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Abstract

Risk assessment for extreme natural phenomena has become increasingly important,
and over the past few years the scientific community has realized the importance of
considering the spatial or spatio-temporal extent of extreme events. Historically, the
GEV and GPD distributions have played an important role in the statistical modeling
of extremes at individual locations, but for risk assessment it is crucial to assess
dependence between locations: if dependence is strong, extreme events might occur
simultaneously at different locations, thereby increasing the overall risk.

In this thesis, we construct new dependence models for space-time extremes, based
on asymptotically justified arguments, and propose novel inference methods for
fitting these models to observations exceeding high thresholds. So far, the modeling
of spatial extremes has been limited to fitting max-stable processes to block (usually
annual) maxima, regarded as mutually independent. Our threshold-based approach
is more efficient and enables more detailed analysis of extremes, but requires a more
sophisticated treatment of dependence.

The present work also describes how composite likelihoods can be used for inference,
establishes the asymptotic distribution of the corresponding estimators, and assesses
statistical efficiency for these methods in various contexts.

The methodology is illustrated by application to hourly rainfall data from western
Switzerland, and enables realistic modeling of their extremal properties.

Keywords: Asymptotic independence; Composite likelihood; Extreme event; Max-
stable process; Rainfall data; Relative efficiency; Spatio-temporal dependence; Thresh-
old exceedance.
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Résumé

L'évaluation des risques liés aux phénomenes naturels extrémes est de plus en plus
d’actualité. Au cours des années précédantes, la communauté scientifique a réalisé
I'importance de considérer 'ampleur spatiale, voire spatio-temporelle, de ces évé-
nements extrémes. Historiquement, les distributions GEV et GPD ont joué un role
majeur dans la modélisation statistique des événements extrémes a des lieux donnés,
mais pour I'évaluation des risques, il est également crucial tenir compte de la dépen-
dance qui les lie. En effet, si celle-ci est forte, les événements extrémes ont tendance a
arriver simultanément, augmentant ainsi le risque global.

Dans cette these, nous construisons de nouveaux modeles de dépendance, justifiés
par des raisonnements asymptotiques, pour les extrémes spatio-temporels, et nous
proposons des méthodes d’'inférence novatrices pour ajuster ces modeles aux ob-
servations excédant des seuils élevés. Jusqu'a présent, la modélisation des extrémes
spatiaux se limitait a 'ajustement des processus max-stables aux maxima de blocs
(par exemple annuels), considérés comme mutuellement indépendants. Notre ap-
proche basée sur des seuils est plus efficace et permet une analyse plus détaillée des
extrémes, mais requiert également un traitement plus sophistiqué de la dépendance.

En outre, le présent travail décrit la maniere dont les vraisemblances composites
peuvent étre utilisées pour I'inférence, établit la distribution asymptotique des es-
timateurs correspondants, et évalue 1'efficacité relative de ces méthodes dans des
contextes variés.

La méthodologie est illustrée avec un jeu de données de pluie horaires mesurées
en Suisse occidentale, et s’avere adéquate pour une modélisation réaliste de leurs
propriétés extrémales.

Mots clés : Dépendance spatio-temporelle; Données de pluie; Efficacité relative;
Evénement extréme ; Exces de seuil ; Indépendance asymptotique ; Processus max-
stable; Vraisemblance composite.
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Introduction

Motivation

In recent years there has been a major upsurge of research on the statistics of extreme
events for spatial settings. One reason for this is the realization among stakeholders,
such as climate scientists, environmental engineers and insurance companies, that
in an evolving climate it may be changes in the sizes and frequencies of rare events,
rather than changes in the averages, that lead to the most devastating losses of life,
damage to infrastructure and so forth. As an illustration, Figure 1 shows a radar
snapshot taken over Switzerland on August 22, 2005, when intense flooding affected
several countries in Central Europe; in particular, the Swiss capital, Bern, was heavily
hit after the Aar river burst its banks, forcing the evacuation of many homes in this
region. In addition, the village of Lauterbrunnen in the Bernese Alps was completely
isolated, and the only exit possibility was by military helicopter or by crossing one
of the high Alpine passes. As a result of this extreme event, 6 people were killed in
Switzerland, with more than 3 billion CHF of infrastructure damage.

While it is difficult or even impossible to attribute particular events to the effect
of climatic change, the types of events that have long been forecast to increase in
frequency by the modeling community —such as widespread heavy summer rainfall,
but also heatwaves leading to crop failure and major brush fires— do indeed seem
to be appearing more often than in the recorded past; see Figure 2. This motivates
attempts to model such events, in order to understand their likely future impacts, and
to assess the related risks.

Classical geostatistics is a well-developed field surveyed in numerous textbooks (e.g.,
Cressie, 1993; Wackernagel, 2003; Banerjee et al., 2003; Diggle & Ribeiro, 2007; Cressie
& Wikle, 2011), with much software available and a wide range of user communities
corresponding to its many applications. Its basis in Gaussian distributions makes it
unsuitable for extremal modeling, however, because the Gaussian density function has
exceptionally light tails and therefore can badly underestimate probabilities associated
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Figure 1: Radar snapshot taken at 06:50 on August 22, 2005, by the Swiss Federal
Office of Meteorology and Climatology, MeteoSwiss, illustrating extreme rainfall over
Switzerland and neighboring countries. Borders are depicted with orange lines, while
rivers are in blue. The color (log-)scale (left side) indicates rainfall amounts [mm/hr]
averaged over a 5min time window. Very extreme events appear in yellow or orange.

to extreme events. Moreover, the tails of the multivariate Gaussian distribution lead to
independent extremes, for any underlying correlation that is less than unity, resulting
in potentially disastrous underestimation of the probabilities of the simultaneous
occurrence of two rare events —this is ‘the formula that killed Wall Street’ which, at
least according to Wired magazine (Salmon, 2009), has played a key role in the ongoing
international financial crisis by providing wildly incorrect assessment of economic
risks.

Since Gaussian densities do not provide suitable models for extremes, it is natural
to ask what distributions can arise as limits for maxima of independent random

2



Outline and contributions of the thesis

Source: OFEV/WSL
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Figure 2: Plot of the overall (flooding, landslide and debris flow) annual damage [mil-
lion CHF] in Switzerland from 1972 to 2007 (blue histogram), with the corresponding
cumulative damage (red curve). This graph is taken from G. R. Bezzola’s talk at the
press conference on September 18, 2008, in Bern, about the analysis of the water rise
in 2005.

variables. Under a suitable rescaling, the latter turn out to be embedded in the class
of generalized extreme-value (GEV) distributions, which can have much heavier
tails than the Gaussian distribution. Furthermore, this result extends to stationary
sequences with short-term dependence, therefore providing even stronger support
for the use of the GEV distribution in extremal applications. Alternatively, one can
show that the generalized Pareto distribution (GPD) is suitable for the modeling of
exceedances above high thresholds. For risk assessment over some spatial region and
within some temporal window, space-time dependence of extreme events need to
be properly accounted for. By contrast with Gaussian processes, the generalization
of the aforementioned extreme-value distributions to multivariate or spatial settings
is nonparametric: the classes of so-called max-stable distributions and processes
cannot be described by a finite number of parameters. However, submodels can be
constructed and the challenge is to build flexible but parsimonious models that can
capture a large class of dependence structures.

While the justification for the GEV distribution goes back to the late 1920s and the GPD
has been applied extensively from the early 1990s, the use of max-stable processes and
related extremal dependence models is much more recent. Although the theoretical
development of the latter finds its roots in the work of several researchers during the
mid-1970s-1980s, useful models, inferential methods, and computer resources to fit
these complicated models were lacking until recently. Realistic spatial models for
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extremes were proposed in the early 2000s, and the first “true” space-time applications
have emerged only in the early 2010s.

This thesis contributes to the extreme-value theory and composite likelihood litera-
tures by developing new models for space-time extremes, as well as novel methods
to perform inference, and by assessing the performance of the latter. The following
paragraph details the content of the chapters and their specific contributions.

Outline and contributions of the thesis

In Chapter 1, classical extreme-value theory is surveyed in the finite dimensional
case, and the theoretical foundations for the use of the GEV distribution, as well
as multivariate extreme-value distributions, are established. We also summarize
results about alternative point process representation for extremes, which lead to the
GPD and the spectral decomposition for multivariate extremes, and form the basis
for peaks over thresholds approaches. The novel contribution of this chapter is the
comparison of efficiency of several widely-used estimators for bivariate extremes.
Using simulations and analytical calculations, we shed some light on the performance
of each method, and clarify the connections between them.

In Chapter 2, we tie together classical geostatistics and statistics of extremes, in order
to extend the results of Chapter 1 to the spatial setting. In particular, we discuss
modeling of extremal dependence based on max-stable processes, and also address
the issue of asymptotic independence. The novelty of this chapter is the application
of this methodology to two different real datasets, namely daily cumulative rainfall
and daily temperature minima, for which we discuss the usefulness of asymptotic
dependence, versus asymptotic independence, models.

In Chapter 3, inference based on composite likelihood is addressed, and asymptotic
properties of the resulting estimators are described. The main new contributions are
to show how this can be applied to the estimation of max-stable processes, and to
study the loss in efficiency of weighted pairwise likelihood estimators, compared to
maximum likelihood estimation, in a large variety of contexts. We also detail how
inference based on the full likelihood can be performed for the extreme-value logistic
distribution, and extend this to a max-stable time series model.

In Chapter 4, we consider a special class of max-stable processes, the so-called Brown—
Resnick processes, and derive the corresponding full distributions for measurements
recorded at an arbitrary set of spatial locations. Using extensive simulations, we
then investigate the gain in efficiency of triplewise likelihood estimators compared to
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Figure 3: Dependence chart suggesting a possible path through the thesis. A solid
arrow means that a chapter is a prerequisite for another chapter. A dashed arrow
suggests a natural continuation. Chapter 1: Classical extreme value theory; Chapter 2:
Geostatistical modeling of extremes in space and time; Chapter 3: Inference based
on composite likelihoods; Chapter 4: Composite likelihood estimation for the Brown—
Resnick process; Chapter 5: Real case study: Space-time modeling of extreme rainfall.

pairwise likelihood estimators in this framework, and explore the potential benefits of
using even higher-dimensional composite likelihoods.

