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Abstract
Global-scale online services, such as Google’s Web search and Facebook’s social networking,

run in large-scale datacenters. Due to their massive scale, these services are designed to scale

out (or distribute) their respective loads and datasets across thousands of servers in data-

centers. The growing demand for online services forced service providers to build networks

of datacenters, which require an enormous capital outlay for infrastructure, hardware, and

power consumption. Consequently, efficiency has become a major concern in the design and

operation of such datacenters, with processor efficiency being of, utmost importance, due to

the significant contribution of processors to the overall datacenter performance and cost.

Scale-out workloads, which are behind today’s online services, serve independent requests,

and have large instruction footprints and little data locality. As such, they benefit from

processor designs that feature many cores and a modestly sized Last-Level Cache (LLC), a

fast access path to the LLC, and high-bandwidth interfaces to memory. Existing server-class

processors with large LLCs and a handful of aggressive out-of-order cores are inefficient in

executing scale-out workloads. Moreover, the scaling trajectory for these processors leads to

even lower efficiency in future technology nodes.

This thesis presents a family of throughput-optimal processors, called Scale-Out Processors,

for the efficient execution of scale-out workloads. A unique feature of Scale-Out Processors

is that they consist of multiple stand-alone modules, called pods, wherein each module is a

server running an operating system and a full software stack. To design a throughput-optimal

processor, we developed a methodology based on performance density, defined as throughput

per unit area, to quantify how effectively an architecture uses the silicon real estate. The

proposed methodology derives a performance-density optimal processor building block (i.e.,

pod), which tightly couples a number of cores to a small LLC via a fast interconnect. Scale-

Out Processors simply consist of multiple pods with no inter-pod connectivity or coherence.

Moreover, they deliver the highest throughput in today’s technology and afford near-ideal

scalability as process technology advances. We demonstrate that Scale-Out Processors im-

prove datacenters’ efficiency by 4.4x-7.1x over datacenters designed using existing server-class

processors.

Keywords: Scale-Out Workloads, Datacenters, Efficient Processors, Performance Density,

NOC-Out, Scale-Out Processors
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Résumé

A l’échelle mondiale, les services en lignes comme la recherche Web de Google et le réseau

social Facebook, fonctionnent grâce à des centres de stockage de données de grande envergure.

En raison de leur importance, ces services sont conçus pour redistribuer leur charge de travail

et l’ensemble des données sur les milliers de serveurs des centres de stockage. La demande

croissante des services en ligne a forcé les fournisseurs de services à construire des réseaux de

données, qui nécessitent une énorme mise de fonds pour couvrir les frais liés à l’infrastructure,

au matériel et à la consommation d’énergie. Par conséquent, l’efficacité est devenue une

préoccupation majeure pour la conception et le fonctionnement de ces centres de stockage,

et en particulier l’efficacité des processeurs, d’une extrême importance, en raison de leur

contribution significative à l’augmentation des performances des centres de données et à la

diminution des coûts d’exploitation.

Les applications à déploiement horizontal, qui sont à la base des services en ligne aujour-

d’hui, envoient des requêtes indépendantes, et ont de larges gammes d’instructions et peu

de données locales. Par conséquent, elles bénéficient de conceptions de processeurs qui

comportent de nombreux noyaux et un dernier niveau de cache (LLC) de taille modeste, une

voie d’accès rapide à la LLC et des interfaces à large bande passante dans la mémoire. Les

processeurs des serveurs existants, qui ont de grands LLC et quelques noyaux agressifs de

type out-of-order sont inefficaces à l’exécution des applications à déploiement horizontal.

Par ailleurs, la trajectoire de mise à l’échelle pour ces processeurs se traduit par une efficacité

encore plus faible dans les futurs centres technologiques.

Cette thèse présente une famille de processeurs à performance optimale, appelés les Proces-

seurs Scale-Out, pour l’exécution efficace de d’applications à déploiement horizontal. Une

caractéristique unique des Processeurs Scale-Out est leur constitution en plusieurs modules

autonomes, appelés pods. Chaque pod contient un serveur qui exécute un système d’exploita-

tion et une pile logicielle complète. Pour concevoir un processeur à performance optimale,

nous développons une méthodologie basée sur la densité de la performance (PD), qui est

définie comme le débit par unité de surface, pour mesure comment une architecture efficace

utilise la surface en silicium. La méthodologie proposée utilise un bloc de processeurs à per-

formance optimale (c’est-à-dire un pod), qui associe étroitement plusieurs noyaux à un petit

LLC via une interconnexion rapide. Les Processeurs Scale-Out sont simplement composés

de plusieurs modules, sans connectivité ni cohérence. De plus, ils offrent les meilleures per-
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Résumé

formances technologiques actuelles et une évolutivité presque idéale avec les avancées de

la technologie. Nous démontrons que les Processeurs Scale-Out améliorent l’efficacité des

centres de stockage de données de 4.4 à 7.1 fois par rapport aux centres de données conçus

pour utiliser des processeurs de classe serveur.

Mots-clefs : Applications à Déploiement Horizontal, Centre de Stockage des Données, Proces-

seurs Efficaces, Densité de la Performance, NOC-Out, Processeurs Scale-Out
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1 Introduction

We are living in an era in which Information Technology (IT) is shaping our society. More

than anytime in history, our society is dependent on IT for its day-to-day activities. Education,

media, science, social networking, etc. are all affected by IT. The steady growth in processor

performance is one of the driving forces behind the success and widespread adoption of IT.

Historically, the improvement in processor performance was driven by two phenomena:

Moore’s law [69] and Dennard scaling [28]. Technology scaling, which refers to the technology

of shrinking transistor dimensions, provided processor designers with twice transistor density

every two years (Moore’s law). Moreover, the reduction in the supply voltage enabled processor

designers to operate twice the number of transistors that technology offers without an increase

in power consumption (Dennard scaling). Taking advantage of Moore’s law and Dennard

scaling, computer architects improved the processing power by constantly increasing the com-

plexity of the processor pipeline and the frequency of the processor. Decades of technology

scaling allowed powerful processors with deep and aggressive Out-of-Order (OoO) pipelines

and high clock frequency to emerge.

Unfortunately, improving the performance of processors with the historical approach is

no longer viable. As physical restrictions slow down the reduction of the supply voltage,

Dennard scaling has effectively stopped [27]. While Moore’s law is still valid and the number

of transistors increases by a factor of two every two years, the failure of Dennard scaling makes

power and energy the primary constraints of processors. As such, it is no longer desirable to

increase the clock frequency of processors or increase the complexity of the processor pipeline

to improve performance, as these approaches are not energy efficient [76]. For this reason, we

did not see a noticeable increase in the clock frequency of processors for almost a decade.

As the historical approach for improving processor performance no longer works, since

2004, vendors have started to produce multi-core processors using relatively aggressive OoO

cores [33]. This paradigm shift was motivated by the fact that many workloads have inherent

thread-level parallelism and can benefit from multiple cores. With improvement in process

technology, processor vendors keep the complexity of the cores constant and use the extra
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transistors to increase the number of cores and the size of the last-level cache (LLC). As caches

consume less energy compared to the cores, processors use almost half of their transistor

budget for the LLC with the hope that a larger cache captures a larger fraction of the data

working sets and results in faster execution.

In the meanwhile, we are witnessing that workloads are becoming more and more data-

centric. We are living in the age of data explosion. The trend for many workloads, such as

social networking or online advertising, is to collect and process larger and bigger volumes

of data. Unfortunately, there is a mismatch between the workloads trend and the trend

in the processor industry. While data-centric workloads are memory-intensive and do not

benefit from aggressive OoO cores [40, 39, 30], such cores are offered in the existing products.

Moreover, the little data locality in the emerging data-centric workloads makes large LLCs in

the existing multi-core processors ineffective [43, 42, 39, 30]. To deliver the computational

power necessary for future data-centric workloads, processors need to be redesigned to match

the requirements of these workloads.

Global-scale online services represent an important class of data-centric workloads [30, 31].

As scalability is the primary concern for such services, they are designed to scale out (or dis-

tribute) the load across a large number of servers in datacenters. Service providers like Google,

Microsoft, and Facebook rely on scale-out workloads that run in large-scale datacenters with

thousands of servers to deliver media streaming, Web search, and social networking. The

vast datasets of scale-out workloads are sharded across servers in datacenters. As data access

latency is crucial, shards of the datasets are kept in large-capacity DRAM memories.

Scale-out workloads have common characteristics that can be leveraged to design high-

performance processors, namely (a) massive parallelism; (b) little communication; (c) large

instruction footprint; and (d) little data locality. As datacenters serve many independent

requests coming from users across the world, scale-out workloads have abundant request-

level parallelism. Due to the fact that these requests are mostly independent and the datasets

are extremely large, there is rarely a need for communication when two requests are being

processed. Moreover, these workloads serve a variety of complex requests, and as a result,

their instruction footprints are large (hundreds of kilobytes to megabytes). Finally, the vast

datasets combined with the independent nature of requests results in little data locality in

these workloads.

A processor optimized for the execution of scale-out workloads needs to have many cores to

benefit from the abundant parallelism in these workloads. Moreover, the little data locality

calls for a medium-sized cache, which also leaves more die area for the cores. The large

instruction footprints of scale-out workloads cannot be captured in an L1 instruction cache,

and as such, they reside in the L2 cache. Due to the fact that instructions are shared across

all the cores, the optimized processor needs to have a shared L2 cache that we refer to as the

last-level cache (LLC). Moreover, because instructions are resident in the LLC, the optimized

processor needs to provide a fast access path from the individual cores to the LLC for the
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instruction delivery. The minimal communication in scale-out workloads calls for minimal

connectivity between the cores and makes designing a fast access path from the cores to the

LLC trivial. Finally, as the datasets are resident in memory, the optimized processor needs to

have high-bandwidth interfaces to frequently access memory.

Scale-out workloads have multi-tier architecture with complex software stacks. Even though

there is little communication in these workloads due to the independence of requests and the

vast data working set sizes, the shared-memory programming model is valued in the scale-out

domain, as it simplifies software development and facilitates the use of existing software

stacks. This fact, combined with the common characteristics of scale-out workloads, calls for

a shared-memory processor with many cores, a modestly sized LLC, minimal connectivity,

fast access to the LLC, and high-bandwidth memory channels.

1.1 Why Not Existing Processors?

Today’s volume servers are designed with processors that are essentially general-purpose.

These conventional processors combine a handful of aggressively speculative and high clock-

frequency cores supplemented by a large shared on-chip cache. As manufacturing technology

provides higher transistor density, conventional processors use the additional transistors to

scale up the core count, cache capacity, coherence mechanism, and interconnect.

Recently, tiled processors have emerged as competition to volume processors in the scale-out

server space [90]. Recognizing the importance of per-server throughput, these processors

use a large number of relatively simple cores, each with a slice of the shared LLC, intercon-

nected via a packet-based mesh interconnect. Lower-complexity cores are more efficient than

those in conventional designs [59]. Despite the differences in the chip-level organization,

the technology scaling trends of tiled processors are similar to conventional designs; each

technology generation affords more tiles, which increases the core count, cache capacity, and

interconnect resources.

In the context of processors for scale-out workloads, both architectures make suboptimal use

of the die area and cannot maximize throughput. One of the inefficiencies of these processors

is their large last-level caches. Maximizing throughput necessitates a careful choice in the

size of the cache. Smaller caches that can capture the dynamic instruction footprints of scale-

out workloads afford more die area for the cores without penalizing per-core performance.

Moreover, we demonstrate that while the simpler cores found in tiled designs are more effective

than conventional server cores for scale-out workloads, the latency incurred by the on-chip

interconnect in tiled organizations lowers performance and limits the benefits of integration,

as additional tiles result in more network hops and longer delays.
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1.2 Future Projections

As process technology advances and more transistors become available, existing processors

use the higher transistor density to increase the number of cores and size of the last-level cache.

While scale-out workloads do not benefit from a large last-level cache and existing processors

already have large last-level caches beyond what is required for these workloads, future

projections indicate that processor vendors plan to increase the size of the LLC even further.

Consequently, not only existing processors suffer from large last-level caches when they

execute scale-out workloads, but also, this problem exacerbates as manufacturing technology

improves.

Moreover, scale-out workloads require fast access to the last-level cache at minimum because

their instruction footprints are large; hence, they reside in the LLC. As technology scales

and manufacturing capability increases, more cores will be added to processors. In existing

processor organizations, there is a direct relationship between the access latency to the

LLC and the number of cores that share it. As the number of cores in existing processor

organizations increases, the access latency to the LLC also increases.

While existing processors suffer from large last-level caches and/or slow access to the LLC, the

projections indicate that both shortcomings will exacerbate with improvement in transistor

scaling. The shortcomings of existing processors for the execution of scale-out workloads

necessitate a processor design methodology, which would eliminate the shortcomings and

enable seamless scalability with improvement in transistor scaling.

1.3 Scale-Out Design Methodology

Scale-out datacenters require processors with many cores and a fast access path to the last-

level cache to maximize throughput. As scale-out workloads do not benefit from a large

last-level cache (due to little data locality in these workloads), processors optimized for scale-

out workloads should dedicate most of their die area to cores and maximize the number

of cores. While it is easy to increase the core count, we demonstrate that existing processor

organizations fundamentally cannot fulfill both requirements – i.e., many cores and fast access

from the cores to the LLC – simultaneously.

As more cores are added to a processor with a fixed-size LLC, both the die area of the processor

and the physical distance between the individual cores and the last-level cache increase.

Because the time it takes for a core to access the last-level cache is proportional to the physical

distance between the core and the LLC, the longer distance between the core and the LLC,

which is an artifact of integrating more cores, results in slower access to the LLC. Existing

processor organizations are fundamentally incapable of providing fast access to the LLC while

many cores are integrated in the processor. We need a new processor organization to break

the relationship between core count and LLC access latency. The new processor organization

should enable integrating many cores while providing low LLC access latency.
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To address the limitation of existing processor organizations, we propose the scale-out design

methodology. The scale-out design methodology calls for many-core processors based on

the notion of pods. A pod is a module that tightly couples several cores to a modestly sized

LLC through a low-latency interconnect. The proposed methodology breaks the relationship

between more cores and higher LLC access latency by partitioning the die area of a processor

and integrating a pod in each partition. Each pod is a self-contained server-on-a-chip running

a full software stack. We formulate a methodology to determine the optimal number of cores

and LLC capacity to integrate in a pod for peak throughput. The proposed design, called

the Scale-Out Processor, delivers peak throughput in today’s process technology and affords

near-ideal scalability as the technology scales.

1.4 Organization of Scale-Out Processors

As Scale-Out Processors are composed of many pods, the microarchitecture of pods is es-

sentially the main factor that determines the performance of Scale-Out Processors. While

partitioning the die area through integrating many pods enables Scale-Out Processors to break

the relationship between core count and LLC access latency across pods, providing fast access

from cores to the LLC within a pod is necessary for the success of Scale-Out Processors.

Unfortunately, the existing many-core organizations force a compromise between perfor-

mance and area cost [64]. While mesh-based tile organizations have a modest area and wire

cost, they incur latency overheads through a many-hop organization. In contrast, many-core

organizations based on the richly connected topologies, such as a flattened butterfly [55],

offer low LLC access latency at high area and wire cost. Pods in Scale-Out Processors require

organizations that have low area overhead and provide fast access to the last-level cache.

To provide fast access to the LLC with low area overhead, we propose a novel organization

using a simple and critical observation: there is almost no core-to-core communication in

scale-out workloads [64, 71, 63]. Based on this observation, the proposed organization (a)

decouples cores and the last-level cache; (b) eliminates all unneeded core-to-core links; and

(c) uses specialized core-to-LLC networks to connect cores to the last-level cache and vice

versa. The bottom line is that the proposed organization delivers the performance of the

state-of-the-art with 1/10th of the area.

1.5 3D Scale-Out Processors

As scaling down transistor dimensions becomes more complicated and challenging [10], the

validity of Moore’s law, which is the primary driving force behind the growth of the semicon-

ductor industry, is expected to end [66]. Three-dimensional integration of multiple logic dies

is a propitious mechanism that can extend the validity of Moore’s law. In a 3D integration,

multiple logic dies are stacked on top of each other and interconnected by through-silicon

vias (TSVs).
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In a conventional 2D integration, the scaling of transistor dimensions implies more transistors

and also larger average distance between the transistors. As technology scales and more

transistors become available, the average distance between the transistors increases because

it is impossible to scale global wire length with technology [12]. On the contrary, in a 3D

integration, more transistors become available by stacking more logic dies on top of each

other. As the vertical distance is much shorter (i.e., in the order of µm) than the horizontal

distance (i.e., in the order of mm), more transistors in a 3D integration come without an

increase in the average distance.

Because of the negligible vertical distance in a 3D integration, as well as to benefit from the

3D integration, pods should span vertically across all of the logic dies that are stacked on top

of each other. This feature enables two possible directions for 3D integrated pods: (1) Pods

grow the number of cores and LLC capacity as more logic dies are added while benefiting from

the 3D integration to keep the on-chip distance constant; and (2) Pods keep their core count

and LLC capacity constant and use 3D integration to reduce the on-chip distance. Negligible

vertical distance enables 3D pods to have either more cores and larger LLC or shorter on-chip

distance as compared to 2D pods. Consequently, 3D integration increases the throughput of

Scale-Out Processors.

1.6 Dissertation Contributions

In this dissertation, we investigate the design of throughput-optimal processors for scale-

out workloads. We begin by demonstrating that existing processor organizations fall short of

efficiency in executing scale-out workloads. We then motivate and justify Scale-Out Processors

and provide an organization for them. We show that Scale-Out Processors can significantly

increase performance per total cost of ownership in datacenters. We conclude by exploring

the design space of Scale-Out Processors manufactured with 3D logic-on-logic technology as

the likely enabler of Moore’s law when transistor scaling stops.

Through a combination of analytic modeling, trace-driven analysis, and cycle-accurate, full-

system simulation of various multi-core processors running scale-out workloads, we demon-

strate:

Inefficiency of existing processors. We demonstrate that existing processors are incapable of

running scale-out workloads efficiently. We identify misallocation of on-chip resources and

long LLC access latency as the two main bottlenecks of existing processors.

Fundamental limitation of existing processor organizations. We identify the relationship

between the increase in core count and the increase in LLC access latency as the fundamental

limitation of existing processor organizations. This fundamental limitation prevents existing

processor organizations from maximizing throughput of scale-out workloads.

Scale-Out Processors. We demonstrate the scale-out design methodology that enables avoid-
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ing the fundamental limitation of existing processor organizations – namely, the relationship

between the increase in core count and the increase in LLC access latency. Moreover, we

demonstrate the effectiveness of the resulting processors, i.e., Scale-Out Processors, for effi-

cient execution of scale-out workloads.

Microarchitecture of Scale-Out Processors. We show that existing multi-core microarchitec-

tures are either area-inefficient or performance limiters in the context of Scale-Out Processors.

Taking advantage of the characteristics of scale-out workloads, we demonstrate a novel mi-

croarchitecture for Scale-Out Processors to achieve both area efficiency and high performance.

