
A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator

perturbed by an attractive δ′-interaction centred at the origin: double degeneracy and level

crossing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 J. Phys. A: Math. Theor. 46 385305

(http://iopscience.iop.org/1751-8121/46/38/385305)

Download details:

IP Address: 80.254.171.21

The article was downloaded on 06/09/2013 at 12:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/46/38
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 46 (2013) 385305 (16pp) doi:10.1088/1751-8113/46/38/385305

A remarkable spectral feature of the Schrödinger
Hamiltonian of the harmonic oscillator perturbed by
an attractive δ′-interaction centred at the origin:
double degeneracy and level crossing

∗

Sergio Albeverio1,2,3, Silvestro Fassari2,4,5 and Fabio Rinaldi5

1 Institut für Angewandte Mathematik, HCM, IZKS, BiBoS, Universität Bonn, Endenicherallee
60, D-53115 Bonn, Germany
2 CERFIM, PO Box 1132, Via F Rusca 1, CH-6601 Locarno, Switzerland
3 Chair Professorship, Department of Mathematics and Statistics, King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia
4 ISR, Aeulistr. 10, CH-9470 Buchs, Switzerland
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Abstract
We rigorously define the self-adjoint Hamiltonian of the harmonic oscillator
perturbed by an attractive δ′-interaction, of strength β, centred at 0 (the bottom
of the confining parabolic potential), by explicitly providing its resolvent.
Our approach is based on a ‘coupling constant renormalization’, related to
a technique originated in quantum field theory and implemented in the rigorous
mathematical construction of the self-adjoint operator representing the negative
Laplacian perturbed by the δ-interaction in two and three dimensions. The way
the δ′-interaction enters in our Hamiltonian corresponds to the one originally
discussed for the free Hamiltonian (instead of the harmonic oscillator one)
by P Sěba. It should not be confused with the δ′-potential perturbation of the
harmonic oscillator discussed, e.g., in a recent paper by Gadella, Glasser and
Nieto (also introduced by P Sěba as a perturbation of the one-dimensional free
Laplacian and recently investigated in that context by Golovaty, Hryniv and
Zolotaryuk). We investigate in detail the spectrum of our perturbed harmonic
oscillator. The spectral structure differs from that of the one-dimensional
harmonic oscillator perturbed by an attractive δ-interaction centred at the origin:
the even eigenvalues are not modified at all by the δ′-interaction. Moreover, all
the odd eigenvalues, regarded as functions of β, exhibit the rather remarkable
phenomenon called ‘level crossing’ after first producing the double degeneracy
of all the even eigenvalues for the value β = β0 = 2

√
π

B( 3
4 , 1

2 )
∼= 1.47934(B(·, ·)

being the beta function).
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1. Introduction

There has recently been renewed interest in the study of the existence of degenerate
energy levels in one-dimensional (1D) quantum mechanics, as attested by articles like [1–4]
in which the eigenvalue degeneracy exhibited either by quadratic Hamiltonians with various
types of potentials (volcano potentials, modified Pösch–Teller potentials) or by particular
types of deformed oscillators was investigated. It is worth noting that all the models
presented in the aforementioned articles depend on two parameters. However, after reading
the following statement by Berry and Mondragon in the final discussion contained in [5]:
‘another phenomenon which occurs generically but is forbidden in quadratic Hamiltonians
in one dimension is degeneracy of states with different symmetry, which requires only one
parameter to be varied’, we wondered whether a quadratic Hamiltonian with a strongly singular
interaction term (dependent only on one parameter representing the strength of the interaction)
instead of the usual potential, could exhibit such a spectral feature.

In particular, we have decided to focus our attention on a strongly singular perturbation of
the Hamiltonian of the harmonic oscillator H0 = 1

2

(− d2

dx2 + x2
)

whose entire spectrum consists
exclusively of the isolated simple eigenvalues En = n + 1

2 ,∀n ∈ N0: = {0, 1, 2, . . .}.
From the point of view of physical applications, the Hamiltonian of the harmonic oscillator

perturbed by a zero range impurity represented by a δ-interaction has drawn a considerable
amount of interest over the last decade both in quantum dot physics (see [6] for the three-
dimensional (3D) case) and the physics of Bose–Einstein condensates (see [7–9] for the 1D
case). Furthermore, it has also been widely studied in papers pertaining to the mathematical
physics literature such as [10–19]. It is certainly worth mentioning that the double degeneracy
issue did actually come to the surface in [12, 13], although only in the asymptotical sense:
in the limiting case of the 1D harmonic oscillator perturbed by an infinitely repulsive Dirac
distribution centred at the origin (equivalent to a Dirichlet boundary condition), the spectrum
of the new Hamiltonian consists only of the doubly degenerate odd levels.

