
A Fully Dynamic Universal Accumulator

Atefeh Mashatan and Serge Vaudenay

EPFL, Lausanne, Switzerland
http://lasec.epfl.ch

Abstract. A dynamic universal accumulator is an accumulator that allows one to efficiently compute
both membership and nonmembership witnesses in a dynamic way. It was first defined and instantiated
by Li et al., based on the Strong RSA problem, building on the dynamic accumulator of Camenisch
and Lysyanskaya. We revisit their construction and show that it does not provide efficient witness
computation in certain cases and, thus, is only achieving the status of a partially dynamic universal
accumulator. In particular, their scheme is not equipped with an efficient mechanism to produce non-
membership witnesses for a new element, whether a newly deleted element or an element which occurs
for the first time.
We construct the first fully dynamic universal accumulator based on the Strong RSA assumption, build-
ing upon the construction of Li et al., by providing a new proof structure for the non-membership
witnesses. In a fully dynamic universal accumulator, we require that not only one can always create
a membership witness without having to use the accumulated set for a newly added element, but also
one can always create non-membership witnesses for a new element, whether a newly deleted element
or an element which occurs for the first time, i.e., a newcomer who is not a member, without using the
accumulated set.

Keywords: Dynamic Accumulators, Universal Accumulators

1 Introduction

Cryptographic accumulators allow us to encapsulate a large number of elements in a single short accumu-
lator along with short witnesses that can be used for proving whether or not an element has been accumu-
lated. The notion of cryptographic accumulators was first introduced by Benaloh and de Mare [BdM93]
and further pursued by many researchers as they come very practical in many scenarios such as anony-
mous credential systems and group signatures, see for example [Nyb96,Ngu05,CKS09], and that they can
be instantiated based on a variety of techniques and hardness assumptions, for instance, the strong RSA
assumption, bilinear maps, the Decisional Diffie-Hellman assumption, and one-way hash functions.

We are now going to focus on a number of schemes which are based on the Strong RSA assumption
and they were built one after the other in an evolutionary process. Barić and Pfitzmann [BP97] followed the
work of Benaloh and de Mare [BdM93] and introduced collision-free accumulators. This scheme provided
membership proofs. Later, Camenisch and Lysyanskaya [CL02] augmented the latter work and proposed
a dynamic accumulator, in which elements can be efficiently added to and removed from the set of ac-
cumulated values. Finally, Li et al. [LLX07] built their scheme based on the proposal of Camenisch and
Lysyanskaya [CL02] and introduced universal accumulators in which there is a witness, whether a member
or not, for every elements in the input domain. (See [FN03] for a survey.) Although Li et al. promise to
provide efficient non-membership proofs, we will see that the structure of the witness fails to offer efficient
dynamic proof computation for certain elements and, hence, achieves the desired dynamism only partially.
In a fully dynamic universal accumulator, we require that not only one can always create a membership
witness without having to use the accumulated set for a newly added element, but also one can always cre-
ate non-membership witnesses for a new element, whether a newly deleted element or an element which
occurs for the first time, i.e., a newcomer who is not a member, without using the accumulated set.

Although accumulators are not so new elements in cryptographic schemes, formal security definitions
and classifications on different requirements have not been adequately dealt with. The literature often fails
to provide exact correctness or security definitions for different classes of accumulators and there have
been several security notion proposed. We focus on the strongest security notion, considering a powerful
adversary who can invoke the authority with polynomially many accumulator initiations. This notion is

referred to as the Chosen Element Attack model, in the literature [WWP07]. Informally, a polynomially
bounded adversary interacts with the authority who maintains the accumulators. The adversary invokes
the authority to initiate a polynomial number of accumulators and make changes to them according to the
adversary’s instructions on what element to add or delete. Finally, the adversary chooses an element and an
accumulator and produces a witness. The adversary wins if the witness proves that the chosen element is
not a member when in fact it is, or it proves that the chosen element is a member when in fact it is not.

Accumulators have proven to be a very strong mathematical tool with applications in a variety of
privacy preserving technologies where there is a desire to represent a set of elements in a compact form, for
example, certificate revocation schemes, anonymous credential systems, and group signatures. In particular,
fully dynamic universal accumulators can come handy in a variety of real-life scenarios. For example,
consider the set of people who have a medical condition that allows them to benefit from some discount
medication, but denies them the access to certain areas, such as swimming pools. These people should be
able to efficiently prove their membership at a pharmacy and everyone else should be able to show their
nonmembership when entering a swimming pool, for example.

It is known that batch updates cannot be done [CH10]. This means that updating a (non-)membership
proof without the secret key requires to go through all the accumulator updates.

Our contributions. In this paper, we first point out the lack of efficiency in the dynamic updating process of
the dynamic universal accumulator of Li et al. [LLX07], where the authority has to go through the already
accumulated set to create non-membership witnesses for certain members, namely newly considered values
which are not members and newly deleted members, defying the claim that the scheme provides efficient
non-membership proofs in all cases.

Moreover, we introduce the notion of weak dynamic accumulators, a special case of dynamic accumu-
lators where the only operation is addition and the elements can dynamically be added to the accumulator.
Hence, a dynamic accumulator is trivially a weak dynamic accumulator. Further, we present a generic trans-
formation from a weak dynamic accumulator with a domain having a certain structure, e.g., the domain
being a set of odd primes, to a weak dynamic accumulator with a domain of arbitrary form, e.g., a subset
of {0,1}∗.

Furthermore, we formally define what we require from a fully dynamic universal accumulator and
instantiate the first such scheme based on the Strong RSA assumption and a weak dynamic accumulator
with an arbitrary domain. This instantiation builds on the previous schemes based on the same hardness
assumption by keeping the structure of the membership proofs, due to Camenisch and Lysyanskaya [CL02],
but providing a new structure for the non-membership proofs. This property, i.e., being fully dynamic,
comes at a price. Our accumulators are a bit larger. However, as it is more efficient when introducing new
elements compared to previously introduced partially dynamic accumulators, it achieves the same level
of efficiency as the set of accumulated values is growing. Moreover, the efficacy of the new structure of
non-membership proofs allows the authority to perform batch updates, a desired property that had not been
achieved successfully so far.

