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Abstract

The characteristic of effective properties of physical processes in heterogeneous media is a

basic modeling and computational problem for many applications. As standard numerical

discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is

often computationally prohibitive, there is a need for a novel computational algorithm able to

capture the effective behavior of the physical system without resolving the finest scale in the

system on the whole computational domain.

In this thesis we propose and analyze a new class of numerical methods that combine the so-

called finite element heterogeneous multiscale method (FE-HMM) with reduced order modeling

techniques for linear and nonlinear multiscale problems.

In the first part of the thesis we generalize the FE-HMM to elliptic problems with an arbitrary

number of well-separated scales. We provide a rigorous a priori error analysis of this method

that generalizes previous work restricted to two-scale problems. In the second part of the thesis,

we develop our new reduced order multiscale method that combines the FE-HMM with reduced

basis (RB) method. This method, the reduced basis finite element heterogeneous multiscale

method (RB-FE-HMM) provides a significant improvement in computational efficiency com-

pared to the FE-HMM, specially for high dimensional problems or high order methods. A priori

and a posteriori error analyses are derived for linear elliptic problems, as well as goal oriented

adaptivity techniques. The RB-FE-HMM is then generalized to a class of nonlinear elliptic and

parabolic problems. A priori error analysis and extensive computational results for nonlinear

problems are also provided.

Keywords: Multiscale method, reduced basis, homogenization, finite element, adaptivity, goal

oriented, nonlinear problems.
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Résumé

La caractéristique des propriétés effectives d’un processus physique agissant dans un milieu

hétérogène est un problème de modélisation et d’implémentation inhérent à beaucoup d’appli-

cations. Les méthodes de discrétisations numériques standards appliquées à de tels problèmes

multi-échelles (par exemple la méthode des éléments finis classique (FEM)) avec un maillage

très fin étant souvent d’un coût prohibitif, il est nécessaire de trouver un nouvel algorithme

numérique capable de capturer le comportement macroscopique d’un système physique sans

avoir à résoudre les micro-échelles du système sur l’ensemble du domaine discrétisé.

Dans cette thèse, nous proposons et analysons une nouvelle classe de méthodes numériques

qui combinent la méthode d’éléments finis hétérogène multi-échelles (FE-HMM) avec des

techniques de modélisation à ordres réduits appliquées à des problèmes multi-échelles linéaires

et non-linéaires.

Dans la première partie de la thèse, nous généralisons la méthode FE-HMM aux problèmes

elliptiques avec un nombre arbitraires d’échelles explicitement séparées. Nous donnons une

analyse a priori de la vitress de convergence de la méthode, qui généralise des travaux antérieures

pour les problèmes à double échelles.

Dans la seconde partie de la thèse, nous développons notre nouvelle méthode multi-échelles

à ordres réduits qui combine FE-HMM avec la méthode des bases réduites (RB). Comparée à

la méthode FE-HMM, la méthode d’éléments finis hétérogène multi-échelles à bases réduites

(RB-FE-HMM) permet une amélioration significative en termes d’efficacité, notamment pour

les problèmes à dimension élevée ou pour des éléments finis ordre élevé. L’analyse a priori et

a posteriori de l’erreur de la méthode est dérivée pour les problèmes elliptiques linéaires ainsi

que pour les techniques adaptives de type goal-oriented. La méthode RB-FE-HMM est ensuite

généralisée à une classe de problèmes elliptiques et paraboliques non-linéaires. Une analyse a

priori de l’erreur et de nombreux résultats numériques sont aussi présentés pour les problèmes

non-linéaires.

Mots Clés : Méthode multi-échelles, bases réduites, homogénéisation, éléments finis, méthode

adaptive, goal-oriented, problèmes non-linéaires.
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Introduction

Why do we need multiscale methods?

Multiscale problems are considered in almost all the branches of modern applied science,

describing different features appearing in different space or temporal scales, for example the

macro properties versus micro structures of composite materials or volatility of high frequency

financial data versus long term variation. The short history of our exploration of the micro world

(the emergence of nanotechnology can be traced back to the 1980s) leave us many questions

on the mechanisms of the micro structures and the transition from microscopic phenomena

to macrosopic bulk properties. For the problems for which we are able to explain the physical

mechanisms, modeling still remains a difficult task due to the variability and uncertainty of

the microscopic heterogeneity. For instance, the permeability of aquifer for groundwater flow

depends on the sizes and connectivity of the microscopic pores which are completely irregular

while the groundwater transport occurs at a scale that makes the accurate modeling of all the

micro structures accurately impossible. However, we cannot just simply ignore the heterogeneity

of the micro feature. As shown in many physical experiments, the microscopic heterogeneity

in composite materials induces significantly influence macroscopic properties (e.g. thermal or

electric conductivity or elastic properties). Assuming that the multiscale problems are modeled

by partial differential equations (PDEs), another challenge comes from solving those equations

which is often prohibitive for classical numerical methods, i.e. finite element method (FEM),

finite difference method (FDM) or finite volume method (FVM). For example, if a multiscale

problem is modeled on micro scale at 10−6m and the macroscopic domain is of the order of 1m3,

to reasonably with a classical method resolve the micro scale, we need about 1018 number of

degrees of freedom (DOF). The most powerful supercomputer "Tianhe-2" (National University

of Defense Technology, China, ranking No. 1 in Top 500, June 2013 ) with storage 12.4PB (12.416

bytes) can hardly handle this case 1.

Fortunately, for many applications, a macroscopic description is often enough (e.g. conductivity,

effective flow, temperature, electricity, etc.). For those applications, the microscopic information

needs only to be sampled on patches of the whole computational domain. In turn multiscale

methods which can bridge the small scale heterogeneity the large scale properties without

solving the whole multiscale problem on the small scale become attractive.

1Large energy consumption and intense noise are the extra price paid to gain the powerful computation, BBC
archive, January 20, 2013.
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Numerical homogenization methods

Consider a general family of PDEs Lε(uε) = f in a macro domain Ω that depend on a small

parameter ε. The micro solution over the whole domain Ω is denoted by uε. Here ε can be

either modeled (for two-scale problems) as the micro scale (a scalar) that is order of magnitude

smaller than the size of the macro domain or (for N +1 scale problems) a series of meso and

micro scales i.e.
(
ε1(ε), · · · ,εN (ε)

)
, where there is a scale separation between any two scales. As

studied in mathematical homogenization theory [42, 74], the family of micro solutions converge

to a macro limit u0, when ε→ 0 and this u0 is the solution of the so-called homogenized (also

macro or effective) equation L0(u0) = f which is independent of the micro scale ε (see Fig. 1).

Classical numerical methods can be applied to the homogenized equation but the effective data

in the homogenized equations are not explicitly available in general and can only be computed

from explicit cell problems in some special cases. More details on homogenization theory are

presented in Chapter 1.

Figure 1: Heterogeneous domain with periodic hetergeneities of size ε→ 0.

Throughout this thesis, we consider a class of multiscale problems modeled by highly oscillating

elliptic PDEs. Both linear and nonlinear problems will be considered as well as problems with

more than two scales. In its simplest form (linear, two-scale) the elliptic multiscale problem

reads as follows: Find uε ∈V (Ω) such that

B(uε, v) :=
∫
Ω

aε(x)∇uε ·∇vd x =
∫
Ω

f vd x := ( f , v), ∀v ∈V (Ω). (0.0.1)

where aε is a microscopic tensor oscillating on the small scale ε and V (Ω) is a Sobolev space

that generally we assume to be H 1
0 (Ω). By homogenization theory, we have the homogenized
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equation written as follows

B0(u0, v) :=
∫
Ω

a0(x)∇u0 ·∇vd x = ( f , v), ∀v ∈V (Ω). (0.0.2)

As pointed out in [34], solving (0.0.1) by classical numerical methods with coarse discretization

(with meshsize H >> ε) gives non-converging numerical solution. However, the lack of explicit

expressions for a0(x) prevents the possibility to apply classical numerical methods directly.

Numerical homogenization methods must therefore be constructed. In what follows, we give a

brief overview of several main numerical homogenization methods which we classify into three

categories (following the recent review [6]):

• Type 1: methods based on a reduced model generated from the original fine scale problem.

• Type 2: methods that sample the original fine scale problem on patches to recover effective

data of a macroscopic model and use correctors to reconstruct the fine scale solution.

• Type 3: methods based on the two-scale convergence homogenization theory that solve

the full limit problem in a sparse tensor product FE space.

We focus on the multiscale methods based on FEMs but we note that the algorithm described

below can often be implemented (and analyzed) for other methods, e.g. FDM, FVM.

Type 1 multiscale methods: VMM, RFB, MsFEM

In 1983, Babŭska and Osborn developed in [35] the so-called generalized finite element method

(GFEM) for one dimensional PDEs with rough coefficients. The main idea of the GFEM is to

modify the coarse FE space applied to (0.0.1) by adding fine scale information. Inspired by the

GFEM, various methods were developed later for high dimensional problems.

Variational multiscale method (VMM) and residual free bubble (RFB) method. Hughes and

collaborators proposed in [70, 71] the variational multiscale method (VMM) for an efficient

approximation of mulitscale problem. The basic idea is to decompose the numerical approx-

imation uh of uε into uh = uH + ũ, where uH is computed in a coarse FE space VH (Ω) and ũ

is computed in a fine space Ṽ (Ω) (i.e. a FE space with a fine mesh or higher order polynomial

space). We then use the following decomposition to approximate the solution of problem (0.0.1):

Find uh = uH + ũ ∈VH ⊕ Ṽ satisfying

B(uH + ũ, v H ) = ( f , v H ) ∀v H ∈VH (Ω), (0.0.3)

B(ũ, ṽ) = ( f , ṽ)−B(uH , ṽ) ∀ṽ ∈ Ṽ (Ω). (0.0.4)

By Riesz representation theorem, there exists a mapping L : VH → Ṽ such that (L (uH ), ṽ) =
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B(uH , ṽ) and thus we have B(ũ, ṽ) = ( f −L (uH ), ṽ). We can further write ũ =M ( f −L (uH )) and

reformulate (0.0.3) as

B(uH , v H )+B(M ( f −L (uH )), v H ) = ( f , v H ), ∀v H ∈VH ,

where M : VH → Ṽ is a bounded linear operator. For the VMM, the key for efficiency is to apply

various strategies to localize the operator M . A simple way for the localization is to set ũ to be zero

on the boundary of each coarse element K , i.e. solving ũ in space Ṽ := {v ∈Vh(Ω); v |∂K = 0, ∀K }

where Vh(Ω) is an FE space with a partition onΩ that resolves the fine scale.

In the residual free bubble (RFB) method [47] one starts with the coarse FE space and enriches it

by adding the so-called bubble functions on each coarse element which are computed in a fine

localized FE space and which vanish on the boundary of each coarse FE. The RFB method can be

seen as a specific realization of the VMM.

Multiscale finite element method (MsFEM). The multiscale finite element method (MsFEM)

proposed in [69] is a development of the GFEM from a different point of view. Instead of adding

micro structure information into the macro FE space, the MsFEM constructs a special finite

element space with localized oscillating basis functions. In the MsFEM, we first set a macro

partition of a macro FE space VH and write {φH
K ,1, · · · ,φH

K ,M } ⊂ VH as the basis functions of a

macro element K . We then construct the local oscillating basis functions by solving the following

cell problems: Find φh
K ,i −φH

K ,i ∈Vh(K ) (where Vh(K ) is a fine scale FE space defined on K with

meshsize h < ε) such that

∫
K

aε(x)∇φh
K ,i ·∇zhd x = 0, ∀zh ∈Vh(K ), i = 1, · · · , M ,

with the boundary condition

φh
K ,i |∂K =φH

K ,i . (0.0.5)

The original oscillating PDE (0.0.1) is then solved in the multiscale FE space VM sF E M := span{φh
K ,1, · · · ,φh

K ,N }

and the MsFEM approximation reads as follows: Find uhH ∈VM sF E M such that

B(uhH , vhH ) = ( f , vhH ), ∀vhH ∈VM sF E M .

Convergence results for locally periodic linear problems i.e. aε(x) = a(x, x
ε ) = a(x, y) y-periodic

in the reference cell Y , are proved in [31, 69] (assuming that VH and Vh consist of piecewise

linear polynomials ): There exists constants C1,C2 independent of H ,h,ε such that

‖uε−uhH‖H 1(Ω) ≤C1
(
H + (

h

ε
)
)+C2(

ε

H
)1/2. (0.0.6)
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The term C2( εH )1/2 is the so called resonance error, appearing because of artificial boundary

conditions (0.0.5) for the micro problem. The resonance error can be reduced to O ( εH ) by using

an oversampling technique. We refer to [61] for a general review. Higher order MsFEMs have

been developed in [31, 91] based on harmonic coordinates. As pointed out in [99], the VMM and

RFB share similarities with the MsFEM.

Now we have a look at the complexity of the MsFEM. Observed from (0.0.6), it requires that
h
ε ≈ H = 1

Nmac
to obtain optimal convergence rate, where Nmac is the macro DOF in one direction.

Therefore the total complexity is O
(
(Nmac )d · ( H

h )d
)=O

(
(Nmac )d ·ε−d

)
. Since the cell problems

are independent of each other, parallel computation can be applied to improve the efficiency.

Type 2 multiscale methods: RVE, HMM

For this type of methods, one considers the homogenized equation for example (0.0.2) and uses

local cell problems to construct the unknown data in the homogenized equation in order to

obtain an approximation of the homogenized solution u0. A classical engineering method, the

so-called representative volume element (RVE) method, recovers the effective data (i.e. a0) by a

precomputed micro problem on a sampling cell domain where the size of the sampling domain

is sufficiently large to be statistically representative of all the heterogeneity of the micro structure.

However, the choice of the sampling cell (the location, the size) is somehow unrelated to the

the macro solver for the homogenized problem. In turn, convergence results for the numerical

solution cannot be proved except for uniformly periodic problems (i.e. aε(x) = a( x
ε = a(y) y-

periodic in Y ). Moreover for non-periodic problems, the size of the sampling domains, their

location and the propagation of information between micro and macro solvers are delicate

issues. For nonlinear problems, these methods are usually very expensive, without theoretical

foundation ensuring convergence.

The heterogeneous multiscale method (HMM) proposed in [59], provides an efficient strategy

to overcome the limitation of the RVE method. For the HMM, one applies a macro solver to

the homogenized equation in which the missing numerical data are located and estimated

by localized microscopic problems. The link between micro and macro solvers is built in the

methodology and macroscopic method can be seen as a numerical method with quadrature

for a modified effective problem. In turn, available technique for single scale problems can be

re-used. The HMM also provides large flexibility to choose macro solvers for different goals (e.g.

adaptivity, local conservation properties, etc.). We mention here the finite difference HMM [13],

the spectral HMM [15], the finite element HMM (FE-HMM) [60, 1], the discontinuous FE-HMM

for second order elliptic equations in [5] and for convection diffusion equations in [16], the

adaptive FE-HMM in [18, 20, 21], etc.

In this thesis, we focus on the FE-HMM that will be described in Chapter 1. The basic idea of

the FE-HMM is to use an FEM with numerical quadrature formulas (QF) for the macro solver

on a macroscopic triangulation of the physical domain Ω with meshsize H . The unknown data

on each quadrature point is recovered on-the-fly by solving cell problems with a micro FEM on

sampling domains centered at the corresponding quadrature points, see Fig. 2. The sampling
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domains are usually cubes of size δ and we have ε≤ δ<< H . The triangulation on the sampling

domain resolves the ε-scale and the micro mesh size h therefore satisfies h < ε.

Figure 2: The FE-HMM.

As pointed out in [60, 3], the fine scale solution of (0.0.1), can be reconstructed by adding an

oscillating corrector to the the macro numerical solution of (0.0.2), where the corrector is a linear

combination of the cell solutions (similar idea also appeared in other contexts [89]). For locally

periodic problems, using periodic constraints for the micro problem and sampling domains

of size δ= Nε, N ∈N, we have the following convergence results (taking piecewise linear finite

element for both macro and micro problems for simplicity) [60, 1]

‖u0 −uH‖H 1(Ω) ≤C1
(
H + (

h

ε
)2)+C2ε,

‖uε−uhH‖H 1(Ω) ≤C1
(
H + h

ε

)+C2
p
ε,

where uH is the FE-HMM solution and uhH is the corresponding reconstruction for uε based on

uH . To obtain the optimal convergence rate for both macro solution and micro reconstruction,

we set H = h
ε := 1

Nmac
(similar to the MsFEM). Therefore, the total complexity is O (N 2d

mac ) scaled

independent of ε. We refer to [14, 58] for an overview of the HMM framework and [3, 4] for recent

developments of the FE-HMM.
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Type 3 multiscale method: Sparse FEM

This method focuses on the limit equation based on the two-scale convergence theory and its

generalization [30, 81]. Solving this limit equation by using the tensor product FEM leads to

a complexity comparable to solving the original fine scale problem. The sparse tensor FEM

introduced in [68] based on hierarchical sequences of FE spaces allows to significantly reduce the

cost of the method. Indeed, it can be shown that the complexity becomes comparable to single

scale problems. However, the implementation of this method is a challenging task especially for

problems with complex geometries. Furthermore the optimal numerical linear algebra solvers

for such a method are still under investigation.

Main contribution

The main contributions of this thesis address the following two issues.

First issue. Most of the proposed methods for elliptic homogenization problems have only

been analyzed and implemented for two separated scales (a macro and a micro scale) (see

[61, 3, 58, 14] and the references therein). Therefore it is of interest to have a generalized FE-

HMM for problems with more than two scales. In Chapter 2, we propose a rigorous analysis of

the FE-HMM for elliptic problems with an arbitrary numbers of well separated scales. While the

design of the generalized FE-HMM is straightforward from the method for two-scale problems

proposed in [59], the analysis is considerably more difficult than the two-scale analysis [60, 1]

due to the multi-level hierarchy structure of the method and the numerical integration involved

in each level.

Second issue. Complexity of the two-scale FE-HMM due to the simultaneous refinement of

macro and micro problems is a serious issue for: High-dimensional problems, high-order

methods, adaptive procedures and nonlinear problems.

Therefore we propose to couple the FE-HMM methodology with a reduced order modeling

strategy, the reduced basis (RB) method, to address the complexity issue of the FE-HMM. After

designing a new method, namely the reduced basis finite element heterogeneous multiscale

method (RB-FE-HMM), we derive

i an a priori error analysis for linear problems;

ii energy norm based and goal oriented a posteriori error analysis for linear problems;

iii an a priori error analysis for nonlinear nonmonotone problems.

In our approach the RB-FE-HMM, we select by a greedy procedure a number of representative

sampling domains on which we solve accurately micro problems. Their corresponding solutions

span the RB space. This procedure is called the offline stage, in the RB terminology, and is usually

only done once, as a pre-processing step. In a so-called online stage, the effective solution

is obtained from the macro solver of the FE-HMM with effective coefficients recovered from
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micro problems solved in the RB space. The required data at the macro integration points

are now obtained from the solutions of small dimensional linear problems involving suitable

interpolations of the precomputed RB space which is independent of the macro discretization. In

turn, optimal convergence rates in the RB-FE-HMM can be obtained just by refining the macro

mesh. Thus, expensive micro FE computations as required by the FE-HMM are avoided. High

order macroscopic methods can be designed with the same set of RB as used for linear macro FE.

A priori error analysis including macro error, micro error, resonance error and error coming from

the use of the RB is derived. As demonstrated in the numerical experiments, the online time cost

of the RB-FE-HMM can be comparable to the single scale FEM. For problems with large macro

meshes or with iteration steps in macro solvers, the total cost of the RB-FE-HMM is often only a

few percents of the cost for the FE-HMM with the same macro mesh.

The first step of our work focuses on designing the RB-FE-HMM for inear elliptic multiscale

problems, presented in Chapter 4. The further exploration on this method discussed in Chapter

5, focuses on the adaptive RB-FE-HMM where two kinds of multiscale adaptive a posteriori error

estimators are considered: The energy-norm based estimator and the goal-oriented estimator.

In Chapter 6, we extend the RB-FE-HMM for quasi-linear multiscale problems, where a new a

posteriori error estimator for the RB offline is designed in order to guarantee the convergence of

Newton method used for the macro solver in the online stage. We emphasize that though all of

those methods are analyzed only for elliptic multiscale PDEs in this thesis, they can be easily

applied to time dependent problems just with small modifications. In Chapter 7, we present

the implementation details of the quasilinear RB-FE-HMM for both static and time dependent

problems, and present extensive numerical simulations for two and three dimensional problems.
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Part IThe finite element hetergeneous
multiscale method and its

generalization
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In this part we consider the following elliptic multiscale problem

−∇· (aε(x)∇uε(x)) = f in Ω,

uε(x) = 0 on ∂Ω, (1.0.1)

in a domainΩ ∈Rd , d ≤ 3.

We first shortly review the finite element heterogeneous multiscale method (FE-HMM) for the

two scale (macro-micro scale) problems i.e. for aε = a(x, x
ε ). We then generalize the method

for problems with more than two scales i.e., aε = a(x, x
ε1

, · · · , x
εN

) and provide a complete error

analysis.

Rigorous averaging theory for problems such as (1.0.1) has been derived in the framework

of homogenization theory. We mention homogenization techniques using the multiple scale

expansion [42, 74]. Convergence of the fine scale solution towards the homogenized solution

can be studied using the energy method due to Tartar [104]. Another approach is the two-scale

convergence proposed by Nguentseng [81], developed and generalized by Allaire and Briane

[29, 30] for problems with more than two-scales. While numerous numerical methods have

been proposed for two-scale problems, only a few numerical strategies have been proposed and

analyzed for problems with more than two scales. We mention an analysis of the multiscale finite

element method by Efendiev et al. [62], and the numerical method based on high-dimensional

FEM and sparse tensor-product approximation [68] based on the limit problem obtained from

the reiterated homogenization proposed in [30]. Here, we propose the generalized FE-HMM for

problems with more than two scales and study the fully discrete error analysis.

Outline of Part I.

• Chapter 1: Gives a short review on homogenization theory, the FEM and the FE-HMM for

two-scale problems.

• Chapter 2: Presents the generalized FE-HMM and the fully discrete error analysis for

(N +1)-scale problems. This chapter is essentially taken from [9].
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1 Homogenization and the finite element
heterogeneous multiscale method

We consider the second-order elliptic problem (1.0.1) in a bounded polyhedron domain Ω ⊂
Rd , d ≤ 3. Here, for simplicity we choose a zero Dirichlet boundary condition and f ∈ L 2(Ω)

(note that this condition can be relaxed to f ∈H −1(Ω)). The d ×d tensor aε(x) is assumed to be

symmetric uniformly elliptic and bounded, i.e.,

λ|ξ|2 ≤ aε(x)ξ ·ξ, |aε(x)ξ| ≤Λ|ξ|, ∀ξ ∈Rd ,∀ε> 0, (1.0.1)

for a.e x ∈Ω. The tensor varies on a small spatial scale denoted by ε. Homogenization theory

provides the theoretical foundation for the numerical homogenization methods discussed in

Introduction. Here we present the basic results of the homogenization theory in Section 1.1. For

simplicity of the presentation, we will assume that the tensor aε is symmetric, but the numerical

method presented below and its analysis can be generalized to nonsymmetric tensors.

1.1 Homogenization

Mathematical homogenization aims at describing "averaged" (i.e., homogenized) solutions of

PDEs with rapidly oscillating coefficients varying over multiple spatial or temporal scales. For a

function φ(x, y), where x ∈Ω is called the slow variable and y = x
ε ∈ Y (the domain of periodicity,

e.g., Y = (−1
2 , 1

2 )d ) is called the fast variable, we consider φ(x, x
ε ) defined in Ω.

Formal asymptotic expansion. In the locally periodic case, i.e., aε(x) = a(x, x
ε ) = a(x, y) is Y -

periodic in the y variable, a formal approach relies on the multiple scale expansion (see [42]).

Therefore, we look for a solution uε of (1.0.1) in the form uε(x) = u0(x, x
ε )+εu1(x, x

ε )+ε2u2(x, x
ε )+

. . .. Upon inserting the ansatz in (1.0.1) and rewriting the operator ∇ :=∇x+ 1
ε∇y , one first obtains

(formally) by identifying the terms in ε−2 to zero that u0(x, x
ε ) = u0(x). Then identifying the terms

in ε−1 to zero gives the so-called cell problem

−∇y ·
(
a(x, y)∇yχi (x, y)

)=∇y · (a(x, y)ei ), y ∈ Y , i = 1, · · · ,d , (1.1.2)

13



Chapter 1. Homogenization and the finite element heterogeneous multiscale method

where χi (·, y) ∈ H 1
per (Y ) := {g ∈ H 1(Y )| g periodic in Y } is unique up to a constant and ei is

the i th canonical basis of Rd . We thus write the second term of the above ansatz as u1(x, y) =∑d
i=1χi (x, y)∂u0

∂xi
. By identifying the coefficient in ε0 one can deduce that u0(x) is a solution of

the following "homogenized equation"

−∇· (a0(x)∇u0(x)
) = f (x) in Ω

u0(x) = 0 on ∂Ω, (1.1.3)

and the homogenized tensor a0(x) can be expressed as

a0(x) = 1

|Y |
∫

Y
a(x, y)(I +∇yχ(x, y))d y, (1.1.4)

where χ(x, y) := (χ1(x, y), · · · ,χd (x, y)) is a vector function, I is a d ×d identity matrix and |Y |
denotes the volume of Y . By the expression (1.1.4), one can show that a0(x) again is uni-

formly bounded and elliptic. We note that for global periodic tensors, i.e. aε(x) = a( x
ε ) = a(y)

Y −periodic in y , the corresponding homogenized tensor a0 is constant.

Convergence analysis. These formal computations do not provide a converge result of uε to-

wards u0. Using Tartar’s method of oscillating test functions [103] (see also [42]) it is possible to

show that for locally periodic problem uε* u0 weakly in H 1
0 (Ω), aε∇uε* a0∇u0 weakly in (L 2(Ω))d ,

where u0 is the solution of (1.1.3).

Furthermore, as proved in [74, Chapter 1] assuming appropriate regularity of oscillating tensor

and appropriate domainΩ (convex with smooth boundaries), strong L 2 convergence result

‖uε−u0‖L 2(Ω) ≤Cε (1.1.5)

can be obtained. Based on the strong L 2 convergence, one can only obtain for the H 1 norm

that ‖uε−u0‖H 1(Ω) ∼O (1), which indicates that the oscillation in the gradient of uε cannot be

captured by u0. But the H 1 convergence estimate can be improved by adding the corrector

εu1(x, x
ε ) to the homogenized solution u0 and we have

‖uε− (u0 +εu1)‖H 1(Ω) ≤C
p
ε, (1.1.6)

again assuming appropriate regularity of the oscillating tensor and the domain.

The problem gets more involved if aε is not locally periodic. On the theoretical side, one can rely

on H−convergence [103] which ensures the existence of a subsequence of the matrices aε and a

homogenized tensor a0 (again uniformly elliptic and bounded) such that for the corresponding

subsequence, uε and aε∇uε enjoy the same convergence properties as described above for the
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1.2. The finite element heterogeneous multiscale method (FE-HMM)

locally periodic case. However for non-periodic oscillating tensors, the homogenized tensors are

in general unknown (in an explicit form). For numerical homogenization one usually assumes

scale separation between fast and slow variables and relies on local problems to compute the

homogenized tensor for a given value of x ∈Ω.

A typical example we consider for numerical homogenization is the locally periodic tensor.

However even for such a simplified situation, we have an infinite number of cell problems (for

each x ∈Ω), whose solutions must usually be computed numerically. The task in numerical

homogenization is thus to design an algorithm capable of computing an approximation of the

homogenized solution u0(x), relying on a finite number of cell problems chosen in such a way

that the overall computation is efficient and reliable.

1.2 The finite element heterogeneous multiscale method (FE-HMM)

As discussed in the introduction, the FE-HMM belongs to the class of numerical homogenization

methods. It is based on a macroscopic FEM with QF defined on a macroscopic partition of the

domain Ω. As a0(x) is usually unknown, the method is supplemented by microscopic FEMs

defined on sampling domains centered at the macroscopic quadrature points of the QF, relying

only on the data given in (1.0.1). A suitable averaging of the solutions of the microscopic FEMs

allows to recover the missing macroscopic tensor at the macroscopic quadrature points.

The method is applicable to general problems and does not rely on a specific structure of

the oscillating tensor such as periodicity. We however assume that there is a well defined

homogenized problem with certain smoothness properties and a scale separation between fast

and slow variables, which we will make precise in the following. We emphasize that although

we consider the model equation (1.0.1) with homogeneous Dirichlet boundary condition , the

numerical method presented below (as well as the methods presented in later chapters) can be

readily generalized to other boundary conditions , e.g.,

uε(x) = gD (x) on ∂ΩD ,

n · (aε(x)∇uε(x)) = gN (x) on ∂ΩN ,

where ∂Ω= ∂ΩD∪∂ΩN , with ∂ΩD having non-zero measure, and gD ∈H
1
2 (∂ΩD ), gN ∈L 2(∂ΩN ).

We also emphasize that all the methods in the following chapters (for both of the FE-HMM and

the RB-FE-HMM) can be easily extended to non-symmetric problems.

1.2.1 Preliminary: The single scale finite element method (FEM)

In this subsection, we briefly introduce the standard FEM for single scale problems and various

a priori error estimates that are used in the analysis of the FE-HMM and refer to [95] for the
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Chapter 1. Homogenization and the finite element heterogeneous multiscale method

detailed introduction of FEM. We consider the following single scale problem

−∇· (a(x)∇u(x)
) = f in Ω,

u(x) = 0 on ∂Ω,
(1.2.7)

where we assume that the right hand side function f ∈ L 2(Ω) and that a(x) is symmetric,

uniformly bounded and elliptic (hence ensuring a unique solution for (1.2.7)). We then write this

single scale problem (1.2.7) into the following weak form

Bs(u, v) :=
∫
Ω

a∇u ·∇vd x =
∫
Ω

f vd x, ∀v ∈H 1
0 (Ω).

Here we use the subscript s in this subsection to denote the single scale problem in order

distinguish from the bilinear forms defined later for multiscale problems. Let TH is a family of

partition ofΩ in simplicial or quadrilateral elements K of diameter HK , and R`(K ) is the space

P `(K ) of polynomials on K of total degree at most ` if K is a simplicial FE, or the space Q`(K )

of polynomials on K of degree at most ` in each variable if K is a quadrilateral FE. For a given

domain partition, denote H := maxK∈TH HK . We then define the finite element space as the

following

S`0(Ω,TH ) = {v H ∈H 1
0 (Ω); v H |K ∈R`(K ), ∀K ∈TH }, (1.2.8)

which is a finite dimensional subspace of H 1
0 (Ω).

FEM with numerical quadrature is a basic building block of the FE-HMM described later. Con-

sider therefore a quadrature formula (QF) {x̂ j ,ω̂ j }J
j=1 on a reference element K̂ . We equip each

element K with a corresponding QF {xK j ,ωK j }J
j=1 by using a C 1-diffeomorphism. We will make

the following assumptions on the quadrature formula (see [54]),

(Q1) ω̂ j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂ j |∇p̂(x̂ j )|2 ≥ λ̂‖∇p̂‖2
L 2(K̂ )

, ∀p̂(x̂) ∈R`(K̂ ), with λ̂> 0;

(Q2)
∫

K̂ p̂(x̂)d x̂ =∑
j∈J ω̂ j p̂(x̂ j ), ∀p̂(x̂) ∈Rσ(K̂ ), where σ= max(2`−2,`) if K̂ is a simplicial FE,

or σ= max(2`−1,`+1) if K̂ is a rectangular FE.

The assumptions (Q1) and (Q2) will be repeatedly used in this thesis.

The FEM with numerical quadrature for Problem (1.2.7) reads: Find uH ∈ S`0(Ω,TH ) such that

Bs,H (uH , v H ) =
∫
Ω

f v H d x, ∀v H ∈ S`0(Ω,TH ),

where

Bs,H (v H , w H ) := ∑
K∈TH

∑
xK j ∈K

ωK j a(xK j )∇v H (xK j ) ·∇w H (xK j )
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1.2. The finite element heterogeneous multiscale method (FE-HMM)

The following classical error estimates for FEM with numerical quadrature can be found in [53,

Chapter 3] and the related references within.

Theorem 1.2.1. Assume that the family of partition TH is regular and that all the elements K ∈TH

are affine-equivalent and of class C 0. Furthermore we assume that the solution u of (1.2.7) has the

regularity of H `+1(Ω). In addition suppose that a ∈W `,∞(Ω) for H 1 estimate and a ∈W `+1,∞(Ω)

for L 2 estimate and that assumptions (Q1) (Q2) hold for the QF coupled with FEM with numerical

quadrature, then we have for the FEM solution uH ∈ S`0(Ω,TH ) that

‖u −uH‖H 1(Ω) ≤C H`|u|H `+1(Ω), ‖u −uH‖L 2(Ω) ≤C H`+1|u|H `+1(Ω), (1.2.9)

where | · |H `+1(Ω) is the H `+1 semi-norm.

1.2.2 The FE-HMM

We next describe the FE-HMM and note that for the method proposition we do not need to

assume the oscillating tensor is locally periodic. Here we denote S`0(Ω,TH ) as the macro FE

space for the macro problem defined in (1.2.8) where we note that H in the macro discretization

is allowed to be much larger than ε. Ideally we would like to apply the FEM to (1.1.3) to obtain

the numerical macro solution, i.e. find u0,H ∈ S`0(Ω,TH ) such that

B0,H (u0,H , v H ) =
∫
Ω

f v H d x, ∀v H ∈ S`0(Ω,TH ), (1.2.10)

where for v H , w H ∈ S`0(Ω,TH )

B0,H (v H , w H ) := ∑
K∈TH

∑
xK j ∈K

ωK j a0(xK j )∇v H (xK j ) ·∇w H (xK j ) (1.2.11)

and a0(xK j ) is the homogenized tensor of problem (1.1.3) at the quadrature point xK j .

In order to estimate the unknown data in (1.2.11), we need to introduce micro cell problems.

We first define for each macro element K ∈TH and each integration point xK j ∈ K , j = 1, . . . , J ,

the sampling domains Kδ j = xK j + (−δ/2,δ/2)d , (δ ≥ ε). For a sampling domain Kδ j , we then

define a micro FE space Sq (Kδ j ,Th) ⊂W (Kδ j ) with simplicial or quadrilateral FEs and piecewise

polynomial of degree q for simplicial FEs (or piecewise polynomial of maximum degree q in each

variable for quadrilateral FEs) where Th is a conformal and shape regular family of partition. The

space W (Kδ j ) is either the Sobolev space

W (Kδ j ) =W 1
per (Kδ j ) (1.2.12)
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Chapter 1. Homogenization and the finite element heterogeneous multiscale method

for a periodic coupling or the Sobolev space

W (Kδ j ) =H 1
0 (Kδ j ) (1.2.13)

for a coupling with Dirichlet boundary conditions.

We first apply the FEM at the macroscopic level: Find uH ∈ S`0(Ω,TH ) such that

BH (uH , v H ) =
∫
Ω

f v H d x, ∀v H ∈ S`0(Ω,TH ), (1.2.14)

where

BH (v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j

|Kδ j |
∫

Kδ j

aε(x)∇vh
K j

(x) ·∇wh
K j

(x)d x. (1.2.15)

In (1.2.15) vh
K j

(respectively wh
K j

) denotes the solution of the following micro problem (computed

on-the-fly): Find vh
K j

such that vh
K j

− v H
li n, j (x) ∈ Sq (Kδ j ,Th) and

∫
Kδ j

aε(x)∇vh
K j

(x) ·∇zh(x)d x = 0 ∀zh ∈ Sq (Kδ j ,Th), (1.2.16)

where we used the notation v H
li n, j (x) := v H (xK j )+ (x −xK j ) ·∇v H (xK j ).

1.2.3 A priori estimates for the FE-HMM

The following estimates hold provided suitable regularity assumptions on a0(x), f (x) and u0 ∈
H`+1(Ω) (see [3, 1, 60]):

∥∥u0 −uH
∥∥

H 1(Ω) ≤C
(
H`+ rM IC + rMOD

)
,∥∥u0 −uH

∥∥
L 2(Ω) ≤C

(
H`+1 + rM IC + rMOD

)
. (1.2.17)

The term rMOD (called modeling error) quantifies the error induced by artificial micro boundary

conditions or non-optimal sampling of the micro structure. It does not depend on the macro

or micro meshsizes and can be analyzed for locally periodic tensor [60, 22, 57]. The term rM IC

(called micro error) quantifies the error due to the micro FEM.

To estimate the micro error, it is convenient to make the following assumption on ψi
K j

, the exact

solution of Problem (1.2.16), i.e., the solution of
∫

Kδ j
aε(x)∇(ψi

K j
(x)+ xi ) ·∇z(x)d x = 0 ∀z ∈

W (Kδ j ), i = 1, . . . ,d , [4, 5]
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1.2. The finite element heterogeneous multiscale method (FE-HMM)

(H1) Given q ∈N, the cell functions ψi
K j

satisfy

|ψi
K j
|H q+1(Kδ j ) ≤Cε−q

√
|Kδ j |,

with C independent of i = 1. . .d , ε, the quadrature point xK j and the domain Kδ j .

Remark 1.2.2. If W (Kδ j ) = H 1
0 (Kδ j ) then (H1) holds for q = 1 provided aε|K ∈ W 1,∞(K ) and

|aεi j |W 1,∞(K ) ≤ CK ε
−1 for i , j = 1, . . .d. If Kδ j covers an integer number of periods and aε(x) =

a(x, x
ε ) = a(x, y), then (H1) holds for higher order q provided that periodic boundary conditions

are used for the micro problems and aε = a(·, y) is smooth enough.