In this paper we deal with a different type of 1D attractive point perturbation of the
harmonic oscillator, that is to say the δ′-interaction. To the best of our knowledge, this is
the first paper treating such perturbations of the harmonic oscillator (the δ′-interaction as a
perturbation of − 1

2
d2

dx2 was introduced by Sěba in [26]). We are only going to consider the
case where such a zero range perturbation is exactly situated at the origin, the bottom of
the confining harmonic potential. After rigorously constructing in section 2 the self-adjoint
Hamiltonian giving mathematical sense to the merely formal expression

Hβ = H0 − β|δ′(x)〉〈δ′(x)|, β � 0 (1.1)

by means of the resolvent convergence of Hamiltonians with a suitable energy cut-off, we
thoroughly investigate the spectral properties of the perturbed operator in terms of the only
parameter of our model, namely the magnitude of the extension parameter, that is to say our
coupling constant reciprocal α = 1/β,

β > 0, α = +∞ for β = 0.
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Before proceeding further, we wish to point out that, by using the Fourier transform
of the derivative of the Dirac distribution centred at the origin and the representation of the
momentum operator using the well-known creation and annihilation operators of the harmonic
oscillator, we get the heuristic expression:

Hβ = a+a + 1

2
− β

2
(a+ − a)

∣∣∣∣ 1√
2π

〉 〈
1√
2π

∣∣∣∣ (a − a+). (1.1a)

As a consequence, our perturbation could be regarded as a momentum dependent interaction,
borrowing the terminology used in [20] dealing with many-body systems in one dimension.

Furthermore, as the reader well acquainted with the literature on point interactions
will easily realize, our Hamiltonian operator is completely different from the one recently
investigated by Gadella et al in [21] in which the 1D harmonic oscillator is perturbed by a
‘singular potential’ of the type

−γ δ + λδ′.

By referring to the classification first introduced in [22, 23], it is quite evident that, while
the perturbation investigated by Gadella et al implies the use of a differential operator with a
‘generalized potential’, ours involves instead one with a ‘singular density’.

Moving to the findings of our paper, they seem rather remarkable to us: whilst the even
levels are not affected at all by this type of point interaction, as was to be expected on the basis
of the opposite behaviour of the δ-interaction, the odd ones are given by smooth functions of
the parameter α. Each function representing an odd eigenvalue does cross the horizontal line
representing the adjacent even eigenvalue for the special value

α0 = (H0 + 1)−1(0, 0) =
∞∑

n=0

ψ2
2n(0)

2n + 3
2

= 1√
π

∫ 1

0

ξ
1
2

(1 − ξ 2)1/2
dξ = B

(
3
4 , 1

2

)
2
√

π
=

√
2
2

(
3
4

)
π

∼= 0.675978, (1.2)

where (H0 + 1)−1(0, 0) is the value of the resolvent kernel (H0 + 1)−1(x, y) at x = y = 0,
and ψn is the normalized eigenfunction associated with the nth eigenvalue En of H0, the
Hamiltonian of the above harmonic oscillator. In the second equality we have used Parseval’s
equality, while the following two are based on the results of [10, 11].

As a consequence, the model exhibits the double degeneracy of all the even levels for that
critical value of the parameter and the phenomenon called ‘level crossing’ in its neighbourhood.

In a final remark we will stress the close analogy between the 1D model investigated here
and the 3D isotropic harmonic oscillator perturbed by a Dirac distribution centred at the origin
investigated in papers such as [6, 17]: from the point of view of the structure of the spectral
curves representing the eigenvalues (energy levels) as functions of the extension parameter
and neglecting the degeneracy of the 3D eigenvalues, the harmonic oscillator perturbed by the
point interaction considered here seems to be a more legitimate 1D counterpart than the delta
distribution, as the latter bears no resemblance to the 3D-level crossing involving eigenstates of
different symmetry. Having stated that analogy, an important difference must also be pointed
out: whilst in the case of the perturbed isotropic oscillator the eigenenergy of the simple
eigenvalue created by the point interaction (emerging out of a degenerate level with an even
value of the total angular momentum) can cross the next lower unperturbed level (having an
odd value of the total angular momentum) beyond a certain threshold of the key parameter of
that model, something of an opposite nature occurs in the 1D model being studied here: each
perturbed odd eigenvalue can fall below the next lower unperturbed even eigenvalue beyond
a certain threshold. As a consequence, the symmetry of the ground state wavefunction can

3
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change in the case of a sufficiently strong δ′-interaction (the ground state wavefunction being
given by an odd function discontinuous at the origin).