Benefits of Scale-Out Processors in datacenters. We demonstrate the effectiveness of Scale-

Out Processors in the context of datacenter efficiency. We use Performance per Total Cost

of Ownership as the efficiency metric at datacenters to show the superiority of Scale-Out

Processors as compared to existing processors.

Multi-pod Scale-Out Processors. We demonstrate that Scale-Out Processors with large dies

are more efficient than Scale-Out Processors with small dies. We compare single- and multi-

pod Scale-Out Processors at datacenters and show that multi-pod Scale-Out Processors are

more efficient.

Scale-Out Processors in the post-Moore era. We study the impact of 3D logic-on-logic tech-

nology on Scale-Out Processors. Three-dimensional logic-on-logic technology is the likely

successor of transistor scaling for extending the validity of Moore’s law. We demonstrate that

Scale-Out Processors can leverage features specific to 3D logic-on-logic technology to improve

performance beyond what is possible in a standard 2D process.

1.7 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we study the behavior of

scale-out workloads and demonstrate the mismatch between existing processor organizations

and the requirements of these workloads. In Chapter 3, we introduce the scale-out design

methodology and quantify its benefits. In Chapter 4, we microarchitect a Scale-Out Processor

to minimize the area cost and maximize the performance. In Chapter 5, we compare various

processor organizations in the context of datacenter total cost of ownership to show the

effectiveness of multi-pod Scale-Out Processors. In Chapter 6, we extend the organization of

Scale-Out Processors for implementation in 3D logic-on-logic technology as the likely enabler

of the post-Moore era. Finally, we comment on related research in Chapter 7 and conclude in

Chapter 8.
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2 A Case For Scale-Out Processors

Datacenters are the computing platforms for delivering scalable online services. Google,

Microsoft, and Facebook rely on networks of datacenters to deliver search capabilities, social

networking, and a growing number of other offerings. The scale-out software architecture at

the core of the online service model effectively accommodates dataset and demand growth by

simply distributing the load on many servers, as servers handle independent requests that do

not share any state.

With typical scale-out workloads distributed across thousands of servers inside a datacenter,

performance characteristics of each server dictate the datacenter’s throughput. In TCO-

conscious datacenters, performance per TCO dollar is maximized by increasing the throughput

of each server processor, which enables better memory utilization and affords higher per-

server performance without a commensurate increase in cost [92].

To maximize the throughput of scale-out workloads, server processors need to have many

cores to serve independent requests in parallel and also need to get high throughput from

each individual core. For individual cores to deliver high throughput, server processors need

to provide a fast path to the LLC that holds the instructions and data secondary working sets.

We motivate the need for Scale-Out Processors based on the observation that the two require-

ments (i.e., many cores and a fast path to the LLC) cannot be satisfied simultaneously with

existing many-core processor organizations. In existing organizations, as the number of cores

increases, the distance from the cores to the LLC increases, which results in longer LLC access

latency. In this chapter, we show that existing processors are not capable of meeting the two

requirements at the same time and, as such, are not suitable for the execution of scale-out

workloads.

2.1 What Do Scale-Out Workloads Want?

In this section, we examine a representative set of scale-out workloads in order to understand

the demands they place on server processors. Research analyzing the scale-out workload
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Figure 2.1: Application instructions executed per cycle for an aggressive OoO core (out of
maximum IPC of 4).

domain has shown that a key set of traits holds across a wide range of workloads, including

Web search, media streaming, and Web serving. These traits can be summarized as request

independence, little communication, large instruction footprint, and vast dataset [30]. These

traits favor server processors with (a) many simple OoO cores; (b) modestly sized LLC; (c) a

fast access path to the LLC; (d) minimal connectivity between cores; and (e) high-bandwidth

memory interfaces. Next, we examine each of these requirements in more detail.

2.1.1 Simple OoO Cores

Scale-out workloads have vast datasets that are kept in memory to minimize the response

latency [30]. On one hand, scale-out workloads are memory-intensive and spend most of their

time accessing data in memory; as such, their benefit from aggressive OoO cores is limited [30].

On the other hand, the instruction-level parallelism (ILP) in these workloads is not as low as

conventional memory-intensive workloads (e.g., database workloads) [79].

Figure 2.1 shows the application instructions per cycle (IPC) for an aggressive OoO core with

commit width of four and 2GHz frequency. Out of seven scale-out workloads, only one of

them (i.e., Media Streaming) has an IPC of less than one. Two of the workloads (i.e., Data

Serving and MapReduce-C) have an IPC of around one, and four of the workloads have an IPC

of greater than one and less than two. While the core is aggressive OoO and can commit up to

four instructions per cycle, on average, at most two instructions are committed every cycle.

These results corroborate prior work [30] and show that aggressive OoO cores are not suitable

for scale-out workloads. Moreover, four out of seven workloads have an IPC of greater than

one, which suggests that simple OoO cores can be useful for these workloads, corroborating

prior work [79].
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2.1.2 Many Cores

As mentioned in the previous section, scale-out workloads are memory-intensive and spend a

considerable fraction of their execution time waiting for data to arrive from memory. As such,

aggressive OoO cores are not well-suited for the execution of these workloads. Fortunately,

scale-out workloads, like media streaming, social networking, or Web search, handle a stream

of requests that are, to an overwhelming extent, mutually independent [30]. Fundamentally,

request independence is the feature that makes scale-out workloads inherently parallel. The

abundant request-level parallelism argues for processor designs with a large number of cores

to maximize throughput.

2.1.3 Modestly Sized LLC

We seek to establish the range of last-level cache sizes appropriate for scale-out workloads.

As it has been shown that a Non-Uniform Cache Architecture (NUCA) L2 cache matches the

performance of a multi-level cache hierarchy [53], we evaluate a two-level cache hierarchy

with a NUCA LLC in this dissertation.

We analyze the cache requirements of scale-out workloads by sweeping the size of the LLC from

1 to 32MB. The results are presented for a quad-core processor, but note that the general trends

are independent of the core count. Details of the methodology can be found in Section 2.4.3.

Figure 2.2 plots the performance (i.e., the aggregate number of application instructions com-

mitted per cycle [89]) of individual applications normalized to a design with a 1MB LLC.

For most of the workloads, LLC capacities of 2-8MB are sufficient to capture the instruction

footprint and secondary working set. Beyond this range, larger cache configurations provide

limited benefit because the enormous data working sets of the workloads exhibit little reuse

in the LLC. Two of the workloads (MapReduce-C and SAT Solver) exhibit a different behavior,
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Figure 2.3: Per-core performance of 4-core workloads with a 4MB LLC varying the number of
cores (a) and chip-level performance with a 4MB LLC varying the number of cores (b).

as larger caches do help in capturing the secondary working set. However, even for these

workloads, a 16-fold increase in cache size from 1 to 16MB translates into a performance

gain of just 12-24%. Cache capacity beyond 16MB is strictly detrimental to performance, as

the reduction in miss rate is offset by the increased access latency. These results corrobo-

rate prior characterizations of scale-out and traditional server workloads executing on chip

multiprocessors [30, 43].

2.1.4 Fast Access to LLC

We analyze the sensitivity of scale-out workloads to the on-chip distance and the sharing

degree. We fix the LLC size at 4MB and examine the performance as the number of cores

varies from 1 to 256. Figure 2.3 plots per-core performance (a) and throughput per chip (b)

averaged across workloads and normalized to a single-core baseline. The two lines in the

figures correspond to an ideal organization with a fixed-latency interconnect between each

core and the LLC (solid gray line), as well as a realistic mesh-based interconnect where the

physical distance between cores and cache banks affects the LLC access latency (dashed black

line).

In the case of an ideal interconnect, Figure 2.3a shows that the degradation in per-core

performance associated with having many cores share the LLC is small (e.g., 16% for a 128x

increase in core count from 2 to 256 cores). As a result, Figure 2.3b demonstrates that aggregate

performance can be improved by a factor of 210 by sharing a 4MB LLC among 256 cores.

In the case of a design subject to physical constraints, in which the distance to the LLC
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grows with core count, the negative slope of the performance curve in Figure 2.3a is much

steeper. The distance to the LLC has a direct effect on performance due to a combination

of primary working set sizes greatly exceeding the L1 capacity and the memory-intensive

nature of scale-out workloads, which makes these workloads particularly sensitive to the

average memory access time. As a result, Figure 2.3b shows that a design based on a realistic

interconnect reduces performance by 28% when compared to an ideal network at 256 cores,

demonstrating how distance effects threaten the ability of server processors to reach their

throughput potential.

Overall, scale-out workloads show limited benefit from LLC capacities beyond 8MB. Further-

more, a moderately sized cache can be effectively shared among a large number of cores.

However, maximizing the performance in a system with a heavily shared LLC requires mitigat-

ing interconnect delays.

2.1.5 Minimal Connectivity

Scale-out workloads serve (mostly) independent requests that originate from many users

around the world. To serve these requests, cores that execute scale-out workloads process

massive-scale datasets. As datasets of these workloads are extremely large, the datasets are

usually sharded, and a core only works on a shard of the datasets.

Two cores that work on two different shards either do not communicate, or the communication

is so rare that existing multi-core processors use Ethernet (which is slow) as the standard

medium for the communication [7, 9, 6]. Even for cores that process the same shard of data,

independent nature of requests, combined with the fact that shards of large-scale datasets are

themselves large, results in minimal communication [71, 63, 64]. In a multi-core processor

executing scale-out workloads, when a core serves a request, it rarely needs to communicate

with other cores.

As communication in scale-out workloads is rare, minimal connectivity is sufficient in proces-

sors that execute (or are optimized to execute) these workloads. The minimal connectivity

requirement of scale-out workloads suggests that processors optimized for these workloads

have a simple organization.

2.1.6 Adequate Number of Memory Interfaces

A feature of scale-out workloads is that they work on massive-scale datasets. As many of the

scale-out workloads have strict quality-of-service requirements, the datasets (or a significant

fraction of the datasets) are placed in memory to minimize the access latency. As such, these

workloads frequently access memory to obtain various pieces of the datasets.

As cores that execute scale-out workloads are inside the processor chip and the DRAM memory

is outside of the chip, memory requests need to be sent off-chip (through pins) to go to the
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Figure 2.4: A conventional processor.

DRAM memory. Memory interfaces are the modules that connect a processor chip to the

off-chip DRAM memory. As a processor might have multiple memory interfaces, a memory

access needs to be sent to one of the memory interfaces (determined by a policy like static

interleaving) to be passed to the DRAM memory.

A memory interface can sustain a constant amount of off-chip traffic, which is a function of the

memory interface protocol and the number of pins dedicated to the memory interface. If the

off-chip traffic exceeds the capacity of a memory interface, more than one memory interface

is necessary to provide connectivity between the cores and the off-chip DRAM memory. The

off-chip traffic of a workload that is running on a multi-core processor can be estimated using

simulation or empirical analysis. The number of memory interfaces must be chosen based on

the worst-case off-chip traffic of the workloads.

2.2 What Do Existing Processor Organizations Offer?

In this section, we examine the suitability of various server processors (i.e., conventional, tiled,

and optimized tiled processors) for efficient execution of scale-out workloads.

2.2.1 Conventional Processors

Conventional processors combine a handful of aggressively speculative and high clock-

frequency cores supplemented by a large shared on-chip cache in a dancehall architecture

where cores and caches are connected using a crossbar. Examples of commercial conventional

processors include Intel Xeon 5670 [46] or AMD Opteron 6320 [2]. As manufacturing technol-

ogy provides higher transistor density, conventional processors use the additional transistors

to scale up the core count, cache capacity, coherence, and interconnect layer. Figure 2.4 shows

a typical conventional processor with six cores.

The first limitation of conventional processors is their large last-level caches. While existing
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Figure 2.5: A tiled processor.

conventional processors have 12 to 24MB of LLC, and chip manufacturers plan to increase

the size of the LLC in the future technologies, scale-out workloads do not benefit from large

LLCs. Not only do large LLCs waste silicon real estate that could have been better used for

cores, but also, the long access latency of large LLCs deteriorates the performance of scale-out

workloads, as shown in Figure 2.2.

Moreover, conventional processors have large, aggressive OoO cores that are not effective

for memory-intensive workloads. The large die area of the aggressive OoO cores used in the

conventional processors limit the number of cores to just a few. Consequently, conventional

processors cannot leverage the abundant request-level parallelism in scale-out workloads to

maximize throughput.

Finally, the reliance of the dancehall architectures on crossbar interconnects makes such

organizations unattractive for many-core processors due to the poor scalability of crossbars.

2.2.2 Tiled Processors

To overcome the scalability limitations of crossbar-based designs, many-core server processors

can employ a tiled organization with a fully distributed last-level cache. Figure 2.5 shows

an overview of a many-core processor based on a tiled design. Each tile consists of a core, a

slice of the distributed last-level cache, and a router. The tiles are linked via a routed, packet-

based, multi-hop interconnect in a mesh topology. An example of commercial tiled processors

includes Tilera’s TILE-Gx 3036 [83], which has 36 cores and 12MB of cache.

The tiled organization and a structured interconnect fabric allow mesh-based designs to

scale to large core counts. Unfortunately, the regularity of the mesh topology works to its

disadvantage when it comes to performance scalability. Each hop in a mesh network involves

the traversal of a multi-ported router, which adds delay due to the need to access the packet

buffers, arbitrate for resources, and navigate the switch. As Figure 2.3 shows, these delays di-

minish the performance of a mesh-based processor as the number of cores and, consequently,
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on-chip distance increases.

Moreover, just like conventional processors, existing tiled processors have large last-level

caches beyond what is required by scale-out workloads. Large LLCs in tiled processors waste

silicon real estate and prevent tiled processors from maximizing core count and, as a result,

throughput.

2.2.3 Optimized Tiled Processors

In this section, we discuss various optimization proposals, which are suggested in the com-

puter architecture research community, for eliminating the shortcomings of tiled processors.

LLC-Optimal Tiled Processors

Tiled processors usually divide the die area equally between cores and caches. As a result, a

significant fraction of the die area in tiled processors is devoted to last-level caches in spite

of the fact that large LLCs are not beneficial for scale-out workloads. Given this observation,

LLC-optimal tiled processors [39] use only a small fraction of their die area to last-level caches

(aggregate LLC capacity of 4-8MB as motivated in Figure 2.2) and devote a significant fraction

of their die area to cores. This optimization enables tiled processors to maximize the number

of cores. The abundant request-level parallelism in scale-out workloads enables LLC-optimal

tiled processors to increase throughput with every extra core.

Reducing the size of the last-level cache, large interconnect-induced LLC access latency is the

primary shortcoming of LLC-optimal tiled processors. As the latency of the mesh interconnect

grows with core count, and because LLC-optimal tiled processors have more cores as compared

to tiled processors, the negative impact of the interconnect latency on the performance of

LLC-optimal tiled processors is even more drastic.

LLC-Optimal Tiled Processors with Instruction Replication

Instruction footprints of scale-out workloads do not fit in L1 instruction caches and are stored

in the last-level cache. One challenge with large, LLC-resident instruction footprint is that the

on-die distance between the cores and the LLC adds delay to the cache access time. Because

L1-I misses stall the processor, scale-out workloads are particularly sensitive to the on-die

communication delays due to frequent instruction fetches from the LLC.

Researchers proposed instruction replication in the last-level cache as a way to reduce the

distance between the cores and the LLC slice that serves an instruction miss. The state-of-the-

art instruction replication in LLC slices of a tiled processor is R-NUCA [41]. R-NUCA replicates

instructions in LLC slices in a way that instruction blocks are, at most, one network hop away

from the requesting core. For this goal, R-NUCA divides tiles into clusters of size four and

16



2.3. Metric for the Design-Space Evaluation

replicates instructions in each cluster.

While instruction replication is effective for standard tiled processors, which have large LLCs,

LLC-optimal tiled processors have a small LLC, and instruction replication increases the

pressure on the LLC. Instruction replication in the small LLC of LLC-optimal tiled processors

increases the number of LLC misses and reduces the benefit of instruction replication. More-

over, instruction replication can only reduce the on-chip interconnect delay of instruction

accesses – data accesses do not benefit from this optimization.

2.3 Metric for the Design-Space Evaluation

Scale-out workloads are inherently parallel; consequently, they are best served by substrates

that provide a large number of cores to achieve high per-server throughput. However, higher

core density leaves less silicon real estate for on-die caches, while simultaneously increasing

the physical core-to-cache distance and interconnect delays. The cache should be large

enough to capture the dynamic instruction footprint and shared OS data, yet small enough

to provide fast access, which is particularly important for instruction fetches that lie on the

critical path of execution. The physical distance between the cores and cache must also be

short in order to minimize the delay due to the interconnect.

To capture these conflicting requirements in a single metric for assessing processor efficiency,

we propose performance density (PD), defined as performance per mm2. Given a core mi-

croarchitecture, PD provides a simple means of comparing a range of designs that differ in

core count, LLC size, and interconnect parameters.

2.4 Methodology

We compare the performance, area, and energy efficiency of various processors to an ideal pro-

cessor, which has a small LLC and an ideal 4-cycle interconnect, to highlight the inefficiencies

of existing processor organizations for the execution of scale-out workloads.

2.4.1 Design and Technology Parameters

Baseline (40nm). We compare the various chip architectures in 40nm technology with an

on-chip supply voltage of 0.9V. The choice of the 40nm as the baseline technology node is to

highlight that even with a relatively old technology node, existing processor organizations are

inefficient, and there is room for improvement. We model chips with an area of 250-280mm2, a

power budget of 95W, and a maximum of six single-channel DDR3 interfaces; these parameters

are representative of existing server processors fabricated in 40 and 45nm process technology.

Design parameters are summarized in Table 2.1 and Table 2.2. We consider three types of

cores and a range of cache sizes. Conventional processors feature an aggressive, 4-wide, large

17



Chapter 2. A Case For Scale-Out Processors

Table 2.1: Area and power estimates for various system components at 40nm.

Component Area Power

Cores
Conventional 25mm2 11W

OoO 4.5mm2 1W
In-order 1.3mm2 0.48W

LLC 16-way SA 5mm2 per MB 1W per MB

Interconnect 0.2 - 4.5 mm2 <5W
DDR3 interface

(PHY+ controller)
(2 + 10) mm2 5.7W

SoC components 42mm2 5W

instruction-window core microarchitecture. Tiled and ideal processors are assessed using

two types of cores: (1) high-performance, three-way out-of-order core, similar to ARM Cortex-

A15 [85]; and (2) dual-issue in-order core, resembling ARM Cortex-A8 [5]. To simplify the

comparison, we assume a 2GHz operating frequency for all three core types. Cache parameters

are estimated using CACTI 6.5 [72].

We estimate the area of the memory interfaces and other SoC components by scaling the

micrograph of a Nehalem processor in 45nm technology [57]. We measure the power con-

sumption of a DDR3-1667 channel to be 5.7W. Assuming effective utilization of 70% [24],

a 12.8GB/s channel provides 9GB/s of useful bandwidth. We estimate the power of other

SoC components and interfaces to be 5W using McPAT v0.8 [58] configured to model Sun

UltraSPARC T2.

