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Fundamentals of DSP
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It seems hard to formulate a linear shift-invariant systems theory 
(LTI) for graphs. But we can try to get close.

The (combinatorial) Laplacian will be our main building block

That particular ortho basis will play the role of the Fourier basis

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Graph Coherence
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argminf
�
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Simple Motivating Examples
l Tikhonov regularization for denoising:
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Simple Motivating Examples
l Tikhonov regularization for denoising:

5

argminf
�
||f � y||22 + �fTLf

 

Original Noisy Denoised
 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

http://lts4.epfl.ch
http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
l Tikhonov regularization for denoising:

l Wavelet denoising:
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Simple Motivating Examples
l Tikhonov regularization for denoising:

l Wavelet denoising:
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Fundamentals of DSP
6

Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).
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Fundamentals of DSP
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Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries
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B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:
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out
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where H is a matrix function [14]

H =
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ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
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. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �
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, and u
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by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Fundamentals of DSP
6

Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
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1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians
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Two key components of multiscale transforms for discrete-
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sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.
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V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
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to keep. The complement Vc
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graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V
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(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Fundamentals of DSP
6

Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)
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(
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)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a
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2
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Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f
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n
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2
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2M∑
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dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing
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(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-
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Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
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the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
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with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
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x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

“Low pass” filtering !

See also:

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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g0(n) :=
N�1X

`=0

u`(n)

(f ⇤ g)(n) :=
N�1X

`=0

f̂(`)ĝ(`)u`(n)

(Tif)(n) :=
p
N(f ⇤ �i)(n) =

p
N

N�1X

`=0

f̂(`)u⇤
` (i)u`(n)

Convolutions and Translations
7

Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX
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N

"
NX
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NX
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#
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p
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4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f 2 L2(R) can
be seen as a convolution with �u:

(Tuf)(t) := f(t� u) = (f ⇤ �u)(t)
(14)

=

Z

R
f̂(k) b�u(k) k(t)dk =

Z

R
f̂(k) ⇤

k(u) k(t)dk,

where the equalities are in the weak sense. Thus, for any signal f 2 RN defined on the the graph G and any
i 2 {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN ! RN via generalized convolution
with a delta centered at vertex i:
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p
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(15)
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p
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f̂(`)�⇤
` (i)�`(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by �⇤

` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired e↵ect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .
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Use convolution to induce translations
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

(Tsg)(t) = g(t� s) =

Z

R
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Example: Image Denoising by Low-Pass Graph Filtering

f (n) // GFT // f̂ (�`) // ĝ // ĝ(�`)f̂ (�`) // IGFT // �f (n)

Semi-Local Graph Tikhonov Regularization
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Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f
0

+ ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f

0

. To enforce a priori information that the clean signal f
0

is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
problem

argmin

f

�
kf � yk2

2

+ �fTLf
 
. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f⇤(i) =
N�1X

`=0


1

1 + ��
`

�
ŷ(�

`

)u
`

(i), (17)

or, equivalently, f = ˆh(L)y, where ˆh(�) := 1

1+��

can be viewed as a low-pass filter.
As an example, in the figure below, we take the 512 x 512 cameraman image as f

0

and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and  = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

b
i,j

:=

KX

k=dG(i,j)

a
k

�
Lk

�
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, f

out

(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i

 ( ) ( ) ( ),f i b f i b f j,
( , )

,
N

i i
j i K

i jout in in= +
!

/  (16)

for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain 
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ( )h ak

K
k

k
0m m=, ,=/t  

for some constants { } ,a , ,k k K0 1f=  we can also interpret the filtering 
equation (12) in the vertex domain. From (13), we have
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EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= +  where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0  To 
enforce a priori information that the clean signal f0 is smooth 
with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" ,  (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1]) 
the optimal reconstruction is given by

 ( ) ( ) ( ),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E  (S2)

or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.
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[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
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“Example 2 (Tikhonov Regularization),” we show one particu-
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FILTERING IN THE VERTEX DOMAIN
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EXAMPLE 2 (TIKHONOV REGULARIZATION)
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Remark on Implementation
13

Not necessary to compute spectral decomposition for filtering

Polynomial approximation :

ex: Chebyshev, minimax

g(t�) �
K�1�

k=0

ak(t)pk(�)

W̃f (tn, j) =

�
1
2
cn,0f

# +
Mn⇤

k=1

cn,kT k(L)f#

⇥

j

T k(L)f =
2
a1

(L� a2I)
�
T k�1(L)f

⇥
� T k�2(L)f

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with 
(sparse) Laplacian matrix. In particular
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Uncertainty & Ambiguity
14

The joint time-frequency localization can be studied via the cross-
ambiguity function:

LTS2 - EPFL 3 SPECTRAL GRAPH DEFINITIONS

The shift will move the window to a certain point without modifying the frequency content. Only
the phase will be affected. The modulation will shift the frequency content of the window to a
certain point without changing the localization in space or time.

Now, the CWFT projects a function f 2 L2 on every space-frequency atom.

Sf(u, ⇠) := hf, g
u,⇠

i =
Z 1

�1
f(t)g(t� u)e�i⇠t

dt (3)

It can be interpreted as a Fourier transform of f at the frequency ⇠, localized by the window
g(t� u) in the neighborhood of u. Sf(u, ⇠) is big if f contains approximately frequency ⇠ around
u and vice-versa.

2.2 Ambiguity function
Ideally, we would like to be precise in both domains at the same time. This can unfortunately

not be achieved. Nevertheless, the ambiguity function is a powerful tool to evaluate the uncertainty
of the CWFT. The overlap of the atoms contains the information for which we are looking.