In a separate paper we will show that (1.1) can be identified with the norm resolvent limit
of the Hamiltonian of the 1D harmonic oscillator perturbed by a suitable triple of simple Dirac
distributions.

2. The rigorous definition of Hβ

The spectral features of the self-adjoint Hamiltonian of the 1D harmonic oscillator perturbed
by a single attractive point interaction centred at the origin (resp. centred away from the
origin) have been investigated in [10] (resp. [11]; see also [12–15]). The spectrum of the
self-adjoint Hamiltonian of the 1D harmonic oscillator perturbed by a pair of such identical
point interactions has been studied as well in the recent article [16]. As a further development
of such previous work, we consider the formal Hamiltonian Hβ , involving a different type of
attractive point interaction, that is to say the δ′-interaction given by (1.1), resp. (1.1a).

The rigorous definition of Hβ as a densely defined self-adjoint operator is bound to
be a slightly more challenging task given the fact that such a point interaction is far
more singular than its analogue involving the Dirac distribution. This can be immediately
understood by adopting the notation and terminology of [23, 24], according to which δ∈H −1 but
δ′∈H −2\H −1, δ, δ′ being the Dirac measure at 0 and its derivative as a distribution (where,
for any positive integer n, the symbol H −n denotes a negative index Sobolev space associated
with L2(R)) and noticing that, whilst in [10] the function F(E ) = F0(E ) defined by (1.3) in
[23] was given by the convergent series(

δ,
1

H0 − E
δ

)
= (H0 − E )−1(0, 0)

=
∞∑

n=0

ψ2
2n(0)

2n + 1
2 − E

, ψ2
2n(0) = (2n)!√

π22n(n!)2
, E /∈ σ ([H0]sym) (2.1)

(where σ ([H0]sym) denotes the spectrum of the symmetric part of H0), its counterpart in the
case of (1.1) diverges as N → ∞, since ∀n ∈ N:(

δ′,
N∑

n=0

|ψn〉〈ψn|
n + 1

2 − E
δ′

)
=

N∑
n=0

[(δ′, ψn)]2

n + 1
2 − E

=
N∑

n=0

[ψ ′
2n+1(0)]2

2n + 3
2 − E

= 2
N∑

n=0

(2n + 1)ψ2
2n(0)

2n + 3
2 − E

, E /∈ σ ([H0]asym) (2.2)

(where σ ([H0]asym) denotes the spectrum of the antisymmetric part of H0). The divergence is
seen by exploiting well-known properties of the eigenfunctions of the harmonic oscillator and
their derivatives, by which limn→∞ n1/12‖ψn‖∞ exists and is finite (see, e.g., [25] p 144).

As a consequence of this divergence, the rather straightforward resolvent convergence
methods used for the definition of the Hamiltonian in the aforementioned articles can no longer
be used. On the other hand, the divergence of (2.2) is reminiscent of that of the 3D counterpart
of (2.1). Hence, the strategy used in [17] to deal with the 3D isotropic harmonic oscillator
perturbed by an attractive point interaction centred at the origin (Fermi pseudopotential), i.e. the
renormalization of the coupling constant, can be exploited with relatively minor modifications
(this strategy was already used by Sěba in his renowned article [26] on the Laplacian perturbed
by the same point interaction we are considering here, as well as by Albeverio et al in [27]
dealing with periodic configurations of δ′-interactions; we also refer the reader to [6] for the
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Figure 1. The plot of �
(30)
norm(x; 1/2).

more general study of a 3D harmonic oscillator perturbed by a point interaction centred at any
point in space).

Essentially, the role played by the function

(H0 − E )−1(�x) =
∞∑

l1,l2,l3=0

ψ2�l(
�0)

2|�l| + 3
2 − E

ψ2�l(�x),

which belongs to L2(R3), (with �x ∈ R
3, ∀E /∈ σ (H0), |�l| = l1 + l2 + l3) in [17], will be played

here by

�(x; E ): =
∞∑

n=0

(2n + 1)1/2ψ2n(0)

2n + 3
2 − E

ψ2n+1(x) (2.3)

which belongs to L2(R), (with x ∈ R, ∀E /∈ σ ([H0]asym), once again reminding the reader
of the above-mentioned crucial property regarding the decay of the uniform norm of the
eigenfunctions of the harmonic oscillator already exploited in [10, 11, 16, 17].

