Prediction and Privacy for Human Mobility Data

Matthias Grossglauser EPFL

With Mohamed Kafsi and Patrick Thiran

Allerton, Oct 2014

Mobility mining

- Mobility patterns say a lot about us:
 - Activities, social contacts & communities, work, travel,...
 - People share location info: "checkins" (foursquare etc.)
- Opportunities:
 - Optimizing services, anticipating needs (aka targeted advertisement)
 - Infrastructure optimization, store placement,...
- Threats:
 - Personal privacy: profiling, revealing locations,...

- User mobility = sequence of vertices (trajectory)
- Question:
 - How undisclosed are undisclosed locations?

Model

Assumptions:

- Markov chain capturing mobility patterns
- Check-in = conditioning on an intermediate state
- Privacy = uncertainty about trajectory T_{sd}: conditional entropy
- Result:
 - Formulate as conditional entropy of Markov trajectories given intermediate states
 - Exact results on "number of bits" revealed about trajectory [KGT13]
 - Extension of classical result by [Ekroot & Cover 1993]

Entropy of Markov trajectories

 Measuring uncertainty about the trajectory: Shannon entropy of the trajectory from s to d:

$$H_{sd} \stackrel{\text{\tiny def}}{=} H(T_{sd}) = -\sum_{t_{sd} \in \mathcal{T}_{sd}} p(t_{sd}) \log p(t_{sd})$$

- *T_{sd}* = set of trajectories starting at *s*, ending at *d*, with no intermediate state *d*
 - Cardinality is typically infinite
- *H*: matrix of trajectory entropies
 - General closed-form expression [Ekroot & Cover, 1993] for irreducible MC

Conditional entropy of Markov trajectories

- How does the predictability of a trajectory evolve when we condition on a sequence of intermediate states $u = (u_1, u_2, ..., u_l)$?
- Conditional entropy of the trajectory from s to d visiting all intermediate states u:

$$H_{sd|u} = -\sum_{t_{sd} \in \mathcal{T}_{sd}^{u}} p(t_{sd}|t_{sd} \in \mathcal{T}_{sd}^{u}) \log p(t_{sd}|t_{sd} \in \mathcal{T}_{sd}^{u})$$

- \mathcal{T}_{sd}^{u} : set of trajectories starting at s, ending at d, with no intermediate state d, and u as a subsequence
- Again, enumerating all trajectories costly or impossible (infinite)

Computing conditional entropy: step 1

 Show that conditional entropy given subsequence *u* = (*u*₁, *u*₂, ..., *u*_l) can be decomposed into segments:

$$H(T_{sd}|T_{sd} \supset su_1 \dots u_l d) = \sum_{k=0}^{l-1} \frac{H_{u_k u_{k+1}|\bar{d}}}{H_{u_l d}} + H_{u_l d}$$

- Problem: trajectory entropy $H_{s'd'|\bar{d}}$ conditioned on not going through state d
- Computing $H_{s'd'|\bar{d}}$:
 - Derive new matrix P', such that unconditional entropy in P'=conditional entropy in P

Step 2: transforming *P* into *P*'

 $H(T_{s'd'}|T_{s'd'} \notin \mathcal{T}^d_{s'd'})$

d' and d are
made
absorbing

$$P'_{ij} = \begin{cases} \frac{\alpha_{jd'd}}{\alpha_{id'd}} \overline{P}_{ij} & \text{if } \alpha_{id'd} > 0\\ \overline{P}_{ij} & \text{otherwise} \end{cases}$$

 $H(T'_{s'd'})$

Step 2: *P*

Step 2: \overline{P} has d, d' absorbing

Step 2: P': normalized transition probabilities

Step 2: computing $H_{s'd'|\overline{d}}$

- Basic idea: reduce computing conditional entropy
 → unconditional entropy over a modified MC
- Relationship between original chain and P':
 - $t_{s'd'} \in \mathcal{T}_{s'd'}^d \rightarrow p'(t_{s'd'}) = 0$ Filtering trajectories hitting d first • $t_{s'd'} \notin \mathcal{T}^d_{s'd'} \rightarrow$ $p'(t_{s'd'}) = P'(s', x_2)P'(x_2, x_3) \dots P'(x_kd')$ $= \frac{\alpha_{x_2d'd}}{\alpha_{s'd'd}} P(s', x_2) \frac{\alpha_{x_3d'd}}{\alpha_{x_2d'd}} P(x_2, x_3) \dots \frac{\alpha_{d'd'd}}{\alpha_{x_kd'd}} P(x_k, d')$ $= \frac{\alpha_{d'd'd}}{P(s, x_2)} P(x_2, x_3) \dots P(x_k, d')$ $\alpha_{s'd'd}$ $= \frac{p(t_{s'd'})}{p(T_{s'd'} \notin \mathcal{T}^d_{s'd'})} = p(t_{s'd'} | T_{s'd'} \notin \mathcal{T}^d_{s'd'})$

Step 3: unconditional entropy for general MC

- Relaxing the irreducibility condition of [Ekroot&Cover93]
- Express the entropy as a linear combination of local entropies

Conditional trajectory entropy: not monotonic!

Counter-example:

 $H_{sd|a} = 0 < H_{sd}$

Conditional trajectory entropy: not additive!

Counter-example:

Computational cost

- Worst-case complexity: O(ln³)
 - *l*: length of conditioning vector
 - n: number of states
 - Dominated by computation of $(I Q_d)^{-1}$
 - Linear in length *l* of conditioning vector → efficient to process long trajectories
- Processing individual trajectory:
 - Only row s of $(I Q_d)^{-1}$ needed \rightarrow rely on efficient methods for sparse matrix inversion
- Processing large batch of trajectories:
 - Computation of (I − Q_d)⁻¹ amortized → linear in total # of conditioning states (over all trajectories)

Application: trajectory privacy with check-ins

Application: trajectory segmentation

- Human mobility:
 - Serves to reach a set of "waypoints" = intermediate destinations
- Waypoints: personal choices
 - Work; school; shopping; doctor's appointment; ...
- Between waypoints: generic behavior
 - Optimization of travel time & cost; reacting to conditions; incomplete information
- Question:
 - Given only a low-order mobility model trained from a whole population, can we infer waypoints for individual users?
- Intuition:
 - Adding "out of the way" waypoints enriches the set of plausible trajectories $\rightarrow H_{sd|u} > H_{sd}$

Example:

• $H_{sd|u}/H_{sd}$ as a function of u, for unbiased random walk

Segmentation of mobility traces

- Geolife project: ~ 200 users, 20k trajectories

Residence time vs relative conditional entropy

Conclusion

- Principled way to quantify mobility uncertainty
 - Conditional entropy given start, end, intermediate states
 - With respect to a Markov mobility model
 - Low-order: easy to learn (dense) & compute; representative for population; overfitting control
 - Efficient to process large batches of trajectories
- Privacy:
 - Information loss (or gain!) by revealing set of locations
 - Not monotonic, not additive
 - Inverse problem: trajectory compression
- Segmentation:
 - Idea: trajectory = reaching a sequence of waypoints
 - Expect high $H_{sd|u}$ for waypoints u
 - Can segment without time stamps & spatial coordinates, and relative to generic model

Prediction and Privacy for Human Mobility Data

Thanks! Questions?