Scaling study (20nm). To understand the effect of technology scaling on the different proces-

sor configurations, we also model them in 20nm technology. We choose the 20nm technology

node to study the effect of technology scaling because it is the technology node currently in

use by major processor manufacturers, and it highlights the inefficiency of existing processor

organizations in today’s technology node. We assume perfect area scaling of cores and caches

over two technology generations. Per ITRS estimates, we model a supply voltage of 0.8V and

choose not to increase the frequency to minimize power dissipation. We find that the ana-

log circuitry in the PHYs prevents memory interfaces from truly benefiting from technology

scaling. We evaluate systems with the emerging DDR4 interface, which is expected to double

per-channel memory bandwidth over DDR3 [32].

2.4.2 Scale-Out Workloads

Scale-out workloads that are used for the evaluation and include Data Serving, MapReduce,

Media Streaming, SAT Solver, Web Frontend, and Web Search are taken from CloudSuite

1.0 [1, 30]. We present two MapReduce workloads: Text Classification and Word Count (referred

to as MapReduce-C and MapReduce-W, respectively). For the Web Frontend workload, we

use the banking option from SPECweb2009 in place of its open-source counterpart from
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Table 2.2: Specification of various system components.

Processing Cores

Conventional: 4-wide dispatch/retirement
128-entry ROB, 32-entry LSQ, 2GHz

Out-of-order: 3-wide dispatch/retirement
60-entry ROB, 16-entry LSQ, 2GHz

In-order: 2-wide dispatch/retirement, 2GHz

L1I / D Caches
Conventional: 64KB, 4(8)-way I(D) cache

3-cycle load-to-use, 2 ports, 32 MSHRs
Rest: 32KB, 2-way, 2-cycle load-to-use, 1 port, 32 MSHRs

Last-Level Cache 16-way set-associative, 64B lines, 64 MSHRs, 16-entry victim cache

Interconnect
Ideal Interconnect: 4 cycles
Mesh: 3 cycles/hop (includes both router and channel delay)

Main Memory 45ns access latency

CloudSuite, as SPECweb2009 exhibits better performance scalability at high core counts. All

evaluated systems run Solaris 10 operating system.

2.4.3 Performance Evaluation

As evaluating performance of various processors requires evaluating configurations with many

cores (more than 64 cores), we use a verified analytic model1 [39] to predict the performance

of various processors. The model extends the classical average memory access time analysis

to predict the aggregate number of application instructions committed per cycle (i.e., perfor-

mance) for a given LLC capacity and core count; the model is parametrized by simulation

results, including core performance, cache miss rates, and interconnect delay.

2.5 Results

We now compare various processor organizations to an ideal processor. Conventional chip

design is representative of existing products. The tiled in-order organization is similar to

the Tilera Tile64 processor [90]. For the conventional processor, we dedicate one memory

channel for every four cores, while for various tiled and ideal processors, we measure the

bandwidth demand for every core/cache organization and workload using simulation. In

addition, we provision the number of memory channels to accommodate the worst-case

bandwidth demand across the workload spectrum. For all chip compositions, we model as

many cores as can be afforded without exceeding the area, energy, and bandwidth constraints

specified in Section 2.4.1.

1The accuracy of the analytic model is evaluated in the next chapter.
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Table 2.3: Specification of various processor designs at 40nm.

40nm

Processor design PD Cores
LLC

(MB) MCs
Die

(mm2)
Power
(Watt)

Perf/
Watt

Conventional 0.026 6 12 2 276 94 0.08
Tiled (OoO) 0.060 20 20 1 245 50 0.29
LLC-Optimal Tiled (OoO) 0.084 32 8 2 251 56 0.38
LLC-Optimal Tiled with IR (OoO) 0.086 32 8 3 264 62 0.37
Ideal (OoO) 0.101 32 8 2 251 56 0.45
Tiled (IO) 0.099 64 20 2 251 67 0.37
LLC-Optimal Tiled (IO) 0.131 96 6 5 261 86 0.40
LLC-Optimal Tiled with IR (IO) 0.145 96 6 5 261 86 0.44
Ideal (IO) 0.167 96 6 5 261 86 0.51

2.5.1 40nm Technology

Conventional: 2MB of LLC per core. Cores and caches are interconnected via a crossbar. One

DDR3 channel is used for every four cores. Six cores can be afforded without exceeding the

95W power budget. The resulting processor reaches a performance density of 0.026.

We begin the study of tiled and ideal processors with out-of-order cores in the 40nm technol-

ogy.

Tiled with OoO cores: 1MB of LLC per tile. The OoO tiled design is area-limited; a total of

20 cores can be integrated on a 250mm2 die while maintaining a regular grid topology with

a reasonable aspect ratio. This organization uses a mesh interconnect with 3-cycle per-hop

latency. The resulting organization needs one memory channel and achieves a performance

density of 0.061.

LLC-optimal tiled with OoO cores: 256KB of LLC per tile. The OoO LLC-optimal tiled design is

area-limited; a total of 32 cores can be integrated on a 250mm2 die. The aggregate LLC capacity

in the OoO LLC-optimal tiled is 8MB (aggregate across all 32 cores), as larger LLC capacities

only deteriorate performance. The resulting organization needs two memory channels and

reaches a performance density of 0.084.

LLC-optimal tiled with IR and OoO cores: Same core count and LLC capacity as LLC-optimal

tiled with OoO cores but uses the R-NUCA instruction replication (IR) to minimize instruction

access latencies. This processor needs three memory channels and reaches a performance

density of 0.086.

Ideal processor with OoO cores: 32 cores and 8MB of LLC (same as LLC-optimal tiled with

OoO cores) interconnected using an ideal interconnect with a 4-cycle latency. The ideal

processor requires two memory channels and gets a performance density of 0.101.

Compared to the conventional design (see Table 2.3), the ideal processor with out-of-order
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cores achieves nearly 3.9x higher performance density, thanks to its greater execution re-

sources, resulting from lower-complexity cores and a smaller LLC. Performance density of the

ideal processor is 1.7x higher when compared to the tiled processor. The latter is hampered

by over-provisioned cache capacities and excessive LLC access delays stemming from the

multi-hop topology. A tiled design, even with the same LLC capacity as the ideal processor (i.e.,

LLC-optimal tiled), shows a 17% lower PD at 32 cores as compared to the ideal processor due

to its larger interconnect latency. LLC-optimal tiled, even with an optimization like instruction

replication, is 15% behind the ideal processor at 40nm technology, while both processors have

the same number of cores and LLC capacity, highlighting the importance of low LLC access

latency.

In the past 10 years, there has emerged a trend toward simpler cores in server processors.

Companies like Tilera target scale-out datacenters with chips based on simple in-order cores,

validating prior research showing that such designs are well-suited for certain scale-out

workloads [59]. Although server processors based on simple cores may sacrifice latency,

for services whose primary concern is throughput (e.g., data analysis), high-throughput

designs that integrate many simple cores may be preferred to organizations with fewer cores

of higher performance. Following this trend, we continue the study with in-order cores in

40nm technology.

Tiled with in-order cores: The tiled processor with in-order cores maintains the same core-

to-cache area ratio of the OoO design. The resulting configuration affords 64 cores and 20MB

of LLC, with area as the limiting factor. This processor requires two memory channels and

achieves a performance density of 0.099.

LLC-optimal tiled with in-order cores: 64KB of LLC per tile. The in-order LLC-optimal tiled

design is area-limited; a total of 96 cores can be integrated on a 260mm2 die while maintain-

ing a regular grid topology with a reasonable aspect ratio. The LLC capacity in the in-order

LLC-optimal tiled is 6MB (aggregate across 96 cores), as larger LLC capacities only deteri-

orate performance. The resulting processor requires five memory channels and reaches a

performance density of 0.131.

LLC-optimal tiled with IR and in-order cores: Same core count and LLC capacity as LLC-

optimal tiled with in-order cores but uses the R-NUCA instruction replication (IR) to minimize

instruction access latencies. This processor needs five memory channels and achieves a

performance density of 0.145.

Ideal processor with in-order cores: 96 cores and 6MB of LLC (the same as LLC-optimal tiled

with in-order cores) interconnected using an ideal interconnect with a 4-cycle latency. This

processor needs five memory channels and obtains a performance density of 0.167.

The ideal processor achieves a 1.7x improvement in performance density over a tiled design

with in-order cores, and a 6.4x improvement over a conventional processor. Compared

to a tiled design with the same LLC capacity as the ideal processor (i.e., LLC-optimal tiled
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Table 2.4: Specification of various processor designs at 20nm.

20nm

Processor design PD Cores
LLC

(MB) MCs
Die

(mm2)
Power
(Watt)

Perf/
Watt

Conventional 0.067 12 48 3 213 93 0.15
Tiled (OoO) 0.206 80 80 2 256 80 0.66
LLC-Optimal Tiled (OoO) 0.258 112 28 4 251 83 0.78
LLC-Optimal Tiled with IR (OoO) 0.294 112 28 4 251 83 0.89
Ideal (OoO) 0.366 112 28 4 251 83 1.11
Tiled (IO) 0.227 180 80 4 249 94 0.60
LLC-Optimal Tiled (IO) 0.360 224 12 6 202 86 0.84
LLC-Optimal Tiled with IR (IO) 0.362 192 12 6 192 80 0.87
Ideal (IO) 0.518 224 12 6 202 86 1.21

with in-order cores), the ideal processor obtains a 1.3x higher performance density. While an

optimization like instruction replication improves the performance density of the LLC-optimal

tiled processor, the resulting processor is 13% behind the ideal processor.

2.5.2 Projection to 20nm Technology

To understand the effect of technology scaling on various processor organizations, we project

all of the processors to the 20nm technology node. In the tiled design, per-hop delays remain

the same as in the 40nm baseline, as greater wire RC delays are offset by a reduction in tile

dimensions.

For all processor configurations, we keep the core-to-cache area ratio the same as that of

40nm. For the conventional processor, we dedicate one memory channel for every four cores,

while for various tiled and ideal processors, we provision the number of memory channels

based on the bandwidth demands. For all configurations, we populate the die area with as

many cores as we can afford without exceeding the area, energy, or bandwidth constraints

specified in Section 2.4.1. The specifications of the resulting processors is shown in Table 2.4.

Ideal processor based on out-of-order cores is area-limited, occupying 251mm2; additionally,

it dissipates 83W of power at peak load and achieves a performance density of 0.366, an

improvement of 3.6x over the 40nm baseline. While ideal scaling predicts PD to improve by a

factor of 4, the growth in area dedicated to the memory interfaces that do not benefit from

technology scaling reduces the fraction of the die available to compute and dampens the gains

in PD.

Compared to the ideal processor, a technology-scaled conventional design is power-limited

at 20nm. It integrates 12 cores on a die, improving performance density by a factor of 2.6

from the 40nm design. The tiled architecture with out-of-order cores enjoys ideal scaling

in core count, reaching 80 cores in an area-limited configuration, with performance density

growing by 3.4x over the 40nm baseline. Performance improvements in the tiled organization
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is constrained by the growth in the network diameter, which increases LLC access delays. The

LLC-optimal tiled with (IR and) OoO cores is area-limited at 20nm. The performance density

of the LLC-optimal tiled (with IR) shows 3.1x (3.4x) improvement over the design at 40nm.

The ideal processor shows the strongest scalability, improving performance density by 5.5x,

1.8x, 1.4x, and 1.2x over conventional, tiled, LLC-optimal tiled and LLC-optimal tiled with IR,

respectively, when implemented in 20nm technology.

In an implementation based on in-order cores, the ideal processor is bandwidth-limited,

assuming a constraint of six DDR4 memory controllers on a die. Technology scaling improves

performance density by a factor of 3.1, instead of the expected factor of 4, due to the large area

overheads introduced by the on-die memory interfaces necessary to feed the processor.

Unlike the ideal processor, the tiled processor is power-limited at 20nm. Compared to the

40nm design, the tiled processor has 2.8x more cores (180 vs. 64) and 2.3x higher performance

density. Moreover, the LLC-optimal tiled with (IR and) in-order cores is bandwidth-limited

at 20nm. The number of cores in the LLC-optimal tiled with IR is 14% less than that of LLC-

optimal tiled because both processors are bandwidth-limited, and the instruction replication

increases the off-chip bandwidth demands. The performance density of the LLC-optimal

tiled with (IR and) in-order cores shows 2.7x (2.5x) improvement over the design at 40nm. In

absolute terms, the ideal processor improves performance density by 7.7x, 2.3x, 1.4x, and 1.4x

over conventional, tiled, LLC-optimal tiled, and LLC-optimal tiled with IR, respectively, when

all processors are engineered with in-order cores in the 20nm technology.

2.5.3 Summary

The conventional architecture achieves the lowest performance density among the evaluated

designs at both 40 and 20nm technology nodes. Conventional designs have low performance

density because (a) the caches are overprovisioned, allowing less area for compute; and

(b) the compute area is misallocated, as aggressive cores provide only a small performance

improvement over less aggressive out-of-order cores, yet they consume considerably more

area.

The tiled processors using a mesh-based interconnect and out-of-order cores achieve 2.2x

higher performance density than the conventional processor in 40nm technology (3.1x in

20nm). The use of lower-complexity cores improves performance density and, as a result,

throughput; however, the large LLC and the delays associated with a multi-hop interconnect

limit the performance gains. The LLC-optimal tiled processors improve performance density

over tiled processors by 1.4x and 1.3x in 40nm and 20nm technology, respectively. To limit

the performance loss of the multi-hop interconnect, LLC-optimal tiled processors can use

the instruction replication [41] in the LLC to optimize for the instruction accesses. In 40nm

(20nm) technology, the LLC-optimal tiled processors with the instruction replication achieve

2% (16%) higher performance density over LLC-optimal tiled organization.
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The highest performance density is achieved with the ideal processor, which has a small

LLC and an ideal 4-cycle interconnect. The ideal processor with out-of-order cores improves

performance density by 3.9x, 1.7x, 1.2x, and 1.2x over conventional, tiled, LLC-optimal tiled,

and LLC-optimal tiled with IR, respectively, in 40nm technology (5.5x, 1.8x, 1.4x, and 1.2x over

the respective designs in 20nm).

On workloads with laxer QoS requirements, higher performance density (and, consequently,

higher throughput) can be achieved through the use of in-order cores. In such cases, the

ideal processor improves performance density by 6.4x (7.7x) and 1.7x (2.3x) over conven-

tional and tiled processors, respectively, in 40nm (20nm) technology. Moreover, the ideal

processor achieves higher performance density over LLC-optimal tiled and LLC-optimal tiled

processors that are optimized with the instruction replication by 1.8x (1.4x), and 1.2x (1.4x),

respectively, in 40nm (20nm) technology. The results corroborate prior work, which shows

that low-complexity cores are well-suited for throughput workloads [25, 43].

The results presented in this chapter show a significant gap between the performance density

of existing processor organizations and that of ideal processors for the execution of scale-out

workloads. This dissertation aims at proposing Scale-Out Processors for efficient execution

of scale-out workloads. Scale-Out Processors approach the performance density of ideal

processors.
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3 A Methodology to Design Scale-Out
Processors

Scale-out workloads, which are behind many of today’s online services, as a class, have a set of

common characteristics that differentiate them from desktop, media processing, and scientific

domains [18]. A typical scale-out workload, be it a streaming service or Web search, handles

a stream of mostly independent client requests that require accessing pieces of data from a

vast dataset. Processing a diversity of requests, scale-out workloads have large instruction

footprints.

The presence of common traits – namely, (a) request independence; (b) large instruction

footprints; and (c) vast dataset sizes – indicates that processors can be optimized for this

workload class. The abundant request-level parallelism argues for processor designs with a

large number of cores to maximize throughput. The independent nature of requests virtually

eliminates inter-thread communication activity; however, large instruction footprints require

a fast path between the individual cores and the last-level cache (LLC) containing the appli-

cations’ instructions and data. Finally, the vast dataset dwarfs on-die storage capacities and

offers few opportunities for caching due to limited reuse. (See Section 2.1 for more details.)

As discussed in the previous chapter, existing processor organizations are not capable of

offering all of the features necessary for efficient execution of scale-out workloads. While

existing processor organizations can offer many cores and a small LLC, in existing organiza-

tions, with the increase in core count, the access latency of individual cores to the last-level

cache increases. As the number of cores increases, the distance from the cores to the LLC

also increases, which results in a longer LLC access latency. This fundamental shortcoming

makes existing processor organizations inherently unsuitable for the execution of scale-out

workloads. Unfortunately, technology scaling exacerbates the problem: as technology scales

and more cores are offered, the distance from the cores to the LLC and, as a result, the LLC

access latency in existing processor organizations, increases.

In this chapter, we seek to develop a methodology to design technology-scalable server chips

for scale-out workloads that simultaneously offer all of the features necessary for the efficient

execution of scale-out workloads. In this methodology, performance density (PD), defined as
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Figure 3.1: Performance per core, performance per chip, and performance density for a
hypothetical workload.

throughput per unit area, is used to quantify how effectively an architecture uses the silicon real

estate. The proposed design methodology derives a performance-density optimal processor

building block called a pod, which tightly couples a number of cores to a small LLC via a fast

interconnect. A key aspect of the proposed architecture is that pods are stand-alone servers,

with no inter-pod connectivity or coherence. The pod methodology enables processors to

scale seamlessly with technology, side-stepping the challenges of scaling both software and

hardware to large core counts, while at the same time guaranteeing maximum throughput

and optimally-efficient use of the on-chip real estate.

3.1 Motivation

We propose performance density (PD), defined as performance per mm2 for assessing proces-

sor efficiency. Given a core microarchitecture, PD provides a simple means of comparing a

range of designs that differ in core count, LLC size, and interconnect parameters.

Figure 3.1 provides the intuition behind the performance density metric using a hypothetical

workload whose behavior is representative of scale-out workloads. The x-axis plots the number

of cores for a fixed-size cache. The number of cores increases to the right of the graph,

resulting in a higher core-to-cache ratio. The black solid line plots per-core performance,

which diminishes as the number of cores grows due to the combination of distance and

sharing at the LLC. The dashed line shows the aggregate throughput, which scales with the

additional core resources, but the growth is sub-linear in the core count due to the eroding

per-core throughput. Finally, the gray line plots performance density, whose peak represents

an optimal configuration that maximizes performance per unit area by balancing core count,

LLC capacity, sharing, and distance factors.

3.2 Scale-Out Design Methodology

Today’s server chips, such as the conventional processors and the emerging tiled designs,

scale performance through the addition of cores, cache capacity, interconnect and coherence
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resources, and miscellaneous glue logic. This scaling strategy is a characteristic of the scale-up

model. This dissertation argues that the model of increasing processor complexity is counter-

productive for scale-out workloads because additional resources do not yield a commensurate

improvement in chip-level performance.