In Chapter 5, we propose a censored threshold-based pairwise likelihood estimator for
the estimation of extremal dependence models, and prove its asymptotic normality
and strong consistency under mild temporal mixing conditions. We illustrate the
methodology developed in this thesis with a full space-time application to hourly
rainfall extremes recorded in Switzerland. In particular, we develop new models
that can capture space-time interactions and are able to mimic the type of process
illustrated in Figure 1.

Figure 3 suggests a possible path through the thesis, and summarizes the chapter
dependencies.






1] Classical extreme value theory

This chapter is a broad survey of extreme value theory in the finite-dimensional case.
The extension to the spatial framework is described in Chapter 2. This chapter is in-
tended to provide a solid background for the rest of the thesis, and most of the content
is well-established in the extreme-value literature. An exception, however, is Sec-
tion 1.2.2.2, which provides a qualitative and quantitative comparison of widely-used
estimators for extremal distributions, based on a simulation study and theoretical
calculations. The main novelty of this contribution is to highlight the differences
and similarities of these approaches, and to show by how much the censored ap-
proach adopted in our application discussed in Chapter 5 outperforms its natural
competitors.

1.1 Univariate extreme value theory

1.1.1 Asymptotic distribution for linearly renormalized maxima

1.1.1.1 Basic results

We start with Y, Y7, Ys,..., independent random variables distributed according to
a common distribution F with support Suppp, that is the set of points y € R with
strictly positive density (or probability mass in the discrete case) with respect to
F. For risk assessment purposes, it is natural to be interested in the fluctuations
of the maximum of n such variates, which we denote by M,, = max(Y3,..., Y,). The
cumulative distribution function of M, is

n
PriM,=y)=Pr(1=y,....Y,=y) = HPr(Yi <y :F"(y),
i=1
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Figure 1.1: Distribution of M,, (left), thatis F"(y), and distribution of M;, (right), that
is F"(any+ by), for suitable normalizing constants a,, > 0 and b,,. Here n =1 (black), 3
(red), 9 (green), 27 (dark blue) and 81 (light blue), and F(y) is the Gaussian cumulative
distribution function.

which converges to a degenerate distribution function putting mass one at the upper
endpoint yr = sup{y : F(y) < 1} of the underlying distribution F. Indeed, for all
¥ < yr, we have F"(y) — 0 as n — oo.

However, in the same way as, under a suitable affine renormalization, sum-stable
distributions arise as the only limits of sums of random variables —many of which
are attracted to the normal distribution by virtue of the Central Limit Theorem—, the
stochastic behavior of M, may also be stabilized after shift and scale transformations,
under some conditions.

Figure 1.1 shows how the distribution of the maximum of n independent standard
normal variates evolves as n increases, with (left panel) and without (right panel)
renormalization. The left panel reveals that the distribution of M,, moves to the right
and that the mass becomes more and more concentrated around a point. The right
panel shows the distribution of renormalized maxima M;, = (M,, — b,)/ a,, for suitable
choices of sequences a, and b,,. Here, the variable M, converges in distribution to
a standard Gumbel variate. In the sequel, conditions are given for the existence of
such normalizing constants, and methods will be described to find them explicitly in
special cases. Similarly to the Central Limit Theorem for sums of random variables,
the hope with this affine renormalization for maxima is to characterize all possible
non-degenerate limiting distributions by a single parametric family, and hence to have
asymptotically justified models for maxima. As we shall see, this hope can indeed be

8
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fulfilled; see Theorem 4 below. To establish this powerful result, we need to introduce
the key notion of max-stability.

Definition 1 (Distributions and random variables of the same type). Two distributions
Gy and G, are said to be of the same type, if there exist norming constants a > 0 and
b € R such that

Gi(ay+b)=Ga(y), forallyeR.

Similarly, two random variables Y, and Y, are said to be of the same type, if their
distributions are of the same type.

Definition 2 (Max-stability). A distribution G is max-stable if for any k € N, the distri-
bution G* is of the same type as G. A random variable Z is said to be max-stable if its
distribution is max-stable.

Max-stability is satisfied by distributions for which the operation of taking sample
maxima leads to the same distribution, apart from changes in scale and location.

Let us now consider a sequence of independent and identically distributed (i.i.d.)
max-stable random variates 21, 7o, ... id . By definition, the distribution of maxima
is of the same type as G, that is, for each k € N one can find real constants a; > 0
and bj such that Gk (ary + byx) = G(y) for all y € R. Hence, the random variables
Z, ={max(Zy,...,Z,) — by}/a, and Z ~ G are equal in distribution. In particular, Z,
converges in distribution to Z, as n — oo, which implies that all max-stable distribu-
tions are limits of renormalized maxima of i.i.d. random variables. The interesting
result resides in the fact that the converse is also true: Max-stable distributions are

the only possible non-degenerate limit laws of renormalized maxima; see Theorem 3.

Theorem 3 (de Haan, 1970; Embrechts et al., 1997). The class of all possible non-
degenerate limit laws for (properly renormalized) maxima of i.i.d. random variables
coincides with the class of max-stable distributions.

The proof relies on the fact that the maximum of a block of length pg can be writ-
ten as the maximum of p maxima of little blocks, each of length g: writing M;;; =
max{Yj,..., Y}, we have

Ml;pc/ = max{Ml;q,...,M(p_l)q+1;pq}.

Hence, the limit law G satisfies the equation G{(y — bpq)/ apq} = GP {(y — by)/ a4}, and
is thus max-stable.

The next theorem, first shown by Fisher & Tippett (1928), is the cornerstone of classical
extreme value theory. It states that if the maximum of random variables can be shifted
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and scaled in such a way that it converges in distribution to a non-degenerate limit,
then the latter has to be one of three special types; see Theorem 4 and Figure 1.2.
Specifically, the class of max-stable distributions is fully described by only three
parametric probability laws: the Gumbel, Fréchet and reversed Weibull distributions.

Theorem 4 (Extremal types theorem; Fisher & Tippett, 1928; Gnedenko, 1943; Resnick,
1987). Let{Y;};>1 be a sequence of i.i.d. random variables and let M,, = max(Yy,..., Yy).
If there exist sequences of constants a, > 0 and b, such that

Pr(Mn_bn

= _>G) - 00,

where G(y) is a non-degenerate distribution function, then G(y) must be of the same
type as one of the following distributions:

Type I (Gumbel):
A(y) =exp{-exp(-»)}, yeR, (1.1)
Type II (Fréchet):
D4 (y) :{ gf(p(_y_a)’ izg (1.2)
Type 111 (Reversed Weibull):
Ya(y) :{ i(p{_(_y)a}’ i:g (1.3)

for some a > 0.

The three types can be summarized in a single parametric family, the so-called Gener-
alized Extreme Value distribution, GEV(u,0,¢):

1/¢

G(y):{ exp|-{1+¢(y-pia} ], ¢#0, -,

exp [—expi{—(y—w/o}], =0,

with location parameter p € R, scale parameter o > 0 and shape parameter ¢ € R, and
where £, = max(¢,0). The distribution has support Supps ={y e R:1+¢{(y—p)/o > 0}.
The key parameter is the shape parameter ¢. It determines the type of the limit law
and thus whether the support of G is bounded from below, from above or unbounded.
If £ <0, the distribution has an upper bound at y = u— o /¢ and the reversed Weibull
distribution is recovered with & = —¢~1; when ¢ = 0, G(y) corresponds to the Gumbel
distribution whose support is unbounded and whose upper tail decays exponentially;

10
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Figure 1.2: Standard Gumbel (black), unit Fréchet (red) and unit reversed Weibull
(blue) density functions.

and when ¢ > 0, the distribution has a lower bound at y = p—o¢/¢ and the Fréchet
distribution is recovered with a = ¢~!. Furthermore, for the Fréchet distribution, the
parameter ¢ controls the rate of upper tail decay, and hence the potential severity
of future extreme events. The rth moment of the GEV distribution is finite if ¢ < 1.
Therefore, when ¢ = 1 (unit Fréchet case), the mean is not well-defined.

The GEV distribution is especially convenient for inference: although ¢ is difficult
to estimate in practice, one can let the data “decide” its value without previously
having to choose a particular type of distribution to fit beforehand. However, at
sub-asymptotic levels, ¢ is usually estimated with a mis-specification bias.

Very high quantiles are often of particular interest, since they give a quantitative
description of the severity of an extreme event that might occur in future time periods.
The level that is expected to be exceeded once on average in a specific time period is
called a return level and is associated to its return period; see Definition 6.

Definition 5 (Quantile function). The generalized inverse, or quantile function, of a
distribution function F is

F (p)=inflyeR : F(y)=2p}, 0<p<l.
Definition 6 (Return levels and return periods). Suppose that annual maxima of some

11
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random variable are modeled with the distribution G ~ GEV(u, 0,¢). The level y,, which
is exceeded with probability p, that is once every 1/ p years on average, is called the
1/ p-year return level. We have

p=[1-{=logl-p}~*], ¢#0,

(1.5)
u—olog{—log(1 - p)}, ¢=0.

yp:G‘_(l—p):{
The return period is 1/ p. The definition can be extended to other block lengths (e.g.,
daily blocks, monthly blocks, and so forth).

1.1.1.2 Maximum domains of attraction

Theorem 4, known as the extremal types theorem, identifies the three possible limit
laws for renormalized maxima of i.i.d. random variables. Moreover, if there exist
sequences a, > 0 and b, € R such that (M, — b,;)/ a,, converges to a non-degenerate
distribution function G, then G is uniquely determined up to an affine transformation.
That is, if there exist sequences a, > 0 and b}, € R such that (M, — b))/ a), L. & then
G’ and G must be of the same type. We can therefore define the maximum domain
of attraction (MDA) as the class of distributions whose maxima are attracted to a
particular limit law, as n — oo.

Definition 7 (Maximum domain of attraction). The random variable Y belongs to
the maximum domain of attraction of the extreme value distribution G if there exist
constants a,, > 0 and b,, € R such that (M,,— by,)/a, b, G. We write Y € MDA(G).

The characterization of the MDAs has been extensively studied in the literature. See,
e.g., Embrechts et al. (1997), von Mises (1964), Resnick (1987), Beirlant et al. (2004),
Leadbetter et al. (1983) and de Haan & Ferreira (2006), where the authors give discus-
sions of necessary and sufficient conditions for different domains of attraction.

The notion of fail-equivalent distributions is primordial to fully describe the MDA of
each of the three extremal type distributions.