Structure of the paper. The rest of the paper is organized as follows. Section 2 is dedicated to briefly de-
scribing, notations, definitions, different classes of already existing accumulators, and the particular variant
of the dynamic accumulator of Camenisch and Lysyanskaya [CL02] due to Li et al. [LLX07]. In Section
3, we define the notion of Weak Dynamic Accumulators and present a generic transformation to obtain a
Weak Dynamic Accumulators with arbitrary domain. Finally, Section 4 is devoted to defining Fully Dy-
namic Universal Accumulators followed by an instantiation whose security is based on the strong RSA
assumption. Last but not least, we wrap up with some concluding remarks in Section 5.

2 Preliminaries

In this section, we list definitions, notations, and the building blocks which will be used to construct and
analyze our scheme in the following section.

Throughout this paper, we use the expression y← A(x) to mean that y is the output of algorithm A
running on input x. An algorithm is said to have polynomial running time, if its running time can be

2

expressed as a polynomial in the size of its inputs. If X denotes a set, |X | denotes its cardinality and x ∈R X
expresses that x is chosen from X according to the uniform distribution. If X and Y are sets, then X \Y
denotes the set of elements in X , but not in Y . For convenience, we also use X + {x} and X −{x} when
an element x is being added in or deleted from a set X . We also use the classical notion of a negligible
function: f : N→ R is said to be negligible in k if for any positive polynomial function p(.) there exists a
k0 such that if k ≥ k0, then f (k)< 1/p(k).

The strong RSA assumption states that given an RSA modulus n and a random x drawn from Z∗n, it is
infeasible to find e > 1 and y ∈ Z∗n such that ye = x mod n.

2.1 Evolution of Cryptographic Accumulators

In this section, we illustrate the evolution of the cryptographic accumulators in the literature. There are
different notions of security used in the literature and, due to lack of space, we only focus on the strongest
notion, sometimes referred to as the Chosen Element Attack model. As for the notion of correctness of an
accumulator, one requires that correctly accumulated values have verifying witnesses, regardless of the type
of accumulator. The literature has often stopped here and has failed to provide a more precise definition
of correctness. We will provide the first formal definition of correctness that can be applied to several
categories of accumulators with different functionalities.

There is an authority who initiates and maintains the accumulator and interacts with other participants.
The authority generates the secret and public keys and keeps a state including the keys, the accumulated
value, the set of elements which are accumulated. The authority delivers the proofs to the participants. In
the security definition, the adversary asks the authority to provide certain proofs in the form of an oracle.

The definitions below are mostly gathered by Wang et al. [WWP08], but contain some twists to make
them consistent with the following sections.

Definition 1 (Accumulators). An accumulator scheme Acc, with a domain P, a set X ⊆ P, and values
x ∈ X to be accumulated, consists of the following algorithms.

– A setup probabilistic algorithm KeyGen(1k)→ (Ks,Kp), where Ks is only used by the authority and Kp
is public.

– An algorithm AccVal(Ks,Kp,X)→ c, which computes an accumulator value c, for the set X, from the
keys.1

– An algorithm WitGen(Ks,c,X ,x)→W to generate a proof of membership for x ∈ X in accumulator c.
– A predicate Verify(Kp,c,x,W) to check a proof.

One problem with this primitive is the lack of any possibility to dynamically update a set X . Ideally,
we would like to insert or delete members of X and update the accumulator c accordingly. To make it
efficient we want all values to have a length which only depends on k and not on the cardinality of X . So,
we amend the definition by introducing the UpdEle and UpdWit algorithms. This defines the notion of
Dynamic Accumulator (see Def. 11 in Appendix).

The accumulator does not consider proofs of non-membership. This is the next desired functionality to
have. This is done with the notion of Universal Accumulator (see Def. 12 in Appendix).

A proof W for x is said to be valid with respect to (X ,c) if and only if the predicate Verify(Kp,c,x,W)
holds. Moreover, a proof W for x is said to be coherent with respect to (X ,c) if and only if it is valid and
IsMem(W) is equivalent to x ∈ X . One problem with this construction is that the authority must figure out
whether or not x is a member of X to generate a coherent proof. That is, the information on X cannot be
compressed. The lack of dynamism is also a problem.

Finally, we formalize the dynamic universal accumulator notion due to Li et al. [LLX07] as follows.
The reason why we call it a partially dynamic universal accumulator is discussed below. Note that our
formalism is a bit more detailed that theirs to be consistent with the rest of our paper.

Definition 2 (Partially Dynamic Universal (PDU) Accumulators). A partially dynamic universal accu-
mulator PDUAcc, with a domain P, a set X ⊆ P, and values x ∈ X to be accumulated, consists of the
following algorithms.

1 For some constructions, Ks is not used by AccVal.

3

– A setup probabilistic algorithm KeyGen(1k)→ (Ks,Kp), where Ks is only used by the authority and Kp
is public.

– An algorithm AccVal(Ks,Kp,X)→ c, which computes an accumulator value c of the set X, from the
keys.

– An algorithm UpdEle(Ks,Kp,c,op,x)→ (c′,extra), where op = + or op = −, which computes the
accumulator c′ for Xop{x} from the accumulator c for X. When op = +, we must have x 6∈ X and we
say that x is inserted into X. When op = −, we must have x ∈ X and we say that x is deleted from X.
The algorithm also returns some extra information extra, which might be needed for dynamic witness
update.

– An algorithm WitGen(Ks,c,X ,x)→W to generate a proof of membership or non-membership for the
value x with respect to accumulator c of X.

– An algorithm UpdWit(Kp,c,c′,extra,op,x,W,y)→W ′ to generate a proof W ′ for y in accumulator c′

from a proof W for y in accumulator c, where UpdEle(Ks,Kp,c,op,x)→ (c′,extra). It must be the case
that x 6= y.

– A predicate IsMem(W) telling whether W is a proof of membership (true case) or a proof of non-
membership (false case).

– A predicate Verify(Kp,c,x,W) to check a proof.

We let X be a subset of P which is initially empty. Every time we run UpdEle(., ., .,op,x), we replace X by
Xop{x}. Clearly, for WitGen to generate coherent proofs, IsMem ◦WitGen must be a predicate to decide
whether an arbitrary x belongs to X or not. Since we want c to have a length which only depends on k (and
not on the cardinality of X), it is not possible to require WitGen to generate coherent proofs without X as
an input while X has been filled. It is still possible to invoke WitGen to create from X a new proof. Then,
we count on UpdWit to update all coherent proofs.

With this notion, UpdWit cannot create a new witness for x = y, that is for a value y which has just
been added or deleted. This is why we call it Partially Dynamic Universal.