To overcome the limitations of the conventional design methodology, we have developed a

technology-scalable approach for maximizing the performance of server processors targeting

scale-out workloads. This approach uses performance density as an optimization metric

and builds on a simple observation that, given a configuration that is PD-optimal, the most

profitable way of scaling aggregate performance is to grow the number of PD-optimal units

on a chip. This strategy maintains the optimal performance density while increasing the

aggregate throughput. In contrast, an approach that expands a PD-optimal configuration

through additional core and cache resources lowers performance density and leads to a chip

organization whose peak throughput is suboptimal for a given area budget.

3.2.1 Pod as a Building Block

The notion at the heart of a Scale-Out Processor is the pod, a PD-optimal organization of core,

cache, and interconnect resources. A pod is a complete server that runs its own copy of the

operating system. Depending on the characteristics of the underlying process technology and

component microarchitecture, a single pod may require only a fraction of the available die

area, power, and bandwidth budget. To fully leverage the benefits of integration, multiple

pods can be placed on a die. In effect, a pod acts as the tiling unit in a Scale-Out Processor.

Adding more pods does not affect the optimality of each individual pod, allowing performance

to scale linearly with the pod count. Because each pod is a complete server-on-a-die, direct

inter-pod connectivity is not required. Thus, perfect performance scalability comes at a negli-

gible integration expense that side-steps the challenge of scaling up the global interconnect

and coherence infrastructure. The lack of inter-dependence among pods is a feature that

fundamentally sets Scale-Out Processors apart from existing chip organizations and enables

optimality-preserving scaling across technology generations.

Figure 3.2 captures the spirit of our approach and highlights the differences from existing

designs by comparing the chip-level organization of conventional, tiled, and Scale-Out designs.

In the rest of this section, we explain the features of a PD-optimal pod and describe the

implications of a pod-based design at the chip level.

3.2.2 Pod Features

Scale-out workloads have large instruction footprints [30], which are not well-accommodated

by private caches [41]. A shared LLC is, thus, a better choice, as it can capture the working

set of application and OS instructions, along with OS and thread-private data, without the

performance and area expense of per-core private cache hierarchies. However, once these
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Figure 3.2: Comparison of conventional, tiled, and Scale-Out architectures. The Scale-Out
design features two pods.

elements are captured, larger LLC configurations do not benefit scale-out workloads whose

datasets greatly exceed capacities of practical on-die caches.

Because much of the useful capacity of the shared LLC comes from the common instruction

and OS working set, the cache is naturally amenable to high degrees of sharing, a trend shown

in Figure 2.3. However, the high incidence of misses at the L1-I mandates an LLC organization

with low access latency and a fast core-to-cache interconnect. Thus, the performance density

of a pod is maximized by balancing throughput gains arising from having many cores share

an LLC against the reduction in per-core performance stemming from longer cache access

latencies.

The core microarchitecture, cache parameters, and interconnect characteristics all play their

respective roles in determining a PD-optimal organization by influencing factors that include

the cache bank access latency, core-to-cache distance, wire delays, and the pressure placed by

each core on the cache. Across the spectrum of scale-out workloads, modest cache capacities

in the range of 2-8MB are sufficient. Meanwhile, the number of cores required to maximize

performance density for the range of parameters considered in our studies varies from 16 (for

out-of-order cores) to up to 32 (for in-order cores).

3.2.3 Chip-Level Considerations

A Scale-Out chip is a simple composition of one or more pods and a set of memory and I/O

interfaces. Multi-pod designs reduce the number of chips for a given throughput target or

power budget. Having fewer chips on a motherboard is beneficial in high-density datacenter

racks, where motherboard space is limited, and reducing the number of sockets per board

may be an effective cost-reduction strategy.

Integrating multiple pods on a die improves efficiency by sharing the on-die DRAM and I/O

ports, increasing bandwidth utilization, and reducing pin requirement. Scale-Out chips that
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Table 3.1: System parameters for cycle-accurate, full-system simulations.

CMP Size
1-64 cores (Data Serving, MapReduce, SAT Solver)
1-32 cores (Web Frontend, Web Search)
4-16 cores (Media Streaming)

Processing Cores

Conventional: 4-wide dispatch/retirement
128-entry ROB, 32-entry LSQ, 2GHz

Out-of-order: 3-wide dispatch/retirement
60-entry ROB, 16-entry LSQ, 2GHz

In-order: 2-wide dispatch/retirement, 2GHz

L1I / D Caches
Conventional: 64KB, 4(8)-way I(D) cache

3-cycle load-to-use, 2 ports, 32 MSHRs
Rest: 32KB, 2-way, 2-cycle load-to-use, 1 port, 32 MSHRs

Last-Level Cache
16-way set-associative, 64B lines, 64 MSHRs, 16-entry victim cache
UCA: 1 bank per 4 cores; NUCA: 1 bank per tile

Interconnect

Ideal Crossbar: 4 cycles
Crossbar: 1-8 cores: 4 cycles;

16, 32, 64 cores: 5, 7, and 11 cycles respectively
Mesh: 3 cycles/hop (includes both router and channel delay)

Main Memory 45ns access latency

share pins among pods necessitate a global interconnect layer to connect the individual pods

to the memory and I/O ports. Fortunately, such a layer can be kept trivial due to the limited

connectivity that it must provide, because pod-to-pod communication is not needed, and the

number of external interfaces is low.

The number of pods on a die is dictated by physical constraints, such as area, power, and pin

bandwidth. The lack of interdependence among pods is a valuable feature that eliminates

the need for pod-to-pod communication infrastructure and chip-wide coherence support.

The absence of these mechanisms reduces the design complexity of Scale-Out Processors and

boosts their scalability.

3.3 Methodology

We use Flexus [93, 89] for cycle-accurate, full-system simulation of various chip multi-processor

(CMP) configurations. Flexus extends the Virtutech Simics functional simulator with timing

models of in-order and out-of-order cores, caches, on-chip protocol controllers, and inter-

connect. We model CMPs with 1 to 64 cores, various cache sizes, and three different on-chip

interconnects. The details of the simulated architecture are listed in Table 3.1. Flexus models

the SPARC v9 ISA and is able to run unmodified operating systems and applications.

We use the SimFlex multiprocessor sampling methodology [89]. The samples are drawn over

an interval of 10 seconds (30 seconds for Media Streaming) of simulated time. For each

measurement, we launch simulations from checkpoints with warmed caches and branch
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predictors and run 100K cycles (2M cycles for Data Serving) to achieve a steady state of

detailed cycle-accurate simulation before collecting measurements for the subsequent 50K

cycles. We use the ratio of the number of application instructions committed per cycle to the

total number of cycles (including the cycles spent executing operating system code) to measure

performance; this metric has been shown to accurately reflect overall system throughput [89].

Performance measurements are computed with 95% confidence with an average error of less

than 4%.

Because finding optimal pod configurations for Scale-Out chips requires evaluating a large

design space, we augment the simulation-based studies with an analytic model [39] to limit

the extent of time-intensive simulation. The model extends the classical average memory

access time analysis to predict per-core performance for a given LLC capacity; the model

is parametrized by simulation results, including core performance, cache miss rates, and

interconnect delay.

3.4 Results

We now compare Scale-Out Processor designs to conventional and tiled organizations.1 For

each Scale-Out design, we first find a performance-density-optimal pod organization; then,

we integrate pods up to the area, energy, and bandwidth limits per Section 2.4.1. We start by

validating the analytic model against the results obtained via cycle-accurate simulation and

then use the analytic model for the rest of the study.

3.4.1 Model Validation

Figure 3.3 illustrates the performance density results for designs with out-of-order cores, a

4MB LLC, and different interconnect types across our scale-out workloads. We model three

different interconnects: a mesh, an ideal crossbar with a constant delay that is independent of

the number of interconnected components, and a realistic crossbar (labeled crossbar) whose

delay is a function of the core count. The markers in the graph show cycle-accurate simulation

results, whereas the lines correspond to the analytic model.

In general, the analytic model predicts performance with excellent accuracy up to 16 cores. At

32 and 64 cores, the actual performance diminishes on three of the workloads (Data Serving,

Web Search, and SAT Solver) due to poor software scalability, an effect not captured by the

model. Performance scales well with core count for the remaining three workloads, and our

model shows good accuracy, even at high core counts.

1The specification of conventional and tiled processors is presented in Chapter 2.
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Figure 3.3: Cycle-accurate simulation and analytic results for designs with out-of-order cores
and a 4MB LLC.
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Figure 3.4: Performance density for a system with out-of-order cores and a range of last-level
cache sizes.

3.4.2 Scale-Out Processors with Out-of-Order Cores

We begin the study with out-of-order cores in the 40nm technology. Figure 3.4 plots perfor-

mance density, averaged across all workloads, for four different LLC sizes. We do not consider

cache sizes above 8MB, as bigger caches do not provide performance improvements (see Sec-

tion 2.1.3). Each graph consists of three lines, corresponding to one of the three interconnects
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described in Section 3.4.1.

In systems with a realistic interconnect (i.e., crossbar or mesh), performance density starts

diminishing above 32 cores, regardless of cache capacity, indicating that the physical distance

between the cores and the LLC hurts performance when integrating a large number of cores.

Performance density is maximized with 32 cores, a 4MB LLC, and a crossbar interconnect.

However, the peak is almost flat. In such cases, software scalability bottlenecks, coherence

complexity, and the difficulty of implementing a crossbar interconnect for a large number of

cores are likely to shift the design toward a near-to-optimal pod with fewer cores.

To explore this trade-off, Figure 3.5 examines performance density of pods based on a crossbar

interconnect across various LLC sizes. Among designs with fewer than 32 cores, a pod that

integrates 16 cores and 4MB of LLC is within 5% of the true optimum. We, therefore, adopt the

16-core 4MB LLC design with a crossbar interconnect, as the preferred pod configuration due

to its high PD at modest design complexity.

The PD-optimal pod occupies 92mm2 and draws 20W of power for cores, caches, and the

crossbar. Peak bandwidth demand is 9.4GB/s for 16 cores.

Chip-level assessment. Under the constraints specified in Section 2.4.1, a Scale-Out Processor

can afford two pods before hitting the area limit. The resulting chip features 32 cores on a

263mm2 die with a TDP of 62W.

3.4.3 Scale-Out Processors with In-Order Cores

Figure 3.6 illustrates performance density results, averaged across all workloads, for cache

sizes ranging from 1 to 8MB and three different interconnects. The general trends are similar

to those described in the previous section; however, simpler cores in a throughput-oriented ar-

chitecture yield an optimal pod design with 32 cores, 2MB of LLC, and a crossbar interconnect.

To mitigate the complexity associated with a large crossbar, pairs of cores can share a switch

interface. Because the per-core performance is lower than in a design with out-of-order cores,
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Figure 3.6: Performance density for a system with in-order cores and a range of last-level cache
sizes.

we find the impact of switch sharing to be negligible.

The PD-optimal pod occupies 52mm2 and draws 17W of power for cores, caches, and the

crossbar. Peak bandwidth demand is 15GB/s for 32 cores.

Chip-level assessment. A Scale-Out Processor with in-order cores integrates three PD-optimal

pods and is area-constrained. With memory interfaces and miscellaneous peripheral circuitry

factored in, this configuration requires 270mm2 of die area and a TDP of 91W.

3.4.4 Projection to 20nm Technology

To understand the effect of technology scaling on the Scale-Out Processor design, we project

Scale-Out Processors with out-of-order and in-order cores to the 20nm technology node.

In a Scale-Out Processor based on out-of-order cores, seven pods can be integrated, for a total

of 112 cores. The resulting configuration is area-limited, occupies 251mm2, dissipates 83W of

power at peak load, and achieves a performance density of 0.339, an improvement of 3.7x over

the 40nm baseline. While ideal scaling predicts PD to improve by a factor of 4, the growth in

area dedicated to the memory interfaces that do not benefit from technology scaling reduces

the fraction of the die available to compute and dampens the gains in PD.

In an implementation based on in-order cores, the Scale-Out configuration is bandwidth-

limited, assuming a constraint of six DDR4 memory controllers on a die. Compared to the

40nm baseline, the number of pods doubles to six on 192mm2 die. Technology scaling im-

proves performance density by a factor of 2.8, instead of the expected factor of 4, due to

the large area overheads introduced by the on-die memory interfaces necessary to feed the

Scale-Out chip.

The analysis above assumes the use of DDR4 memory interfaces. If DDR3 interfaces are used

instead, Scale-Out designs using both core types, as well as tiled chips with in-order cores,

will be bandwidth-limited at 20nm. The results corroborate prior work showing that highly-
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Table 3.2: Performance density, area, power, and bandwidth requirements of various processor
designs.

40nm

Processor design PD Cores
LLC

(MB) MCs
Die

(mm2)
Power
(Watt)

Perf/
Watt

Conventional 0.026 6 12 2 276 94 0.08
Tiled (OoO) 0.060 20 20 1 245 50 0.29
LLC-Optimal Tiled (OoO) 0.084 32 8 2 251 56 0.38
LLC-Optimal Tiled with IR (OoO) 0.086 32 8 3 264 62 0.37
Scale-Out (OoO) 0.092 32 8 3 263 62 0.39
Tiled (IO) 0.099 64 20 2 251 67 0.37
LLC-Optimal Tiled (IO) 0.131 96 6 5 261 86 0.40
LLC-Optimal Tiled with IR (IO) 0.145 96 6 5 261 86 0.44
Scale-Out (IO) 0.155 96 6 6 270 91 0.46

20nm

Processor design PD Cores
LLC

(MB) MCs
Die

(mm2)
Power
(Watt)

Perf/
Watt

Conventional 0.067 12 48 3 213 93 0.15
Tiled (OoO) 0.206 80 80 2 256 80 0.66
LLC-Optimal Tiled (OoO) 0.258 112 28 4 251 83 0.78
LLC-Optimal Tiled with IR (OoO) 0.294 112 28 4 251 83 0.89
Scale-Out (OoO) 0.339 112 28 4 251 83 1.03
Tiled (IO) 0.227 180 80 4 249 94 0.60
LLC-Optimal Tiled (IO) 0.360 224 12 6 202 86 0.84
LLC-Optimal Tiled with IR (IO) 0.362 192 12 6 192 80 0.87
Scale-Out (IO) 0.441 192 12 6 192 80 1.06

integrated chips based on simple cores will necessitate bandwidth-boosting techniques, such

as 3D-stacked DRAM caches, to mitigate the memory bandwidth wall [42].

3.4.5 Summary

Table 3.2 summarizes chip-level features, power and bandwidth requirements, performance

per Watt, and performance per mm2 (i.e., performance density) for the various processor

designs. Under an area-normalized comparison, processors with a higher performance density

necessarily yield a higher performance. Conversely, for a given performance target, PD-

optimized designs need a smaller die area compared to chips with a lower performance

density.

The highest performance density is achieved in a Scale-Out Processor, which uses a pod-based

organization to limit interconnect delays and maximizes compute area through modestly

sized last-level caches. A Scale-Out design with out-of-order cores improves performance

density by 3.5x and 1.5x over conventional and tiled chips, respectively, in 40nm technology

(5.1x and 1.6x over the respective designs in 20nm). A Scale-Out design also achieves higher

performance density over optimized tiled designs, such as LLC-optimal tiled and LLC-optimal
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tiled with IR by 10% (31%) and 7% (15%), respectively, in 40nm (20nm) technology. Scale-Out

Processors are 9% (7%) behind the ideal processor with the same LLC capacity and an ideal

4-cycle interconnect in 40nm (20nm) technology. It is noticeable that the performance density

of the Scale-Out Processor becomes closer to the performance density of the ideal processor

in the 20nm technology (as compared to 40nm technology) because, in this technology node,

a larger fraction of the die area is used for memory channels that do not directly contribute to

performance.

On workloads with laxer QoS requirements, higher performance density (and, consequently,

higher throughput) can be achieved through the use of in-order cores. In such cases, a Scale-

Out chip improves performance density by 6x (6.6x) and 1.6x (1.9x) over conventional and

tiled designs, respectively, in 40nm (20nm) technology. Moreover, a Scale-Out organization

achieves higher performance density over optimized tiled organizations, such as LLC-optimal

tiled or LLC-optimal tiled with IR by 18% (22%) and 7% (22%), respectively, in 40nm (20nm)

technology. The performance density of Scale-Out Processors is 7% (15%) behind that of

the ideal processor when both processors are designed using in-order cores in 40nm (20nm)

technology. The gap between the performance density of the Scale-Out Processor and the ideal

processor increases in 20nm technology because in this technology node, both processors

are bandwidth-limited, and the ideal processor can make better use of on-die caches. The

results also underscore Scale-Out Processors’ advantage under technology scaling, as both

in-order and out-of-order Scale-Out configurations improve the lead in performance density

over conventional and tiled chips as technology is scaled from 40 to 20nm.

Finally, we note that Scale-Out organizations are effective in improving processor energy

efficiency, in addition to performance density. Compared to tiled organizations, performance

per Watt is improved by 1.3x and 1.2x for out-of-order and in-order designs, respectively, in

40nm technology. The improvements extend to 1.6x and 1.8x at 20nm. Energy efficiency in

Scale-Out chips is improved through higher per-core performance and lower energy/op. While

core efficiency is the same for Scale-Out and tiled chips with the same core type, Scale-Out

chips dissipate less energy in the memory hierarchy through smaller caches (less leakage) and

smaller communication distances.
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4 Microarchitecture of Scale-Out Proces-
sors

Taking advantage of common scale-out workload features, and driven by the need to increase

server efficiency, in Chapter 3, we introduced Scale-Out Processors and formalized the Scale-

Out Processor (SOP) design methodology. The SOP methodology calls for partitioning a chip

into stand-alone modules named pods, wherein each pod is a server running an operating

system and a full software stack. Moreover, the SOP methodology provides an optimization

framework for deriving optimal core counts and LLC capacities in each pod based on mi-

croarchitectural and technology parameters. Additionally, each pod advocates many cores,

modestly sized LLCs, and low interconnect delays.

With SOP methodology calling for having many pods in Scale-Out Processors, an open ques-

tion is the following: how should the cores and the LLC in a pod be arranged and intercon-

nected for maximum efficiency? While fast access to instructions and data is essential for

the performance of scale-out workloads, instructions and data are frequently served by the

last-level cache due to their large working sets. Consequently, providing a fast access path to

the LLC is important when designing a pod for Scale-Out Processors. As the organization of

the cores and the LLC and the choice of the interconnection network determine the access

path between the individual cores and the LLC, we must optimize them for fast instruction and

data delivery. Due to the fact that the organization of a pod and the choice of the interconnect

depend on the number of cores in the pod, we discuss these issues for pods with few and

many cores separately.

4.1 Pods with Few Cores

When few cores and cache banks need to be connected, a dancehall organization [82] with

a crossbar interconnect for communication between the cores and cache banks is the right

choice: the access latency of a crossbar interconnect is small, and its area overhead is negligible.

Fortunately, designing a pod based on a crossbar is straightforward: there are many processors

in the market that connect cores to cache banks via a crossbar in a dancehall fashion [81, 46, 2].

In the previous chapter, we showed that a pod with OoO cores features 16 cores and 4MB of
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Figure 4.1: Elements of tiled pods.