Remark 1. By writing for simplicity �(E ) = �(·; E ), we have that:

‖�(E )‖2
2 =

∞∑
n=0

(2n + 1)ψ2
2n(0)(

2n + 3
2 − E

)2 = (H0 + 1 − E )−1(0, 0) +
(

E − 1

2

)
(H0+1 − E )−2(0, 0)

= Tr[|(H0 + 1 − E )−1/2(·, 0)〉〈(H0 + 1 − E )−1/2(0, ·)|]
+

(
E − 1

2

)
Tr[|(H0 + 1 − E )−1(·, 0)〉〈(H0 + 1 − E )−1(0, ·)|]. (2.3a)

By taking for example the value E = 1/2, the function (2.3) normalized is given by

�norm(1/2) = �(1/2)

‖�(1/2)‖2
= �(1/2)√

(H0 + 1/2)−1(0, 0)
.

If we consider the approximating function

�(30)
norm(x; 1/2) =

∑30
n=0

ψ2n(0)

(2n+1)1/2 ψ2n+1(x)∑30
n=0

ψ2
2n(0)

2n+1

,

5
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its graph (figure 1) clearly exhibits the vestige of the action of the attractive point interaction
of the singular type being considered here: the continuity of the eigenfunction at the origin is
bound to be lost.

The latter feature is in perfect agreement with the well-known findings about the
Hamiltonian

−β = − d2

dx2
− β|δ′(x)〉〈δ′(x)|,

fully investigated in [26–31] (the reader also interested in the literature on the potential related
to the derivative of the Dirac distribution is referred to [26, 32, 33]), where the coupling
constant β of the interaction also enters in the condition

f (0+) − f (0−) = −β · f ′(0)

defining the domain of the perturbed operator (the minus sign is due to the fact that we assumed
β � 0, i.e. we are considering an attractive δ′-interaction).

The definition (2.3) obviously guarantees that |�(E )〉〈�(E )| is a well-defined rank-1
operator trivially vanishing on the subspace spanned by the symmetric eigenfunctions.

We start with the following N-approximation HN
β for the Hamiltonian Hβ :

HN
β = H0 − μβ(N)

N∑
m,n=0

|ψ2m+1〉[ψ ′
2m+1(0)ψ ′

2n+1(0)]〈ψ2n+1|, β ∈ R\{0}, (2.4)

where

1

μβ(N)
= 1

β
+ 2

N∑
n=0

(2n + 1)ψ2
2n(0)

2n + 3
2

, β ∈ R\{0}. (2.4a)

Its resolvent is explicitly given by:(
HN

β − E
)−1 = (H0 − E )−1 + 2|�N (E )〉〈�N (E )|

1
μβ (N)

− ∑N
n=0

[ψ ′
2n+1(0)]2

2n+ 3
2 −E

, Im E > 0, (2.5)

(β ∈ R\{0}), with

�N (E ) =
N∑

n=0

(2n + 1)1/2ψ2n(0)

2n + 3
2 − E

ψ2n+1 ∈ L2(R) (2.6)

∀E /∈ σ ([H0]asym).
As a consequence of (2.3) and (2.6), it is not difficult to prove that, in the sense of operator

norm convergence

|�N (E )〉〈�N (E )| → |�(E )〉〈�(E )|
as N → ∞.

This fact and the convergence of the denominator to

β−1 − 2E

[ ∞∑
n=0

(2n + 1)ψ2
2n(0)(

2n + 3
2

) (
2n + 3

2 − E
)
]

, Im E > 0,

yield the norm convergence of the second term in (2.5) as N → ∞ (the sum being convergent
by the reasons given above).

Hence, the limit in the operator norm of the sequence of resolvents in (2.5) does exist and
is explicitly given by:

R(β, E ) = (H0 − E )−1 + 2|�(E )〉〈�(E )|
β−1 − 2E

[∑∞
n=0

(2n+1)ψ2
2n(0)

(2n+ 3
2 )(2n+ 3

2 −E)

] , Im E > 0. (2.7)

6
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By essentially mimicking the final part of the proof of theorem 2.2 in [17] which was, in
turn, a suitable adaptation of the final part of the proof of theorem 1.1.1 in section 2.1 of [27],
it is relatively straightforward to prove that (2.7) is indeed the resolvent of a densely defined
self-adjoint operator, namely Hβ = [R(β, E )]−1 + E, Im E > 0.

By means of the algebra of partial fractions the convergent series in the denominator can
be easily transformed into:

(H0 − E )−1 + 2β|�(E )〉〈�(E )|
1 − 2β

[
1
2

∑∞
n=0

ψ2
2n(0)

2n+ 3
2

− (
1
2 − E

) ∑∞
n=0

ψ2
2n(0)

2n+ 3
2 −E

] , Im E > 0. (2.8)

Taking into account the fact that the two series in the latter formula represent the values of the
Krein function of H0 at the points E − 1 and −1, we can rewrite the resolvent of Hβ as:

(Hβ − E )−1 = (H0 − E )−1

+ 2β|�(E )〉〈�(E )|
1 − 2β

[
1
2 (H0 + 1)−1(0, 0)− (

1
2 − E

)
(H0 + 1 − E )− 1(0, 0)

] , Im E > 0.

