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Abstract

Objectives: Brain-computer interfaces (BCIs) are no longer only used by
healthy participants under controlled conditions in laboratory environments,
but also by patients and end-users, controlling applications in their homes or
clinics, without the BCI experts around. But are the technology and the field
mature enough for this? Especially the successful operation of applications
–like text entry systems or assistive mobility devices such as tele-presence
robots– requires a good level of BCI control. How much training is needed
to achieve such a level? Is it possible to train näıve end-users in 10 days to
successfully control such applications?

Materials and methods: In this work, we report our experiences of training
24 motor-disabled participants at rehabilitation clinics or at the end-users’
homes, without BCI experts present. We also share the lessons that we have
learned through transferring BCI technologies from the lab to the user’s home
or clinics.

Results: The most important outcome is that fifty percent of the par-
ticipants achieved good BCI performance and could successfully control the
applications (tele-presence robot and text-entry system). In the case of the
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tele-presence robot the participants achieved an average performance ratio
of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max.
1.0). The lessons learned and the gathered user feedback range from pure
BCI problems (technical and handling), to common communication issues
among the different people involved, and issues encountered while control-
ling the applications.

Conclusion: The points raised in this paper are very widely applicable and
we anticipate that they might be faced similarly by other groups, if they move
on to bringing the BCI technology to the end-user, to home environments
and towards application prototype control.

Keywords: Brain-computer interface (BCI), electroencephalogram (EEG),
motor imagery, application control, end-user, technology transfer

1. Introduction1

The idea and the technology to control machines, not by manual opera-2

tion but by mere “thinking” is called the Brain-computer interface (BCI) [1].3

Most often the electrical activity is recorded from the brain non-invasively4

by means of the electroencephalogram (EEG). Control features are extracted5

from this activity, which can be used by disabled people to establish a new6

communication channel between the human brain and a machine. Several7

BCI prototypes have been demonstrated over the last decade [2] for applica-8

tions such as (i) communication and control, e.g. writing on a virtual key-9

board [3, 4] or browsing the Internet [5, 6], (ii) the control of wheelchairs [7, 8]10

or robots [9, 10], and (iii) computer games for healthy users [11, 12] or virtual11

reality applications [13, 14].12

Most of the applications presented in the literature tend to be either soft-13

ware oriented, like mentally writing text via a virtual keyboard on a screen,14

or more hardware oriented, like controlling a small mobile robot. Typically15

such applications require a relatively good and precise control channel to16

achieve performances comparable to healthy people using conventional in-17

terfaces. However, current day BCIs offer low information throughput and18

are insufficient for the full dexterous and sustained control of these complex19

applications. Therefore, techniques like shared control or context awareness20

can enhance the interaction to reach a similar level, compensating for the21

fact that BCI is not a perfect control channel [15]. In such a control scheme,22

the responsibilities and efforts are then shared between the user in giving23
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high-level commands and the system in executing fast and precise low-level24

interactions. Furthermore, modern human-computer interaction (HCI) prin-25

ciples can explicitly take into account the noisy and delayed nature of the26

BCI control signals to adjust the dynamics of the interaction as a function27

of the reliability of user’s control capabilities [4].28

Although most of the prototypes and applications target disabled users,29

the vast majority of the published work is based on the analysis of data30

from healthy participants. Nevertheless, there have been some success sto-31

ries with patients and end-users [3, 16], although most of these works in-32

tensively require the BCI experts to host the participants at the research33

labs or go to end-users homes. Therefore, it is crucial for the field to cross34

another frontier, by letting caregivers or therapists support the end-users35

in the use of BCIs without (or with minimum) supervision or interference36

from BCI experts. Our plan was for caregivers to undertake the whole job37

of BCI setup and operation, while the BCI experts provide (if needed at all)38

troubleshooting advice via telephone or via remote support platforms (like39

“tele-monitoring” [17]).40

In this paper, we report our experience, and the problems we encountered,41

while transferring our BCI from the lab to clinics and to end-users’ homes,42

and while moving from simple BCI control towards successfully control of43

applications. We started with näıve, severely motor-disabled users, teaching44

them first to achieve BCI control, evaluating the performance through online45

BCI experiments and finally controlling two applications (either a writing46

application for communication or a robotic tele-presence platform for assis-47

tive mobility). The aim was to do this in 10 days (spread over a number of48

weeks), working together with a therapist at a rehabilitation clinic and with-49

out any BCI experts on site. All the points raised and discussed in this paper50

are widely applicable and we anticipate that they might be faced similarly51

by other groups, moving on to bring the BCI technology to the end-user, to52

home environments and towards application prototype control.53

2. Materials and methods54

In this Section we first describe the participants, the training process and55

the experimental paradigm to achieve BCI control, then the signal processing56

and machine learning methods to identify suitable brain features, through57

which the participants delivered the BCI commands during the recordings.58

Furthermore, we present: the hardware infrastructure needed to perform59
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this training at the end-user’s location; the two tested applications; and the60

applied evaluation criteria.61

2.1. Participants and training locations62

Twenty-four end-users aged 42.7± 14.1 years (3 female) have been trained63

at the various out-of-the-lab locations (either at clinics, assistive technology64

support centers or users’ homes in Switzerland, Germany and Italy), with-65

out BCI experts present (Fig. 1.A). They have participated once or twice a66

week (sometimes only every other week) for up to 3 hours per day, with a67

maximum number of 10 sessions (recording days). The end-users are affected68

by different levels of myopathy, spinal cord injury, tetraglegia, amputation,69

spino-cerebellar ataxia or multiple sclerosis, but none of the participants have70

mental deficits. Details for each end-user are given in Table 1.71

Figure 1: (A) End-user at a clinic while operating the BCI. (B) EEG electrode locations
used over the motor cortex.

2.2. Training process72

In the presented study, a BCI based on motor imagery (MI) is used. MI73

is described as the mental rehearsal of a motor act without any overt mo-74

tor output [18], which involves similar brain regions to those which are used75

in programming and preparing such real movements [19, 20]. The imagi-76

nation of different types of movements (e. g. right hand, left hand or feet),77

results in an amplitude suppression (known as event-related desynchroniza-78

tion, ERD [21]) or in an amplitude enhancement (event-related synchroniza-79

tion, ERS)) of Rolandic mu rhythm (7–13 Hz) and the central beta rhythm80

(13–30 Hz) recorded over the sensorimotor cortex of the participant [22].81
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Table 1: Details of end-users who participated in the experiment, including the time since
the injury or diagnosis and the age both in years. Participants which years are marked
by “—” are congenital-hereditary. Note: To increase the readability of the paper, the
participants have been ordered in descending order to their final BCI online performance
(see Section 3.2) independently of the date of recording.