LLC. For this pod, a crossbar can be used to connect cores and cache banks. The organization

of this pod is similar to Niagara III [81], which has 16 cores and 6MB of cache; in addition, it

provides connections between cores and cache banks using a crossbar. For the sake of brevity,

we do not go into more details; instead, we will focus on pods with many cores.

4.2 Pods with Many Cores

The reliance of the dancehall architectures on crossbar interconnects makes such organiza-

tions unattractive for many-core pods due to the poor scalability of crossbars. To overcome

the scalability limitations of crossbar-based designs, many-core pods can employ a tiled orga-

nization with a fully distributed last-level cache. Figure 4.1a shows an overview of a generic

pod based on a tiled design. Each tile, pictured in Figure 4.1b, consists of a core, a slice of the

distributed last-level cache, a directory slice, and a router. The tiles are linked via a routed,

packet-based, multi-hop interconnect in a mesh topology.

The tiled organization and a structured interconnect fabric allow mesh-based designs to

scale to large core counts. Unfortunately, the regularity of the mesh topology works to its

disadvantage when it comes to performance scalability. Each hop in a mesh network involves

the traversal of a multi-ported router, shown in Figure 4.1c, which adds delay due to the need

to access the packet buffers, arbitrate for resources, and navigate the switch.

To overcome the performance drawbacks of mesh-based interconnects, researchers developed

low-diameter topologies suitable for on-die implementation. These topologies use rich inter-

node connectivity to bypass intermediate routers between a packet’s source and destination

nodes. A state-of-the-art, low-diameter topology is the flattened butterfly [55], shown in

Figure 4.2. The flattened butterfly uses a set of dedicated channels to fully connect a given

node to others along the row and column. The resulting network requires, at most, two hops

(one in each of the X and Y dimensions) to deliver the packet to the destination. In doing so,

the flattened butterfly greatly reduces the contribution of routers to the end-to-end delay,

allowing performance to approach that of a crossbar interconnect.
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Figure 4.2: Flattened butterfly topology (links from only one node shown for clarity).

Problematically, the performance advantages of the flattened butterfly, or another richly

connected Network-on-Chip (NOC), come at considerable area expense, stemming from the

use of many-ported routers and a multitude of links. For instance, in the flattened butterfly in

Figure 4.2, each router necessitates 14 network ports (7 in each of the two dimensions), plus a

local port. The network ports are costly due to the presence of deep packet buffers necessary

to cover the flight time of the long-range links. Meanwhile, the routers’ internal switch fabric

is area-intensive due the need to interconnect a large number of ports. Finally, links consume

valuable on-die real estate due to the need for frequent repeater placement1, even though

wires themselves can be routed over tiles.

To summarize, existing NOC architectures require an uneasy choice between performance

and area efficiency. Meanwhile, many-core pods in Scale-Out Processors demand both good

performance and good area efficiency.

4.2.1 Memory Traffic in Scale-Out Workloads

In order to maximize the efficiency of many-core pods in Scale-Out Processors, we examine

the memory traffic in scale-out workloads to identify opportunities for optimizations.

As noted earlier, scale-out workloads have large instruction footprints and vast datasets. Cores

executing these workloads frequently access the LLC because neither the instructions nor

the datasets fit in L1 caches. The large instruction footprints of scale-out workloads can be

readily accommodated in the LLC, while the vast datasets dwarf the LLC capacity and reside

in memory. Consequently, the majority of accesses to the instruction blocks hit in the LLC,

while many dataset accesses miss and are filled from main memory.

On an L1 miss, the directory controller and the LLC check to determine if the block is available

in the pod. If so, and if LLC’s copy is the most recent, the LLC will service the miss and send

1 Repeaters are necessary to overcome poor RC characteristics of wires in current and future technologies.
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Figure 4.3: Percentage of LLC accesses causing a snoop message to be sent to a core.

the data to the requesting core. If the requesting core signals that it needs to modify the block,

the directory will also send snoop messages to the set of sharers, instructing them to invalidate

their copy. Conversely, if the directory indicates that another core has the block, it will send a

snoop message to the appropriate core, instructing it to forward the block to the requester

(L1-to-L1 forwarding). Finally, in the case of a miss, the LLC fetches the block from the main

memory and returns it to the requesting core.

Importantly, core-to-core communication (i.e., L1-to-L1 forwarding) is triggered only as a

result of data sharing at the L1 level. However, due to the high-level behavior of scale-out

workloads, this type of data sharing is rare. Instructions are actively shared, but they are

read-only and served from the LLC; dataset is vast, and the likelihood of two independent

requests sharing a piece of data is low.

Figure 4.3 shows the fraction of accesses to the LLC that cause a snoop message to be sent to

an L1 cache across seven scale-out workloads. As expected, coherence activity is negligible

in these workloads, with an average of 2.7 out of 100 LLC accesses triggering a snoop. Earlier

work made similar observations for both scale-out [30] and server [63] workloads.

The lack of coherence activity in scale-out workloads implies that the dominant traffic flow is

from the cores to the LLC and back to the cores. We refer to this phenomenon as a core-to-

cache bilateral access pattern. In tiled pods, the coupled nature of core and LLC slices means

that accesses to the last-level cache from each individual core, over time, target all of the tiles,

resulting in an all-to-all traffic pattern at the pod level. Achieving low latency under all-to-all

traffic requires a richly connected topology, necessarily resulting in high area and wire cost.
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Figure 4.4: NOC-Out organization.

4.2.2 NOC-Out

NOC-Out is a many-core pod organization optimized for the bilateral access pattern dominant

in scale-out workloads. NOC-Out leverages two insights to minimize interconnect delays at a

small area footprint. First, NOC-Out segregates the LLC slices from the cores into separate

cache-only tiles and concentrates the cache tiles in the center of the pod. The segregation of

cores and the LLC breaks the all-to-all traffic pattern characteristic of tiled pods and establishes

a bilateral traffic flow between core and cache regions. Second, NOC-Out takes advantage

of the bilateral traffic to limit network connectivity, enabling a reduction in network cost.

Specifically, NOC-Out eliminates the bulk of the core-to-core links and the supporting router

structures, preserving a minimum degree of connectivity to enable each core to reach the LLC

region.

Figure 4.4 shows a high-level view of the proposed organization, featuring LLC slices in the

center of the pod and core tiles on both sides of the LLC. NOC-Out uses simple, routing-free

reduction trees to guide packets toward the centralized cache banks, as well as dispersion trees,

which are logical opposites of reduction trees, to propagate response data and snoop traffic

out to the cores. Every reduction and dispersion tree connects a small number of cores to

exactly one cache bank. The LLC banks are linked in a flattened butterfly topology, forming a

low-latency Non-Uniform Cache Access (NUCA) cache. Notably, NOC-Out does not support

direct core-to-core connectivity, requiring all traffic to flow through the LLC region.
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Figure 4.5: Details of NOC-Out networks.

In the rest of the section, we detail the organization of the reduction, dispersion, and LLC

networks.

Reduction Network

The reduction network is designed for a low-latency delivery of packets from the cores to

the centralized cache banks. Figure 4.5a shows the key features of a reduction tree, which

spans a column of cores and terminates at the LLC bank at the end of the column. Effectively,

a reduction tree is a many-to-one interconnect, with all packets that enter a reduction tree

flowing to the same destination cache bank. A node in the tree is a buffered, flow-controlled,

two-input multiplexer that merges packets from the local port with those already in the

network.

Compared to a conventional packet-based NOC, the reduction network does not require

routing, as all packets flow to a common destination. The switch, typically implemented as

a crossbar or a mux tree in conventional NOCs, is reduced to a simple two-input mux in a

reduction tree. The reduction network is similar to conventional NOCs, in that it benefits

from the use of virtual channels (VCs) for protocol deadlock avoidance; as such, it requires

a virtual channel allocation mechanism. However, with just two ports (local and network),

the VC allocator is trivially simple. In fact, given the low memory-level parallelism (MLP) of

scale-out workloads [30], static-priority arbitration policies that always prioritize the network

over the local port (or vice versa) tend to work well and afford further simplification of the

arbitration logic.

NOC-Out distinguishes three message classes – data requests, snoop requests, and responses

(both data and snoop) – to guarantee network-level deadlock freedom for its coherence

protocol. Of these, only data requests and responses travel through the reduction trees, as

snoop requests can only originate at the directory nodes at the LLC. As a result, each port in a
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4.2. Pods with Many Cores

reduction tree has two virtual channels (one per message class).

Upon arrival at a router in a reduction tree, a packet is buffered in the appropriate VC (de-

termined by the packet’s message class). With a total of four VCs in a router (two ports with

two VCs per port), a 4:1 arbiter selects a winning VC based on priority and downstream buffer

availability. In this dissertation, we assume the following fixed priority ordering of VCs (highest

to lowest): network responses, local responses, network requests, and local requests. By priori-

tizing the network over the local port, we seek to mitigate the latency disadvantage of cores

that are more distant from the LLC. Because a reduction tree router has exactly one output

port, routing and output port selection logic is unnecessary, and just one arbiter is required

per node.

Dispersion Network

The dispersion network carries packets (data responses and snoop requests) from the LLC to

the cores. Figure 4.5b shows a logical view of a dispersion tree. A dispersion tree is a logical

opposite of the reduction tree, with a single source (a cache bank) and multiple destinations

(cores). Each node in a tree is a buffered, flow-controlled demultiplexer that selects a local

output port for packets that have reached their destination or propagates them farther up the

tree toward the next node.

As is the case with the reduction network, virtual channels are necessary for deadlock avoid-

ance to guarantee that snoop requests do not block data responses from reaching their desti-

nation. With two VCs per node (one per message class), on each clock cycle, simple control

logic (1) uses message priority and buffer availability to select a winning VC; and (2) sets up

demux control to forward a flit from the selected VC to the local or network output. Again,

we use a static priority assignment to prioritize reply messages over snoop requests, which is

subject to buffer availability.

LLC Network

As described above, NOC-Out segregates core and LLC slices2 into separate tiles. Because

each core connects to just one LLC tile through its reduction and dispersion trees, NOC-Out

relies on a richly connected flattened butterfly network to route traffic between LLC tiles. The

choice of the network is motivated by the need to minimize delay and reduce contention in

the LLC region.

In order to reduce the area and channel expense of the flattened butterfly, NOC-Out takes

advantage of the fact that the number of LLC tiles need not match the number of core tiles. The

number of LLC tiles can be reduced because low instruction- and memory-level parallelism

in scale-out workloads naturally dampen the bandwidth pressure on the LLC. Our empirical

2 An LLC slice is composed of data, tags, and directory.
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data shows that a design with four cores per one LLC bank achieves a level of performance

that is within 2% of a system with an equal number of cores and LLC banks. Moreover, each

LLC tile can house multiple LLC banks that share the router. A reduction in the number of the

LLC tiles diminishes the cost and extent of the richly connected LLC network.

Additional Considerations

Before concluding the description of NOC-Out, we highlight several additional aspects of the

proposed design; namely, its flow control architecture and support for shared memory.

Flow control: All three NOC-Out networks (reduction, dispersion, and LLC) rely on conven-

tional virtual channel credit-based flow control. The amount of buffering per port in both

reduction and dispersion trees is insignificant (a few flits per VC) thanks to a short round-trip

credit time resulting from a trivial pipeline. The flattened butterfly LLC network requires more

buffering per port to cover the multi-cycle delays of long-range links and multi-stage routers;

however, this cost is restricted to just a fraction of the nodes.

Shared memory: Shared memory is a prominent feature of today’s software stacks. Despite

being optimized for the bilateral core-to-cache communication, NOC-Out fully supports the

shared memory paradigm through conventional hardware coherence mechanisms, preserving

full compatibility with existing software. What NOC-Out sacrifices by eliminating direct core-

to-core connectivity is the support for locality-optimized communication. Instead, NOC-Out

optimizes for cost and performance on scale-out server workloads that do not benefit from

locality optimizations.

4.3 Methodology

Table 4.1 summarizes the key elements of our methodology, with the following sections detail-

ing the specifics of the evaluated designs, technology parameters, workloads, and simulation

infrastructure.

4.3.1 Pod Parameters

Our target is a many-core pod implemented in 32nm technology. This pod features 64 cores,

8MB of last-level cache, and four DDR3-1667 memory channels. Core microarchitecture is

modeled after an ARM Cortex-A15, a three-way out-of-order design with 32KB L1-I and L1-D

caches. The cache line size is 64B.

We evaluate various pod organizations with a 64-core configuration and a relatively large core

(i.e., Cortex-A15) because this configuration represents a worst-case scenario for pods with

regard to the number of cores and the physical distance between the cores and the LLC. The

chosen LLC capacity (i.e., 8MB), based on the results presented in Chapter 3, maximizes the
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Table 4.1: Evaluation parameters.

Parameter Value

Technology 32nm, 0.9V, 2GHz
Pod features 64 cores, 8MB NUCA LLC, 4 DDR3-1667 memory channels
Core ARM Cortex-A15-like: 3-way out-of-order, 60-entry ROB, 16-entry LSQ, 2.9mm2

Cache per MB: 3.2mm2

NOC Organizations:

Mesh
Router: 5 ports, 3 VCs/port, 5 flits/VC, 2-stage speculative pipeline.
Link: 1 cycle

Flattened Butterfly
Router: 15 ports, 3 VCs/port, variable flits/VC, 3 stage pipeline.
Link: up to 2 tiles per cycle

NOC-Out
Reduction/Dispersion networks: 2 ports/router, 2 VCs/port, 1 cycle/hop (inc. link)
LLC network: flattened butterfly

performance density of the selected 64-core configuration.

We consider three pod organizations, as follows:

Mesh: Our baseline for the evaluation is a mesh-based tiled pod, as shown in Figure 4.1. The

64 tiles are organized as an 8-by-8 grid, with each tile containing a core, a slice of the LLC, and

a directory node.

At the network level, a mesh hop consists of a single-cycle link traversal followed by a two-stage

router pipeline for a total of three cycles per hop at zero load. The router performs routing, VC

allocation, and speculative crossbar (XB) allocation in the first cycle, followed by XB traversal

in the next cycle. Each router port has three VCs to guarantee deadlock freedom across three

message classes: data requests, snoop requests, and responses. Each VC is five flits deep,

which is the minimum necessary to cover the round-trip credit time.

Flattened Butterfly (FBfly): The FBfly-based pod has the same tiled organization as the

mesh baseline, but it benefits from the rich connectivity afforded by the flattened butterfly

organization, as shown in Figure 4.2. Each FBfly router has 14 network ports (seven per

dimension) plus a local port. Due to high arbitration complexity, the router does not employ

speculation, resulting in a three-stage pipeline. Each router port has three VCs to guarantee

deadlock freedom. The number of flit buffers per VC is optimized based on the location of the

router in the network to minimize buffer requirements. Finally, the link delay is proportional

to the distance spanned by the link. Given our technology parameters (detailed below) and

tile dimensions, a flit in the channel can cover up to two tiles in a single clock cycle.

NOC-Out: Our proposed pod organization, described in Section 4.2.2, segregates core and

LLC tiles, as well as localizes the LLC in the center of the pod. To connect cores to the LLC,

NOC-Out uses specialized reduction and dispersion networks. Direct inter-core connectivity

is not supported, and all traffic must flow through the LLC region.
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Both the reduction and dispersion networks require just two VCs per port. In the reduction

network, only data requests and responses flow from the cores to the cache, as snoop requests

cannot originate at the core tiles. Similarly, the dispersion network only needs to segregate

snoop requests and data responses, as data requests cannot originate at the LLC. In the absence

of contention, both networks have a single-cycle per-hop delay, which includes traversal of

both the link and the arbitrated mux (in the reduction tree) or demux (in the dispersion tree).

This delay is derived based on the technology parameters and tile dimensions.

The LLC is organized as a single row of tiles, with each tile containing 1MB of cache and a

directory slice. The aspect ratio of the LLC tiles roughly matches that of the core tiles, allowing

for a regular layout across the pod, as shown in Figure 4.4. LLC tiles are internally banked to

maximize throughput. For the evaluation, we model two banks per tile (16 LLC banks, in total),

as our simulations show that this configuration achieves similar throughput at lower area cost

as compared to designs with higher degrees of banking. The eight LLC tiles are fully connected

via a one-dimensional flattened butterfly. LLC routers feature a 3-stage non-speculative

pipeline, with three VCs per input port.

4.3.2 Technology Parameters

We use publicly available tools [49, 72] and data [4, 47] to estimate the area and energy of

various pod organizations. Our study targets a 32nm technology node with an on-die voltage

of 0.9V and a 2GHz operating frequency.

We use custom wire models, derived from a combination of sources [4, 47], to model links

and router switch fabrics. For links, we model semi-global wires with a pitch of 200nm and

power-delay-optimized repeaters that yield a link latency of 125ps/mm. On random data, links

dissipate 50fJ/bit/mm, with repeaters responsible for 19% of link energy. For area estimates,

we assume that link wires are routed over logic or SRAM and do not contribute to network

area; however, repeater area is accounted for in the evaluation.

Our buffer models are taken from ORION 2.0 [49]. We model flip-flop-based buffers for mesh

and NOC-Out, as both have relatively few buffers per port. For the flattened butterfly, we

assume SRAM buffers that are more area- and energy-efficient than flip-flops for large buffer

configurations.

Cache area, energy, and delay parameters are derived via CACTI 6.5 [72]. A 1MB slice of the

LLC has an area of 3.2mm2. Finally, parameters for the ARM Cortex-A15 core are borrowed

from Microprocessor Report and scaled down from the 40nm technology node to the 32nm

target. Core area, including L1 caches, is estimated at 2.9mm2. Core features include three-way

decode/issue/commit, 60-entry ROB, and 16-entry LSQ.
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4.3.3 Workloads

We use scale-out workloads from CloudSuite [1]. The workloads include Data Serving, MapRe-

duce, Media Streaming, Web Frontend, SAT Solver, and Web Search. We consider two MapRe-

duce workloads – text classification (MapReduce-C) and word count (MapReduce-W). For

the Web Frontend workload, we use the e-banking option from SPECweb2009 in place of

its open-source counterpart from CloudSuite, as SPECweb2009 exhibits better performance

scalability at high core counts. Two of the workloads – SAT Solver and MapReduce – are batch,

while the rest are latency-sensitive and are tuned to meet the response time objectives.

Four out of seven workloads scale to 64 cores. The other three – namely Media Streaming, Web

Serving, and Web Search – only scale to 16 cores due to various software bottlenecks. For these

three workloads, we choose the 16 tiles in the center of the pod for the mesh and flattened

butterfly designs and the 16 core tiles adjacent to the LLC in the NOC-Out design.

4.3.4 Simulation Infrastructure

We estimate the performance of the various pod configurations using Flexus full-system

simulation [93, 89]. Flexus extends the Virtutech Simics functional simulator with timing

models of cores, caches, on-chip protocol controllers, and interconnect. Flexus models the

SPARC v9 ISA and is able to run unmodified operating systems and applications.