In order to measure the space-frequency overlap of two atoms g
u,⇠

and g
u0,⇠0 we use a kernel

K(u0, u, ⇠0, ⇠) = hg
u,⇠

, g
u0,⇠0i that decays with u0�u and ⇠0�⇠ at a rate that depends on the energy

concentration of g and its Fourier transform ĝ. Then with the change of variable v = t� u+u0
2 the

scalar product between g
u,⇠

and g
u0,⇠0 the kernel becomes:

K(u0, u, ⇠0, ⇠) = hg
u,⇠

, g
u0,⇠0i = exp

✓
� i

2

(⇠0 � ⇠)(u+ u0)

◆
A

g

(u0 � u, ⇠0 � ⇠),

where
A

g

(⌧, �) =

Z 1

�1
g
⇣
t+

⌧

2

⌘
g
⇣
t� ⌧

2

⌘
e�i�t

dt

is called the ambiguity function of g. The decay of the ambiguity function measures the spread in
space and in frequency of the window g. This decay in space/time and in frequency respectively
characterizes the uncertainty of both domains of the window. We observe that the more precise the
transform is in frequency, the less precise it is in the other domain and vice-versa. The optimum
precision is achieved by a Gaussian window.

In fact, the ambiguity function is a particular case of the cross-ambiguity function:

A
f,g

(⌧, �) =

Z 1

�1
f
⇣
t+

⌧

2

⌘
g
⇣
t� ⌧

2

⌘
e�i�t

dt.

For the discrete case, we define the cross ambiguity function by:

A
g

f(m, k) = hf,M
k

T
m

gi =
NX

n=1

f [n]g[n�m]e�2⇡ik n
N (4)

It measures the space frequency overlap of f and a modulated shifted window g. Note that this
definition of the cross ambiguity function is equivalent to a windowed Fourier transform!

3 Spectral Graph Definitions
In this section, we present the main definitions used in this work including the generalization

of the modulation and the translation for graphs. This will lead us to a windowed graph Fourier
transform(WGFT).

3.1 Spectral graph theory notation
We consider an undirected, connected, and weighted graph G = {V, E ,W}, where V is a finite

set of vertices (with |V| = N), E is a finite set of edges, and W the weighted adjacency matrix [4].
We define a signal f : V ! RN as a function assigning one value to each vertex. It can be seen

Spring 2011 4/40
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In order to measure the space-frequency overlap of two atoms g
u,⇠

and g
u0,⇠0 we use a kernel

K(u0, u, ⇠0, ⇠) = hg
u,⇠

, g
u0,⇠0i that decays with u0�u and ⇠0�⇠ at a rate that depends on the energy

concentration of g and its Fourier transform ĝ. Then with the change of variable v = t� u+u0
2 the

scalar product between g
u,⇠

and g
u0,⇠0 the kernel becomes:

K(u0, u, ⇠0, ⇠) = hg
u,⇠

, g
u0,⇠0i = exp

✓
� i

2

(⇠0 � ⇠)(u+ u0)

◆
A

g

(u0 � u, ⇠0 � ⇠),

where
A

g

(⌧, �) =

Z 1

�1
g
⇣
t+

⌧

2

⌘
g
⇣
t� ⌧

2

⌘
e�i�t

dt

is called the ambiguity function of g. The decay of the ambiguity function measures the spread in
space and in frequency of the window g. This decay in space/time and in frequency respectively
characterizes the uncertainty of both domains of the window. We observe that the more precise the
transform is in frequency, the less precise it is in the other domain and vice-versa. The optimum
precision is achieved by a Gaussian window.

In fact, the ambiguity function is a particular case of the cross-ambiguity function:

A
f,g

(⌧, �) =

Z 1

�1
f
⇣
t+

⌧

2

⌘
g
⇣
t� ⌧

2

⌘
e�i�t

dt.

For the discrete case, we define the cross ambiguity function by:

A
g

f(m, k) = hf,M
k

T
m

gi =
NX

n=1

f [n]g[n�m]e�2⇡ik n
N (4)

It measures the space frequency overlap of f and a modulated shifted window g. Note that this
definition of the cross ambiguity function is equivalent to a windowed Fourier transform!

3 Spectral Graph Definitions
In this section, we present the main definitions used in this work including the generalization

of the modulation and the translation for graphs. This will lead us to a windowed graph Fourier
transform(WGFT).

3.1 Spectral graph theory notation
We consider an undirected, connected, and weighted graph G = {V, E ,W}, where V is a finite

set of vertices (with |V| = N), E is a finite set of edges, and W the weighted adjacency matrix [4].
We define a signal f : V ! RN as a function assigning one value to each vertex. It can be seen

Spring 2011 4/40

localization in time domain
via translation

localization in frequency domain
via modulation

8f, g 2 RN

Uncertainty is a statement about the localization of the 
ambiguity function

LTS2 - EPFL 6 GRAPH INEQUALITIES

We can express the ratio of the two last expression to get an uncertainty principle:

kA
g

fk1
kA

g

fk1
> N. (26)

6 Graph Inequalities
Next to the classical study, in this section, we shall demonstrate analogous inequalities for

graphs. Those inequalities allow a better understanding of the Fourier transform. They also
permit us to bound some operators like the shift.