Then, the microscopic error rM IC can be bounded by [1, 4, 5]

rM IC ≤C

(
h

ε

)2q

. (1.2.18)

Finally, assuming

aε(x) = a(x,
x

ε
) = a(x, y) Y-periodic in y, (1.2.19)

the modeling error rMOD can be bounded as follows [60, 22]

rMOD = 0 if W (Kδ j ) =W 1
per (Kδ j ) and δ/ε ∈N, 1 (1.2.20)

rMOD ≤C (δ+ ε

δ
) if W (Kδ j ) =H 1

0 (Kδ j ) (δ> ε). (1.2.21)

1.2.4 Complexity and optimal macro-micro refinement

Taking Nmi c elements in each space dimension for the discretization of the sampling domain

Kδ j , we have h = δ/Nmi c and thus ĥ = (δ/ε) · (1/Nmi c ). Since δ scales with ε, typically δ = Cε

(where C is a constant of moderate size), we obtain ĥ = (C /Nmi c ), independent of ε.

We denote by Mmac =O (ĥ−d ) the number of degrees of freedom (DOF) for the micro FEM and

by Mmac , the number of DOF of the macro FEM. For quasi-uniform macro meshes, the macro

meshsize H and the micro meshsize ĥ are related to Mmac and Mmi c as

H =O (M−1/d
mac ), ĥ =O (M−1/d

mi c ).

In view of (1.2.17) and (1.2.18), optimal macroscopic convergence rates (up to a modeling error

1For this estimate to hold, one needs to consider a suitable modification of the bilinear form (1.2.15) and the micro
problem (1.2.16), namely one has to collocate the term a(x, x

ε ) in the slow variable a(xK j , x
ε ) in both (1.2.15) and

(1.2.16).
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rMOD independent of H ,h) are obtained for quasi-uniform microscopic meshsizes given by

ĥ ' H
`

2q for the H 1 norm, ĥ ' H
`+1
2q for the L 2 norm.

The corresponding complexity in term of macro DOF reads

H−d︸︷︷︸
Mmac

·H
−d`
2q︸ ︷︷ ︸

Mmi c

·ns = (Mmac )1+ `
2q ·ns for the H 1 norm,

H−d︸︷︷︸
Mmac

·H
−d(`+1)

2q︸ ︷︷ ︸
Mmi c

·ns = (Mmac )1+ `+1
2q ·ns for the L 2 norm,

where ns denotes the number of sampling domains per macro element K ∈TH . We first observe

that in contrast to numerical methods of type 1 (see the introduction) the complexity is indepen-

dent of ε. Second, as can be seen above and as first noticed in [1] the overall complexity of the

method is a function of Mmac and Mmi c and in general superlinear with respect to the macro

DOF. For example, using piecewise linear polynomials on simplicial FEs, assuming quasi-uniform

macro and micro meshes and that the complexity is proportional to the total DOF we obtain

a cost of O (M 3/2
mac ) (H 1 norm) and O (M 2

mac ) (L 2 norm). 2 In contrast, the memory demand is

proportional to Mmac +Mmi c only as the micro problems, being independent of one another, can

be solved one at a time. Finally we note that by using spectral methods or p −F E M for the micro

solvers can reduce the complexity of the overall FE-HMM (up to log-linear complexity). This was

investigated in [15]. Such an approach requires however high regularity in the oscillating tensor

aε which may not hold for some applications as for example in material science.

2 Notice that as the micro problems are solved independently, the method is well suited for parallel implementation
which can reduce significantly the complexity of the FE-HMM.
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2 Fully discrete analysis of the heteroge-
neous multiscale method for elliptic
problems with multiple scales
In this chapter we consider (1.0.1) the multiscale tensor in a generalized form oscillating on

N +1 separate scales, i.e., aε = a(x, x
ε1

, · · · , x
εN

), and ε1, . . . ,εN are N positive functions εi (ε) that

converge to 0 when ε→ 0 and that are well-separated in the sense that limε→0
εi+1(ε)
εi (ε) = 0 for

i = 1, . . . N −1. The above tensor has thus one macroscopic scale and N microscopic scales, i.e.,

it varies over N +1 scales (for simplicity of indexing the scales in our numerical scheme, we

will refer to the macro scale as the zero-th scale). Here, we still assume homogeneous Dirichlet

boundary conditions for simplicity and take f ∈L 2(Ω).

Here we generalize the FE-HMM, and propose a fully discrete analysis for (N +1)-scale problems.

Recall that the FE-HMM can be seen as a FEM with numerical quadrature for a modified effective

problem, as seen in Chapter 1. The data actually recovered by the micro FEMs are a perturbed

version of the true effective data, because the computed data depends on the accuracy of the

micro solver and the modeling error as we discussed in Chapter 1. For the analysis we have thus

to deal with variational crimes (as we have a FEM with numerical quadrature) and modeling

error (as the recovered effective problem differs from the true effective model). Yet for two-scale

problems, the micro scale was assumed to be solved by standard FEM (the microscopic data

are given by model equation (1.0.1)) in the analysis [1, 2], while for problems with more than

two scales, such assumption cannot be made as the problems at intermediate scales (called

mesoscales in what follows) depend on effective coefficients computed around quadrature

points of the meso FE meshes. Hence, we have a cascade of interdepending FEMs with numerical

quadrature and a cascade of variational crimes. In turn we need on one hand to generalize the

analysis for FEM with numerical quadrature for single scale problem given by [54], on the other

hand characterize the propagation of numerical discretization and modeling errors from micro

to meso and macro scales. This precise characterization allows to set up the optimal meshes

at each scale in order to obtain the desired convergence rate at the macro scale with minimal

computational complexity. We note that a complexity analysis of the FE-HMM for N +1 scales

shows that the method even though much cheaper than the fine scale problem (intractable in

general) can be costly, due to the cascade of cell problems to be solved. Nevertheless, the analysis

of the FE-HMM for (N +1)-scale problems will be an important cornerstone for further research

using in addition model reduction technique to the FE-HMM.
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Chapter 2. Fully discrete analysis of the heterogeneous multiscale method for elliptic
problems with multiple scales

This chapter is organized as follows. In Section 2.1, we briefly discuss the (N +1)-scale homoge-

nization problem. The FE-HMM for N +1 scales is defined in Section 2.2. Existence, uniqueness

and a priori error analysis are presented in Section 2.3. The modeling error of the FE-HMM for

N +1 scales is discussed in Section 2.4, while the estimates for numerical quadrature used in the

proof of the main theorems are given in Section 2.5. We conclude this chapter with numerical

experiments in Section 2.6.

2.1 Model problem and homogenization

We consider the model equation (1.0.1). Let Ω ⊂ Rd be a bounded polyhedron subset in Rd

and f ∈ L 2(Ω). Assume that aε(x) ∈ L∞(Ω)d×d is uniformly bounded and elliptic (1.0.1). By

Lax-Milgram theorem, there exists for all fixed ε > 0 a unique solution uε of (1.0.1) which is

bounded in H 1
0 (Ω) uniformly in ε. Hence, by a standard compactness argument, one can

show that there exists a subsequence of {uε} that converges weakly in H 1
0 (Ω). Invoking h0

convergence [80] (or G convergence [56] for the symmetric case) on can show that there exists

a tensor a0(x) ∈L∞(Ω)d×d that is again elliptic and bounded and a subsequence of {uε} that

weakly converges in H 1
0 (Ω) to u0 ∈H 1

0 (Ω) that is the solution of the problem

−∇· (a0∇u0) = f in Ω, (2.1.1)

u0 = 0 on ∂Ω.

However in the general case, the limit tensor a0 is difficult to characterize and might not be

unique. If one assumes that

aε = a(x,
x

ε1
, · · · ,

x

εN
) = a(x, y1, . . . , yN ) ∈L∞(

Ω,C 0(Rd N )
)d×d , (2.1.2)

where

a(x, y1, . . . , yN ) is periodic with respect to ys with period Y = [0,1]d for each s = 1, . . . , N , (2.1.3)

and that ε1,ε2, . . . ,εN are N positive functions εs(ε) that converge to 0 when ε → 0 and are

well-separated

limε→0
εs+1(ε)
εs (ε) = 0 for s = 1, . . . N −1, (2.1.4)

then as proved in [30], then the whole sequence {uε} weakly converges in H 1
0 (Ω) and the ho-

mogenized solution and homogenized tensor, u0, a0, respectively, are unique. Furthermore,

a0(x) can be obtained by an inductive homogenization formula by computing a cascade of

periodic micro functions and related homogenized tensors at the successive mesoscales (see

[30, Corollary 2.12]). The FE-HMM for N +1 scales will be defined for a general tensor assuming

(1.0.1),(2.1.2) and (2.1.4). For a full characterization of the fine scale successive numerical errors

we will in addition use (2.1.3). Finally assuming the periodicity of the tensor aε(x) facilitates the
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analysis and will also be assumed here. We however note that this assumption could be removed

at the cost of introducing dual problems to recover optimal convergence rates for the macro and

micro scales (see [57] and [26, Lemma 4.6]).

2.2 FE-HMM for (N +1)-scale problems

In this section, we extend and analyze the FE-HMM discussed in Chapter 1 (for two-scale

problems) to (N +1)-scale problems.

The main idea is to apply a macro FEM to (2.1.1) and introduce mesoscopic FEMs on meso

sampling domains to solve the meso cell problems recursively (recovering the unknown homog-

enized tensor at scale s by cell problems at appropriate quadrature points at scale s +1 until the

scale N is reached where we use the given oscillatory data) in order to recover the unknown data

in the macro solver (we emphasize that a0 is unknown in general). This is illustrated in Fig. 1 for

the three scale FE-HMM.

 

 

Macro 

 

Meso 

 

Upscale 

Upscale 
Micro 

 

0T   

 

1T   

 

0 0,1 ,1,K Kx    

0 0,2 ,2,K Kx    

0 0,3 ,3,K Kx    

1 1,1 ,1,K Kx    

1 1,2 ,2,K Kx 
  

1 1,3 ,3,K Kx    

Figure 1: Illustration for the three scale FE-HMM

The FE-HMM is based on a macro finite element (FE) space

Sq0

0 (Ω,Th0 ) = {vh0 ∈H 1
0 (Ω); vh0 |K0 ∈Rq0 (K0), ∀K0 ∈Th0 },
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where Th0 is a family of (macro) partition of Ω in simplicial or rectangular (parallelogram)

elements K0 of diameter hK0 , and Rq0 (K0) is the space P q0 (K0) of polynomials on K0 of total

degree at most q0 if K0 is a simplicial FE, or the space Qq0 (K0) of polynomials on K0 of degree at

most q0 in each variable if K0 is a rectangular (parallelogram) FE. For a given macro partition,

we define as usual h0 := maxK0∈Th0
hK0 and assume that the family of triangulation Th0 is shape

regular We note that h0 in our discretization is allowed to be much larger than ε1.

Since the quadrature formula (QF) is the one of the main concerns in this chapter, we restate here

the definition of QF for convenience: Define a QF {x̂ j ,ω̂ j }J
j=1 on a reference element K̂ coupled

with a general FE space S`D (D,Th) 1. We make the following assumptions on the quadrature

formula, see [53]

(Q1) ω̂ j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂ j |∇p̂(x̂ j )|2 ≥ λ̂‖∇p̂‖2
L 2(K̂ )

, ∀p̂(x̂) ∈Rσ(K̂ ), with λ̂> 0;

(Q2)
∫

K̂ p̂(x̂)d x̂ =∑J
j=1 ω̂ j p̂(x̂ j ), ∀p̂(x̂) ∈Rσ(K̂ ).

where σ= max(2`−2,`) if K̂ is a simplicial FE, or σ= max(2`−1,`+1) if K̂ is a rectangular FE.

We choose J in such a way that (Q2) is guaranteed.

Remark 2.2.1. Assumption (Q1) is critical for the uniqueness and existence of the numerical

solution. Assumption (Q2) ensures the precision of the QF. For K̂ is a simplicial FE, assumption

(Q2) indicates that
∑J

j=1 ω̂ j |∇p̂(x̂ j )|2 = ‖∇p̂‖2
L 2(K̂ )

and thus (Q1) is not needed. Whereas this

equality does not hold for rectangular K̂ so that (Q1) is required while one can still show for

rectangular K̂ :
∑J

j=1 ω̂ j |∇p̂(x̂ j )|2 ≤ Ĉ‖∇p̂‖L 2(K̂ ).

For a given J1 ∈ N and a given QF {x̂ j1 ,ω̂ j1 }J1
j1=1, define the quadrature nodes on each macro

element K0 ∈Th0 by the affine map xK0, j1 = FK (x̂ j1 ), j1 = 1, · · · , J1 and corresponding quadrature

weights ωK0, j1 = |K0|ω̂ j1 . Here and in what follows, we denote the measure of a subset D ⊂Ω by

|D|.

We define the first meso scale sampling domains δK0, j1 around each xK0, j1 by

δK0, j1 = xK0, j1 + (−δ1/2,δ1/2)d , with δ1 ≥ ε1.

We then consider a partition Th1 of δK0, j1 with elements K1 of size h1. Likewise, we define

recursively a sequence of sampling domains

δKs−1, js = xKs−1, js + (−δs/2,δs/2)d , with δs ≥ εs , s = 1, · · · , N ,

where xKs−1, js are the quadrature nodes on the element Ks−1 ∈Ths−1 and Ths−1 is a partition of

1S`D (D,Th ) is the FE space with certain boundary condition. The QF is applied in different FE problems in this
chapter. Therefore we define the QF in a general fashion.
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2.2. FE-HMM for (N +1)-scale problems

δKs−2, js−1 . Here the quadrature nodes are defined through an affine map

xKs−1, js = FKs−1, js (x̂ js ), js = 1, · · · , Js

from the reference quadrature nodes {x̂ js }Js

js=1 on K̂ .

Now we define on a scale s (s = 1, · · · , N ) an FE space Sqs (δKs−1, js ,Ths ) ⊂W (δKs−1, js ) with simplicial

or rectangular FEs and piecewise polynomials of degree qs . The space W (δKs−1, js ) is the Sobolev

space

W (δKs−1, js ) =W 1
per (δKs−1, js ) (2.2.5)

for a periodic coupling or

W (δKs−1, js ) =H 1
0 (δKs−1, js ) (2.2.6)

for a coupling with Dirichlet boundary conditions.

We next introduce meso and micro problems to recover an approximation of the unknown data

a0(x) at suitable quadrature macro nodes.

Meso and micro problems. Assuming as
Ks

(xKs , js+1 ) is available (the subscript of as
Ks

(xKs , js+1 )

indicates that as
Ks

(xKs , js+1 ) is an FE-HMM tensor estimated in element Ks). Associated to each

sampling domain δKs−1, js , s = 1, · · · , N , 1 ≤ jm ≤ Jm , m ≤ s, we define an effective numerical

tensor as−1
Ks−1

(xKs−1, js ) on the quadrature nodes xKs−1, js by

as−1
Ks−1

(xKs−1, js ) = 1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )(I + J T
χ

hs
Ks−1, js

(xKs , js+1 )
), (2.2.7)

where J
χ

hs
Ks−1, js

(x) is a d×d Jacobian matrix with entries (J
χ

hs
Ks−1, js

(x))i k = ∂k
(
χ

i ,hs

Ks−1, js
(x)

)
(∂k := ∂/∂xk )

and |δKs−1, js | denotes the measure of the sampling domain δKs−1, js . We use the superscript T to

denote the transpose of the matrix. Here we define by χi ,hs

Ks−1, js
(x) ∈ Sqs (δKs−1, js ,Ths ) the solution

of the following cell problem: For any test function zhs ∈ Sqs (δKs−1, js ,Ths ), χi ,hs

Ks−1, js
satisfies

(Ps)
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )
(
∇χi ,hs

Ks−1, js
(xKs , js+1 )+ei

)
·∇zhs (xKs , js+1 ) = 0,

where ei , i = 1, · · · ,d denote the canonical basis of Rd . We note that (Ps) (an FEM with numerical

quadrature) is defined recursively as the data as
Ks

(xKs , js+1 ) depends on as+1
Ks+1

(xKs+1, js+2 ) 2. In the

last level of the recursion we use aN
KN

(x) = aε(x), the available microscopic tensor from (1.0.1)

and observe that the symmetry of aε implies the symmetry of aN−1
KN−1

(xKN−1, jN ) and iteratively the

2 It will be proved in Section 2.3.1 that each of the problems (Ps) has a unique solution.
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symmetry of as−1
Ks−1

(xKs−1, js ) (s = 1, · · · , N ).

Remark 2.2.2. From (2.2.7) and (Ps), we obtain

as−1
Ks−1

(xKs−1, js )ei ·ek = (2.2.8)

1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )(χi ,hs

Ks−1, js
(xKs , js+1 )+ei ) · (χk,hs

Ks−1, js
(xKs , js+1 )+ek ),

from which we see that

as−1
Ks−1

(xKs−1, js ) = (2.2.9)

1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )(I + J T
χ

hs
Ks−1, js

(xKs , js+1 )
)(I + J T

χ
hs
Ks−1, js

(xKs , js+1 )
).

Macro problem. The macro problem for the FE-HMM is defined as follows: find uh0 ∈ Sq0

0 (Ω,Th0 )

such that

(P0) Bh0 (uh0 , vh0 ) =
∫
Ω

f vh0 d x ∀vh0 ∈ Sq0

0 (Ω,Th0 ),

where

Bh0 (uh0 , vh0 ) = ∑
K0∈Th0

J1∑
j1=1

ωK0, j1 a0
K0

(xK0, j1 )∇uh0 (xK0, j1 ) ·∇vh0 (xK0, j1 ), (2.2.10)

and a0
K0

(xK0, j1 ) is the macro numerical homogenized tensor given by

a0
K0

(xK0, j1 ) := 1

|δK0, j1 |
∑

K1∈Th1

J2∑
j2=1

ωK1, j2 a1
K1

(xK1, j2 )(I + J T

χ
h1
K0, j1

(xK1, j2 )
). (2.2.11)

Here (J T

χ
h1
K0, j1

(x)
)i k = ∂k

(
χ

i ,h1
K0, j1

(x)
)

and χi ,h1
K0, j1

is the solution of cell problem (Ps) (s = 1). We empha-

size again that the symmetry of a0
K0

(xK0, j1 ) can be deduced from the symmetry of a1
K1

(xK1, j2 ).

2.3 A priori error analysis for the (N +1)-scale FE-HMM

Our aim is to obtain the a priori errors ‖uh0 −u0‖L 2(Ω) and ‖uh0 −u0‖H 1(Ω) for the (N +1)-scale

FE-HMM (N ≥ 2). Let us first show that the (N +1)-scale FE-HMM is well-defined.

2.3.1 Existence and uniqueness of the FE-HMM solution.

With the assumption (1.0.1), we have the following lemma.
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Lemma 2.3.1. Assume that the multiscale tensor aε is symmetric, uniformly elliptic and bounded,

i.e., (1.0.1) holds. Furthermore for each scale s (s = 1, · · · , N ), we assume that the QF is chosen such

that (Q1) (Q2) hold for `= qs where qs is the degree of the polynomials in Sqs (δKs−1, js ,Ths ). Then

we have√
|δKs−1, js | ≤ ‖ei +∇χi ,hs

Ks−1, js
‖L 2(δKs−1, js ) ≤C

√
|δKs−1, js |. (2.3.12)

Moreover for s = 1, · · · , N , we have

as−1
Ks−1

(xKs−1, js )ξ ·ξ≥ λ̃|ξ|2, |as−1
Ks−1

(xKs−1, js )ξ| ≤ C̃ |ξ|, ∀ξ ∈Rd , (2.3.13)

for any quadrature points xKs−1, js used at the scale s −1 and λ̃,C ,C̃ > 1 depend on λ,Λ,d , s, N and

the shape regularity of the triangulation. In particular, for s = 1 we have

a0
K0

(xK0, j1 )ξ ·ξ≥ λ̃|ξ|2, |a0
K0

(xK0, j1 )ξ| ≤ C̃ |ξ|, ∀ξ ∈Rd . (2.3.14)

Proof. The inequalities (2.3.12) and (2.3.13) need to be proved recursively. We show if (2.3.13)

holds for s, then there exists an unique solutionχi ,hs

Ks−1, js
of (Ps) (for i = 1, · · · ,d) and further (2.3.12)

and (2.3.13) hold for s −1. As (2.3.13) is true for s = N , Lemma 2.3.1 holds then by induction for

all s = 1, · · · , N .

Assume therefore that (2.3.13) holds for as
Ks

(xKs , js+1 ) and let us first prove (2.3.12) for as−1
Ks−1

(xKs−1, js ).

The lower bound of ‖ei +∇χi ,hs

Ks−1, js
‖L 2(δKs−1, js ) is straightforward from the following equality ob-

tained by using the boundary conditions of the cell problem

‖ei +∇χi ,hs

Ks−1, js
‖2
L 2(δKs−1, js ) = |δKs−1, js |+‖∇χi ,hs

Ks−1, js
‖2
L 2(δKs−1, js ).

For the upper bound, using assumption (Q1), we can write

λ̃‖∇χi ,hs

Ks−1, js
(x)+ei‖2

L 2(δKs−1, js )

≤ ∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )(∇χi ,hs

Ks−1, js
(xKs , js+1 )+ei ) · (∇χi ,hs

Ks−1, js
(xKs , js+1 )+ei )

= ∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )ei ·ei

− ∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )∇χi ,hs

Ks−1, js
(xKs , js+1 ) ·∇χi ,hs

Ks−1, js
(xKs , js+1 )

≤C |δKs−1, js |−C1‖∇χi ,hs

Ks−1, js
‖2
L 2(δKs−1, js ) ≤C |δKs−1, js |,

where the constant C1 > 0.

In what follows we only prove the first inequality of (2.3.13) (the second inequality can be

simply obtained by using the upper bound in inequality (2.3.12)). We consider the definition of

as−1
Ks−1

(xKs−1, js ) written in the form of (2.2.9), the symmetry of as
Ks

(xKs , js+1 ) and assumption (Q2)
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we have

as−1
Ks−1

(xKs−1, js )ξ ·ξ

= 1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as
Ks

(xKs , js+1 )
(
(I + J T

χ
hs
Ks−1, js

(xKs−1, js )
)ξ

) · ((I + J T
χ

hs
Ks−1, js

(xKs−1, js )
)ξ

)
≥ λ

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1

(
(I + J T

χ
hs
Ks−1, js

(xKs−1, js )
)ξ

) · ((I + J T
χ

hs
Ks−1, js

(xKs−1, js )
)ξ

)
≥ λ̃

|δKs−1, js |
∫
δKs−1, js

(
(I + J T

χ
hs
Ks−1, js

(x)
)ξ

) · ((I + J T
χ

hs
Ks−1, js

(x)
)ξ

)
d x

≥ λ̃|ξ|2 + λ̃

|δKs−1, js |
∫
δKs−1, js

(J T
χ

hs
Ks−1, js

(x)
ξ) · (J T

χ
hs
Ks−1, js

(x)
ξ)

≥ λ̃|ξ|2.

where we have used assumption (Q1) (notice that λ̃=Cλ when using simplicial FE, see Remark

2.2.1. We note that (2.3.14) can be similarly proved using the FE-HMM reformulation (2.2.11).

Remark 2.3.2. For fully discrete error analysis of two scale (macro-micro) problems, the effect of

numerical quadrature on the micro solutions is often not considered since the microscopic tensor

aε is given, see [1]. However in practice, we need to apply numerical quadrature to the micro FE

problems and in this chapter, we consider the FEM with the numerical quadrature at all scales.

Using Lemma 2.3.1, we obtain the existence and uniqueness of the numerical solution uh0 of

problem (P0) by applying the Lax-Milgram theorem.

Theorem 2.3.3. Assume that the hypothesis of Lemma 2.3.1 holds, then all the cell problems (Ps)

for s = 1, · · · , N have unique solutions. Furthermore, problem (P0) also has a unique solution.

2.3.2 Error estimates for the (N +1)-scale FE-HMM.

Assume u0 is the exact homogenized solution of (2.1.1) and a0 is the exact homogenized tensor.

For the error analysis, we need to consider the quantity

rH M M := sup
K0∈Th0 , xK0, j1∈Ω

‖a0(xK0, j1 )−a0
K0

(xK0, j1 )‖F , (2.3.15)

where a0
K0

(xK0, j1 ) is defined in (2.2.11). It is also convenient to introduce the FEM with numerical

quadrature for the (exact) homogenized problem (2.1.1): Find u0,h0 ∈ Sq0

0 (Ω,Th0 ) such that

B0,h0 (u0,h0 , vh0 ) =
∫
Ω

f vh0 d x, ∀vh0 ∈ Sq0

0 (Ω,Th0 ), (2.3.16)
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where

B0,h0 (vh0 , wh0 ) := ∑
K0∈Th0

J1∑
j1=1

ωK0, j1 a0(xK0, j1 )∇vh0 (xK0, j1 ) ·∇wh0 (xK0, j1 )d x. (2.3.17)

We emphasize that as the homogenized tensor a0(x) is unknown (and depends on N +1 scales)

the equation (2.3.16) cannot be used in practice. It is nevertheless useful for the analysis of the

FE-HMM.

Theorem 2.3.4. Assume that (Q1),(Q2) hold for the macro QF with `= q0 andσ= max(2q0−2, q0)

for simplicial macro elements orσ= max(2q0−1, q0) for rectangular macro elements. Assume that

u0 ∈H q0+1(Ω) and that either a0(x) ∈W q0,∞(Ω) for the H 1 norm estimate or a0(x) ∈W q0+1,∞(Ω)

for the L 2 norm estimate. Then we have

‖u0 −uh0‖H 1(Ω) ≤ C (h0
q0 + rH M M ), (2.3.18)

‖u0 −uh0‖L 2(Ω) ≤ C (h0
q0+1 + rH M M ), (2.3.19)

where the constant C is independent of h0,hs ,εs for s = 1, · · · , N .

Proof. We first decompose the error term

‖u0 −uh0‖ ≤ ‖u0 −u0,h0‖+‖u0,h0 −uh0‖, (2.3.20)

where ‖ · ‖ stands for the H 1 norm or L 2 norm and u0,h0 is the FE solution of (2.3.16). By

the standard error analysis (see [54]) of FE method with numerical quadrature owning to the

assumption (Q1), (Q2) and the regularity of u0 and a0, the first term of (2.3.20) can be bounded

by

‖u0 −u0,h0‖ ≤C h0
p ,

where p = q0 for the H 1 norm and p = q0 +1 for the L 2 norm.

Furthermore, by the ellipticity of a0
K0

(Lemma 2.3.1) and the bound ‖∇u0,h0‖L 2(Ω) ≤C‖ f ‖L 2(Ω),

using the reformulation (2.2.10), we have

λ‖∇u0,h0 −∇uh0‖2
L 2(Ω) ≤ Bh0 (u0,h0 −uh0 ,u0,h0 −uh0 )

= Bh0 (u0,h0 ,u0,h0 −uh0 )−
∫
Ω

f (u0,h0 −uh0 )d x

= Bh0 (u0,h0 ,u0,h0 −uh0 )−B0,h0 (u0,h0 ,u0,h0 −uh0 )

≤C sup
K0∈Th0 ,xK0, j1∈Ω

‖a0(xK0, j1 )−a0
K0

(xK0, j1 )‖F ‖∇u0,h0 −∇uh0‖L 2(Ω).
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Therefore, we obtain

‖∇u0,h0 −∇uh0‖L 2(Ω) ≤CrH M M .

Using the last inequality and the Poincaré inequality gives the stated results.

2.4 A priori error estimates for rH M M

The quantity rH M M comprises two types of errors: the error originating from the meso and the

micro discretization and the modeling error (mismatch of boundary conditions in the various

coupling, resonance errors, etc.). The contribution to the term rH M M coming from the micro

and the meso discretization error can be quantified assuming appropriate regularity of aε. We

assume (2.1.2),(2.1.3) and (2.1.4) and for convenience we will denote the these assumptions as

assumption (H1).

Under the assumption (H1), as mentioned in Section 2.1, homogenization results [30] give an

explicit characterization of the s −1 scale homogenized tensor as−1(x, y1, · · · , ys−1) which can be

proved provided the knowledge of as(x, y1, · · · , ys), where s = 1, · · · , N (we denote aN (x, y1, · · · , yN ) =
a(x, y1, · · · , yN ) = aε(x)) and periodicity of as−1 with respect to yi , i = 1, · · · , s − 1. Assuming

δs/εs ∈N, we denote xs−1 := (xK0, j1 ,
xK1, j2
ε1

, · · · ,
xKs−1, js

εs−1
) and x0 = xK0, j1 to shorten the notation. We

define

as−1(xs−1) = 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(I + J T

χKs−1, js (x))d x, (2.4.21)

where (J T
χKs−1, js (x))i k = ∂k (χi

Ks−1, js
(x)) and χi

Ks−1, js
(x) ∈ W 1

per (δKs−1, js ), for k = 1, · · · ,d is the exact

solution of the s scale cell problem∫
δKs−1, js

as(xs−1,
x

εs
)(∇χi

Ks−1, js
(x)+ei ) ·∇zd x = 0, ∀z ∈W 1

per (δKs−1, js ). (2.4.22)

In turn, the exact macro homogenized tensor a0(xK0, j1 ) at the macro quadrature point xK0, j1 can

be computed as (here we require δ1/ε1 ∈N)

a0(xK0, j1 ) = 1

|δK0, j1 |
∫
δK0, j1

a1(xK0, j1 ,
x

ε1
)(I + J T

χK0, j1 (x))d x, (2.4.23)

where (JχK0, j1 (x))i k = ∂k
(
χi

K0, j1
(x)

)
and χi

K0, j1
(x) ∈W 1

per (δK0, j1 ) is the solution of the cell problem

(2.4.22) (with s=1).

As discussed in [4], appropriate regularity assumptions are required for the functions χi
Ks−1, js

defined in (2.4.22) s = 1, · · · , N . We assume
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(H2) for given positive integers qs , the cell solutions χi
Ks−1, js

, s = 1, · · · , N satisfy

|χi
Ks−1, js

|H qs+1(δKs−1, js ) ≤Cε−qs
s

√
|δKs−1, js |.

Remark 2.4.1. Similarly to (2.3.12), one can show (without using (H2))

‖∇χi
Ks−1, js

+ei‖L 2(δKs−1, js ) ≤C
√
|δKs−1, js | (2.4.24)

where the constant C only depends on λ and Λ introduced in (1.0.1).

In this subsection, we assume that the meso FE space Sqs (δKs−1, js ,Ths ) is a subspace of Wper (δKs−1, js )

or H 1
0 (δKs−1, js ) (see (2.2.5) and (2.2.6)). In order to distinguish the FE spaces with different bound-

ary conditions, we denote the meso and micro FE spaces by Sqs (δKs−1, js ,Ths ) when included in

Wper (δKs−1, js ) (periodic boundary coupling) and Sqs

0 (δKs−1, js ,Ths ) when included in H 1
0 (δKs−1, js )

(Dirichlet boundary coupling).

Before starting the analysis, we need to define several notations. For s = 1, · · · , N , we denote

χ̄
i ,hs

Ks−1, js
(x) ∈ Sqs (δKs−1, js ,Ths ) or Sqs

0 (δKs−1, js ,Ths ) the solution of

∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as(xs−1,
xKs , js+1

εs
)(∇χ̄i ,hs

Ks−1, js
(xKs , js+1 )+ei ) ·∇zhs = 0, (2.4.25)

where zhs is an arbitrary test function in Sqs (δKs−1, js ,Ths ) or Sqs

0 (δKs−1, js ,Ths ). We then define the

tensor ās−1
Ks−1

(xKs−1, js ) as

ās−1
Ks−1

(xKs−1, js ) = 1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as(xs−1,
xKs , js+1

εs
)(I + J T

χ̄
hs
Ks−1, js

(xKs , js+1 )
). (2.4.26)

We observe from (2.4.26) that āN−1
KN−1

(xKN−1, jN ) = aN−1
KN−1

(xKN−1, jN ), where aN−1
KN−1

(xKN−1, jN ) is defined

in (2.2.7) since aN = aε is the tensor given in (1.0.1).

We will use the following lemma in the proof of Theorem 2.4.6.

Lemma 2.4.2. Assume (H2) holds, then we have the following upper bound for χ̄i ,hs

Ks−1, js
, s = 1, · · · , N

(defined in (2.4.25))

‖∇χ̄i ,hs

Ks−1, js
+ei‖L 2(δKs−1, js ) ≤C

√
|δKs−1, js |, (2.4.27)

where the constant C in (2.4.27) is independent off H ,hs ,εs .

The proof of this lemma follows the proof of Lemma 2.3.1, by using the ellipticity of aε =
a(x, y1, · · · , yN ) (see assumption (H1)).

31



Chapter 2. Fully discrete analysis of the heterogeneous multiscale method for elliptic
problems with multiple scales

Remark 2.4.3. Using the uniform boundedness and ellipticity of the tensor a(x, y1, · · · , N ), one

can show that as−1(x, y1, · · · , ys−1), ās−1
Ks−1

(xKs−1, js ), s = 1, · · · , N are also elliptic and bounded.

Lemma 2.4.4. Assume (H1), (H2) and that aε is symmetric, uniformly bounded and elliptic.

Assume further that the FE space for (Ps) is Sqs (δKs−1, js ,Ths ) and that δs/εs ∈N. In addition, we

assume that as(·, ys) ∈W 2qs (Ys) and that assumption (Q2) ( with `= qs) holds for the QF coupled

with the FE space Sqs (δKs−1, js ,Ths ). We further require either Condition (1) or (2) in the following

for all the meso and micro FEs:

(1) σ= max(2qs−1, qs) in (Q2) if Ks are simplicial FEs, orσ= max(2qs−1, qs+1) if Ks are rectan-

gular (parallelogram) FEs and the quasi-uniform mesh is applied, i.e., hs
hKs

≤C , for all Ks ∈
Ths ;

(2) σ = max(4qs −3, qs) in (Q2) if Ks are simplicial FEs, or σ = max(4qs −3, qs +1) if Ks are

rectangular (parallelogram) FEs.

Then we have for s = 1, · · · , N

‖as−1(xs−1)− ās−1
Ks−1

(xKs−1, js )‖F ≤C (
hs

εs
)2qs , (2.4.28)

and in particular for s = 1 we have

‖a0(xK0, j1 )− ā0
K0

(xK0, j1 )‖F ≤C (
h1

ε1
)2q1 . (2.4.29)

Proof. We first define an auxiliary tensor

âs−1
Ks

(xKs−1, js )ei ·ek = 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(∇χ̄i ,hs

Ks−1, js
(x)+ei ) · (∇χ̄k,hs

Ks−1, js
(x)+ek )d x,

where χ̄i ,hs

Ks−1, js
(respectively χ̄k,hs

Ks−1, js
) is solution of (2.4.25). Then we consider the decomposition

‖as−1(xs−1)− ās−1
Ks

(xKs−1, js )‖F ≤ ‖as−1(xs−1)− âs−1
Ks

(xKs−1, js )‖F

+ ‖âs−1
Ks

(xKs−1, js )− ās−1
Ks

(xKs−1, js )‖F . (2.4.30)

Using (2.4.22) and the symmetry of as(x, y1, · · · , ys), we have(
as−1(xs−1)− âs−1

Ks
(xKs−1, js )

)
ei ·ek

= 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(∇χi

Ks−1, js
(x)−∇χ̄i ,hs

Ks−1, js
(x)) · (∇χk

Ks−1, js
(x)+ek )d x

+ 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(∇χ̄i ,hs

Ks−1, js
(x)+ei ) · (∇χk

Ks−1, js
(x)−∇χ̄k,hs

Ks−1, js
(x))d x
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= 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(∇χ̄i ,hs

Ks−1, js
(x)−∇χi

Ks−1, js
(x)) · (∇χk

Ks−1, js
(x)−∇χ̄k,hs

Ks−1, js
(x))d x.

Applying Cauchy-Schwarz inequality, the standard FE a priori error estimate for FEM with

numerical quadrature gives ‖∇χi
Ks−1, js

(x)−∇χ̄i ,hs

Ks−1, js
(x)‖L 2(δKs−1, js ) ≤C hqs

s |χi
Ks−1, js

(x)|H qs+1(δKs−1, js )

and using assumption (H2), we obtain

‖as−1(xs−1)− âs−1
Ks

(xKs−1, js )‖F ≤C (
hs

εs
)2qs .

The second term of (2.4.30) is estimated using Theorem 2.5.3 for simplicial elements or Theorem

2.5.9 for parallelogram elements provided Condition (1) (or Theorem 2.5.5 for simplicial elements

and similar arguments for parallelogram elements, see Remark 2.5.10 provided Condition (2))

given in Section 2.5. We obtain 3

‖âs−1
Ks

(xKs−1, js )− ās−1
Ks

(xKs−1, js )‖F ≤C (
hs

εs
)2qs . (2.4.31)

The proof of (2.4.28) is complete.

In order to address a corresponding lemma for the solution of the micro problem using Dirichelet

boundary coupling, we first define ξi
Ks−1, js

(x) ∈H 1
0 (δKs−1, js ) the exact solution of (2.4.22) with test

function in H 1
0 (δKs−1, js ) (note that for Dirichlet boundary coupling we do not assume δs−1/εs−1 ∈

N. We state the following assumption which will be used in Lemma 2.4.5,

(H3) for the sampling domain δKs−1, js , s = 1, · · · , N , assume ξi
Ks−1, js

(x) ∈W 1,∞(δKs−1, js ), i = 1, · · · ,d ,

where ξi
Ks−1, js

(x) is defined above and χi
Ks−1, js

(x) is defined in (2.4.22).

Lemma 2.4.5. Assume (H1), (H2), (H3) and that aε is symmetric, uniformly bounded and elliptic.