ID Sex Medical condition Time Age

P1 M Tetraplegia C5–C6 23.0 44.4
P2 M Muscular dystrophy (Duchenne) — 18.4
P3 M Tetraplegia C3 3.3 42.4
P4 F Myopathy — 35.4
P5 M Spinal cord injury C7 4.2 23.7
P6 M Tetraplegia C6 10.3 59.8
P7 M Tetraplegia C6 22.5 47.8
P8 M Tetraplegia C6 24.4 42.1
P9 M Myopathy: spinal amyotrophy-type 2 — 30.8
P10 M Tetraplegia C4 9.3 32.0
P11 M Incomplete locked-in syndrom 4.2 51.5
P12 M Tetraplegia C5 5.7 29.2
P13 M Amyotrophic lateral sclerosis 3.3 38.3
P14 M Cerebral palsy — 27.7
P15 M Amyotrophic lateral sclerosis 4.2 58.2
P16 F Left shoulder-hand syndrome (complex regional

atrophy) following fracture of the left wrist, can-
not use fully her upper arm

1.2 70.2

P17 F Myopathy: Landouzy-Déjerine — 62.1
P18 M Tetraplegia C5 36.8 52.8
P19 M Amputation at upper third of the left fore-arm,

amputation of left lower limb at knee level (phan-
tom limbs)

5.5 29.2

P20 M Myopathy: Steinert — 51.5
P21 M Spino-cerebellar ataxia — 30.5
P22 M Tetraplegia C5 14.4 32.6
P23 M Tetraplegia C5, after Guillain-Barré disease 27.9 51.4
P24 M Tetraplegia 7.2 63.4

Therefore, the brain activity is acquired via 16 active EEG channels over82

the sensorimotor cortex: Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2,83
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C4, CP3, CP1, CPz, CP2 and CP4 according to the international 10-2084

system with reference on the right ear and ground on AFz (see Fig. 1.B). The85

EEG is recorded using a 16-channel g.USBamp (g.tec medical engineering,86

Schiedelberg, Austria) system at 512 Hz, band-pass filtered between 0.1 Hz87

and 100 Hz and a notch filter is set at the power line frequency of 50 Hz.88

Before being able to use a BCI, participants have to go through a num-89

ber of steps to learn to voluntarily modulate the EEG oscillatory rhythms90

by performing MI tasks. Furthermore, the BCI system has to learn what91

the participant-specific patterns are. In our case, all participants start by92

imagining left hand, right hand and feet movements during a number of cal-93

ibration recordings. Afterwards, the EEG data is analyzed (see Section Ap-94

pendix A), a classifier is then built for each pair of MI tasks that the user95

has rehearsed and the pair of tasks which shows highest separability and is96

most stable, is used for BCI control for that particular user (online experi-97

ments). If participants achieve good online control (see Section 2.4 for the98

performance criteria), they are allowed to test the application prototypes (ap-99

plications, see Section 2.3). The time-line of the different stages is illustrated100

in Fig. 2. More details about the experimental paradigm, signal processing101

and machine learning (feature extraction, feature selection, classification and102

evidence accumulation) and the feedback are given in Appendix A.103

One aim of this study is to complete the whole training and testing pro-104

cess within 10 sessions (maximum allowed time) at a rehabilitation clinic or105

users home, otherwise the training process is stopped and the participant106

is dropped from the study. All experiments are conducted according to the107

declaration of Helsinki and the study is approved by the local ethics com-108

mittee. All participants are asked to give written informed consent before109

participating in the study. Furthermore, they are explicitly instructed that110

they can exit the study at any time without giving any reason.111

2.3. Application prototypes112

Two BCI applications are chosen to be tested here: first an assistive113

mobility application represented by a tele-presence robot and second a com-114

munication application represented by a text-entry system. Real applications115

are always more demanding for the participants, since besides the increased116

workload and the split attention between the BCI feedback and the appli-117

cation control (dual task), it is also necessary to perform the requested BCI118

action with certain temporal precision, especially in case of the robot. There-119

fore, the user will be supported in accomplishing the task by human com-120
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Figure 2: Different stages of the BCI training. Each participant starts with a calibration
(offline) recording. Data analysis, identification of the best motor imagery (MI) pair and
classifier setup are performed, before online BCI experiments can be conducted. If a
good and stable BCI performance (measured as Youden index, YI) can be achieved, the
participants are allowed to test the applications. Depending on the performance of the
participant, some steps can be repeated several times.

puter interaction, context awareness and shared control techniques, which121

are specified in more detail below.122

2.3.1. Application: Assistive mobility123

In this work the RobotinoTM robot by FESTO (Esslingen, Germany)124

was used, which is a small circular mobile platform (diameter 36 cm, height125

65 cm). The robot is equipped with nine infrared sensors that can detect126

obstacles at up to ∼30 cm distance and a webcam that can also be used for127

obstacle detection. Furthermore, a notebook with a camera is added on top128

of the robot for tele-presence purposes (see Fig. 3.A), so that the participant129

can interact with the remote environment via SkypeTM, which was not part130

of the formal evaluation, except seeing the video stream from the robot for131
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navigation purposes.132

Using the 2-class BCI, the participant remotely controls the robot turning133

to the left or to the right to reach several targets within an office environment134

(four predefined target positions). The space contains natural obstacles (i.e.135

desks, chairs, furniture, people) in the middle of the pathways (see Fig. 3.B).136

Importantly, participants have never been in such an environment. In ad-137

dition, the participant can intentionally decide not to deliver any mental138

commands to maintain the default behavior of the robot, which consists of139

moving forward and avoiding obstacles with the help of a shared control sys-140

tem using its on-board sensors. The participant sees the video-transmission141

from the tele-presence camera of the robot in parallel to the BCI feedback.142

The same paths are driven twice, once controlled with the BCI in com-143

bination with shared control and once as a baseline recording, directly con-144

trolled via manual button presses without shared control (i.e. any remaining145

muscular activities of the participants, like hand or head movements). These146

two conditions are the necessary subset identified in [23] with non-disabled147

participants to compare BCI with manual control. The shared control imple-148

mentation is based on the dynamical system concept coming from the fields of149

robotics and control theory [24]. Two dynamical systems are created, which150

control two independent motion parameters: the angular and translational151

velocities of the robot. The systems can be perturbed by adding attractors or152

repellors in order to generate the desired behaviors. The dynamical system153

implements the following navigation modality. The default device behavior154

is to move forward at a constant speed. If repellors (obstacles) are added to155

the system, the motion of the device changes in order to avoid the obstacles.156

The BCI command is handled by adding an attractor to the system, so that157

the robot starts turning. Other attractors (targets) could be added to sup-158

port e.g. a docking behavior, but such methods were not used in this study.159

The current implementation does not support the active stopping or starting160

of the robot. More information about the robot and the experiment is given161

in [23, 15].162

2.3.2. Application: Text entry163

The second application is a text entry system called BrainTree [25]. It164

employs the same asynchronous 2-class motor imagery BCI as the main con-165

trol modality, enabling the user to deliver two types of commands (left/right)166