Definition 8 (Tail-equivalence). The distribution functions F, and F» are said to be
tail-equivalent if they have the same right endpoint yr, = yr, = yr, and if

1-F(y)
im ——— =
y=yr 1 —Fo(y)

)

for some positive constant 0 < ¢ < oo.

Each MDA is closed under tail-equivalence, that is if F; and F; are tail-equivalent,

12
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F; e MDA(G) if and only if F» € MDA(G). Loosely speaking, the MDAs are composed
of distributions whose right tail decays at the same rate at the right endpoint.

Theorem 9 (Characterization of the MDA). Let F be a distribution function with upper
endpoint yr, and let ~ denote asymptotic equivalence. The following assertions are
true:

e FEMDA(®y) ifandonlyif 1-F(y) ~Ky %, asy — yr =00,

e FEMDA(Y,) ifandonlyif 1-F(y) ~K(yr—y)% asy — yr < oo,
for some a >0 and K € R, a constant which does not depend on y, and finally

* F e MDA(A) if and only if there exists some z < yr < oo such that F(y) has
the representation 1 - F(y) = c(y)exp [— [} {1/a(t)}dt], z< y < yr, wherec isa
measurable function satisfying c(y) — ¢ >0, as y — yr, and a(y) is a positive,
absolutely continuous functions (with respect to Lebesgue measure) with density
a'(y) havinglim,_. . a'(y) = 0.

For distributions that are sufficiently smooth at the right endpoint, von Mises (1964)
established sufficient conditions for the convergence (M, — b,)/a, — Z ~ GEV(0, 1,¢),
as n — oo, providing useful tools to determine the type of limit distribution and
the choice of normalizing constants a, > 0 and b,,. These conditions can then be
employed to classify some known distributions in the different MDAs; see Table 1.1
and Embrechts et al. (1997) for more details.

Proposition 10 (von Mises conditions). Let F be a distribution function with right
endpoint yr and assume there exists some z < yg such that F is twice differentiable
on (z,yr). Let f = F' be the density of F on (z, yr). Define the sequences of real num-
bers b, = F~ (1 —1/n) and a, = r(by), wherer(y) = {1 — F(y)}/ f(y) is the reciprocal
hazard function of F. Furthermore, let{ =lim,,_.,, r'(y). Then (M,, — b,)/ay Loz~
GEV(0,1,¢). Thatis, if ¢ >0, F € MDA(®y/¢); if § <0, F € MDA(Y_1/¢); and if ¢ — 0,
F e MDA(A).

The existence of an affine normalization leading to a non-degenerate limiting distri-
bution for maxima is, however, not guaranteed. One can find distributions that do
not belong to any maximum domain of attraction. Classical examples are the Poisson,
Geometric or Negative Binomial distributions (Embrechts et al., 1997), which are not
well-behaved at the right tail. The following results show that convergence of maxima
to a non-degenerate distribution can only occur under some continuity condition at
the right endpoint, which is not satisfied by the aforementioned discrete distributions.

13
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Table 1.1: Classification of various well-known distributions according to maximum
domains of attraction, with the corresponding normalizing constants a, > 0, b, € R.

MDA(A)
Distribution’| F(y) a, b,
N (0,1) d(y), yeR (2logn)~'2| (2logn)'/? — (2logn)~/?

x (log4m +loglogn) /2
~ / 1 la-
Weibull(@) | 1-exp(—y%),y>0,a>0 | (logm)'’* | Z(logm)*/*"!

Exp(A) 1-exp(-1y), y>0,A>0 | A7} A llogn

fOther examples include the Gamma, the Lognormal and all tail-equivalent distributions.

MDA(W,)
Distributiont| F(y) an by,
Uniform (y—a)/(b—a), y€la,b] (b—a)ln b-—(b-a)ln
Beta foy rr((;lffg) s@1-s)b"1ds, | 1 (n—r(ggl‘ffblﬁl))_l/b

y€(©,1),a,b>0

¥Other examples include distributions with a power law behavior at yr < co.

MDA(®,)
Distribution®| F( ¥) a, by,
Pareto 1-(aly)% yza, a>0 aa"nt'® | ant/e
Cauchy 1/2+ n_larctan(y), yeR | nin 0

#Other examples include the Burr, the Loggamma, or the Student ¢ distributions.

Proposition 11. Let u, be a sequence of real numbers. Then, for all0 < A < oo, the two
assertions are equivalent:

1. n{l-F(uy}— A,
2. Pr(M,, < u,) — exp(—A7A).
Theorem 12 (Continuity at the right endpoint). Let0 < A < oco. There exists a sequence

14
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up satisfying n{l — F(u,)} — A if and only if

0-Fp) _

im 1, (1.6)
y=yr (1-F,,)

where Fy, =limyyy, F(x).

For distributions defined on Z with infinite right endpoint, condition (1.6) translates
into {1 — F(k)}/{1 - F(k—-1)} — 1, as k — oo. For the Poisson distribution, for example,
this limit equals zero (see Embrechts et al., 1997, p.118), preventing the maxima from
converging. Similar results hold for the Geometric and Negative Binomial distribu-
tions. Other examples where no non-degenerate limit distribution for maxima exists
can be found with super-heavy-tailed distributions. For example, the tail of the distri-
bution F(y) =1-1/log(y), y > e, decays so slowly that no suitable linear normalizing
constants a, > and b,, may be found. Contrasting results may be obtained for Poisson
variables with mean m, when we let n — oo and m — oo simultaneously (Anderson
etal., 1997).

1.1.1.3 Extension to stationary series

A strong assumption made in the extremal types theorem is that the sequence {Y;};>;
is independent and identically distributed. However, the data often depart from this
assumption in two respects: first, the observations may not be independent. For
example, when considering environmental data, short-term temporal dependence
may exist (e.g., for hourly rainfall or daily snowfall), and extreme climate conditions
might persist for several consecutive observations. Second, the data may not be
identically distributed. This is the case, for example, if a seasonal pattern exists (e.g.,
diurnal and annual cycles for temperature data), if a global trend drives the data (e.g.,
climate change in environmental applications), or if some sort of volatility clustering
is present (e.g., fluctuations in log-returns of financial data are much larger during
crises).

In this section, we will only address the first issue, the extension of independence
to stationarity. Non-stationarity is often dealt with either by modeling it directly in
the marginal parameters, e.g., using linear regression (Katz et al., 2002; Smith, 1989),
semi-parametric models based on splines (Chavez-Demoulin & Davison, 2005, 2012),
Bayesian hierarchical models (Cooley et al., 2007; Sang & Gelfand, 2009, 2010), or
by preprocessing and filtering approaches, e.g., McNeil & Frey (1998) reduce the
volatility in a financial dataset by first fitting a AR-GARCH model and then applying ex-
treme value theory techniques to the residuals, or finally by using the most pragmatic
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approach: focusing on a stationary subset of the data (for example summer precipita-
tion). For a deep treatment of extreme value theory for independent, non-identically
distributed random variables, we refer to Galambos (1987). It turns out that in this
framework, the class of limiting distributions is much too wide to be of practical use.

The theory of extreme values for dependent stochastic processes has been extensively
developed and summarized in Leadbetter et al. (1983). Interest resides here in strictly
stationary series, rather than in i.i.d. random variables.

Definition 13 (Stationary time series). Let {Y;};>; be a time series, 3 < N be some
finite set and let Y o denote the collection of Yis such thati € 9 . The time series {Yi};>1
is said to be strictly stationary if the joint distributions of the vectors Y g and Y j,+ g
are the same, for any time lag h € N. The process is called weakly stationary if for any
i1,i2 2 1, E(Y;)) = E(Y}, 4p) and cov(Y;y, Yi,) = cov(Y; 4p, Yip+n)-

Loosely speaking, strict stationarity means that translation does not affect the prob-
abilistic properties of the process. In other words, it corresponds to a series whose
variables may be mutually dependent, but whose stochastic properties are homoge-
neous through time. On the other hand, weak stationarity only assumes temporal
homogeneity of the first two moments.

In practice, dependence can take many different forms, and may be felt at short
distances only or at longer ones. In fact, long-memory processes can mess up the
convergence of renormalized maxima to the GEV distribution. The most obvious
counter-example arises for perfectly dependent sequences: If Y3,..., Y, ~ F, with ¥; =
Y; almost surely, then max(Yy, ..., Yy) L Y1 ~ F, so the limit distribution of maxima can
take essentially any form. In the sequel, we shall see that an analogue of the extremal
types theorem can be obtained under strict stationarity and short-term dependence.
Leadbetter (1983) formalized the idea of short-term dependence with the so-called
D(u;) condition.

Definition 14 (D(u,) condition). Let «/,%8 c {1,...,n} denote subsets of indices i <
- <liyand j) <--- < jg respectively, such that j, > i, + 1, and let Yoy < u denote the
event Niey{Y; < u}, and similarly for Yo < u. Then the condition D(uy,) is satisfied if

Pr(Yy <u,nNnYg<u;)—Pr(Yy<u,)Pr(Yg <u,)| <anl), 1.7

where a(n, l,;) — 0 for some sequence l,, = o(n), l,, = oo as n — oo.

This weak condition ensures that rare events sufficiently far apart can be considered to
be nearly independent, so that their joint probabilities have no effect on the limit laws
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for extremes. For Gaussian sequences with auto-correlation p,, at lag n, for example,
the D(u,) condition is satisfied as soon as p,logn — 0 as n — oo (Beirlant et al., 2004;
Berman, 1964). In fact, under this condition and stationarity, it holds that for any
threshold sequence uy,, Pr(M, < u,) = {Pr(M|,/k,| < un)}k” +0(1) for some increasing
sequence k, — oo (see, e.g., Beirlant et al., 2004, pp.371-372). That is, for stationary
time series satisfying the D(u,) condition, M,, can be regarded as the maximum of
nearly independent smaller blocks. This is the key relation for the proof of Theorem 15.

Theorem 15 (Leadbetter, 1983). Let{Y;};>1 be a strictly stationary time series. Suppose
that (M,, — b,)/a, Doz~ G for some non-degenerate distribution G and suitable
sequences a, >0 and b,, € R. If D(u,) holds for u, = a,y+ b, forany y € R, then G is
an extreme value distribution.