Assume further that the FE space for (Ps) is Sqs

0 (δKs−1, js ,Ths ) and that δs > εs . In addition, we

assume that as(·, ys) ∈W 2qs (Ys) and that assumption (Q2) (`= qs) holds for the QF coupled with

the FE space Sqs (δKs−1, js ,Ths ). We further require either Condition (1) or (2) in the following for all

the meso and micro FEs:

(1) σ= max(2qs−1, qs) in (Q2) if Ks are simplicial FEs, orσ= max(2qs−1, qs+1) if Ks are rectan-

gular (parallelogram) FEs and the quasi-uniform mesh is applied, i.e., hs
hKs

≤C , for all Ks ∈
Ths ;

(2) σ = max(4qs −3, qs) in (Q2) if Ks are simplicial FEs, or σ = max(4qs −3, qs +1) if Ks are

rectangular (parallelogram) FEs.

3Notice that in Theorem 2.5.3 (or Theorem 2.5.5) or Theorem 2.5.9 from Section 2.5, we let
∫
D a∇u · ∇vd x =∫

δKs−1, js
as (xs−1, x

εs
)∇u ·∇vd x, F1(v) = ∫

δKs−1, js
as (xs−1, x

εs
)ei ·∇vd x and F2(v) = ∫

δKs−1, js
as (xs−1, x

εs
)ek ·∇vd x.

33



Chapter 2. Fully discrete analysis of the heterogeneous multiscale method for elliptic
problems with multiple scales

Then we have for s = 1, · · · , N ,

‖as−1(xs−1)− ās−1
Ks

(xKs−1, js )‖F ≤C
(
(

hs

εs
)2qs + εs

δs

)
, (2.4.32)

where ās−1
Ks

(xKs−1, js ) is defined in (2.4.26).

Proof. In view of (2.4.21) and Remark 2.2.2 we have

as−1(xs−1)ei ·ek = 1

|εKs−1, js |
∫
εKs−1, js

as(xs−1,
x

εs
)
(
χi

Ks−1, js
(x)+ei

) · (χk
Ks−1, js

(x)+ek
)
d x,

(2.4.33)

where εKs−1, js a meso sampling domain centered at xKs−1, js which covers the maximum number

of εs period in each direction contained in the domain δKs−1, js , i.e. |εKs−1, js | = (Nεs)d , N ∈N (note

that δs−1/εs−1 may not belong toN). We define the following tensor

âs−1(xs−1)ei ·ek = 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)
(
ξi

Ks−1, js
(x)+ei

) · (ξk
Ks−1, js

(x)+ek
)
d x

(2.4.34)

based on the cell functions ξi
Ks−1, js

(x) defined above, and further decompose

‖as−1(xs−1)− ās−1
Ks−1, js

(xKs−1, js )‖F ≤ ‖as−1(xs−1)− âs−1(xs−1)‖F

+ ‖âs−1(xs−1)− ās−1
Ks−1, js

(xKs−1, js )‖F . (2.4.35)

Similarly to the proof of Lemma 2.4.4 (see e.g. (2.4.30)), one can deduce that the second term of

(2.4.35) can be bounded as

‖âs−1(xs−1)− ās−1
Ks

(xKs−1, js )‖F ≤C (
hs

εs
)2qs . (2.4.36)

For the first term of (2.4.35), one needs to apply a boundary corrector because of the mismatch

between the Dirichlet and the periodic boundary conditions of the cell problem. This has first

been studied in [60] for the FE-HMM. We give here a short proof for completeness.

We first write

|(as−1(xs−1)− âs−1(xs−1)
)
ei ·ek |

≤
∣∣∣ 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(∇χi

Ks−1, js
(x)+ei ) · (∇ξk

Ks−1, js
(x)+ek )d x − âs(xs−1)ei ·ek

∣∣∣
+

∣∣∣as−1(xs−1)ei ·ek −
1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(∇χi

Ks−1, js
(x)+ei ) · (∇ξk

Ks−1, js
(x)+ek )d x

∣∣∣
:= I + I I .
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Let ΓKs−1, js = δKs−1, js \εKs−1, js be the boundary layer with |ΓKs−1, js | =Cδd−1
s εs and

|ΓKs−1, js |
|δKs−1, js | ≤C εs

δs
.

By assumption (H3), one can derive

‖∇χi
Ks−1, js

(x)+ei‖L 2(ΓKs−1, js ) ≤C
√

|ΓKs−1, js |, ‖∇ξk
Ks−1, js

(x)+ek‖L 2(ΓKs−1, js ) ≤C
√

|ΓKs−1, js |.
(2.4.37)

We next define function ρεs

Ks−1, js
∈C ∞(δKs−1, js ); 0 ≤ ρεs

Ks−1, js
≤ 1 with the following properties

ρ
εs

Ks−1, js
(x) =

{
1 di st (x,∂δKs−1, js ) > 2εs

0 di st (x,∂δKs−1, js ) < εs
(2.4.38)

and εs‖∇ρεs

Ks−1, js
‖L ∞(δKs−1, js ) ≤C , where C is independent of εs . For the construction of functions

with such properties we refer for example to [74].

We then introduce the boundary corrector θi
Ks−1, js

:= ξi
Ks−1, js

−χi
Ks−1, js

which satisfies θi
Ks−1, js

+ (1−
ρ
εs

Ks−1, js
)χi

Ks−1, js
∈H 1

0 (δKs−1, js ). Thus, by noticing that

âs−1(xs−1)ei ·ek = 1

|δKs−1, js |
∫
δKs−1, js

as(xs−1,
x

εs
)(ξi

Ks−1, js
(x)+ei ) · (ξk

Ks−1, js
(x)+ek )d x,

we have

I ≤ 1

|δKs−1, js |
|
∫
δKs−1, js

as(xs−1,
x

εs
)∇(θi

Ks−1, js
+χi

Ks−1, js
(1−ρεs

Ks−1, js
)) · (∇ξk

Ks−1, js
+ek )d x|

+ 1

|δKs−1, js |
|
∫
δKs−1, js

as(xs−1,
x

εs
)∇(χi

Ks−1, js
(1−ρεs

Ks−1, js
)) · (∇ξk

Ks−1, js
+ek )d x|.

The first term on the right-hand side of the above inequality above vanishes since θi
Ks−1, js

+
χi

Ks−1, js
(1−ρεs

Ks−1, js
) ∈H 1

0 (δKs−1, js ), as(xs−1, x
εs

) is symmetric and ξk
Ks−1, js

is the solution of (2.4.22)

in H 1
0 (δKs−1, js ). Then we have

I ≤ 1

|δKs−1, js |
|
∫
δKs−1, js

as(xs−1,
x

εs
)
(∇χi

Ks−1, js
(1−ρεs

Ks−1, js
)
) · (∇ξk

Ks−1, js
+ek )d x|

+ 1

|δKs−1, js |
|
∫
δKs−1, js

as(xs−1,
x

εs
)(χi

Ks−1, js
∇ρεs

Ks−1, js
) · (∇ξk

Ks−1, js
+ek )d x|

≤C
1

|δKs−1, js |
‖∇ξk

Ks−1, js
+ek‖L 2(ΓKs−1, js )

(
‖∇χi

Ks−1, js
‖L 2(ΓKs−1, js ) +

1

εs
‖χi

Ks−1, js
‖L 2(ΓKs−1, js )

)
≤C

εs

δs
,

where the last inequality is obtained by (2.4.37) and the fact that χi
Ks−1, js

(x) = χi
Ks−1, js

(xTs−1, js +
εs ys) = εs χ̃

i
Ks−1, js

(ys) where χ̃i
Ks−1, js

(ys) is the solution of (2.4.22) on the reference cell Y ob-

tained by the affine mapping defined as ys = (x −xTs−1, js )/(Nεs) from εKs−1, js to Y (observe that

‖χ̃i
Ks−1, js

‖L2(Y ) ≤C ).
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For the term I I , we have

I I ≤ |δKs−1, js |− |εKs−1, js |
|δKs−1, js |

1

|εKs−1, js |
|
∫
εKs−1, js

as(xs−1,
x

εs
)(∇χi

Ks−1, js
(x)+ei ) ·∇θk

Ks−1, js
d x|

+ 1

|δKs−1, js |
|
∫
ΓKs−1, js

as(xs−1,
x

εs
)(∇χi

Ks−1, js
(x)+ei ) · (∇ξk

Ks−1, js
(x)+ek )d x|

:= (a)+ (b).

Finally we have

(a) ≤ C
|δKs−1, js |− |εKs−1, js |

|δKs−1, js |
1

|εKs−1, js |
‖∇χi

Ks−1, js
+ei‖L 2(εKs−1, js )‖∇θk

Ks−1, js
‖L 2(εKs−1, js ) ≤C

εs

δs
,

(b) ≤ C
1

|δKs−1, js |
|ΓKs−1, js | ≤C

εs

δs
.

We have thus shown ‖as−1(xs−1)− âs−1(xs−1)‖F ≤C εs
δs

.

In fact, Lemma 2.4.4 and 2.4.5 give the error estimates at scale s −1 between the homogenized

tensor and the FE-HMM tensor defined using numerical integration provided the tensor at

scale s is accurate, where s = 1, · · · , N . To address the fully discrete error estimates, we first

restrict to three scale problems in order to explain the idea of the analysis. We will give the

general result for N +1 scales at the end of this section We thus denote our three scale tensor as

a(x, x
ε1

, x
ε2

) = a(x, y1, y2) where y1 = x
ε1

, y2 = x
ε2

and we will assume periodicity at the meso and

micro scales, i.e., assumption (2.1.3). With the help of Lemma 2.4.4 and 2.4.5, we are able to state

our main theorem.

Theorem 2.4.6. Assume for s = 1,2 that the assumptions of Lemma 2.4.4 (or Lemma 2.4.5 for

Dirichlet boundary coupling) hold. Then

rH M M ≤C ((
h1

ε1
)2q1 + (

h2

ε2
)2q2 + rMOD ), (2.4.39)

where rMOD stands for the HMM modeling error which is estimated as follows.

If W (δK0, j1 ) =W 1
per (δK0, j1 ) and W (δK1, j2 ) =W 1

per (δK1, j2 ) with δ1/ε1 ∈N, δ2/ε2 ∈N, then

rMOD = 0. (2.4.40)

If W (δK0, j1 ) =H 1
0 (δK0, j1 ) and W (δK1, j2 ) =H 1

0 (δK1, j2 ) with δ1 > ε1, δ2 > ε2 and assume (H3) holds
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then

rMOD ≤C
( ε1

δ1
+ ε2

δ2

)
. (2.4.41)

Proof of Theorem 2.4.6. We first split rH M M given in (2.3.15) into,

‖a0(xK0, j1 )−a0
K0

(xK0, j1 )‖F ≤ ‖a0(xK0, j1 )− ā0
K0

(xK0, j1 )‖F +‖ā0
K0

(xK0, j1 )−a0
K0

(xK0, j1 )‖F

:= I1 + I2 (2.4.42)

where a0(xK0, j1 ) is defined in (2.4.23), a0
K0

(xK0, j1 ) is defined in (2.2.11) for N = 2, ā0
K0

(xK0, j1 ) is

defined in (2.4.26).

Lemma 2.4.4 and Lemma 2.4.5 give respectively the following estimates for the term I1 in (2.4.42),

I1 ≤C (
h1

ε1
)2q1

for periodic boundary coupling,

I1 ≤C (
h1

ε1
)2q1 + ε1

δ1

for Dirichlet boundary coupling.

For the term I2, using (2.4.27) and Cauchy-Schwarz inequality we have

|(ā0
K (xK0, j1 )−a0

K0
(xK0, j1 )

)
ei ·ek | (2.4.43)

=
∣∣∣ 1

|δK0, j1 |
∑

K1∈Th1

J2∑
j2=1

ωK1, j2

(
(a1(xK0, j1 ,

xK1, j2

ε1
)−a1

K0, j1
(xK1, j2 ))(∇χ̄i ,h1

K0, j1
(xK1, j2 )+ei ) ·ek

+a1
K0, j1

(xK1, j2 )(∇χ̄i ,h1
K0, j1

−∇χi ,h1
K0, j1

) ·ek

)∣∣∣
≤C

(
max

xK1, j2∈δK0, j1

‖a1(xK0, j1 ,
xK1, j2

ε1
)−a1

K0, j1
(xK1, j2 )‖F + 1√

|δK0, j1 |
‖∇χ̄i ,h1

K0, j1
−∇χi ,h1

K0, j1
‖L 2(δK0, j1 )

)
.

Using the ellipticity of ā1
K0, j1

(x) (see Remark 2.4.3), we have

C λ̃‖∇χ̄i ,h1
K0, j1

−∇χi ,h1
K0, j1

‖2
L 2(δK0, j1 )

≤ ∑
K1∈Th1

J2∑
j2=1

ωK1, j2 a1
K0, j1

(xK1, j2 )·
(∇χ̄i ,h1

K0, j1
(xK1, j2 )−∇χi ,h1

K0, j1
(xK1, j2 )

) · (∇χ̄i ,h1
K0, j1

(xK1, j2 )−∇χi ,h1
K0, j1

(xK1, j2 )
)

= ∑
K1∈Th1

J2∑
j2=1

ωK1, j2

(
a1

K0, j1
(xK1, j2 )−a1(xK0, j1 ,

xK1, j2

ε1
)
)·
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K0, j1
(xK1, j2 )+ei

) · (∇χ̄i ,h1
K0, j1

(xK1, j2 )−∇χi ,h1
K0, j1

(xK1, j2 )
)

≤C
√

|δK0, j1 | max
xK1, j2∈δK0, j1

‖a1(xK0, j1 ,
xK1, j2

ε1
)−a1

K0, j1
(xK1, j2 )‖F ‖∇χ̄i ,h1

K0, j1
−∇χi ,h1

K0, j1
‖L 2(δK0, j1 ),

(2.4.44)

where we have used that χi ,h1
K0, j1

is the solution of (Ps) with s = 1 and that χ̄i ,h1
K0, j1

is the solution of

(2.4.25) with s = 1, as well as Cauchy-Schwarz inequality and (2.4.27). Hence, we obtain

1√
|δK0, j1 |

‖∇χ̄i ,h1
K0, j1

−∇χi ,h1
K0, j1

‖L 2(δK0, j1 ) ≤C max
xK1, j2∈δK0, j1

‖a1(xK0, j1 ,
xK1, j2

ε1
)−a1

K0, j1
(xK1, j2 )‖F .

(2.4.45)

Finally, combining (2.4.43) and (2.4.45), we obtain I2 ≤C maxxK1, j2∈δK0, j1
‖a1(xK0, j1 ,

xK1, j2
ε1

)−a1
K0, j1

(xK1, j2 )‖F

and the upper bound

I2 ≤C (
h2

ε2
)2q2 (2.4.46)

for periodic boundary coupling (using Lemma 2.4.4), or

I2 ≤C
(
(

h2

ε2
)2q2 + ε2

δ2

)
(2.4.47)

for Dirichlet boundary coupling (using Lemma 2.4.5).

Remark 2.4.7. We notice that in the modeling error for two scale problems as analyzed in [60, 1],

there is an additional term. This term vanishes here as all our numerical tensors are only evaluated

at quadrature points for all fast and slow variables.

Generalization to (N +1)-scale problems. Following the idea of Theorem 2.4.6, one can gener-

alize the result for N +1 scales.

Theorem 2.4.8. Suppose that assumption (2.1.3) for aε = a(x, x
ε1

, · · · , x
εN

) holds. In addition sup-

pose that the assumptions of Lemma 2.4.4 (or Lemma 2.4.5 for Dirichlet boundary coupling for

the cell problems) hold for s = 1, · · · , N . Then we have the following error estimate

rH M M ≤C
(
(

h1

ε1
)2q1 +·· ·+ (

hN

εN
)2qN + rMOD

)
. (2.4.48)

The term rMOD can be analyzed as follows.

If the cell problems at each scale are coupled with periodic boundary conditions and δs/εs ∈N, s =
1, · · · , N , then we have

rMOD = 0. (2.4.49)
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If the cell problems at each scale are coupled with Dirichlet boundary conditions with δs > εs , s =
1, · · · , N , then

rMOD ≤C (
ε1

δ1
+·· ·+ εN

δN
). (2.4.50)

Proof. Besides the FE-HMM tensor as−1
Ks−1

(xKs−1, js ) in (2.2.7), we need to define the tensor

as−1,t
Ks−1

(xKs−1, js ) = 1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as,t
Ks

(xKs , js+1 )(I + J T
χ

hs ,t
Ks−1, js

(xKs , js+1 )
), (2.4.51)

for 1 ≤ s ≤ t ≤ N where (J
χ

hs ,t
Ks−1, js

(xKs , js+1 ))i k = ∂k (χi ,hs ,t
Ks−1, js

(xKs , js+1 )) and for s = t we denote

at ,t
Kt

(xKt , jt+1 ) = at (x t ), (2.4.52)

where at (x t ) is the exact tensor at the t-th scale evaluated at x t = (xK0, j1 ,
xK1, j2
ε1

, · · · ,
xKt , jt+1
εt

). The

function χ
i ,hs ,t
Ks−1, js

∈ Sqs (δKs−1, js ,Ths ) (or Sqs

0 (δKs−1, js ,Ths )) is the solution of a problem similar to

(Ps), namely

∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as,t
Ks

(xKs , js+1 )
(
∇χi ,hs ,t

Ks−1, js
(xKs , js+1 )+ei

)
·∇zhs (xKs , js+1 ) = 0 (2.4.53)

where zhs is the test function in Sqs (δKs−1, js ,Ths ) or Sqs

0 (δKs−1, js ,Ths ).

We note that for s = 1, t = N we have a0
K0

(xK0, j1 ) = a0,N
T0

(xK j ), where a0
K0

(xK0, j1 ) is defined in

(2.2.11). Following the proof of Lemma 2.3.1, one can show that as−1,t
Ks−1

(xKs−1, js ) is also symmetric,

bounded and elliptic and that

‖∇χi ,hs ,t
Ks−1, js

(xKs , js+1 )+ei‖L 2(δKs−1, js ) ≤C
√
|δKs−1, js | (2.4.54)

In view of Theorem 2.3.4 and the definition of rH M M , we need to estimate rH M M = ‖a0(xK0, j1 )−
a0

K0
(xK0, j1 )‖F for (N +1)-scale problems, where a0(xK0, j1 ) is the exact homogenized tensor, de-

fined in (2.4.23). Similarly to (2.4.42), we first have the following decomposition

‖a0(xK0, j1 )−a0
K0

(xK0, j1 )‖F ≤
N∑

t=1
‖a0,t−1

K0
(xK0, j1 )−a0,t

K0
(xK0, j1 )‖F (2.4.55)

where t ranges from 2, · · · , N −1 and a0,t
K0

(xK0, j1 ) is defined in (2.4.51) with s = 1 . It is easy to

observe that the analysis for the first term and the last term in (2.4.55) is identical to the proof of

Theorem 2.4.6. To estimate (2.4.55) we proceed as follows.
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Assume for the time being that for each t = 1, · · · , N and s = 1, · · · , t

‖as−1,t−1
Ks−1

(xKs−1, js )−as−1,t
Ks−1

(xKs−1, js )‖F ≤C max
xKs , js+1∈Ks

‖as,t−1
Ks

(xKs , js+1 )−as,t
Ks

(xKs , js+1 )‖F ,

(2.4.56)

where a0,0
K0

(xK0, j1 ) = a0(xK0, j1 ) according to the definition (2.4.52) and where C is independent of

ε or the meshsizes.

Then by (2.4.56), we obtain recursively

‖a0,t−1
K0

(xK0, j1 )−a0,t
K0

(xK0, j1 )‖F

≤C max
xK1, j2∈K1

‖a1,t−1
K1

(xK1, j2 )−a1,t
K1

(xK1, j2 )‖F ≤ ·· ·

≤C max
xK1, j2∈K1

· · · max
xKt−1, jt ∈Kt−1

‖at−1,t−1
Kt−1

(xKt−1, jt )−at−1,t
Kt−1

(xKt−1, jt )‖F

where at−1,t−1
Kt−1

(xKt−1, jt ) = at−1(x t−1) and where C can be different in each inequality.

It follows then by Lemma 2.4.4 and 2.4.5

‖at−1(x t−1)−at−1,t
Kt

(xKt−1, jt )‖F ≤C (
ht

εt
)2qt , (2.4.57)

with periodic boundary coupling, or

‖at−1(x t−1)−at−1,t
K2

(xKt−1, jt )‖F ≤C (
ht

εt
)2qt + εt

δt
, (2.4.58)

with Dirichlet boundary coupling.

Combining the (2.4.56)-(2.4.58) with (2.4.55) gives (2.4.48), (2.4.49) and (2.4.50), hence the claims

of the theorem. It thus remains to prove (2.4.56). By (2.4.51) in view of Remark 2.2.2, we have

|(as−1,t−1
Ks−1

(xKs−1, js )−as−1,t
Ks−1

(xKs−1, js )
)
ei ·ek |

=
∣∣∣ 1

|δKs−1, js |
∑

Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1

(
(as,t−1

Ks
(xKs , js+1 )−as,t

Ks
(xKs , js+1 ))(∇χi ,hs ,t−1

Ks−1, js
(xKs , js+1 )+ei ) ·ek

+as,t
Ks

(xKs , js+1 )(∇χi ,hs ,t−1
Ks−1, js

(xKs , js+1 )−∇χi ,hs ,t
Ks−1, js

(xKs , js+1 )) ·ek

)∣∣∣
≤C

(
max

xKs , js+1∈δKs−1, js

‖as,t−1
Ks

(xKs , js+1 )−as,t
Ks

(xKs , js+1 )‖F

+ 1√
|δKs−1, js |

‖∇χi ,hs ,t−1
Ks−1, js

−∇χi ,hs ,t
Ks−1, js

‖L 2(δKs−1, js )
)
. (2.4.59)

Using the ellipticity of as,t−1
Ks

and (2.4.53), we have

λ̃‖∇χi ,hs ,t−1
Ks−1, js

−∇χi ,hs ,t
Ks−1, js

‖2
L 2(δKs−1, js )
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≤ ∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 as,t−1
Ks

(xKs , js+1 )∇(χi ,hs ,t−1
Ks−1, js

−χi ,hs ,t
Ks−1, js

) ·∇(χi ,hs ,t−1
Ks−1, js

−χi ,hs ,t
Ks−1, js

)

= ∑
Ks∈Ths

Js+1∑
js+1=1

ωKs , js+1 (as,t
Ks

(xKs , js+1 )−as,t−1
Ks

(xKs , js+1 ))(∇χi ,hs ,t
Ks−1, js

+ei ) ·∇(χi ,hs ,t−1
Ks−1, js

−χi ,hs ,t
Ks−1, js

)

≤C
√

|δKs−1, js | max
xKs , js+1∈δKs−1, js

‖as,t−1
Ks

(xKs , js+1 )−as,t
Ks

(xKs , js+1 )‖F ‖∇χi ,hs ,t−1
Ks−1, js

−∇χi ,hs ,t
Ks−1, js

‖L 2(δKs−1, js ).

The last inequality above is obtained by using Cauchy-Schwarz inequality and (2.4.27). Hence,

we obtain

1√
|δKs−1, js |

‖χi ,hs ,t−1
Ks−1, js

−∇χi ,hs ,t
Ks−1, js

‖L 2(δKs−1, js ) ≤C max
xKs , js+1∈δKs−1, js

‖as,t
Ks

(xKs , js+1 )−as,t−1
Ks

(xKs , js+1 )‖F .

(2.4.60)

Inserting (2.4.60) in (2.4.59) proves (2.4.56). Hence the proof is complete.

Complexity. Let M0 be the the number of DOF of the macro FEM. We write ĥs = hs
εs

and denote

Ms = O (ĥ−d
s ) the number of degrees of freedom (DOF) for cell problems at the scale s, where

s = 1, · · · , N . We emphasize that Ms is independent of εs since |δKs−1, js | = δd
s = (δs

εs
)dεd

s = Csε
d
s

with Cs a moderate constant (recall our assumption that δs = Ĉsεs). Using quasi-uniform meshes

for each scale, we have the following relations

h0 =O (M−1/d
0 ), ĥs =O (M−1/d

s ), s = 1, · · · , N .

In view of (2.3.18), (2.3.19) and (2.4.48), optimal convergence rates (up to a modeling error rMOD

independent of h0,hs , where s = 1, · · · , N ) can be obtained for quasi-uniform meshes given by,

ĥs ≈ h
q0

2qs

0 for the H 1 norm, ĥs ≈ h
q0+1
2qs

0 for the L 2 norm.

The corresponding complexity in term of macro DOF reads

O
(

h−d
0︸︷︷︸

M0

·h
−d q0
2q1

0︸ ︷︷ ︸
M1

· · · · ·h
−d q0
2qN

0︸ ︷︷ ︸
MN

)=O
(
M

1+ q0
2q1

+···+ q0
2qN

0

)
for the H 1 norm,

O
(

h−d
0︸︷︷︸

M0

·h
−d(q0+1)

2q1
0︸ ︷︷ ︸

M1

· · · · ·h
−d(q0+1)

2qN
0︸ ︷︷ ︸

MN

)=O
(
M

1+ (q0+1)
2q1

+···+ (q0+1)
2qN

0

)
for the L 2 norm.
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2.5 Some extensions of convergence result for numerical quadrature

2.5.1 Numerical integration error analysis for simplicial elements

In this section, we analyse the numerical integration error which we use in Section 2.3 for the

estimation of (2.4.45).

Theorem 2.5.1. (Bramble-Hilbert lemma [53]) Let D be a domain in Rd , let k ≥ 0 be an integer, let

p be a number satisfying 1 ≤ p ≤∞, and let L be a continuous linear form on the space W m+1,p (D)

with the property that

L(p) = 0 for all p ∈P m(D). (2.5.61)

Then there exists a constant C (D) such that

|L(v)| ≤C (D)‖L‖∗
W m+1,p (D)|v |W m+1,p (D), ∀v ∈W m+1,p (D), (2.5.62)

where ‖ ·‖∗
W m+1,p (D)

is the dual norm of space W m+1,p (D).

Let EK (φ) denote the numerical integration error on the element K defined as

EK (φ) =
∫

K
φd x −

J∑
j=1

ωK , jφ(xK , j ), (2.5.63)

and EK̂ (φ̂) is the corresponding error on the reference element K̂

EK̂ (φ̂) =
∫

K̂
φ̂d x̂ −

J∑
j=1

ω̂ jφ(x̂ j ). (2.5.64)

Theorem 2.5.2. (First theorem for local high order numerical integration error) Assume that K is

simplicial and a ∈W 2m,∞(K ). Assume

EK̂ (φ̂) = 0, ∀φ̂ ∈P 2m−1(K̂ ). (2.5.65)

Then,

EK (av w) ≤C h2m‖a‖W 2m,∞(K )‖v‖H m−1(K )‖w‖H m−1(K ), ∀v, w ∈P m−1(K ). (2.5.66)

Proof. Since EK (φ) = 2|K |EK̂ (φ̂), then EK (av w) = 2|K |EK̂ (âv̂ ŵ). Let φ̂= âv̂ ŵ ∈W 2m,∞(K̂ ). We
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have

|EK̂ (φ̂)| = |
∫

K̂
φ̂−∑

j
ω̂ j φ̂| ≤ Ĉ‖φ̂‖L ∞(K̂ ) ≤ Ĉ‖φ̂‖W 2m,∞(K̂ ).

The above inequality shows that EK̂ (φ̂) is a continuous linear functional on W 2m,∞(K̂ ). Fur-

thermore, we have the assumption on the quadrature (2.5.63) that EK̂ (ψ̂) = 0, ∀ψ̂ ∈P 2m−1(K̂ ).

Therefore, Bramble-Hilbert Lemma (see [53, Theorem 28.1]) can be applied to EK̂ , i.e.

|EK̂ (φ̂)| ≤ Ĉ |φ̂|W 2m,∞(K̂ ). (2.5.67)

As a result, we have

|EK̂ (âv̂ ŵ)| ≤ Ĉ |âv̂ ŵ |W 2m,∞(K̂ )

≤ Ĉ
m−1∑
i=0

2m−i∑
k=0

|â|W 2m−i−k,∞(K̂ )|v̂ |W i ,∞(K̂ )|ŵ |W k,∞(K̂ ).

By the affine transformation, we have

|â|W 2m−i−k,∞(K̂ ) ≤C h2m−i−k |a|W 2m−i−k,∞(K ),

|v̂ |W i ,∞(K̂ ) ≤C hi |2K |−1/2|v |H i (K ).

Therefore,

|EK (av w)| ≤C h2m‖a‖W 2m,∞(K )‖v‖H m−1(K )‖w‖H m−1(K ).

Theorem 2.5.3. (First theorem for global higher order numerical integration error) Assume that

ai j ∈W 2m,∞(D) and u, w ∈W (D)∩H m+1(D)
(
W (D) can be either defined as in (2.2.5) provided

that D is a cube or defined as in (2.2.6)
)

are the solutions of the following problems: for ∀v ∈W (D),

∫
D

a∇u ·∇vd x = F1(v),∫
D

a∇w ·∇vd x = F2(v),

where F1,F2 are two linear functional mapping W (D)∩H m+1(D) →R and uh , wh are the FEM

solutions with numerical quadrature in Sm(D,Th) where Th is a shape regular partition of D and

elements K ∈Th are quasi-uniform. Assume the numerical quadrature satisfies

EK̂ (φ̂) = 0, ∀φ̂ ∈P 2m−1(K̂ ). (2.5.68)
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Then we have

|
∫
D

∑
i j

ai j∂i uh∂ j whd x − ∑
K∈Th

J∑
j=1

ωK , j
∑
i j

(ai j∂i uh∂ j wh)(xK , j )|

≤C h2m(
∑
i j

‖ai j‖W 2m,∞(D))‖u‖H m (D)‖w‖H m (D). (2.5.69)

Proof. We first write

EK (ai j∂i uh∂ j wh) =
∫

K

∑
i j

ai j∂i uh∂ j whd x −
J∑
j
ωK , j

∑
i j

(ai j∂i uh∂ j wh)(xK , j ).

Using Theorem 2.5.2,we can obtain the following local estimate

|EK (ai j∂i uh∂ j wh)| ≤C h2m(
∑
i j

‖ai j‖W 2m,∞(K ))‖uh‖H m (K )‖wh‖H m (K ).

Thus, we obtain

|
∫
D

∑
i j

ai j∂i uh∂ j whd x − ∑
K∈Th

J∑
j=1

ωK , j
∑
i j

(ai j∂i uh∂ j wh)(xK , j )|

≤C h2m(
∑
i j

‖ai j‖W 2m,∞(D))
∑

K∈Th

‖uh‖H m (K )‖wh‖H m (K )

=C h2m(
∑
i j

‖ai j‖W 2m,∞(D))
∑

K∈Th

(
(

m∑
`=1

|uh |2
H `(K ))

1/2(
m∑
`=1

|wh |2
H `(K ))

1/2
)

≤C h2m(
∑
i j

‖ai j‖W 2m,∞(D))
( ∑

K∈Th

m∑
`=1

|uh |2
H `(K )

)1/2( ∑
K∈Th

m∑
`=1

|wh |2
H `(K )

)1/2
. (2.5.70)

Now we defineΠu
K ∈P m(K ) which is an interpolation polynomial of u on element K (respectively

Πw
K the interpolation polynomial of w). By classical interpolation error estimate (see [53, Chapter

3]), we have

‖u −Πu
K ‖H `(K ) ≤C hm+1−`|u|H m+1(K ), for `≤ m.

Furthermore, we can derive that for `≤ m

‖Πu
K ‖H `(K ) ≤ ‖u −Πu

K ‖H `(K ) +‖u‖H `(K ) ≤C‖u‖H m (K ).

Using inverse inequality (assume that the triangulation Th is quasi-uniform), we have

m∑
`=1

|uh |2
H `(K ) ≤

m∑
`=1

(|uh −Πu
K |2H `(K ) +|Πu

K |2H `(K )

)
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≤ ‖Πu
K ‖2

H m (K ) +C
m∑
`=1

h−2`+2|uh −Πu
K |2H 1(K )

≤C
(
‖u‖2

H m (K ) +
m∑
`=1

h−2`+2(|uh −u|2
H 1(K ) +|u −Πu

K |2H 1(K )

))
≤C

(‖u‖2
H m (K ) +h−2m+2‖uh −u‖2

H 1(K )

)
.

Sum up the above inequality with respect to element K ∈Th and we obtain

∑
K∈Th

m∑
`=1

|uh |2
H `(K ) ≤C

(
‖u‖2

H m (D) +h−2m+2‖u −uh‖2
H 1(D)

)
. (2.5.71)

Using standard FEM error analysis with numerical quadrature (see for example [53]), we have

the following result

‖u −uh‖H 1(D) ≤C hm−1|u|H m (D). (2.5.72)

Combining (2.5.71) with (2.5.72), we have

∑
K∈Th

m∑
`=1

|uh |2
H `(K ) ≤C‖u‖H m (D). (2.5.73)

Taking (2.5.73) into (2.5.70), we have proved (2.5.69).

Note that in Theorem 2.5.3 we have to assume quasi-uniform meshes for FEM. However, this

assumption can be restrictive in some situations, e.g. adaptivity methods or complex domains.

Therefore in the following, we give a similar theorem relaxing the quasi-uniform assumption. We

however need higher order quadrature rules.

Theorem 2.5.4. (Second theorem for local high order numerical integration error) Assume that K

is simplicial and a ∈W 2m,∞(K ). Assume further

EK̂ (φ̂) = 0, ∀φ̂ ∈P 4m−3(K̂ ). (2.5.74)

Then,

EK (av w) ≤C h2m |a|W 2m,∞(K )‖v‖L 2(K )‖w‖L 2(K ), ∀v, w ∈P m−1(K ). (2.5.75)

Proof. First we write EK (av w) = 2|K |EK̂ (âv̂ ŵ). Then we have

|EK̂ (âv̂ ŵ)| = |
∫

K̂
âv̂ ŵ −∑

j
ω̂ j âv̂ ŵ | ≤ Ĉ‖âv̂ ŵ‖L ∞(K̂ )
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≤ Ĉ‖â‖W 2m,∞(K̂ )‖v̂‖L ∞(K̂ )‖ŵ‖L ∞(K̂ ) ≤ Ĉ‖â‖W 2m,∞(K̂ )‖v̂‖L 2(K̂ )‖ŵ‖L 2(K̂ ).

The above inequality shows that f (·) := EK̂ (·v̂ ŵ)) is a continuous linear functional on W 2m,∞(K̂ )

and ‖ f ‖∗
W 2m,∞(K̂ )

≤ Ĉ‖v̂‖L 2(K̂ )‖ŵ‖L 2(K̂ ). Furthermore, using the assumption (2.5.74), we have

that f (ψ̂) = 0, ∀ψ̂ ∈P 2m−1(K̂ ) (note that v̂ ŵ ∈P 2m−2(K̂ )). Therefore, applying Bramble-Hilbert

to f gives

|EK̂ (âv̂ ŵ)| = | f (â)| ≤ Ĉ‖ f ‖∗
W 2m,∞(K̂ )

|â|W 2m,∞(K̂ ) ≤ Ĉ‖v̂‖L 2(K̂ )‖ŵ‖L 2(K̂ )|â|W 2m,∞(K̂ ).

By the affine transformation, we obtain

|â|W 2m,∞(K̂ ) ≤C h2m |a|W 2m,∞(K ),

‖v̂‖L 2(K̂ ) ≤ |2K |−1/2‖v‖L 2(K ).

Therefore,

|EK (av w)| ≤C h2m |a|W 2m,∞(K )‖v‖L 2(K )‖w‖L 2(K ).

Based on Theorem 2.5.4, it is easy to obtain the following result without using the assumption of

quasi-uniform meshes.

Theorem 2.5.5. (Second theorem for global higher order numerical integration error) Assume that

ai j ∈W 2m,∞(D) and u, w ∈W (D)∩H 2(D)
(
W (D) can be either defined as in (2.2.5) provided that

D is a cube or defined as in (2.2.6)
)

are the solutions of the following problems: for ∀v ∈W (D),

∫
D

a∇u ·∇vd x = F1(v),∫
D

a∇w ·∇vd x = F2(v),

where F1,F2 are two linear functional mapping W (D)∩H 2(D) → R and uh , wh are the FEM

solutions with numerical quadrature in Sm(D,Th) where Th is a shape regular partition of D.

Assume the numerical quadrature satisfies

EK̂ (φ̂) = 0, ∀φ̂ ∈P 4m−3(K̂ ). (2.5.76)

Then we have

|
∫
D

∑
i j

ai j∂i uh∂ j whd x − ∑
K∈Th

J∑
j=1

ωK , j
∑
i j

(ai j∂i uh∂ j wh)(xK , j )|
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≤C h2m(
∑
i j

|ai j |W 2m,∞(D))‖u‖H 2(D)‖w‖H 2(D). (2.5.77)

Proof. A direct application of Theorem 2.5.4 gives

|
∫
D

∑
i j

ai j∂i uh∂ j whd x − ∑
K∈Th

J∑
j=1

ωK , j
∑
i j

(ai j∂i uh∂ j wh)(xK , j )|

≤ C h2m(
∑
i j

|ai j |W 2m,∞(D))‖∇uh‖L 2(D)‖∇wh‖L 2(D).

Note that uh , wh are the FE approximations of u, w respectively and thus we have

‖∇uh‖L 2(D) ≤ ‖∇u‖L 2(D) +‖∇u −∇uh‖L 2(D) ≤C‖u‖H 2(D).

Therefore the proof is complete.

2.5.2 Numerical integration error analysis for parallelogram elements

In order to obtain the same error result for parallelogram elements, one needs to introduce the

following semi-norm for space W m,p (D)

{v}W m,p (D) =
(∫

D

d∑
i=1

(
∂m

i v
)p

)1/p
, (2.5.78)

where ∂i := (∂)/(∂xi ) (see for example [53], where such norms have been discussed). Based on this

semi-norm, a corresponding Bramble-Hilbert lemma can be derived for parallelogram elements

(see [53, Chapter 11]). For the completeness, we present here the proofs of the equivalent norm

theorem and Bramble-Hilbert lemma for parallelogram elements.