2.2 Formalizing the Notions of Correctness and Security for Accumulators

We now describe our notion of correctness than can be applied to several types of accumulators. This defini-
tion is our attempt to formalize the notion of correctness which was missing in the literature. One difficulty
is that the accumulator interface introduces many options, and that we want to formalize that whatever
sequence of option is selected, the accumulator always keep consistent properties. Here, the sequence of
options is arbitrary. We formalize this by introducing an adversary who can select it maliciously.

Intuitively, the notation c≺ X means that c is a correct accumulator value computed for the set X , while
W ` (x,X ,c,bool) means that W is a valid computed proof for x being/not being (depending on the Boolean
bool) in c≺ X .

Definition 3 (Correctness). Consider a game in which we first run KeyGen(1k)→ (Ks,Kp) and allow the
adversary to take Kp and Ks and play with the rest of the algorithms available for the respective accumula-
tor, e.g., AccVal(Ks,Kp, .), MemWitGen(Ks, ., ., .), NonMemWitGen(Ks, ., ., .), UpdEle(Ks,Kp, .,op, .), or
UpdWit(Kp, ., ., .,op, ., ., .). We recursively define the relations c≺ X and W ` (x,X ,c,bool) by the follow-
ing conditions:

– If the adversary calls AccVal(Ks,Kp,X)→ c, then c≺ X.
– If c≺ X and the adversary queries UpdEle(Ks,Kp,c,op,x)→ (c′,extra), then c′ ≺ Xop x.
– If c ≺ X and the adversary queries WitGen(Ks,c,X ,x)→W or MemWitGen(Ks,c,X ,x)→W, then

W ` (x,X ,c, true). If c ≺ X and the adversary calls NonMemWitGen(Ks,c,X ,x) → W, then W `
(x,X ,c, f alse).

– If c≺ X and the adversary called

UpdEle(Ks,Kp,c,op,x)→ (c′,extra) then UpdWit(Kp,c,c′,extra,op,x,W,y)→W ′

with x 6= y and W ` (y,X ,c,b), then W ′ ` (y,Xop x,c′,b).

4

The accumulator scheme is said to be correct if for all probabilistic polynomial time adversaries, and
for all possible choices of W,x,X , and c, we have that W ` (x,X ,c,b) implies Verify(Kp,c,x,W) and, in
the case of universal accumulators, IsMem(W) ⇐⇒ x ∈ X.

Note that it is unusual to have an adversary in a definition of correctness. This is necessary here as we want
to have correctness whatever the history of interactions with the interface.

Next, we describe the Chosen Element Attack scenario [WWP08] when defining security for a PDU
accumulator.

Definition 4 (Chosen Element Attack (CEA) Model). The security of a PDU accumulator is defined in
terms of a game, based on a security parameter k, played by a polynomially bounded adversary. Firstly,
KeyGen is run and Kp is given to the adversary. Secondly, the adversary selects a polynomially bounded
number `. There are registers Ks, Xi, and ci, i = 1, . . . , `, for a secret key and to keep track of ` sets Xi and
their accumulator values ci. Initially, all Xi’s are empty and ci is set to AccVal(Ks,Kp,Xi). The adversary
can then call an UpdEle(Ks,Kp,ci, ., .) oracle for a selected i which updates Xi and ci accordingly. It is not
allowed to add an x to Xi when x is already in Xi, nor is it allowed to delete x from Xi when x is not in Xi.
The adversary can also call a WitGen(Ks,ci,Xi, .) oracle for a selected i and an AccVal(Ks,Kp, .) oracle
which do not update an Xi of ci. After making many oracle queries, the adversary ends by producing some
(i,x,W). The adversary wins if W is an incoherent proof for x with respect to Xi and accumulator ci.

Note that when the algorithms are all deterministic, we can always reduce to `= 1 and remove access
to the AccVal(Ks,Kp, .) oracle. This follows because calling AccVal on the same inputs is going to produce
the same outputs. Moreover, the information that the adversary obtains from calling AccVal for the sets Xi
can all be simulated by a single set X .

2.3 An Instantiation of Partially Dynamic Universal Accumulators due to Li et al.

We now describe a PDU accumulator based on the scheme presented by Li et al. [LLX07].
In what follows, we have a domain P of possible values for x with some specific form. A subset X ⊆ P

has an accumulator c and public parameters n and g. A proof of non-membership for x ∈ P \X for c is a
tuple (a,d) such that

ca ≡ dxg (mod n).

By writing a Euclidean division a = a′+qx, we can easily transform such a proof (a,d) into a new proof
(a′,d′), with d′ = dc−q mod n, such that 0≤ a′ < x. We refer to

[a,d]x = (a mod x,dc−
a−(a mod x)

x mod n)

as the “reduced” proof, where the public parameters are implicit. Note that [a,d]x can be computed without
the secret key for any integer a. When a is a rational number, we need the secret key to compute it.

Domain: P is a set of odd prime numbers, e.g., all odd prime numbers up to a given bound B.
KeyGen(1k): pick two different prime numbers p and q such that p−1

2 and q−1
2 are both prime and not in

P, take n = pq, r = 1
2 λ(n), and g an element of order r in Z∗n. Then, Kp = (n,g) and Ks = r.

AccVal(Kp,X): the value of c is defined by

c = g∏x∈X x mod n. (1)

Note that Ks is not required to compute c.
UpdEle(Ks,Kp,c,op,x): if op = +, we have c′ = cx mod n (Ks is not required). If op = −, we have c′ =

c
1
x mod n (Ks is required). It returns extra= (c,op,x,c′). Since it is not allowed to delete a non-member

of X , c′ can be computed without Ks but using X by applying (1).
WitGen(Ks,c,X ,x): if x ∈ X , then W = (mem,w) with w = c

1
x mod n. This does not require X . It can also

be computed without Ks, but using X by observing that

w = c∏y∈X−{x} y mod n. (2)

5

If x 6∈ X , then W = (nonmem, [a,d]x) with a =
(
∏y∈X y

)−1 and d = 1.
Clearly, the final (a,d) is such that

a =

(
∏
y∈X

y

)−1

mod x and d =
(
cag−1) 1

x mod n. (3)

The above computation requires Ks. Below, we give an algorithm to compute [a,d]x without Ks, but by
going through all X members.

UpdWit(Kp,extra,W,y): with extra= (c,op,x,c′), there are four cases to update the proof for y in X after
adding or deleting x:

– W of the form (mem,w) and x just added (op=+): set W ′ = (mem,w′) with w′ = wx mod n.