Hence, the parametric family of distributions arising as limits for normalized maxima
of stationary series with short-term dependence is the same as in the independent
case. Let {Y;*};>1 denote the independent counterpart of the stationary process {Y;};>1,
with maxima M};. Under the conditions of Theorem 15, both (M, — b,)/ a,, and (M;; —
b,)!a;, converge to a GEV distribution, but the parameters may differ. Theorem 16
and Proposition 18 show how to make the link between the two limit laws.

Theorem 16. Under suitable conditions, (M}, — b,)/ay, Dogx s G*, as n — oo, where
G* is a non-degenerate distribution function and a, > 0 and b, are normalizing
sequences, if and only if (M, — by)/ an Loz~ G, and G = G*°, for some constant
0<0<1.

Definition 17 (Extremal index). The parameter 0 arising in Theorem 16 is termed the
extremal index. As 0 decreases, serial dependence at high levels strengthens, while
extremal independence is reached when 6 = 1.

The parameters of the limiting distributions arising in Theorem 16 are linked as
follows.

Proposition 18 (Parameters of the GEV under short-term dependence). Using the
same notation as in Theorem 16, and letting G ~ GEV(u, 0,¢) and G* ~ GEV(u*,0*,&*),
we haveyu=p* —o*(1- 05")1E*, 0= 0*0%" and & = E*, where0 is the extremal index.

According to Proposition 18, the shape parameter of the limiting GEV distribution
is not affected by temporal dependence. However, the stronger the dependence,
the lower the location and dispersion parameters. In other words, M,, is stochas-
tically smaller than M,;, which means that dependence reduces the sizes of the

17



Chapter 1. Classical extreme value theory

10-year return level

0.0 0.2 0.4 0.6 0.8 1.0
Extremal index 6

Figure 1.3: 10-year return level curves, that is y, with p = 1/10, plotted against the
extremal index 6 for u =0, o = 1 and different values of the shape parameter ¢. The
case 0 =1 corresponds to extremal independence, and 8 — 0 corresponds to perfect
extremal dependence.

extremes for a series of given length. Consequently, return levels decrease with
the strength of the dependence. The 1/p-year return level in (1.5) becomes y, =

p—oé! [1 —{-67'1og(1 - p)}_f]. Thus, y, decreases as 6 — 0; see Figure 1.3.

As we will see later on, the extremal index controls the degree of clustering at high
levels. This parameter has various interpretations, see Section 1.1.2.4, one of these
being the reciprocal limiting mean cluster size.

1.1.1.4 Inference

Motivated by the extremal types theorem and Theorem 15, the use of the GEV distri-
bution is asymptotically justified to model the distribution of block maxima. Suppose
that a stationary continuous-time process {Y;};cg has been sampled at n = M N regu-
lar time points, and that the resulting time series falls into the maximum domain of
attraction of some GEV distribution. Let y1,..., y, denote the observations.

The classical approach to inference is to form N blocks of M observations, and to
fit the distribution GEV(y, o, ¢) to the block maxima m; = max(yy,..., Ypm),..., My =
max(YpmM(N-1)+1,---» YmN) by maximum likelihood. If the block length M is chosen suffi-
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ciently large so that the maxima m;, ..., my can be regarded as mutually independent,
the log-likelihood is of the form

e

+

™M=

Il
—

{(y) =—-Nlogo — (1+1/¢) i]og{1+5(mia—#)} -

i=1 o

where ¥ = (u,0,¢) 7 is the vector of parameters. In practice, this expression can be
maximized numerically with standard optimization routines available in statistical
softwares (e.g., the function optiminR).

The choice of the block length M is crucial because it corresponds to a trade-off
between bias and variance. Indeed, the larger M, the closer the distribution of block
maxima to its asymptotic law. Hence, as M increases, the bias becomes smaller,
but since the number of sample maxima available for fitting decreases at the same
time, the variance of the parameter estimates becomes larger. In practice, different
diagnostics can be used to determine a good value for M (parameter stability plot,
for example), but usually M is chosen pragmatically so that the blocks correspond to
natural periods such as months or years.

In regular situations, the maximum likelihood estimator is asymptotically normal,
strongly consistent and has an asymptotic variance equal to the reciprocal Fisher
information (see Davison, 2003, p.118). Regularity conditions for maximum likelihood
estimation in extreme value theory are discussed in Smith (1985). The latter has
established that the limiting behavior of the maximum likelihood estimator depends
on the value of the shape parameter ¢:

e when ¢ > —1/2, the maximum likelihood estimator obeys standard theory;

e when -1 < ¢ < -1/2, the maximum likelihood estimator is a solution to the
score equation, but it does not have the usual limiting distribution;

¢ when ¢ < —1, the maximum likelihood estimator is not a solution to the score
equation.

The value of ¢ is problem-dependent. For rainfall data, ¢ is usually found to be rather
close to 0.2 (e.g., Tawn, 1988a; Katz et al., 2002), so maximum likelihood estimation is
in principle well behaved. In financial or insurance applications, the observations are
usually heavy-tailed and ¢ often found to be greater than 1, so maximum likelihood
estimation may be used in those fields. When dealing with temperature minima data,
however, since there exists a physical bound to extreme events, the shape parameter ¢
is negative and more attention is needed.
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Assessment of the uncertainty of the estimated parameters can be based on asymp-
totic normality, assuming that the maximum likelihood estimator has reached its limit
law and that the reciprocal Fisher information is a suitable estimator for its variance.
But in practice, profile likelihood-based methods (Coles, 2001, pp.57-61) are usually
preferred since they can better reflect the right-skewness that one expects to see for
the likelihood with respect to . The “plug-in” principle, combined with formula
(1.5), can be used to estimate return levels, or any other functional of interest of the
parameters. Uncertainty for return levels can be assessed either by the delta method
or by profile likelihood, provided the likelihood is properly re-parametrized in terms
of return levels. In practice, as return levels associated with long return periods usually
show a strong asymmetry to the right, profile likelihood is more reliable than the delta
method.

Maximum likelihood estimation is not the only possibility for inference. While
moment-based fitting techniques are usually inefficient for extremes because mo-
ments may not exist, probability-weighted moments have proven to be useful because
of their good small-sample properties (Hosking et al., 1985; Katz et al., 2002), though
they are relatively difficult to extend to more complex data. Bayesian techniques can
also be applied and are especially efficient for high-dimensional problems where
maximum likelihood estimates cannot easily be computed: for example in problems
involving the computation of a high-dimensional integral, such as hierarchical models
(Cooley et al., 2007, 2006a; Sang & Gelfand, 2009; Blanchet & Davison, 2012). The
applicability of Bayesian methods in this framework has been made possible thanks to
the development of Monte Carlo Markov Chain (MCMC) algorithms (Hastings, 1970).
However, though powerful, the Bayesian approach requires prior knowledge for the
parameters and the tuning of hyper-parameters is often tricky in practice. Historically,
non-parametric methods have also played a prominent role with the development of
various non-parametric estimators for &, such as the well-known Hill estimator (Hill,
1975), the Pickands estimator (Pickands, 1975) and the moment estimator of Dekkers
et al. (1989). Lots of effort have been devoted to finding good robust estimators for
the key parameter ¢, since it determines the tail weight of the GEV distribution and
thus the sizes of future extreme events.

1.1.2 Point process approach

In the point process representation for extremes described below, the notion of “rare
events” changes, and extremes are now defined in terms of exceedances over a high
threshold, not maxima. However, both approaches are closely linked and are even
equivalent as the number of observations 7z tends to infinity, and as the threshold
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converges to the upper endpoint of the underlying distribution. In practice, for finite
n, when all original (e.g., hourly or daily) observations are available, threshold-based
approaches are usually preferred to the block maxima method of §1.1.1, since more
data can be used in the fitting procedure. These methods confer an appreciable
reduction in the estimated variance of the parameters, leading to narrower confidence
intervals, and thus —hopefully— more reliable conclusions. Difficulties arise when
temporal dependence is present, since extremes tend to cluster at high thresholds.
However, if dependence is properly modeled, the point process approach can also
provide some insight into the structure of clusters of exceedances.

We start the exposition with the mathematical definition of point processes, empha-
sizing Poisson processes, and then discuss a particular case of interest for extremes:
the point process of exceedances. These notions rely on non-trivial arguments from
functional analysis and measure theory. The interested reader should refer to Cox &
Isham (1980), Daley & Vere-Jones (2002) or Jacobsen (2005).

1.1.2.1 Definitions and basic results

Point processes are mathematical objects that can be thought of as “random distribu-
tions” of points in a set. Let {P;};> be a sequence of random points in a state space E
endowed with a o-algebra & of subsets of E. For our purposes, we can think of E as
R4 , that is, the topological closure of R, and of & as the o-algebra of Borel sets 2 (E).
Furthermore, let 6, denote the Dirac measure at the point p € E, that is, forany A€ &,

1, €A,
6,,(A):{ 0, ZG‘fA- (1.9

Definition 19 (Counting measure and point measure). For a given sequence of points
{piti=1 € E, the function m : & — R defined by

o0
m(A) =) 6p,(A) =card{i : p; € A}
i=1
is called a counting measure on &. It is a point measure if m(K) < oo for all compact
setsKeé&.

According to Definition 19, a counting measure simply enumerates the number of
points p; within suitable sets A. Intuitively, a point process does a similar job, but with
random points {P;};>; € E. More formally, let M (E) denote the collection of all point
measures on E equipped with an appropriate o-algebra .4 (E). A point process on E
is a measurable map N : (Q, &,Pr) — {M(E), 4 (E)}, where (2, %, Pr) is a probability
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space. It can be written as N(-) = .52, 6 p,(-). All realizations of a point process are
point measures.

Poisson processes play a central role in extreme value theory.

Definition 20 (Poisson process). Let A be a Radon measure on &, that is a locally finite
measure: A(A) < oo for all compact measurable sets A c E. A Poisson process —or
Poisson random measure— N with mean measure \ is a point process that satisfies the
two following properties:

1. For every k =0 and measurable set A,

_A(A) k |
Pr{N(A) = k} :{ e TTAWTR, A <eo,
0, A(A) = co.

2. For any mutually disjoint sets Ay, ..., A, € 8,N(A1),..., N(A,,) are independent.

The first condition ensures that the number of points in any set A € & is distributed
as a Poisson random variable with mean A(A). The second condition implies that
events happening in some region A; € & do not influence the stochastic properties of
some other disjoint region A, € &. For example, if E = R represents the time axis, this
condition entails that “the past does not influence the future” —and vice versa.