by performing two different MI tasks for controlling a binary text-entry. The167

main novelties of BrainTree lie in the tight integration of inference mecha-168
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Figure 3: (A) Tele-presence robot. (B) Layout of the experimental environment with the
four target positions (T1, T2, T3, T4), start position (R). Lines (path 1, path 2, path 3)
indicate possible paths.

nisms with the HCI and the multi-modal control paradigm. Concerning the169

former, the user observes a simple graphical user interface (GUI, Fig. 4) where170

all available characters (Latin alphabet including space and backspace) are171

alphabetically arranged from left to right. This visualization is an intuitive172

representation, using underlying inference mechanisms based on a Hu-Tucker173

binary tree [26], which ensures an optimal but not equal number of commands174

to reach each character (leaf nodes of the tree), based on a learned language175

model (LM), while preserving the alphabetic order of characters to simplify176

the visualization.177

Regarding the control paradigm, the user’s intentions are continuously178

illustrated in a conventional BCI feedback, where a left/right command is179

enabled when the feedback bar reaches the threshold. BCI commands result180

in the associated movement of the red cursor (denoting the current node in181

the tree), which allows the user to descend the binary tree structure through182

the BCI, until a leaf node is reached and the associated character is typed.183

Wrongly written characters can be deleted by selecting the backspace com-184

mand, which is visible on the far right side of the alphabet in Fig. 4. The185

orange bubble surrounds the currently available characters (current left/right186

sub-trees). It further could inform the user about previous erroneous com-187

mand(s), that need to be “undone” by ascending the tree an appropriate188

number of times.1 The implemented paradigm completely eliminates waiting189

1Based on our user-centered design this fast error correction technique was included and
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intervals, thus rendering intentional-non control (INC) skills less important,190

than in the assistive mobility application. By INC we mean the periods in191

which the participant is not wanting to deliver any command, e.g. waiting192

for the next selection step or waiting while a robot is moving forward (e.g.193

moving down a corridor).194

The task of the participant is to “copy-spell” the following four words:195

hello, internet, email, computer. More information about BrainTree and the196

experiment is given in [25].197

Figure 4: BrainTree Graphical User Interface and associated Hu-Tucker sub-tree while
writing the word “car”. Prefix “ca” is already typed and the user is navigating towards
the character “r”. Currently he can select between “opq” with a left command and “r”
with a right command, see the orange bubble and position of the red cursor within the
alphabet. The BCI feedback bar is shown in green below the alphabet.

2.4. Evaluation criteria198

BCI performance. The BCI performance of the BCI runs is evaluated using199

the Youden index (YI, [27]), which is one way to attempt to summarize200

the true positives rates (TPR) and false positive rates (FPR) in one single201

numeric value to give an overall diagnostic measure of effectiveness.202

Y I = sensitivity + specificity − 1

= TPR− FPR

=
TP

(TP + FN)
− FP

TN + FP
(1)

used in later experiments [25].
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whereby YI=1 means perfect control and 0 equals chance level and TP stands203

for true positives, FN for false negatives, FP for false positives and TN for204

true negatives decisions. In the case of a 2-class synchronous BCI, a YI=1205

corresponds to an accuracy of 100 % and a YI=0 to a random accuracy of206

50 %.207

Application assistive mobility. The performances of the robot are reported as208

the ratio between the distance traveled to reach the targets with BCI control209

vs. manual control [15], resulting in 1 for the same control performance as210

with manual buttons, and in 0 or very small values for worse than manual211

control.212

Performance =
distanceManual

distanceBCI

(2)

Application text entry. The performances of the BrainTree are reported as213

the percentage of correctly written characters compared to the total number214

of written characters (which can consist of correct, wrong and backspace215

characters) [25], resulting in 1 for perfect and 0 for no control.216

Performance =
characterscorrect
characterstotal

(3)

2.5. Remote support infrastructure217

To be able to train the participants alone with their caregivers or ther-218

apists we installed a remote support infrastructure. Following the require-219

ments in [17], we used state-of-the-art technologies to setup such a platform,220

which allowed either to transfer files, to provide communication or to enable221

a remote takeover in case of technical problems.222

A synchronized data folder allowed an automatic transfer (via Unison)223

of the recorded files from the end-user to the BCI experts via a secured224

server, and of classifiers or configuration files back to them. Communication225

via SkypeTM (chat, speech or video) was possible to give instructions to226

the caregiver or participant. Since sometimes the support could not help227

in overcoming some (mostly technical) errors with only verbal instructions,228

a remote takeover of the laptops was also possible. This was done via SSH229

and remote desktop under Linux. Finally, OpenVPNTM was used to remotely230

access laptops or to share certain resources (i.e. robot), even in environments231

with limited or restricted connectivity like clinics.232
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Furthermore, we simplified the necessary steps and functionalities for the233

operators and designed a number of GUIs and scripts around our BCI to hide234

all the complexity. The following reduced functionality was finally provided:235

• Viewing the raw EEG signals to check signal quality and to look for236

artifacts.237

• Starting the BCI program, selecting the participant and choosing the238

mode (offline/online) or application.239

• Transferring data between the local computer and BCI experts (server).240

We want to point out, that during the reported experiments the infras-241

tructure was only used to transfer data (EEG raw data and classifier config-242

uration files) and to speak to the participants and therapists, but no remote243

takeover was necessary during any of the training sessions.244

2.6. User feedback and informal interviews245

During the whole process of transferring the BCI technology to clinics and246

end-users home and during the required adaptation process, we gathered a247

lot of data about problems with the current implementation and technol-248

ogy gaps. This information was not gathered via standard questionnaires,249

but on the basis of informal discussions, and on the experiences the care-250

givers, support persons, end-users and developers wanted to share with us.251

We asked very general and open questions to not influence or restrict the252

answers towards our phrased questions. During the analysis we grouped the253

experiences and problems along BCI related points and application related254

points. Similar statements were grouped together and phrased in a unified255

manner.256

3. Results257

In this section we first present the EEG features which have been identi-258

fied for the various end-users and the achieved BCI control, before presenting259

the application performances. Furthermore, based on our experiences, we de-260

scribe the lessons learned and problems encountered while transferring BCI261

technology towards end-user applications.262
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Table 2: EEG channels (Chan.) and power spectral density (PSD) features (2 Hz band)
used by each participant (ID) to control the BCI. Furthermore, the used motor imagery
(MI) pair is given whereby “L” represents left hand, “R” right hand and “F” feet motor
imagery. Participants indicated with ∗ had to be excluded during the training process
because of inherent muscular artifacts due to their impairments.