– W of the form (mem,w) and x just deleted (op=−): set W ′ = (mem,w′) with w′ =wzc′
1−xz

y mod n
and z = 1

x mod y.
– W of the form (nonmem,a,d) and x just added (op=+): set W ′=(nonmem, [a′,d′]y) with a′= az,

d′ = dc−a 1−xz
y mod n and z = 1

x mod y.
– W of the form (nonmem,a,d) and x just deleted (op=−): set W ′ = (nonmem, [a′,d]y) with a′ =

ax.
IsMem(W): is true if and only if W is of the form (mem, .).
Verify(Kp,c,x,W): if W is of the form (mem,w), it is true if and only if c = wx mod n. If W is of the form

(nonmem,a,d), it is true if and only if ca ≡ dxg (mod n).

We can compute the non-membership proof [a,d]y for y 6∈ X by iteratively going through all x∈ X . For this,
we start with (a,d) = (1,1), which is a proof of non-membership for y in the empty set with accumulator
c= 1. Then, for each x∈X we update (a,d)←UpdWit(Kp,(c,+,x,cx mod n),(a,d),y) and c← cx mod n.

Note that all algorithms are deterministic here. It can be easily proven that all oracle calls in the security
game preserve the relations (1), (2), and (3). Then, we easily prove that UpdWit preserves (2) and (3) as
well. Since (1) can be computed without Ks and that the game does not allow the adversary to add a
member or to delete a non-member, all oracle calls in the game can be simulated without knowing Ks. So,
the security is equivalent to forging X ⊆ P and x ∈ P together with W which is an incoherent proof for
x with respect to X with Kp as a sole input. We can easily see that this implies breaking the strong RSA
assumption (c.f. [LLX07] for more details).

Quite importantly, it is necessary that all proofs of non-membership satisfy (3). Indeed, assuming that
x 6∈ X and we have some (a′,d′) such that ca′ ≡ d′xg (mod n), the adversary can compute (a,d) satisfying
(3) by going though all X members and without requiring Ks. Then, he would obtain a relation ca′−a ≡
(d′/d)x (mod n). If the proof (a′,d′) does not satisfy (3), then x does not divide a′−a. So, the adversary
can invert a′−a modulo x and obtain a relation wx mod n = c which is a proof of membership although x
has been deleted. Security collapses. So, it is important to provide only proofs (a,d) such that (3) holds.
A similar weakness was spotted in [PB10]. It was based on a proposal to compute (a,d) from ∏y∈X y mod
ϕ(n) instead of ∏y∈X y, which is quite a bad idea! The above procedure is safe. (Indeed, its computation
does not require the secret key, so it is zero-knowledge.)

One drawback of LLX is that after deleting x from X we cannot create a proof of non-membership for
x except by recomputing a from scratch, since (3) must be satisfied. Although it seems dynamic, it fails to
provide the promised efficiency since we need X to compute a and, hence, only offers a partially dynamic
universal accumulator. A similar drawback exists in the WitGen algorithm. Indeed, the authority willing to
issue a proof of non-membership for a non-member which never needed such a proof has to go through the
entire X structure.

3 Weak Dynamic Accumulators for Arbitrary Domains

In this section, we define the notion of weak dynamic accumulator where elements can be dynamically
added to the accumulator. It’s called a weak dynamic accumulator because it only considers adding and not
deleting elements, and that is all we need for our construction in Section 4. When compared to Dynamic
Accumulators in Def. 11, WD accumulators do not require an AccVal to compute c from X .

6

Definition 5 (Weak Dynamic (WD) Accumulators). A weak dynamic accumulator WDAcc, with a do-
main P, a set X ⊆ P, and values x ∈ X to be accumulated, consists of the following algorithms.

– A setup probabilistic algorithm KeyGen(1k)→ (Ks,Kp), where Ks is only used by the authority and Kp
is public.

– An algorithm InitAccVal(Ks,Kp)→ c, which computes an initial accumulator value c of the empty set,
from the keys.

– An algorithm AddEle(Ks,Kp,c,x)→ (c′,extra), which computes the accumulator c′ for X +{x} from
the accumulator c for X. We must have x 6∈ X and we say that x is inserted into X. The algorithm also
returns some extra information extra, which might be needed for dynamic witness update.

– An algorithm UpdWit(Kp,c,c′,extra,x,W,y)→W ′ to generate a proof W ′ for y in accumulator c′ from
a proof W for y in accumulator c, where AddEle(Ks,Kp,c,x)→ (c′,extra).

– A predicate Verify(Kp,c,x,W) to check a proof.

Note that all WD accumulators are dynamic, by definition. Hence, the constructions due to Li et al.
or Camenisch and Lysyanskaya are both WD accumulators. Moreover, Def. 3, the correctness definitions,
can be applied to WD accumulators considering + as the only possibility for op. Furthermore, the security
notion for a WD accumulator is a special case of a Chosen Element Attack scenario since there are no
deletions.

Definition 6 (Security of a WD accumulator). The security of the WD accumulator is defined in terms
of a game, based on a security parameter k, played by a polynomially bounded adversary. Firstly, KeyGen
is run and Kp is given to the adversary. Secondly, the adversary selects a polynomially bounded number
`. There are registers Ks, Xi, and ci, i = 1, . . . , `, for a secret key and to keep track of ` sets Xi and their
accumulator values ci. Initially, all Xi’s are empty and ci is set to InitAccVal(Ks,Kp). The adversary can
then call an AddEle(Ks,Kp,ci, ., .) oracle for a selected i which updates Xi and ci accordingly. It is not
allowed to add an x to Xi when x is already in Xi. After making many oracle queries, the adversary ends
by producing some (i,x,W). The adversary wins if W is an incoherent proof for x with respect to Xi and
accumulator ci.

We now describe a generic way of transforming a WD accumulator WDAcc0 with domain P, set of
elements x with some special form, to a WD accumulator with an arbitrary domain, i.e., a finite subset of
{0,1}∗. In this generic transformation, we will make use of a signature scheme. In the following descrip-
tion, the algorithms, values, and predicates with index of 0, e.g., KeyGen0, refer to the corresponding items
in WDAcc0 defined as above, whereas values indexed by sig refer to those of a signature scheme.

We assume that the elements in P can be enumerated starting from h = hinit and then iterating by means
of an operation h← next.element(h). The overall idea is that the value of the new accumulator consists of
a pair (c0, last.h), where c0 is the accumulator value for WDAcc0 and the last added last.h value. To add a
new string x, we get a new h using next.element and we bind h to x using a signature on (x,h). A witness
for x is a triplet (h,σ,w), where h is the bound value, σ is a valid signature, and w is a witness for h in
WDAcc0. When a new x is added, the witness for it is computed and returned as the extra information.