We use the SimFlex multiprocessor sampling methodology [89]. Our samples are drawn over

an interval of 10 seconds (30 seconds for Media Streaming) of simulated time. For each

measurement, we launch simulations from checkpoints with warmed caches and branch

predictors, and then we run 100K cycles (2M cycles for Data Serving) to achieve a steady state

of detailed cycle-accurate simulation before collecting measurements for the subsequent 50K

cycles. We use the ratio of the number of committed application instructions to the total

number of cycles (including the cycles spent executing operating system code) to measure

performance; this metric has been shown to accurately reflect overall system throughput [89].

Performance measurements are computed with 95% confidence with an average error of less

than 4%.

4.4 Evaluation

We first examine performance and area efficiency of mesh, flattened butterfly, and NOC-

Out designs, given a fixed 128-bit link bandwidth. We then present an area-normalized

performance comparison, followed by a discussion of power trends.
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Figure 4.6: System performance, normalized to a mesh-based design.

4.4.1 System Performance

Figure 4.6 shows full-system performance of a single pod, normalized to the mesh, under the

various NOC organizations. Compared to the mesh, the richly connected flattened butterfly

topology improves performance by 7-45%, with a geomean of 21%. The highest performance

gain is registered on the Media Streaming workload, which is characterized by extremely low

ILP and MLP, making it particularly sensitive to the LLC access latency.

On average, the proposed NOC-Out design matches the performance of the flattened butterfly.

On Data Serving, bank contention is responsible for a small performance degradation in

NOC-Out, resulting in lower performance as compared to the flattened butterfly. On the other

hand, on Media Streaming and Web Search (both 16-core workloads), NOC-Out benefits from

a smaller average communication distance between the cores and the LLC, which translates

into higher performance. The bottom line is that NOC-Out improves performance by 22%

over the mesh and, on average, matches the performance of the flattened butterfly.

We conclude the performance assessment by noting that while the bisection bandwidths of

the various topologies are different, the networks are not congested. Differences in latency,

not bandwidth, across the topologies are responsible for the performance variations.

4.4.2 NOC Area

Figure 4.7 breaks down the NOC area of the three organizations by links, buffers, and crossbars.

Only repeaters are accounted for in link area, as wires are assumed to be routed over tiles.

At over 23mm2, the flattened butterfly has the highest NOC area, exceeding that of the mesh

by nearly a factor of seven. The large footprint of the flattened butterfly is due to its large link

budget and the use of buffer-intensive, many-ported routers.
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Figure 4.7: NOC area breakdown.

NOC-Out’s interconnect footprint of 2.5mm2 is the lowest among the evaluated pod organi-

zations, requiring 28% less area than a mesh and about 10 times less area than a flattened

butterfly. NOC-Out’s area advantage stems from minimal connectivity among the majority

of the nodes (i.e., cores) and from the use of low-complexity network trees (reduction and

dispersion) that minimize router costs. Each of the two tree networks contributes just 18% to

the total NOC footprint. In contrast, the flattened butterfly interconnecting NOC-Out’s LLC

region constitutes 64% of the total network area while linking just 11% of the tiles.

4.4.3 Area-Normalized Comparison

The performance and area analysis in the previous two sections assumed a fixed link width

of 128 bits, resulting in vastly different NOC area costs and bisection bandwidths. To better

understand how various pod organizations compare given a fixed NOC budget, we assess the

performance of the mesh and flattened butterfly using NOC-Out’s area of 2.5mm2 as a limiting

constraint. We reduce the width of both mesh and flattened butterfly NOCs until each of their

respective areas (links + routers) equals that of NOC-Out and then measure the performance

of the resulting designs.

Figure 4.8 summarizes the results of the study, with the performance of the three organizations

normalized to that of the mesh. Given a smaller area budget, the performance of both mesh

and flattened butterfly degrades. The degradation is small in the mesh network, as the increase

in the serialization latency continues to be dwarfed by the header delay. In contrast, the richly

connected flattened butterfly sees its link bandwidth shrinks by a factor of seven, significantly

impacting end-to-end latency through a spike in the serialization delay. Compared to the

flattened butterfly at the same area budget, NOC-Out enjoys a 75% performance advantage.

Compared to the mesh, NOC-Out’s performance edge is 24%.
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Figure 4.8: System performance, normalized to a mesh-based design, under a fixed NOC area
budget.

4.4.4 Power Analysis

Our analysis shows that the NOC is not a significant consumer of power. For all three organi-

zations, NOC power is below 2W. In contrast, cores alone consume in excess of 60W. Low ILP

and MLP of scale-out workloads are the main reasons for the low power consumption at the

NOC level. Another factor is the near-absence of snoop traffic in these workloads.

NOC-Out results in the most energy-efficient NOC design, dissipating 1.3W of power, on

average. Mesh and flattened butterfly average 1.8W and 1.6W, respectively. In all organizations,

most of the energy is dissipated in the links. NOC-Out’s higher efficiency stems from the lower

average distance between the cores and the LLC, resulting in less energy spent in the wires.

Meanwhile, the flattened butterfly’s rich connectivity gives it an advantage over the mesh

(1.6W against 1.8W).

4.4.5 Summary

The evaluation results show that NOC-Out offers the performance of the richly connected

flattened butterfly topology at a fraction of the network area. Whereas the flattened butterfly

requires a prohibitive 23mm2 of die real estate, NOC-Out necessitates just 2.5mm2 for the

interconnect. When constrained to NOC-Out’s area budget, the performance of the flattened

butterfly diminishes, giving NOC-Out a 75% performance advantage. In comparison to a

mesh, NOC-Out improves performance by 22% and reduces the network area footprint by

28%.
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4.5 Discussion

4.5.1 Scalability of NOC-Out

So far, our description and evaluation of NOC-Out has been in the context of a 64-core

pod. NOC-Out can be readily scaled to support larger numbers of cores through the use of

concentration and, in configurations featuring hundreds of cores, through judicious use of

express channels in reduction and dispersion networks. If necessary, the LLC network can be

scaled up by extending its flattened butterfly interconnect from one to two dimensions. We

now briefly discuss each of these options.

Concentration: Concentration can be used to reduce the network diameter by aggregating

multiple terminals (e.g., cores) at each router node [4]. In the case of reduction and dispersion

networks, a factor of two concentration at each node (i.e., two adjacent cores sharing a local

port of the mux/demux) could be used to support twice the number of cores of the baseline

design at nearly the same network area cost. With four times more nodes in the network and a

concentration factor of four, we find that the 16B links in the tree networks are bottlenecked

by insufficient bandwidth, necessitating either additional or wider links.

Express links: In pods with hundreds of cores, the height of the reduction and dispersion trees

may become a concern from a performance perspective. To mitigate the tree delay, express

links can be judiciously inserted into the tree to bypass some number of intermediate nodes,

allowing performance to approach that of an "ideal" wire-only network. While express links

increase the cost of the network due to greater channel expense, they are compatible with

the simple node architectures described in Section 4.2.2 and do not necessitate the use of

complex routers.

Flattened butterfly in LLC: When executing scale-out workloads, much of the useful LLC

content is the instruction footprint and OS data. Because this content is highly amenable to

sharing by all of the cores executing the same binary, a pod with a higher core count does not

mandate additional LLC capacity [65]. Should the need arise, however, to expand the LLC

beyond a single row of tiles, the flattened butterfly network interconnecting the tiles can be

readily scaled from one to two dimensions. While an expanded flattened butterfly increases

the cost of NOC-Out, the expense is confined to the fraction of the pod occupied by the LLC.
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5 Scale-Out Processors with Large Dies

Scale-Out Processors are designed using Scale-Out Processor (SOP) design methodology

and can efficiently execute scale-out workloads. The SOP methodology uses the metric of

performance density to form throughput-optimal building blocks (named pods) and replicates

them on a chip to the available area, bandwidth, and power budgets. While single- and multi-

pod Scale-Out Processors have the same performance density, an open question is why

multi-pod Scale-Out Processors are preferable for the execution of scale-out workloads. To

answer this question, we study and evaluate the efficiency of various datacenters based on

single- and multi-pod Scale-Out Processors.

5.1 Motivation

Datacenters are the workhorses powering the information revolution. Companies leading the

transformation to the digital universe – such as Google, Microsoft, and Facebook – rely on

networks of datacenters to provide search capabilities, social connectivity, media streaming,

and a growing number of other offerings to large, distributed audiences. A scale-out datacenter

houses tens of thousands of servers, necessary for high scalability, availability, and resilience [9,

6].

The massive scale of datacenters requires an enormous capital outlay for infrastructure and

hardware, often exceeding $100 million per datacenter [80]. Similarly expansive are the power

requirements, typically in the range of 5-15MW per datacenter, totaling millions of dollars

in annual operating costs. With demand for information services skyrocketing around the

globe, efficiency has become a paramount concern in the design and operation of large-scale

datacenters.

In order to reduce infrastructure, hardware, and energy costs, datacenter operators target high

compute density and energy efficiency. Total Cost of Ownership (TCO) is an optimization

metric that considers the costs of real estate, power delivery and cooling infrastructure, hard-

ware acquisition costs, and operating expenses. Because server acquisition and power costs
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Table 5.1: Server chip characteristics.

LLC size DDR3 Power Area Cost
Processor Cores (MB) interfaces (W) (mm2) ($)

Conventional 6 12 2 94 276 800
Tiled (OoO) 20 20 1 50 245 370
1Pod (OoO) 16 4 2 36 158 320
Scale-Out (OoO) 32 8 3 62 263 370
Tiled (In-order) 64 20 2 67 251 370
1Pod (In-order) 32 2 2 34 118 320
Scale-Out (In-order) 96 6 6 91 270 370

constitute the two largest TCO components [38], servers present a prime optimization target in

the quest for more efficient datacenters. In addition to cost, performance is also of paramount

importance in scale-out datacenters designed to serve thousands of concurrent requests with

real-time constraints. The ratio of performance to TCO (performance per dollar of ownership

expense) is, thus, an appropriate metric for evaluating different datacenter designs.

Table 5.1 summarizes principal characteristics of various server processors. In addition to

single- and multi-pod Scale-Out Processors, in this study, we also include server processors

representing existing commercial processors (i.e., conventional and tiled) to evaluate the

benefits of using Scale-Out Processors in existing datacenters. All processors in this study are

designed at the 40nm technology and are taken from Table 3.2.

5.2 Methodology

We now describe the cost models and the experimental setup used in evaluating the various

processors at datacenters.

5.2.1 TCO Model

Large-scale datacenters employ high-density server racks to reduce the space footprint and

improve cost efficiency. A standard rack can accommodate up to 42 1U servers, where each

server integrates one or more processors, multiple DRAM DIMMs, disk- or flash-based storage

nodes, and a network interface. Servers in a rack share the power distribution infrastructure

and network interfaces to the rest of the datacenter. The number of racks in a large-scale

datacenter is commonly constrained by the available power budget.

Our TCO analysis, derived using EETCO [44], considers four major expense categories summa-

rized below. Table 5.2 further details key parameters.

Datacenter infrastructure: Includes land, building, power provisioning and cooling equip-

ment with a 15-year depreciation schedule. Datacenter area is primarily determined by the
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Table 5.2: TCO parameters.

Parameter Value

Rack dimensions (42U): width x depth x inter-rack space 0.6m x 1.2m x 1.2m
Infrastructure cost $3000/m2

Cooling and power provisioning equipment cost $12.5/Watt
Cooling and power provisioning equipment space overhead 20%
SPUE (fan and power supply efficiency factor) 1.3
PUE 1.3
Personnel cost $200 per rack/month
Networking gear 360W, $10,000 per rack
Motherboard 25W, $330 per 1U
Disk 10W, $180, 100-year MTTF
DRAM 1W, $25, 800-year MTTF per GB
Processor 30-year MTTF

IT (rack) area, with cooling and power provisioning equipment factored in. The cost of this

equipment is estimated per Watt of critical power.

Server and networking hardware: Server hardware includes processors, memory, disks, and

motherboards. We also account for the networking gear at the edge, aggregation, and core

layers of the datacenter, and we assume that the cost scales with the number of racks. The

amortization schedule is three years for server hardware and four years for networking equip-

ment.

Power: Predominantly determined by the servers, including fans and power supply, network-

ing gear, and cooling equipment. The electricity cost is $0.07/KWh.

Maintenance: Includes costs for repairing faulty equipment, determined by its mean-time-to-

failure (MTTF), and the salaries of the personnel.

5.2.2 Processor Price Estimation

We evaluate a number of datacenter server processor designs, as summarized in Table 5.1. The

price for the conventional processor is estimated by picking the lowest price ($800) among

online vendors for Xeon 5670 processor, which has the same number of cores and cache

capacity as our conventional processor. To estimate the price for the rest of the processors, we

use Cadence InCyte Chip Estimation tool (enterprise edition) modeling a production volume

of 200,000 units (reverse-engineered from a commercial processor, i.e., Tilera Gx-3036, selling

price) and a margin of 50%. We use this production volume to estimate the selling price

for each processor type, taking into account non-recurring engineering (NRE) costs, mask
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and production costs, yield, other expense categories, and a 50% profit margin. We find that

despite nearly doubling the die size, the price per chip for tiled and Scale-Out Processors

increases by just 15% (around $50) over the 1pod processor because non-recurring engineering

and mask costs dominate. While the above estimates are used for the majority of the studies,

we also consider the sensitivity of different designs to processor price in Section 5.3.3.

5.2.3 Experimental Setup

For all experiments, we assume a fixed datacenter power budget of 20MW and a power limit of

17kW per rack. We evaluated lower-density racks rated at 6.6kW, but we found the trends to be

identical across the two rack configurations. As such, we present one set of results.

To compare the performance and TCO of different server architectures, we start with a rack

power budget and subtract all power costs at both the rack and the board levels, excluding the

processors. The per-rack costs include network gear, cooling (fans), and power conversion.

At the 1U server level, we account for the motherboard, two disks, and memory (model

parameter) power. The remaining power budget is divided by the peak power of each evaluated

processor chip to determine the number of processors per server. Datacenter performance is

then estimated based on the number of processors in each 1U server (using the per-processor

performance data collected in simulation), the number of servers in a rack, and the number

of racks in the datacenter. As the performance of a datacenter is estimated when scale-out

workloads are running, the conclusions of our studies are applicable to datacenters or parts of

datacenters that run such workloads.

Finally, we make no assumptions on what the optimal amount of memory per server is, which

in practice varies for different workloads, and model servers with 32, 64, and 128GB of memory

per 1U. One simplifying assumption that we do make is that the amount of memory per 1U is

independent of the chip design. Underlying this assumption are the observations that (a) the

data is predominantly read-only; and (b) the data is partitioned for high parallelism, allowing

performance to scale with more cores and sockets until bottlenecked by the bandwidth of the

memory interfaces. Bandwidth limitations are accounted for in our studies.

5.3 Evaluation

5.3.1 Performance and TCO

We first compare datacenter performance and TCO for various processor designs assuming

64GB of memory per 1U server. The results are presented in Figures 5.1 and 5.2.

In general, we observe significant disparity in datacenter performance across the processor

range stemming from the different capabilities and energy profiles of the various processor

architectures. Highly integrated processors based on in-order cores – namely tiled, 1pod

and Scale-Out Processors – deliver the highest performance at the datacenter level. The
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Figure 5.1: Datacenter performance for various server processors normalized to a design
based on a conventional processor.
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Figure 5.2: Datacenter TCO for various server processors normalized to a design based on a
conventional processor.

1pod processor improves aggregate performance by a factor of 4.4 over conventional and

1.3 over tiled processors. The 1pod processor is superior due to a combination of efficient

core microarchitectures and high chip-level integration – attributes that help amortize the

power of both on-chip and server-level resources among many cores, affording more power

for compute resources.

The highest performance is delivered by the Scale-Out Processor with in-order cores, a design

with the highest performance density that improves datacenter performance by an additional

11% over the 1pod processor. The Scale-Out design effectively translates its performance

density advantage into a performance advantage by better amortizing fixed power overheads
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at the chip level among its many cores, ultimately affording more power for the execution

resources at the rack level.

The Scale-Out Processor design based on out-of-order cores sacrifices 15% of the throughput

at the datacenter level, as compared to the in-order design. However, higher core complexity

is justified for workloads that demand tight latency guarantees and have a non-trivial com-

putational component. Even with higher-complexity cores, the Scale-Out Processor attains

better datacenter performance than either the conventional or tiled alternatives.

The differences in TCO among the different designs are not as pronounced as differences in

performance, owing to the fact that processors contribute only a fraction to the overall data-

center acquisition and power budget. Nonetheless, one important trend worth highlighting

is that while 1pod designs based on out-of-order cores are less expensive and more energy

efficient (by factors of 2.5 and 4.3, respectively) than conventional processors on a per-unit

basis, at the datacenter level, a 1pod design has a 2% higher TCO. The reason for the apparent

paradox is that the low-power consumption of the 1pod design necessitates as many as five

sockets (versus two for conventional) per 1U server in order to saturate the available power

budget. The acquisition costs of such a large number of processors negate the differences in

unit price and energy efficiency, emphasizing the need to consider total cost of ownership in

assessing datacenter efficiency.

5.3.2 Relative Efficiency

We next examine the combined effects of performance, energy efficiency, and TCO by assessing

the various designs on datacenter performance/TCO and performance/Watt. Figures 5.3

and 5.4 present the results for performance/TCO and performance/Watt, respectively, as

memory capacity is varied from 32 to 128GB per 1U server.

With 64GB of memory per 1U server, the following trends can be observed:

• The tiled processor with out-of-order cores improves performance/Watt by 3.5x over the

conventional processor, and its performance/TCO advantage is 3.7x.

• A datacenter based on the 1pod processor with out-of-order cores improves performance

per TCO by a factor of 4.4 over conventional and 1.2 over tiled processors. Energy efficiency

is improved by 4.4x and 1.3x, respectively, underscoring the combined benefits of aggressive

integration and the use of an efficient core microarchitecture.

• The Scale-Out Processor with out-of-order cores further improves performance/TCO by

29% and performance/Watt by 16% over the 1pod processor through a more efficient use

of the die real estate.

• The Scale-Out Processor with in-order cores achieves 26% higher performance/TCO than

the design based on out-of-order cores. The less aggressive in-order microarchitecture

is responsible for the higher energy and area efficiencies of each core, resulting in higher

58



5.3. Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

32GB 64GB 128GB

Pe
rf
or
m
an

ce
/T
CO

Memory Capacity/Server (1U)

Conv

Tiled (OoO)

1Pod  (OoO)

Scale‐Out (OoO)

Tiled (In‐order)

1Pod (In‐order)

Scale‐Out (In‐order)

Figure 5.3: Datacenter performance/TCO for different server chip designs. Data not normal-
ized.
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Figure 5.4: Datacenter performance/Watt for different server chip designs. Data not normal-
ized.

throughput at the chip level. When the TCO premium is justified, which may be the case for

throughput workloads (e.g., classification), the in-order Scale-Out Processor offers a 7.1x

performance/TCO advantage (6x in performance/Watt) over the conventional processor.