ID Chan. PSD band MI ID Chan. PSD band MI

P1 FCz 22 Hz L-F P13 C3 12, 14 Hz L-R
Cz 12, 20, 22 Hz CP3 10, 12 Hz

P2 C3 10, 12 Hz L-R CP1 10, 12 Hz
C2 16 Hz P14 C1 18, 20 Hz F-R
C4 10, 12 Hz CP1 8, 10 Hz

P3 Cz 14, 16, 18, 20, 22 Hz L-F P15 FCz 24 Hz F-R
C4 18, 20, 22, 24 Hz FC2 26, 28 Hz

P4 FC4 18, 20 Hz F-R FC4 14, 16 Hz
C3 8, 10, 20 Hz C2 20 Hz
Cz 16, 18, 20 Hz C4 20 Hz

P5 C3 8, 10 Hz F-R P16 FC1 18 Hz L-R
C4 8, 10 Hz C3 22, 24, 26 Hz
CP3 8, 10 Hz C4 18, 20 Hz
CP4 8, 10 Hz CP2 20 Hz

P6 FCz 22, 24, 30 Hz L-F CP4 18, 20 Hz
FC4 22, 24, 26 Hz P17∗ FCz 22, 24, 26 Hz L-F

P7 Cz 12, 20, 22, 24 Hz F-R C3 12 Hz
P8 Fz 22, 24 Hz L-R Cz 26 Hz

FC1 22, 24, 26 Hz CP3 12, 14, 22 Hz
FC2 22, 24, 26 Hz CP1 20 Hz
C2 24, 26, 28 Hz P18 FC4 6, 8, 10, 26, 28 Hz L-R
C4 24, 26 Hz Cz 20, 22 Hz

P9 FCz 10 Hz L-F C4 6, 8, 10 Hz
FC2 10, 12 Hz P19 C3 8, 10, 12 Hz L-F
FC4 10 Hz P20 FC3 10 Hz L-F
C2 10, 12 Hz FC2 8, 10, 12, 22 Hz
C4 10, 12 Hz FC4 16, 18, 20, 22 Hz
CP2 10 Hz C4 8, 32, 34 Hz

P10 FCz 18 Hz L-F CPz 10, 12, 14 Hz
C1 18 Hz P21∗ C3 12, 14, 16 Hz F-R
Cz 16, 18, 20 Hz Cz 16 Hz

P11 FC1 20 Hz L-R CP3 8, 10 Hz
C2 28 Hz P22 C3 10, 12 Hz L-R
CP2 20, 26 Hz C2 12 Hz
CP4 24, 26 Hz CP3 10, 12 Hz

P12 Cz 10, 30 Hz L-F P23 FC3 18, 20, 22 Hz F-R
C4 16, 20 Hz Cz 20 Hz

CP3 6, 8 Hz
CPz 14 Hz
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3.1. EEG features identified for the participants263

All participants started by imagining left hand, right hand and feet move-264

ments during calibration (offline) recordings. A classifier was then built for265

each pair of MI tasks. Table 2 presents the selected MI pair (highest control-266

lability), and the corresponding EEG channels and power spectral density267

(PSD) features identified by the feature selection process, which were used268

online to control the BCI. We have ordered the participants in descending269

order of their final BCI online performance, independently of the time of270

recording, to increase the readability of the paper (therefore the participant271

with the best online performance would be P1. In the case of one participant272

(P24) we had technical problems with saving the raw EEG (which made the273

file unreadable for further analysis) and two participants (P17, P21) had to274

be excluded during the training process because of inherent muscular arti-275

facts due to their impairments. Furthermore, participant P19 decided to stop276

participating in the study and dropped the recordings.277

The MI pair mostly used was left hand versus feet (LF, 9 times), feet278

versus right hand (FR, 7 times) and left versus right hand (LR, 7 times).279

Therefore, in 70 % of the cases feet imagery was involved. Looking at the280

subset of participants who tested the application this ratio is increasing to281

80 % (5 * LF, 3 * FR, 2 * LR). In general, the selected features are dominantly282

in the alpha band (around 10 Hz) and in the beta band (around 22 Hz), which283

is consistent with the literature [21, 22, 18, 1]. Fig. 5 shows the histogram284

of the selected features and the corresponding electrode locations, for par-285

ticipants P1–P10 who tested the applications. Features were mostly chosen286

around Cz and C4, which is in line with the fact that most participants used287

left hand MI versus feet MI to control the BCI.288

3.2. BCI performance of online experiments289

Fig. 6 shows the performance of the online BCI runs using the Youden290

index for each participant, whereby YI=1 means perfect control and 0 equals291

chance level. Participants printed in solid lines continued to the application292

testing, while participants in dashed lines did not produce any discriminable293

patterns or were excluded because of artifacts due to their impairments.294

Generally, ten participants showed very good BCI control (Y I ≥ 0.4) and295

tested the applications, additionally one participant (P18) showed a good296

performance of 0.64 during one single day, but was not able to reproduce it297

and the performance completely dropped afterwards without an identifiable298
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Figure 5: Histogram of the selected power spectral density (PSD) features for participants
P1–P10 who tested the applications and the graphical representation of the corresponding
channel locations.

reason. Furthermore, participant P11 did not achieve a high stable perfor-299

mance, although every second session reached up to 0.5 − 0.55. Participant300

P9, which was one of the early participants, reported that he lost motivation301

since the pure BCI training was becoming boring for him and improved again302

when he was finally allowed to test the applications. Participants P4 and P6303

had a holiday break in between the recordings. For end-users P5 and P8 we304

performed 3 online runs above the threshold of 0.4, since their performance305

improvement was so incredible, that we wanted to check the stability first.306

Although the fluctuations over the different training sessions are quite large,307

a general improving trend is visible for participants (P1–P10), showing that308

these participants could improve their performance and modulate their brain309

patterns with practice.310

Typically the mean trial times in the online runs per participants were311

between 2 s and 8 s. Shortest trials went down to 0.76 s as the absolute312

minimum trial time restricted by the evidence accumulation. In some trials313

the participants needed a lot of time to deliver their commands and reached314

up to 40 s. Such trial times are much too long and demanding. Therefore a315

trial timeout and a restart would be beneficial.316
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Figure 6: Performance values (Youden index, YI) of all online runs averaged per session for
each participant (Participants printed in solid lines continued to the application testing).