A generic transformation to obtain a WD accumulator with arbitrary domain:
Domain: S is a large enough subset of {0,1}∗.

KeyGen(1k): run KeyGen0(1k) and obtain K0
p and K0

s . Further, run KeyGensig(1k) and obtain (Ksig
s ,Ksig

p).
Then Kp = (K0

p,K
sig
p) and Ks = (K0

s ,K
sig
s).

InitAccVal(Kp,X)→ c = (c0,hinit): where c0 is the output of InitAccVal0(K0
s ,K

0
p).

AddEle(Ks,Kp,(c0, last.h),x): Let h← next.element(last.h) denote the next element in the list and call
AddEle0(K0

s ,K
0
p,c

0,h)→ (c0′,extra0). Then let σ← sig(Ksig
s ,x,h). Return ((c0′,h),(σ,extra0)).

UpdWit(Kp,(c0, last.h),(c0′,next.h),(σ,extra),x,W,y): If x = y, then return (next.h,σ,extra). If x 6= y,
extract h and w from W = (h,σ,w) and then return (h,σ,UpdWit0(K0

p,c
0,c0′,extra,next.h,w,h)).

7

Verify(Kp,(c0, last.h),x,(h,σ,w)): is true if and only if both Verifysig(Ksig
p ,(x,h),σ) and Verify0(K0

p,c
0,h,w)

are true.

Very similar generic transformations exist in the literature, see for example [CKS09], where it is sug-
gested that the issuer of the accumulator would need to publish a mapping from S to P used along with a
signature scheme. The advantage of our scheme compared to those approaches is that we do not require
any mapping to be published: we just assume that the elements of P can be enumerated and that it is easy
to move to the next element, given the previous one.

The following theorem states that starting from a correct and secure WD accumulator with domain P
and using a secure signature scheme, we obtain a correct and secure WD accumulator with the arbitrary
domain S with the above generic transformation.

Theorem 7. Consider a correct and secure WD accumulator WDAcc0 and a secure digital signature
scheme sig (i.e., signatures are unforgeable under chosen message attacks). The resulting WD accumu-
lator WDAcc of the above generic transformation is correct and secure.

Proof. For simplicity, we show the proof for the case of deterministic algorithm, hence assume `= 1. The
general case follows similarly.

The correctness follows immediately as both the signature’s and the original accumulator’s verification
predicate are being verified. More precisely, we need to show that WDAcc is correct according to Def. 3.
Since it is not a universal accumulator, all we need to show is that W ` (x,X ,c,b) implies Verify(Kp,c,x,W),
for all probabilistic polynomial time adversaries, and for all possible choices of W,x,X , and c. Note that
both AddEle and UpdWit call upon the respective algorithms in WDAcc0. In particular, we have that
c = (c0,h), for some h. Hence, W ` (x,X ,c,b) for WDAcc implies that W ` (h,X0,c0,b) for WDAcc0.
Now, since WDAcc0 is a correct accumulator, W ` (h,X0,c0,b) implies Verify(Kp,c0,h,W), which in turn
implies Verify(Kp,c,x,W).

Moreover, as the signature scheme is only binding elements of the two domains together, any incoherent
witness with respect to the domain S of WDAcc produces an incoherent witness for a corresponding element
in the domain P. More precisely, we can reduce an adversary A who can find an incoherent proof with
respect to WDAcc to an adversary B who produces an incoherent proof with respect to WDAcc0. We now
outline this reduction.

According to the security game of Def. 6 for WDAcc, KeyGen is run and Kp = (K0
p,K

sig
p) is given

to the adversary. Initially, X is empty and the accumulator is set to InitAccVal(Ks,Kp). In particular, the
value of the accumulator c is (c0,hinit), where c0 is the output of InitAccVal0(K0

s ,K
0
p). Then A can call the

AddEle(Ks,Kp,c, ., .) oracle which updates X and c accordingly, but is not allowed to add an x to X when x is
already in X . In particular, each AddEle query lets h := next.element(last.h), calls AddEle0(K0

s ,K
0
p,c,h)→

(c0,extra0), computes σ := sig(Ksig
s ,x,h), and returns ((c0,h),(σ,extra0)). After enough oracle queries, the

adversary ends the game by producing some (x,W) which is an incoherent proof for x with respect to X
and accumulator c, where W = (x,σx,w).

Now let’s look at the game played by B . Firstly, KeyGen0 is run and K0
p is given to the adversary.

Initially, X0 is empty and c0 is set to InitAccVal0(K0
s ,K

0
p). The adversary calls AddEle0(K0

s ,K
0
p,c

0, ., .)

oracles to update X0 and c0 accordingly, but is not allowed to add an x0 to X0 when x0 is already in X0.
Once the adversary has made enough queries, she produces some (x0,w). She wins if w is an incoherent
proof for x0 with respect to X0 and accumulator c0.

We are now going to use A to help B win his game. Upon receiving K0
p, B runs KeyGensig(1k) and

obtains (Ksig
s ,Ksig

p). Then provides A with Kp = (K0
p,K

sig
p). For every AddEle(Ks,Kp,c, ., .) oracle query

of A , B does the following. He lets h := next.element(last.h), calls AddEle0(K0
s ,K

0
p,c,h)→ (c0,extra0),

computes σ := sig(Ksig
s ,x,h), and returns ((c0,h),σ,(extra0)) to A . Note that B posses Ks because he ran

KeyGensig(1k) at the beginning of this reduction. Finally, A provides B with some (x,W) which is an
incoherent proof for x with respect to X and accumulator c. Note that witnesses of WDAcc are of the form
(h,σ,w), where σ := sig(Ksig

s ,x,h) and the accumulator c is of the form ((c0,h),(σ,extra0)). Hence, an
incoherent witness (h,σ,w) of x in WDAcc implies an incoherent witness W of h in WDAcc0.

ut

8

4 Fully Dynamic Universal Accumulators

In this section we formalize the notion of fully dynamic universal accumulator, then show how to construct
some based on the LLX accumulator and a weak dynamic accumulator.

4.1 Definitions

We say that a dynamic universal accumulator is fully dynamic if the following conditions are satisfied:

1. We can always create a non-membership proof for a new x (i.e., a value x occurring for the first time
or a newly deleted x) without using X .