We first need to define some constants. We will use the mixed norm of a matrix, which is
defined as:

kHk
p,q

=

2

64
X

i

0

@
X

j

|h
i,j

|p
1

A
q/p

3

75

1/q

= max

f2RN

kHfk
q

kfk
p

The coherence between the Dirac and the Fourier bases is:

µ := k�k11 = max

`2{0,1,...N�1},
n2{1,2,...N}

|�
`

(n)|.

We also define:
µ
k

= max

n2{1,2,...N}
|�

`

(n)|

and
µ̃
i

= max

`2{0,1,...N�1}
|�

`

(n)|.

6.1 The Hausdorff-Young inequality

As signals on graphs are vectors, the definition of the p-norm of f is kfk
p

= (

P
N

n=1 |f(n)|p)
1
p .

The following proof is an extension of the classical proof using the Riez-Thorin interpolation
theorem (p. 174 [9]).

Theorem 13. For f 2 RN a graph signal, 1 6 p 6 2 and µ the coherence of the Fourier and the
Dirac bases, we have

k ˆfk
q

6 µ1� 2
q kfk

p

,

for
1

p
+

1

q
= 1.

Proof. First, using the Parseval identity (true for signals on graphs [2]), we have

kfk22 = k ˆfk22.

which implies
k ˆfk2 6 kfk2. (27)

Secondly, as all eigenvectors are normalized, |�
`

(n)| 6 µ for all n, ` and thus

k ˆfk1 = max

`

| ˆf(`)| = max

`

�����

NX

n=1

�⇤
`

(n)f(n)

����� 6 µ

NX

n=1

|f(n)| = µkfk1 (28)

Thirdly, the graph Fourier transform ˆf = �f , is a linear operator. Moreover, it is bounded from
L2 to L2 (27) and from L1 to L1 (28). Applying the Riez-Thorin theorem with p1 = 2, p2 = 2,
q1 = 1, q2 = 1, M

p

= 1, M
q

= µ leads to the desired result:

k ˆfk
q

6 µ1� 2
q kfk

p

,

for 1
p

+

1
q

= 1.
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We will first need a suitable Graph Windowed Fourier Transform (GWFT)
- Translation/Localization

(Mkf)(n) :=
p
Nf(n)uk(n)Mk : RN 7! RN

(Mku0)(n) = uk(n)

Spectral localization via generalized modulation ?

Hint:

- Modulation/Spectral localization

Ti : RN 7! RN (Tif)(n) :=
p
N(f ⇤ �i)(n) =

p
N

N�1X

`=0

f̂(`)u⇤
` (i)u`(n)



 > 0
p

N
N�1X

l=1

µl|f̂(l)|  |f̂(0)|
1 + 

µ` := ku`k1 = max

i
|u`(i)|

Modulation, Spectral Localization
16

If a kernel is sufficiently localized around the DC component

for some
If for some  > 0, a given signal f satisfies

1

| ˆf(0)|

N�1X

`=1

| ˆf(`)|  1

C
1

+ (C
1

)

3

, (8)

then

|[M
k

f(k)| � |[M
k

f(`)| for all ` 6= k. (9)

Proof.
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k

f(`0)

=

NX

n=1

p
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`

0(n)�
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00
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`
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"
ˆf(0)p
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+
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�
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00
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#
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0
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+

NX
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p
N�⇤
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0(n)�
k

(n)
N�1X

`

00
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�
`

00
(n) ˆf(`00). (10)

Therefore, we have

|[M
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f(k)|

=

�����
ˆf(0) +

NX

n=1

p
N |�

k

(n)|2
N�1X

`

00
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�
`

00
(n) ˆf(`00)
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p
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00
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p
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`

00
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1

N�1X

`

00
=1

| ˆf(`00)|

� | ˆf(0)|
✓
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1

C
1

+ (C
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)
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◆
, (11)

where the last two inequalities follow from (7) and (8), respectively.
Returning to (10) for ` 6= k, we have

|[M
k

f(`)| = 

�����

NX

n=1

p
N�⇤

`

(n)�
k

(n)
N�1X

`

00
=1

�
`

00
(n) ˆf(`00)

�����

 
NX

n=1

N�1X

`

00
=1

p
N |�⇤

`

(n)�
k

(n)�
`

00
(n)| | ˆf(`00)|

 C3

1

N�1X

`

00
=1

| ˆf(`00)|

 | ˆf(0)| C3

1

C
1

+ C3

1

, (12)

where the last two inequalities once again follow from (7) and (8),
respectively. Combining (11) and (12) yields (9).

6. WINDOWED GRAPH FOURIER FRAMES

Analogously to (2) and (3) in the classical case, for a window g 2
RN , we define a windowed graph Fourier atom by

g
i,k

(n) := (M
k

T
i

g) (n) =
p
N�

k

(n)
N�1X

`=0

ĝ(`)�⇤
`

(i)�
`

(n),

and the windowed graph Fourier transform of a function f 2 RN by

Sf(i, k) := hf, g
i,k

i.

Theorem 2: If ĝ(0) 6= 0, then {g
i,k

}
i=1,2,...,N ; k=0,1,...,N�1

is a
frame with lower frame bound

A := min

n2{1,2,...,N}

�
NkT

n

gk2
2

 
,

and upper frame bound

B := max

n2{1,2,...,N}

�
NkT

n

gk2
2

 
.

Proof.