The special class of homogeneous Poisson processes with intensity (or rate) A > 0 has
mean measure A times the Lebesgue measure. In R, one has A([0, t]) = At.

The distribution of a point process N is uniquely determined by its finite-dimensional
distributions, that is, by the probabilities Pr{N(A;) = ki,..., N(A;;) = kp,}, for any
choice of A;,...,Ap,€&,any k; 20, i =1,...,m, and any m € N. Such a complex
distribution function is not easily handled and it turns out that a convenient way of
“summarizing” the probability law of a point process is through its Laplace functional,
the counterpart of the characteristic function for random variables. In the same
way as pointwise convergence of characteristic functions implies weak convergence
of random variables, pointwise convergence of Laplace functionals implies weak
convergence of point processes; see Theorem 23 below. This mathematical tool is
useful for the derivation of the limiting point process of exceedances over sequences
of increasingly high thresholds; see Theorem 25.

Definition 21 (Laplace functional). The Laplace functional of the point process N,
uniquely defined, is defined as

Z(f) :E{exp (—fEf(p)dN(p))}, (1.10)
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where f is a non-negative measurable function on the state space E, and where the
integral on the right-hand side of (1.10) is the Lebesgue-Stieltjes integral.

If we set f(p) = Z;?il tilI(p € A;) in (1.10), where f1,..., ;, = 0 and I(-) is the indicator
function, Z(f) reduces to the joint moment generating function of the variables
N(Ay),...,N(A;). Hence, the Laplace functional determines the distribution of a
point process completely.

Consider now a sequence of point processes Ny, No, ..., defined on the same state
space E c R? endowed with the o-algebra & of Borel sets.

Definition 22 (Weak convergence of point processes). The sequence of point pro-
cesses {N;};>1 is said to converge weakly to the point process N in M(E) if all its finite-
dimensional distributions converge, that is if

Pr{Nl’l(Al) = kl;yNn(Am) = km} - Pr{N(Al) = kl;;N(Am) = km}; n— oo,

forallm=1,allk,..., ky €N and all possible choices of sets Ay, ..., Ay, € & such that
N(0A;) =0 almost surely fori =1,..., m, where 0 A denotes the boundary of A.

A criterion which guarantees the weak convergence of a sequence of point processes
via Laplace functionals is given by Daley & Vere-Jones (2002) and Embrechts et al.
(1997, p.234). They show that weak convergence of point processes is equivalent to
pointwise convergence of their Laplace functionals.

Theorem 23 (Weak convergence of point processes). {N;};>1 converges weakly to
the point process N in M(E) if and only if the corresponding Laplace functionals
converge for all continuous and compactly supported measurable functions f = 0:
Zn,(f) — Zn(f), as n — oo.

1.1.2.2 Point process of exceedances

Consider the sequence of i.i.d. random variables {Y;};~; with marginal distribution

F and let M;, = max(Yy,..., Y,). Asin §1.1.1, the independence assumption will be

extended later on; see §1.1.2.3. Furthermore, assume that there exist normalizing

constants a, > 0 and b,, such that (M,,— b;)/a, 2, Z ~ GEV(0, 1, {); this condition

implies that there exists a threshold sequence u,, = a, y + b,, such that n{l — F(u,)} —
_ -1/

A=1+<&y), °, as n— oco.

Let P,, denote the set of normalized observations {i/(n+1),(Y; — b,)/a,} € R?}, i =
1,...,n. The role of the factor (7 + 1)1 in the first argument is to map the time axis to
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the interval (0, 1), whereas the affine renormalization in the second argument ensures
that the sizes of extreme events are properly “stabilized” to have a non-degenerate
limiting distribution. The sequence of points P, defines a point process on the space
E=10,1] x R, endowed with the generated o-algebra of the Borel sets:

Np() =) 6p,().
i=1

We aim at characterizing the asymptotic behavior of the points P, on some suitable
extremal sets. Notice that evaluating N,, on regions of the form 7, = [f;, 2] x [y,00)
corresponds to looking at the the process Y above the level u, = a, y + b, and during
some time period [(n+1)#;, (n + 1) f2]. We can write

n

n
Ny, (Ax[y,00)) = Z Op,(Ax[y,00) = Z5i/(n+l) (A I(Y; > uy), (1.11)
i=1 i=1
for any A € 28([0,1]). On the right hand-side of (1.11), N,, can also be viewed as a point
process on E* = [0, 1], defining the so-called point process of times of exceedances
over the threshold u;,.

By stating that the pointwise limit of the Laplace functional of N,, coincides with the
Laplace functional of a Poisson process on sets of the form E = [0,1] x [u,00), u € R,
Proposition 24 combined with Theorems 23 and 25 establish that the limiting point
process of exceedances is a non-homogeneous Poisson process.

Proposition 24 (Laplace functional of a Poisson process, Embrechts et al., 1997, p.228).
The Laplace functional of a Poisson process on a state space E with mean measure \ is

—L{l—e_f(p)}d/\(p)],

ZL(f)=exp

for any measurable function f = 0.

Theorem 25 (Convergence of the point process of exceedances, Embrechts et al., 1997,
p.238). If (M, —by)!ay Loz~ GEV(0,1,¢), the Laplace functional of the point process

N, converges to
_f {1 — e‘f(P)}dA(p)] )
E
1/¢

on E=10,1] x [u,00), u € R, where A([t1, t2] x [y,00)) = (L — 1)1 +<&y).°, y > u.

ZL(f)=exp

According to Theorem 25, the mean measure of the limiting Poisson process of ex-
ceedances is A; in particular, it turns out that, asymptotically, the point process of
exceedance times is homogeneous Poisson with intensity A = (1+¢ y);” ¢
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1.1.2.3 Extension to stationary series

Asin §1.1.1, establishing the asymptotic law of block maxima, the hypothesis of tem-
poral independence appears to be far too strong an assumption in most applications.
In order to extend the asymptotic results to a more general framework, we shall,
similarly to the block maxima approach, restrict our attention to strictly stationary
processes with short-range dependence. The D(u;) condition (1.7), however, needs
to be replaced by another criterion, the so-called A(u,,) condition (Hsing et al., 1988),
adapted for threshold exceedances. This criterion is stronger than the D(u,) condition
since the focus is not on maxima only, but on the whole point process above some
level. But the A(u;) condition is still weak because it constrains the extremes only, not
the body of the distribution of Y. Suppose that {Y;};>; is a strictly stationary sequence
of random variables with common marginal distribution F, in the maximum domain
of attraction of the GEV(0, 1, {) distribution.

Definition 26 (A(u,) condition; Hsing et al., 1988, Beirlant et al., 2004, p.383). Let
u, be a sequence of thresholds such that n{l — F(u,)} — A for some A >0 as n — oo.
Assume that F . (u,) denote the o -algebra generated by the events{Y; > u, : i € </}.
Condition A(uy,) is said to be satisfied if for all o/ € F, n(Un),
andallm=1,...,n-1,

..........

|Pr(of N 98) — Pr(L)Pr(AB)| < a(n,), (1.12)

where a(n, 1) — 0 for some sequence l,, = o(n), I, — oo as n — oco.

As with the D(u;) condition, the A(u,) condition forbids long-range dependence of
extremes. In contrast, short-range dependent processes are permitted, and temporal
dependence can have a local effect on the behavior of exceedances at high levels: if
temporal dependence is strong enough, exceedances above a high threshold tend to
occur in clusters. Asymptotically, since the time axis is rescaled to the interval (0, 1),
extreme values within the same cluster will occur exactly at the same time. Clustering
of extreme values is illustrated in Figure 1.4. In this example, we consider a moving
maximum process of order 1, that is a process {Y;};>; such that Yy = Zy and

Y;=(a+1) 'max(aZi_1,Z;), i=1,2,..., (1.13)

where a = 0 controls the strength of dependence and {Z;} ;> denotes an i.i.d. sequence
of unit Fréchet random variables, i.e., Pr(Z; < z) = exp(—1/z), z > 0. This process
has unit Fréchet margins and clearly satisfies the A(u,,) condition. One can show
that the extremal index of such a process is 8 = max(1,a)/(a + 1). Hence, extremal
independence is reached for a = 0 or a — 0o, and perfect dependence is never attained,
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Figure 1.4: Moving maximum process of order 1, see equation (1.13), for different
extremal dependence properties; Simulations with the same random seed are shown
for a =0 (top left), a = 0.8 (top right), a = 1 (bottom left) and a = 1.25 (bottom right).
The extremal index @ is also reported.

whatever the value of a. The case of strongest dependence corresponds to a = 1, that
is 0 = 1/2. Figure 1.4 shows realizations of such a process for a = 0,0.8,1,1.25 and
highlights the degree of clustering and the structure of the clusters in the four different
cases. When a = 0, extreme values tend to occur alone, as expected; when a = 1,
extreme events tend to occur in groups of two; and the intermediate cases a = 0.8,1.25
show other specific cluster patterns.

Formally, the cluster size distribution can be defined as follows: Suppose that u,
is a threshold sequence and split the data into k, = |n/r,] blocks B; of length r,.
Moreover, suppose that the number of blocks k;, is such that k,, — oo and r,, — oo,
r, = o(n), as n — oo. The exceedances over u, in a block, if any, are said to form a
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cluster. In this setting, the times of exceedances within the same cluster will bunch
together as n — oo since r,/n — 0. One can now define the cluster size distribution at
a specific level u, and the limiting cluster size distribution.

Definition 27 (Cluster size distribution). The cluster size distribution at the level u,, is

'n
ZI(Yi>un):j’Mrn>un}, jeN. (1.14)
i=1

wa(j) = Pr{
Ifit exists, n(j) = lim,,—.oo 7, (j) is the limiting cluster size distribution.

In the moving maximum process example in (1.13), the cluster size distribution de-
pends on the value of a. One can show thatforO<a<1,7(1) =1-a, n(2) = a and
n(j)=0,j#1,2.

The next result extends Theorem 25 to the stationary case. Under some conditions
made precise below, the asymptotic point process turns out to be a compound Poisson
process whose multiplicities are distributed according to the limiting cluster size
distribution 7.