Theorem 2.5.6. (Equivalent norm theorem) Let m ≥ 1 be an integer and p ∈ [1,∞], then there

exist a constant C which depends on domain D such that,

inf
q(x)∈Qm−1(D)

‖v +q‖W m,p (D) ≤C {v}W m,p (D), ∀v ∈W m,p (D).

Proof. Let N = di m Qm−1(D) and { fi , 1 ≤ i ≤ N } be a set of basis of the dual space of Qm−1(D).

Thus by Hahn-Banach extension theorem 4, there exists a set of continuous linear functionals over

the space W m,p (D) again denoted by fi , 1 ≤ i ≤ N such that q ∈Qm−1(D) and fi (q) = 0, 1 ≤ i ≤ N

4Hahn-Banach extension theorem: If X is a normed vector space and X 0 is a subspace of X . Let f0 is a bounded
linear functional on X 0. Then there exists a bounded linear functional f on X satisfying: (1). f (v) = f0(v),∀v ∈
X 0, (2). ‖ f ‖X = ‖ f0‖X 0 .
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imply q = 0. If the following inequality holds:

‖v‖W m,p (D) ≤C
(
{v}W m,p (D) +

N∑
i=1

| fi (v)|) ∀v ∈W m,p (D), (2.5.79)

then for any given v ∈W m,p (D), we can find q ∈Qm−1(D) such that fi (v +q) = 0, 1 ≤ i ≤ N and

we can then obtain

inf
q(x)∈Qm−1(D)

‖v +q‖W m,p (D) ≤ ‖v +q‖W m,p (D) ≤C {v}W m,p (D). (2.5.80)

Now we prove (2.5.79). We first assume (2.5.79) is false, then there exists a sequence v` ∈
W m,p (D), `≥ 1 such that

(1) ‖v`‖W m,p (D) = 1 ∀`≥ 1,

(2) lim`→∞
(
{v`}W m,p (D) +∑N

i=1 | fi (v`)|
)
= 0.

Since v` is bounded in W m,p (D), there exists a subsequence again denoted as v` that converges

to a limit v ∈W m,p (D). Since lim`→∞{v`}W m,p (D) = 0, then

|∂m
i v | = lim

`→∞
|v`| = 0,

Thus we have v ∈Qm−1(D). Furthermore, we have

| fi (v)| = lim
`→∞

| fi (v`)| = 0, 1 ≤ i ≤ N .

Therefore we can conclude that v = 0 which contradicts the assumption that ‖v`‖W m,p (D) =
1, ∀`≤ 1, so that (2.5.79) holds.

Remark 2.5.7. Since P m−1(D) ⊂Qm−1(D), then (2.5.79) also holds for q ∈P m−1(D). In fact, by

the quotient space embedding W m,p (D)/Qm−1(D) ⊂W m,p (D)/P m−1(D), we have

inf
p∈P m−1(D)

‖v +p‖W m,p (D) ≤ inf
q∈Qm−1(D)

‖v +q‖W m,p (D).

With the help of Theorem 2.5.6, we can correspondingly have a Bramble-Hilbert lemma for

quadrilateral elements.

Theorem 2.5.8. (Bramble-Hilbert lemma for quadrilateral elements) Let D be a domain in Rd ,

let k ≥ 0 be an integer, let p be a number satisfying 1 ≤ p ≤∞, and let L be a continuous linear
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functional on the space W m,p (D) with the property that

L(q) = 0 for all q ∈Qm−1(D). (2.5.81)

Then there exists a constant C which depends on D such that

|L(v)| ≤C‖L‖∗W m,p (D){v}W m,p (D), ∀v ∈W m,p (D), (2.5.82)

where ‖ ·‖∗
W m,p (D) is the dual norm of space W m,p (D)).

Proof. Since for any given v ∈W m,p (D) we have L (v +q) =L (v) ∀q ∈Qm−1(D), then we can

write

|L(v)| = |L(v +q)| ≤ ‖L‖∗W m,p (D)‖v +q‖W m,p (D).

We note that the above inequality stands for ∀q ∈Qm−1(D) so that we have

|L(v)| ≤ ‖L‖∗W m,p (D) inf
q∈Qm−1(D)

‖v +q‖W m,p (D) ≤C‖L‖∗W m,p (D){v}W m,p (D),

where the last inequality is obtained by using Theorem 2.5.6.

With the help of Theorem 2.5.8, a numerical integration error estimate can be obtained following

the proof of Theorem 2.5.3.

Theorem 2.5.9. (Global higher order numerical integration error theorem for parallelogram

elements) Assume that ai j ∈W 2m,∞(D) and u, w ∈W (D)∩H m+1(D)
(
W (D) can be either defined

as in (2.2.5) provided that D is a cube or defined as in (2.2.6)
)

are the solutions of the following

problems: for ∀v ∈W (D),

∫
D

a∇u ·∇vd x = F1(v),∫
D

a∇w ·∇vd x = F2(v),

where F1,F2 are two linear functional mapping W (D)∩H m+1(D) →R and uh , wh are the FEM

solutions with numerical quadrature in Sm(D,Th) where Th is a shape regular partition of D

and elements K ∈Th are parallelogram and quasi-uniform. Assume the numerical quadrature

satisfies

EK̂ (φ̂) = 0, ∀φ̂ ∈Q2m−1(K̂ ). (2.5.83)
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Then we have

|
∫
D

∑
i j

ai j∂i uh∂ j whd x − ∑
K∈Th

J∑
j=1

ωK , j
∑
i j

(ai j∂i uh∂ j wh)(xK , j )|

≤C h2m(
∑
i j

‖ai j‖W 2m,∞(D))‖u‖H m+1(D)‖w‖H m+1(D).

Remark 2.5.10. If we assume here EK̂ (φ̂) = 0, ∀φ̂ ∈Q4m−3(K̂ ), then the assumption of the quasi-

unform mesh in Theorem 2.5.9 can be removed. The proof can be easily obtained following the

proofs of Theorem 2.5.4 and Theorem 2.5.5.

2.6 Numerical Experiment

We consider problem (1.0.1) on the domainΩ= [0,1]2 with f = 1 and the multiscale tensor

aε(x) = (x2
1 +x2

2 +1)

(
sin(2π x1

ε1
+2)cos(2π x1

ε2
+2) 0

0 sin(2π x2
ε1

+2)cos(2π x2
ε2

+2)

)
.

where ε1 = 5×10−3, ε2 = 5×10−5. The corresponding homogenized tensor is

a0(x) = 3(x2
1 +x2

2 +1)I2.

The implementation of this experiment is a generalization of the two scale FE-HMM code

provided in [19]. We use FEM with piecewise linear basis functions on triangle elements (called

P1-FEM) as the solver for problems on all three scales. For the QFs, we choose the barycenter

of each element as the quadrature node for both macro and meso scales which satisfies the

assumptions on the QFs stated in both Theorem 2.3.4 and 2.4.6 for P1 triangle elements. We take

the P1-FE solution u0,h0 of (2.1.1) as the reference solution which is computed on a 1024×1024

uniform triangular mesh. We use uniform triangulation in the FE-HMM procedure and denote

Nmac , Nmes , Nmi c as the degrees of freedom (DOF) of one direction in the macro, meso and micro

partitions respectively, i.e. h0 = 1/Nmac , h1/ε1 = 1/Nmes , h2/ε2 = Nmi c . In Fig. 2, we observe

that the H 1 error decays with a rate of O (h0) and the L 2 error decays as O (h2
0), which confirms

the results in Theorem 2.3.4 and 2.4.6.

In Fig. 3(a)(b), we show the error behavior with Nmes is fixed at 2,4,8,16 while macro and micro

meshes are refined simultaneously. In Fig. 3(c)(d) Nmi c is fixed at 2,4,8,16 and macro, meso

meshes are refined simultaneously. We conclude that the theoretical convergence rate can only

be obtained when the meshes are refined simultaneously and that our error estimates (at least

for three scale problems) are sharp.
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Figure 2: We set Nmes = Nmi c = N 1/2
mac for computing H 1 error and Nmes = Nmi c = Nmac for L 2

error.

2.7 Discussion

In this chapter, we present the generalized FE-HMM for the problems with more than two scales.

Furthermore, we provide a fully discrete a priori error analysis for the (N +1)-scale FE-HMM

where the error coming from numerical quadrature used in each scale is carefully discussed. We

note that this analysis can be applied to the FE-HMM of any order. A complexity analysis is also

added for the completeness.

Based on the work in this chapter, there are two aspects that are of interest to explore in the

next step. For the first aspect, considering the massive meso and micro cell problems need to

be computed, a model reduction technique is required to reduce the cost of the generalized

FE-HMM. The second aspect is a concern for engineering applications where physical models in

different scales can be different and thus in this case coupling different models in a consistent

way should be taken into account.
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Figure 3: The convergence behavior when Nmi c or Nmes is fixed at different values.
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Numerical homogenization methods show large efficiency improvement compared with the

classical numerical methods for multiscale problems. In particular, the FE-HMM yields an

approximation of an effective problem with complexity independent of ε. One common features

shared by several numerical homogenization methods is that the global microscopic problem is

split into many local cell problems which are coupled with the macro discretization. According

to the complexity analysis of the fully discrete method (see (1.2.17), (1.2.18)), the global macro

discretization and the micro discretizations for the cell problems have to be refined simultane-

ously in order to obtain the optimal convergence rate. For higher order macro methods (where

more sampling domains are required) or high dimensional problems, these methods can become

computationally very expensive (even though order of magnitude cheaper than a full fine scale

approach). For the FE-HMM, attempts to reduce the computational cost have been pursued

in [15], where fast micro solvers have been coupled with standard FEM. By selecting a special

quadrature formula with integration points on the interfaces of the macro partition, one can also

in some situations reduce the computational cost (this does however only reduce the constant in

front of the computational cost for the FE-HMM, e.g., a reduction factor of one half is reported

in [57] for two dimensional problems with first or second order macro solvers).

Reduced basis (RB) techniques for model reduction, pioneered in [65, 64, 86], have seen recently

a renewed interest thanks to the development of new sampling techniques and rigorous a

posteriori error bounds for outputs of interest [93] (see also [92, 96] for additional references

on the recent literature). In the context of numerical homogenization, the use of RB was first

proposed in [45, 46] emphasizing on parametrizing various configurations of cell problems (e.g.

inclusion with various shapes, etc.), here, building on [45, 46], we focus on integrating the RB

methodology in a micro macro FEM such as the FE-HMM and providing fully discrete error

analysis for our new approach.

Outline of Part II.

• Chapter 3: Gives an introduction on the RB method for coercive parametrized linear elliptic

problems as well as some implementation details which are used in the later chapters.

• Chapter 4: Proposes the RB-FE-HMM for linear multiscale problems and shows several

numerical experiments. This chapter is taken from [7, Section 3 - Section 5].

• Chapter 5: Presents the further exploration of the RB-FE-HMM for adaptive procedures.

The chapter is taken from [8, Section 3 - Section 6] with small modifications.
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3 Reduced basis method

Many engineering problems can be modeled by PDEs with input parameters, called the parametrized

PDEs. The input parameters can be the shape deformation of the modeling objects or physical

elements of the environment. The solutions of the parametrized PDEs vary with respect to differ-

ent input parameters but share some similarities. In the aspect of numerical computation, the

parametrized PDE needs to be re-solved when the input parameters are changed. For problems

that have many parameters of interest, the numerical computation can be very costly (both

time and storage) and real time results cannot be achieved for complex 3D problems or time

dependent problems. Motivated by the "real time" and "many query" contexts, the reduced basis

(RB) method is developed that aims at reducing the computational cost by a specially constructed

lower dimensional space such that real time simulation can be achieved. In this chapter, we

introduce the general reduced basis (RB) method for parametrized linear elliptic coercive PDEs

[96]. This idea can be similarly developed for parabolic problems [67] and nonlinear problems

[76].

3.1 The reduced basis method for linear elliptic coercive PDEs

To be consistent with the literature of general RB method and to distinguish from our multiscale

problems, we use the following weak form for the general elliptic problem: Given the input

parameter µ ∈D ⊂Rd , there exists a unique ue (µ) ∈V e (Ω) that satisfies

a(ue (µ), v ;µ) = f (v) ∀v ∈V e (Ω), (3.1.1)

where a(·, ·;µ) is a bilinear form, f (·) : V e → R is a parameter independent linear functional and

V e (Ω) is a Hilbert space which the exact solution ue (µ) lies in, equipped with inner product (·, ·)V

and norm ‖ ·‖V .

We are interested in the quantity

se (µ) = L(ue (µ)), (3.1.2)
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Chapter 3. Reduced basis method

where L(·) : V e →R denotes a linear output functional. The choice L(ue (µ)) = f (ue (µ)) is often

considered in RB literature which will also be considered. We assume that the bilinear form

a(·, ·,µ) is symmetric, bounded and coercive for any µ ∈D. The boundedness is defined as: There

exists a constant γ0 > 0 such that

γ0 ≥ γ(µ) := sup
w∈V e

sup
v∈V e

a(w, v ;µ)

‖v‖V ‖w‖V
. (3.1.3)

and the coercivity is defined as: There exists a constant α0 > 0 such that

0 <α0 ≤α(µ) := inf
w∈V e

a(w, w ;µ)

‖w‖2
V

. (3.1.4)

Furthermore, we assume the bilinear form a(·, ·) can be written in the following affine form, i.e.

a(w, v ;µ) =
Q∑

q=1
Θq (µ)aq (w, v), ∀v, w ∈V e (Ω), µ ∈D, (3.1.5)

where aq (w, v) is a parameter independent bilinear form and Θq (µ) is a function on D with

variable µ. This assumption is critical to achieve efficiency for the RB method. For the cases

that the affine representation is not available, we can apply the so-called empirical interpolation

method (EIM) (to be introduced in Section 3.3) to construct for the original bilinear form an

approximation in the affine form .

3.1.1 Offline-online strategy

Assume that V N (Ω) is the finite element (FE) approximation space of V e (Ω) with number of

degrees of freedom (DOF) N . Solving (3.1.1) in V N for any given µ reads: Find uh ∈V N such

that

a(uN (µ), vN ;µ) = f (vN ) ∀vN ∈V N (Ω). (3.1.6)

The RB method aims at building a small dimensional space (the RB space) V N
N ⊂ V N in an

offline stage so that (3.1.1) can be solved in V N
N in an online stage where real time results can

be obtained. The notation V N
N represents that the dimension of this space is N and its basis

functions belong to V N .

Algorithm 3.1.1. (RB offline stage)

1. Sample a large training set Ξtr ai n = {µi }Ntr ai n

i=1 ⊂ D and compute uN (µ1) of (3.1.6). Let

58



3.1. The reduced basis method for linear elliptic coercive PDEs

ξN
1 = uN (µ1)

‖uN (µ1)‖V
, V N

1 = span{ξN
1 } and l = 1.

2. Compute the a posteriori error estimator∆l (µi ), i = 1, · · · , Ntr ai n . If maxi=1,··· ,Ntr ai n∆l (µi ) >
tol , select µl+1 = ar g maxi=1,··· ,Ntr ai n∆l (µi ) and go to next step, otherwise offline ends.

3. Compute uN (µl ) of (3.1.6) and denote by ξN
l the orthogonalization of uN (µl ) to V N

l . Let

V N
l+1 =V N

l

⊕
span{ξN

l } and l = l +1. Go to step 2.

We store the following offline outputs for the online stage:

Aq
i j := aq (ξN

i ,ξN
j ), Fi := f (ξN

i ), i , j = 1, · · · , N , q = 1, · · · ,Q (3.1.7)

where Aq is the N ×N affine stiffness matrix and F is the N ×1 affine vector (i.e. Aq and F are

parameter independent). Generally, the dimension of V N
N is rather small such that the memory

requirement to store the offline outputs is low. The issue left for the offline process is how to

design the a posteriori error estimator. This point will be discussed in Section 3.1.2.

In the online stage, we solve for any given parameter µ: Find uN
N (µ) ∈V N

N such that

Q∑
q=1

Θq (µ)aq (uN
N (µ), vN

N ) = f (vN
N ), ∀vN

N ∈V N
N , (3.1.8)

where uN
N (µ) is presented by the linear combination of the basis functions of V N

N i.e. uN
N (µ) =∑N

l=1βl (µ)ξN
l and β(µ) = (

β1(µ), · · · ,βN (µ)
)T ∈RN . Therefore the corresponding linear system

of (3.1.8) can be written as

(
Q∑

q=1
Θq (µ)Aq )β(µ) = F, (3.1.9)

and the quantity of interest (3.1.2) is simply L(uN
N (µ)) = F Tβ(µ). The affine assumption of the

bilinear form makes the offline outputs easy to use for the online computation. We emphasize

that the linear system 3.1.9 has small DOF which allows to obtain the real-time result.

Remark 3.1.2. In order to guarantee the precision of the online solutions, it is often required to

use a fine FE space V N in the offline stage i.e. N is large and this makes the offline stage costly.

However since the offline outputs Aq and F are parameter independent, they can be repeatedly

used in the online stage for different given parameters. Therefore the offline stage is only needed

once.
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3.1.2 A posteriori error estimator

We denote that uN
l (µ) is the solution of (3.1.1) computed in the RB space V N

l . We would like to

control the error ‖êl (µ)‖V where êl (µ) := uN (µ)−uN
l (µ). First we have the following equation

a(êl (µ), vN ;µ) = f (vN )−a(uN
l (µ), vN ;µ), ∀vN ∈V N .

Using Riesz representation theory, there exists a unique ēl (µ) ∈V N such that

(ēl (µ), vN )V = f (vN )−a(uN
l (µ), vN ;µ). (3.1.10)

We define the a posteriori error estimator as

∆l (µ) = ‖ēl (µ)‖V

αLB (µ)
,

where αLB (µ) is an approximation of the coercivity factor α(µ) that satisfies α(µ) ≥αLB (µ) > 0.

We define the energy norm ‖v‖E ,µ =
√

a(v, v ;µ) and the following result is shown in [96]

1 ≤ ∆l (µ)

‖êl (µ)‖E ,µ
≤

√
γ(µ)

αLB (µ)
, ∀µ ∈D

where γ(µ) is defined in (3.1.3). This result indicates that the error ‖êl (µ)‖E ,µ can be bounded on

both sides by the a posteriori estimator such that the offline outputs are "certified".

To obtain the a posteriori error, one needs to solve (3.1.10) in the fine FE space V N (as mentioned

in Remark 3.1.2) for all the samples from Ξtr ai n in each loop of enlarging the RB space, which

could make the offline stage prohibitively costly. Thanks to the affine bilinear form and the linear-

ity of equation (3.1.10), we can decompose (3.1.10) the following problems: Find cN ,LN ,q
l ∈V N

N

such that

(cN , vN ) = f (vN ), ∀vN ∈V N
N (3.1.11)

(LN ,q
i , vN ) = aq (ξN

i , vN ) ∀vN ∈V N
N , i = 1, · · · , l , q = 1, · · · ,Q. (3.1.12)

Therefore we obtain ēl (µ) = cN +∑Q
q=1Θ

q (µ)
∑l

i=1βi (µ)LN
i . Therefore, we have

‖ēl (µ)‖2
V = (cN ,cN )V +2

Q∑
q=1

Θq (µ)(cN ,LN ,q
i )V
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3.2. Coercivity factor approximationαLB (µ)

+
Q∑

p,q=1
Θq (µ)Θp (µ)

l∑
i , j=1

βi (µ)β j (µ)(LN ,q
i ,LN ,p

j )V . (3.1.13)

We note that (3.1.11) and (3.1.12) are parameter independent that can be pre-computed only

once in the offline stage. Thus the computation of ‖ēl (µ)‖2
V becomes very efficient.

3.2 Coercivity factor approximation αLB (µ)

Now we introduce how to compute the coercivity factor αLB (µ) to complete the issues of the RB

offline stage. The direct way is to solve for each µ ∈Ξtr ai n

αN (µ) = inf
vN ∈V N

a(vN , vN ;µ)

‖vN ‖V
, (3.2.14)

which is equivalent to solve an eigenvalue problem in V N . Again due to the requirement of the

fine FE space V N and a large initial training set of parameters in the offline stage, directly solving

the eigenvalue problem has huge computational cost. Therefore, we need to have more efficient

methods to obtain a lower bound αLB of αN such that 0 <αLB (µ) ≤αN (µ), ∀µ ∈D. The most

popular methods coupled with the RB method are the "minΘ" method [92] and the successive

constraint method (SCM) [72, 96] (the SCM for non-symmetric and non-coercive problems are

also discussed in these references). The basic assumptions for both of the methods is that a(·, ·;µ)

has affine representation (3.1.5). In what follows, we will briefly introduce the two methods and

for simplicity we still assume the coercivity and symmetry of a(·, ·;µ).

3.2.1 The "minΘ" method

For the min Θ method, we need to have one more critical assumption: The bilinear form a(·, ·;µ)

is affine coercive, i.e.

Θq (µ) > 0, ∀µ ∈D and aq (v, v) ≥ 0, ∀v ∈V e (Ω). (3.2.15)

Then we define the lower bound of αN (µ) as

αLB (µ) = min
q=1,··· ,Q

Θq (µ)

Θq (µ∗)
αN (µ∗), (3.2.16)

where µ∗ is any fixed parameter in D.
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We show here that αLB satisfies the inequality in (3.1.4): For ∀vN ∈V N ,µ ∈D

a(vN , vN ;µ) =
Q∑

q=1
Θq (µ)aq (vN , vN ) =

Q∑
q=1

Θq (µ)

Θq (µ∗)
Θq (µ∗)aq (v, v)

≥ min
q=1,··· ,Q

Θq (µ)

Θq (µ∗)

Q∑
q=1

Θq (µ∗)aq (vN , vN )

≥ min
q=1,··· ,Q

Θq (µ)

Θq (µ∗)
αN (µ∗)‖vN ‖V .

Therefore, we have αLB (µ) ≤αN (µ) = infvN ∈V N
a(vN ,vN ;µ)

‖vN ‖V
.

However the strict assumption (3.2.15) makes this method prohibitive for general problems. In

contrast, the SCM has great generality.

3.2.2 The successive constraint method

The SCM consists of an offline stage launched before the RB offline stage and an online stage

launched during the RB offline stage to compute αLB (µ) for each µ ∈Ξtr ai n .

We first introduce a set Z ⊂RQ that

Z := {
z ∈RQ | z = {z1, · · · , zQ }T , ∃vN

z ∈V N s.t. zq = aq (vN
z , vN

z )

‖vN
z ‖V

, q = 1, · · · ,Q
}
.

It is easy to see that αN (µ) = infz∈Z
∑Q

q=1Θ
q (µ)zq . The idea of the SCM is to find a subset of Z

such that one can efficiently obtain an lower bound of aN (µ) by solving a minimization problem

in this subset.

Next we introduce the so-called "coercivity constraint box"

B =
Q∏

q=1

[
inf

vN ∈V N

aq (vN , vN )

‖vN ‖V
, sup

vN ∈V N

aq (vN , vN )

‖vN ‖V

]
. (3.2.17)

We define the following two sets that will be used in the SCM algorithm:

C J = {µS
1 , · · · ,µS

J }, ( define C0 =;)

where µS
j ∈D is selected by the greedy algorithm in the SCM offline stage. Define C M

J (µ) a set

that consists of M elements in C J which are closest to the given µ and we have C M
J (µ) ⊂C J (when

J ≤ M , C M
J (µ) =C J ). Practically, we choose M = 2d where d is the dimension ofΩ.
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3.2. Coercivity factor approximationαLB (µ)

Given Kmax the max size of set C J generated in the SCM offline stage and the tolerance tolSC M

as the stopping criteria, the offline process is stated as follows.

Algorithm 3.2.1. (the SCM offline stage)

1. Select a large training set ΞS
tr ai n = {µi }

N S
tr ai n

i=1 , µi ∈D. Construct the "continuity constraint" box

B defined in (3.2.17).

2. While J < Kmax :

a. Set C J =C J−1 ∪ {µS
J } and when J = 1, µS

1 is randomly chosen from ΞS
tr ai n .

b. Compute αN (µS
J ) and the corresponding eigen function vS,N

J by solving (3.2.14). Next

compute z J ∈ Z where z J
q = aq (vS,N

J ,vS,N
J )

‖vS,N
J ‖v

, q = 1, · · · ,Q. Let set E J = E J−1 ∪ {αN (µS
J )} and

Z U B
J = Z U B

J−1 ∪ {z J } (define E0 =; and Z U B
0 =;).

c. For µk ∈ΞS
tr ai n , k = 1, · · · , N S

tr ai n :

(i). We solve

αLB (µk ) = min
z∈Z LB

M ,J (µk )

Q∑
q=1

Θq (µk )zq ,

where Z LB
M ,J (µk ) := {z ∈ RQ |z ∈ B and

∑Q
q=1Θ

q (µk )zq ≥ αN (µ),∀µ ∈ C M
J (µk )}. We

emphasize that all the αN (µ) where µ ∈C M
J (µk ) are stored in set E J .

(ii). Solve

αU B (µk ) = min
z∈Z U B

M ,J (µk )

Q∑
q=1

Θq (µk )zq ,

where Z U B
M ,J (µk ) is a subset of Z U B

J , containing the elements in Z U B
J that are indexed

by the parameters in C M
J (µk ). Since Z U B

M ,J (µk ) ⊂ Z , therefore αU B (µk ) ≥α(µk ).

(iii). Calculate εJ (µk ) = αU B (µk )−αLB (µk )
αU B (µk ) .

d. If maxk=1,··· ,N S
tr ai n

εJ (µk ) < tolSC M , the offline process ends. Otherwise let J = J +1 and go to

a.

The outputs of the SCM offline stage are B ,C J and E J . In the SCM online stage, for any given

parameter µ ∈D, we just need to solve the following linear optimization problem

αLB (µ) = min
z∈Z LB

M ,J (µ)

Q∑
q=1

Θq (µ)zq .

It is proved in [96] that αN (µ)
αLB (µ) ≤ 1

1−εSC M
, ∀µ ∈D, where εSC M = maxµ∈ΞS

tr ai n
εJ (µ).
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3.3 The empirical interpolation method

The empirical interpolation method (EIM) is proposed in [37] in order to obtain the affine

representation for general parametrized functions in form of g (µ, x). We assume that g (µ, x) is

uniformly continuous on D and belongs to L∞(Ω). The goal of the EIM is to construct a few

basis functions {q1, · · · , qM } that span a low dimensional space and based on this space one can

efficiently obtain an affine approximation for g (µ, x) expressed as gM (µ, x) =∑M
m=1φm(µ)qm(x)

for any givenµ. The EIM is also an offline-online strategy based on the greedy algorithm. The EIM

offline process consists of two main ingredients: The first ingredient is to select the representative

parameters µ from D and obtain the corresponding functions g (µ, ·) and the second one is to

find the interpolation points x inΩ in order to discretize the function g (·, x) . The detailed offline

process is stated as what follows.

Algorithm 3.3.1. (The EIM offline stage)

1. Choose a large training set ΞE
tr ai n = {µi }

N E
tr ai n

i=1 ⊂ D (we use the superscript E to distinguish

from the RB offline notations) and select µg
1 = ar g maxµ∈ΞE

tr ai n
‖g (µ, x)‖L ∞(Ω). Set η1(x) = g (µg

1 , x)

and x1 = ar g supx∈Ω|η1(x)| 1 and q1(x) = η1(x)
|η1(x1)| . Let m = 1 and define SE ,g

1 = span{q1} and

B 1 = q1(x1).

2.Compute for each µ ∈ ΞE
tr ai n that δm(µ) = ‖g (µ, x)− gm(µ, x)‖L ∞(Ω) where gm(µ, x) ∈ SE ,g

m . If

maxµ∈ΞE
tr ai n

δm(µ) < tol E , let M = m and the EIM offline process stops; Otherwise:

i. Select µm+1 = ar g maxµ∈ΞE
tr ai n

δm(µ) and let ηm+1(x) = g (µm+1, x);

ii. Solve
∑m

j=1σ
m
j q j (xi ) = ηm+1(xi ), i = 1, · · · ,m;

iii. Let rm+1(x) = ηm+1(x)−∑m
j=1σ

m
j q j (x);

iv. Denote xm+1 = ar g supx∈Ω|rm+1(x)|, qm+1(x) = rm+1(x)
|rm+1(xm+1)| and B m+1

i j = q j (xi ), i , j = 1, · · · ,m+
1, where B m+1 is a matrix with dimension (m +1)× (m +1).

v. We have SE ,g
m+1 = span{q1, · · · , qm+1}. Let m = m +1 and go back to Step 2.

The outputs of the EIM offline stage are the basis functions {q1, · · · , qM }, the matrix B M with

dimension M ×M as well as the set of the interpolation points {x1, · · · , xM }.

In the online stage of the EIM, we construct the affine approximation gM (µ, x) =∑M
m=1φm(µ)qm(x)

of g (µ, x) for any given µ ∈ D. To obtain the coefficients φm(µ), m = 1, · · · , M , one just needs

to solve a small linear system:
∑M

j=1 B M
i j φ j (µ) = g (µ, xi ), i = 1, · · · , M , which has very low time

cost. The upper bound of the error introduced by the EIM is analyzed in [63] and numerical

experiments show that the EIM is an efficient and reliable strategy.

1To be more precise, here the supx∈Ω |η1(x)| should be understood as essential supremum.
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4 Reduced Basis finite element hetero-
geneous multiscale method for linear
problems

In this chapter and next, we consider the linear elliptic problems discussed in Chapter 1 in a

bounded polyhedron domain Ω⊂Rd , d ≤ 3,

−∇· (aε(x)∇uε(x)) = f in Ω,

uε(x) = 0 on ∂Ω, (4.0.1)

where we assume that aε(x) = a(x, x
ε ) (with macro-micro scale separation) is symmetric uni-

formly elliptic and bounded (see in (1.0.1)).

As can be seen from the discussion in Chapter 1, the main cost of the FE-HMM comes from the

computation of the cell problems, whose number and DOF increase as we refine the macro mesh

for an appropriate approximation of the homogenized solution. In this section we explain how

RB can be coupled to the FE-HMM to drastically reduce the cost of solving repeatedly a large

number of cell problems.

4.1 Parametrized micro problems and numerical homogenized ten-

sor

In what follows, it will be convenient to change several notations defined in Chapter 1. We denote

the micro FE space by Sq (Kδ j ,N ) instead of Sq (Kδ j ,Th) to emphasize on the degrees of freedom

(DOF) N of the micro FE space. Likewise, the micro function vh
K j

, solution of problem (1.2.16)

will be denoted by vN ,K j . We first notice that vN ,K j can be decomposed as

vN ,K j (x) = v H
li n, j (x)+

d∑
i=1

χi
N ,K j

(x)
∂v H

li n, j

∂xi
. (4.1.2)
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where χi
N ,K j

(x), i = 1, . . . ,d are solutions of

∫
Kδ j

aε(x)∇χi
N ,K j

(x) ·∇zN (x)d x =−
∫

Kδ j

aε(x)ei ·∇zN (x)d x ∀zN ∈ Sq (Kδ j ,N ). (4.1.3)

We now map a sampling domain Kδ j in the reference domain Y through x =GxK j
(y) = xK j +δy

and consider χ̂i
N ,K j

the solution of

b(χ̂i
N ,K j

, ẑN ) :=
∫

Y
axK j

(y)∇χ̂i
N ,K j

(y) ·∇ẑN (y)d y

= −
∫

Y
axK j

(y)ei ·∇ẑN (y)d y =: li (ẑN ) ∀ẑN ∈ Sq (Y ,N ), (4.1.4)

where we note that aε(GxK j
(y)) can be parametrized by xK j ∈Ω and we therefore use the notation

axK j
(y) := aε(GxK j

(y)). The FE space Sq (Y ,N ) has a triangulation Tĥ with N =O (ĥ−d ) denoting

its degrees of freedom. Functions in Sq (Y ,N ) will have a subscript N (e.g., ẑN ). It is easily seen

that

vN ,K j = v H
li n, j (x)+δ

d∑
i=1

χ̂i
N ,K j

(G−1
xK j

(x))
∂v H

l i n, j

∂xi
. (4.1.5)

The following reformulation of the FE-HMM makes a link between the micro problems and the

effective tensor obtained by the above micro-macro procedure. We have [5, Lemma 5.4],[4]

1

|Kδ j |
∫

Kδ j

aε(x)∇vN ,K j (x) ·∇wN ,K j (x)d x = a0
N (xK j )∇v H (xK j ) ·∇w H (xK j ). (4.1.6)

Inserting (4.1.6) in (1.2.15) we obtain

BH (v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j a0
N (xK j )∇v H

li n, j (xK j ) ·∇w H (xK j ), (4.1.7)

where

(a0
N (xK j ))i k =

∫
Y

axK j
(y)

(
∇χ̂i

N ,K j
(y)+ei

)
·
(
∇χ̂k

N ,K j
(y)+ek

)
d y. (4.1.8)

and χ̂i
N ,K j

, χ̂k
N ,K j

are the solutions of (4.1.4).

Remark 4.1.1. Similarly to (4.1.7), we have the following bilinear form

BH (v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j ā0(xK j )∇v H (xK j ) ·∇w H (xK j ), (4.1.9)
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where ā0 is obtained from (4.1.8), assuming the solutions of problem (4.1.3) are computed exactly.

For the analysis in Section 4.5, we also need the auxiliary problem corresponding to the FE

discretization with numerical quadrature of the homogenized problem (1.1.3), i.e., the solution

u0,H of (1.2.10) in Chapter 1.

4.2 Model reduction

Inspired by the parametrization of the solutions of the micro problems (4.1.4) in the reference

domain, we now describe a model reduction strategy for micro functions used in the FE-HMM.

The overall idea is the following. Instead of computing micro functions in each macro elements

at the quadrature points, we identify a small number N of carefully precomputed micro functions

(to construct the RB space), whose supports can be chosen in the whole computational domain

as sketched in Fig.1 (offline stage).

 

 

K 

H 

 δ 

e2 

e1 

𝐾𝛿  

Figure 1: The supports of the RB functions.

In the online stage, the solution of cell problems at the given quadrature points of the macro

elements are then computed in the RB space. No mesh, neither stiffness matrix assembly is

needed for these later problems which require only the solution of small linear systems of size

N ×N . Let Tδ = xτ+ (−δ/2,δ/2)d be a sampling domain centered at xτ ∈Ω, chosen such that

Tδ ⊂Ω. For {(Tδ,eη);Tδ ⊂Ω,η= 1, . . . ,d}, we introduce the space of "cell solutions",

MN (Y ) := {ξ̂η
N ,Tδ

;Tδ ⊂Ω, η= 1, . . . ,d}, (4.2.10)

where ξ̂η
N ,Tδ

(·) : Y →R are the solutions of (4.1.4) associated with the mapping Gxτ , i.e., with a

tensor axτ(y) = aε(Gxτ(y)) and with right-hand side lη(·). The functions ξ̂η
N ,Tδ

are computed very

accurately. The DOF N of the FE space Sq (Y ,N ) is thus assumed to be large.

Affine representation of the tensor. A suitable representation of the tensor axτ(y) is crucial for

the efficiency of the RB method (more precisely, we look for an affine parametrization). The
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simplest case is when axτ(y) is directly available in an affine form

axτ(y) =
Q∑

q=1
Θq (xτ)aq (y), ∀y ∈ Y . (4.2.11)

                    

 

𝑃1(𝑦) 

𝑃2(𝑦) 𝑃4(𝑦) 

𝑃5(𝑦) 

 𝑃6(𝑦) 

 𝑃7(𝑦) 

 𝑃8(𝑦) 

Ω 

Y 
𝑦𝑚 

𝑃3(𝑦) 

Figure 2: The EIM basis functions {Pq (y)}8
q=1 and the interpolation points {ym}8

m=1 on the
reference sampling domain Y .

If a representation as (4.2.11) is not available, the empirical interpolation method (EIM) [37, 77],

can be applied to obtain an affine approximation of axτ(y) in the form

aM
xτ (y) =

M∑
q=1

ϕq (xτ)pq (y). (4.2.12)

The idea is to approximate the function aM
xτ (y) by linear combination of "snapshot" {pxτ1

(y), . . . ,

pxτM
(y)}. For an arbitrary xτ the linear combination to approximate aM

xτ (y) will be based on

interpolation points y1, . . . , yM in Y . The space of snapshots, called SE I M
M = span{pq (y), q =

1, · · · , M } and the interpolation points {ym}M
m=1 are computed in an offline stage with the help of

a greedy algorithm controlled by available a posteriori error estimates. In the online stage for a

given axτ(y) compute (4.2.12) as follows

• evaluate axτ(ym) at the interpolation points {ym}M
m=1;

• solve the interpolation problem (a M ×M linear system)

M∑
q=1

pq (ym)ϕq (xτ) = axτ(ym), m = 1, . . . , M , (4.2.13)

to find ϕq (xτ)M
q=1.
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We refer to Section 4.6 for numerical computations with affine and nonaffine multiscale tensors.

A posteriori error estimator. Crucial for the selection of the reduced basis functions is an

appropriate a posteriori error estimator. For a given sampling domain Tδ ⊂Ω let ξi
N ,Tδ

,ξk
N ,Tδ

∈
Sq (Y ,N ) be the solutions of (4.1.4) with right-hand side li (·), lk (·), respectively, as described

above. Assume next that Sl (Y ) is an l-dimensional linear subspace of Sq (Y ,N ) and consider

ξi
l ,Tδ

,ξk
l ,Tδ

the solution of (4.1.4) in Sl (Y ) with right-hand side li (·), lk (·), respectively. Define the

following two numerical homogenized tensors

(a0
N ,Tδ

(xτ))i k =
∫

Y
axτ(y)

(
∇ξ̂i

N ,Tδ
(y)+ei

)
·
(
∇ξ̂k

N ,Tδ
(y)+ek

)
d y, (4.2.14)

(a0
l ,Tδ

(xτ))i k =
∫

Y
axτ(y)

(
∇ξ̂i

l ,Tδ
(y)+ei

)
·
(
∇ξ̂k

l ,Tδ
(y)+ek

)
d y. (4.2.15)

We first need the following lemma (see [1, Lemma 3.3]).

