Résumé

Accurate rain rate measurements are essential for many hydrological applications. Although rain gauge remains the reference instrument for the measurement of rain rate, the strong spatial and temporal variability of rainfall makes it difficult to spot faulty rain gauges. Due to the poor spatial representativeness of the point rainfall measurements, this is particularly difficult where their density is low. Taking advantage of the high density of telecommunication microwave links in urban areas, a consistency check is proposed to identify faulty rain gauges using nearby microwave links. The methodology is tested on a data set from operational rain gauges and microwave links, in Zürich (Switzerland). The malfunctioning of rain gauges leading to errors in the occurrence of dry/rainy periods are well identified. In addition, the gross errors affecting quantitative rain gauge measurements during rainy periods, such as blocking at a constant value, random noise and systematic bias, can be detected. The proposed approach can be implemented in real time.

Détails

Actions