3.3. Application performance317

Ten end-users (P1–P10) fulfilled the requirements to test the applications.318

Since the whole experiment was limited to 10 days, not all participants could319

evaluate all applications. Nine participants had the time to operate the tele-320

presence application and six the text entry application. All of them were321

able to successfully perform the tasks.322

In Fig. 7 the performances values of the text entry application (character323

percentage) and of the tele-presence platform (ratio between the distances)324

are presented, both resulting in 1 for perfect and 0 for no control (same as325

the YI in the online runs).326

In case of the tele-presence robot, participants achieved a mean ratio327

of 0.87± 0.09, with the best participant P7 achieving 0.97, while the worst328

participant P4 still achieved 0.70 compared to the manual condition. The329

performance drop of participant P4 resulted from one single run, in which she330

intentionally delivered wrong commands believing that the target was some-331

where else. The mean distance traveled to reach the targets was 12.7± 1.5 m332

in a time of 96.0± 12.4 s. Remarkably, our end-users performed similar to333

the non-disabled users who were familiar with the environment, whose re-334

sults were previously reported [23] with a mean time of 92.3± 14.0 s. Indeed,335

shared control helped all participants (including novel BCI participants or336

users with disabilities) to complete a rather complex task in similar time to337
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those required by manual commands without shared control. More detailed338

results are given in [23, 15].339

In case of the text entry application, the six participants achieved a mean340

of 0.93± 0.05, whereby participant P8 did not write any single wrong char-341

acter. Typing speed varied across participants and words, due to fluctuat-342

ing BCI performances, the fastest word trials were approaching 2 char/min,343

which is comparable to the performance achieved by P300 spellers [28, 29].344

Figure 7: Application performances of the two applications (Robotino, Braintree) for the
remaining subset of participants.

3.4. Lessons learned and user feedback345

In this paper, we want to report especially our experiences, and the prob-346

lems we encountered, while transferring our BCI from the lab to the clinics347

and to the end-user’s home. This information was conducted from informal348

interviews with BCI experts, rehabilitation therapists in clinical institutions349

and the participating end-users. Tables 3 and 4 present the BCI-related and350

application-oriented issues, which were raised either by end-users (U), care-351

givers or therapists (C) or by the BCI-experts (E). Some of the addressed352

points have already been improved in our current version (marked with a353

footnote in the Tables 3 and 4), since we were following a user-centered de-354

sign and improved our system in several iterations. Nevertheless, we think355

17



it is important to mention them here, such that others can learn from them356

and avoid similar problems.357

4. Discussion358

The most important outcome is that all participants who achieved good359

BCI performances, could also control the applications successfully. Indeed,360

they were able to transfer the skill of “BCI control” from simple bar feedback361

to complex application prototype control. Although, we have to note that not362

all participants were able to learn to produce characteristic and stable EEG363

patterns, which could be used. Unfortunately, such results are in line with364

the literature [32]. In some subjects strong performance fluctuations over the365

training sessions occurred. There are various reasons for these fluctuations.366

The motivation of the participant is definitely a key factor, furthermore,367

slight differences in electrode cap placements can modify the produced brain368

patterns as well. So special care has to be taken considering these points.369

Especially, whenever end-users reached a Y I > 0.6, they mastered the370

applications equally well as healthy participants. This is very important,371

because having a good BCI control does not guarantee good control over372

the application, according to past experiences due to the necessary split373

attention between the application and the BCI (dual task). Another point374

which has to be considered is that BCI training does not require users to375

achieve 100 % performance every trial, but most applications demand almost376

perfect performance all the time. If one or two trials during the training377

were performed erroneously, the overall performance is still okay, since each378

trial is more or less treated separately. In contrast, the impact of an error379

is critical in applications since one wrong decision needs a series of correct380

ones to overcome/correct the single error, which imposes heavy demands on381

users. Therefore, a better way to handle wrong decisions is required, either382

by means of an easy “undo” possibility [25] or smarter application designs.383

Unfortunately only 50 % of the participants (10 out of 20, if we remove the384

ones who stop or had too strong EMG artifacts) could test the applications.385

Due to the strict time limitations of our experimental protocol, we had to386

stop the training process of those end-users who did not reach a Y ≥ 0.4387

over two consecutive sessions after 10 days, although an increasing trend was388

visible in a few. The good application prototype control supports our claim,389

that shared control reduces participants’ cognitive workload as it: (i) assists390

them in coping with low-level issues (such as obstacle avoidance in case of391
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Table 3: Description of our experiences and problems encountered while transferring
the BCI from the lab to the clinics/end-user’s home, which were conducted from
informal interviews (U=end-user, C=caregiver or therapist, E=BCI-expert). Some
of the mentioned points have already been tackled and implemented in our current
version (marked with a footnote).

BCI and training related points:

a Synchronized data folders for transferring the EEG data, classifier
and configuration files need good and stable internet connections.

E

b The remote support infrastructure is helping in solving most tech-
nical problems.

C,E

c The BCI system consists of several components and cables which
have to be connected correctly, still too complex for non-experts.a

C

d It would be helpful if the caregiver/therapist has some technical
understanding about the BCI system (suggested already in [17]).

E

e Adjusting simple parameters (e.g. thresholds) should be a quick
and easy process, so that on-site customisation can be done.

U,E

f BCI experts and therapists do not have the same background
knowledge and have a different (technical) vocabulary [30, 31].

C,E

g Many problems are triggered because of simple misunderstandings.
This issue is even stronger if the mother tongue is not used.

U,C,E

h The instructions to the participants have to be given in his/her
mother tongue, to guarantee correct understanding. Furthermore,
different cognitive impairments should be taken into consideration.

U,C

i Mounting the electrodes by non-experts can take too much time
(up to 1.5 h, compared to 15 min by BCI experts) and contains too
many sources of error (floating electrodes, very high impedances,
misplaced caps). Active electrodes and pre-configured EEG caps
can reduce these issues and allow similar preparation times.b

U,C

j The training phase should be made more engaging and should pro-
vide more fun for the user, e.g. through game-like environments.

U

k Highest motivation is achieved, if the end-user sees a personal
future need for the BCI.