NX

i=1

N�1X

k=0

|hf, g
i,k

i|2 =

NX

i=1

N�1X

k=0

|hf,M
k

T
i

gi|2

= N
NX

i=1

N�1X

k=0

|hf(T
i

g)⇤,�
k

i|2

= N
NX

i=1

hf(T
i

g)⇤, f(T
i

g)⇤i (13)

= N
NX

i=1

NX

n=1

|f(n)|2 |(T
i

g)(n)|2

= N
NX

i=1

NX

n=1

|f(n)|2 |(T
n

g)(i)|2 (14)

= N
NX

n=1

|f(n)|2 kT
n

gk2
2

(15)

where (13) is due to Parseval’s identity, and (14) follows from the
symmetry of L and the definition (6) of T

i

. Moreover, under the
hypothesis that ĝ(0) 6= 0, we have

kT
n

gk2
2

=

N�1X

`=0

|ĝ(`)|2 |�
l

(n)|2 � |ĝ(0)|2

N
> 0. (16)

Combining (15) and (16), for f 6= 0,

0 < Akfk2
2


NX

i=1

N�1X

k=0

|hf, g
i,k

i|2  Bkfk2
2

< 1.

7. EXAMPLES

We now present three examples to provide further intuition behind
the proposed windowed graph Fourier transform. In the first exam-
ple, we consider a path graph of 180 vertices, with all the weights
equal to one. The graph Laplacian eigenvectors for the path graph

Then the modulated kernel “peaks” at the right spectral index
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N
> 0. (16)

Combining (15) and (16), for f 6= 0,

0 < Akfk2
2


NX

i=1

N�1X

k=0

|hf, g
i,k

i|2  Bkfk2
2

< 1.

7. EXAMPLES

We now present three examples to provide further intuition behind
the proposed windowed graph Fourier transform. In the first exam-
ple, we consider a path graph of 180 vertices, with all the weights
equal to one. The graph Laplacian eigenvectors for the path graph

Then the modulated kernel “peaks” at the right spectral index

3. SPECTRAL GRAPH THEORY NOTATION

We consider undirected, connected, weighted graphs G = {V, E ,W},
where V is a finite set of vertices V with |V| = N , E is a set of edges,
and W is a weighted adjacency matrix (see, e.g., [4] for all defini-
tions in this section). A signal f : V ! RN defined on the vertices
of the graph may be represented as a vector f 2 RN , where the
nth component of the vector f represents the signal value at the
nth vertex in V . The non-normalized graph Laplacian is defined as
L := D �W , where D is the diagonal degree matrix.

As the graph Laplacian L is a real symmetric matrix, it has
a complete set of orthonormal eigenvectors, which we denote by
{�

`

}
`=0,1,...,N�1

. Without loss of generality, we assume that the
associated real, non-negative Laplacian eigenvalues are ordered as
0 = �

0

< �
1

 �
2

...  �
N�1

:= �
max

.
The classical Fourier transform is the expansion of a func-

tion f in terms of the eigenfunctions of the Laplace operator, i.e.,
ˆf(!) = hf, ei!xi. Analogously, the graph Fourier transform ˆf of
a function f 2 RN on the vertices of G is the expansion of f in
terms of the eigenfunctions of the graph Laplacian. It is defined
by ˆf(`) := hf,�

`

i =

P
N

n=1

�⇤
`

(n)f(n), where we adopt the
convention that the inner product be conjugate-linear in the second
argument. The inverse graph Fourier transform is then given by
f(n) =

P
N�1

`=0

ˆf(`)�
`

(n).

4. GENERALIZED TRANSLATION

For signals f, g 2 L2

(R), the convolution product h = f ⇤g satisfies

h(t) = (f ⇤ g)(t) =
Z

R
ˆh(k) 

k

(t)dk

=

Z

R
ˆf(k)ĝ(k) 

k

(t)dk, (4)

where  
k

(t) = e2⇡ikt. By replacing the complex exponentials in
(4) with the graph Laplacian eigenvectors, we define a generalized
convolution of signals f, g 2 RN on a graph by

(f ⇤ g)(n) :=
N�1X

`=0

ˆf(`)ĝ(`)�
`

(n). (5)

Now the application of the classical translation operator T
u

de-
fined in (1) to a function f 2 L2

(R) can be seen as a convolution
with �

u

:

(T
u

f)(t) := f(t� u) = (f ⇤ �
u

)(t)

(4)
=

Z

R
ˆf(k) b�

u

(k) 
k

(t)dk

=

Z

R
ˆf(k) 

k

(u) 
k

(t)dk,

where the equalities are in the weak sense. Thus, for any signal
f 2 RN defined on the the graph G and any i 2 {1, 2, . . . , N}, we
also define a generalized translation operator T

i

: RN ! RN via
generalized convolution with a delta centered at vertex i:

(T
i

f) (n) := (f ⇤ �
i

)(n)
(5)
=

N�1X

`=0

ˆf(`)�⇤
`

(i)�
`

(n). (6)

In Figure 2, we apply generalized translation operators to the
graph signal from Figure 1(b).

(a) (b)

Fig. 2. (a) The translated signal T
1000

f , where f is the signal from
Figure 1(b). (b) The translated signal T

2000

f .

5. GENERALIZED MODULATION

Motivated by the fact that the classical modulation is a multiplication
by a Laplacian eigenfunction, we define, for any k 2 {0, 1, . . . , N�
1}, a generalized modulation operator M

k

: RN ! RN by

(M
k

f) (n) :=
p
Nf(n)�

k

(n).

First, note that M
0

is the identity operator, as �
0

(n) = 1p
N

for all n
for connected graphs. In the classical case, the modulation operator
represents a translation in the Fourier domain:

[M
⇠

f(!) = ˆf(! � ⇠), 8! 2 R.

