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 Mobility patterns say a lot 
about us: 
 Activities, social contacts & 
communities, work, travel,… 

 People share location info: “check-
ins” (foursquare etc.) 

 Opportunities: 
 Optimizing services, anticipating 
needs (aka targeted 
advertisement) 

 Infrastructure optimization, store 
placement,… 

 Threats: 
 Personal privacy: profiling, 
revealing locations,... 
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Mobility mining 



 Model: 
 World = a graph 

 User mobility = sequence of vertices (trajectory) 

 Question: 
 How undisclosed are undisclosed locations? 
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Mobility: the map as a graph 

shared («check-in») 

undisclosed 

𝑠 

𝑑 

Trajectory 𝑡𝑠𝑑 



 Assumptions: 
 Markov chain capturing mobility patterns 

 Check-in = conditioning on an intermediate state 

 Privacy = uncertainty about trajectory 𝑇𝑠𝑑: conditional 
entropy 

 Result: 
 Formulate as conditional entropy of Markov trajectories 
given intermediate states 

 Exact results on “number of bits” revealed about trajectory 
[KGT13] 

 Extension of classical result by [Ekroot & Cover 1993] 
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Model 



 Measuring uncertainty about the trajectory: 
Shannon entropy of the trajectory from 𝑠 to 𝑑: 

𝐻𝑠𝑑 ≝ 𝐻 𝑇𝑠𝑑 = −  𝑝 𝑡𝑠𝑑 log 𝑝 𝑡𝑠𝑑
𝑡𝑠𝑑∈𝒯𝑠𝑑

 

 

 𝒯𝑠𝑑= set of trajectories starting at 𝑠, ending at 𝑑, 
with no intermediate state 𝑑 
 Cardinality is typically infinite 

 𝐻: matrix of trajectory entropies   
 General closed-form expression [Ekroot & Cover, 1993] for 
irreducible MC 
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Entropy of Markov trajectories 



 How does the predictability of a trajectory evolve 
when we condition on a sequence of intermediate 
states 𝒖 = (𝑢1, 𝑢2, … , 𝑢𝑙)? 

 Conditional entropy of the trajectory from 𝑠 to 𝑑 
visiting all intermediate states 𝒖: 

𝐻𝑠𝑑|𝒖 = −  𝑝 𝑡𝑠𝑑|𝑡𝑠𝑑 ∈ 𝒯𝑠𝑑
𝒖 log 𝑝 𝑡𝑠𝑑|𝑡𝑠𝑑 ∈ 𝒯𝑠𝑑

𝒖

𝑡𝑠𝑑∈𝒯𝑠𝑑
𝒖

 

 𝒯𝑠𝑑
𝒖 : set of trajectories starting at 𝑠, ending at 𝑑, with 

no intermediate state 𝑑, and 𝒖 as a subsequence 

 Again, enumerating all trajectories costly or 
impossible (infinite) 
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Conditional entropy of Markov trajectories 



 Show that conditional entropy given subsequence 
𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑙) can be decomposed into 
segments: 

𝐻 𝑇𝑠𝑑 𝑇𝑠𝑑 ⊃ 𝑠𝑢1…𝑢𝑙𝑑 =  𝐻𝑢𝑘𝑢𝑘+1|𝑑 
+𝐻𝑢𝑙𝑑

𝑙−1

𝑘=0

 

 Problem: trajectory entropy 𝐻𝑠′𝑑′|𝑑  conditioned on 

not going through state 𝑑 

 Computing 𝐻𝑠′𝑑′|𝑑 : 

 Derive new matrix 𝑃′, such that unconditional entropy in 
𝑃′=conditional entropy in 𝑃 
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Computing conditional entropy: step 1  



8 

Step 2: transforming 𝑷 into 𝑷′ 

𝑑′ and 𝑑 are 
made 
absorbing 

𝐻(𝑇𝑠′𝑑′|𝑇𝑠′𝑑′ ∉ 𝒯𝑠′𝑑′
𝑑 ) 

𝑃𝑖𝑗
′ =  

𝛼𝑗𝑑′𝑑

𝛼𝑖𝑑′𝑑
𝑃 𝑖𝑗 𝑖𝑓 𝛼𝑖𝑑′𝑑 > 0

𝑃 𝑖𝑗 otherwise

 

𝐻(𝑇𝑠′𝑑′
′ ) 
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Step 2: 𝑷 

𝑑′ 

𝑑 

𝑠′ 
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Step 2: 𝑷  has 𝒅, 𝒅′ absorbing 

𝑑′ 

𝑑 

𝑠′ 
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Step 2: 𝑷′: normalized transition probabilities 

𝑑′ 

𝑑 

𝑠′ 



 Basic idea: reduce computing conditional entropy 
 unconditional entropy over a modified MC 

 Relationship between original chain and 𝑃′: 