C

aThe first version of our BCI was not user-friendly enough. We have simplified our
setup (e.g. reduced to 1 laptop, predefined caps instead of single electrodes, fewer
connecting cables to overcome this issue.

bUsing active electrodes with pre-configured caps reduced the preparation times down
to the range of BCI experts; also misplaced caps and bad impedances vanished.
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Table 4: Continuation of Table 3: Description of our experiences and problems en-
countered while transferring the BCI from the lab to the clinics/end-user’s home,
which were conducted from informal interviews (U=end-user, C=caregiver or thera-
pist, E=BCI-expert). Some of the mentioned points have already been tackled and
implemented in our current version (marked with a footnote).

Application and experiment related points:

l Having a good BCI control does not guarantee good control over
the application, because an increased workload and split attention
(dual task) between application and BCI feedback is required.

C,E

m Generally BCI training does not require users to achieve 100 %
classification accuracy, but most applications demand almost per-
fect performance. The impact of an error is critical in applications
since one wrong decision needs a series of correct ones to over-
come/correct the error. A better way to handle wrong decisions is
required, by means of either an easy “undo” possibility or smarter
application designs.c

U,E

n Participants cannot deliver all BCI classes with the same easiness.
Sometimes a bias towards one of the classes exists which yields in
a strong performance deterioration.d

U

o BCI trainings are intended to improve the intentional control per-
formance (delivering fast and accurate commands), but for most
applications intentional-non control (INC) is more important —
which is not trained per se.e

E

p Extrapolating the last point, we can argue that most applica-
tions are using the BCI incorrectly, because they are forcing long
“waiting” periods with many false positives, which yield frustra-
tion/stress that degrades the overall performance.

E

q Shared control and context awareness help the user to perform
better and make it less demanding for them [23], especially in
tasks with certain temporal precision.

U

r Participants mentioned that a “pause” mode would be beneficial,
otherwise BCI control can be too tiring for them.

U

cSuch an effective error-handling mechanism is addressed by the hybrid BCI approach
of the text-entry system [25]. Residual muscle activity allows the user to “undo” BCI
actions. In case the user’s level of disability does not allow this any longer, the normal
backspace functionality can be used in a purely BCI-actuated fashion.

dApplying asymmetric or different thresholds for each class solves such a bias problem
(see Section Appendix A.5).

eUnder INC we understand the capability of not delivering unintended commands,
e.g. the robot is moving forward.
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the robot or the language model in case of the text-entry, and is allowing392

the participant to focus the attention on his final destination) and thereby393

(ii) helps BCI users to maintain attention for longer periods of time (since394

the amount of BCI commands can be reduced and their precise timing is not395

so critical).396

Besides the positive experiences and the promising results we have gained397

with the end-users, we have to acknowledge that a lot of work is still needed.398

Although we tried to hide the complexity of the BCI and of the prototype399

applications, our system is not ready to be used completely alone without400

our remote support at the end-user’s place (as it is the case for most other401

BCI systems, especially motor imagery ones). This raises the question: How402

mature does BCI technology have to be before it can be given to end-users?403

Based on the user-centered design, our system has improved and has been404

simplified in several iterations and a lot of issues were be solved during the405

testing phase (c, e, i in Tables 3 and 4). Nevertheless, space for improvement406

exists in hardware, software, design and handling issues, before BCIs will407

become a commercial off-the-shelf product. The communication issues and408

language problems (d, g, h) could be less important in other cases; e.g. if409

the end-user, the therapist and the BCI expert have all the same nationality,410

are all working in the same country and language region, which was not the411

case in our multi-national project.412

We are aware that some of the points raised may seem trivial, but we were413

only able to identify them as truly recurrent problems as a result of the large414

number of end-user tests conducted outside the lab. In particular, points415

of Table 3 appeared because non-BCI experts took care of the recordings.416

Furthermore, some of the issues identified are also valid for other existing BCI417

implementations, so we anticipate that these issues may be faced similarly by418

other groups; especially if they try to bring their BCI technology to the end-419

user, to home environments and towards real application control. Therefore,420

we felt it important to raise awareness here.421

“Floating” electrodes and bad impedances or even misplaced caps, should422

be automatically detected by intelligent algorithms in the future. Tracking423

changes of impedance (or signal quality) could be done during the record-424

ings, either by special functions in EEG amplifiers or by analyzing the online425

changes in spectral components. Going even further, it will be soon possible426

to trace failed electrodes, and to replace them on the fly or to reconstruct their427

signals by looking at information from neighboring or related channels. Such428

an approach has already been demonstrated in an opportunistic network [33]429
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and the first results with EEG will be available soon. Auto-configuration and430

fast auto-calibration through artificial intelligence, advanced signal process-431

ing and machine learning methods will further reduce the training time [34].432

A very prominent source of disturbance, which creates a strong barrier for433

BCI users, is the fact that classifiers (independently of which one) are prone434

to develop a bias towards one BCI class. Either by shifted distributions or435

by sub-optimal decision hyperplanes, it becomes very difficult for the user to436

deliver one of the classes, which has a huge impact on the total performance.437

Online adaption [35] or online unbiasing [36] will soon facilitate the life of438

the user extremely, so that these changes can be followed during a recording439

and over sessions, making the delivery of both classes feasible all the time.440

Finally, smarter interface designs which are more robust to erroneous inputs,441

so that a single error should not cause the user a high workload to recover442

from it. This will help the user together with context awareness to improve443

the joint and final performance, although single controls will still be far from444

perfect. Such context aware systems, should adopt to the user’s evolving445

capabilities and needs [37].446

Furthermore, the difference between the outcome of a successful BCI447

training programme (intentional control) and the needs of the application448

(intentional non-control) became obvious. Such a possibility of entering in a449

non-control state becomes essential for mentally operating devices over long450

periods. Therefore, we actually suggest a change of the approach to con-451

trolling the applications and identified some possibilities: (i) Include INC452

in the training process [38]. (ii) Since a normal 2-class BCI is sometimes453

biased towards one class, we could exploit this natural bias. For instance,454

we could use the “hard” task for key commands (e.g., for selection). (iii) De-455

sign an “active-select” BCI: in the case of text entry or web browsing, the456

user makes the scan progress forward or backward by delivering mental com-457

mands. To select, the user stays in the INC state (which means that he does458

not deliver any commands) for a short period of time (akin to dwell-time459

in eye-tracking). (iv) Usage of multi-modal [39] or hybrid BCIs [2, 40, 41]460

where key commands (e.g., error corrections, pause, selection) are delivered461

through other channels such as residual muscular activity. As an example,462

the parallel monitoring of electromyographic activity from a single channel463

allows the user to “undo” one or more BCI actions through repetitive brisk464

movements. In case the user’s level of disability or fatigue does not allow the465