Lemma 4.2.1. Consider the tensors a0
N ,Tδ

(xτ), a0
l ,Tδ

(xτ) defined in (4.2.14), (4.2.15), respectively.

Then

|(a0
N ,Tδ

(xτ))i k − (a0
l ,Tδ

(xτ))i k | =

|
∫

Y
axτ(y)

(
∇ξ̂i

l ,Tδ
(y)−∇ξ̂i

N ,Tδ
(y)

)
·
(
∇ξ̂k

l ,Tδ
(y)−∇ξ̂k

N ,Tδ
(y))

)
d y |. (4.2.16)

Proof. The proof follows the line of [1, Lemma 3.3]. We sketch it for completeness. As Sl (Y ) ⊂
Sq (Y ,N ) we have

|(a0
N ,Tδ

(xτ))i k − (a0
l ,Tδ

(xτ))i k |

= |
∫

Y
axτ(y)

(
∇ξ̂i

l ,Tδ
(y)−∇ξ̂i

N ,Tδ
(y)

)
·ek d y |

= |
∫

Y
axτ(y)

(
∇ξ̂i

l ,Tδ
(y)−∇ξ̂i

N ,Tδ
(y)

)
·
(
ek +∇ξ̂k

l ,Tδ
(y)−∇ξ̂k

N ,Tδ
(y)

)
d y |

= |
∫

Y
axτ(y)

(
∇ξ̂i

l ,Tδ
(y)−∇ξ̂i

N ,Tδ
(y)

)
·
(
−∇ξ̂k

N ,Tδ
(y)

)
d y |

and the proof follows easily by further adding and subtracting the quantity ∇ξ̂k
l ,Tδ

(y).

Notice that we have used the symmetry in the above proof. This proof is however valid without

symmetry (by using the solution of a dual problem corresponding to (4.1.4), see in [57] or [26,

Lemma 4.6],[23]). Next we derive an a posteriori estimator, which allows to control the accuracy

of our output of interest (the numerically homogenized tensor). The procedure, which follows

standard residual based estimates, is crucial for RB and has been extensively discussed (see [93]
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and [45] for a discussion in the homogenization context). Define

ê i
l ,Tδ

= ξ̂i
l ,Tδ

− ξ̂i
N ,Tδ

. (4.2.17)

Using (4.1.4) we see that

b(ê i
l ,Tδ

, ẑN ) = b(ξ̂i
l ,Tδ

, ẑN )− li (ẑN ), ∀ẑN ∈ Sq (Y ,N ). (4.2.18)

The right-hand side defines a linear form on Sq (Y ,N ). Hence by the Riesz theorem, there exists

a unique ē i
l ,Tδ

∈ Sq (Y ,N ) such that

b(ê i
l ,Tδ

, ẑN ) = (ē i
l ,Tδ

, ẑN )W , (4.2.19)

where (·, ·)W , defined as (v, w)W = ∫
Y ∇v ·∇wd y , denotes the scalar product in the space W (Y )

defined in (1.2.12) or (1.2.13). We notice that ē i
l ,Tδ

can be computed numerically in an efficient

way thanks to the affine representation of the tensor axτ(y). This leads to define the residual of

the a posteriori error estimator as

∆i
l ,Tδ

:=
‖ē i

l ,Tδ
‖W√

λLB

. (4.2.20)

Here λLB is an approximation of the coercivity constant λ described in (1.0.1). To compute ∆i
l ,Tδ

,

one needs to solve (4.2.19), which is parameter dependent. Thanks to the affine representation

of the tensor, (4.2.19) can be decomposed into several parameter independent FE problems that

can be precomputed. Hence, the residual (4.2.20) is cheap to compute which is crucial to get the

efficiency of the a posteriori control in the greedy algorithm (see [92, 96] for details). The next

lemma gives the bound of the error in quantities of interest (e.g., the numerical homogenized

tensors or the cell solutions) in terms of the residual (4.2.20).

Lemma 4.2.2. Let ξ̂i
l ,Tδ

, ξ̂i
N ,Tδ

be the solutions of problem (4.1.4) in Sl (Y ) and Sq (Y ,N ), respec-

tively, and ē i
l ,Tδ

,∆i
l ,Tδ

, a0
N ,Tδ

(xτ), a0
l ,Tδ

(xτ) be the quantities defined above. Assume that the ap-

proximation λLB of the coercivity constant (1.0.1) satisfies 0 <λLB ≤λ. Then we have

‖ξ̂i
l ,Tδ

− ξ̂i
N ,Tδ

‖E ,K j ≤∆i
l ,Tδ

, (4.2.21)

‖ξ̂i
l ,Tδ

− ξ̂i
N ,Tδ

‖W ≤
∆i

l ,Tδ√
λLB

, (4.2.22)(
λLB

Λ
∆i

l ,Tδ

)2

≤ |(a0
N ,Tδ

(xτ))i i − (a0
l ,Tδ

(xτ))i i | ≤ (∆i
l ,Tδ

)2, (4.2.23)
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where Λ is the continuity constant defined in (1.0.1) and ‖ ·‖E ,Tδ is the energy norm defined by

‖v‖E ,Tδ = (b(v, v))1/2 :=
(∫

Y
axτ(y)∇v(y) ·∇v(y)d y

)1/2

. (4.2.24)

Proof. The proof is standard. Plugging ẑN = ê i
l ,Tδ

in (4.2.19) we get ‖ê i
l ,Tδ

‖2
E ,K j

= (ē i
l ,Tδ

, ê i
l ,Tδ

)W .

On one hand, from the coercivity of (4.2.19) and the assumption on λLB we get

‖ê i
l ,Tδ

‖W ≤
‖ē i

l ,Tδ
‖W

λLB
,

hence (4.2.21). On the other hand, using the inequality
√
λLB‖ê i

l ,Tδ
‖W ≤ ‖ê i

l ,Tδ
‖E ,Tδ easily leads to

(4.2.22). The inequality (4.2.23) then follows from (4.2.16), (4.2.21) and the inequality ‖ē i
l ,Tδ

‖W ≤
Λ‖ê i

l ,Tδ
‖W .

Remark 4.2.3. From (4.2.23), we can see that the stability factorλLB plays an important role in the

efficiency of the a posteriori estimator. There are two efficient methods proposed in [72, 96, 92] to

computeλLB . We simply mention them here (notice that for both methods, the affine representation

(4.2.11) of the tensor is required). The simplest method is the "minΘ" method, where λLB (xτ) is

estimated by

λLB (xτ) = ( min
q∈{1,··· ,Q}

Θq (xτ)

Θq (x̄τ)
)λ(x̄τ), (4.2.25)

where x̄τ is a randomly chosen point in Ω. The "minΘ" method, however, requires that the tensor

(4.2.11) satisfies the following properties: (i)Θq (x) > 0, q = 1, · · · ,Q,∀x ∈Ω; (ii) aq (y)ξ ·ξ≥ 0,∀ξ ∈
Rd , y ∈ Y . The above conditions might be restrictive for some applications. A more general but

more involved method is the successive constraint method (SCM). This method is based on an

offline-online strategy. The SCM offline stage relies on a greedy procedure and is costly, but the

online procedure is very efficient. The advantage of this method is that it is a robust and general

method which works for all kinds of affine tensors (we refer to [72, 96] for details).

Offline stage. We select by a greedy algorithm N couple (Tδn ,ηn), where Tδn ⊂Ω is a sampling

domain and ηn corresponds to the unit vector eηn belonging to the set canonical basis of Rd ,

where ηn ∈ {1, . . . ,d}. Corresponding to the N couple (Tδn ,ηn), we compute ξ̂ηn

N ,Tδn
(·), the solution

of (4.1.4) with a tensor given by axτn
(y) (xτn is the barycenter of Tδn ) and a right-hand side given

by lηn (·). The following greedy algorithm to determine successively {(Tδn ,ηn , ξ̂ηn

N ,Tδn
), n = 1, . . . , N }

is based on the usual procedure of the RB methodology (see [93, 96]).

Algorithm 4.2.4 (Greedy procedure). Denote by ‖ · ‖W the norm associated to the space W (Y )

(defined by (1.2.13) or (1.2.12)). Given two parameters, NRB the maximum basis number, and

tolRB a stopping tolerance:

1. Choose randomly (by a Monte Carlo method) Ntr ai n sampling domains Tδn in such a way that
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Tδn ⊂Ω. Define the "training set" ΞRB = {(Tδn ,ηn);1 ≤ ηn ≤ d ,1 ≤ n ≤ Ntr ai n} 1.

2. Select randomly (Tδ1 ,η1) ∈ ΞRB and compute ξ̂η1

N ,Tδ1
, the solution of (4.1.4) with right-hand

side lη1 (·) in Sq (Y ,N ), corresponding to the selected parameters (Tδ1 , η1). Set l = 1 and define

ξ̂1,N (y) =
ξ̂
η1
N ,Tδ1

‖ξ̂η1
N ,Tδ1

‖W
, and the corresponding RB space S1(Y ) = span{ξ̂1,N }.

3. For l = 2, . . . , NRB

a. Compute for each (Tδ,η) ∈ΞRB the solution ξ̂
η

l−1,Tδ
of (4.1.4) with right-hand side lη(·) in

Sl−1(Y ) and the residual ∆ηl−1,Tδ
defined in (4.2.20).

b. Select the next reduced basis by choosing

(Tδl ,ηl ) = ar g max(Tδ,η)∈ΞRB ∆
η

l−1,Tδ
,

provided that max(Tδ,η)∈ΞRB (∆ηl−1,Tδ
)2 > tolRB

2, otherwise the algorithm ends.

c. Compute ξ̂ηl

N ,Tδl
the solution of (4.1.4) in Sq (Y ,N ) corresponding to the selected parameters

(Tδl ,ηl ). Set ξ̂l ,N (y) = Rl (y)
‖Rl (y)‖W

the l−th RB basis function, where

Rl (y) = ξ̂ηl

N ,Tδl
(y)−

l−1∑
m=1

(ξ̂ηl

N ,Tδl
, ξ̂m,N )ξ̂m,N

Define the RB space Sl (Y ) = span{ξ̂1,N , . . . , ξ̂l ,N }. Set l = l +1 and go back to a.

We emphasize that while constructing Sl (Y ), with ξ̂l ,N (y) being a linear combination of the

solutions of (4.1.4), our output of interest is (4.1.8) that can be computed using the RB (see

Lemma 4.2.1). From Lemma 4.2.2, we know that the the square of the residual ∆ηl ,Tδ
gives an

a posteriori error estimate for the output of interest, hence, (∆ηl ,Tδ
)2 is the quantity that needs

to be controlled in the above algorithm. We note that even though (4.1.4) has to be solved for

each parameter inΞRB in the step 3.a., this procedure is moderately expensive as (4.1.4) is solved

in the RB space Sl−1(Y ) of small dimension l −1 ≤ N . A similar remark holds for the residuals

∆
η

l ,Tδ
that need to be computed for each parameter in ΞRB , but only rely for these computations

on precomputed quantities (computed once for the whole offline procedure) and small linear

problems involving the current RB space Sl−1(Y ).

Output of the offline procedure. The output of the above procedure is the RB space

SN (Y ) = span{ξ̂n,N (y), n = 1, .., N }. (4.2.26)

1 Ntr ai n should be large enough to ensure that the results of the greedy algorithm are stable with respect to other
choices of training sets.

2Notice that the error of the outputs of interest scale like the square of the error of the cell functions as can be seen
in Lemma 4.2.1 and 4.2.2.
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Rather than storing the reduced basis functions, using the affine representation (4.2.11) (or

(4.2.12)) described above, the output consists of the following matrices and vectors

(Aq )nm :=
∫

Y
aq (y)∇ξ̂n,N (y) ·∇ξ̂m,N d y, (F i

q )m :=
∫

Y
aq (y)ei ·∇ξ̂m,N (y)d y. (4.2.27)

4.3 Online procedure and the RB-FE-HMM

We define a macro method similar to the FE-HMM, with micro functions computed in the RB

space. The method reads: find uH ,RB ∈ S`0(Ω,TH ) such that

BH ,RB (uH ,RB , v H ) =
∫
Ω

f v H d x, ∀v H ∈ S`0(Ω,TH ), (4.3.28)

with a bilinear form given by

BH ,RB (v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j

|Kδ j |
∫

Kδ j

aε(x)∇vN ,K j (x) ·∇wN ,K j (x)d x, (4.3.29)

where vN ,K j (x) (respectively wN ,K j (x)) is such that vN ,K j − v H
li n, j (x) ∈ SN (Kδ j ) and

∫
Kδ j

aε(x)∇vN ,K j (x) ·∇zN (x)d x = 0, ∀zN ∈ SN (Kδ j ). (4.3.30)

The space SN (Kδ j ) is defined through the mapping GxK j
: Y → Kδ j as

SN (Kδ j ) = span{δξ̂n,N (G−1
xK j

(x)) =: ξn,K j (x), n = 1, .., N }. (4.3.31)

The well-posedness of problem (4.3.28) is proved in the following lemma.

Lemma 4.3.1. Assume that (1.0.1) and that (Q1) hold. Then problem (4.3.28) has a unique

solution.

Proof. Similarly as in [1],[3, Section 3.3.1] we can show that

‖∇v H
li n‖L 2(Kδ) ≤ ‖∇vN ,K j ‖L 2(Kδ) ≤

√
Λ

λ
‖∇v H

l i n‖L 2(Kδ). (4.3.32)

Using (1.0.1) and (Q1) we then obtain

C1‖∇v H‖2
L 2(Ω) ≤ BH ,RB (v H , v H ), BH ,RB (v H , w H ) ≤C2‖∇v H‖L 2(Ω)‖∇w H‖L 2(Ω).

The Poincaré inequality and the Lax-Milgram theorem give the stated result (see again [1],[3,
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Section 3.3.1] for details).

Fast solution of micro-problems. Owing to the affine form (4.2.11) of the tensor aε, the problem

(4.3.30) amounts to solving an N ×N linear system (recall N is small). Indeed, we observe that

by writing vN ,K j − v H
l i n, j (x) =∑N

n=1αnξn,K j (x) (4.3.30) reads

N∑
n=1

αn

∫
Kδ j

aε(x)∇ξn,K j (x) ·∇ξm,K j (x)d x =−
d∑

i=1

∫
Kδ j

aε(x)ei ·∇ξm,K j (x)d x
∂v H

li n, j

∂xi
, (4.3.33)

for all m = 1, . . . N . Next, again thanks to the affine representation of the tensor (here we are

assuming the representation (4.2.11) for simplicity), (4.3.33) can be written as

N∑
n=1

αn

Q∑
q=1

Θq (xK j )
∫

Y
aq (y)∇ξ̂n,N (y) ·∇ξ̂m,N (y)d y

=−
d∑

i=1

Q∑
q=1

Θq (xK j )
∫

Y
aq (y)ei ·∇ξ̂m,N (y)d y

∂v H
l i n, j

∂xi
, (4.3.34)

or equivalently

(
Q∑

q=1
Θq (xK j )Aq

)
α=−

d∑
i=1

(
Q∑

q=1
Θq (xK j )F i

q

)
∂v H

li n, j

∂xi
, (4.3.35)

where the N ×N matrices Aq , q = 1, . . . ,Q and the vectors F i
q ∈ RN , q = 1, . . . ,Q, i = 1, . . . ,d are

defined by (4.2.27).

We emphasize that the matrices Aq and the vectors F i
q are assembled and stored in the offline

stage, thus (4.3.35) amounts just in building the linear combination by evaluating Θq (·) at the

desired integration points xK j (or computing the interpolation problem (4.2.12) when we rely on

the approximation (4.2.12) for the tensor axτ(y)) and solving the N ×N system (4.3.35) for each

micro function at the quadrature points needed to assemble (1.2.15).

Reformulation of the RB-FE-HMM. Similar to the reformulation (4.1.7) for the FE-HMM, we

have

BH ,RB (v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j a0
N (xK j )∇v H

li n, j (xK j ) ·∇w H
li n, j (xK j ), (4.3.36)

where

(a0
N (xK j ))i k =

∫
Y

axK j
(y)

(
∇χ̂i

N ,K j
(y)+ei

)
·
(
∇χ̂k

N ,K j
(y)+ek

)
d y. (4.3.37)
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which is easily seen by noting that vN ,K j (x), the solution of (4.3.30), can be written as

vN ,K j (x) = v H
li n, j (x)+δ

d∑
i=1

χ̂i
N ,K j

(G−1
xK j

(x))
∂v H

l i n, j

∂xi
, (4.3.38)

where χ̂i
N ,K j

(y) is the solution of (4.1.4) in the RB space (4.2.26).

4.4 Reconstruction of the micro solution

We briefly explain a procedure to obtain an approximation to the fine scale solution uε of problem

(4.0.1). While an error estimates ‖uε−uH ,RB‖ can be obtained in the L 2 norm for locally periodic

tensor (see Section 4.5), one cannot expect convergence between ∇uε and ∇uH ,RB , as uH ,RB

does not capture the fine scale oscillations of the solution (we do not have strong convergence

of ∇uε towards ∇u0 in general). Inspired by the correctors in homogenization theory [74], a

numerical corrector for the FE-HMM has been introduced in [1, 60]. A numerical corrector,

computed in a post-processing step can also be defined for the RB-FE-HMM. Here we present

two approaches for such reconstruction.

For the first approach, which follows the procedure for the FE-HMM, we assume piecewise

linear macro solver. For any K ∈ TH , we consider the function uN ,K −uH ,RB known in the

sampling domain Kε (see (4.3.30)). We then consider its periodic extension in K denoted by

(uN ,K −uH ,RB )|PK and define a corrector in every macro element K as

up (x)|K = uH ,RB + (uN ,K −uH ,RB )|PK . (4.4.39)

An error estimate for this procedure is available for the FE-HMM in [1, Thm. 3.11] Also simple,

this procedure requires to store the micro solutions in the sampling domains, and the periodic

extension might be cumbersome, specially for three dimensional problems with simplicial

elements. However, thanks to the precomputed RB space, the computational cost to solve a

micro cell problem in the present framework is largely reduced. This allows to consider a second

approach for the construction of numerical correctors. For a sampling domain of size ε, given

x ∈ K ∈TH , we can evaluate the reconstructed solution at this particular point by using

uε
p,RB (x)|K = uH ,RB (x)+ε

d∑
i=1

χ̂i
N ,Tε

(G−1
x (x))

∂uH ,RB
li n (x)

∂xi
, (4.4.40)

where Tε = x + (−ε/2,ε/2)d and χ̂i
N ,Tε

(G−1
x (x)) can be computed by solving (4.1.4) in the re-

duced basis space SN (Tε). We note that the second reconstruction procedure (4.4.40) allows

to use higher order macro FEMs, whereas for the first procedure (4.4.39), it would require an

interpolation procedure.
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4.5 A priori error analysis

In this section, we derive an a priori error estimate for the RB-FE-HMM. While a component of

the error (relying on the approximation property of the greedy algorithm) relies on assumptions

difficult to check in practice, by providing the analysis proposed here, describing the various

contributions to the global error is nevertheless of interest. Following [3], an error estimate

similar to (1.2.17) can be derived for the RB-FE-HMM.

Theorem 4.5.1. Let u0, uH ,RB be the solutions of (1.1.3) and (4.3.28), respectively, and that assume

that u0 ∈ H `+1(Ω). Assume further that (Q1), (Q2) and (1.0.1) hold and that the tensor a0(x)

appearing in (1.1.3) is sufficiently regular. Then

‖u0 −uH ,RB‖H 1(Ω) ≤C (H`+ rH M M ), (4.5.41)

‖u0 −uH ,RB‖L 2(Ω) ≤C (H`+1 + rH M M ), (4.5.42)

where

rH M M = sup
K∈TH

sup
xK j ∈K

‖a0(xK j )−a0
N (xK j )‖F , (4.5.43)

and where the tensor a0
N is defined in (4.3.37) and a0(xK j ) is the tensor of the homogenized problem

(1.1.3) evaluated at the quadrature point xK j . The constant C is independent of H, N ,N or ε.

Proof. Decompose the error into (‖ ·‖ stands for the L 2 or H 1 norm)

‖u0 −uH ,RB‖ ≤ ‖u0 −u0,H‖+‖u0,H −uH ,RB‖,

where u0,H is the solution of (1.2.10).

Following [54], we obtain ‖u0 −u0,H‖H 1(Ω) ≤C H` and ‖u0 −u0,H‖L 2(Ω) ≤C H l+1 for sufficiently

regular tensor a0. We then have

‖u0,H −uH ,RB‖H 1(Ω) ≤C sup
w H∈S`0 (Ω,TH )

|B0,H (u0,H , w H )−BH ,RB (uH ,RB , w H )|
‖w H‖H 1(Ω)

.

Using the expressions (1.2.11) and (4.3.36) for B0,H and BH ,RB , respectively, together with (Q2),

we can bound the right-hand side of the above inequality by C supK∈TH
supxK j ∈K ‖a0(xK j )−

a0
N (xK j )‖F ‖u0,H‖H 1(Ω). Using the a priori bound ‖u0,H‖H 1(Ω) ≤ C‖ f ‖H −1(Ω) completes the

proof.

We further decompose

rH M M ≤ rMOD + rM IC + rRB ,
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with

rMOD := sup
K∈TH

sup
xK j ∈K

‖a0(xK j )− ā0(xK j )‖F ,

rM IC := sup
K∈TH

sup
xK j ∈K

‖ā0(xK j )−a0
N (xK j )‖F ,

rRB := sup
K∈TH

sup
xK j ∈K

‖a0
N (xK j )−a0

N (xK j )‖F ,

where a0
N

(xK j ) is defined in (4.1.8) and ā0(xK j ) is the tensor appearing in (4.1.9). Error bounds

for the micro error rM IC were first presented in [1] for linear elliptic problems and generalized to

high order in [3] (see also [4, Lemma 6]). Error bounds for the modeling error were first presented

in [60] (see also [22] for a situation where rMOD vanishes). The aforementioned error estimates

can directly be used for the RB-FE-HMM. It remains to estimate rRB . Consider the space MN (Y )

as defined in (4.2.10). We want to quantify how well MN (Y ) can be approximated by the linear

space SN (Y ) of dimension N . Such a quantification relies on the notion Kolmogorov N-width.

Definition 4.5.2. Let F be a subset of W (Y ). We denote the distance of F to any generic N−dimensional

subspace WN (Y ) of W by

E(F ;WN ) = sup
x∈F

inf
y∈WN

‖x − y‖W .

The minimal error E(F ;WN (Y )) is given by the Kolmogorov N-width of F in W

dN (F,W (Y )) = inf{E(F ;WN (Y )) : WN (Y ) a N−dimensional subspace of W (Y )}.

It is difficult in general to quantify the Kolmogorov N-width of a given subset of W (Y ). In-

voking regularity of the set MN (Y ) with respect to the parameters one expects usually a fast

(e.g. exponential) decay of dN . Assuming such a decay, it is not obvious that the particular

N −di mensi onal subspace of W (Y ) constructed with the greedy algorithm enjoys such an

approximation property. This has been proved in [43, 48]. More precisely the application of [48,

Corollary 3] shows the following result. Assume that the parametrized cell solution space MN

has an exponentially small Kolmogorov N-width dN (MN ,W ) ≤ ce−r N , with r satisfying

r > log(1+ (Λ/λLB )
p
Λ/λ), (4.5.44)

where λ,Λ are the coercivity and continuity bounds (1.0.1) and λLB is the approximation of

the coercivity constant used in the greedy algorithm (see Section 3.2). Then the reduced basis
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method converges exponentially in the sense that there exists a constant s > 0 such that

‖χ̂k
N ,K j

(y)− χ̂k
N ,K j

(y)‖W ≤Ce−sN , (4.5.45)

for all K ∈TH and all xK j ∈ K .

Theorem 4.5.3. In addition to the assumption of the Theorem 4.5.1, assume that the parametrized

cell solution space MN has an exponentially small Kolmogorov N-width dN (MN ,W ) ≤ ce−r N ,

where r satisfies (4.5.44). Then,

‖u0 −uH ,RB‖H 1(Ω) ≤C (H`+e−2sN + rM IC + rMOD ), (4.5.46)

‖u0 −uH ,RB‖L 2(Ω) ≤C (H`+1 +e−2sN + rM IC + rMOD ). (4.5.47)

If in addition χi , i = 1, . . . ,d, the solutions (4.1.3) in W (Y ) (see (1.2.13) (1.2.12)) satisfy

|χi |H q+1(Kδ j ) ≤Cε−q
√

|Kδ j |, (4.5.48)

with C independent of ε, the quadrature point xK j , then

‖u0 −uH ,RB‖H 1(Ω) ≤C (H`+e−2sN +
(h

ε

)2q + rMOD ), (4.5.49)

‖u0 −uH ,RB‖L 2(Ω) ≤C (H`+1 +e−2sN +
(h

ε

)2q + rMOD ), (4.5.50)

where ĥ = h
ε is the microscopic meshsize for the micro problems of the offline stage, i.e., ĥ =

O (N −1/d ).

If in addition aε(x) = aε(x, x/ε) = a(x, y) is Y -periodic in y, and ai j (x, y) ∈C
(
Ω̄;W 1,∞

per (Y )
)

for all

i , j = 1, . . . ,d , then

rMOD = 0 if W (Kδ j ) =W 1
per (Kδ j ) and δ/ε ∈N, (4.5.51)

rMOD ≤C (δ+ ε

δ
) if W (Kδ j ) =H 1

0 (Kδ j ) (δ> ε). (4.5.52)

Proof. The estimates (4.5.46),(4.5.47) follow from Theorem 4.5.1, (4.5.45) and Lemma 4.2.1. The

estimates (4.5.49),(4.5.50) follow from Theorem 4.5.1, the estimates for the fully discrete error in

[1] [5, Corollary 10] (see also [3, Lemma 10] and [4]). The estimate (4.5.52) has been proved in

[60] and the estimate (4.5.51) in [22].

We notice that using the estimate ‖uε−u0‖L 2(Ω) ≤Cε valid for locally periodic tensor we can
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obtain an error estimate

‖uε−uH ,RB‖L 2(Ω) ≤C (H`+1 +e−2sN +
(h

ε

)2q +ε+ rMOD ),

measuring the approximation of uH ,RB to the fine scale solution in the L 2 norm. In Theorem 4.3,

various aspects of the convergence behavior of the RB-FE-HMM are described. The overall goal of

the RB-FE-HMM is to obtain an approximation of the effective solution u0. If the effective tensor

would be available, then, rates of convergence such as H` or H`+1 for the H 1 or L 2 norm could

be obtained, provided adequate regularity of the effective solution u0. For effective solution with

singularities, appropriate adaptive mesh refinement techniques could be used. In both case, the

rate of convergence is described by classical FE analysis. To obtain similar convergence rates in

terms of the macroscopic meshsize with the RB-FE-HMM, we need to control the errors arising

from the multiscale methodology and the use of micro solvers to recover the unknown effective

data. These various errors are listed below

1. The microscopic error
(

h
ε

)2q
, where ĥ = h

ε =O (N −1/d ) is the microscopic meshsize and q the

order of the FEM used for the micro problems in the offline stage. In the RB framework, we use a

very accurate meshsize for this offline problems, i.e., micro solvers with large value N o f DOF .

This effort is compensated by the fact that we solve micro problems only for a fixed (usually

small number) of sampling domains distributed in the macroscopic physical computational,

compared to the classical FE-HMM, where micro problems with DOF proportional to the macro

DOF have to be solved in every macro elements (notice that in this case, not only the microscopic

DOF but also the number of sampling domains increase while refining the macro mesh);

2. The a priori RB error e−2sN , which quantifies how well the infinite dimensional manifold of

solutions of micro problems can be approximated by a low dimensional linear subspace, explain-

ing why a small number of micro problems usually suffice in the offline stage. In applications,

however, the RB a priori estimate is not used (and usually not known), but this a priori error can

be bounded (on both sides) by the RB a posteriori estimate which is computed during the RB

procedure;

3. The modeling error, which indicates the influence of the micro solutions on the sampling do-

main sizes and and micro boundary conditions. In general, this is a delicate question already for

the FE-HMM (without RB) and still a subject of investigation (see the discussion and references

in the reviews [3, 4]). In particular cases, for example for locally periodic tensors with period ε, if

we set the cell domain size ε and choose the center of the cells at the quadrature points, then

modeling error vanishes, i.e., rMOD = 0.

4.6 Numerical examples

In this section we apply the RB-FE-HMM to four test problems. The first three examples are 2D

problems with an affine tensor, a discontinuous affine tensor and a nonaffine tensor, respectively.

The fourth example is a 3D problem, representing heat transfer in a microchip first described

in [19] for the FE-HMM. In the offline stage, the micro functions are computed in the reference
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domain Y using a uniform mesh. We also use a uniform macroscopic mesh for the online

procedure to compute the RB-FE-HMM solution. Notice that nonuniform meshes could be

similarly used. Higher order implementation for 2D is inspired by [39] and for the 3D problem,

we use the software CUBIT version 11.1 [98] to generate the macroscopic tetrahedral mesh for

the discretization of the considered domain.

Numerical evaluation of the errors. Let uH be the numerical solution and ur e f be a reference

solution (for the problem (1.1.3)) computed on a fine triangulation Th . The error ur e f −uH in

the H 1 and L 2 norms are estimated by

eL 2 := ‖ur e f ‖−1
L 2(Ω)

( ∑
K∈Th

J∑
j=1

ρK j |uH (zK j )−ur e f (zK j )|2)1/2,

eH 1 := ‖ur e f ‖−1
H 1(Ω)

( ∑
K∈Th

J∑
j=1

ρK j |∇uH (zK j )−∇ur e f (zK j )|2)1/2,

where we will use ‖ur e f ‖H 1(Ω) ∼ (
∑

K∈TH
‖∇ur e f ‖2

L 2(K )
)1/2. Here {zK j ,ρK j } are quadrature points

on the fine triangulation Th chosen such that the quadrature formula is exact for the degree of

the piecewise polynomials used to compute ur e f .

Stability factor computation for the a posteriori error estimates. As explained in Remark

(4.2.3), an estimation of the stability factor λLB is crucial to control the accuracy of the out-

puts of the greedy algorithm. In the numerical experiments below, we will use the “minΘ"

method when it can be applied (see Remark (4.2.3)), namely for the 2D and 3D affine examples,

and the SCM otherwise (for the 2D discontinuous and nonaffine examples).

4.6.1 2-D problems.

LetΩ= [0,1]2. We consider the following problem

−∇· (aε(x)∇uε(x)) = 1, in Ω,

uε(x) = 0, on ∂ΩD ,

n · (aε(x)∇uε(x)) = 0, on ∂ΩN , (4.6.53)

where for x = (x1, x2), ∂ΩD = {x1 = 0}∪ {x1 = 1} and ∂ΩN = {x2 = 0}∪ {x2 = 1}. We will choose

various oscillating tensors aε for the above problem. The tensors are chosen so that the ho-

mogenized tensors can be easily computed to be able to perform careful numerical test on the

behavior of the experimental convergence of the RB-FE-HMM. We emphasize that our numerical

method can be applied to more general problems, when an explicit form of the homogenized

tensor is not available (e.g., non-periodic or random tensors).
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2D affine multiscale tensor. We consider

a
(
x,

x

ε

)
=

(
x2

1 +0.2+ (x2 +1)(sin(2π x1
ε )+2) 0

0 x2
2 +0.05+ (x1x2 +1)(sin(2π x2

ε )+2)

)
,

with a corresponding diagonal homogenized tensor given by

a0
11(x) =

∫ 1

0

1

x2
1 +0.2+ (x2 +1)(sin(2πy1)+2)

d y1)−1

a0
22(x) = (

∫ 1

0

1

x2
2 +0.05+ (x1x2 +1)(sin(2πy2)+2)

d y2)−1 (4.6.54)

In the offline stage, we use the P1-FEM and the P2-FEM respectively, to compute the RB for the

micro problems, that is, we take the FE space Sq (Y ,N ) with q = 1,2, with a large number of

DOF (as usual in the RB methodology). Periodic coupling is used (i.e., Sq (Y ,N ) is chosen to be a

subspace of (1.2.12)). We also choose sampling domains that match the length of the period of

aε. To make a fair comparison, we take the same initial sample set ΞRB for the computations

with the P1 and the P2 FEM. In both cases, the tolerance, set to tolRB = 5e-11, is reached by the a

Table 4.1: Parameters for the offline stage (affine tensor).

Offline stage P1-FEM P2-FEM
Meshsize for the micro reference domain Y 1500×1500 1200×1200
Initial sample points number ΞRB ⊂Ω 800 800
Tolerance for the offline stage tolRB 5e-11 5e-11
Stability factor method minΘ min Θ
RB number 10 10
Final a posteriori error 1.7059e-12 2.7682e-11
Offline CPU time(s) 5330 42724

posteriori estimator after the selection of 10 reduced basis. The CPU time in second is reported

for our MATLAB computations. We see that the P2 FEM is approximately 8 times more expensive

than the P1 FEM for the offline stage. In Fig. 3, we report the decay of the a posteriori error

(∆ηl ,Tδ
)2 that is fast, as expected.

With these precomputed RB spaces of micro solutions (obtained with P1 and P2 FEM), we

now perform online computation and compute the macro solution uH ,RB with the RB-FE-

HMM. We use P1, P2 and P3 macro FEMs to compute uH ,RB . The macro meshsize is chosen as

2−n , n = 3, . . . ,8. A reference solution ur e f is computed by solving (1.1.3) with a tensor given by

(4.6.54) using a FEM with a 1024×1024 mesh and piecewise polynomials of total degree 3. The

behavior of the error of the RB-FE-HMM is shown in Fig. 4. In view of the estimates of Theorem

4.5.3, we can make the following observations. First, we notice that rMOD = 0 as we have periodic

boundary conditions for the RB-FE-HMM and sampling domains of size ε. According to the

a priori estimates (4.5.50), (4.5.49), the micro error rM IC should be of the order of 10−7,10−13

for the P1, P2 offline computation, respectively, while the macro error should be of the order
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(b) P2-Offline A posteriori Error

Figure 3: Affine tensor a posteriori error max(Tδ,η)∈ΞRB (∆ηl ,Tδ
)2.

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

NMacro

A
ffi

ne
 L

2   E
rr

or

 

 

Off−P1−On−P1
Off−P1−On−P2
Off−P1−On−P3

(a) Offline P1-FEM L 2 Error
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(b) Offline P1-FEM H 1 Error
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(c) Offline P2-FEM L 2 Error
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(d) Offline P2-FEM H 1 Error

Figure 4: Affine tensor example ‖uH ,RB −ur e f ‖. The offline and RB space parameters are in Table
4.1. Online solver is P1-FEM, P2-FEM, P3-FEM respectively. The dashed lines are the reference
lines with slopes 2,3,4 for (a)-(c) and slopes 1,2,3 for (b)-(d).

2−n·(P+1), 2−n·P for the L 2 and H 1 errors, respectively, where P is the order of the macro FEM

and n = 3, . . .8. For the computations with P1 polynomials in the offline stage, the results are
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in accordance with the theoretical results. Whenever the macro error reaches 10−7, we lose

the expected convergence rates which may indicate that micro errors are of the same order of

accuracy (this can be seen in Fig. 4 (a)-(b)).

For the computation with P2 polynomials in the offline stage, one would expect the effect of

micro errors appearing for macro errors around 10−13, but we see in Fig. 4 (c) that the expected

convergence rates are lost for errors around 10−11. Here we think that what is seen is the rRB

error term, i.e., the accuracy of the reduced basis procedure. Indeed, according to the a posteriori

error estimator (controlling this latter error), the accuracy reached for P2 polynomials in the

offline procedure with the given mesh is around 10−11 (see Table (4.1)).

How does the RB-FE-HMM compare with the FE-HMM? We next show some comparisons with

uH ,RB computed with P1 offline and online polynomials.

Table 4.2: Comparison between RB-FE-HMM (P1-FEM as offline and online solver) and FE-HMM
(P1-FEM as micro and macro solver) for the L 2 error.

RB-FE-HMM RB-FE-HMM FE-HMM
offline mesh 350×350 offline mesh 500×500

Mesh L 2 Error L 2 Error L 2 Error
8×8 0.0161 0.0161 0.0176

16×16 0.0040 0.0040 0.0044
32×32 0.0010 0.0010 0.0011
64×64 2.5347e-04 2.5306e-04 2.7702e-04

128×128 6.3969e-05 6.3561e-05 6.9259e-05
256×256 1.6599e-05 1.6184e-05 1.7315e-05

Table 4.3: Comparison of CPU time between the RB-FE-HMM (P1-FEM as the offline and online
solver) and the FE-HMM (P1-FEM as the micro and macro solver). The offline CPU time is 193s
with meshsize 350×350 and 424s with meshsize 500×500.