This property is not true in general for our modulation operator on
graphs due to the discrete nature of the graph. However, we do have
the nice property that if ĝ(`) = �

0

(�
l

), then

[M
k

g(`) =
NX

n=1

�⇤
`

(n)(M
k

g)(n)

=

NX

n=1

�⇤
`

(n)
p
N�

k

(n)
1p
N

= �
0

(�
`

� �
k

),

so M
k

maps the DC component of any signal f 2 RN to ˆf(0)�
k

.
Moreover, if we start with a function f that is localized around the
eigenvalue 0 in the graph spectral domain, as in Figure 3, then M

k

f
is localized around the eigenvalue �

k

in the graph spectral domain.
In the next theorem, we quantify this localization.
Theorem 1: Given a weighted graph G with N vertices, let C

1

(G)
be a constant such that

max

` = 0, 1, . . . , N � 1
i = 1, 2, . . . , N

{|�
`

(i)|}  C
1p
N

. (7)
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λ

(a)

0 1 2 3 4 5 6

−0.1

0
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0.2

0.3

0.4

M2000 f1()

λ

(b)

Fig. 3. (a) The graph spectral representation of a signal f
1

with
ˆf
1

(`) = Ce�100�` , where the constant C is chosen such that
kf

1

k
2

= 1. (b) The graph spectral representation \M
2000

f
1

of the
modulated signal M

2000

f
1

. Note that �
2000

= 4.03.
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LTS2 - EPFL 4 THE AMBIGUITY FUNCTION

4.1 A bound for the 1-norm of the ambiguity function
By analogy to the classical case, the 1-norm of the ambiguity function cannot take arbitrarily

small values for a normalized window g. In this section, we demonstrate the lower bound N for
the 1-norm of the ambiguity function under some conditions linked to the kernel. The heat kernel,
which is often used with graphs because of its good localization and computation properties, will
satisfy the required hypotheses.

Question: Is the ambiguity function’s lower 1-norm bound N true for every graph and every
kernel?

Lemma 1. If |ĝ(0)| > |ĝ(l)| > 0 for l = 1, 2, ...N � 1, then

|ĝ(0)|kĝk1 > kgk22.

Proof.

|ĝ(0)|
N�1X

k=0

|ĝ(k)| >
N�1X

k=0

|ĝ|2(k) = kĝk22 = kgk22.

Theorem 1. For g 2 RN , satisfying kgk2 = 1 and |ĝ(0)| > |ĝ(l)| > 0 for l = 1, 2, ...N �1, we have

kA
g
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NX
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N�1X
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|A
g

(i, k)| > N,

with an equality if g(n) = 1p
N

.
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�����

= N
3
2 |ĝ(0)|

N�1X

k=0

����ĝ(k)
1p
N

����

= N |ĝ(0)|kĝk1
> N, (12)

where (12) comes from Lemma 1. This proves the first statement of the theorem.
To prove the equality for g(n) = 1p

N

, we simply compute the L1 norm of A
g

with this special
window. Note that the Fourier transform of g is ĝ(`) = �0(`).

Spring 2011 16/40

µ! 1p
N

Result of Feichtinger et al.

smaller coherence, bigger uncertainty

Pick up a nice kernel

Rem: The heat kernel is a good choice
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(a) (b)

(c) (d)

(e)

3

with edges of high weight; i.e., if i, j 2 V
1

, then W
ij

is
low, and if i, j 2 Vc

1

, then W
ij

is low
(D3) There is a computationally efficient way to implement

it

A. Vertex Selection Using the Largest Eigenvector of the
Graph Laplacian

The method we suggest to use for graph downsampling is
to select the vertices to keep based on the polarity of the
components of the largest eigenvector; namely, let

V
1

= V
+

:= {i 2 V : u
max

(i) � 0} . (5)

We refer to this method as the largest eigenvector vertex
selection method. A few remarks regarding this choice of
downsampling operator are in order. First, the polarity of
the largest eigenvector splits the graph into two components.
In this paper, we choose to keep the vertices in V

+

, and
eliminate the vertices in V� := {i 2 V : u

max

(i) < 0}, but
we could just as easily do the reverse, or keep the vertices
in V

big

:= argmaxV
1

2{V
+

,V�}|V1

|, for example. Second, for
some graphs such as the complete graph, �

max

is a repeated
eigenvalue, so the polarity of u

max

is not uniquely defined.
Third, we could just as easily base the vertex selection on the
polarity of the normalized graph Laplacian eigenvector, ˜u

max

associated with the largest eigenvalue, ˜�
max

. In some cases,
such as the bipartite graphs discussed next, doing so yields
exactly the same selection of vertices as downsampling based
on the largest non-normalized graph Laplacian eigenvector;
however, this is not true in general.

In the following sections, we motivate the use of the largest
eigenvector of the graph Laplacian from two different perspec-
tives - first from a more intuitive view as a generalization of
downsampling techniques for special types of graphs, and then
from a more theoretical point of view by connecting the vertex
selection problem to graph coloring, spectral clustering, and
nodal domain theory.

B. Special Case: Bipartite Graphs

There is one situation in which there exists a fairly clear
notion of removing every other component of a graph signal
– when the underlying graph is bipartite. A graph G =

{V, E ,W} is bipartite if the set of vertices V can be par-
titioned into two subsets V

1

and Vc

1

so that every edge e 2 E
links one vertex in V

1

with one vertex in Vc

1

. In this case, it
is natural to downsample by keeping all of the vertices in one
of the subsets, and eliminating all of the vertices in the other
subset. In fact, as stated in the following theorem, the largest
eigenvector downsampling method does precisely this in the
case of bipartite graphs.