Theorem 28 (Convergence of the point process of exceedances under stationarity;
Hsing et al., 1988, Beirlant et al., 2004, p.384). Suppose that A(u,) condition holds for
the threshold sequence u, = a,y + by,,. Let there exist positive sequences l,, and r;,, and
a distribution n such thatl,, = o(r,), r;, = o(n), na(n, ;) = o(r,), where the constants
a(n,l,) are given by the A(uy) condition, and n,(j) — n(j) forall j € N as n — oco.
Then, the point process of cluster maxima N, = Y.1' | § p,» defined by

i-Dr,+1 Mg, —b
P;:{(( )n , B; "),i:l,...,kn},
n an

converges to a Poisson process N' onE=1[0,1] x [u,00), u € R, with mean measure

Aollty, 2] % [1,00)} = 012 — 1) (1 +Ey) ;1%

and the point process of exceedances N, converges to a process N with Laplace func-
tional

Ln(f) =exp

_L{l—fn(j)eXp(—jf)}dAe

j=1

Two main conclusions can be drawn from this result. First, the cluster maxima are
asymptotically distributed according to a non-homogeneous Poisson process on E
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whose intensity function is the same as in the independent case except that it is
multiplied by the extremal index 0. That is, clusters arise at a rate 6 times less often
than in the independent case. Second, the point process of exceedances N,, converges
to a compound Poisson process with mean measure 0(t, — t;)A, where A = (1 + (fy);”‘(,
and multiplicities following the cluster size distribution n. If 7 is reduced to the
atom at one, then Z?‘;l n(j)exp (—jf) = exp(-f) and we recover the limiting Poisson

process arising in the independent case.

1.1.2.4 Interpretation and estimators for the extremal index

There are various ways of interpreting the extremal index, giving rise to several es-
timators having their own advantages and drawbacks. A detailed exposition can be
found in Embrechts et al. (1997, pp.418-429), Ancona-Navarrete & Tawn (2000), or
more recently in Beirlant et al. (2004, p.390). These methods are usually constructive
and provide a way to identify clusters, hence giving simultaneously “declustering”
procedures that can be used in practice to remove temporal dependence in the series.

0 as the reciprocal mean cluster size. Using the notation specified above, 6 can be
expressed in the following fashion (Beirlant et al., 2004, p.377):

-1 _ rn{l — F(uy)} T 4 :
0! = r}ggo—Pr(Mrn e lim B ;I(Yl > up) | My, > up ¢, (1.15)

Therefore, 67! can be interpreted as the limiting mean size of a cluster, that is the
limiting mean number of exceedances in a block of length r,,, given that at least one
observation exceeds the threshold u, in that block. Equivalently, we can express 6 in
terms of the cluster size distribution:

I'n
67! :r}i_{lolonﬂn(j). (1.16)
j=1

Compared to the independent case, the mean distance between clusters at high
thresholds is hence increased by a factor 6~!. This representation of the extremal
index motivates the so-called “block-estimator” (Smith & Weissman, 1994), which
is simply the empirical counterpart of expression (1.15). In practice, one needs to
specify a suitable block length k and compute the average number of exceedances
within blocks having at least one extreme observation. A drawback of this estimator is
that it is very sensitive to the choice of r.

An improved estimator, proposed by Robert et al. (2009), consists in using sliding
blocks instead of disjoint, nearly independent, blocks. They prove that their estimator
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1.1. Univariate extreme value theory

is more efficient, has a smaller asymptotic bias and is asymptotically normal under
mild conditions.

0 as conditional probability. Alternatively, the extremal index can also be regarded
as the probability that a high threshold exceedance is the final element in a cluster of
exceedances (O’Brien, 1987; Embrechts et al., 1997, p.422):

0= nlirn Primax(Ys,...,Y;,) < u, | Y1 > uy}. 1.17)
— 00

This definition leads to the “runs-estimator” (Smith & Weissman, 1994), the empirical
counterpart of expression (1.17). It consists in counting the number of exceedances
over a high threshold u that are followed by a run of r consecutive observations below
it, and divide it by the total number of exceedances. Again, this estimator has the
drawback of being very sensitive to the choice of the run parameter r.

0 in terms of times between exceedances. A moment-based approach relying on the
distribution of inter-exceedance times has been proposed by Ferro & Segers (2003). It
deserves particular attention because it was the first method providing an automatic
declustering procedure, which, therefore, does not require the preliminary choice
of a run or block parameter. Suppose that {Y;};-; is a strictly stationary sequence of
random variables with marginal function F, and let T'(«) be the inter-exceedance time,
thatis T(«) =min{t =1 : Y1 > u| Yy > u}. It turns out that under mild regularity
conditions and a mixing condition, similar in spirit to the A(u,) condition, if u, is a
suitable threshold sequence, then {1 - F(u,)} T (u,) converges to a mixture distribution
(Ferro & Segers, 2003):

1= Fu)}T(uy) = (1-6)50+60Ey, 1n— oo, (1.18)

where § is a point-mass at zero, corresponding to exceedances within the same
cluster, and Ej is the exponential distribution with mean o1 Consequently, the
extremal index plays a double role: on the one hand, 0 is the proportion of non-zero
inter-exceedance times; on the other hand, it corresponds to the reciprocal mean of
non-zero inter-exceedance times. Letting T; = S;+1 — S;, where Sjy,..., Sy, are the N,
times of the exceedances over u, an estimator for 6 based on the first two moments of
(1-6)00 + 6Ey is (Ferro & Segers, 2003)

R N,-1 \2 Ny—-1 -1
euzz( Y Tl-) {(Nu—l) Y Tl?} : (1.19)
i=1 i=1
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An estimator that is shown to correct the first-order bias of 8 u I8

R Ny-1 2 Ny -1 -1
9;:2{ Y (Ti—l)} {(Nu—l) Y (Ti—l)(T,-—Z)} ) (1.20)
i=1 |

i=1

To avoid problematic effects, one can pool 0,and @ .,»leading to the so-called “intervals
estimator”:

(1.21)

u=

é _ mln(lyau)) maxlSiSNu—l Ti = 2!
minﬂﬁ;% maxj<j<n,-1 1; > 2.

This corresponds to the runs-estimator with run parameter the Cth largest inter-
exceedance time, that is T(¢), where C = [0 N, ] + 1.

Ferro & Segers (2003)’s methodology was further developed by Siiveges (2007, 2009),
who proved that the asymptotic result (1.18) is also valid for the K-gaps quantity
TX(u,) = max{T(u,) — K, 0} under the same conditions. A likelihood-based estimator
for independent observations was proposed, and is valid under the DX (u,,) condition
(Stiveges, 2007).

Other estimators for the extremal index have been proposed; for example the iterative
least squares estimator of Siiveges (2007), or the two-threshold based estimator of
Laurini & Tawn (2003). The latter has better performance than classical methods
and allows more realistic modeling of threshold exceedances, but is more complex
to use in practice because of the need to choose a second threshold. An alternative
automatic approach was advocated by Robert (2013a).

1.1.2.5 Inference

When the observations yy,..., y, are independent, one can base inference on the
limiting Poisson process for exceedances as follows. Let u be a high threshold and let
o, be the extreme set «f;, = [11, 2] x [u,00) for 0 < t; < £, < 1. If N, exceedances over

u are observed at times f3,..., fy,, the likelihood for the region <, is proportional to
u—py e Ne Vi, — ) ~Hé-L
L) o exp |~ nyear (12— 17) {1 +5(7)}+ i:l_lla {1 +& (T)}+ , (1.22)

where v = (u,0,¢) T is the parameter vector and nye,; denotes the number of years
of observation. Maximization of (1.22) yields the maximum likelihood estimator
V= (ﬁ,&,E)T based on the point process approach. When the threshold u is high
enough, the parameter estimates should not be threshold-dependent, but in practice
there is a bias-variance trade-off: the higher the threshold, the lower the bias and the
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larger the variance, and vice versa. Compared to the block maximum approach, where
only a few observations are available in general, this procedure has the advantage
of using more data for inference. Extreme events are scarce by nature, and this
approach allows better use of the information available at high levels, thus improving
the precision of the parameter and return level estimates.

When the observations come from a temporally dependent process, several strategies
for inference exist. The simplest approach is to decompose the data into disjoint inde-
pendent clusters and to model cluster maxima only, thanks to Theorem 28 (see, e.g.,
Coles & Tawn, 1994). Declustering schemes were discussed above. Another popular
method is to ignore temporal dependence for the estimation of parameters and return
levels —hence using a misspecified likelihood—, and to inflate the standard errors ap-
propriately (see, e.g., Fawcett & Walshaw, 2007). A third more difficult approach would
be to specify an explicit model for the dependence structure, such as a first-order
Markov chain (see, e.g., Smith et al., 1997; Bortot & Tawn, 1998).

Peaks over threshold (POT) approach. An alternative threshold-based representa-
tion of extremes has been developed by Davison & Smith (1990), giving rise to extensive
discussions and applications. Let a, > 0 and b,, be the normalizing constants arising
in Theorem 28. Assuming that the limiting Poisson process is a good approximation
for the process of exceedances above the finite threshold u, we have for y > 0 that

Pr{(Y,—-bp)la,>u+y}
Pr{(Y,, — b,)/a, > u}

A{[0,1] x [+ y,00)}
A{[0,1] x [u,00)}

{1+€(u+y—u)/0};1/gt
{1+6(u—u)/0};1/‘(

(1 +€y/r);1/£,

Pr{(Y,-bp)la,>u+yl|l (Y,—byp)la, > u}

where 7 = 0 +{(u— p). Hence, the exceedances Y — u, conditional on' Y > u, can be
modeled with the Generalized Pareto Distribution (GPD) with scale parameter T and
shape parameter ¢, although the value of 7 depends on u. A similar theoretical result
was shown by Balkema & de Haan (1974) and Pickands (1975). It gives rise to the
independent conditional likelihood

Ny
L) o [[r7 (1 + &y, i7) (1.23)
i=1

where v = (1,6)7 is the parameter vector. The maximum likelihood estimator for ¢
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can be derived by maximizing expression (1.23) numerically. The third parameter is
the rate at which the exceedances over u occur, that is {,, = Pr(Y > u), which can be
estimated by its empirical counterpart Cu = Ny/nwith approximate variance Ny (n —
N,)/n3. The GPD representation is maybe more convenient than the point process
point of view but since the scale parameter 7 is threshold-dependent, interpretation
needs care. The N-year return level, that is the level expected to be exceeded once in

N years on average, is
o

¢
where mye,; is the number of observations per year. Expression (1.24) can be estimated
using the “plug-in” principle, and uncertainty assessment can be based on the delta
method or the profile likelihood, as for block maxima.