RB-FE-HMM FE-HMM
Online CPU Time (s) CPU Time (s)

Mesh with 1 processor with 1 processor
8×8 0.03 0.14

16×16 0.10 0.98
32×32 0.28 109
64×64 1.21 1760

128×128 4.92 27504
256×256 20.33 332410

We choose two different offline meshes, namely 350×350 and 500×500 and obtain 10 RB (as

previously). For the FE-HMM solution uH , we use P1-FEM for both the macro and micro solvers,

where simultaneous refinement is needed according to estimates (1.2.17), (1.2.18)rmic. The

errors in the L 2 norm and the computation time are reported in Tables 4.2 (error) and 4.3

(computation time). In Table 4.2, we see that the offline mesh of size 350×350 is fine enough to

get the optimal (quadratic) convergence rate. The simultaneous refinement for the FE-HMM,
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i.e., H ' (h/ε) ' 2−n , n = 3, . . .8, also gives the optimal (quadratic) convergence rate. The errors

for both methods are similar. Now we compare in Table 4.3 the computation time. Taking into

account the offline stage, we see that the total cost is an order of magnitude smaller for the

RB-FE-HMM except for very coarse macro meshes, where overhead given by the cost of the

offline computation for the RB-FE-HMM dominates the cost for the FE-HMM. As can be seen

from these computations, for errors smaller than 10−4, the RB-FE-HMM is always more efficient

than the FE-HMM.

Notice that in our comparisons between the FE-HMM and the RB-FE-HMM we only used P1

online macro FEMs. Because of the increasing number of cell problems that need to be solved

for the FE-HMM when using higher order macro polynomials (due to the increasing number

of quadrature points and related sampling domains), this method becomes very expensive. In

contrast, only the macro assembly is affected in the RB-FE-HMM (similarly as for standard FEM)

when using higher order macro solver. Thus for the RB-FE-HMM the cost of increasing the

degree of the macro polynomials is proportional to the macro DOFs only and is similar to the

cost of increasing the polynomials degree in standard FEM.

2D affine multiscale discontinuous tensor. In this example, we test the RB-FE-HMM on a

problem with an oscillating tensor discontinuous on the sampling domains. Such tensors

prevent the use of fast microsolvers (e.g., based on pseudo-spectral methods as proposed in [15]).

This is why we distinguish in our experiments continuous versus discontinuous affine tensors.

We assume that the reference domain is divided into three subdomains Y = YA ∪YB ∪YC with

different tensors in the different domains, discontinuous at the interfaces. The tensor is defined

by

a(x,
x

ε
) = aA(x,

x

ε
)I A +aB (x,

x

ε
)IB +aC (x,

x

ε
)IC ,

where I A , IB , IC are the indicator functions of the domains YA ,YB ,YC and aA(x, x
ε ), aB (x, x

ε ),

aC (x, x
ε ) are diagonal tensors with entries given by

aA,i i (x,
x

ε
) =

{
x2

1 +0.2+ (x2 +1)(sin(2π x1
ε )+2), i = 1

x2
2 +0.05+ (x1x2 +1)(sin(2π x2

ε )+2), i = 2

aB ,i i (x,
x

ε
) =

{
3x1 +x2

2 +0.5, i = 1

e(−x1−x2)(cos(2π x1
ε )+2), i = 2

aC ,i i (x,
x

ε
) = x1 +x2 +1, i = 1,2.

Notice that the above tensor could model a material having different phases with different

conductivity properties in each phase. The discontinuities over the phases are illustrated in Fig.

5 (b)-(c). Table 4.4 provides information of the offline stage.

For this example, we use the FE-HMM solution with fine micro and macro meshes to compute a

reference solution (we choose a grid of 512×512 for the micro and macro meshes, respectively).

We display in Fig. 6 (a) the RB-FE-HMM solution with macro mesh 128×128. In Fig. 6 (b) we

report the L 2 and H 1 convergence rates (as we refine the macro mesh for the RB-FE-HMM). As
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A B

C BB

B

A

 A  A

(a) The substructure of the micro reference domain.

(b) Upper diagonal term of a(x, x
ε ) = a(x, y) with

(x1, x2) = (0.5,0.5).
(c) Lower diagonal term of a(x, x

ε ) = a(x, y) with
(x1, x2) = (0.5,0.5)

Figure 5: Domain and tensor.

Table 4.4: Parameters for RB-FE-HMM offline stage (discontinuous tensor).

Meshsize for the micro reference domain Y 901×901
Initial sample points number ΞRB ⊂Ω 800

Tolerance of the offline stage tolRB 1e-07
Offline solver P1-FEM

Method used to compute the stability factor SCM
RB number 40
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can be seen, we obtain optimal convergence rates for this example. This shows the efficiency of

the RB strategy in situations (discontinuous tensors) that prevent the use of fast micro solvers

taking advantage of the smoothness of the micro solution.

(a) uH ,RB
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(b) ‖uH ,RB −ur e f ‖

Figure 6: RB-FE-HMM for discontinuous tensor. (a). RB-FE-HMM solution computed with a
128×128 online macro mesh. (b). The error ‖uH ,RB −ur e f ‖ is displayed, where 40 reduced bases
are used for uH ,RB . The online solver is a P1-FEM. The reference solution ur e f is computed by
the FE-HMM with 512×512 micro and macro meshes. The dashed lines are the reference lines
with the slope 1, 2, respectively.

2D nonaffine multiscale tensor. For the last 2-dimensional example, we consider a tensor that

is not in affine form. As mentioned in Section 4.2, we have to apply the EIM to obtain an affine

representation of the tensor to implement the RB methodology. We take a tensor of the form

a(x,
x

ε
)11 =

(√
(x2

1 + sin(2π
x1

ε
)+1.2)(x1x2 + sin(4π

x1

ε
)+1.5)

)−1

a(x,
x

ε
)22 =

(
(x1x2 + sin(5π

x2

ε
)+1.2)(x2

2 cos(2π
x2

ε
)+x1 +1.5)

)−1

a(x,
x

ε
)12 = a(x,

x

ε
)21 = 0

chosen in such a way that the homogenized tensor can be computed easily for numerical

comparison purpose. It is given by

a0
11 =

(∫ 1

0

√
(x2

1 + sin(2πy1)+1.2)(x1x2 + si n(4πy1)+1.5)d y1
)−1

a0
22 =

(∫ 1

0
(x1x2 + sin(5πy2)+1.2)(x2

2 cos(2πy2)+x1 +1.5)d y2
)−1

a0
12 = a0

21 = 0
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In Table 4.5 we report the parameters of the EIM offline stage. We obtained 19 affine terms for

the first diagonal entry of a(x, x
ε ), and 26 terms for the second diagonal entry.

Table 4.5: Parameters for EIM offline stage.

Initial sample points number ΞE I M ⊂Ω 600
Tolerance of the EIM tolE I M 1e-06
Number affine terms for (a(x, x

ε ))11 19
Number affine terms for (a(x, x

ε ))22 26
EIM CPU time(s) 5461

Table 4.6: Parameters for the RB-FE-HMM offline stage.

Meshsize for the micro reference domain Y 1200×1200
Initial sample points number ΞRB ⊂Ω 800
Tolerance of the offline stage tolRB 1e-08
Offline solver P1 FEM
Method used to compute the stability factor SCM
RB number 13
Offline CPU time (s) 57354
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(a) L 2 Error
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(b) H 1 Error

Figure 7: Problem with nonaffine tensor. The error ‖uH ,RB −ur e f ‖ is displayed, where 13 reduced
bases are used for computing uH ,RB . The offline parameters are reported in Table 4.6. For the
online macro solver P1-FEM, P2-FEM, P3-FEM are used. The dashed lines are the reference lines
with slope equal to 2,3,4 in Fig. (a) and 1,2,3 in Fig. (b). The homogenized FE solution ur e f is
computed with a P3-FEM on a fine mesh of size 1024×1024.

Next, we report the parameters of the RB-FE-HMM offline stage in Table 4.6. Since the error

from the EIM process also influences the output accuracy of the offline stage, we choose a lower

accuracy requirement for the offline stage and fix tolRB to be 10−8. This tolerance is met by the

the a posteriori error estimator of the greedy procedure after the selection of 13 bases. As we fix

the tolerance at 10−8, we do not expect to get optimal convergence rates when the error is smaller
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than this threshold. Observe that here, an additional error term should appear in the rH M M error

described in Theorem 4.5.1, namely the approximation error due to the EIM. Experimentally

we observe a plateau when the error reaches 10−7. Until this threshold, we observe in Fig. 7

optimal convergence for the RB-FE-HMM (with P1, P2 or P3 macro FEMs). Let us mention that

the tensor chosen here is continuous and that the performance of the EIM may decrease when

the coefficients vary discontinuously within a sampling domain (see [46, Chapter 5]).

4.6.2 3-D test problem.

The FE-HMM, as any numerical homogenization methods, can be costly for three-dimensional

problems, due to the repeated computations of micro problems on sampling domains, each

of them involving an increasing number of DOF as the mesh on the computational domain

is refined (remember that this requires the micro mesh on the sampling domain to be refined

simultaneously to the macro mesh).

The problem considered here is the heat transfer in a microchip (see Fig.8), as described in [19].

The volume of the smallest box containing the microchip is 12.2×12.2×1 mm3. The macro

Mold resin
IC Chip Lead frame

Figure 8: 3D Macro domain structure [19].

domain Ω is composed of three parts, Ω=Ωchi p ∪Ωlead f r ame ∪Ωr esi n , the domains of the chip,

the leadframe and the package, respectively (see Fig. 8). The model equation is given by

−∇· (aε∇uε) = f in Ω,

n · (aεuε)+αuε = gR on ∂Ω, (4.6.55)

where gR = 5863[ W
m2 ] and α= 20 and

f =
{

1.87×108[ W
m3 ] x ∈Ωchi p ,

0 other wi se.
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Here gR represents the heat flux entering the domain and the heat exchange with the ambi-

ent temperature and f is a heat source representing the power of the chip. We take different

conductivity tensors for each component. All the tensors are diagonal and given by

aεi i ,chi p = 140,

aεi i ,l ead f r ame = 400e20(x2
1+x2

2 )
1
2 +400(cos(x3π)+1.5)(cos(2πxi /ε)+1.1),

aεi i ,r esi n =


1

sin(6πx2)+1.6 +3(cos(πx3)+1.5x2
1 +1.1)(sin(4πx1/ε)+1.1) i = 1,

1
sin(6πx2)+1.6 +3(cos(πx3)+1.5x2

1 +1.1)(cos(πx2/ε)+1.2) i = 2,
2

sin(6πx2)+1.6 +3(cos(πx3)+1.5x2
1 +1.1)(cos(6πx3/ε)+1.2) i = 3.

We notice that aεchi p is constant and we do not need to solve any cell problem on the domain

Ωchi p . We thus apply the RB-FE-HMM strategy on Ωlead f r ame and Ωr esi n respectively. Table 4.7

displays the RB offline parameters. We see that 20 reduced bases are needed for this problem.

Table 4.7: 3D RB-FE-HMM offline parameters.

Domain Initial sample points number Offline mesh tolRB RB number
Ωlead f r ame 400 220×220×220 1e-10 11
Ωr esi n 600 220×220×220 1e-10 9

Figure 9: 3D RB-FE-HMM solution uH ,RB . The offline parameters are reported in Table 4.7.
Online DOF: 37011.

A solution of problem (4.6.55) computed with the RB-FE-HMM is shown in Fig. 9. For this

computation a macro mesh with 37011 DOF is used. In Table 4.8, we show error estimates when

comparing the RB-FE-HMM solution uH ,RB with a numerically computed reference solution

ur e f for the homogenized problem. For 3D problems, it is not a trivial task to compute an
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accurate reference solution. The reference solution is computed as follows. As aεlead f r ame and

aεr esi n are diagonal tensors, the corresponding homogenized tensors a0
i i ,lead f r ame and a0

i i ,r esi n

are the harmonic averages of the fine scale tensors. These harmonic averages (involving 1D

integrals) are further evaluated by using an accurate numerical integration scheme.

Because of the difficulty to obtain an accurate reference solution, we only display the accuracy

of the RB-FE-HMM for one refinement step. A refinement step (corresponding roughly to a

meshsize divided by two), starting with the initial mesh with 37 011 DOF (corresponding to 190

081 tetrahedra), leads to 278 123 DOF (corresponding to 1 520 648 tetrahedra). The reference

solution is computed with a mesh with 2 108 977 DOF (corresponding to 12 165 184 tetrahedra).

We display in Table 4.8 the error in various norms, when we refine the macro mesh. We see that

the H 1 and the L 2 errors have the expected decay rate.

Table 4.8: Error estimates for problem (4.6.55). The solution ur e f is computed with 2108977
DOF, ‖ur e f ‖A = 24.2616.

Online mesh DOF ‖uH ,RB‖A ‖uH ,RB −ur e f ‖L 2(Ω) ‖uH ,RB −ur e f ‖H 1(Ω)
‖uH ,RB−ur e f ‖L∞(Ω)

‖ur e f ‖L∞(Ω)

37011 24.2465 0.0001665 0.0214941 0.0002173
278123 24.2604 5.6277e-05 0.0081573 7.9756e-05

We emphasize that once the reduced 20 bases are computed in the offline stage, the online stage

is quite inexpensive. In contrast, computations with the FE-HMM would require to solve a very

large number of cell problems on sampling domains (about 1.5 million for the mesh with 278

123 DOF), with a meshsize adapted to the rate of decay of the macro meshsize. For a macro

mesh that is not overly coarse (this is already required to properly represent the geometry of the

microchip), a computation with the FE-HMM is much more costly than with the RB-FE-HMM,

even for a single computation when taking into account the offline and the online costs for this

latter method. For such 3D problems it is thus very advantageous to use the RB-FE-HMM even

for computation with low order (piecewise linear) macro FEMs.

4.6.3 Discussion

We have presented in this chapter an efficient FEM for high order discretizations of elliptic

homogenization problems based on micro-macro solvers combined with a RB strategy. In our

new method, the RB-FE-HMM, repeated FEM computations of micro problems (at quadrature

points of a macro mesh) are avoided. These repeated micro computations are the main compu-

tational overhead of a numerical homogenization method such as the FE-HMM, when accurate

macro solutions need to be computed. In turn, the RB-FE-HMM is not only more efficient for

high order macroscopic disretizations, but also for three-dimensional problems, already for

low order macroscopic discretizations when even a single micro problem in each element of

the macroscopic mesh is expensive to compute. Using interpolation techniques following the

reduced basis methodology, we showed that an efficient numerical method can be designed,

relying only on a small number of accurately computed micro solutions. An a posteriori error

estimate for the selection of representative micro solutions has been discussed. We have derived
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an a priori error analysis which allows to describe the decay rate of the various discretization

errors involved in our numerical approach. The efficiency of the RB-FE-HMM strategy has been

illustrated by several numerical examples and comparisons with the classical FE-HMM have

shown significant improvements.

91





5 Adaptive reduced basis finite element
heterogeneous multiscale method

Following the discussion of the previous chapter, we present in this chapter a posteriori error

control and mesh refinement strategy for the RB-FE-HMM which can be widely applied to many

practical engineering problems. Being able to refine the computational mesh adaptively, based

on a given actual numerical solution is of prime importance. Adaptive methods not only provide

a criterion that indicates whether a certain prescribed accuracy is met, but also estimate local

errors that allow to drive a mesh refinement that equi-distributes the approximation error (e.g.,

refining in the region where singularity in the solution or in the domain occur). The general

adaptive strategy for the adaptive FEM is based on the following cycle

Solve → Estimate → Mark → Refine.

The procedure can be understood as follows. One first solves the partial differential equation

numerically on the current mesh and computes an a posteriori error by defining suitable error

estimators that give estimations of the actual error between the computed and the true solution

(in a certain norm). Then, according to the distribution of the error estimator in each element,

one marks the elements which have the largest contribution to the estimated error, refines the

marked elements and goes back to the step "Solve". The essential step for adaptive method is the

construction of reliable error estimator. While, for single scale problems, there is a large literature

for adaptive methods (see for example [27, 105, 87, 41, 28, 38] and the references therein), the

literature for multiscale FE methods is more scarce, we mention however the work of Ghosh et

al. [78, 79], where an adaptive micro-macro method (based on Voroni cell finite elements) was

proposed for elasticity problems. While a posteriori indicators have been derived, upper and

lower bounds in term of these indicators that take into account macro and micro meshes were

not derived. We note also that the algorithm has been extended in [79] to account for model

adaptivity, i.e., correction of the homogenized solution where the model is not accurate enough.

One difficulty is that error estimators (that first need to be suitably modeled) depend on multiple

scales and the reliability of such error estimators depends on the accuracy of the resolution of the

fine scale. We briefly discuss an approach that is complementary to the approach described here,

namely that of the hierarchical and goal-oriented adaptivity for multiscale problems proposed
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and developed in [107, 89, 87, 88]. The goal there is the following: assuming that an effective

homogenization solution u0 and an effective problem are at hand, the task is then to improve

this coarse model in order to better approximate the fine scale solution in a given quantity of

interest. Assuming that Q(uε) is a quantity of interest (Q will be either the energy norm or a

bounded linear functional in this chapter), the general procedure is based on the decomposition

of the error into modeling error Q(uε−u0) and numerical error Q(u0 −uH ,h) 1. The focus is then

on reducing the error Q(uε−u0) by an adaptive strategy that enriches the solution u0 with fine

scale features (obtained by solving locally the fine scale models) based on suitable a posteriori

indicators. The term Q(u0 −uH ,h) is not analyzed in this work. It is mentioned in [89] that

"the choice of homogenization techniques has significant impact on the performance of error

estimators and the success of the (goal oriented) method". This is the focus of this chapter, to

propose an adaptive algorithm for the computation of Q(u0 −uH ,h). As mentioned in Chapter 1

when the fine scale problem is not globally periodic, then the homogenized problem relies on

an infinite number of micro problems and they have thus to be properly localized and solved

with an accuracy that is proportional to the macroscopic mesh. In turn, variational crimes are

made which prevent the use of classical adaptivity techniques for FEM. Furthermore, as the data

of the homogenized problems depend on the accuracy of micro problems, this discretization

error has also to be taken into account while deriving a posteriori upper and lower bound for

the error. The accuracy Q(u0 −uH ,h) then depends on a macro mesh, and micro meshes (used

to solve the micro problems) and a modeling error (originating from the constrain between

micro and macro solvers). In the present work our adaptive reduced basis method is shown to

be an efficient and reliable method to compute adaptively Q(u0 −uH ,h) and in this sense both

approaches focusing on Q(uε−u0) or Q(u0 −uH ,h) are complementary and need to be carried

out for successful adaptive multiscale computations.

A posteriori error analysis for the FE-HMM has first been given in [90] based on a two-scale analy-

sis [81]. A posteriori error analysis for the FE-HMM in the physical energy-norm has been derived

in [20, 85] and the extension of the FE-HMM to goal oriented adaptivity (in quantities of interest)

has been discussed in [21]. For this latter adaptive method, the solution of dual problems (in a

higher macro FE space) are required. Both adaptive methods [20, 21] have proved to be useful

and more efficient than the FE-HMM with uniform refinement when the macroscopic domain

or the macroscopic solution exhibit singularities. But as mentioned above, the simultaneous

mesh refinement still represents a significant computational overhead that prevents to solve

efficiently three-dimensional problems adaptively, or to use adaptive higher order macro FEM.

In this chapter we discuss a new adaptive method based on the RB-FE-HMM introduced in

Chapter 4. This method, that allows to drive a macroscopic mesh refinement using the same

precomputed set of RB micro functions to estimate the effective data, improves significantly the

adaptive FE-HMM and provides a highly efficient adaptive multiscale computational strategy. In

particular this methods allows to use the same precomputed set of RB micro functions to:

1Here we put a reference to the size of a macroscopic and a microscopic meshes, H and h, respectively to emphasize
that an approximation of the homogenized solution usually depends on at least two meshes. The macroscopic mesh
that meshes the physical domain and a microscopic mesh that meshes micro problems to retrieve locally the
parameters (tensors) of the homogenized problem.
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5.1. The energy norm based adaptive RB-FE-HMM

• drive a macroscopic mesh refinement and estimate the effective data;

• use higher order macro FEM in an adaptive procedure;

• compute primal and dual numerical homogenization problems for an adaptive mesh

refinement in quantities of interest;

• compute adaptively several online problems with different source terms.

We mention that the adaptive RB-FE-HMM could also be used for h-p refinement strategy.

Indeed, the generalization and the computational efficiency of the RB-FE-HMM for higher order

macro FEs make this method a good candidate for such simultaneous refinement methods that

remain up to now challenging for numerical homogenization methods such as the FE-HMM.

The chapter is organized as follows. In Section 5.1, we discuss the residual based adaptive RB-

FE-HMM and the corresponding a posteriori estimates for the upper and lower bound in the

energy norm. The goal-oriented adaptive RB-FE-HMM is presented in Section 5.2, where an

exact representation of the error in a quantity of interest is derived. Numerical examples for the

proposed method in two and three dimensions and comparison with the adaptive FE-HMM are

presented in Section 5.3.

5.1 The energy norm based adaptive RB-FE-HMM

In this section, we introduce the adaptive RB-FE-HMM. For simplicity, we only consider simpli-

cial macro FEs in what follows (notice that for such elements (Q2) implies (Q1), see Section 1.2.1).

For the RB-FE-HMM offline procedure we refer to Section 4.2 and here we start by discussing

for the online stage a posteriori error estimates in the energy norm. Such results have first been

obtained for the FE-HMM in [20] for linear macro FEs. To obtain a more efficient algorithm, we

apply the RB strategy for the adaptive FE-HMM and in turn avoid having to refine the micro

mesh simultaneously to the adaptive macro mesh refinement. We also prove the upper and

lower a posteriori error bound for arbitrary order of the macro FE space.

Reduced basis multiscale jump and flux. Based on the reformulation of the RB-FE-HMM dis-

cussed in Section 4.3, one can write (4.3.37) in the following form (see [4]),

a0
N (xK j ) =

∫
Y

axK j
(y)

(
I + J T

χ̂i
N ,K j

(y)

)
d y, (5.1.1)

where Jχ̂i
N ,K j

is a d ×d tensor, defined as
(

Jχ̂i
N ,K j

(y)
)

i k = (∂χ̂i
N ,K j

)/(∂yk ). Therefore one can show

that for ∀v H ∈ S`0(Ω,TH ) the relation below holds (see [5])

1

|Kδ j |
∫

Kδ j

axK j
(G−1

xK j
(x))∇vN ,K j (x)d x = a0

N (xK j )∇v H (xK j ). (5.1.2)
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Chapter 5. Adaptive reduced basis finite element heterogeneous multiscale method

We introduce in each macro element K an interpolation polynomial ΠK
a∇vN

(x) ∈P l−1(K ) based

on the J quadrature points used for the RB-FE-HMM (see [5, 20]). Assuming in addition to (Q2)

that J = 1
2`(`+1), d = 2 or J = 1

6`(`+1)(`+2), d = 3, then we define

ΠK
a∇vN

(xK j ) = 1

|Kδ j |
∫

Kδ j

axK j
(G−1

xK j
(x))∇vN ,K j (x)d x, j = 1, · · · , J . (5.1.3)

The polynomial ΠK
a∇vN

is called “multiscale flux". Combing (5.1.2) with (5.1.3), we have

ΠK
a∇vN

(xK j ) = a0
N (xK j )∇v H (xK j ). (5.1.4)

Remark 5.1.1. The interpolation polynomial is uniquely determined by condition (5.1.3), provided

(Q2) holds and

J = 1

2
`(`+1) d = 2,

J = 1

6
`(`+1)(`+2) d = 3. (5.1.5)

With such a choice for J , one can deduce that ΠK
a∇vN

(x) ∈P `−1(K ) (see [20, 21]). We notice that

quadrature formulas for which (5.1.5) holds indeed exist (see [106, 101]).

We denote by K + and K − two macro elements with a non empty interface given by e = K +∩K −.

Now we define the RB multiscale jump on the interior interface e as

[[ΠK
a∇vN

]]e (s) :=
{

(ΠK +
a∇vN

(s)−ΠK −
a∇vN

(s)) ·ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(5.1.6)

where ne is the outward normal vector of e on ∂K +.

Remark 5.1.2. When the macro FE space is S1
0(Ω,TH ) with simplicial element, J = 1 and we have

only one quadrature point per macro element. Then (5.1.6) can be simply written as

[[aε∇vN ,K ]]e :=


(

1
|K +

δ
|
∫

K +
δ

axK+ (G−1
xK+ (x))∇vN ,K +(x)d x−

1
|K −

δ
|
∫

K −
δ

axK− (G−1
xK− (x))∇vN ,K −(x)d x

)
·ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω.

(5.1.7)

The energy norm based a posteriori error estimates. Following [21], we introduce the local

refinement indicator and the data approximation error.
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Definition 5.1.3. The local refinement indicator ηH (K ) is defined by

ηH (K )2 := H 2
K ‖ f H +∇·ΠK

a∇uN
‖2
L 2(K ) +

1

2

∑
e⊂∂K

He‖[[ΠK
a∇uN

]]e‖2
L 2(e), (5.1.8)

and the local data approximation error is defined by

ξH (K )2 := H 2
K ‖ f H − f ‖2

L 2(K ) +‖ΠK
a∇uN

−a0∇uH ,RB‖2
L 2(K ), (5.1.9)

where a0 is the tensor of the homogenized problem (1.1.3) and f H is an approximation of f in the

space {g ∈L 2(Ω), g |K ∈P m(K ),∀K ∈TH }.

Remark 5.1.4. If the macro FE space is S1
0(Ω,TH ), the local refinement indicator and local data

approximation can be written respectively, in the following way,

ηH (K )2 := H 2
K ‖ f H‖2

L 2(K ) +
1

2

∑
e⊂∂K

He‖[[aε∇uN ,K ]]e‖2
L 2(e), (5.1.10)

ξH (K )2 := H 2
K ‖ f H − f ‖2

L 2(K ) +‖(a0
N −a0)∇uH ,RB‖2

L 2(Ω). (5.1.11)

We now explain how we obtain the expressions of the local indicator (5.1.8) and data approxima-

tion (5.1.9).

Lemma 5.1.5. Define eH = u0 −uH ,RB . For ∀v ∈ H 1
0 (Ω), the following representation formula

holds

B0(eH , v) =
∫
Ω

f H vd x − ∑
K∈TH

( ∑
e⊂∂K

∫
e
[[ΠK

a∇uN
]]e (s)vd s +

∫
K
∇·ΠK

a∇uN
vd x

+
∫

K
(ΠK

a∇uN
−a0∇uH ,RB ) ·∇vd x +

∫
K

( f − f H )vd x
)
, (5.1.12)

where B0(·, ·) is the bilinear form of the homogenized equation (1.1.3).

Expression (5.1.12) is instrumental to derive upper and lower a posteriori error bounds.

Proof. The proof follows [20, Lemma 9] and we sketch the idea. First we write

B0(eH , v) =
∫
Ω

f vd x − ∑
K∈TH

∫
K

a0∇uH ,RB∇vd x.

We then add and subtract the term
∑

K∈TH

∫
K Π

K
a∇uN

·∇v + f H vd x in the above expression, use

integration by part for the expression
∑

K∈TH

∫
K a0∇uH ,RB∇vd x, to finally obtain (5.1.12).
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The following two theorems give upper and lower bounds of the error ‖u0−uH ,RB‖H 1(Ω) in terms

of the local refinement indicator ηH (K ) and local data approximation error ξH (K ). As the proofs

of the theorems are very similar to those in [20], we only sketch them here for completeness.

Theorem 5.1.6. (A posteriori upper bound) Let ηH (Ω)2 =∑
K∈TH

ηH (K )2, ξH (Ω)2 =∑
K∈TH

ξH (K )2.

There exists a constant C > 0, such that

‖u0 −uH ,RB‖2
H 1(Ω) ≤C (ηH (Ω)2 +ξH (Ω)2).

Sketch of the proof: Due to the low regularity of the exact solution (only assumed to be in H 1(Ω)),

one considers the Clément interpolation operator I H eH of eH = u0 −uH ,RB , where I H eH ∈
S1

0(Ω,TH ) (see [55]). By adding the equation BH ,RB (uH ,RB , I H eH )−∑
K∈TH

∫
K f I H eH d x = 0 to

(5.1.12) and writing ψH = eH − I H eH , we obtain

B0(eH ,eH ) =
∫
Ω

f HψH d x + ∑
K∈TH

(
∫

K
∇·ΠK

a∇uN
ψH d x + ∑

e∈∂K

∫
e
[[ΠK

a∇uN
]]eψ

H d s)

+
∫
Ω

( f − f H )ψH d x + ∑
K∈TH

∫
K

(ΠK
a∇uN

−a0∇uH ,RB ) ·∇eH d x.

The upper bound can then be obtained by using the Cauchy-Schwarz inequality and the property

‖ψH‖L 2(K ) ≤C H‖∇eH‖L 2(K ) of the Clement interpolation operator to the above expression.

Theorem 5.1.7. (A posteriori lower bound) There exists a constant C such that

ηH (K )2 ≤C (‖u0 −uH ,RB‖2
H 1(ωK ) +ξH (ωK )2),

where ωK is the union of all the elements sharing an interface with K .

Sketch of the proof: The first step is to estimate the term H 2
K ‖ f H +∇·ΠK

a∇uN
(x)‖2

L 2(K )
in (5.1.8)

which is the so called interior residual. For that, one needs to consider an interior bubble

function ψK in an FE space defined over a refinement T̃H of TH so that every K ∈ TH has an

interior node x̃K in T̃H (likewise every edge e of T̃H not on the boundary ∂Ω mush have an

interior node in T̃H ). For any K ∈TH , ψK has the properties that 0 ≤ψK ≤ 1, ψK (x̃K ) = 1 and

ψK = 0 ∈Ω \ K . We choose the test function v =ψK ( f H +∇·ΠK
a∇uN

), insert it into (5.1.12). By

applying the Cauchy-Schwarz inequality and the inverse inequality we obtain

H 2‖ f H +∇·ΠK
a∇uN

‖2
L 2(K ) ≤C (‖∇eH‖2

L 2(K ) +ξH (K )2).

The second step of the proof is to estimate the jump residual which corresponds to the second

term in (5.1.8). Now we need to introduce the edge bubble function ψe . Assume we is the
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5.1. The energy norm based adaptive RB-FE-HMM

common edge shared by two elements K1 and K2 and that xwe ∈ we is an interior node. We

introduce the bubble function ψe which satisfies ψe (xwe ) = 1, ψe |∂we = 0, 0 ≤ψe (s) ≤ 1, ∀s ∈ we

and ψe ≡ 0 onΩ\ (K1 ∪K2). Then we choose the test function v(x) such that

v(x)|we = [[ΠK
a∇uN

]]e (s)ψe (s), and v(x) = 0, x ∈Ω\ (K1 ∪K2).

Inserting this test function into (5.1.12) and using the Cauchy-Schwarz inequality and the

estimate ‖∇v‖L 2(Ki ) ≤C H−1/2‖[[ΠK
a∇uN

]]eψe‖L 2(we ), i = 1,2, we can show that

H‖[[ΠK
a∇uN

]]e‖2
L 2(e) ≤C (‖∇eH‖2

L 2(ωK ) +ξH (ωK )2).

Combining the estimates for the interior and the jump residual leads to the claimed lower bound.

Remark 5.1.8. Let us have a closer look at the data approximation error. The contribution to

the data approximation error given by the term H 2
K ‖ f − f H‖L 2(K ) depends on the accuracy of

the approximation f H of f . This term also arises in single-scale energy norm adaptive FEM.

For the second term ‖ΠK
a∇uN

− a0∇uH ,RB‖2
L 2(Ω)

, if one assumes that aε(x) = a(x, x/ε) = a(x, y)

is Y-periodic in y, ai j (·, y)|K is constant and ai j (x, ·) ∈ W 1,∞
per (Y ), for all i , j = 1, · · · ,d, one can

prove that ‖ΠK
a∇uN

−a0∇uH ,RB‖L 2(Ω) ≤CrH M M , where rH M M = rM IC + rRB + rMOD (see Section

5.2 for details). We note that rM IC and rRB can be estimated similarly as for the RB-FE-HMM.

In particular, rM IC will usually be small due to the requirement of having a very accurate FE

computation in the offline stage. Likewise rRB will be small (even exponentially decaying with

respect to the RB number N ) if appropriate smoothness in the macroscopic variation of the macro

tensor holds. For locally periodic problems, when the slow variable of the tensor is collocated with

quadrature points in the bilinear form (4.3.29), rMOD = 0.

Algorithm. For the adaptive RB-FE-HMM, one needs to have the offline outputs (see (4.2.27))

which can be repeatedly used for the online adaptive procedure. The adaptive online strategy

is quite similar to the adaptive FE-HMM. The algorithm is however much faster due to the

precomputed RB functions. We state here the complete algorithm.

Algorithm 5.1.9. The adaptive RB-FE-HMM

• Offline stage: Construct the RB space SN (Y ) following Algorithm 4.2.4 in Section 4.2 and

store the output (4.2.27).

• Online stage:

1.Solve Compute the macro solution uH ,RB on the current macro mesh by (4.3.28)-(4.3.30) and

the quantity 1
|Kδ j |

∫
Kδ j

axK j
(G−1

xK j
(x))∇uN ,K j (x)d x at the sampling domains centered at

each quadrature point. Store the data for the following step.

2.Estimate Construct the RB multiscale fluxΠK
a∇uN

and compute the RB mutliscale jump [[ΠK
a∇uN

]].

Further, compute the error indicator ηH (K ) for all K ∈TH . If
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∑
K∈TH

ηH (K )2 < tol , the process ends otherwise moves to the next step, where tol is

given as a stopping criterion.

3.Mark Identify the macro elements marked for refinement following a suitable marking

strategy, based on the refinement indicator ηH .

4.Refine Refine the marked the elements by applying the newest vertex refinement strategy [49]

which keeps the conformity of the refined mesh. Go back to Step 1 with the refined

macro mesh.

Several marking strategies have been proposed in the literature, for example, [94, 100, 105]. Here

we follow the marking strategy E in [105] which consists in finding a minimal subset T̄H of TH

such that
∑

K∈T̄H
ηH (K )2 ≥ r 2ηH (Ω)2, where r ∈ (0,1) is a pre-defined parameter.

Complexity comparison with the adaptive FE-HMM. Recall that for the adaptive FE-HMM we

need to refine the micro mesh simultaneously to the refinement of the macromesh. As a result,

the micro problems of the adaptive FE-HMM

• have to be recomputed in each refined macro element;

• have increasing number of DOF at each iteration of the macro refinement procedure.

In contrast with the RB-FE-HMM, the micro problems are solved in the RB space whose di-

mension is fixed, usually small and computed once for all in the offline stage The efficiency

improvement of the adaptive RB-FE-HMM compared with the adaptive FE-HMM is illustrated

numerically in Section 5.3.

5.2 Goal Oriented Reduced Basis Adaptive FE-HMM

In this section, we apply the RB technique to another multiscale adaptive method, the DWR

FE-HMM [21], which is based on the framework of the dual-weighted residual method. Here

we want to know the error in a certain quantity of interest, e.g., the value of the macro solution

at a certain point, directional point-wise derivative of the macro solution or the average of the

solution on a subdomain etc. Thus, the error estimators are designed to quantify the accuracy in

the quantities of interest. In turn, the mesh refinement is constructed in order to improve the

accuracy of the computed quantity of interest. Generally, we define a linear bounded functional

J : H 1
0 (Ω) →R to represent the quantity of interest. The main concern is the macroscopic error

eH := u0 −uH ,RB in the form of quantity of interest, i.e.

J (eH ) =J (u0)−J (uH ,RB ).

The construction of the error estimators relies on a primal problem and a dual problem that are

described below. In both primal and dual problems, the use of RB to compute suitable micro

problems can significantly improve the efficiency of the DWR FE-HMM.
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Primal and dual problems. The primal problem is the homogenized problem (1.1.3) that reads

in weak form

B0(u0, v) =
∫
Ω

f vd x, ∀v ∈ H 1
0 (Ω). (5.2.13)

We use uH ,RB to approximate u0 and consider

BH ,RB (uH ,RB , v H ) =
∫
Ω

f v H d x, ∀v H ∈ S`0(Ω,TH ). (5.2.14)

The dual problem of (5.2.13) consists in finding z0 ∈ H 1
0 (Ω) which satisfies

B0(φ,z0) =J (φ), ∀φ ∈ H 1
0 (Ω). (5.2.15)

Thus we can deduce that

J (u0 −uH ,RB ) = B0(u0 −uH ,RB ,z0). (5.2.16)

We emphasize that when we say in the sequel that we compute a RB-FE-HMM approximation of

(5.2.13) or (5.2.15), it should be understood that we compute an effective solution based on the

fine scale model for (5.2.13) or (5.2.15). Of course we do not assume (5.2.13) and (5.2.15) to be

available.

We next consider a numerical approximation of (5.2.15) that will allow to estimate the right-hand

side of (5.2.16). We observe that for uH (the FE solution without numerical quadrature of the

primal problem (5.2.13)), we have J (u0 −uH ) = 0 if taking an approximation zH of z0 from the

same FE space as uH because of the Galerkin orthogonality. It has thus been suggested in [36, 84]

to use an FE approximation of the dual problem (5.2.15) in a higher order polynomial space. The

same strategy is used for the RB-FE-HMM. We thus consider the RB-FE-HMM solution zH ,RB of

(5.2.15) in the FE space S
ˆ̀
(Ω,TH ), ˆ̀> `, i.e. find zH ,RB s.t.

BH ,RB (φH ,zH ,RB ) =J (φH ), ∀φH ∈ S
ˆ̀
(Ω,TH ), (5.2.17)

where BH ,RB is the RB-FE-HMM bilinear form (4.3.29) with an appropriate quadrature scheme

(i.e. satisfying (Q2) for the higher order polynomial space).

Remark 5.2.1. We emphasize that zH ,RB is computed using the same RB space as uH ,RB (for the

micro functions). Thus the error rH M M is the same for both zH ,RB and uH ,RB and fixed after the

offline stage. This also means that the cost to solve the micro problems in the online stage does
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not increase when using higher order macro FE space, since the DOF of the RB space remain

unchanged in the online stage.