Theorem 1 (Roth, 1989): For a connected, bipartite graph
G = {V

1

[Vc

1

, E ,W}, the largest eigenvalues, �
max

and ˜�
max

,
of L and ˜L, respectively, are simple, and ˜�

max

= 2. Moreover,
the polarity of the components of the eigenvectors u

max

and
˜u
max

associated with �
max

and ˜�
max

both split V into the

bipartition V
1

and Vc

1

. That is, for v = u
max

or v =

˜u
max

,

v(i)v(j) > 0, if i, j 2 V
1

or i, j 2 Vc

1

, and
v(i)v(j) < 0, if i 2 V

1

, j 2 Vc

1

or i 2 Vc

1

, j 2 V
1

. (6)

If, in addition, G is k-regular (d
i

= k, 8i 2 V), then �
max

=

2k, and

u
max

=

˜u
max

=

(

1p
N

, if i 2 V
1

� 1p
N

, if i 2 Vc

1

.

The majority of the statements in Theorem 1 follow from
results of Roth in [16], which are also presented in [17,
Chapter 3.6].

The path, ring (with an even number of vertices), and finite
grid graphs, which are shown in Figure 1, are all examples
of bipartite graphs and all have simple largest graph Lapla-
cian eigenvalues. Using the largest eigenvector downsampling
method leads to the elimination of every other vertex on the
path and ring graphs, and to the quincunx sampling pattern on
the finite grid graph (with or without boundary connections).

Trees (acyclic, connected graphs) are also bipartite. An
example of a tree is shown in Figure 1(e). Fix an arbitrary
vertex r to be the root of the tree, let Y0

r

be the singleton
set containing the root, and then define the sets {Yt

r

}
t=1,2,...

by Yt

r

:= {i 2 V : i is t hops from the root vertex r in T }.
Then the polarity of the components of largest eigenvector
of the graph Laplacian splits the vertices of the tree into two
sets according to the parity of the depths of the tree. That is,
if we let Yeven

r

:= [
t=0,2,...

Yt

r

and Yodd

r

:= [
t=1,3,...

Yt

r

, then
Yeven

r

= V
+

and Yodd

r

= V�, or vice versa.
In related work, [18] and [19] suggest to downsample

bipartite graphs by keeping all of the vertices in one subset
of the bipartition, and [20] suggests to downsample trees by
keeping vertices at every other depth of the tree. Therefore,
the largest eigenvector downsampling method can be seen as
a generalization of those approaches.

C. Connections with Graph Coloring and Spectral Clustering

A graph G = {V, E ,W} is k-colorable if there exists a
partition of V into subsets V

1

,V
2

, . . . ,V
k

such that if vertices
i, j 2 V are connected by an edge in E , then i and j are in
different subsets in the partition. The chromatic number � of
a graph G is the smallest k such that G is k-colorable. Thus,
the chromatic number of a graph is equal to 2 if and only if
the graph is bipartite.

As we have seen with the examples in the previous section,
when a graph is bipartite, it is easy to decide how to split it
into two sets for downsampling. When the chromatic number
of a graph is greater than two, however, we are interested in
finding an approximate coloring [21]; that is, a partition that
has as few edges as possible that connect vertices in the same
subset.2 As noted by [21], the approximate coloring problem
is in some sense dual to the problem of spectral clustering
(see, e.g. [22] and references therein).

2In other contexts, the term approximate coloring is also used in reference
to finding a proper k-coloring of a graph in polynomial time, such that k is
as close as possible to the chromatic number of the graph.

Relaxed solution to 2-coloring for regular graphs

Exact for bipartite graphs

Connections with nodal domains theory for 
laplacian eigenvectors
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upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking di�erence of the original signal and the
output of the second filter.

Consider an input graph-signal x ⇤ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃VTx, (5.1)

where V = [v0|v1|...|vn�1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(�l)}n�1

l=0 and
o�-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ ⇥ R+.

The output of the highpass channel is then given by y1 = x�Gy0 which
is equal to the reconstruction error.

y1 = x�Gx

= x�VG̃VTx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(�l)}n�1

l=0 and o�-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ ⇥ R+.

The analysis operator Ta is then defined in

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

=

�
Hm

I�GHm

⇥

⇧ ⌅⇤ ⌃
Ta

x, (5.3)

where y0, y1 ⇤ Rn are the coarse and prediction error coe⇤cients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking di�erence of the original signal and the
output of the second filter.

Consider an input graph-signal x ⇤ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃VTx, (5.1)

where V = [v0|v1|...|vn�1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(�l)}n�1

l=0 and
o�-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ ⇥ R+.

The output of the highpass channel is then given by y1 = x�Gy0 which
is equal to the reconstruction error.

y1 = x�Gx

= x�VG̃VTx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(�l)}n�1

l=0 and o�-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ ⇥ R+.

The analysis operator Ta is then defined in

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

=

�
Hm

I�GHm

⇥

⇧ ⌅⇤ ⌃
Ta

x, (5.3)

where y0, y1 ⇤ Rn are the coarse and prediction error coe⇤cients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking di�erence of the original signal and the
output of the second filter.

Consider an input graph-signal x ⇤ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃VTx, (5.1)

where V = [v0|v1|...|vn�1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(�l)}n�1

l=0 and
o�-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ ⇥ R+.