(2.9)

The explicit form of the resolvent clearly implies its norm-analyticity in a small
neighbourhood of 0 (we have an analytic family in the sense of Kato, see [34, 35]) as a
function of β and the analyticity of the eigenvalues.

The results shown so far can be summarized in the following theorem.

Theorem 2.1. The Hamiltonian making sense of the merely formal expression ((1.1) or (1.1a))
describing the harmonic oscillator perturbed by an attractive point interaction of the δ′-type
is the self-adjoint operator whose resolvent is given by:

(Hβ − E )−1 = (H0 − E )−1 + 2β|�(E )〉〈�(E )|
1 − 2β

[
1
2 (H0 + 1)−1(0, 0)− (

1
2 − E

)
(H0 + 1 − E )−1(0, 0)

] ,

β ∈ R, Im E > 0.

The latter is the limit as N → ∞ in the norm convergence of the sequence of resolvents
(2.5) of the Hamiltonians HN

β with the energy cut-off defined in (2.4) and (2.4a). Furthermore,
Hβ regarded as a function of β is an analytic family in the sense of Kato.

Remark 2. If we set 1
μ

β̃
(N)

= 1
β̃

+ 2
∑N

n=0 ψ2
2n(0), β̃ ∈ R\{0}, instead of (2.4a), the resolvent

can then be expressed in terms of just one value of the function defined in (2.1), that is to say:

(Hβ̃ − E )−1 = (H0 − E )−1 + 2β̃|�(E )〉〈�(E )|
1 + 2β̃

(
1
2 − E

)
(H0 + 1 − E )−1(0, 0)

, Im E > 0. (2.10)

The right-hand side of (2.4a) can be written as

1

β
+ 2

N∑
n=0

ψ2
2n(0) −

N∑
n=0

ψ2
2n(0)

2n + 3
2

, β ∈ R\{0}

and setting

1

β̃
= 1

β
−

∞∑
n=0

ψ2
2n(0)

2n + 3
2

,

it is straightforward to check that

1

μβ(N)
− 1

μ
β̃
(N)

=
∞∑

n=0

ψ2
2n(0)

2n + 3
2

−
N∑

n=0

ψ2
2n(0)

2n + 3
2

→ 0

7



J. Phys. A: Math. Theor. 46 (2013) 385305 S Albeverio et al

as N → ∞. By setting α = 1/β, α̃ = 1/β̃, β, β̃ ∈ R\{0}, we can easily express the link
between the two choices:

α̃ = α −
∞∑

n=0

ψ2
2n(0)

2n + 3
2

= α − α0,

with α0 defined in (1.2). We will come back to the comparison of the two representations near
the end of the next section.

Remark 3. As was explicitly done in [10] (see also [11, 16, 17]) using some basic functional
calculus, the series representation of the function F(E ) = F0(E ) given by (2.1) can be recast
as an integral for any real E < 1/2, (1/2 being the ground state energy of H0), that is to say:

∞∑
n=0

ψ2
2n(0)

2n + 1
2 − E

= 1√
π

∫ ∞

0

e(
1
2 +E)t

(e2t − 1)1/2
dt. (2.11)

Hence, the resolvent of Hβ given by (2.9) can be rewritten for any E < 3/2 (for β > 0, i.e. in
the attractive case) as follows:

(Hβ − E )−1 = (H0 − E )−1 + 2β|�(E )〉〈�(E )|
1 − 2β√

π

[
1
2

∫ ∞
0

e− 1
2 t

(e2t−1)1/2 dt − (
1
2 − E

) ∫ ∞
0

e−( 1
2 −E)t

(e2t−1)1/2 dt

] (2.12)

or equivalently (using the change of variable ξ = e−t),

(Hβ − E )−1 = (H0 − E )−1 + 2β|�(E )〉〈�(E )|
1 − 2β√

π

[
1
2

∫ 1
0

ξ
1
2

(1−ξ 2 )1/2 dξ − (
1
2 − E

) ∫ 1
0

ξ
1
2 −E

(1−ξ 2 )1/2 dξ

]

= (H0 − E )−1 + 2β|�(E )〉〈�(E )|
1 − β

2
√

π

[
B

(
3
4 , 1

2

) − (1 − 2E )B
(

3
4 − E

2 , 1
2

)] , (2.12a)

having rewritten the integrals in terms of the well-known beta function B(p, q) = 
(p)
(q)


(p+q)

(see [36]). As will be seen in the next section, (2.12a) will be useful in order to study the odd
eigenvalues of Hβ arising from the point perturbation considered in our paper.