The error indicators. Before we define the error indicators, we need to mention the definition

of the interior residual RI ,H and jump residual R J ,H . These quantities are given by,

RI ,H (x)|K = f H (x)+∇· (ΠK
a∇uN

(x)),

R J ,H (s)|e =−1

2
[[ΠK

a∇uN
]]e (s),

where ΠK
a∇uN

and [[ΠK
a∇uN

]]e (s) are defined in (5.1.3) and (5.1.6), respectively, and f H is defined

in Definition 5.1.3.

Next, we give the definition of the local error indicator ηH ,G (K ) and data approximation ξH ,G (K ).

To distinguish them from the residual based indicators and data approximation, we will add a

subscript “G" (goal oriented) for these quantities.

Definition 5.2.2. The local error indicator is defined as

ηH ,G (K ) :=
∫

K
RI ,H zH ,RB d x +

∫
∂K

R J ,H zH ,RB d s. (5.2.18)

To guide the mesh refinement, we actually use the unsigned local refinement indicator defined as

η̄H ,G (K ) = |ηH ,G (K )| (see [21]).

Remark 5.2.3. The unsigned local refinement indicator η̄H ,G (K ) leads to a good mesh refinement

but not optimal since it is always positive while the global (signed) error indicator (the summation

of the element contribution of (5.2.18)) allows cancellation between elements. This cancellation

cannot be expressed by η̄H ,G (K ) (we notice that finding the optimal mesh is already an issue

for single scale DWR). The mesh refinement based on η̄H ,G (K ) does nevertheless lead to good

convergence rates. One issue is that the decay of the error can have oscillation (see the numerical

experiments in Section 5.3.3).

In order to analyse the variational crimes introduced for example by using numerical quadrature

and computing zH ,RB in the higher order FE space S
ˆ̀
(Ω,TH ) etc, we need to introduce a suitable

data approximation error.

Definition 5.2.4. The data approximation error ξH ,G (K ) is given by

ξH ,G (K ) =
∫

K
(ΠK

a∇uN
−a0∇uH ,RB ) ·∇zH ,RB d x

+ B0,K (u0 −uH ,RB ,z0 −zH ,RB )

−
∫

K
( f H − f )zH ,RB d x, (5.2.19)
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where B0,K is the bilinear form B0 restricted to the element K .

The definition of data approximation error is motivated by the following exact DWR RB-FE-HMM

error representation.

Theorem 5.2.5. The exact representation of the error eH = u0 −uH ,RB in the quantity of interest is

given by

J (eH ) = ∑
K∈TH

ηH ,G (K )+ξH ,G (K ). (5.2.20)

The proof follows [21, Theorem 4]. We sketch the main steps. Considering (5.2.15) and taking

v = u0 −uH ,RB , we can deduce

J (u0 −uH ,RB ) = B0(u0 −uH ,RB ,zH ,RB )+B0(u0 −uH ,RB ,z0 −zH ,RB ), (5.2.21)

where u0 is the solution of (5.2.13), z0 is the solution of (5.2.15), uH ,RB is the solution of (5.2.14),

and zH ,RB is the solution of (5.2.17). The last two terms on the right-hand side of (5.2.21) are part

of the data approximation error. The first term can be further written as

B0(u0 −uH ,RB ,zH ,RB ) =
∫
Ω

f H zH ,RB d x −
∫
Ω

( f H − f )zH ,RB d x +B0(uH ,RB ,zH ,RB ). (5.2.22)

By the definition of the multiscale flux and integration by parts, one can deduce that

B0(uH ,RB ,zH ,RB ) = − ∑
K∈TH

∫
K
∇· (ΠK

a∇uN
)zH ,RB d x

+ 1

2

∑
K∈TH

∑
e⊂∂K

∫
e
[[ΠK

a∇uN
]]e zH ,RB d s

− ∑
K∈TH

∫
K

(ΠK
a∇uN

−a0∇uH ,RB ) ·∇zH ,RB d x. (5.2.23)

Combining (5.2.21) (5.2.22) and (5.2.23) proves the theorem.

The following result follows immediately from Theorem.5.2.5.

Corollary 5.2.6. The a posteriori upper bound is given by

|J (u0 −uH ,RB )| ≤ ∑
K∈TH

η̄H ,G (K )+|ξH ,G (K )|.
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According to the expression (5.2.20), whether
∑

K∈TH
ηH ,G (K ) can provide a good approxima-

tion to the exact error in the quantity of interest J (eH ) depends on the quality of the data

approximation error. The following theorem gives an upper bound for the data approximation

error.

Theorem 5.2.7. Assume that the triangulation is regular, that the homogenization tensor a0(x) is

smooth enough and that assumption (H1) and (1.2.19) hold. Assume the condition (Q2) holds

with σ= 2`−2 (for primal solution) and σ= 2 ˆ̀−2 (for dual solution). In addition, assume that

(5.1.5) holds for the QF for the primal solution and that the multiscale tensor ai j (·, y) is locally

constant for each K ∈TH . Then we have for ξH ,G (Ω) =∑
K∈TH

ξH ,G (K ) the following upper bound

|ξH ,G (Ω)| ≤ C
(
H`+ ˆ̀+C‖ f − f H‖L 2(Ω) + (

h

ε
)2q + rMOD + rRB

)
. (5.2.24)

Proof. We sketch the proof for this theorem that follows the steps of the proof of [21, Theorem 6].

For the first term of (5.2.19), we apply the decomposition,

∫
K

(ΠK
a∇uN

−a0∇uH ,RB ) ·∇zH ,RB d x (5.2.25)

=
∫

K
(ΠK

a∇uN
−ΠK

a0∇uH ,RB ) ·∇zH ,RB d x︸ ︷︷ ︸
I

+
∫

K
(ΠK

a0∇uH ,RB −a0∇uH ,RB ) ·∇zH ,RB d x︸ ︷︷ ︸
I I

,

where ΠK
a0∇uH ,RB (x) is the interpolation polynomial of a0∇uH ,RB on the element K using the

same interpolation points as for ΠK
a∇uN

. By [21, Lemma 11], we have

|I | ≤C (
h

ε
)2q + rMOD + rRB . (5.2.26)

Next, II vanishes by our assumption on the multiscale tensor.

The second term of the data approximation error defined in (5.2.19) can be estimated as follows,∑
K∈TH

|B0,K (u0 −uH ,RB ,z0 −zH ,RB )|

≤C (H`+ (
h

ε
)2q + rMOD + rRB )(H

ˆ̀+ (
h

ε
)2q + rMOD + rRB ). (5.2.27)

As noticed in Remark 5.2.1, the dual problem has the same micro and modeling error ( h
ε )2q +

rMOD + rRB as the primal problem.

The third terms of the data approximation can be bounded as

∑
K∈TH

|
∫

K
( f H − f )zH ,RB d x| ≤C‖ f H − f ‖L 2(Ω). (5.2.28)
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Combining (5.2.26),(5.2.27) and (5.2.28) gives the theorem.

Remark 5.2.8. If the FE space for the primal problem is S1
0(Ω,TH ), the assumption on the multi-

scale tensor in Theorem 5.2.7 that ai j (·, y)|K is constant can be removed. In turn, the term II is no

longer zero but can be bounded by C H 1 (see [21]).

Observe from Theorem 5.2.7 that if rRB is small (e.g., a fast decaying Kolmogorov N-width

holds), then the data approximation error for the DWR RB-FE-HMM is smaller than the cor-

responding data approximation error for the FE-HMM. Indeed, the bound for the micro error

rM IC ≤C ( h
ε )2q = O (N − 2q

d ) for the RB-FE-HMM, depends on the fine mesh used in the offline

stage that is usually smaller than the micro mesh used for the FE-HMM (where a mesh pro-

portional to the macro-mesh is used for efficiency, see the complexity discussion in Section

1.2.4).

We next summarize our algorithm.

Algorithm 5.2.9. (DWR RB-FE-HMM)

• Offline stage: Construct the RB space SN (Y ) following Algorithm 4.2.4 and store the output

(4.2.27).

• Online stage:

1.Solve On the current macro mesh, first compute the macro solution uH ,RB and
1

|Kδ j |
∫

Kδ j
axK j

(G−1
xK j

(x))∇uN ,K j (x)d x at the sampling domains Kδ j of each quadrature

point. Then compute the dual solution zH ,RB ∈ S
ˆ̀
(Ω,TH ) also on the current macro

mesh. Store the data for the next step.

2.Estimate Construct the RB multiscale fluxΠK
a∇uN

and compute the RB mutliscale jump [[ΠK
a∇uN

]].

Further compute the error indicator ηH ,G (K ) for all K ∈TH as an approximation to

J (eH ). If
∑

K∈TH
|ηH ,G (K )| < tol , the process ends otherwise moves to next step, where

tol is given as a stopping criterion.

3.Mark Mark the macro elements based on η̄H ,G (K ) by a given marking strategy (e.g. maximum

marking strategy in [94, 100]).

4.Refine Refine the marked the elements e.g., by applying the newest vertex refinement strategy

(briefly explained in Section 5.3 ) which keeps the conformity of the refined mesh. Go

back to Step 1 (solve).

Remark 5.2.10. For the DWR FE-HMM, the introduction of the dual problem in each element

and its solution using higher order FEM leads to high computational cost (the number of micro

problems increases due to the need of using a higher order QF likewise the DOF increase in order to

match the accuracy of the increasingly refined macro FE mesh). With the proposed RB strategy, the

computation of the micro problems is decoupled from the macro adaptive procedure. Accurate

RB functions for the micro problems are computed once and can be used for the primal and dual

FE-HMM problems while macro meshes are refined. This brings huge computational saving as

can be seen in the numerical experiments.
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Chapter 5. Adaptive reduced basis finite element heterogeneous multiscale method

5.3 Numerical Experiments

In this section, we present numerical experiments for the energy norm based adaptive RB-FE-

HMM for a 2-D problem on a crack domain in Section 5.3.1 and a 3-D problem on an L-shape

domain in Section 5.3.2. We also present numerical experiments for the DWR RB-FE-HMM for

two types of quantities of interest in Section 5.3.3. In the whole section, we consider the model

problem defined in (4.0.1), with possibly non-homogeneous boundary conditions,

−∇· (aε(x)∇uε(x)) = f in Ω,

uε(x) = gd on ∂Ω, (5.3.29)

where ε= 4×10−5. We choose for Section 5.3.1 and Section 5.3.3 tensors aε = a(x, y) Y-periodic

with respect to y for which explicit expressions of the homogenized tensors are available in

order to be able to accurately quantify the errors. We emphasize that the algorithms proposed

in this chapter are valid for problems with general tensors. All the numerical simulations are

implemented in Matlab R2010b. The core code for the FE-HMM follows [19]. The refinement

strategy and FEM are partly based on AFEM@[49] which we shortly explain in the following.

Newest vertex bisection. In the later numerical experiments, we only consider this refinement

strategy. Let TH be a shape regular triangulation of Ω. For each element K ∈ TH , we assign

the "newest vertex" to one of the vertices for the initial setting and call the opposing edge as

the refinement edge. Based on this setting, the newest vertex bisection can be implemented as

follows.

1. Bisect an element K into two children elements by connecting the newest vertex to the

midpoint of the refinement edge.

2. Assign the the midpoint of the refinement edge of the parent element as the newest vertex for

both children elements and their refinement edges correspondingly.

In order to keep the conformity of TH , some of the neighbouring elements need to be bisected

besides the marked elements in the adaptivity steps. We note that the nodes of the newly

generated mesh are nested with the old ones and the triangulation keeps shape regular and

conforming.

Numerical evaluation of the errors. Let uH be the numerical solution and ur e f be a reference

solution (for the effective problem (1.1.3)) computed on a fine triangulation Th . The error

ur e f −uH in the H 1 and L 2 norms are estimated by

eL 2 := ‖ur e f ‖−1
L 2(Ω)

( ∑
K∈Th

J∑
j=1

ρK j |uH (zK j )−ur e f (zK j )|2)1/2,

eH 1 := ‖ur e f ‖−1
H 1(Ω)

( ∑
K∈Th

J∑
j=1

ρK j |∇uH (zK j )−∇ur e f (zK j )|2)1/2,
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5.3. Numerical Experiments

where we will use ‖ur e f ‖H 1(Ω) ∼ (
∑

K∈TH
‖∇ur e f ‖2

L 2(K )
)1/2. Here {zK j ,ρK j } is the quadrature for-

mula on the fine triangulation Th .

Macro FEM and QF used in the examples. In the following examples, when using P1 triangular

(tetrahedral) elements for the macro problems, we choose the barycenter of the element as the

quadrature point and the weight ω̂ = |K̂ |. When we use P2 triangular elements for the macro

problems, we choose the Gauss three points quadrature formula with barycentric coordinates

(1/6,1/6,2/3) and weights ω̂i = |K̂ |/3, i = 1,2,3.

Computing environment. We note that all the numerical experiments were made with MATLAB

in a serial computing mode on a workstation with 16 CPU processors (8 cores). The RB-FE-HMM

could of course benefit from parallel computing environment. Finally, we will report computing

time (and comparison with the FE-HMM) for all the 2D experiments for which the linear algebra

(using the MATLAB sparse LU solver) is done reasonably well. For 3D, however, the unoptimized

linear algebra solver that we used does not allow to give meaningful computing time and we just

report the convergence rates.

5.3.1 Energy norm based adaptive RB-FE-HMM applied to crack problem

LetΩ⊂R2 be a square domain with a crack (see Fig. 1) and let f = 1, gd = 0. The diagonal entries

of the multiscale tensor are

a(x,
x

ε
)11 = x2

1 +0.2+ (x2 +1.2)(sin(2π
x1

ε
)+2),

a(x,
x

ε
)22 = x2

2 +0.05+ (x1x2 +1.5)(sin(2π
x2

ε
)+2). (5.3.30)

The corresponding homogenized tensor is also diagonal and can be computed as (see [42, 74])

a0(x)11 = (
∫ 1

0

1

x2
1 +0.2+ (x2 +1.2)(sin(2πy1)+2)

d y1)−1,

a0(x)22 = (
∫ 1

0

1

x2
2 +0.5+ (x1x2 +1.5)(sin(2πy2)+2)

d y2)−1. (5.3.31)

Offline stage. We use FEM with piecewise linear basis functions (called P1-FEM) as the offline

solver to compute the reduced basis functions and set the offline meshsize to 1600×1600 so

that the a priori error bound given in Theorem 4.5.3 reads rM IC = O (10−7). As discussed in

[92], the error for the output of interest for the RB method, i.e., the numerical homogenization

tensor (4.2.23), can be bounded by the a posteriori error estimator max(Tδ,η)∈ΞRB (∆ηN ,Tδ
)2. In our

experiment, this error reads O (10−11) for the particular tolerance chosen (see Table 5.1) since

max(Tδ,η)∈ΞRB (∆ηN ,Tδ
)2 ≤ tolRB = O (10−11). Furthermore we choose sampling domain sizes of

the same length as ε and periodic boundary condition on the cell problems so that rMOD = 0

(see (1.2.20)). As a result of the offline stage, we obtain 10 RB functions (see Table 5.1 for the
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Figure 1: The domainΩ for the crack problem is in yellow. The red line describes the crack.

parameters related to the offline stage).

Table 5.1: Parameters for the RB-FE-HMM offline stage.

Solver P1-FEM
Mesh 1600×1600

Basis number 10
tolRB 5e-11

CPU time(s) 5100

Adaptive P1 RB-FE-HMM online stage. Now we start the adaptive online procedure. Here we

present two tests with different online solvers. In the first test we use P1-FEM as the online solver.

The corresponding a posteriori error estimator is defined in (5.1.10). In Fig. 2, we display the

macro solution uH ,RB after 17 macroscopic iterations of the adaptive RB-FE-HMM.

Figure 2: The adaptive RB-FE-HMM solution computed by P1-FEM on the crack domain.

We recall that the a priori error estimates for RB-FE-HMM derived in Section 4.5 read ‖uH ,RB −
u0‖H 1(Ω) ≤C (H 1+rH M M ) and ‖uH ,RB −u0‖L 2(Ω) ≤C (H 2+rH M M ), where uH ,RB ∈ S1

0(Ω,TH ). We

denote by Mmac the macro DOF Mmac =O (H−1/2) and replace H with 1p
Mmac

in those estimates
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5.3. Numerical Experiments

and obtain

‖uH ,RB −u0‖H 1(Ω) ≤C (
1p

Mmac
+ rH M M ), ‖uH ,RB −u0‖L 2(Ω) ≤C (

1

Mmac
+ rH M M ).

We see in Fig. 3 that when the macro mesh is refined, the H 1 and L 2 error decay with the

optimal rates O (M−1/2
mac ) and O (M−1

mac ), respectively. The reference solution ur e f is computed

with an adaptive FEM with piecewise quadratic polynomials called P2-FEM up to 25 iterations

with the initial mesh obtained by uniformly refining 2 times the final online mesh (final mesh

for uH ,RB ). The number of DOF of ur e f is given by 1 757 821. We can also observe in Fig. 3 that

the profile of the error indicator is parallel to the H 1 error, which corroborates the estimates of

Theorem 5.1.7.
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Figure 3: The refinement indicator ηH (Ω) the H 1 and L 2 errors of the macro solution (crack
Problem) of the adaptive P1 RB-FE-HMM for 20 iterations.

Adaptive P2 RB-FE-HMM online stage. In this test, we apply the adaptive P2-FEM in the online

stage. As we explained in Section 5.1, an interpolation polynomial ΠK
a∇uN

(see (5.1.3)) is intro-

duced to define the high order a posteriori error estimator. In this test,ΠK
a∇uN

∈P 1(K ) is interpo-

lated on three quadrature points of the simplicial element. For the P2 RB-FE-HMM, the a priori

error estimate yields ‖ur e f −uH ,RB‖H 1(Ω) proportional to O (M−1
mac ) and ‖ur e f −uH ,RB‖L 2(Ω) pro-

portional to O (M−3/2
mac ). We can observe in Fig. 4 that the errors for the adaptive P2 RB-FE-HMM

indeed decay as O (M−1
mac ) and O (M−3/2

mac ) in the H 1 and L 2 norms, respectively. We can also

observe for the adaptive P2 RB-FE-HMM, that the decay of the error indicator has the optimal

H 1 error decay. The reference solution ur e f is also computed by an adaptive P2-FEM similarly

as described in the first test (but with 20 iterations). The number of DOF is 9 721 276.

Comparisons. Here we first compare the efficiency and accuracy of the adaptive RB-FE-HMM

with P1-FEM and P2-FEM as macro solvers. We then compare the performance of the adaptive

RB-FE-HMM with the adaptive FE-HMM.

• Adaptive P1 RB-FE-HMM and adaptive P2 RB-FE-HMM. We first present the online mesh

refinements in Fig. 5. The refinements of both P1 and P2 RB-FE-HMM can detect the crack
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Figure 4: The refinement indicator ηH (Ω), the H 1 and L 2 errors of the macro solution (crack
Problem) of the adaptive P2 RB-FE-HMM for 46 iterations. Online CPU time 276s.

(a) 5 iteration P1-FEM (b) 10 iteration P1-FEM

(c) 10 iteration P2-FEM (d) 20 iteration P2-FEM

Figure 5: Online refinement. (a) Mmac = 365. (b) Mmac = 1456. (c) Mmac = 180. (d) Mmac = 516.
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and the P2 refinement is more concentrated at the vicinity of the singularities than the P1

refinement. This higher order macro FEM provides better convergence rates away from

the singularities and can therefore use coarser meshes. Now we compare the performance

Table 5.2: Comparison of the adaptive P1 RB-HMM-FEM and P2 RB-HMM-FEM.

P1 RB-FE-HMM P2 RB-FE-HMM
# iter 20 19
eH 1 0.0020 0.0011
eL 2 8.5412e-06 8.1887e-06

Mmac 27725 1750
Online CPU time 25.18 s 3.92 s

of the two online solvers in Table 5.2. We can see that for similar errors, the number

of the macro DOF Mmac for the P2 RB-HMM-FEM is only 6.3% of the Mmac for the P1

RB-HMM-FEM and the time cost for the P2 RB-HMM-FEM is 15.6% of the CPU time for

the P1 RB-HMM-FEM. This shows the potential advantage of using higher order macro

solver for adaptivity.

• Adaptive P1 RB-FE-HMM and adaptive P1 FE-HMM. In this numerical experiment, we

compare the accuracy and time cost of the adaptive RB-FE-HMM and the adaptive FE-

HMM. In Table 5.3 we presents the H 1 error of both methods for each iteration and the

corresponding effectivity index which is defined as Eff := ηH

eH 1
. For this test, the macro

error dominates so that in Table 5.3 the RB-FE-HMM and FE-HMM give almost the same

error eH 1 and the same effectivity index Eff as the standard adaptive FEM. However, as

we see in Table 5.4, the CPU time comparison immediately shows the advantage of using

the adaptive RB-FE-HMM which yields the same accuracy as the adaptive FE-HMM with

only 0.14% of its computing time. Even if taking account the offline overhead, the adaptive

RB-FE-HMM takes only about 2.8% of the time used for the adaptive FE-HMM.

Control of the offline parameters. We next perform the offline algorithm with a 200× 200

offline mesh instead of the 1600×1600 used before. We nevertheless keep the offline tolerance as

tol = 5e−11 (similarly as for Table.5.1). The a priori error estimate for the RB functions computed

with this mesh indicates an error of rM IC = O(10−5). We note that the algorithm nevertheless

terminates when the a posteriori estimator for rRB indicates an error of O(10−10). We note that

this quantity is controlled by the a posteriori error estimator in the offline stage according to the

tolerance set by the user. We note that a failure to meet the offline tolerance could indicate a

poor decay of the Kolmogorov N-width originating for example from a lack of self-similarity of

the microscopic data.

We then apply the P2 adaptive RB-FE-HMM for the crack problem as the online solver using

the new offline outputs. As can be seen in Fig. 6, the L 2 error becomes constant after a certain

number of iteration steps indicating that the error rM IC dominates rM AC . This experiment also

illustrates that by monitoring the online macroscopic error obtained by using different sets of

RB with different accuracy can be used to assess the rM IC error in an actual computational
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Table 5.3: Effectivity index and H 1 error for the adaptive RB-FE-HMM, FE-HMM and FEM for
the crack problem.

RB-FE-HMM FE-HMM FEM
Iter no. Mmac eH 1 Eff eH 1 Eff Eff

1 153 0.0309 10.2577 0.0309 10.2588 10.2577
2 182 0.0278 10.5756 0.0278 10.5766 10.5756
3 222 0.0247 10.8022 0.0247 10.8031 10.8022
4 287 0.0214 11.0437 0.0214 11.0444 11.0437
5 365 0.0184 11.2158 0.0184 11.2162 11.2158
6 489 0.0159 11.4192 0.0159 11.4196 11.4192
7 643 0.0139 11.5564 0.0139 11.5567 11.5564
8 831 0.0123 11.5224 0.0123 11.5526 11.5224
9 1097 0.0107 11.5932 0.0107 11.5934 11.5932

10 1456 0.0090 11.7484 0.0090 11.7485 11.7484
11 1981 0.0078 11.8570 0.0078 11.8571 11.8570
12 2626 0.0068 11.9613 0.0068 11.9614 11.9613
13 3438 0.0059 11.8667 0.0059 11.8668 11.8667
14 4648 0.0052 11.8540 0.0052 11.8540 11.8540
15 6237 0.0043 11.9844 0.0043 11.9844 11.9844
16 8566 0.0037 12.1085 0.0037 12.1085 12.1085
17 11320 0.0032 12.1627 0.0032 12.1628 12.1627
18 14960 0.0028 11.9973 0.0028 11.9973 11.9973
19 20503 0.0024 11.9997 0.0024 11.9997 11.9997
20 27725 0.0020 12.1779 0.0020 12.1779 12.1779

Table 5.4: CPU time comparison between the adaptive P1 RB-FE-HMM and the adaptive P1
FE-HMM for crack problem.

RB-FE-HMM FE-HMM tRB /tF E−H M M (%)
Total online CPU time for 20 iterations 26.13 s 186110 s 0.14%

Total offline-online CPU time 5126.13 s 186110 s 2.8%

procedure.

5.3.2 The energy norm based adaptive RB-FE-HMM applied to a 3-D problem on an
L-shape domain

In this example we investigate the performance of the adaptive RB-FE-HMM on a three dimen-

sional problem. We consider an exponential stationary model for the infiltration of a fluid in

unsaturated porous media. We choose here an L-shape computational domain (similar test

problems have been considered in [50, 61] for regular domains). The multiscale tensor is defined

as

aε(x)i i = 10αε(x)eβ
ε(x) +x2

1 + (x2 −x3)2 +0.5 i = 1,2,3, (5.3.32)
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Figure 6: Refinement indicator ηH (Ω), H 1 and L 2 errors of the macro solution (crack Problem)
for the adaptive P2 RB-FE-HMM for 45 iterations with inaccurate offline outputs.

where

βε(x) = −αε(x)
(
(x1 − c1µ1(x))2 + (x2 − c1µ2(x))2 + (x3 − c1µ3(x))2) ·(

(x1 −0.8− c2µ1(x))2 + (x2 −0.5− c2µ2(x))2 + (x3 −0.7− c2µ3(x))2),

αε(x) = 1

20+18sin(6π x3
ε −π(3 x1

ε + x2
ε ))

,

and where µ(x) = (µ1(x),µ2(x),µ3(x)) is a uniform random mapping from Ω to [0,1]3 and c1,c2

are constant parameters chosen to be c1 = 0.2, c2 = 0.1. We set f = 10 and gd = 0.5. In general

infiltration models, aε represents the microscopic permeability of the porous media. As shown

(a) Permeability aε(x) on Ω (b) ax∗ (y) on the reference sampling domain

Figure 7: (a) Permeability aε(x) on the L-shape domain Ω. (b) ax∗(y) on the reference
sample domain Y = [0,1]3 with fixed macro variable x∗ = (0.750,0.625,0.125) and µ(x∗) =
(0.799,0.499,0.643).

in Fig. 7 (a), we can observe that the media has lowest permeability around points (0,0,0) and

(0.8,0.5,0.7). When we fix the macro variable to be x∗ and map aε(x) to the reference sampling
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domain Y = [0,1]3 by the mapping Gx∗ defined in Section 4.2, we obtain the parametrized tensor

ax∗(y) with respect to parameter x∗ which displays locally periodic pattern shown in Fig. 7

(b). Since the tensor aε(x) in (5.3.32) is not in an affine form, we need to apply the empirical

Table 5.5: Parameters for the RB-FE-HMM offline stage (3D problem).

Reference sampling domain Y [0,1]3

Mesh 2003

tolE I M 1e-5
tolRB 3e-7

Affine terms 11
Basis number 21

interpolation method (see [7]) to obtain the affine approximation of the tensor in the offline

stage. The offline parameters and output information are presented in Table 5.5. After the offline

stage 21 basis functions are obtained. Constrained by the computation environment, the finest

offline mesh generated is 2003. Considering the macro meshes we test in the online stage (the

macroscopic DOF Mmac varies in the range of 325 to 63749 ≈ 403), the offline mesh is sufficiently

fine according to the estimates of Theorem 4.5.3.
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Figure 8: The macro mesh and uH ,RB after 20 iterations.

In the online stage, we set the initial macro mesh to be uniform tetrahedron with Mmac = 325.

We perform 24 iterations of the adaptive RB-FE-HMM. The solution uH ,RB of the 20th iteration

and corresponding macro meshes on the surface of the segment obtained by a cut through the

plan z = 0.5 are displayed in Fig. 8. As shown in Fig. 9, the mesh refinement mostly takes place

in the vicinity of the singularities (the corners of the domain) which also illustrates that the

refinement indicators provide effective information for the macro mesh refinement. The error

indicator ηH (Ω) for 24 iterations of the adaptive RB-FE-HMM is shown in Fig.10. We observe that

the error indicator decays with an optimal convergence rate O (M−1/3
mac ). This again corroborates

114



5.3. Numerical Experiments

(a) Iter = 6 (b) Iter = 12

(c) Iter = 18 (d) Iter = 24

Figure 9: The macro mesh refinements.

the estimates of Theorem 5.1.6 and Theorem 5.1.7.
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Figure 10: The a posteriori error decay for adaptivity on the 3-D L-shape domain for 24 iterations.

5.3.3 DWR RB-FE-HMM.

In this subsection, we present numerical experiment for goal oriented adaptive computations

with the DWR RB-FE-HMM. We consider the model equation (5.3.29) with f = 1000, a domain
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Ω= [0,1]2 and the diagonal multiscale tensor given by

a(x,
x

ε
)11 = (x2

1 +0.2)E(x)+ (x2 +1.2)(sin(2π
x1

ε
)+2),

a(x,
x

ε
)22 = (x2

2 +0.05)E(x)+ (x1x2 +1.5)(sin(2π
x2

ε
)+2), (5.3.33)

where

E(x) = 1+20e−1000((x1−0.5)2+(x2−0.5)2).

The corresponding homogenized tensor is

(a) a0(x)11 (b) a0(x)22

Figure 11: The homogenized tensor (5.3.34).

a0(x)11 = (
∫ 1

0

1

(x2
1 +0.2)E + (x2 +1.2)(sin(2πy1)+2)

d y1)−1,

a0(x)22 = (
∫ 1

0

1

(x2
2 +0.5)E + (x1x2 +1.5)(sin(2πy2)+2)

d y2)−1, (5.3.34)

which is shown in Fig. 11.

The offline parameters for this example are presented in Table 5.6. For the online stage, we

propose two different types of quantities of interest respectively.

Table 5.6: Parameters for the DWR RB-FE-HMM offline stage

Solver P1-FEM
Mesh 1600×1600

Basis number 10
tolRB 5e-11

CPU time(s) 6772

Quantity of interest 1. We use a local average of the macro solution as the quantity of interest
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defined as

J (u0) = 1

|Ωs |
∫
Ωs

u0d x, (5.3.35)

where Ωs ⊂ Ω is the domain of interest. We choose Ωs = [0.25,0.5]2 in this test. We show in

Figure 12: uH ,RB after 11 iterations.

Fig. 12 the solution uH ,RB after 10 iterations with 3279 DOF. In Fig.13 (a), we observe that the

Eff := |ηH (Ω)|
J (uH ,RB−ur e f )

≈ 1 where ηH (Ω) =∑
K ηH (K ), which illustrates that the refinement indicator

can accurately estimate the error in the quantity of interest and that the data approximation

error ξH is much smaller than the refinement indicator. In Fig. 13 (b) we observe that the error in

quantity of interest converges with a rate of O (M−1
mac ).
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Figure 13: The effectivity index and error of the DWR RB-FE-HMM for the quantity of interest
(5.3.35)

Now we compare the performance of the DWR RB-FE-HMM and DWR FE-HMM. The comparison

starts with an initial non-uniform mesh with 289 DOF. For the FE-HMM, we apply the optimal

H 1 refinement to the micro problems that is, hK = p
HK for the P1 micro FEM as the solver

for primal problem (5.2.14) and hK = H 2/3
K for the P2 micro FEM for the dual problem (5.2.17).
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According to Fig. 13 (a), |ηH ,G (Ω)| gives a good estimate of the error in the quantity of interest.

We can observe in Table 5.7 that the two methods yield similar refinements and accuracy while

Table 5.8 shows that the total cost for the DWR RB-FE-HMM is only 2.1% of the time for the DWR

FE-HMM. We emphasize that while the iteration 15 is obtained with the DWR RB-FE-HMM in

about 3 hours on our workstation, the iteration 15 with the FE-HMM costs about 4 days on the

same workstation !

Table 5.7: Refinement indicators of the DWR RB-FE-HMM and the DWR FE-HMM (quantity of
interest 1).

DWR RB-FE-HMM DWR FE-HMM
Iter no. Mmac |ηH ,G (Ω)| Mmac |ηH ,G (Ω)|

1 289 0.1698 289 0.1698
2 326 0.1460 326 0.1438
3 402 0.1150 424 0.1065
4 454 0.0991 598 0.0917
5 609 0.0898 764 0.0856
6 886 0.0785 1163 0.0671
7 1212 0.0614 1447 0.0528
8 1630 0.0448 2228 0.0297
9 2259 0.0283 2949 0.0248

10 3279 0.0235 4370 0.0193
11 4066 0.0211 5731 0.0147
12 5574 0.0143 7006 0.0120
13 6957 0.0119 8430 0.0091
14 7598 0.0098 10513 0.0071
15 11133 0.0073 14671 0.0050

Table 5.8: CPU time comparison between DWR RB-FE-HMM and DWR FE-HMM (quantity of
interest 1).

RB-FE-HMM FE-HMM tRB /tF E−H M M (%)
Mmac of last iteration 17921 14671
Total online CPU time 325 s 343130 s 0.1%

Total offline-online CPU time 7097 s 343130 s 2.1%

Quantity of interest 2. In this test we consider a quantity of interest given by a (regularized)

pointwise directional derivative (in the direction of the unit vector s̄) at x∗ ∈Ω

J
(
u0)= 1

|Sr |
∫

Sr
∇u0 · s̄ d x, (5.3.36)

where Sr is a ball of (small) radius r around the point x?. We choose x∗ = (0.75,0.75) and

s̄ = (
p

2/2,
p

2/2). We observe in Fig.14 (a) that the effectivity index varies between 0.15 and 5.8

and when Mmac > 1200 the effectivity index only varies in a small range from 1 to 1.7 which is

close to the optimal value 1. In Fig. 14 (b), we sketch the rate of the error J (uH ,RB −u0) which
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approximately decays with an order O (M−1
mac ) but with large oscillations when Mmac ≤ 1200. The

factor which causes the initial oscillations in Fig. 14 might be the strong cancellation effect of the

local error indicator ηH ,G (K ) for coarse macro meshes.
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Figure 14: The effectivity index and the error in the quantity of interest for the DWR RB-FE-HMM
for 20 iterations (quantity of interest of type 2).

In Fig. 15, we plot the mesh refinement for the two different quantities of interest. We use an

initial non-uniform mesh for the tests of the two quantities of interest with meshsize 17×17.

After several iterations, the two online meshes show different patterns according to the specific

quantity of interest. We can see that in Fig. 15 (a), that the mesh is mostly refined in the target

domain Ωs where the quantity of interest is defined while in Fig. 15 (b), the mesh is more

refined around the target point (0.75,0.75) along the direction (
p

2/2,
p

2/2) where the directional

derivative is defined. For both quantities of interest, the macro mesh refinements also take place

in the vicinity of the singularity where the homogenized tensor has a big jump (i.e., in the center

of the domainΩ see Fig. 11).

5.4 Discussion

We have presented an efficient adaptive FEM, the RB-FE-HMM, for elliptic homogenization

problems based on micro-macro solvers combined with a RB strategy. We have shown that

repeated FEM computations of micro problems are avoided during the macro mesh refinement,

in contrast to the adaptive FE-HMM, as the micro solutions are computed in a finite dimensional

space spanned by a small number of accurately computed representative micro solutions (the

reduced basis) obtained by a greedy algorithm in an offline stage. This methodology allows to

bypass the derivation of micro a posterior error estimates to calibrate the micro mesh during

the macro mesh adaptive cycles. We have presented an a posteriori error analysis for a residual

based adaptive RB-FE-HMM for arbitrary order of the macro FE space. Error estimation for the

RB-FE-HMM in quantities of interest has also been presented. The efficiency and the sharpness

of the derived error bounds have been illustrated by several numerical examples in two and three
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(a) Mesh refinement of quantity of interest 1
after 10 iterations, Mmac = 3279

(b) Mesh refinement of quantity of interest 2
after 12 iterations, Mmac = 4274

Figure 15: The macro meshes for the two quantities of interest.

dimensions. These examples show the significant advantage of the adaptive RB-FE-HMM over

the adaptive FE-HMM.

We close this discussion by two remarks. First as explained in the beginning of this chapter, the

RB-FE-HMM would be an excellent solver to be used for goal oriented multiscale computation

as discussed in [107, 89, 87, 79, 88] to provide an accurate homogenized solution that could be

refined locally to approximate the fine scale solution. The generalization and the computational

efficiency of the RB-FE-HMM for higher order macro FEs make this method also a good candidate

for an h-p implementation, that remains up to now challenging for a numerical homogenization

method.
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Part IIIReduced basis finite element
heterogeneous multiscale method

for nonlinear problems
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Quasilinear elliptic equations enter the modeling of numerous problems such as phase transi-

tions, flow in porous media, or reaction and diffusion in electrolysis to mention a few examples

[32]. Numerical approximations of such problems have been analyzed by many authors. We

mention the works of Douglas and Dupont [73], and Nitsche [83], where the first a priori error

analysis was given for the finite element method (FEM). Much recently and relevant for the

present work, we mention the analysis obtained in [25] for a FEM with numerical quadrature, i.e.,

when the continuous variational form originating from the nonlinear problem is approximated

by a quadrature formula. Here we are interested in quasilinear elliptic problems with highly

oscillatory data of the form

−∇· (aε(x,uε(x))∇uε(x)
)= f (x) in Ω, (6.0.1)

in a domain Ω⊂ Rd , d ≤ 3, where aε(x,u) = (aεmn(u, s))1≤m,n≤d is a d ×d tensor, associated to

ε > 0, a sequence of positive real numbers going to zero and f ∈ H −1(Ω). For simplicity we

assume homogeneous Dirichlet boundary conditions uε = 0 on ∂Ω but we emphasize that more

general boundary conditions could be considered.