 𝑡𝑠′𝑑′ ∈ 𝒯𝑠′𝑑′
𝑑   𝑝′ 𝑡𝑠′𝑑′ = 0 

 𝑡𝑠′𝑑′ ∉ 𝒯𝑠′𝑑′
𝑑   

𝑝′ 𝑡𝑠′𝑑′ = 𝑃′ 𝑠′, 𝑥2 𝑃′ 𝑥2, 𝑥3 …𝑃′ 𝑥𝑘𝑑
′  

=
𝛼𝑥2𝑑′𝑑

𝛼𝑠′𝑑′𝑑
𝑃 𝑠′, 𝑥2

𝛼𝑥3𝑑′𝑑

𝛼𝑥2𝑑′𝑑
𝑃 𝑥2, 𝑥3 …

𝛼𝑑′𝑑′𝑑
𝛼𝑥𝑘𝑑′𝑑

𝑃 𝑥𝑘 , 𝑑
′  

=
𝛼𝑑′𝑑′𝑑
𝛼𝑠′𝑑′𝑑

𝑃 𝑠, 𝑥2 𝑃 𝑥2, 𝑥3 …𝑃 𝑥𝑘 , 𝑑′  

=
𝑝 𝑡𝑠′𝑑′

𝑝 𝑇𝑠′𝑑′ ∉ 𝒯𝑠′𝑑′
𝑑 = 𝑝(𝑡𝑠′𝑑′|𝑇𝑠′𝑑′ ∉ 𝒯𝑠′𝑑′

𝑑 ) 
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Step 2: computing 𝑯𝒔′𝒅′|𝒅  

Filtering trajectories 
hitting 𝑑 first 



 Relaxing the irreducibility condition of 
[Ekroot&Cover93] 

 Express the entropy as a linear combination of local 
entropies 
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Step 3: unconditional entropy for general MC 

𝐻𝑠′𝑑′ =  𝐼 − 𝑄𝑑′
−1

𝑠′𝑖
𝐻(𝑃𝑖 . )

𝑖≠𝑑′

 

Expected number 
of visits to state 𝑖 

Entropy of next transition 
out of state 𝑖 



 Counter-example: 
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Conditional trajectory entropy: not monotonic! 

s 

a 

d 

b 

𝐻𝑠𝑑|𝑏 > 𝐻𝑠𝑑 

𝐻𝑠𝑑|𝑎 = 0 < 𝐻𝑠𝑑 



 Counter-example: 
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Conditional trajectory entropy: not additive! 

𝐻15|4 ≠ 𝐻14 + 𝐻45 



 Worst-case complexity: 𝑂 𝑙𝑛3  
 𝑙: length of conditioning vector 

 𝑛: number of states 

 Dominated by computation of 𝐼 − 𝑄𝑑
−1 

 Linear in length 𝑙 of conditioning vector  efficient to 
process long trajectories 

 Processing individual trajectory: 
 Only row 𝑠 of 𝐼 − 𝑄𝑑

−1 needed  rely on efficient 
methods for sparse matrix inversion 

 Processing large batch of trajectories: 
 Computation of 𝐼 − 𝑄𝑑

−1 amortized  linear in total # 
of conditioning states (over all trajectories) 

 

16 

Computational cost 
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Application: trajectory privacy with check-ins 

Normalized conditional entropy: 
𝐻𝑠𝑑|𝑢

𝐻𝑠𝑑
 



 Human mobility:  
 Serves to reach a set of “waypoints” = intermediate 
destinations 

 Waypoints: personal choices 
 Work; school; shopping; doctor’s appointment; … 

 Between waypoints: generic behavior 
 Optimization of travel time & cost; reacting to conditions; 
incomplete information 

 Question: 
 Given only a low-order mobility model trained from a 
whole population, can we infer waypoints for individual 
users? 

 Intuition: 
 Adding “out of the way” waypoints enriches the set of 
plausible trajectories  𝐻𝑠𝑑|𝒖 > 𝐻𝑠𝑑 18 

Application: trajectory segmentation 



 𝐻𝑠𝑑|𝑢/𝐻𝑠𝑑 as a function of 𝑢, for unbiased random 

walk 
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Example:  



 Geolife project: ~ 200 users, 20k trajectories 

Segmentation of mobility traces 



Residence time vs relative conditional entropy 

 Expected residence time vs  
𝑯𝒔𝒅|𝒖

𝑯𝒔𝒅
> 𝜶 

high residence time 
 waypoint 



 Principled way to quantify mobility uncertainty 
 Conditional entropy given start, end, intermediate states 

 With respect to a Markov mobility model 

 Low-order: easy to learn (dense) & compute; 
representative for population; overfitting control 

 Efficient to process large batches of trajectories 

 Privacy: 
 Information loss (or gain!) by revealing set of locations 

 Not monotonic, not additive 

 Inverse problem: trajectory compression 

 Segmentation: 
 Idea: trajectory = reaching a sequence of waypoints 

 Expect high 𝐻𝑠𝑑|𝒖 for waypoints 𝒖 

 Can segment without time stamps & spatial coordinates, 
and relative to generic model 22 

Conclusion 



Thanks!  

Questions? 
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