use of this hybrid component, the existing backspace or undo functionality466

can be used instead in a purely BCI-actuated fashion [25].467
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To conclude, we want to mention explicitly that this paper aims to report468

the lessons learned, not possible mistakes in the operation of the BCIs, which469

are natural as with any other new advanced technology, requiring time to470

master it. Consequently, any limitation in the use of BCI technology remains471

mainly on our shoulders as researchers and developers, not on the users and472

caregivers. We want to use this opportunity to indulge the community in473

these important issues and share our, sometimes frustrating and other times474

amazingly encouraging experiences.475

5. Conclusion476

In this paper we investigated the issues of transferring BCI technology477

from BCI trainings with non-disabled participants towards end-users control-478

ling applications. Data from 24 motor disabled end-users are presented, who479

were trained at their homes or clinics only by the therapists and caregivers,480

without the BCI experts present. The most important outcome is that fifty481

percent of the participants achieved good BCI performance and could suc-482

cessfully control the applications (tele-presence robot and text-entry system).483

Remarkably, our end-users performed similarly to the non-disabled users who484

were more familiar with the applications. They were able to (i) transfer the485

skill of “BCI control”, which is very crucial, since having a good BCI control486

does not guarantee good control over the application, (ii) split their atten-487

tion between the BCI task and the application and (iii) achieve application488

performances as good as healthy participants or even outperform them. We489

also shared our experiences and the lessons we learned during this technology490

transfer, which range from pure BCI problems (technical and handling), to491

common communication issues between different people involved, and lessons492

encountered while controlling the applications.493

Altogether we could demonstrate that, modern human-computer inter-494

action techniques combined with applications based on shared control and495

context awareness principles can be successfully controlled by a BCI and496

thereby providing powerful interactions and applications for disabled users.497

Furthermore, the performance of such applications can be improved by novel498

hybrid BCIs architectures, which are a synergistic combination of a BCI with499

other residual input channels. Our future work will focus on extending the500

clinical evaluation with more end-users, improved HCI aspects, advanced ma-501

chine learning methods and adaptive BCI approaches in combination with502

hybrid BCIs.503
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Appendix A. Brain-computer interface details504

In this appendix the details about the underlying processes of the applied505

BCI to identify suitable brain features as a control signal are presented.506

Appendix A.1. Experimental paradigm507

During the training process (calibration recordings and online experi-508

ments), every trial starts with a fixation cross for 3 seconds on a screen in509

front of the participants (exact timing is given in Fig. A.8). Afterwards the510

cue — an arrow pointing to the left, right or up — is displayed for 5 seconds511

and the participants have to imagine repetitive kinaesthetic movements [42]512

with their left hand, right hand or feet depending on this cue. Since the513

participant is instructed by a cue, it is also called cue-based or synchronous514

BCI.515

The output of the BCI is translated in a movement of the feedback bar516

(also called liquid cursor) and informs participants in online experiments517

about their current brain status. If the bar reaches the decision threshold,518

an additional discrete feedback in form of a large arrow (called decision)519

is presented to indicate which command is delivered and would be sent to520

the prototype in the case of application control. During the initial calibra-521

tion recordings, where no online feedback is possible, the BCI output moves522

the feedback bar towards the correct side, so that the decision threshold is523

reached after 4 seconds. Every trial ends with a random pause of 3.0 to 4.5524

seconds.525

In total four offline runs (approximately 10 min each) with 15 trials for526

right, 15 trials for left and 15 trials for feet MI are recorded per participant,527

resulting in 60 trials per class for the classifier training. In the rare case that528

no classifier can be trained for this data, the offline runs are repeated in the529

next session.530

In the online runs only two MI classes are used (the MI pair which is531

selected during the classifier training based on the highest controllability /532

performance). Each run consists of 15 trials each. In total 4–8 online runs533

are performed per session. Participants are pushed to move online as soon534

as possible, since the BCI feedback is a very important part of the training535

process [43, 13]. So, whenever a classifier with an accuracy of more than536

70 % (equal to a Y I = 0.4, see Section 2.4) could be identified, online BCI537

experiments are performed. At least 2 sessions of good online BCI control538
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(with a Y I ≥ 0.4, see Section 2.4) are requested before participants are539

allowed to test the applications (see time-line in Fig. 2).540

Figure A.8: Timing of a BCI trial (top) with corresponding screen visualizations (bottom).
At second 0 a cue stimulus (in this case as a tiny blue arrow to the left) is given for 1 second
and the light gray feedback bar starts moving accordingly to the BCI output in the online
trials. If the bar reaches the threshold an additional discrete feedback in form of a large
arrow –in this case as a blue arrow to the left– (called decision) is presented to indicate
which command is delivered and sent to the application. The duration of the continuous
feedback is fixed to 4 s in case of the offline runs, but has variable length in case of online
runs, depending on the performance of the participant, typically between 2 and 8 s.

Appendix A.2. Feature extraction541

Each of the 16 EEG channels is spatially filtered with a Laplacian deriva-542

tion whereby the weighted sum of the orthogonal neighboring channels is543

subtracted from each channel. Afterwards the power spectral density is esti-544

mated during the continuous feedback period for the frequency bands 4–48 Hz545

with 2 Hz resolution over the last second (resulting in 23 overall frequency546

components). The PSD is computed every 62.5 ms (i.e., 16 times per second)547

using the Welch method with 5 (75 % overlapping) internal Hanning windows548

of 500 ms, resulting in 64 PSD calculations per trial. The feature extraction549

procedure yields an initial dimensionality N = 368 of the feature vector (16550

channels x 23 frequency components, where each individual feature reflects551

the estimated power of a specific cortical location (channel) and frequency.552

For the further processing steps the information at which time-point (inside553
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the trial) the PSD is calculated is disregarded and the data of the different554

