spherical lens, the homogeneity of the 6-µm spherical lens
is of interest now. In order to achieve the same illumination
conditions, the sample shown in figure 1(a) is rotated 90◦ in
the clockwise direction. Figure 5 shows the x–z intensity
and phase distributions across four microlenses of the same
diameter. For the referential plane wave, we move the lens
array to the right side of figure 5. Thus, only four lenses are
imaged. The reconstructed propagation phase map is shown as
well. In this case, the four lenses show almost identical optical
responses. Especially, when compared to figure 4(a), the LD
phase map in figure 5(b) impressively demonstrates the same
evolution of the axial phase emerging from each lens except
for a negligible difference caused by measurement errors.

To verify the experimental results shown in figures 3–5,
rigorous simulations using the FDTD method were carried
out. Figure 6 shows the corresponding FDTD simulation
results for the 5–8 µm lenses. The results show a good
agreement with measurements shown in figures 3–5. In the
intensity maps, just before the bright focal spot along the
z-axis, a dark intensity region is found. It originates from the
diffraction at the lens aperture. Such a dark intensity region
is a typical demonstration of the destructive interference of
diffracted light, where a phase singularity originates. It leads
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Figure 5. The measured x–z intensity phase distributions of four
spherical microlenses of diameter = 6 µm: (a) the intensity, (b) the
longitudinal-differential phase map and (c) the propagation phase
map. The lenses are from the second column of figure 1(a) and the
lens array is rotated 90◦ in order to achieve the same illumination
condition.

to a discontinuity of the wavefront (i.e., iso-phase line) in the
absolute phase maps (see the region between the lens and the
bright focal spot in the absolute phase maps of figure 6). In this
region, the axial phase shift is very quickly deviating from the
overall gradient of the Gouy phase (see inside the caustic-like
phase feature in the LD phase maps). This diffraction feature
enlarges the amount of the axial phase shift, particularly in
the space between the lens and the focal spot. It is different
from a conventional lens focusing, where such influences of
the diffraction are not prominent. Those phenomena are well
demonstrated in the measurements shown in figures 3–5. A
more detailed discussion concerning the axial phase profiles
of experimental and numerical results is in section 6.

5. Intensity and phase distributions of a cylindrical
microlens

In this section, we present the study of the 2D focusing case,
i.e. 6-µm cylindrical lens (see the details of lens 6 in table 1),
as a comparison to the 3D focusing by a spherical lens. Lens
6 is illuminated with the same conditions—that is, a plane
wave of 642 nm with x-polarization. Figure 7 shows the
experimental results for the intensity and phase distributions
in the x–z plane. The corresponding FDTD simulation results
are shown in figure 8. In this case, the numerical results show
an excellent agreement with the experimental results.

Compared to the results of the 6-µm spherical lens, the
diffraction feature, which leads to additional phase shifts in

the LD phase map and discontinuity in the absolute phase
map, is not observed. Moreover, the intensity in the triangular
region between the lens and the focal spot is prominently
stronger than that of the spherical lens. We can find reasons
in the classical diffraction problem. When the diffracted
amplitude field is compared to the peak amplitude in the focal
spot, the diffraction of the slit leads to a relatively higher
magnitude when compared to the case of the circular aperture.
The most interesting parameter is the overall Gouy phase
anomaly. As anticipated, the gradient of the Gouy phase is
lower than that of the spherical lens. It can be seen that the
color variation in figures 7(b) and 8(b) is less than that of
figure 5(b) for instance. The actual axial phase shift (i.e., the
Gouy phase) value will be shown in section 6 and further
compared with the 3D focusing case.