In this context it might be worth reminding the reader that the bound state equation for the
Hamiltonian of the 1D harmonic oscillator perturbed by a δ-interaction situated at the origin
also involves a ratio of gamma functions; see [6–10, 12].

3. The eigenvalues of the perturbed Hamiltonian

As is clearly shown by the explicit formula of the resolvent of Hβ , the even eigenvalues of
the harmonic oscillator are not modified at all by the δ′-interaction situated at the origin. This
is the opposite of what happens in the case of the δ-interaction centred at 0 which, due to
its reflection symmetry, does not affect the odd eigenvalues. As a consequence, our analysis
will entirely focus on the new odd eigenvalues which will be given by those Es making the
denominator of the second term in (2.9) vanish.

8
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Hence, by using α = 1/β and adopting also the notation H(α) = H1/α, the following
equation will be investigated:

α = 2

[
1

2

∞∑
n=0

ψ2
2n(0)

2n + 3
2

−
(

1

2
− E

) ∞∑
n=0

ψ2
2n(0)

2n + 3
2 − E

]
, (3.1)

with E /∈ 2N0 + 3/2.
It is important to notice that the second series in the latter equation is an increasing

multi-branch function of the energy with simple poles given by the odd eigenvalues of the
unperturbed Hamiltonian H0. In particular, it is perfectly defined whenever E is given by any
even eigenvalue of H0.

By using α0 = ∑∞
n=0

ψ2
2n(0)

2n+ 3
2

from (1.2), (3.1) can be rewritten as follows:

α0 − α = (1 − 2E )

∞∑
n=0

ψ2
2n(0)

2n + 3
2 − E

, (3.1a)

with E /∈ 2N0 + 3/2.
It is quite straightforward to check that, by using the expression of the series in (3.1a) in

terms of the beta function (see 2.12a) and the well-known recurrence relation 
(z+1) = z
(z),
the bound state equation (3.1a) can be written as:

α0 − α = 2



(
3
4 − E

2

)



(
1
4 − E

2

) . (3.1b)

Remark 4. As pointed out at the end of the previous section, the bound state equation for the
1D harmonic oscillator perturbed by a δ-interaction situated at the origin with strength λ = 0
can be written in terms of a ratio of gamma functions, precisely:

2

λ
= 


(
1
4 − E

2

)



(
3
4 − E

2

) .

Remark 5. It may be interesting to realize that, as a consequence of (3.1b), the bound state
equation in the case of the alternative renormalization leading to H(α̃) = H1/α̃ reads:

2

α̃
= −


(
1
4 − E

2

)



(
3
4 − E

2

) . (3.1c)

Let us then consider the following cases, for α � 0 (the case α < 0 will be handled in
Remark 8 below):

(i) α = 0;
(ii) 0 < α < α0;

(iii) α = α0;
(iv) α0 < α.

Let us consider (3.1b) in the first case, namely:

α0 = 2



(
3
4 − E

2

)



(
1
4 − E

2

) , (3.2)

recalling that α0 is given by (1.2).
It is evident from either (3.1) or (3.2) (by using the expression of α0 in terms of the gamma

function and reminding the reader of the well-known identity 
(z)
(1 − z) = π/ sin πz, see
[36]) that E = 0 is a solution. Furthermore, by exploiting the well-known properties of the
gamma function, it is clear that, whilst the odd eigenvalues of the unperturbed operator H0

9
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Figure 2. Case (i): the odd eigenvalues of H(α) given by the E-coordinates of the intersections of
the horizontal line α0 with the multi-branch function 2


(
3
4 − E

2

)/



(
1
4 − E

2

)
for α = 0.

represent the vertical asymptotes of the gamma function in the numerator and, consequently,
of the right hand side of the latter equation, the even ones, being the poles of the denominator,
represent the zeroes of the entire fraction. The plot in figure 2 shows the location of all the
eigenvalues given by the intersections between the graphs of both sides of (3.2).

Remark 6. The spectral feature of having E = 0 as an eigenvalue of H(α) for the limiting
value α = 0, further confirms the link between the renormalization procedure used here to
define the attractive δ′-interaction centred at the origin perturbing the 1D harmonic oscillator
and the one adopted in [17] to define the attractive δ-interaction perturbing the 3D isotropic
harmonic oscillator. This point will be further dealt with in another remark at the end of this
section.