YN = U+ —{(Nmyearl )t =1}, (1.24)

r-largest order statistics approach. The r-largest order statistics model is very similar
to the POT approach and is also a consequence of the point process representation.
Basically, the full likelihood is constructed from a product of block contributions, each
being an individual point process contribution corresponding to the exceedances over
the rth largest order statistics in that block. Mathematically speaking, the likelihood
may be written as

—1/¢-1

m " _ )V G) _
L) []exp —{1+.5(y’ ~ u)} ]‘[a‘l{1+f(y’ “)} , (1.25)
+ j=1

i=1 (o 4

where ¥ = (u,0,¢) T is the vector of parameters, i is the block index (for a total of m
blocks) and yl(.j )is the jth largest order statistic of the ith block. More details can be
found in Coles (2001, Sections 3.5 and 7.9). Parameter estimates can be obtained by
numerical maximization of (1.25). Their interpretation is the same as for the block

maximum and point process approaches.

Choice of the threshold. A natural concern is the choice of the threshold u (or equiv-
alently the value of r in the r-largest order statistics approach), so that the asymptotic
approximation provides a reliable model for the tail of the distribution. As mentioned
above, the choice of the threshold yields a bias-variance trade-off. To minimize the
variance, one is tempted to choose the threshold as low as possible. However, to
reduce the bias, one should increase the threshold. In practice, several diagnostics
have been developed (see Davison & Smith, 1990) to help decide whether a given
threshold is suitable or not. These decision tools rely on the following obvious asser-
tion, stated for the POT approach: If the GPD is a valid model for the exceedances over
the threshold u, then for all v > u, the GPD also has to be an appropriate distribution
for the exceedances over v. Therefore, one might expect some sort of stability when
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the GPD is fitted to the exceedances over a sequence of increasing thresholds. This
stability translates in at least two ways:

e In terms of mean excess: If Y ~ GPD(z,¢), then E(Y | Y > u) = (t+&u)/(1-9),
which is a linear function of u. The relationship between the empirical mean
excess and the threshold u can be viewed in the so-called mean residual life
plot. Using this graphical diagnostic, one should therefore choose the lowest
threshold u that is sufficiently high to get a linear relationship for all v > u
(taking uncertainty into account).

e [n terms of parameter estimates: If the GPD(t,¢) isavalid modelfor Y —u | Y > u,
estimates of ¢ and 7T = 7 — {u ought to be constant with respect to increasing
values of u. Parameter stability plots can help suggest reasonable values for the
threshold.

Another pragmatic solution for threshold selection is to choose a high quantile, and to
verify its suitability with model diagnostics. In environmental applications, empirical
95%-99% percentiles are often reasonable thresholds, whereas for financial datasets,
higher thresholds may be of interest.

1.2 Multivariate extreme value theory

Section 1.1 was concerned with univariate time series. In practice, however, the joint
modeling of extremes is often of interest for several reasons. First, one may want to
have a qualitative description of the structure and the degree of extremal dependence
between two or more series of observations. This is especially important for risk
assessment. In hydrology, for example, if extreme rainfall events occur simultaneously
over a whole catchment, it would increase the overall risk of floods in that region
(Thibaud et al., 2013). In finance, if several stock markets have huge losses on the same
day, this would increase the risk of a global financial collapse. Therefore, if extremal
dependence is not properly encounted for, one might misestimate the associated
measure of risk. Second, the use of a multivariate model permits us to treat the
observations in a general and coherent way, and the interpretation of the results is
sometimes easier in a multivariate framework. And third, if extremal dependence is
well modeled, joint modeling allows us to borrow strength from “neighboring” time
series, in order to better estimate marginal parameters. In spatial statistics, this is
often referred to as a trade-off between space and time.

Although appealing, the joint modeling of extremes is difficult in several respects.
First, there is no obvious way to order multivariate observations, so the definition of
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an extreme multivariate observation is not as clear as for univariate data. Second, as
explained in more details below, the class of multivariate extreme value distributions is
nonparametric; unlike the univariate case (with GEV/GPD distributions), they cannot
be characterized by a finite number of parameters. Furthermore, bivariate extreme
value theory is fairly well understood and developed, but flexible parametric models
for extremes in dimension greater than D = 2 are still lacking. Finally, the curse of
dimensionality cannot be avoided: modeling, fitting, simulation and model checking
are much more tricky and computationally intensive for large D.

Another important issue concerns asymptotic independence. Several common multi-
variate distributions (e.g., the multivariate Gaussian) show decreasing dependence at
higher levels. At a high but finite level, extreme events can be nearly independent and
the use of classical models for multivariate extremes, which are asymptotically depen-
dent, can yield misleading conclusions. In particular, extrapolation in the tail can be
specious and joint return levels badly estimated. Coles et al. (1999) have proposed the
quantities y and ¥ to help discriminate between asymptotic independence and de-
pendence. Moreover, Ledford & Tawn (1996, 1997, 2003) and Ramos & Ledford (2009,
2011) have proposed asymptotically independent models, detecting and measuring
the strength of the decay towards independence at high levels. Wadsworth & Tawn
(2012) also tackle this problem and provide hybrid spatial models that can handle both
asymptotic dependence and asymptotic independence at different spatial distances.

In Sections 1.2.1 and 1.2.2, approaches based on block maxima and point processes
for multivariate extremes are presented. Then in §1.2.3, a brief introduction is given
to the theory of copulas, which are mathematical objects allowing one to treat the
marginal distributions of random vectors separately from their dependence structure.
Asymptotic independence is addressed in §1.2.4, and finally, measures for extremal
dependence are discussed in §1.2.5. But before going further, some notation needs to
be introduced.

Vector notation. To clarify matters, all vectors will be denoted by symbols in bold,
and they will usually be assumed to be of dimension D. That is, y = (y1,..., VD),
0 € RP is a vector of zeros, oo € RP is a vector of co’s, etc. Unless otherwise specified,
all operations are done componentwise: for instance, @ < y means a; < y; for all
j=1,...,D, ayisavector with jth component a;y;, etc. Furthermore, a £ y indicates
that there exists at least one j = 1,...,D such that a; > y;. If a comparison or an
operation is done between a vector and a scalar, it holds for each component of the
vector: y > a means that y; > a, j = 1,..., D; similarly, ay is a vector with components
ayj, etc. When sets are involved, [a, b] € RP is the product space [ay, b1] x---x [ap, bp]
and [—oo, )P = [—oo, u) x - -+ x [—00, 1).
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1.2. Multivariate extreme value theory

1.2.1 Componentwise maximum approach

1.2.1.1 Multivariate extreme value distributions and max-stability

Let Y = (Y3,...,Yp) be a D-dimensional random vector with marginals Fi,..., Fp
and joint distribution F, and let {Y;};>; be an i.i.d. sequence of random vectors
distributed as Y. Denote by Y; ; the jth component of the vector Y;, and let M, ; =
max(Yy,j,..., Yn,j), j =1,..., D. For essentially arbitrary underlying joint distributions
F, one aims at characterizing the family of possible asymptotic distributions for
the vector of componentwise maxima M, = (My,1,..., My, p), suitably renormalized.
Since maxima may not occur at the same time in each margin, M, does not always
correspond to a real observation.

As in the univariate case, we consider an affine renormalization for M, in order to get
anon-trivial limit law as the sample size tends to infinity. Specifically, suppose that
there exist sequences a,, = (dp,1,...,anp) € R? and by, = (by1,..., by, p) € RP such that
the vector of renormalized componentwise maxima M}, = (M,,— b,)/ a,, converges to
arandom variable with joint distribution G and non-degenerate margins Gj,...,Gp.
If such sequences can be found, the limiting distribution is called a multivariate
extreme-value distribution. Balkema & Resnick (1977) showed that if convergence
occurs, such a limiting distribution G has to be max-infinitely divisible.

Definition 29 (Max-infinite divisibility). A distribution G is max-infinitely divisible
if for any k € N, G¥ is a distribution function. A random variable Z is said to be
max-infinitely divisible if its distribution is max-infinitely divisible.

A max-infinitely divisible distribution G yields a collection of “root” distributions
{Fi}ren such that F ]’CC = G, for all k € N; in other words, G is the distribution function of
the maximum of k independent random variates distributed according to Fy. Notice
that all one-dimensional distributions are max-infinitely divisible.

Due to univariate extreme value theory and the extremal types theorem, see §1.1,
one knows that if the margins G; are non-degenerate, they have to be GEV, that is
M;’;,j = (Mp,j—bn,j)anj— Zj ~GEV(uj,0,§), as n — oo, forany j=1,...,D. Or
equivalently, the limiting margins are max-stable. Consequently, since the limiting
joint distribution G is max-infinitely divisible with max-stable margins, it has to
be max-stable itself (de Haan & Ferreira, 2006, §9.2), that is, for every k € N and
z=(z1,...,2p) € R?, there must exist constants a; € R? and by € R” such that

GF(arz+by) = G(z). (1.26)
By definition, a max-stable distribution is also max-infinitely divisible; the converse is
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not true, because for some distributions G, one can find root distributions {Fj} xen for
which F ]’f = G but G is not of the same type as Fi. The characterization of multivariate
extreme value distributions therefore reduces to that of (multivariate) max-stable
distributions with non-degenerate margins.

In practice, it is common for the study of multivariate extremes to proceed in two
stages: The marginal distributions are typically estimated initially using the univari-
ate methodology (by fitting the GEV distribution to maxima or the GPD to thresh-
old exceedances), and then used with the probability integral transform to con-
vert the data to a common scale, in order to handle the dependence structure us-
ing multivariate extreme value theory. For reasons of mathematical elegance, the
transformation of the data is frequently to the unit Fréchet distribution, involv-
ing the maps #;() = —1/1og{G; ()}, j = 1,...,D. More precisely, if Z = (Z,..., Zp)
has joint distribution G, then the transformed random variates t,(%;),..., tp(Zp)
are standard Fréchet with the same dependence structure: indeed, it holds that
Gj(2) =Pr{tj(Zj) < 2} = exp(~1/2), for 2> 0, and G(zy, ..., zp) = G{t1(21),..., tp(zp)}.