6. Gouy phase anomalies

The Gouy phase of a focused monochromatic field at an
axial point is defined as the difference between the phase
of the object field and that of a plane wave of the same
wavelength [34]. In our study, the LD phase maps directly
provide such information in a longitudinal plane, which
contains the optical axis of each lens. In order to quantify the
Gouy phase of the cylindrical and spherical microlenses, the
axial phase profiles along the center of the lens from the LD
phase maps are extracted and analyzed here. Since the LD
phase map is still wrapped by 2π , one can obtain the actual
axial phase shift along the optical axis by unwrapping the LD
phase profile. In general, the amount of the Gouy phase is
quantified for ±∞. In our case, the rather small size of the
integrated device allows us to deviate from an evaluation of
the Gouy phase from minus infinity to plus infinity (i.e. ±∞)
since the focal plane is close to the lens plane, i.e. only a few
micrometers away from the lens vertex. Therefore, we limit
the region of interest to the range within the depth of focus
(DOF), which we define here as the axial full width at half
maximum (FWHM) of the intensity profile. In microscopic
imaging systems, the measured light field through a scattering
object can contain artifacts because of the aberrations in the
imaging objective. Only the field measured from the sample
to the free space would be considered as true information
without particular errors. Therefore, the proposed method
in [17] to differentiate diffraction effects from the Gouy effect
is not rigorously correct and not directly applicable to our
study. Since the additional diffraction features appear out of
the focal region, by limiting the region of interest (ROI) one
can minimize the influence of the diffraction features in the
analysis of the Gouy phase, especially for the spherical lenses.

Figure 9 shows the extracted, measured and simulated
axial phase profiles of figures 7(b) and 8(b) along the center
of the cylindrical lens. Inside the lens (i.e. z < 1.4 µm),
the simulation sustains complicated field distributions due
to multiple reflections back and forth in the lens as well as
additional scattering. In the measurement, such distributions
are not detectable since they are not far-field features.
Therefore, these regions should be not considered. Moreover,
the increasing deviation between measurement and simulation
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Figure 6. The FDTD simulation results for the x–z intensity phase distributions of four spherical microlenses of diameter 5–8 µm
(lens 1–lens 4), which correspond to the results shown in figures 3 and 4.

for excessive distances on the optical axis away from the
lens, i.e. at z > 10 µm, is reminiscent of typical measurement
errors. They are caused by an extremely low visibility of the
interference fringe due the low intensity in this spatial domain.
As a consequence, the measured phase becomes less reliable.
In this spatial domain far away behind the focus practically

no noticeable light can be found. Also, the scattered light
emerging from the neighboring lenses is not considered in
the simulation as a single lens is modeled. This could be
an additional cause of deviation. Otherwise, the experimental
result within the ROI is in excellent agreement with the
simulation. The DOF is found in the intensity map of figure 8
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Figure 7. The measured x–z intensity phase distributions emerging from a cylindrical microlens of aperture width 6 µm: (a) the intensity,
(b) the longitudinal-differential phase and (c) the propagation phase maps. The referential plane wave passes outside of the lens, x = 0 to 7
and 13 to 20 µm. The intensity is normalized and the color bars in the phase distributions indicate the phase in radians.

Figure 8. The FDTD simulation results corresponding to figure 7: (a) the intensity, (b) the longitudinal-differential phase and (c) the
propagation phase maps. The intensity is normalized and the color bars in the phase distributions indicate the phase in radians.

Figure 9. The Gouy phase of the cylindrical microlens of 6 µm
width: the extracted axial phase profiles from both experiment
(figure 7) and simulation (figure 8). The depth of focus is
z = 4.2–9.3 µm.

to be in between z = 4.2 and 9.3 µm. In this region, the axial
phase shift equals 1.82 rad (=0.58π ). This value corresponds
to the Gouy phase of a cylindrical lens (i.e., 2D focus), which
is quantified to be 0.5π for ±∞.

Figure 10 shows the axial phase profiles for the 6 µm
spherical lens extracted from experiment and simulation. The
experimental result is taken from the second left lens in