The output of the highpass channel is then given by y1 = x�Gy0 which
is equal to the reconstruction error.

y1 = x�Gx

= x�VG̃VTx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(�l)}n�1

l=0 and o�-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ ⇥ R+.

The analysis operator Ta is then defined in

�
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⇥
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=
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Hm

I�GHm

⇥
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where y0, y1 ⇤ Rn are the coarse and prediction error coe⇤cients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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TsTa = I

Simple (traditional) left inverse

Figure 5.1: Analysis scheme in graph Laplacian pyramid.

The usual inverse transform of the LP for reconstruction of the original
signal is also given in

x̂ = ( G I )⇧ ⌅⇤ ⌃
Ts

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

. (5.4)

First, we predict the original signal by filtering of the coarse version y0 and
add the reconstruction error y1 to recover the original signal x completely.
Fig. 5.2 shows the usual inverse transform of the graph LP.

Figure 5.2: Usual synthesis scheme in graph Laplacian pyramid.

It is easy to check that TsTa = I for any Hm,G. In fact, it shows that LP
can be perfectly reconstructed with any pairs of filters Hm,G. Analogously
to the classical Laplacian pyramid, since the graph LP is also a redundant
transform, an infinite number of left inverses are admitted as synthesis oper-
ator. The most important one among those is the pseudo inverse

Ta
† = (Ta

TTa)
�1Ta

T . (5.5)

As it is discussed previously in classical Laplacian pyramid, the impor-
tance of the pseudo inverse as a synthesis operator is its ability to eliminate
the influence of those errors which are added to the transform coe⇤cients y
and are orthogonal to the range of the analysis operator Ta. So, if instead of
having access to y = Tsx we have ŷ = y+e, then the pseudo inverse provides
the solution x̂ = Ta

†ŷ that minimizes the residual ||Tax̂� ŷ||2.
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arg min
x

kTax� yk2
2 x̂k+1 = x̂k + ⌧Ta

T (y �Tax̂k)

Ta
T = (Hm

T I�Hm
T GT )

Landweber iterations involve only filters:

Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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Kron Reduction
26

In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 

2 F. Dörfler and F. Bullo

is the loopy Laplacian matrix. In various applications of circuit theory and related
disciplines it is desirable to obtain a lower dimensional electrically-equivalent network
from the viewpoint of certain boundary nodes (or terminals) � � {1, . . . , n}, |�| ⌅ 2.
If ⇥ = {1, . . . , n}\� denotes the set of interior nodes, then, after appropriately labeling
the nodes, the current-balance equations can be partitioned as

�
I�
I⇥

⇥
=

�
Q�� Q�⇥

Q⇥� Q⇥⇥

⇥ �
V�

V⇥

⇥
. (1.1)

Gaussian elimination of the interior voltages V⇥ in equations (1.1) gives an electrically-
equivalent reduced network with |�| nodes obeying the reduced current-balances

I� +QacI⇥ = QredV� , (1.2)

where the reduced conductance matrixQred ⇧ R|�|⇥|�| is again a loopy Laplacian given
by the Schur complement of Q with respect to the interior nodes ⇥, that is, Qred =
Q���Q�⇥Q

�1
⇥⇥Q⇥�. The accompanying matrix Qac = �Q�⇥Q

�1
⇥⇥ ⇧ R|�|⇥(n�|�|) maps

internal currents to boundary currents in the reduced network. In case that I⇥ is the
vector of zeros, the (i, j)-element of Qred is the current at boundary node i due to a
unit potential at boundary node j and a zero potential at all other boundary nodes.
From here the reduced network can be further analyzed as an |�|-port with current
injections I� +QacI⇥ and transfer conductance matrix Qred.

This reduction of an electrical network via a Schur complement of the associated
conductance matrix is known as Kron reduction due to the seminal work of Gabriel
Kron [37], who identified fundamental interconnections among physics, linear algebra,
and graph theory [33, 38]. The Kron reduction of a simple tree-like network with-
out current injections or shunt conductances is illustrated in Figure 1.1, an example
familiar to every engineering student as the Y �� transformation.

8

8

8
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Fig. 1.1. Kron reduction of a star-like electrical circuit with three boundary nodes ⇥�, one
interior node •⇥ , and with unit conductances resulting in a reduced triangular reduced circuit.

Literature Review. The Kron reduction of networks is ubiquitous in circuit
theory and related applications in order to obtain lower dimensional electrically-
equivalent circuits. It appears for instance in the behavior, synthesis, and analysis of
resistive circuits [56, 60, 59], particularly in the context of large-scale integration chips
[48, 53, 1]. When applied to the impedance matrix of a circuit rather than the admit-
tance matrix, Kron reduction is also referred to as the “shortage operator” [2, 3, 35].
Kron reduction is a standard tool in the power systems community to obtain station-
ary and dynamically-equivalent reduced models for power flow studies [58, 10, 61], or
in the reduction of di⇥erential-algebraic power network and RLC circuit models to
lower dimensional purely dynamic models [45, 52, 5, 18, 20]. A recent application of
Kron reduction is monitoring in smart power grids [17] via synchronized phasor mea-
surement units. Kron reduction is also crucial for reduced order modeling, analysis,

Schur complement
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Kron reduction produces denser and denser graphs

After each reduction we use Spielman’s sparsification 
algorithm to obtain an equivallent but sparser graph

Approx preserves Laplacian
quadratic form Explicit control based on 

effective resistance of edges

Sparsification
27
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graph structure, and sparsity of transform coefficients
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Conclusions

l Ways to process information at vertices of graphs, 
inspired by SP

l Importance of algorithms that can scale to very 
large graphs

l Some counter-intuitive results are expected with 
respect to traditional SP. 

l Many interesting problems/applications
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32Wavelet Coefficient Decay of Globally Regular 
Graph Signals

Let p � 1, and assume that Cp :=
R1
0 |ĝ(s)|2/s2pds < 1. Then

Z 1

0
s�2p

X

n

|hf, s,ni|2ds = Cp||f ||H(2p�1)/2 .