The graph (figure 3) illustrating the spectral configuration for the second case (ii) is not
too different from the former one. It is crucial to notice that in both cases, due to the positivity
of the left hand side of (3.1b) for α0 > α, all the intersections occur above the horizontal
axis. Hence, all the perturbed antisymmetric eigenvalues lie below the unperturbed symmetric
ones (represented by the zeroes of the multi-branch function in figures 2 and 3), namely
E2n+1(α) < E2n(α) = 2n + 1

2 ,∀n ∈ N0.
The third case (iii), occurring for the particular value α0 defined in (1.2) leads to the

equation:

2



(
3
4 − E

2

)



(
1
4 − E

2

) = 0. (3.3)

As noted earlier, the zeroes of this fraction are exactly given by the unperturbed even
eigenvalues, i.e. the even eigenvalues of H0. Hence, something rather remarkable occurs
in this case, namely the odd eigenvalues coincide with the unperturbed even ones, implying
their double degeneracy including the ground state energy E = 1/2, as shown in the graph in
figure 4.

In the case (iv), the horizontal line given by the value α0 −α lies below the E-axis. Hence,
the odd eigenvalues of H(α) are situated to the right of the even eigenvalues of H0, as shown
by the graph drawn for α = 2 (figure 5).
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Figure 3. Case (ii): the same as figure 2 but for α = 1/2 (with α0 ∼= 0.675978).

Figure 4. Case (iii): the odd eigenvalues of H(α) coincide with the unperturbed even ones for
α = α0 = (H0 + 1)−1(0, 0), implying their double degeneracy.

As is quite evident, the limiting case α = +∞ (i.e. β = 0) corresponds to the Hamiltonian
of the unperturbed harmonic oscillator. Hence, summarizing the main points of our analysis,
we can state the following.

Theorem 3.1. The spectrum of the operator H(α) is entirely discrete and its structure is fully
described by the following cases:

(i) for α ∈ (α0,∞) (weak coupling), each odd eigenvalue E2n+1(α) lies above the
corresponding even one, that is to say

E2n+1(α) > E2n(α) = 2n + 1
2 , ∀n ∈ N0

11
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Figure 5. Case (iv): the odd eigenvalues of H(α) are located to the right (i.e. above) of the
unperturbed even ones.

Figure 6. The lowest odd eigenvalue E1(α) crossing the unperturbed eigenvalue E0(α) = 1/2
exactly at α = α0 and approaching asymptotically E1(∞) = 3/2,for α → +∞.

(ii) for the special value α = α0 = (H0+1)−1(0, 0) (critical value coupling), each eigenvalue
is doubly degenerate since

E2n+1(α0) = E2n(α0) = 2n + 1
2 , ∀n ∈ N0

(iii) for α ∈ [0, α0) (strong coupling), each odd eigenvalue E2n+1(α) is situated below the
corresponding even one, namely

E2n+1(α) < E2n(α) = 2n + 1
2 , ∀n ∈ N0

Furthermore, in the limiting case α = 0 the bottom of the spectrum is given by E1(0) = 0.

Remark 7. In the situation where α = α0, our Hamiltonian H(α) exhibits the phenomenon
known as ‘level crossing’, quite differently from many other Hamiltonians manifesting instead
the phenomenon called ‘level repulsion’ or ‘avoided level crossing’ (see [37, 38] as well as
the renowned original article by von Neumann and Wigner [39] on related issues). As a
consequence, the particular value α0 represents a ‘critical point’ for this model.
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Figure 7. The fourth eigenvalue E3(α) of H(α) crossing the unperturbed eigenvalue E2(α) = 5/2
exactly at α = α0 and approaching asymptotically E3(∞) = 7/2 for α → +∞.

As indicated in the third remark at the end of section 2, the equation determining the
eigenvalues can also be recast in integral form for each branch of the right-hand side of (3.1a).
In particular, the one determining the lowest odd eigenvalue of H(α) reads:

α = 2√
π

[
1

2

∫ 1

0

ξ
1
2

(1 − ξ 2)1/2
dξ −

(
1

2
− E

)∫ 1

0

ξ
1
2 −E

(1 − ξ 2)1/2
dξ

]
(3.4)

or equivalently,

α = 1

2
√

π

[
B

(
3

4
,

1

2

)
− (1 − 2E )B

(
3

4
− E

2
,

1

2

)]
. (3.4a)

The plot of the lowest odd eigenvalue E1(α) is given in figure 6.