PSDs are pooled together.555

Appendix A.3. Feature selection556

To facilitate BCI control it is necessary to find those participant-specific557

spatial patterns that maximize the separability between the different mental558

tasks. From the initial 368 PSD features, we select, from the training dataset,559

a small subset (usually 5–10 features) so that the differences in mean PSD be-560

tween the given number of classes are maximized, thus significantly reducing561

the dimensionality of the original feature vectors.562

Our feature selection method is based on canonical variate analysis (CVA)563

in order to extract canonical discriminant spatial patterns (CDSP) which are564

the projections of the original PSD samples onto the canonical space [44]. Its565

output is a discriminant power (DP) metric for each PSD feature, which is566

used to rank all available features in terms of their contribution to the dis-567

criminability of the task-related brain patterns. Based on this ranking the568

final dimensionality D of the feature vectors is determined either by keeping569

a predefined percentage of the overall DP or by explicitly selecting the D570

highest ranking features. Fig. A.9 shows an exemplary map of the discrimi-571

nant power and the features. The final selection is manually inspected to see572

which features have been selected, which provides very valuable information573

about the task the participants are doing, to see if new features are appearing574

over the training time and especially if the recorded data are contaminated575

by artifacts (in particular task-correlated artifacts, like inherent muscular ac-576

tivities). In our case the selected features of this purely data-driven method577

never contradicted prior neurophysiological knowledge concerning the cor-578

tical areas and frequency bands that are expected to be activated by the579

employed MI tasks.580

Appendix A.4. Classification581

Classification of the reduced PSD feature vectors is achieved using a Gaus-582

sian mixture model (GMM) framework, which outputs a conditional proba-583

bility distribution ~pt = [p1t , p
2
t , ..., p

C
t ] at time t over the C mental tasks given584

each feature vector ~xt [9]. Whereby, t = 0 refers to the output timings of585

the feature extraction and classification which operates at 16 Hz. Therefore,586

t = 0 would be the arrival of the first sample in a trial and t = 1 (62.5 ms587

later in real time) the arrival of the second sample, and so one. t will increase588

within a trial until a decision is made (threshold reached). Each mental class589
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Figure A.9: (A) Map of discriminant power (DP) for each channel and frequency bin for
participant P1. Selected features are marked with a “x”. Note: Not all channels names
are given for visualization purposes. (B) Projection of the selected features for the two
selected motor imagery (MI) classes in CVA space.

is represented by a number of Gaussian units (usually N = 4). The class-590

conditional probability distribution function of class i is a superposition of591

N Gaussian prototypes. Equal priors for the classes and mixture coefficients592

are assumed, as well as shared, diagonal covariance matrices. The centroids593

of the Gaussian units are initialized by means of a self organizing map (SOM)594

clustering and their covariance matrices are subsequently computed as the595

pooled covariance matrices of the data closest to each prototype. Finally,596

the distribution parameters are, iteratively re-estimated through gradient597

descent so as to reduce the mean square error (MSE) [9]. The training of598

the Gaussian classifier stops, if the MSE change after each iteration is not599

improving, or after 20 iterations at maximum.600

Appendix A.5. Evidence accumulation601

Since the Gaussian classifier tends towards extreme (high and low) prob-602

abilities, using single-sample classifier evidence directly to drive the BCI603

feedback is likely to result in an fluctuating feedback and uncertain com-604

mand delivery [9]. For these reasons, an evidence accumulation framework is605

embedded in our BCI, assisting in tackling uncertainty of the single-sample606

classifier output, providing smooth and informative feedback to the user,607

while at the same time ensuring flexibility towards the user needs due to the608

reconfigurability of the framework. Our implementation of evidence accumu-609

lation involves an exponential smoothing filter (“leaky” integrator), which610
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preserves the fast refresh rate (16 Hz) of the classifier output ~pt. The output611

of the evidence accumulation module is a modified probability distribution612

over the mental classes ~Pt, so that: ~Pt = α~Pt−1 + (1−α)~pt, where α is a con-613

figurable, scalar, exponential smoothing factor. It controls the importance614

assigned to past evidences in comparison to the current one and, conse-615

quently, the trade-off between command delivery speed and accuracy. The616

modified probabilities ~Pt are visualized in real time, providing visual feedback617

to the user– i.e. movements of a feedback bar on the screen. A class i type618

of command is delivered by thresholding the evidence accumulation output619

with class-dependent decision thresholds tdi , so that decision = maxi{~Pt}, if620

max{~Pt} > tdi .621

It should also be noted, that in order to further filter out uncertain deci-622

sions, samples xt whose maximum element of the corresponding posterior623

probability distribution vector ~pt does not exceed a rejection probability624

threshold tr are rejected and are not fed to the evidence accumulation frame-625

work at all (in which case the feedback bar stays still until t+ 1).626

The contribution of this decision making scheme to the participants’ on-627

line control of the BCI is two-fold. On the one hand, the smoothed final628

output, as illustrated through the continuous visual feedback bar, guides the629

participant into optimally modulating his brain activity to gradually reach630

the desired mental command, avoiding frustrating fluctuations. On the other631

hand, the application of the evidence accumulation framework is also critical632

for largely eliminating false positives during intentional non-control (INC)633

periods, while preserving the participants’ ability to deliver intentional com-634

mands. By INC we mean the periods in which the participant is not wanting635

to deliver any command, e.g. waiting for the next selection step or waiting636

while a robot is moving forward (e.g. moving down a corridor).637

Finally, the reconfigurability of parameters α, tdi , tr allow for a BCI con-638

figuration specific to each individual user’s needs and BCI training level.639

Typical values for the BCI hyper-parameters are α = 0.96, tr = 0.6 and640

tdi = 0.85 for all classes i, but can be adjusted to each participants’ prefer-641

ences and needs.642

Appendix A.6. Feedback643

In the case of the online experiments, the output of the evidence accumu-644

lation directly moves the feedback bar and shows the participant its current645

status. The position of the bar is updated every 1/16 of a second. If the bar646

reaches the decision threshold (see Fig. A.8), an additional discrete feedback647
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in form of a large arrow (called decision) is presented to indicate which com-648

mand is delivered and in the case of application control this would be sent649

to the prototype. The time to reach the threshold varies for every trial and650

depends only on the performance of the participant.651

During the initial offline trials a faked BCI output moves the feedback652

bar towards the correct side, so that the decision threshold is reached after653

4 seconds. The reason for the fake feedback is on the one hand to support654

the participant in the imagination task and on the other hand to simulate655

the same visual feedback behavior as for the runs with online feedback.656

In both stages of this training process a synchronous BCI, also called657

cue-based BCI, is applied. Thereby, the participant is instructed by the cue658

which type of imagery he should perform. In case of the online experiments659

the feedback is based only on the participants brain patterns, and the time660

and type (MI class) of delivery depends only on them. The next logical step is661

to remove the cue (but leave the rest of the paradigm untouched) and let the662

participant decide what he wants to deliver. This can then be used to control663

an application or device at the users own pace. In such an asynchronous or664

un-cued BCI the performance cannot be evaluated directly, but indirectly by665

analyzing the overall goal of the brain controlled application.666
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