While the discussion above focuses on servers with 64GB of memory, the trends are similar with

other memory configurations. In general, servers with more memory lower the performance-
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Figure 5.5: Relationship between the price per processor and TCO. Solid circles indicate known
market prices; unfilled circles show estimated prices based on a production volume of 200K
units.

to-TCO ratio, as memory adds to server cost while diminishing the processor power budget.

The opposite is true for servers with less memory, in which the choice of processor has a

greater effect on both cost and performance.

5.3.3 Sensitivity to Processor Price

Figure 5.5 shows the effect of varying the processor price on the relative efficiency (per-

formance/TCO) of various processors assuming 64GB of memory per 1U server. For each

processor type, we assume an ASIC design in 40nm technology and compute the price as a

function of market size, ranging from 40K to 1M units, as described in Section 5.2.

In general, we observe that the price of larger chips has less impact on datacenter TCO as

compared to that of smaller chips, since it takes fewer large chips to populate a server due

to power constraints. In contrast, the 1pod design, which has the smallest die area, is more

sensitive to unit price due to the sheer volume of chips required per 1U server. For instance,

there is a factor of 2.5 difference in the number of chips per server between conventional and

1pod designs.

A consistent trend in our study is that, from a TCO perspective, processors with larger die area

are preferred to smaller ones, as seen in the curves for the various Scale-Out designs. While

the additional die area adds expense, the price difference is modest (around 16% or $50 per

chip), as NRE and design costs dominate production costs. Furthermore, the increased cost is

offset by the reduction in the number of required processors.
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Moore Era

As scaling down transistor dimensions becomes more complicated and challenging [10], the

validity of Moore’s law, which is the primary driving force behind the growth of the semicon-

ductor industry, is expected to end [66]. Three-dimensional integration of multiple logic dies

is a propitious mechanism that can extend the validity of Moore’s law. In a 3D integration,

multiple logic dies are stacked on top of each other and interconnected by through-silicon vias

(TSVs). TSVs are vertical connections passing through the stacked dies to provide connectivity

among them. TSVs are high-performance connections because of their high density, as well as

their short length.

In a conventional 2D integration, the scaling of transistor dimensions implies more transistors

and also larger average distances between the transistors. As technology scales and more

transistors become available, the average distance between the transistors increases because

it is impossible to scale global wire length with technology [12]. On the contrary, in a 3D

integration, more transistors become available by stacking more logic dies on top of each

other. As the vertical distance is much shorter (i.e., in the order of µm) than the horizontal

distance (i.e., in the order of mm), more transistors in a 3D integration come without an

increase in the average distance between transistors.

Three-dimensional integration has its own unique challenges that can prevent 3D chips

from becoming commercially attractive. The main challenge of a 3D chip is the increase

in the working temperature of the chip. As multiple logic dies are stacked on top of each

other, it becomes more difficult to cool the chip. Moreover, for a 3D integration, components

need to have placement for the TSVs. The need for the TSV placement means that today’s

2D components can rarely be reused in a 3D integration, which, consequently, leads to an

increase in the initial investment for the 3D integration. Another cost overhead is due to the

fact that 3D technology is not mature yet, and it is possible that some of the TSVs fail. Such

failures can significantly reduce the number of fully functional 3D chips.

Despite the 3D integration challenges, there have been several 3D chip prototypes in academia

and industry [10, 60, 56]. While these prototypes are expensive, they illustrate the feasibility of
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connecting multiple logic dies using TSVs. These prototypes usually have few cores on each

logic die to avoid the thermal issues. As the level of integration increases and more cores are

fabricated on each logic die, liquid cooling technologies can be used for avoiding the thermal

issues in 3D chips [84, 67]. While these technologies are expensive today, the price is expected

to drop significantly as 3D technology becomes mainstream and benefits from high volume of

the mainstream market.

In this chapter, we assume that 3D integration challenges are addressed. We seek to develop

strategies for Scale-Out Processors to take advantage of the features specific to 3D logic-on-

logic technology to boost performance beyond what is possible in standard 2D technology.

6.1 3D Logic-on-Logic Technology

As transistors become smaller, transistor scaling is becoming more expensive. The cost per

transistor is likely to go up at the 14nm technology node for the first time in history [37].

Moreover, the challenges of producing transistors in the sub-10nm regime are expected to

put an end to the transistor scaling [66]. Transistor scaling is the driving force behind the

unprecedented growth in the semiconductor industry, and its failure will negatively affect the

whole industry.

Three-dimensional logic-on-logic technology can offer some of the advantages of transistor

scaling to the semiconductor industry. This technology allows multiple logic dies to be stacked

on top of each other. The stacked logic dies are interconnected by dense and short vertical

connections called through-silicon vias or TSVs. Taking advantage of the TSVs, 3D logic-on-

logic technology has the potential to reduce the interconnect delay, increase the on-chip

bandwidth, and decrease the power consumption of wires. Moreover, similar to transistor

scaling, 3D technology can offer a reduction in the form factor of integrated circuits.

While both transistor scaling and 3D logic-on-logic technology enable increasing the number

of transistors per unit area, there is a major difference between the two technologies. In

standard 2D technology, the reduction in transistor dimensions (i.e., transistor scaling) in-

creases the number of transistors per unit area and also increases the delays of wires due to the

greater wire RC delays [12]. On the contrary, with the 3D logic-on-logic technology, stacking

multiple logic dies on top of each other enables more transistors per unit area but does not

change the average wire delay. With 3D logic-on-logic technology, the delays of the vertical

connections are negligible (almost zero), and the delays of the horizontal connections remain

unchanged. This major difference provides an opportunity for tuning existing architectures

for implementation with the 3D logic-on-logic technology.

In this chapter, we use standard commodity components (e.g., cores, caches, and memory

channels) and attempt to investigate the impact of 3D logic-on-logic technology on the

organization of the Scale-Out Processors.
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(a) (b) (c)

Figure 6.1: Fixed-pod strategy with one logic die (a), two stacked logic dies (b), and four
stacked logic dies (c). Every connected vertical piece is a pod (i.e., (a), (b), and (c) have one,
two, and four pods, respectively).

6.2 Why 3D Pods?

While 3D integration is a promising approach to extend the validity of Moore’s law and en-

ables continual increase in the performance of Scale-Out Processors when transistor scaling

stops, a 3D pod design is not necessary for the 3D integration. Independent 2D pods can be

constructed on every logic die of a 3D chip. Each 2D pod can function independent of the

other 2D pods on upper or lower logic dies, similar to various pods on a large die in a standard

2D chip (see Chapter 3). As 3D pods increase the cost of the design and fabrication process,

their existence is only justified if they provide higher throughput over 2D pods.

Three-dimensional pods are attractive because they can leverage features specific to 3D

technology to boost performance. As the vertical distance between two stacked dies is much

shorter than the horizontal distance in a 3D chip, 3D technology breaks the relationship

between core count (or LLC capacity) and the distance between the cores and the last-level

cache. This phenomenon enables two possibilities for 3D pods to take advantage of the 3D

integration to boost performance. One option is to keep the number of cores and LLC capacity

in each pod constant as dies are attacked on top of each other. As core count and LLC capacity

in a pod do not change, the 3D pod can leverage the 3D integration to arrange the cores and

the LLC in various dies to reduce the distance between the cores and the LLC. The reduction

in the distance between the cores and the LLC in each pod results in a performance boost. We

refer to this option as the fixed-pod strategy. Figure 6.1 highlights how the fixed-pod strategy

works. An extra bonus of the fixed-pod strategy, in addition to the performance boost, is the
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(a) (b) (c)

Figure 6.2: Fixed-distance strategy with one logic die (a), two stacked logic dies (b), and four
stacked logic dies (c). Every connected vertical piece is a pod (i.e., (a), (b), and (c) all have one
pod).

lack of need for software scalability. As the number of cores in each pod remains constant, this

strategy does not require software scalability to benefit from the 3D integration.

The other alternative for 3D pods to take advantage of the 3D integration is to keep the number

of cores and LLC capacity in each logic die constant and scale them up in a pod with the

number of dies. In this strategy, 3D integration enables a pod to have more cores and a larger

LLC without producing any change in the core-to-cache area ratio and the on-chip distance

(i.e., a virtue of the vertical integration). The larger LLC in a 3D pod has a higher filtering

rate, which boosts performance and also reduces the number of power-hungry and area-

expensive memory channels (i.e., frees energy and area for more cores). The combination of

more effective LLC and fewer memory channels ensures higher performance density for 3D

pods and higher throughput for 3D Scale-Out Processors. We refer to the option of scaling

core count and LLC capacity of a pod with the number of logic dies as the fixed-distance

strategy. Figure 6.2 highlights how the fixed-distance strategy works. While this strategy

requires software scalability to benefit from the 3D integration, it takes advantage of the fact

that in such a 3D pod, the number of cores and the size of the LLC at each logic die are identical

to those of a 2D pod. If a piece of software is not scalable, the 3D pod can function as multiple

independent 2D pods (as as extra bonus).

The fact that 3D pods can deliver higher throughput as compared to 2D pods makes them

attractive. The organization of a 3D pod has significant impacts on its performance and design

complexity (just like the organization of a 2D pod). In the next section, we first introduce a
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metric for 3D design-space evaluation; then, we propose an organization for a 3D pod. We will

show that the organization of a 2D pod can be extended to become suitable for a 3D pod.

6.3 Metric for the 3D Design-Space Evaluation

To assess various organizations of a 3D pod, there is a need for a metric that captures conflicting

requirements, such as core count, LLC capacity, area, and the number of stacked logic dies

in a single representative number. This metric can make 3D design evaluation simple, just

like what performance density did for the 2D design evaluation. Performance density, as

defined in Chapter 2 (i.e., performance per mm2), is not useful for 3D design evaluation

because it does not consider the number of stacked logic dies. The definition for performance

density needs to be extended to be useful for 3D design evaluation. While performance per

unit of area is the right metric for a planar design (i.e., 2D), intuitively, the right metric for a

3D design is performance per unit of volume. Moreover, because the distance between all

two adjacent logic dies in a 3D multi-die integration is the same, performance per unit of

volume is proportional to performance per unit of area divided by the number of logic dies.

The extended definition for the performance density (PD) makes it applicable to 3D design

evaluation and also is equivalent to the definition presented in Chapter 2 when the number of

stacked logic dies is one.

6.4 3D Pod Organization

The right organization for a 3D pod is an organization that maximizes performance density.

A 3D pod organization, similar to that of a 2D pod, should support the following: (a) many

cores; (b) modestly sized LLC; and (c) decoupled core-LLC floorplanning to turn the all-to-all

traffic pattern into the bilateral traffic pattern. In this section, we propose an organization

for 3D pods that supports all of the mentioned features. For this study, we only consider

homogeneous organizations where the floorplanning of a 3D pod at each logic die is identical

to those of other logic dies. In a homogeneous organization, the LLC is distributed across all

logic dies in the 3D organization. Distributing the LLC across all logic dies has two benefits: (1)

while cores occupy a significant fraction of the die area, LLC area is not large enough to occupy

a complete die; and (2) stacking LLCs on top of each other enables reducing the latency of the

LLC. Moreover, having a homogeneous organization reduces the complexity of the fabrication

process by enabling the reuse of masks for all of the logic dies [10].

Due to the fact that the basic principles of 2D and 3D pods are the same (i.e., many cores,

modestly sized LLC, and decoupled cores and LLC), the organization of a 3D pod at each

logic die is identical to that of a 2D pod. Figure 6.3 shows a high-level view of the proposed

organization, featuring the LLC in the center of the dies, while cores are on both sides of the

LLC. At each logic die, a 3D pod uses simple, routing-free reduction trees to guide packets

toward the centralized LLC banks, as well as dispersion trees, which are logical opposites of
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Figure 6.3: Organization of a 3D pod.

reduction trees, to propagate response data and snoop traffic out to the cores. Every reduction

and dispersion tree connects a small number of cores to exactly one LLC bank. The LLC banks

are linked in a flattened butterfly topology, forming a low-latency NUCA cache. (For more

details, please refer to Chapter 4.)

While in a 2D pod, LLC slices are distributed across a planar surface in the center of the die, in

a 3D pod, LLC slices are distributed across a 3D volume in the center of various dies that are

stacked on top of each other. To provide connectivity between the cores and all of the LLC

slices, and due to the fact that the LLC slices are distributed to all of the logic dies, all of the

logic dies need to be connected together. Just like 2D pods, the connectivity within 3D pods

are provided in a way that the die section dedicated to cores remains as simple as possible. For

this goal, the flattened butterfly routers in the LLC region in the center of the dies are extended

to provide connectivity across stacked dies in a 3D pod. Figure 6.3 shows a high-level view of

the proposed organization. Routers in the LLC region are connected together using TSVs to

form a vertical flattened butterfly network. Identical to a 2D pod, cores send their requests to

the LLC region (in the same die) using the reduction network. Then, the flattened butterfly

network in the LLC region forwards the request to the destination if it happens to be on the

same die. If the LLC slice that holds the requested data happens to be on a different die, the

router (in the same die as the requesting core) that is in the same position as the destination

receives the request and forwards it to the final destination using the vertical TSV connections.

6.5 Methodology

We compare the performance of 3D Scale-Out Processors to 2D Scale-Out Processors using a

combination of cycle-accurate simulation, analytic models, and technology studies.
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Table 6.1: Area and power estimates for various system components at 40nm.

Component Area Power

Cores
OoO 4.5mm2 1W

In-order 1.3mm2 0.48W
LLC 16-way SA 5mm2 per MB 1W per MB

Interconnect 0.2 - 4.5 mm2 <5W
DDR4 interface

(PHY+ controller)
(2 + 10) mm2 5.7W

6.5.1 Design and Technology Parameters

We compare 2D and 3D Scale-Out Processors in 40nm technology with an on-chip supply volt-

age of 0.9V. We model processors with an area of 250-280mm2 (per logic die), a power budget

of 250W [84, 67], and a maximum of six single-channel DDR4 interfaces; these parameters

are an estimation for the power, area, and bandwidth budgets of 3D integrated chips. Design

parameters are summarized in Table 6.1.

We determine the LLC capacity and core count of pods in 2D and 3D Scale-Out Processors by

evaluating a broad design space from 1 to 1024 cores and LLC capacities in the range of 2 to

32MB. Results are presented in Section 6.6. We model as many pods as can be afforded without

exceeding the area, energy, and bandwidth constraints specified in this section. The number

of memory channels is computed to accommodate the worst-case bandwidth demand across

the workload spectrum for every core/LLC configuration.

6.6 Results

We now compare 3D Scale-Out Processor designs to 2D Scale-Out Processors. For each Scale-

Out design, we first find a performance-density-optimal pod organization. Then, we integrate

the pods up to the area, energy, and bandwidth limits per Section 6.5.1.

6.6.1 3D Scale-Out Processors with Out-of-Order Cores

We begin our study with out-of-order cores. Figure 6.4 plots performance density, averaged

across all workloads, for five different LLC sizes, while the number of logic dies stacked on top

of each other varies from one to four.

In the configuration with a single logic die, performance density maximizes with 32 cores and

2MB of LLC and diminishes with larger core count or LLC capacity, indicating that the physical

distance between the cores and the LLC in a 2-dimensional logic die hurts performance when

integrating a large number of cores or LLC capacity. In configurations with more than one

logic die, pods with 32 cores and 2MB of LLC (i.e., fixed-pod strategy) are competing with

pods with 32 cores and 2MB of LLC per logic die (i.e., fixed-distance strategy) for the highest

67



Chapter 6. Scale-Out Processors in the Post-Moore Era

2MB 4MB 8MB 16MB 32MB

4 8 16 32 64 12
8

25
6

51
2

10
24

# of Cores
2 4 8 16 32 64 12
8

25
6

51
2

# of Cores

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

1 2 4 8 16 32 64 12
8

25
6

Pe
rf

or
m

an
ce

 D
en

si
ty

# of Cores

No. of  Dies = 1 No. of  Dies = 2 No. of  Dies = 4

Figure 6.4: Performance density for a system with out-of-order cores, a range of last-level
cache sizes, and various numbers of stacked logic dies.

performance density.

On one hand, 3D technology enables pods to place the cores and the LLC across several logic

dies while keeping the core count and LLC capacity constant. This strategy (i.e., fixed-pod

strategy) reduces the footprint of a pod on a single logic die, decreases the distance from the

cores to the LLC, and, as a result, boosts performance. On the other hand, 3D technology

allows expanding a pod with more cores and larger LLC capacity without increasing the on-

chip distance (i.e., fixed-distance strategy) by placing the cores and the LLC across several

logic dies. Not only does such a 3D pod have the same on-chip distance as a 2D pod, but also,

because of having a larger LLC capacity and, hence, a lower LLC filtering rate, this 3D pod has

a higher performance density.

To explore these two alternatives, Figure 6.5 examines performance density of 3D Scale-Out

Processors based on the fixed-pod and the fixed-distance strategies. In the fixed-pod strategy,

the number of cores and LLC capacity in the pod are independent of the number of logic dies

(i.e., 32 cores and 2MB of LLC). In the fixed-distance strategy, the core count and LLC capacity

are scaled up with the number of logic dies (i.e., 32 cores and 2MB of LLC per logic die). As

expected, the more logic dies that are placed on top of each other, the higher the performance

density of a pod will become. For pods with OoO cores, the fixed-pod strategy delivers the

highest performance density (note that the performance difference of the two strategies is

small). We, therefore, adopt a 3D pod with 32 cores and 2MB of LLC as the preferred pod

configuration due to its high performance density. With only two logic dies, the performance

density of the 3D pod is 5% higher than that of the 2D pod, and with four logic dies, the

improvement in performance density reaches 8%.

Chip-level assessment. Under the constraints specified in Section 6.5.1, a Scale-Out Processor

with 1, 2, and 4 stacked logic dies can afford one, two, and four pods, respectively, before

reaching the area limit.
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Figure 6.5: Performance density of 3D Scale-Out Processors (OoO) with the fixed-pod and
the fixed-distance strategies. The labels on the x-axis show the configuration of the pod and
the number of stacked logic dies. The number of pods (not shown) is determined by the
constraints.
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Figure 6.6: Performance density for a system with in-order cores, a range of last-level cache
sizes, and various numbers of stacked logic dies.

6.6.2 3D Scale-Out Processors with In-Order Cores

Figure 6.6 illustrates performance density results, averaged across all workloads, for cache

sizes ranging from 2 to 32MB and number of stacked logic dies ranging from one to four. The

general trends are similar to those described in the previous section; however, simpler cores in

a throughput-oriented architecture yield an optimal pod design with 64 cores and 2MB of LLC

with one logic die.