2. We can create a proof of membership without using X for a newly added x.

That is, we can create proofs for newly occurring values x (e.g., non-members) with an algorithm which
does not depend on the cardinality of X . To make this change possible, we introduce a new operation dec in
UpdEle to “declare” new non-members, and we make UpdWit run with x = y without any prior witness W
for operations + and dec. This UpdEle can be used to compute the initial proof of non-membership for x.
However, it requires to update the accumulator value c. More formally, we define a fully dynamic universal
accumulator as follows.

Definition 8 (Fully Dynamic Universal (FDU) Accumulator). A fully dynamic universal accumulator
FDUAcc, with a domain P, a set X ⊆ P, and values x ∈ X to be accumulated, consists of the following
algorithms.

– A setup probabilistic algorithm KeyGen(1k)→ (Ks,Kp), where Ks is only used by the authority and Kp
is public.

– An algorithm AccVal(Ks,Kp,X)→ c, which computes an accumulator value c of the set X, from the
keys.

– An algorithm UpdEle(Ks,Kp,c,op,x)→ (c′,extra), where op = +, op = −, or op = dec, which com-
putes the accumulator c′ from an accumulator c. When op = +, we must have x 6∈ X and we say that
x is inserted into X. When op = −, we must have x ∈ X and we say that x is deleted from X. When
op = dec, we must have x 6∈ X and we say that x is declared as a non-member of X. The algorithm
also returns some extra information extra. For op= dec, the algorithm also returns some new proof of
non-membership for x (if not already in extra).

– An algorithm WitGen(Ks,c,X ,x)→W to generate a proof of membership or non-membership for the
value x with respect to accumulator c of X.

– An algorithm UpdWit(Kp,extra,W,y)→W ′ to generate a proof W ′ for y in accumulator after UpdEle
returned extra from a previous proof W.

– A predicate IsMem(W) telling whether W is a proof of membership (true case) or a proof of non-
membership (false case).

– A predicate Verify(Kp,c,x,W) to check a proof.

Note that UpdWit no longer requires that y is different from the element involved in the last UpdEle
call.

The correctness notion is similar to that of WD accumulators with the obvious change that the witnesses
are not only produced by UpdWit, but also by WitGen and that witnesses are either for membership or non-
membership proofs. This change was foreseen in our general correctness notion in Def. 3.

Next, we detail a variant of the Chosen Element Attack scenario corresponding to FDU accumulators,
in which the adversary is allowed to declare new elements as well as add or delete.

Definition 9 (Extended Chosen Element Attack (ECEA) Model). The security of an FDU accumulator
is defined in terms of a game, based on a security parameter k, played by a polynomially bounded adver-
sary. Firstly, KeyGen is run and Kp is given to the adversary. Secondly, the adversary selects a polynomially
bounded number `. There are registers Ks, Xi, and ci, i = 1, . . . , `, for a secret key and to keep track of ` sets
Xi and their accumulator values ci. Initially, all Xi’s are empty and ci is set to AccVal(Ks,Kp,Xi). The ad-
versary can then call an UpdEle(Ks,Kp,ci, ., .) oracle for a selected i which updates Xi and ci accordingly.

9

It is not allowed to add an x to Xi when x is already in Xi, nor is it allowed to delete x from Xi when x is
not in Xi. Moreover, the adversary is not allowed to declare an element which has already been declared,
i.e., is either a member or a non-member. The adversary can also call a WitGen(Ks,ci,Xi, .) oracle for
a selected i and an AccVal(Ks,Kp, .) oracle which do not update an Xi of ci. After making many oracle
queries, the adversary ends by producing some (i,x,W). The adversary wins if W is an incoherent proof
for x with respect to Xi and accumulator ci.

4.2 Instantiating an FDU Accumulator based on the Strong RSA Assumption

Below we construct a fully dynamic universal accumulator based on a variant of the LLX accumulator.
The main idea relies on providing a two-layer accumulator. The lower layer c2 is a WD accumulator where
we accumulate all declared elements. I.e., all values which have ever be used, whether they are member
of not. There is no withdrawal in this layer. The upper layer c1 is a fully dynamic accumulator which
can only treat elements of the lower layer. Essentially, (a,d,h,w) is a proof of non-membership for x in
accumulator (c1,c2), if ca

1 ≡ dxh (mod n1) and w is a proof of membership for h in accumulator c2, i.e.,
wh mod n2 = c2. To create a proof of non-membership for a newly deleted member or a new comer who is
not a member, we only have to pick a random a ∈ Zx and d ∈ Z∗n and compute the corresponding h to add
in the second accumulator. That is, the WD accumulator is only used to validate new h values which are
needed to create new proofs. Since proofs also have a part in the PDU accumulator, it is not necessary to
delete h from the WD accumulator.

Equation (3) is now replaced by

a = a0
∏y∈X0 y

∏y∈X y
mod x and d =

(
ca

1h−1) 1
x mod n1, (4)

where a0, respectively X0, is the initial value for a, respectively X , and a0 is chosen at random.
Our accumulator is defined as follows. The value of c is defined by c = (c1,c2) corresponding to two

accumulators c1 and c2. It will be convenient in the security game to define two sets X1, defined as before,
and X2, a finite set of elements, corresponding to this value c.

The set X1 is updated by UpdEle and is accumulated in the value c1, whereas the set X2 is accumulated
in c2 by means of a WD accumulator with arbitrary domain. Hence, the value of c is deterministically
defined by c1 and c2, where

c1 = g∏x∈X1 x mod n1.

The value of c will corresponds to X = X1. So, there are many c’s corresponding to the same X depending
on X2.

In the following description, the algorithms, values, and predicates with index of 1, e.g., KeyGen1, refer
to the corresponding items in the PDU accumulator of Li et al. [LLX07], whereas the algorithms, values,
and predicates with index of 2, e.g., Verify2, refer to those of a WD accumulator with arbitrary domain as
defined in Section 3.

A Concrete FDU accumulator:
Domain: P is a large enough set of odd prime numbers, e.g., all odd numbers up to a given bound B.

KeyGen(1k): run KeyGen1(1k) and obtain K1
p = (n1,g1) and K1

s = r1. Further, run KeyGen2(1k) and obtain
(K2

s ,K
2
p). Then Kp = (K1

p,K
2
p) and Ks = (K1

s ,K
2
s).

AccVal(Kp,X): compute
c1 = g∏x∈X x mod n1

and return c = (c1, InitAccVal2(K2
s)). Note that Ks is not used.