1.2.1.2 The exponent measure

Balkema & Resnick (1977) showed that max-infinitely divisible distributions yield a
measure (L on [—oo, 00)P such that for all z € R?,

G(2) = exp{—p(Az)} = exp{-V(2)}, (1.27)

where A, = [—00,z]¢, with B¢ denoting the complement of the set B. The expo-
nent measure p contains all the information about dependence among the variables
Z1,...,Zp. By abuse of language, the function V = —logG is also frequently referred to
as the exponent measure. On the unit Fréchet scale, one can assume that the exponent
measure fi is concentrated on [0,00]” \ {0}, so that G(z) = exp{—fi(A;)} = exp{—V (2)},
where A, = [0, z]¢ for z > 0.

For simplicity, but without loss of generality, we shall restrict the discussion to the
unit Fréchet case, where a; = k~! and by = 0 in (1.26). Therefore, we write G = G >
u=f, A, = A, and V = V, dropping the tilde for simplicity.

Since the margins of G are assumed to be standard Fréchet, it can be verified that the
exponent measure satisfies the constraint V(z;,00,...,00) = 1/z;, and similarly for the
other margins. Furthermore, owing to the max-stability property (1.26), the function
V is homogeneous of order —1, that is V(tz) = 71V (z), forall z>0and t > 0. The
homogeneity of the exponent measure justifies, at least theoretically, extrapolation
in the joint upper tail; specifically, suppose that estimation of the probability p =
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Pr(Z € &) is required for some extreme set < of the form [0,z]¢. If Z follows an
extreme value distribution, we can shrink « towards the origin by a factor ¢ € (0,1),
estimate p;., instead (using more data points) and back-transform the estimated
probability using the homogeneity property, noting that

Py =1-exp{-V(2)} = 1—exp{—tV(tz)} = 1— (1 - pry)".

1.2.1.3 Spectral representation for multivariate extreme value distributions

Theorem 30 gives a spectral representation of the exponent measure, thus character-
izing all the possible limiting distributions for componentwise maxima under affine
renormalization.

Theorem 30 (Characterization of multivariate extreme value distributions). If the
renormalized vector M}, L.z~ G, where G is a non-degenerate distribution function,
then G has the form

G(z) =exp{-V(2)}, z>0, (1.28)

where

V(z)=D max (w/z)dH(w), (1.29)
Sp

and dH is a measure on the (D —1)-dimensional simplex Sp = {w e R? : ¥ w; =1},
satisfying the mean constraints st wjdH(w)=1/D, j=1,...,D.

When D = 2, dH is a distribution on the interval [0, 1], subject to the constraint
fol wdH(w) = 1/2. The measure dH is often called the spectral measure due to its
interpretation in terms of the pseudo-radius r = z; +--- + zp and pseudo-angles
w) = z1/1,...,wp = zp/r (see below and Beirlant et al., 2004, p.258). Contrary to
the univariate case, where a parametric family of distributions covers all possible
limits (recall Theorem 4), expression (1.29) implies that multivariate extreme value
distributions cannot be fully described by a finite number of parameters. Indeed, since
itis indexed by an essentially arbitrary spectral measure, each such suitable measure
dH provides a valid multivariate extreme value distribution. So when we come to
modeling and inference in practice, we need to rely on non-parametric techniques, or
to have flexible parametric models at our disposal; see §1.2.1.5-1.2.1.6.

1.2.1.4 Pickands’ dependence function

In dimension D = 2, an alternative representation of equation (1.29) (Pickands, 1981)
leads to the so-called Pickands’ dependence function, denoted by A(w). It turns out
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that we can rewrite the exponent measure as

Viz,2) = (2 +2,)A

21

Z1+ 22 ) ’

where the function A(w) satisfies A(w) = 2f01 max{(l - w)q,w(l - q)}dH(q). Here,
A(w) is a function defined on the interval [0,1], and is such that: i) A(0) = A(1) =
1, ii) A(w) is convex and iii) A(w) is contained in a triangular region defined by
max(w,1 - w) < A(w) <1 for all w € [0,1]; see Figure 1.5. The function A(w) lies
between the two bounding cases of complete dependence when A(w) = max(w, 1-w),
and asymptotic independence when A(w) = 1. The scalar A(w) can be interpreted as a
measure of the strength of dependence between Z; and Z, in the “direction” w, where
w = z1/(z1 + z) is the pseudo-angle between z; and z,. The link between Pickands’

dependence function A(w) and the spectral measure dH is explained carefully in
Beirlant et al. (2004, pp.268-270).

1.2.1.5 Parametric models

The specification of a parametric model for the exponent measure V(:) in (1.29), or
equivalently for the spectral measure dH, amounts to restricting the dependence
to have a particular structure. It is therefore essential to build flexible, but par-
simonious, dependence models that can also be readily interpreted. On the one
hand, asymptotic independence arises if V(z) = zl‘1 4+ zBl, or equivalently if
dH(e;) = D! for each vertex e j of the (D - 1)-dimensional simplex Sp, since the dis-
tribution G(z) = exp{—V (z)} factorizes. On the other hand, complete dependence is
attained when V(z) = max(z~!), ordH (D~!) =1, where D™! = (D7},..., D™!). Many
reasonable models lie between these two bounding cases; see below for popular bivari-
ate examples. In high dimensions, however, flexible parametric models for extremes
are difficult to build. Only a few have been proposed so far (see, e.g., Tawn, 1990;
Coles & Tawn, 1991; Cooley et al., 2010; Ballani & Schlather, 2011; Segers, 2012), but
they usually suffer from a lack of flexibility for large D and lead to computational and
inferential issues, discussed at the beginning of §1.2.1.6.

The most famous, though somehow rigid and simplistic, parametric model for D =2
is the logistic model, due to Gumbel (1961):

Viz,22) = (27 + 2, %)%, 21,20 >0, (1.30)

for some dependence parameter a € (0,1]. The limiting case @ = 1 corresponds to
independence, whereas the case a — 0 corresponds to complete dependence. This
model can readily be extended to higher dimensions; see §3.3.3.1. However, due to its
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Figure 1.5: Pickands’ dependence function for the logistic (top left), Hiisler—Reiss
(middle left), Schlather (bottom left), asymmetric logistic (top right), bilogistic (middle
right) and Dirichlet (bottom right) models, for different parameter values. Models
in the left column are symmetric, whereas models in the right column allow for
asymmetry.
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symmetry, it often suffers from a lack of flexibility.

A more sophisticated model which can capture asymmetry in the dependence struc-
ture is the asymmetric logistic model proposed by Tawn (1988b), available also in
dimensions D = 3 (Coles & Tawn, 1991; Stephenson, 2009):

Viz1,20) = (1= 0)/ 21 + (1= )/ 2o + {0/ z2)V ¥ + (91 2V}, 21,20>0,  (1.31)

for some dependence parameter a € (0,1] and asymmetry parameters 8,¢ € [0, 1].
When 6 = ¢ = 1, this model boils down to the logistic model. It yielded the best
fit among various bivariate extreme value models in a study by Ferrez et al. (2011),
analyzing extreme temperatures under forest cover compared to an open field.

Another extension of the logistic model for which the variables are not exchangeable
is the bilogistic model (Smith, 1990a):

Viz,z) =21 g %+ 2, - )P, z1,22>0.

Here, g = q(z1, 22, @, B) is the root of the equation (1 — a)zl_l(l - q)ﬁ —(1- ,B)zz_lc]“ =0,
and a, f > 0. The value of |@ — f| determines the extent of asymmetry in the depen-
dence structure. In particular, when a = §3, the bilogistic model reduces to the logistic
model. Complete dependence is attained in the limit as a =  approaches zero.

Coles & Tawn (1991) proposed another asymmetric model, the Dirichlet model, for
which
V(z1,22) = {1 = Ba+1,8(0)} 21 + Bg;p+1(8)/ 22, 21,22 >0,

where a, f > 0 and B, 5 (1) is the beta cumulative distribution function with shape pa-
rameters a and b, evaluated at t = az,/(az; + Bz2). The Dirichlet model is symmetric
when a = .

Among symmetric models, the Hiisler-Reiss model (Hiisler & Reiss, 1989) based on the
standard normal distribution has gained a lot of attention. This model is essentially
the only possible limit of rescaled maxima of Gaussian variables, thus providing
support for its use in many applications. Hiisler & Reiss (1989) proved that if {Y ;};> is
a sequence of independent bivariate normal random variables with zero mean, unit
variance and correlation p,, satisfying 4(1 - p,,)logn — a?, as n — oo, then Pr(M} <
logz) — G(z) = exp{—V (z)}, where M}, = (M,,— b,,)/ a,, is the vector of renormalized
componentwise maxima, a, = (2log n)l’2, b, ={2logn—loglogn— 10g(4ﬂ)}1/2, and

1 a 1 21 1 a 1 2
V(z1,20) = —@{— - —log(—)} + —@{5 — —log(—)}, (1.32)
21

2 a V) 2 a <1
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where ®(-) denotes the normal cumulative distribution function. The parameter
a > 0 is a dependence parameter. Independence occurs as a — oo, and complete
dependence as a — 0. Extensions to (1.32) can be obtained for the general case in
dimension D (Hiisler & Reiss, 1989; Huser & Davison, 2013a).

Another symmetric model is the bivariate Schlather model for extremes (Schlather,
2002; Davison & Gholamrezaee, 2012):

1(1 1
V(Zl,Zg):E(—+—){1+

Z]1 22

1
(zf—22122p+z§)1/2}. (1.33)

Z21+ 2

The parameter p € [-1,1] is a dependence parameter, interpretable as the correlation
between original zero-truncated Gaussian events. Independence is obtained when
p = —1, and complete dependence is reached when p = 1.

Extensions of the Hiisler—Reiss and Schlather models to the infinite-dimensional
framework play a prominent role in the modeling of spatial extremes; see §2.3.2.

Figure 1.5 depicts the Pickands’ dependence function of the aforementioned models
for D = 2 and typical parameter values. Other relevant models, not presented here,
have also been proposed in the literature, and include the negative logistic model
(Galambos, 1975), the asymmetric negative logistic model (Joe, 1990), and the mixed
and asymmetric mixed models (Tawn, 1988b).

1.2.1.6 Inference

For simplicity, assume that the data can be decomposed into N blocks of M inde-
pendent D-variate observat