Similar to the observation for OoO cores, the increase in the number of cores and LLC capacity

in a single logic die (beyond the optimal point) hurts performance due to the growth in the
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Figure 6.7: Performance density of 3D Scale-Out Processors (in-order) with the fixed-pod
and the fixed-distance strategies. The labels on the x-axis show the configuration of the pod
and the number of stacked logic dies. The number of pods (not shown) is determined by the
constraints.

on-chip distance. The 3D technology allows either keeping the pod constant and reducing the

distance (i.e., fixed-pod strategy) or expanding a pod with more cores and larger LLC capacity

without increasing the on-chip distance (i.e., fixed-distance strategy). Similar to what we

observed for OoO cores, these two strategies are competing to deliver the highest performance

density. Figure 6.7 explores these two alternatives for 3D Scale-Out Processors with in-order

cores. In the fixed-pod strategy, a pod keeps 64 cores and 2MB of LLC, independent of the

number of stacked dies, while in the fixed-distance strategy, the core count and LLC capacity

in a pod scale up with the number of logic dies (i.e., 64 cores and 2MB of LLC per logic die). As

with four logic dies, both strategies produce chips that are bandwidth-limited, the maximum

number of stacked dies in Figure 6.7 is three.

Similar to the results with OoO cores, with two logic dies, the fixed-pod strategy delivers

higher performance than the fixed-distance strategy. However, with three logic dies, the fixed-

distance strategy delivers higher performance than the fixed-pod strategy, as with three logic

dies, 3D Scale-Out Processors with in-order cores are near the bandwidth saturation point.

Because the pod with the fixed-distance strategy has a larger LLC, it can use the valuable

bandwidth more efficiently and, as such, it can deliver a higher performance. We, therefore,

adopt a 3D pod with 64 cores and 2MB of LLC (i.e., fixed-pod strategy) for two logic dies and a

3D pod with 196 cores and 6MB of LLC (i.e., fixed-distance strategy) for three logic dies. As

expected, the more logic dies that are placed on top of each other, the higher the performance

density of a pod will become. With only two logic dies, the performance density of the 3D pod

is 2%, and with three logic dies, 6% larger than that of the 2D pod.

Chip-level assessment. The optimal 3D pod configuration changes with the number of

stacked logic dies. A 3D Scale-Out Processor with in-order cores integrates one pod of 64 cores
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Table 6.2: Specification of various 2D and 3D Scale-Out Processors.

Core type #Dies Configuration #Pods
Pod

#MCs PD
#Cores LLC (MB)

OoO

1 2D Pod 1 32 2 2 0.121

2
Fixed-Pod 2 32 2 3 0.127
Fixed-Distance 1 64 4 3 0.125

4
Fixed-Pod 4 32 2 6 0.131
Fixed-Distance 1 128 8 5 0.130

In-order

1 2D Pod 1 64 2 2 0.212

2
Fixed-Pod 2 64 2 4 0.216
Fixed-Distance 1 128 4 4 0.215

3
Fixed-Pod 3 64 2 6 0.223
Fixed-Distance 1 192 6 5 0.226

and 2MB of LLC with one logic die, two pods of 64 cores and 2MB of LLC with two logic dies,

and one pod of 196 cores and 6MB of LLC with three logic dies.

Table 6.2 summarizes the results of the evaluation of 2D and 3D Scale-Out Processors with

out-of-order and in-order cores.
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7 Related Work

7.1 Scale-Out Design Methodology

The notion that scale-out workloads benefit from a many-core architecture was advocated

by Hardavellas et al. [42], who argued for the use of simpler cores and minimum on-die

caches, provided that there is no bandwidth bottleneck. This dissertation extends that idea by

introducing a scalable and efficient implementation of such a many-core architecture.

In order to reduce access time to the LLC, researchers have proposed Non-Uniform Cache

Architectures (NUCA) [53]. The access latency of NUCA caches is dominated by the inter-

connect delays in processors with many cores and cache banks. One way to overcome the

interconnect delays in NUCA caches is through richly connected topologies [55]; however,

these topologies have been shown to have significant area and energy overheads in many-core

chips [35]. As an alternative, there is a large body of work attempting to reduce the NUCA

cache access latency by a combination of replication and relocation of cache blocks, but they

either require complex lookups [18, 20, 11, 95, 19, 50], waste LLC capacity [95, 11], are not

scalable [18, 36], optimize only a subset of the LLC accesses [11, 18, 21], or are not applicable

to modestly sized LLCs [41]; as such, they are not suitable for Scale-Out Processors. In this

dissertation, we show that a pod-based design with a simple crossbar/NOC-Out interconnect

overcomes the inefficiency of NUCA designs on scale-out workloads.

Prior work that tried to find the optimal CMP design either focused on finding the optimal

cache architecture for a given core count [48, 96] or on finding the optimal core microar-

chitecture for a given workload [29]. Most of the prior work assumes non-datacenter work-

loads [29, 74]. Oh et al. [74] presented a simple and effective analytic model to study the core

count versus cache capacity trade-off in CMPs under die area constraints, showing that for a

fixed cache size, an increase in core count hurts the aggregate performance beyond a certain

point. This dissertation corroborates the result on scale-out workloads.

Prior research and industry efforts have attempted to maximize the compute area by reducing

the fraction of the die allocated to the cache. Kgil et al. [52] proposed eliminating last-level
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caches and devoting their area to cores, while compensating for the increase in memory

bandwidth pressure through 3D-stacked DRAM. Similarly, we find that increasing the fraction

of the chip dedicated to compute is important for throughput; however, we also observed that

scale-out workloads have reuse in their secondary working sets and benefit from a modest

cache size. Graphics processors (GPUs) also use a large number of processing elements with

minimal cache resources. For instance, Tesla C1060 GPUs have 240 processing elements

with under 756KB of aggregate cache capacity [73]. GPU architectures are tuned for high

throughput and are unlikely to satisfy latency demands of real-time online services.

Certain commercial and research chips share some of the insights or conclusions of this

dissertation. Piranha [8] was the first chip multi-processor designed for commercial server

workloads that used simple cores for higher efficiency. In this dissertation, we also showed

that using simple cores for scale-out workloads is beneficial from a performance density

perspective. Sun Niagara III is a contemporary server processor that, at a high level, resembles

a Scale-Out pod, in that it features 16 cores and a 6MB LLC connected via a crossbar switch [81].

However, the cores are 8-way multi-threaded, resulting in poor single-threaded performance

and high area overhead. In addition, Niagara chips have not adopted a multi-pod design;

instead, they demonstrate scaling-up capabilities through additional resources (e.g., more

cores, larger LLC).

7.2 NOC-Out: Microarchitecting a Scale-Out Processor

NOC-Out is not the first attempt to optimize the on-chip interconnect for a specific work-

load domain. Bakhoda et al. proposed a NOC design optimized for GPU-based throughput

accelerators [3]. Significant similarities and differences exist between the two efforts. Both

designs address the needs of thread-rich architectures characterized by a memory-resident

data working set and a many-to-few-to-many traffic pattern. However, whereas workloads

running on throughput accelerators are shown to be insensitive to NOC latency, we show

scale-out workloads to be highly sensitive to interconnect delays due to frequent instruction

fetches from the LLC. As a result, NOC-Out innovates in the space of delay-optimized on-chip

topologies, whereas prior work has focused on throughput and cost in the context of meshes.

One effort aimed at boosting NOC efficiency specifically in the context of server processors was

CCNoC, which proposed a dual-mesh interconnect with better cost-performance characteris-

tics than existing multi-network alternatives [87]. This dissertation shows that mesh-based

designs are suboptimal from a performance perspective in many-core server processors.

A number of earlier studies sought to reduce NOC area cost and complexity through mi-

croarchitectural optimizations in crossbars [54, 88], buffers [70], and links [68]. A recent

study examined challenges of NOC scalability in kilo-node chips and proposed an intercon-

nect design that co-optimized buffering, topology, and flow control to reduce NOC area and

energy [35]. All of these efforts assume a conventional tiled organization. In contrast, our

NOC-Out design lowers NOC area overheads by limiting the extent of on-die connectivity.
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However, NOC-Out’s efficiency can be further improved by leveraging many of the previously

proposed optimizations.

Finally, Huh et al. preceded NOC-Out in proposing a segregated NUCA CMP architecture, in

which core and LLC tiles are disjointed [45]. Our design is different from Huh’s in that it seeks

to reduce the number of cache tiles to lower network cost, whereas Huh relied on a sea of

cache tiles to optimize data placement and partitioning.

7.3 Datacenter Analysis

There are various pieces of work targeting estimation of cost or power consumption of data-

centers to optimize their operation [59, 75, 86, 51, 44, 38]. These pieces of work estimate the

cost or power consumption of datacenters using models that range from simple spreadsheet

models [38] to detailed models considering the performance of various workloads running

in datacenters [59]. James Hamilton used a simple spreadsheet model to show that server

acquisition and power costs constitute the two largest TCO components [38]. The results of

our study corroborate the results presented by James Hamilton. Pitt Turner et al. showed

that datacenter analysis based on cost per area (i.e., cost normalized to area) may lead to

disappointing results [86]. In our study, we use performance per total cost of ownership for

the evaluation of different datacenter designs.

One of the key results of our study that multi-pod Scale-Out Processors are beneficial from

a TCO perspective is similar to the observation made by Karidis et al., who noted that high-

capacity servers are effective in lowering the cost of computation [51]. Moreover, our results

corroborate earlier studies that identify efficiency benefits stemming from the use of lower-

complexity cores, as compared to those used in conventional server processors. Given this

observation, many companies started producing servers using lower-complexity cores [78,

15, 14, 91]. Finally, our TCO analysis was derived by using EETCO [44], which considers four

major expense categories: datacenter infrastructure, server and networking hardware, power,

and maintenance.

7.4 3D Integration

Three-dimensional integration [26] is an attractive alternative to transistor scaling to extend

the validity of Moore’s law by offering an opportunity to continue the CMOS scaling trend.

In a 3D chip, multiple logic layers are stacked on top of each other. Various vertical connec-

tions for 3D integrated chips have been explored, including wire bonded [17], µbump [94],

contactless [16], and through-silicon via [26]. Through-silicon via has the potential to offer

the greatest density and, as a result, is the most attractive option. There are two different

approaches for implementing through-silicon via. The first approach involves the sequential

device process, in which the front-end processing (to build a logic layer) is repeated on a single

wafer to build multiple active logic layers before the connections between logic layers are
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built. The second approach processes each active logic layer separately, using conventional

fabrication techniques, and then stacks multiple logic layers together using wafer bonding.

The latter approach requires minimal changes to the existing manufacturing process and,

consequently, is more attractive. Logic layers can be bonded face-to-face (F2F) or face-to-back

(F2B) [62]. The through wafer via in F2F wafer-bonding does not go through the thick buried

silicon layer and can be fabricated with smaller via sizes. However, for 3D chips with more

than two active layers, F2B stacking provides better scalability [62].

Thermal considerations have been a significant concern for 3D integration [22]. As a result,

various techniques have been developed to address thermal issues in 3D architectures, such as

physical design optimization through intelligent placement [34], increasing thermal conduc-

tivity of the stack through insertion of thermal vias [22], and through the use of novel cooling

structures [23].

Many researchers focused on exploring the potential benefits of 3D stacked processor ar-

chitectures. Beanato et al. [10] designed and fabricated a 3D chip composed of completely

identical stacked dies connected together by through-silicon vias. Each die features four 32-bit

embedded processors and associated memory modules, interconnected by a 3D network-

on-chip, which can route packets in the vertical direction. Black et al. [13] proposed an

architecture, which arranges the logic modules of an Intel Pentium 4 microprocessor in clus-

ters and reorganized them in two stacked layers, resulting in considerable performance gains

and energy savings at constant frequency. Loh proposed a processor architecture where a

baseline architecture can be augmented with additional 3D stacked resources to achieve

higher performance [61].
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Global-scale online services have gained popularity in recent years. Service providers like Mi-

crosoft, Google, and Facebook serve millions of users across the world with search capabilities,

media streaming, and social networking. Large-scale datacenters with thousands of servers

are the computing platforms that deliver such services to the world. The massive scale of

such datacenters requires an enormous capital outlay for infrastructure, hardware, and power

consumption. With demand for online services skyrocketing around the globe, efficiency

has become a paramount concern in the design and operation of large-scale datacenters. As

processors are the primary contributor to the performance and one of the major contributors

to the cost of datacenters, they were the focus of this dissertation.

Unfortunately, there is a mismatch between what existing processors offer and what is needed

for global-scale online services [30]. While online services are data-centric and memory-

intensive, existing processors offer aggressive OoO cores that are ineffective for memory-

intensive workloads. Moreover, existing processors allocate almost half of their transistor

budget to large last-level caches (LLCs) that are ineffective for online services with massive

datasets due to limited reuse. Finally, processor vendors plan to build even larger caches

in their future processors, which make them even more inefficient. We need to redesign

processors to make them suitable for global-scale online services.

Recent research examining scale-out workloads behind many of today’s online services has

shown that, as a class, these workloads have a set of common characteristics [30]. The presence

of common characteristics – namely, (a) request independence; (b) large instruction footprints;

and (c) vast dataset sizes – indicates that server processors can be optimized for this workload

class. The abundant request-level parallelism argues for processor designs with a large number

of cores to maximize throughput. The independent nature of requests virtually eliminates

inter-thread communication activity; however, large instruction footprints require a fast

communication path between the individual cores and the last-level cache containing the

applications’ instructions. Finally, the vast dataset dwarfs on-die storage capacities and offers

few opportunities for caching, due to limited reuse [30].
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Unfortunately, existing processor organizations cannot fulfill all of the requirements simul-

taneously. Taking an existing processor, it is easy to reduce the size of the cache, replace

aggressive OoO cores with simpler ones, and instead increase the core count. However, larger

core count translates into larger distance between the individual cores and the LLC in existing

processor organizations. As instructions are resident in the LLC, the large distance between

the cores and the LLC slows down the instruction fetch and hurts the performance of scale-out

workloads. Moreover, as process technology scales and more cores are added to processors,

this problem exacerbates.

Taking advantage of common workload features, and driven by the need to increase processor

efficiency, we introduced and formalized the Scale-Out Processor (SOP) design methodology.

The SOP methodology calls for partitioning a chip into stand-alone modules named pods to

break the relationship between the core count and the on-chip distance. Each pod is a server

running an operating system and a full software stack. The SOP methodology provides an

optimization framework for deriving the optimal core count and LLC capacity in each pod

based on microarchitectural and technology parameters and advocates many cores, modestly

sized LLCs, and low interconnect delays. The end result is a design called Scale-Out Processor,

which delivers peak throughput in today’s technology and affords near-ideal scalability as

process technology scales.

With SOP methodology calling for many-core pods, a many-core organization that enables fast

access to the LLC is essential for the success of Scale-Out Processors. While crossbar-based

pods suffer from scalability limitations, mesh-based pods enable cost-effective scalability to

high core count. Mesh-based pods feature a mesh-based interconnect fabric and a tiled orga-

nization where each tile integrates a core, a slice of the shared LLC with directory, and a router.

Unlike their cost-effective scalability to high core counts, mesh-based pods sacrifice perfor-

mance on scale-out workloads due to their large average hop counts [65]. Each hop involves

a router traversal, which adds delay that prolongs the core stall time on instruction fetches

serviced by the LLC. To reduce NOC latency, researchers have proposed low-diameter NOC

topologies, such as the flattened butterfly [55], that leverage the abundant on-chip wire budget

to achieve rich inter-node connectivity. By minimizing the number of router traversals, a

low-diameter network improves performance over a mesh-based pod by accelerating accesses

to the LLC. However, the performance gain comes at a considerable area overhead stemming

from the use of many-ported routers and a multitude of repeater-intensive long-range links.

In this dissertation, we addressed the scalability challenge for pods in Scale-Out Processors

through NOC-Out, a core, cache, and interconnect organization optimized for the target

workload domain. We identified the direct communication between cores and LLC banks,

which we termed bilateral, as the dominant permutation in scale-out workloads and showed

that other forms of communication, including coherence activity, are rare. Based on this

insight, NOC-Out decoupled LLC tiles from the cores and localized them in a central portion

of the die. The segregated organization naturally accommodated the bilateral core-to-cache

access pattern. More importantly, with the traffic flowing between spatially distinct regions
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(cores to caches and back to the cores), NOC-Out virtually eliminated the need for direct

inter-core connectivity, affording a significant reduction in the network cost.

We further optimized cost and performance of NOC-Out and deployed simple reduction and

dispersion trees to carry messages from the cores to the centrally located LLC banks and vice

versa. Each reduction or dispersion tree is shared by a small number of cores. A node in

a reduction tree is just a buffered 2-input mux that merges packets from a local port with

those already in the network. We reduced cost and delay by eliminating the need for routing,

multi-port arbitration, complex switches, and deep buffers. Moreover, a node in a dispersion

tree is a logical opposite of that in a reduction tree, allowing packets to either exit the network

or advancing them up the tree at minimal cost and delay.

To show the impact of Scale-Out Processors on datacenters, we evaluated the efficiency of

datacenters, which we measured by using performance per total cost of ownership, for various

server processors. We demonstrated that Scale-Out Processors improve the efficiency of

existing commercial datacenters by an order of magnitude. Moreover, we showed that in the

context of datacenter efficiency, Scale-Out Processors with just one pod are suboptimal, and

multi-pod Scale-Out Processors are necessary to maximize the efficiency of datacenters.

Finally, we extended the organization of Scale-Out Processors for implementation with 3D

logic-on-logic technology. The 3D logic-on-logic technology is the likely successor of transistor

scaling and enables more transistors in the same area. We showed that Scale-Out Processors

can take advantage of the features specific to the 3D logic-on-logic technology to reduce the

distance from the cores to the LLC and improve performance.

8.1 Limitations and Future Work

We observed that the growing distance between the individual cores and the last-level cache

is a performance bottleneck for many-core processors. While we solved this problem by

partitioning a processor into multiple pods, this solution is only useful for workloads that are

capable of distributing the load across many servers (or pods). Extending the idea presented

in this dissertation to be applicable to a broader set of workloads is one of our plans for the

future.

The focus of this dissertation was on the allocation and organization of cores and caches in

multi-core processors. While cores and caches are important components of a processor, a

complete processor also has a variety of IO interfaces. In this dissertation, we considered

memory and network interfaces and assumed that memory interfaces are shared across pods

and network interfaces are private to pods. To have a complete processor, further research

on IO interfaces is necessary. Open questions include the following: (a) what are the right

interfaces to integrate on a Scale-Out Processor (e.g., network, storage); (b) for each integrated

interface, is it shared across pods or private to a pod; and (c) how can we best share an interface

across pods.
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Finally, as technology scales and more pods will be integrated on Scale-Out Processors, these

processors eventually become constrained by their off-chip traffic and power consumption.

As earlier research showed, many-core processors with simple cores first experience the

bandwidth wall and then the energy wall [42]. Further research is necessary to investigate how

to address the bandwidth and energy walls in the context of Scale-Out Processors. For the

bandwidth wall, one opportunity is to take advantage of large DRAM caches (e.g., embedded

DRAM [77], 3D-stacked DRAM [13]) to significantly cut the off-chip traffic. To address the

energy wall, one possibility is to provide cores with a set of accelerators suitable for scale-out

workloads to reduce the energy consumed per operation for those operations that can be

mapped to the accelerators.
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