UpdEle(Ks,Kp,c,op,x): if op=+, we have c′1 = cx
1 mod n1 and c′2 = c2 (K1

s is not required). Set extra=

(c,+,x,c′). If op = −, we set c′1 = c
1
x
1 mod n1 (K1

s is required) and proceed like for op = dec. If
op = dec, we pick a ∈ Zx and d ∈ Z∗n1

at random, and compute h = ca
1d−x mod n1, then we set W =

10

(nonmem,(a,d,h,c2)). We set (c′2,extra2) = AddEle2(K2
s ,K

2
p,c2,h). The extra information is then set

to extra= (c,op,x,c′,W,extra2).

WitGen(Ks,c,X ,x): if x ∈ X , then W = (mem,w) with w = c
1
x
1 mod n1. This requires Ks, but not X . It can

also be computed without Ks, but using X by observing that

w = c
∏y∈X−{x} y
1 mod n1.

If x 6∈ X , then W = (nonmem,(a,d)) as in the LLX accumulator by using X .

UpdWit(Kp,extra,W,y): with extra= (c,op,x,c′,e,extra2), there a several cases to update the proof for y
in X after adding or deleting x for x 6= y:

– W of the form (mem,w) and x just added (op=+): set W ′ = (mem,w′) with w′ = wx mod n1.

– W of the form (mem,w) and x just deleted (op=−): set W ′ = (mem,w′) with w′ = wzc′
1−xz

y mod
n1 and z = 1

x mod y.
– W of the form (mem,w) and x just declared (op= dec): W ′ =W .
– W of the form (nonmem,a,d) and x just added (op=+): set W ′=(nonmem, [a′,d′]y) with a′= az,

d′ = dc−a 1−xz
y mod n1 and z = 1

x mod y.
– W of the form (nonmem,a,d) and x just deleted (op=−): set W ′ = (nonmem, [a′,d]y) with a′ =

ax.
– W of the form (nonmem,a,d) and x just declared (op= dec): W ′ =W .
– W of the form (nonmem,a,d,h,w) and x just added (op = +): set W ′ = (nonmem, [a′,d′]y,h,w)

with a′ = az, d′ = dc−a 1−xz
y mod n1 and z = 1

x mod y.
– W of the form (nonmem,a,d,h,w) and x just deleted (op=−): set W ′ = (nonmem, [a′,d]y,h,w′)

with a′ = ax and w′ = UpdWit2(K2
p,c2,c′2,extra2,w,h).

– W of the form (nonmem,a,d,h,w) and x just declared (op= dec): w′=UpdWit2(K2
p,c2,c′2,extra2,w,h).

for x = y, there are two cases:
– x just added (op=+): set W ′ = (mem,w) with w = c1 from c = (c1,c2).
– x just deleted (op=−) or just declared (op= dec): set W ′ = e.

IsMem(W): is true if and only if W is of form (mem, .).

Verify(Kp,c,x,W): if W is of the form (mem,w), it is true if and only if c1 = wx mod n1. If W is of form
(nonmem,a,d), it is true if and only if ca ≡ dxg (mod n1). If W is of the form (nonmem,a,d,h,w),
it is true if and only if ca

1 ≡ dxh (mod n1) and Verify2(K2
p,c2,w,h) holds.

We now prove the correctness and security of our FDU accumulator scheme based on the Strong RSA
assumption.

Theorem 10. If the Strong RSA Assumption holds, the aforementioned FDU accumulator is correct and
secure under the ECEA model.

Proof. The correctness follows immediately since both PDU and WDU considered as building blocks of
our FDU are correct accumulators according to Def. 3.

All oracle calls in the security game preserve the relations described in the AccVal and WitGen al-
gorithms. Furthermore, since the game does not allow the adversary to add a member or to delete a non-
member, all oracle calls in the game can be simulated without knowing K1

s . Hence, the security is equivalent
to forging X ⊆ P and x ∈ P together with W which is an incoherent proof for x with respect to X and Kp as
the only input. Hence, an incoherent witness implies breaking the strong RSA assumption. In other words,
computing an incoherent witness for x ∈ X implies an incoherent witness for the PDU accumulator of Li et
al. [LLX07] and computing an incoherent witness for x /∈ X implies that, given n1 and a random c1 drawn
from Z∗n1

, the adversary has found w ∈ Z∗n1
and x > 1 such that c1 = wx mod n1.

More precisely, we can reduce an adversary A who produces incoherent proofs in the aforementioned
FDU accumulator to an adversary B who produces incoherent proofs in either the WD accumulator with

11

arbitrary domain as defined in Section 3 or the PDU accumulator of Li et al. [LLX07], which, in turn,
implies an adversary who breaks the Strong RSA Assumption. The reduction is detailed below.

According to Def. 9, the security game starts with running KeyGen and giving Kp to the adversary. That
is, both KeyGen1 and KeyGen2 are run to obtain K1

p = (n1,g1),K1
s = r1, and (K2

s ,K
2
p). Then, Kp = (K1

p,K
2
p)

is given to the adversary. Initially, X is empty and c is set to AccVal(Kp,X). That is, c1 = g∏x∈X x mod n1 is
computed and c = (c1, InitAccVal2(K2

s)) is returned. Note that Ks is not used in this computation.
Then, the adversary calls UpdEle(Ks,Kp,c, ., .) oracle queries to update X and c accordingly. She is not

allowed to add an x to X when x is already in X , nor is she allowed to delete x from X when x is not in X .
Moreover, the adversary is not allowed to declare an element which has already been declared, i.e., is either
a member or a non-member. When an element x is being added, we have c′1 = cx

1 mod n1, i.e., using the
PDU accumulator of Li et al. [LLX07], and c′2 = c2, i.e., in the WDU accumulator. If x is being declared,
random a ∈ Zx and d ∈ Z∗n1

are picked to compute h = ca
1d−x mod n1, again as in the PDU accumulator

of Li et al. [LLX07], to obtain W = (nonmem,(a,d,h,c2)). If the element x is being deleted, we have

c′1 = c
1
x
1 mod n1 and proceed like the declaration process. Note that K1

s is not required in any of these steps.
The adversary can also call a WitGen(Ks,c,X , .) oracle query. If x ∈ X , then W = (mem,w) with w =

c
∏y∈X−{x} y
1 mod n1, which can be computed without Ks, but using X . If x 6∈ X , then W = (nonmem,(a,d))

as in the PDU accumulator of Li et al. [LLX07]. Note that, again, Ks is not required in any of these steps.
Once the adversary has made enough oracle queries, she ends the game by producing some (x,W) that

is an incoherent proof for x with respect to X and accumulator c = (c1,c2). The witness W is of the form
(mem,w), (nonmem,a,d), or (nonmem,a,d,h,w). We are going to consider each case separately.