figure 5(b) at x = 25 µm and the numerical one from the
second column of figure 6. In this case, the experimental
error shifted the measured phase profile by approximately
1 µm in the negative z-direction. This is corrected in figure 10
by overlapping the profiles for better comparison. Inside the
lens (z = 0–1.3 µm) and the region behind the focal spot
(z > 10 µm), the discrepancy can be neglected as in the case
of the cylindrical lens. The axial phase shift within the DOF
(z = 3.6–6.9 µm) is found to be 2.71 rad (=0.86π ). Although
the relative difference from the anticipated value π is larger
than the relative deviation for the cylindrical lens, it still
demonstrates that the 3D focus possesses approximately 50%
larger Gouy phase that of a 2D focus within the axial range
of the DOF. As discussed in section 4, for spherical lenses,
the diffraction causes additional axial phase shifts between
the lens and the focal spot (see the region z = 2–3.6 µm),
where the dark amplitude spot leads to a pronounced phase
evolution. Unlike the case of the cylindrical lens, there are
zeros in intensity along the optical axis. The zeros for the 3D
case (i.e., spherical lens) are a consequence of the fact that
the Fresnel half-period zones are of equal area so that their
total can exactly cancel [35]. The quantity of the axial phase
shift is found to be approximately 6 rad, which is much larger
than the fundamental Gouy phase of the focal spot. This is
a special feature and situation, which can often be found in
micro-optical problems. The Fresnel number (=a2/fλ, with
a = radius of the lens and f = focal length) of such small
microlenses is larger than unity. This simply indicates that
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Figure 10. The Gouy phase of the spherical microlens of 6 µm
diameter: the extracted axial phase profiles from both experiment
(figure 5) and simulation (figure 6). The depth of focus is
z = 3.6–6.9 µm.

the Fresnel diffraction can represent the optical response of
the lens. However, the optical regime falls into a special
intermediate status because the Fresnel approximation, i.e.,
characteristic distance and size, f and a � λ, is not valid
for such small microlenses. Therefore, the criterion of the
Fresnel number is inappropriate and rigorous treatments are
necessary to properly understand the optical response and
light interaction of such a small object.

7. Conclusions

The Gouy phase anomalies of 2D and 3D foci of small-
size microlenses have been investigated. The longitudinal-
differential interferometer plays a primary role in the inves-
tigation because it makes possible the direct measurement of
the Gouy phase without any reconstruction process. The main
interest is to quantify the amount of the Gouy phase for line
and point foci happening in the micro-optical regime, in which
the light field tends to demonstrate more complex evolution.
Due to the small size of the test lens and the presence of
the substrate in the test geometry, the nominal axial range
from −∞ to +∞ for the Gouy phase was not applicable. In
the LD interferometer, a reasonable measurement space starts
from the substrate, on which the microlenses sit. Therefore,
the region of interest has been set to be different from the
conventional case—in our case, the ROI is the DOF of each
lens.

When the size of the optical element becomes comparable
to the operating wavelength, diffraction features significantly
influence the light field distribution and its evolution. For
example, particular phase features, such as e.g. spiral type
phase singularities that occur in spatial domains where the
intensity is zero at the selected point of the optical axis, are
found in the 3D focus situation. The space between the lens
and the focal spot possesses such dark spots due to destructive
interference. The rotational symmetry of the 3D focus, in
which the Fresnel half-period zones are of equal area so that

their total amplitude can exactly cancel, is the origin of such
dark spots. In this region where the dark spots result in the
additional phase jumps due to the phase singularity, the phase
evolution is relatively fast and large. This increases the axial
phase shift to a much larger than the conventional Gouy phase
of the point focus. Such dark amplitude points appear between
the lens pupil and the focal spot; we can exclude axial phase
jump originating from singularity by limiting the ROI to the
vicinity of the focal spot (i.e., the DOF). Note that the line
focus does not show such dark spots, and therefore there is no
augmented axial phase shift due to the singularity.

Within the DOF, the 3D focus shows 0.86π shift and the
2D focus results in 0.58π shift. Although the 3D case does
not yield twice the shift when compared to the 2D case, it
demonstrates a relatively larger shift than the 2D case. This
can be partially explained by the application of different axial
ranges to quantify the Gouy phase when compared to the
conventional case. The conventional values, such as π for a
point focus and 0.5π for a line focus, are not expected. In
the theoretical modeling, the NA filtering and influence of the
neighboring lenses are not implemented, which might cause
some minor deviations between experiments and simulations.
Except for such negligible deviations, the experimental results
show a good agreement with the FDTD simulations. This
verifies the rigorous performance of the LD interferometer
and our experimental design. Our results provide physical
optical insights of wavelength-scale microlenses, whose
optical regime is different from ray optics and pure far-field
problems. When such small microlenses are applied in
phase-sensitive problems, the Gouy phase and the additional
increase of the axial phase shift should be taken into account.
More attention is required for the point focus because the
phase singularity along the optical axis speeds up the phase
evolution and each dark spot augments an additional axial
phase shift on top of the Gouy phase.
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