Remark 8. Although we have only considered α � 0 so far for the purpose of investigating
the double degeneracy and the level crossing at α0, it is quite clear that our spectral analysis
can easily be extended to negative values of α, as can be immediately gathered by looking at
the explicit expression of the resolvent

[H(α) − E]−1 = (H0 − E )−1

+ 2|�(E )〉〈�(E )|
α − 2

[
1
2 (H0 + 1)−1(0, 0) − (

1
2 − E

)
(H0 + 1 − E )−1(0, 0)

] ,

with �(E ) given by (2.3). For example, the equation leading to the lowest odd eigenvalue for
negative values of both α and E is:

|α| = 2√
π

[(
1

2
+ |E|

) ∫ 1

0

ξ
1
2 +|E|

(1 − ξ 2)1/2
dξ − 1

2

∫ 1

0

ξ
1
2

(1 − ξ 2)1/2
dξ

]
.

Remark 9. It is not difficult to guess how the spectral curves representing the odd eigenvalues
of H(α) would be modified if we were to adopt the alternative renormalization recipe of the
first remark of section 2: we would obviously have E1(0) = 1/2 and all the level crossings
would then occur at α̃ = 0.
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This comparison is actually quite similar to the one regarding the 3D model with the delta
distribution centred at the origin. In [17] the following renormalization prescription for the
coupling constant was adopted:

1

μα(3) (N)
= α(3) +

∑
|�l|�N

ψ2
2�l
(0)

2|�l| + 3
2

, (3.5)

(where α(3) denotes the 3D analogue of α) in order to get, for N → ∞, E0(0) = 0 (see figure 1
in that paper). As a consequence of the presence of the point perturbation acting only on states
with zero angular momentum, the (2l+1)(2l+2)

2 -degeneracy of the eigenvalue E2l = 2l + 3
2 gets

lowered by one due to the emergence of the simple eigenvalue generated by the perturbation.
Such a simple eigenvalue, regarded as a function of the extension parameter α, does cross the
next lower unperturbed eigenvalue E2l−1 = (2l − 1) + 3

2 . A suitable alternative to (3.5) could
have been:

1

μα̃(3) (N)
= α̃(3) +

∑
|�l|�N

ψ2
2�l
(0)

2|�l| + 1
(3.6)

leading to E0 = 1
2 at α̃(3) = 0. By setting

α̃(3) = α(3) − 1

2

∞∑
|�l|=0

ψ2
2�l
(0)

(2|�l| + 1)
(
2|�l| + 3

2

) = α(3) − α
(3)

0 , (3.7)

then:

1

μα(3) (N)
− 1

μα̃(3) (N)
= 1

2

∞∑
|�l|=N+1

ψ2
2�l
(0)

(2|�l| + 1)
(
2|�l| + 3

2

) −→
N→∞

0. (3.8)

The numerical value of the 3D counterpart α
(3)

0 of α0 can be easily computed by converting
the series in (3.7) into an integral as was done in [17], that is to say:

α
(3)

0 = 1

2

∞∑
|�l|=0

ψ2
2�l
(0)

(2|�l| + 1)
(
2|�l| + 3

2

) = 1√
π3

∫ ∞

0

e
3
2 t (e

t
2 − 1)

(e2t − 1)3/2
dt

= 1√
π3

∫ 1

0

1 − ξ
1
2

(1 − ξ 2)3/2 dξ ∼= 0.107585. (3.9)

Although the graphs shown in [17] are those of the inverse function α(3)(E ), it can be gathered
from equations (4.3) and (4.4) in [17] that both level crossings implied by figures 2 and 3 in
that paper take place exactly at the same point α(3) = α

(3)

0 ,i.e. E(α
(3)

0 ) = 5/2,E(α
(3)

0 ) = 9/2.

By using instead the alternative renormalization (3.6), the location of all the level crossings
would be exactly α̃(3) = 0, leading to the graph shown in figure 4(a) of the aforementioned
paper by Brüning et al [6].

Going back to the 1D model with the δ′-interaction centred at the origin, if we wish to
get the equations determining the higher odd eigenvalues as functions of α in integral form,
we need only mimic what was done in [10, 11, 16, 17] to get the corresponding equations
in the case of the harmonic oscillator perturbed by attractive δ-interactions in either one or
three dimensions and even with point interactions situated away from the origin. For example,
in the case of the second odd eigenvalue of H(α), namely the fourth eigenvalue E3(α), by

suitably transforming the integral
∫ 1

0
ξ

1
2 −E

(1−ξ 2 )1/2 dξ in order that (3.4) may be extended to the
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range E ∈ (
3
2 , 7

2

)
, the bound state equation reads:

α = 2√
π

[
1

2

∫ 1

0

ξ
1
2

(1 − ξ 2)1/2
dξ −

(
1

2
− E

) ∫ 1

0

ξ
5
2 −E

(1 − ξ 2)1/2[1 + (1 − ξ 2)1/2]
dξ −

1
2 − E
3
2 − E

]
.

(3.10)

The plot of the fourth eigenvalue E3(α) of H(α) as a function of α is given in figure 7.
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