– If W , the incoherent proof, is of the form (mem,w), then, by definition of the verification algorithm
Verify, we must have that c1 = wx mod n1, which directly breaks the Strong RSA assumption.

– In order for an incoherent witness W of form (nonmem,a,d) to pass the verification step, we must
have that ca ≡ dxg (mod n1). This translates to an incoherent witness for the PDU accumulator of Li
et al. [LLX07].

– If the incoherent witness W is of the form (nonmem,a,d,h,w). Then, both ca
1 ≡ dxh (mod n1) and

Verify2(K2
p,c2,w,h) must hold for it to pass the verification step. This translates to either an incoherent

witness for the PDU accumulator of Li et al. [LLX07] or an incoherent proof for the WD accumulator
of Section 3.

Hence, an adversary who can find incoherent witnesses for our FDU accumulator is capable of produc-
ing incoherent proofs for the WD accumulator with arbitrary domain as defined in Section 3 or the PDU
accumulator of Li et al. [LLX07], both of which are based on the Strong RSA assumption.

ut

Note that setting g = h reduces the structure of our non-membership proofs to that of Li et al. [LLX07].
We point out that the efficacy of our proof structure allows the authority to perform efficient batch

updates (with the secret key) for a given value x. The authority first checks to see whether x is a member
of the accumulated set or not. If a member, then using the same procedure as in the scheme of Li et al. the
authority can efficiently update the witness. This is not incompatible with the impossibility of batch update
without the secret key [CH10]. However, the scheme of Li et al. did not offer such a mechanism for a non-
member element. In our scheme, we can create a new non-membership proof deploying the mechanism for
declaration.

5 Conclusions and Future Work

We constructed the first fully dynamic universal accumulator, based on the Strong RSA assumption, by
providing a new proof structure for the non-membership witnesses. Moreover, this new structure of non-
membership proofs allows our scheme to be the first of its kind to offer an efficient batch update mechanism
to the authority, for both members and non-members. We obtained our fully dynamic universal accumulator
by means of deploying a weak dynamic accumulator with arbitrary domain, which we showed how to obtain
from a weak dynamic accumulator with a domain of certain form.

12

Acknowledgements

We would like to thank Nokia for initiating this work, as well as Rafik Chaabouni who contributed.

References

[BdM93] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital
sinatures (extended abstract). In EUROCRYPT 1993, pages 274–285, 1993.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees.
In Proceedings of the 16th annual international conference on Theory and application of cryptographic
techniques, EUROCRYPT 1997, pages 480–494, Berlin, Heidelberg, 1997. Springer-Verlag.

[CH10] Philippe Camacho and Alejandro Hevia. On the impossibility of batch update for cryptographic accumula-
tors. In LATINCRYPT 2010, volume 6212 of Lecture Notes in Computer Science, pages 178–188, 2010.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009,
volume 5443 of Lecture Notes in Computer Science, pages 481–500. Springer, 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 61–76. Springer, 2002.

[FN03] Nelly Fazio and Antonio Nicolosi. Cryptographic accumulators: Definitions, constructions and applications.
Manuscript, 2003.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs. In
Jonathan Katz and Moti Yung, editors, ACNS 2007, volume 4521 of Lecture Notes in Computer Science,
pages 253–269. Springer, 2007.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred Menezes, editor, CT-RSA
2005, volume 3376 of Lecture Notes in Computer Science, pages 275–292. Springer, 2005.

[Nyb96] Kaisa Nyberg. Fast accumulated hashing. In FSE 1996, volume 1039 of Lecture Notes in Computer Science,
pages 83–87. Springer, 1996.

[PB10] Kun Peng and Feng Bao. Vulnerability of a non-membership proof scheme. In SECRYPT 2010, pages
419–422. SciTePress, 2010.

[WWP07] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. A new dynamic accumulator for batch updates. In
Sihan Qing, Hideki Imai, and Guilin Wang, editors, ICICS 2007, volume 4861 of Lecture Notes in Computer
Science, pages 98–112. Springer, 2007.

[WWP08] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Improvement of a dynamic accumulator at icics 07
and its application in multi-user keyword-based retrieval on encrypted data. In APSCC 2008, pages 1381–
1386. IEEE, 2008.

A Extra Definitions

Definition 11 (Dynamic Accumulators). A dynamic accumulator DAcc, with a domain P, a set X ⊆ P,
and values x ∈ X to be accumulated, consists of the following algorithms.

– A setup probabilistic algorithm KeyGen(1k)→ (Ks,Kp), where Ks is only used by the authority and Kp
is public.

– An algorithm AccVal(Ks,Kp,X)→ c, which computes an accumulator value c.
– An algorithm UpdEle(Ks,Kp,c,op,x)→ (c′,extra), where op = + or op = −, which computes the

accumulator c′ for Xop{x} from the accumulator c for X. When op = +, we must have x 6∈ X and we
say that x is inserted into X. When op = −, we must have x ∈ X and we say that x is deleted from X.
The algorithm also returns some extra information extra, which might be needed for dynamic witness
update.

– An algorithm WitGen(Ks,c,X ,x)→W to generate a proof of membership for the value x with respect
to accumulator c of X.

– An algorithm UpdWit(Kp,c,c′,extra,op,x,W,y)→W ′ to generate a proof W ′ for y in accumulator c′

from a proof W for y in accumulator c, where UpdEle(Ks,Kp,c,op,x)→ (c′,extra). It must be the case
that x 6= y.

– A predicate Verify(Kp,c,x,W) to check a proof.

13

Definition 12 (Universal Accumulators). A universal accumulator scheme UAcc, with a domain P, a set
X ⊆ P, and values x ∈ X to be accumulated, consists of the following algorithms.

– A setup probabilistic algorithm KeyGen(1k)→ (Ks,Kp), where Ks is only used by the authority and Kp
is public.

– An algorithm AccVal(Ks,Kp,X)→ c, which computes an accumulator value c.
– An algorithm MemWitGen(Ks,c,X ,x)→W to generate a proof of membership for x ∈ X.
– An algorithm NonMemWitGen(Ks,c,X ,x)→W to generate a proof of non-membership for x ∈ P\X.
– A predicate IsMem(W) telling whether W is a proof of membership (true case) or a proof of non-

membership (false case).
– A predicate Verify(Kp,c,x,W) to check a proof.

14