Proposition 
1

Assume that ĝ(�) =
Pq

k=p ak�
k
for some p � 1 (implying ĝ = 0)

Then

| f(s, n)| = |hf, s,ni| 
qX

k=p

|ak|sk||f ||Hk .

Proposition 
2
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Ongoing Work: 
Local Regularity and Wavelet 
Coefficient Decay of Locally 

Regular Graph Signals
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Notions of Local Regularity
34

Local 
Variation ||Omf ||2 =

"
X

n2Nm

w(m,n) [f(n)� f(m)]2
# 1
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A graph signal f is (C,↵, r)-Hölder regular with respect

to the graph G at vertex n 2 V if
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| f(s, n)|  Cr↵
X

m2N (n,r)

| s,n(m)|+ C2s
r+1

X

m/2N (n,r)

|f(m)� f(n)|.

Assume that f is (C,↵, r)-Hölder regular for some r � 1,

and let ĝ(�) =
Pq

k=r ak�
k
for some coe�cients {ak}k=r,r+1,...,q.

Then there exist constants C2 and s̄ such that for all s < s̄, we have

Proposition 
3

| f(s, n)|

| f(s, n)|

 s,n

http://lts4.epfl.ch
http://lts4.epfl.ch


L =


kIn �A
�AT kIn

�

Lr = k2In �AAT

Example
36

Note: For a k-regular bipartite graph

Kron-reduced Laplacian:



L =


kIn �A
�AT kIn

�

Lr = k2In �AAT

Example
36

Note: For a k-regular bipartite graph

Kron-reduced Laplacian:

f̂r(i) = f̂(i) + f̂(N � i) i = 1, ..., N/2



EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Smoothness of Graph Signals
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account for the intrinsic geometric structure of the

underlying data domain
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Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

S
p
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When p = 1, S
1

(f) is the total variation of the signal with
respect to the graph. When p = 2, we have
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S
2

(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1

2 fk
2

=

p
fTLf =

p
S
2

(f).

Note from (6) that the quadratic form S
2

(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S

2

(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�
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2
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and �
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f?span{u
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{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u
`

is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u

0

is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u

`

}
`=0,1,...,N�1

of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight W

i,j

by a factor 1p
didj

. Doing so
leads to the normalized graph Laplacian, which is defined as
˜L := D� 1

2LD� 1

2 , or, equivalently,
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Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G

1

, and least smooth with
respect to the intrinsic structure of G

3

. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL

1

f = 0.14, fTL
2

f = 1.31, and fTL
3

f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of ˆf on G

1

, and
more energy in the higher frequencies in the graph
spectral plot of ˆf on G

3

.

The eigenvalues {˜�
`

}
`=0,1,...,N�1

of the normalized graph
Laplacian of a connected graph G satisfy

0 =

˜�
0

< ˜�
1

 . . .  ˜�
max

 2,

with ˜�
max

= 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V

1

and V
2

such
that every edge e 2 E connects one vertex in V

1

and one vertex
in V

2

. We denote the normalized graph Laplacian eigenvectors
by {˜u

`

}
`=0,1,...,N�1

. As seen in Figure 3(b), the spectrum of
˜L also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u

0

, the normalized graph Laplacian
eigenvector ˜u

0

associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph
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• In the continuous setting, the space          of p-times 
differentiable Sobolev functions are those satisfying

Wp(R)
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|ĝ(x)� PK(x)|  B

2K(K + 1)!

Now consider:

Exactly localized in a K-ball around n 

can remove



�0
n(m) = h�m, PK(L)�ni

�n(m) = h�m, g(L)�ni

Polynomial Localization
42

sup
`
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Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i

 ( ) ( ) ( ),f i b f i b f j,
( , )

,
N

i i
j i K

i jout in in= +
!

/  (16)

for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain 
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ( )h ak

K
k

k
0m m=, ,=/t  

for some constants { } ,a , ,k k K0 1f=  we can also interpret the filtering 
equation (12) in the vertex domain. From (13), we have

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) .L

f i f h u i

f j a u j u i

f j a

*

,

N

j

N

k

K

k

N
k

j

N

k

K

k
k

i j

0

1

1 0 0

1

1 0

out in

in

in

m m

m

=

=

=

,

, , ,

,

, , ,

=

-

= = =

-

= =

/

/ / /

/ /

t t

^ h
 

(17)

EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= +  where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0  To 
enforce a priori information that the clean signal f0 is smooth 
with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" ,  (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1]) 
the optimal reconstruction is given by

 ( ) ( ) ( ),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E  (S2)

or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
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nents of the input signal at vertices within a K -hop local 
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with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
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(S2) with 10c =  to reconstruct the image. This method is a variant 
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method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
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smooth as much across the image edges, as the geometric struc-
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equations, and applications such as graph-based image pro-
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graph on the pixels by connecting each pixel to its horizontal, ver-
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between two neighboring pixels according to the similarity of the 
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.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
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or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.
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(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i
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for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.
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the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
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smooth as much across the image edges, as the geometric struc-
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