Such problems arise for example in infiltration of water in an unsaturated porous media modeled

by the (stationary) Richards equation [40] or (stationary) heat conduction in a composite mate-

rial [75]. For efficient numerical computations, an appropriate upscaling of Equation (6.0.1) is

needed. Such coarse graining procedures are rigorously described by the mathematical homog-

enization theory [42, 74] and are studied for the class of problems (6.0.1) in [33, 44, 66]. These

analyses show that the solution uε of (6.0.1) converges in a weak sense to u0 as ε→ 0, where the

homogenized function u0 is the solution of an effective (homogenized) equation that is of the

same quasilinear type as the original equation with an effective homogenized tensor a0(x,u0(x))

that depends nonlinearly on u0. Numerical homogenization methods for problems of the type

(6.0.1) are derived in [51] for the multiscale finite element method (MsFEM) and in [60, 26]

Here we focus on the FE-HMM proposed in [60, 26] for quasilinear problems. The practical

implementation relies on a Newton method for the macroscopic nonlinear FEM. Since the value

of the corresponding macroscopic solution is updated at each Newton iteration, the microscopic

problems in each element of the macroscopic mesh need to be recomputed. Although the micro

problems can be solved independently in parallel, the cost of the procedure mentioned above

can be prohibitive, especially for high dimensional problems. In this part, we show how the

use of the reduced basis (RB) method (see [93, 92, 96] and references therein) for computing

the micro problems permits to considerably improve the efficiency of the standard nonlinear

FE-HMM.

Outline of Part III.

• Chapter 6: Presents the RB-FE-HMM for quasilinear problems as well as the fully discrete

error analysis and the convergence analysis of the Newton method.

• Chapter 7: Explains the details of the implementation and provides extensive numerical

examples.
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6 The RB-FE-HMM for quasilinear prob-
lems

The algorithm proposed in this chapter for nonlinear problems relies also on the online and

offline procedures. However, there are substantial differences from Part II, as here the micro

problems are parametrized by both the location of the cell problems in the domain Ω and the

macroscopic solution at this location. The greedy algorithm allows to choose an appropriate

basis of micro functions (computed with high accuracy) for selected values of the parameters.

For the online stage, a Newton method for the RB-FE-HMM implementation is proposed with

microscopic solutions computed in the reduced basis space, which amounts to solve small

dimensional linear systems in each element of the macroscopic mesh. The overall computational

cost of the online macroscopic Newton method is similar to the cost of single scale nonlinear

problems. One difficulty is the design of an a posteriori error estimator in the offline stage that

is both efficient and also guarantees that the online Newton method converges. We propose

in this chapter a new a posteriori error estimators and prove the convergence of the online

Newton method and the uniqueness of the numerical solution. Furthermore, a fully discrete

error analysis of the quasilinear RB-FE-HMM is derived.

This chapter is taken from [11] and organized as follows. In Section 6.1, we briefly recall the

framework of homogenization theory in our context of quasilinear elliptic problems of non-

monotone type. We then present in Section 6.2 the new nonlinear RB-FE-HMM with its offline

and online procedures, and analyze its convergence in Section 6.3.

6.1 Homogenization of quasilinear elliptic problems

We assume that the tensor aε(x, s) in (6.0.1) is uniformly elliptic and bounded with respect to s

and ε, i.e., there exist λ,Λ1 > 0 such that

λ|ξ|2 ≤ aε(x, s)ξ ·ξ, |aε(x, s)ξ| ≤Λ1|ξ|, ∀ξ ∈Rd ,∀s ∈R, a.e. x ∈Ω, (6.1.1)

and that the functions aεmn(x, s), m,n = 1, . . . ,d are continuous, bounded and uniformly Lipschitz

continuous with respect to s.

Then, for all fixed ε > 0, the weak form of (6.0.1) has a unique solution uε ∈ H 1
0 (Ω) (we refer
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for example to [52, Theorem 11.6] for a proof). The solution, for each ε, satisfies the a priori

bound ‖uε‖H 1(Ω) ≤C‖ f ‖H −1(Ω), hence one can apply standard compactness arguments to the

sequence of solution uε that ensure the existence of a subsequence of {uε} converging weakly in

H 1(Ω). The homogenization result is shown in [44, Theorem 3.6] (see also [66]) and reads as

follows: there exists a subsequence of {aε(·, s)} (again indexed by ε) such that the corresponding

sequence of solutions {uε} converges weakly to u0 in H 1(Ω). The limit function u0 is the solution

of the homogenized problem

−∇· (a0(x,u0(x))∇u0(x)
)= f (x) in Ω, u0(x) = 0 on ∂Ω. (6.1.2)

The tensor a0(x, s), the homogenized tensor, can be shown to be Lipschitz continuous with

respect to s, uniformly elliptic, and bounded [44, Prop. 3.5], i.e., there exists Λ2 > 0 such that

‖a0(x, s1)−a0(x, s2)‖F ≤Λ2|s1 − s2|, a.e. x ∈Ω,∀s1, s2 ∈R, (6.1.3)

and there exist λ,Λ1 > 0 such that a0 satisfies (6.1.1) (possibly with different constants). Under

these assumptions, the homogenized problem (6.1.2) has also a unique solution u0 ∈H 1
0 (Ω).

We mention that for a locally periodic tensor of the form aε(x, s) = a(x, x/ε, s) where a(x, y, s) is

Y periodic with respect to y , the weak convergence of uε to the solution of (6.1.2) holds for the

whole sequence {uε} and the homogenized tensor can be characterized in the following way [33]:

a0(x, s) =
∫

Y
a(x, y, s)(I + J T

χ(x,y,s))d y, for x ∈Ω, s ∈R, (6.1.4)

where Jχ(x,y,s) is a d ×d matrix with entries Jχ(x,y,s)i j = (∂χi )/(∂y j ) and χi (x, ·, s), i = 1, . . . ,d are

the unique solutions in W 1
per (Y ) of the linear cell problems with parameters x ∈Ω, s ∈R∫

Y
a(x, y, s)∇yχ

i (x, y, s) ·∇w(y)d y =−
∫

Y
a(x, y, s)ei ·∇w(y)d y, ∀w ∈W 1

per (Y ). (6.1.5)

Remark 6.1.1. We sometimes refer to the problems (6.1.2) or (6.0.1) as “non monotone problems".

This stems from the following fact: writing for example (6.1.2) in weak form

B(u0;u0, v) =
∫
Ω

a0(x,u0(x))∇u0(x)∇v(x)d x = ( f , v), ∀v ∈H 1
0 (Ω),

we observe that the monotonicity property B(u0;u0,u0 − v)−B(v ; v,u0 − v) ≥ C‖u0 − v‖2
H 1(Ω)

with C ≥ 0 does not hold in general for the quasilinear problem (6.1.2) (or (6.0.1)). This lack

of monotonicity makes the numerical analysis for FEM a nontrivial task, in particular when

quadrature formula are used [25].

For our analysis, we will further assume that the tensor aε is symmetric (and thus also a0) and

that the homogenized tensor is continuous,

a0
mn ∈C 0(Ω×R), ∀m,n = 1, . . . ,d . (6.1.6)
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6.2 Reduced basis FE-HMM for quasilinear problems

As the homogenized tensor a0 in (6.1.2) is in general unknown, the task in numerical homoge-

nization is to design an algorithm capable of computing an approximation of the homogenized

solution u0 without knowing a0, relying on a finite number of localized micro problems, i.e. cell

problems, chosen in such a way that the overall computation is both efficient and reliable. Here,

we generalize the RB-FE-HMM introduced in Chapter 4 for linear elliptic problems to quasilinear

elliptic problems.

6.2.1 Preliminaries

We still use the notations defined in Section 1.2.1 for the macro FEM space. Following the

discussion in Section 4.1, we will again denote the micro FE space by Sq (Kδ j ,N ) instead of

Sq (Kδ j ,Th) (defined in Section1.2.2) to emphasize on the dimension N of the micro FE space

which in RB strategy is required to be large. Analogously, the functions in Sq (Y ,N ) are denoted

using the subscript N (e.g., ẑN ). We then recall the RB space defined in (4.2.26), which is a

subspace of Sq (Y ,N ) with a low dimension denoted

SN (Y ) = span{ξ̂n,N (y), n = 1, .., N } ⊂ Sq (Y ,N ), (6.2.7)

where ξ̂n,N (y), n = 1, .., N denotes the reduced basis. Notice here that for the analysis of the

RB-FE-HMM, we shall also consider a new RB space of the form

SN (Y ) = span{(ξ̂n,N , ζ̂n,N ), n = 1, .., N } ⊂ Sq (Y ,N )2,

which is a subspace of dimension N of (Sq (Y ,N ))2 involving the same functions ξ̂n,N as in

SN (Y ) and where ζ̂n,N ∈ Sq (Y ,N ), n = 1, .., N . The construction of the RB spaces SN (Y ) and

SN (Y ) is discussed in Section 6.2.4 below.

For each macro element K ∈ TH and each quadrature point xK j ∈ K , j = 1, . . . , J , we have the

sampling domains Kδ j = xK j + (−δ/2,δ/2)d , (δ≥ ε). We recall that each sampling domain Kδ j is

in correspondence with Y through the affine transformation as defined in Section 4.1

y ∈ Y 7→GxK j
(y) = xK j +δy ∈ Kδ j (6.2.8)

This transformation applied to the RB space (6.2.7) permits to define the RB space SN (Kδ j )

associated to each sampling domain Kδ j as

SN (Kδ j ) = span{δξ̂n,N (G−1
xK j

(x)) =: ξn,K j (x), n = 1, .., N }. (6.2.9)
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6.2.2 Online procedure: the RB-FE-HMM

Assuming that the RB space has been pre-constructed in the offline stage described in the next

section, we introduce a macro method similar to the FE-HMM with the micro problems solved

in the RB space.

The nonlinear RB-FE-HMM for (6.0.1) is defined as follows: find uH ,RB ∈ S`0(Ω,TH ) such that

BH ,RB (uH ,RB ;uH ,RB , v H ) =
∫
Ω

f v H d x, ∀v H ∈ S`0(Ω,TH ), (6.2.10)

with a bilinear form defined for all uH , v H , w H ∈ S`0(Ω,TH ) by

BH ,RB (uH ; v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j

|Kδ j |
∫

Kδ j

aε(x,uH (xK j ))∇v
uH (xK j )

N ,K j
(x)·∇w

uH (xK j )

N ,K j
(x)d x, (6.2.11)

where for the scalar parameter s = uH (xK j ), the function v s
N ,K j

solves v s
N ,K j

−v H
li n, j ∈ SN (Kδ j ) and

∫
Kδ j

aε(x, s)∇v s
N ,K j

(x) ·∇zN (x)d x = 0, ∀zN ∈ SN (Kδ j ) (6.2.12)

and similarly for w s
N ,K j

(x). The problem (6.2.12) requires the solution of an N ×N linear system,

where the details of the offline output and the online implementation are discussed in Chapter

7. The efficiency of the RB procedure relies in the fact that the dimension N of the RB space

is usually small. Furthermore, in contrast to the standard FE-HMM, the number of degrees of

freedom (DOF) of the micro (RB) space remains fixed during the online procedure and does not

increase as the macroscopic DOF increase. This is in sharp contrast with the FE-HMM for which

the simultaneous refinement of the macro and micro DOF is a major computational issue [1].

6.2.3 Solution of the macro quasilinear problem and Newton method

While the cell problems (6.2.12) are linear, the macroscopic problem (6.2.11) is nonlinear and is

usually solved by a Newton method.

The following reformulation of the bilinear form of the RB-FE-HMM will be useful to define the

Newton method used in practice to compute a numerical solution uH ,RB of (6.2.10). The bilinear

form (6.2.11) can be rewritten as

BH ,RB (uH ; v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j a0
N ,K j

(uH (xK j ))∇v H (xK j ) ·∇w H (xK j ), (6.2.13)

where we define the numerical homogenized tensor as

(a0
N ,K j

(xK j , s))i k =
∫

Y
axK j ,s(y)

(
∇χ̂i ,s

N ,K j
(y)+ei

)
·
(
∇χ̂k,s

N ,K j
(y)+ek

)
d y. (6.2.14)
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where χ̂i ,s
N ,K j

∈ SN (Y ), i = 1, . . . ,d is the solution of a cell problem (see (6.2.25) below) correspond-

ing to the sampling domain Kδ j .

Inspired by [73, 26], we explain here how to solve the nonlinear problem (6.2.10) with the Newton

method. For given zH , v H , w H ∈ S`0(Ω,TH ) we first define the Fréchet derivative ∂BH obtained

by differentiating the nonlinear quantity BH (zH , zH , w H ) with respect to zH

∂BH ,RB (zH ; v H , w H ) := BH ,RB (zH ; v H , w H )+B ′
H ,RB (zH ; v H , w H ), (6.2.15)

where by the reformulation of the RB-FE-HMM bilinear form (6.2.13) we derive

B ′
H (zH ; v H , w H ) = ∑

K∈TH

J∑
j=1

ωK j

d

d s
a0

N ,K j
(s)|s=zH (xK j )v H (xK j )∇zH (xK j ) ·∇w H (xK j ). (6.2.16)

The Newton method for approximating a solution uH of the nonlinear RB-FE-HMM (6.2.10) by a

sequence {uH
k } reads in weak form

∂BH (uH
k ;uH

k+1 −uH
k , w H ) = FH (w H )−BH (uH

k ;uH
k , w H ), ∀w H ∈ S`0(Ω,TH ). (6.2.17)

The fact that the Newton method is well defined and convergence is discussed in Section 6.3.2

while an efficient implementation is detailed in next chapter.

6.2.4 Offline procedure: RB for quasilinear problems

This section describes the offline stage of the RB algorithm in our context of quasilinear elliptic

problems. The task is to construct a low dimensional RB space SN (Y ) spanned by a small

number N ¿N of representative solutions of the cell problems (6.2.22) below (depending on

the quadrature node xK j and the nonlinear parameter s). Here again, N denotes the (large) DOF

of the FE space used to obtain a highly resolved solution of (6.2.22).

The main novelty is that the proposed RB algorithm permits to compute efficiently with a reliable

a posteriori error control not only the solutions of the cell problems (6.2.22) but also their

derivatives with respect to the nonlinear parameter s. This is an essential ingredient to prove

in Section 6.2.3 the uniqueness of the RB-FE-HMM macro solution and the convergence of the

Newton method.

Considering an affine representation of the tensor, we first describe a suitable formulation of the

cell problems before presenting the parametrized cell solution space itself. We then introduce a

new a posteriori error estimator and analyze its efficiency and reliability. This is the key ingredient

of the Greedy algorithm for the construction of the RB space that concludes this section.

Affine representation of the tensor. A suitable representation of the tensor

axK j ,s(y) := aε(GxK j
(y), s), (6.2.18)
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where we use the transformation (6.2.8) that is crucial for the RB methodology, i.e., an affine

representation of the form

axτ,s(y) =
P∑

p=1
Θp (xτ, s)ap (y), ∀y ∈ Y . (6.2.19)

We remark that if such direct affine representation is unavailable, the EIM can also be used to

approximate a nonaffine tensor by an affine one of the form (6.2.19) as we discussed in Section

3.3.

Cell problems. The micro problems in the FE-HMM are based on the FE approximation of the

cell functions χi ,s
K j

∈W (Kδ j ), solving the linear problem

∫
Kδ j

aε(x, s)∇χi ,s
K j

(x) ·∇z(x)d x =−
∫

Kδ j

aε(x, s)ei ·∇z(x)d x, ∀z ∈W (Kδ j ). (6.2.20)

which has a unique solution using (6.1.1). For the design of the RB method, is more convenient

to work in the space W (Y ) (defined in either (1.2.12) or (1.2.13)) rather than the quadrature node

dependent space W (Kδ j ). We thus consider the transformation (6.2.8) and using the notations

b(v̂ , ẑ) :=
∫

Y
axK j ,s(y)∇v̂(y) ·∇ẑ(y)d y ∀v̂ , z ∈W (Y ),

li (ẑ) := −
∫

Y
axK j ,s(y)ei ·∇ẑ(y)d y ∀ẑ ∈W (Y ), (6.2.21)

the problem (6.2.20) with χ̂i ,s
K j

(y) =χi ,s
K j

(GxK j
(y)) can be transformed into

b(χ̂i ,s
K j

, ẑ) = li (ẑ), ∀z ∈W (Y ). (6.2.22)

On W (Y ) we consider the scalar product (v, w)W = ∫
Y ∇v ·∇wd y and associated norm ‖v‖W =

((v, v)W )1/2 and for (Tδ, s) ∈D the energy norm

‖v‖E ,Tδ,s := (b(v, v))1/2 =
(∫

Y
axτ,s(y)∇v(y) ·∇v(y)d y

)1/2

, (6.2.23)

and notice that from the ellipticity of the tensor it holds

‖v‖W ≤ 1p
λ
‖v‖E ,Tδ,s . (6.2.24)
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Consider χ̂i ,s
N ,K j

∈ Sq (Y ,N ) the solution of the linear problem

b(χ̂i ,s
N ,K j

, ẑN ) = li (ẑN ) ∀ẑN ∈ Sq (Y ,N ), (6.2.25)

We notice using (6.1.1) that problem (6.2.25) has a unique solution.

For the convergence of the Newton method explained in Section 6.2.3 we will also need to control

the derivatives with respect to the parameter s of the cell functions χ̂i ,s
K j

. We assume1

s ∈R 7→ aε(·, s) ∈ (L∞(Ω))d×d is of class C 1,

|∂s aε(x, s)ξ| ≤Λ2|ξ|, ∀s ∈R, a.e. x ∈Ω,∀ξ ∈Rd . (6.2.26)

Lemma 6.2.1. Assume that (6.1.1) and (6.2.26) hold. Consider the solution χ̂i ,s
N ,K j

of (6.2.25).

Then, the map s 7→ χ̂i ,s
N ,K j

∈H 1(Tδ) is of class C 1 and satisfies

∂

∂s
χ̂i ,s

N ,K j
= φ̂i ,s

N ,K j
,

∂

∂s
∇χ̂i ,s

N ,K j
=∇φ̂i ,s

N ,K j
, (6.2.27)

where for all ζ̂N ∈ Sq (Y ,N ),∫
Y

axτ,s(y)∇φ̂i ,s
N ,K j

(y) ·∇ζ̂N (y)d y =−
∫

Y
∂s axτ,s(∇χ̂i ,s

N ,K j
(y)+ei ) ·∇ζ̂N (y)d x. (6.2.28)

Proof. This is a standard result for FEM problems depending smoothly on a parameter (see e.g.

Lemma 6.1 in [26] for details).

Parametrized cell solution space. We consider a compact subspace D of Ω×R. For any ran-

domly chosen parameter2 (xτ, s) ∈D, we have the map Gxτ from the physical sampling domain

Tδ = xτ+ (−δ/2,δ/2)d centered at xτ to the reference domain Y and consider (6.2.25),(6.2.28)

with the tensor axτ,s(y). Next indexed by {(Tδ, s,eη); (Tδ, s) ∈ D and η = 1, · · · ,d}, we define the

parametrized cell solution space MN (Y ) ⊂W (Y )2 given by

MN (Y ) := {
(ξ̂η,s

N ,Tδ
,∂s ξ̂

η,s
N ,Tδ

); (Tδ, s) ∈D and η= 1, · · · ,d
}
, (6.2.29)

where ξ̂
η,s
N ,Tδ

∈ Sq (Y ,N ), ∂s ξ̂
η,s
N ,Tδ

:= ∂
∂s ξ̂

η,s
N ,Tδ

∈ Sq (Y ,N ) are the solutions of (6.2.25),(6.2.28)

associated with the mapping Gxτ and the Hilbert space W (Y ) is defined in either (1.2.12) or

(1.2.13). On the Hilbert product space W (Y )2 we define the norms

‖(u, v)‖W ×W := (‖u‖2
W +‖v‖2

W )1/2 and ‖(u, v)‖E×E ,Tδ,s := (‖u‖2
E ,Tδ,s+‖v‖2

E ,Tδ,s)1/2. (6.2.30)

1It is shown in [44, Rem. 3.3, Prop. 3.5] that the best constantΛ2 in (6.1.3) may differ from the one in (6.2.26).
2D should be chosen such that Tδ ⊂Ω, for all (xτ, s) ∈D.
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The goal of the Greedy procedure described below is to find an N−dimensional subspace of

MN (Y ), called SN (Y ), that minimizes the projection error of functions in MN (Y ) over other

choices of N−dimensional subspaces. We emphasize that the derivative functions ∂s ξ̂
η,s
N ,Tδ

involved in the definition (6.2.29) of MN (Y ) are considered only for the analysis, but should not

be computed explicitly in the implementation. Hence the solution of the online cell problem

(6.2.12) will involve the reduced basis space SN (Y ), defined as the first component of each couple

of functions in SN (Y ).

A posteriori error estimator. The procedure of selecting the representative cell solutions is

conducted by an a posteriori error estimator which allows to control the accuracy of our output

of interest (the numerically homogenized tensor) [93, 45].

Assume that the RB space of dimension l , denoted by Sl (Y ), is available (its construction

will be detailed in Algorithm 6.2.4). Given the parameters (xτ, s, i ), consider (ξ̂i ,s
N ,Tδ

,∂s ξ̂
i ,s
N ,Tδ

),

(ξ̂i ,s
l ,Tδ

,∂s ξ̂
i ,s
l ,Tδ

) the solutions of (6.2.25),(6.2.28) in Sq (Y ,N )2 and Sl (Y ), respectively (i.e. with test

functions (zN ,ζN ) in Sq (Y ,N )2 and Sl (Y ), respectively). We then consider

ê i ,s
l ,Tδ

= ξ̂i ,s
l ,Tδ

− ξ̂i ,s
N ,Tδ

, (6.2.31)

∂s ê i ,s
l ,Tδ

= ∂s ξ̂
i ,s
l ,Tδ

−∂s ξ̂
i ,s
N ,Tδ

. (6.2.32)

We derive an a posteriori estimator for both ê i ,s
l ,Tδ

and ∂s ê i ,s
l ,Tδ

will be analyzed in Lemma 6.2.3. We

have that

b(ê i ,s
l ,Tδ

, ẑN ) = b(ξ̂i ,s
l ,Tδ

, ẑN )− li (ẑN ), ∀ẑN ∈ Sq (Y ,N ), (6.2.33)

where the right-hand side defines a linear form on Sq (Y ,N ). Hence, by the Riesz theorem, there

exists a unique ē i
l ,Tδ

∈ Sq (Y ,N ) such that

b(ê i ,s
l ,Tδ

, ẑN ) = (ē i ,s
l ,Tδ

, ẑN )W , ∀ẑN ∈ Sq (Y ,N ). (6.2.34)

We then define the residual of the a posteriori error estimator as

∆i ,s
l ,Tδ

:=
‖ē i ,s

l ,Tδ
‖W√

λLB

+
‖∂s ē i ,s

l ,Tδ
‖W√

λLB

, (6.2.35)

where λLB is an approximation of the coercivity constant λ defined in (6.1.1). We notice that the

first term in (6.2.35) is the standard residual used for linear problems as shown in Chapter 4. The

second term arises from the nonlinearity of our problem and its control is needed to ensure the

uniqueness of the nonlinear RB-FE-HMM and the convergence of the Newton method used in

the implementation.
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Remark 6.2.2. To compute the residual ē i ,s
l ,Tδ

in (6.2.35), we first observe that we need to solve

(6.2.34), which depends on the parameter s. As discussed in Chapter 4, thanks to the affine

representation of the tensor, ‖ē i ,s
l ,Tδ

‖W is efficient to compute. Second, for evaluating ∂s ē i ,s
l ,Tδ

one can

simply consider the finite difference approximation

∂s ē i ,s
l ,Tδ

≈
ē

i ,s+peps
l ,Tδ

− ē i ,s
l ,Tδp

eps
,

where eps is the machine precision. This can be done by solving (6.2.34) twice with parameters s

and s +p
eps, respectively. In the analysis, we shall neglect the error of the above finite difference.

The next lemma gives a bound for the a posteriori error in output of interest in terms of the

norms (6.2.30). It is a generalization of the result [7, Lemma 3.3] in the context of linear elliptic

problems. These results are needed in our nonlinear context to control the microscopic error in

the macroscopic (nonlinear) solver.

Consider ē i ,s
l ,Tδ

defined in (6.2.34) and the residual ∆i ,s
l ,Tδ

defined in (6.2.35). Define

(a0
N ,Tδ

(xτ, s))i j =
∫

Y
axτ,s(y)

(
∇ξ̂i ,s

N ,Tδ
(y)+ei

)
·
(
∇ξ̂ j ,s

N ,Tδ
(y)+e j

)
d y, (6.2.36)

(a0
l ,Tδ

(xτ, s))i j =
∫

Y
axτ,s(y)

(
∇ξ̂i ,s

l ,Tδ
(y)+ei

)
·
(
∇ξ̂ j ,s

l ,Tδ
(y)+e j

)
d y. (6.2.37)

Lemma 6.2.3. Assume (6.1.1) and (6.2.26). Let (ξ̂i ,s
N ,Tδ

,∂s ξ̂
i ,s
N ,Tδ

) and (ξ̂i ,s
l ,Tδ

,∂s ξ̂
i ,s
l ,Tδ

) be the solution

of problem (6.2.25)-(6.2.28) in Sq (Y ,N )2 and Sl (Y ), with test functions (zN ,ζN ) in Sq (Y ,N )2

and Sl (Y ), respectively. Assume that the approximation λLB of the coercivity constant satisfies

0 <λLB ≤λ. Consider the quantities ê i ,s
l ,Tδ

and ∂s ê i ,s
l ,Tδ

defined in (6.2.31). Then

‖(ê i ,s
l ,Tδ

,∂s ê i ,s
l ,Tδ

)‖E×E ,Tδ,s ≤ (2+ Λ2

λLB
)∆i ,s

l ,Tδ
, (6.2.38)

(2Λ1 +Λ2)−1λ1/2
LB ∆

i
l ,Tδ

≤ ‖(ê i ,s
l ,Tδ

,∂s ê i ,s
l ,Tδ

)‖W ×W ≤ (2λ−1/2
LB +Λ2λ

−3/2
LB )∆i

l ,Tδ
, (6.2.39)

|(a0
N ,Tδ

(s))i j − (a0
l ,Tδ

(s))i j |+ |∂s(a0
N ,Tδ

(s))i j −∂s(a0
l ,Tδ

(s))i j | ≤ 3
(
1+ Λ2

λLB

)
∆i ,s

l ,Tδ
∆

j ,s
l ,Tδ

,

(6.2.40)

where Λ1,Λ2 are the constants in (6.2.26),(6.1.1) and ‖ · ‖E ,Tδ,s is the energy norm defined in

(6.2.23).

Proof of Lemma 6.2.3. Taking ẑN = ê i ,s
l ,Tδ

in (6.2.34) and using (6.2.24) yields successively,

‖ê i ,s
l ,Tδ

‖E ,Tδ,s ≤ ∆i ,s
l ,Tδ

, (6.2.41)

‖ê i ,s
l ,Tδ

‖W ≤
∆i ,s

l ,Tδ√
λLB

. (6.2.42)
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A consequence of (6.2.36),(6.2.37), and the symmetry of the tensor, is the identity

(a0
l ,Tδ

(xτ, s))i j − (a0
N ,Tδ

(xτ, s))i j

=
∫

Y
axτ,s(y)

(
∇ξ̂i ,s

N ,Tδ
(y)−∇ξ̂i ,s

l ,Tδ
(y)

)
·
(
∇ξ̂ j ,s

N ,Tδ
(y)−∇ξ̂ j ,s

l ,Tδ
(y)

)
d y. (6.2.43)

We deduce from the Cauchy-Schwarz inequality and (6.2.41),

|(a0
N ,Tδ

(s))i j − (a0
l ,Tδ

(s))i j | ≤∆i ,s
l ,Tδ

∆
j ,s
l ,Tδ

. (6.2.44)

Using Lemma 6.2.1, we obtain after differentiation of (6.2.34) with respect to the parameter s,

(∂s ē i ,s
l ,Tδ

, ẑN )W =
∫

Y
∂s axτ,s∇ê i ,s

l ,Tδ
·∇ẑN d y +

∫
Y

axτ,s∇(∂s ê i ,s
l ,Tδ

) ·∇ẑN d y, ∀ẑN ∈ Sq (Y ,N ).

(6.2.45)

We take ẑN = ∂s ê i ,s
l ,Tδ

in (6.2.45) and we write

‖∂s ê i ,s
l ,Tδ

‖2
E ,Tδ,s = (∂s ē i ,s

l ,Tδ
,∂s ê i ,s

l ,Tδ
)W −

∫
Y
∂s axτ,s(y)∇ê i ,s

l ,Tδ
(y) ·∇(∂s ê i ,s

l ,Tδ
(y))d y.

We deduce from the Cauchy-Schwarz inequality and (6.2.24),(6.2.26),

‖∂s ê i ,s
l ,Tδ

‖2
E ,Tδ,s ≤λ−1/2

LB ‖∂s ē i ,s
l ,Tδ

‖W ‖∂s ê i ,s
l ,Tδ

‖E ,Tδ,s +Λ2‖ê i ,s
l ,Tδ

‖W ‖∂s ê i ,s
l ,Tδ

‖W

which gives, using (6.2.42),(6.2.24),

‖∂s ê i ,s
l ,Tδ

‖E ,Tδ,s ≤ (1+Λ2/λLB )∆i ,s
l ,Tδ

. (6.2.46)

The estimates (6.2.41) and (6.2.46) yield (6.2.38), and using in addition (6.2.24) proves the upper

bound in (6.2.39). Next, taking ẑN = ē i ,s
l ,Tδ

in (6.2.34) using the Cauchy-Schwarz inequality yields

‖ē i ,s
l ,Tδ

‖W ≤ Λ1‖ê i ,s
l ,Tδ

‖W , while taking ẑN = ∂s ē i ,s
l ,Tδ

in (6.2.45) yields ‖∂s ē i ,s
l ,Tδ

‖W ≤ Λ2‖ê i ,s
l ,Tδ

‖W +
Λ1‖∂s ê i ,s

l ,Tδ
‖W . We obtain ∆i

l ,Tδ
≤ λ−1/2

LB (Λ1 +Λ2)‖ê i ,s
l ,Tδ

‖W +λ−1/2
LB Λ1‖∂s ê i ,s

l ,Tδ
‖W which yields the

lower bound in (6.2.39). We finally prove (6.2.40). Differentiating the equality (6.2.43) and using

(6.2.45) with ẑN = ê j ,s
l ,Tδ

we obtain (using the Cauchy-Schwarz inequality)

|(∂s a0
N ,Tδ

(xτ, s))i j − (∂s a0
l ,Tδ

(xτ, s))i j |
≤ 3Λ2‖ê i ,s

l ,Tδ
‖W ‖ê j ,s

l ,Tδ
‖W +‖∂s ē i ,s

l ,Tδ
‖W ‖ê j ,s

l ,Tδ
‖W +‖∂s ē j ,s

l ,Tδ
‖W ‖ê i ,s

l ,Tδ
‖W

≤
(
3
Λ2

λLB
+2

)
∆i ,s

l ,Tδ
∆

j ,s
l ,Tδ

where we used (6.2.42) and the definition (6.2.35) in the last inequality. Finally, using (6.2.44)

concludes the proof.

Offline algorithm. In the offline stage, we select by a greedy algorithm N triples of the form
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(Tδn , s,ηn), where (Tδn , s) belongs to a given compact D ⊂Ω×R (since the range of the parameter s

can only be obtained when the macro solution uH ,RB is computed, we propose in next chapter an

ad hoc method to find an a priori range of s) and ηn corresponds to the unit vector eηn belonging

to the canonical basis of Rd . Corresponding to the N couples of (Tδn , s,ηn), we compute ξ̂ηn ,s
N ,Tδn

,

the solution of (6.2.25) with a tensor given by axτn ,s(y) (xτn is the barycenter of Tδn ) and a right-

hand side given by lηn (·). The complete offline algorithm stated below is also based on the usual

procedure of the RB methodology (see [93, 96]) and in Chapter 7, we will discuss about the details

of implementation.

Notice that in the case of a linear elliptic problem (i.e. aε(x, s) independent of s), it coincides

with the Greedy procedure proposed in Chapter 4.

Algorithm 6.2.4 (Greedy procedure). Given the maximum basis number NRB and a stopping

tolerance tolRB :

1. Choose randomly (by a Monte Carlo method) Ntr ai n parameters (Tδn , sn) ∈ D (Ntr ai n large).

Define the "training set" ΞRB = (Tδn , sn ,ηn);1 ≤ ηn ≤ d ,1 ≤ n ≤ Ntr ai n}.

2. Select randomly (Tδ1 , s1,η1) ∈ΞRB and compute ξ̂η1,s1

N ,Tδ1
, the solution of (6.2.25) with right-hand

side lη1 (·) in Sq (Y ,N ), corresponding to the selected parameter (Tδ1 , s1,η1). Set l = 1 and define

ξ̂1,N (y) =
ξ̂
η1,s1
N ,Tδ1

(y)

‖ξ̂η1,s1
N ,Tδ1

‖W
, and the corresponding RB space S1(Y ) = span{(ξ̂η1,s1

N ,Tδ1
,∂s ξ̂

η1,s1

N ,Tδ1
)}.

3. For l = 2, . . . , NRB

a. Compute for each (Tδ, s,η) ∈ΞRB the residual ∆η,s
l−1,Tδ

defined in (6.2.35) and select the next

reduced basis by choosing

(Tδl , sl ,ηl ) = ar g max(Tδ,s,η)∈ΞRB ∆
η,s
l−1,Tδ

,

provided that3 max(Tδ,s,η)∈ΞRB (∆η,s
l−1,Tδ

)2 > tolRB , otherwise the algorithm ends.

b. Compute ξ̂ηl ,sl

N ,Tδl
the solution of (6.2.25) in Sq (Y ,N ) corresponding to the selected param-

eters (Tδl , sl ,ηl ). Enlarge the RB space: Sl (Y ) = Sl−1(Y )⊕ span{(ξ̂ηl ,sl

N ,Tδl
,∂s ξ̂

ηl ,sl

N ,Tδl
)}. Set

l = l +1 and go back to a.

We emphasize once again that the derivative functions ∂s ξ̂
ηl ,sl

N ,Tδl
involved in Algorithm 6.2.4 do

not need to be computed in the implementation and shall be considered only in the analysis.

Thanks to Remark 6.2.2 for the a posteriori error estimator evaluation, as output of the Greedy

algorithm, it is sufficient to compute only the list of functions ξ̂l ,N , l = 1, . . . , N that span the

space SN (Y ) := span{ξ̂1,N , . . . , ξ̂N ,N }. These RB functions are obtained by orthogonalizing in

3Notice that the error of the outputs of interest scale like the square of the error of the cell functions (6.2.40).
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W (Y ) the functions ξ̂ηl ,sl

N ,Tδl
, l = 1, . . . , N and they are defined as

ξ̂l ,N (y) := Rl (y)

‖Rl‖W
, where Rl (y) := ξ̂ηl ,sl

N ,Tδl
(y)−

l−1∑
m=1

(ξ̂ηl ,sl

N ,Tδl
, ξ̂m,N )W ξ̂m,N .

Remark 6.2.5. Notice that we choose to orthogonalize the RB in W (Y ) with respect to the scalar

product (·, ·)W rather than the RB in W (Y )2 with respect to the scalar product (·, ·)W 2 associ-

ated to the norm ‖ ·‖W 2 in (6.2.30) (as normally expected in the usual RB methodology) because

this is more convenient in the implementation (avoiding the computation of ∂s ξ̂
ηl ,sl

N ,Tδl
). Since

max(Tδ,s,η)∈ΞRB (∆η,s
l ,Tδ

) decays exponentially as l increases (under the assumptions of Theorem 6.3.2,

a slight variation of the result in [48, Corollary 4.1] and [43]), we have ξ̂ηl ,sl

N ,Tδl
∉ Sl−1 and thus

‖Rl‖W 6= 0 and the above orthogonalization procedure succeeds.

6.3 Analysis of the RB-FE-HMM

In this section we first derive a priori error estimates for the RB-FE-HMM. We then show the

uniqueness of the numerical approximation which is based on the convergence of the Newton

method.

6.3.1 A priori error analysis

We introduce the following quantity to measure the error between the tensor a0 of the homoge-

nized problem (6.1.2) and the numerical homogenized tensor a0
N ,K j

in (6.2.14).

rH M M := sup
K∈TH ,xK j ∈K

‖a0(xK j ,uH ,RB (xK j ))−a0
N ,K j

(uH ,RB (xK j ))‖F . (6.3.47)

Theorem 6.3.1. Consider u0 the solution of problem (6.1.2). Let `≥ 1 and µ= 0 or 1. Consider a

quasi-uniform macro mesh satisfying (Q1), (Q2) (introduced in Section 1.2.1). Assume

u0 ∈H `+1(Ω)∩W 1,∞(Ω), a0
mn ∈W `+µ,∞(Ω×R), ∀m,n = 1. . .d .

Assume further that (6.1.1),(6.1.3),(6.1.6) hold and that ∂u a0
mn ∈W 1,∞(Ω×R), and that the coeffi-

cients a0
mn(x, s) are twice differentiable with respect to s, with the first and second order derivatives

continuous and bounded onΩ×R, for all m,n = 1. . .d . Then, there exist r0 > 0 and H0 > 0 such

that, provided

H ≤ H0 and rH M M ≤ r0, (6.3.48)

any solution uH ,RB of (6.2.10) satisfies

‖u0 −uH ,RB‖H 1(Ω) ≤ C (H`+ rH M M ) if µ= 0,1
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‖u0 −uH ,RB‖L 2(Ω) ≤ C (H`+1 + rH M M ) if µ= 1,

where C is independent of H ,h, N ,N ,ε.

Proof. We apply Lemma 6.4.1 (a result from [26] stated in the Section 6.4 Appendix) with

ã(xK j , s) = a0
N ,K j

(s) and ũH = uH ,RB .

We next have to quantify the error rH M M defined in (6.3.47) which can be decomposed as

rH M M ≤ rMOD + rM IC + rRB , i.e. with the modeling, micro, and RB errors, respectively. These

quantities are defined by

rMOD := sup
K∈TH ,xK j ∈K

‖a0(xK j ,uH ,RB (xK j ))−a0(xK j ,uH ,RB (xK j ))‖F , (6.3.49)

rM IC := sup
K∈TH ,xK j ∈K

‖a0(xK j ,uH ,RB (xK j ))−a0
N ,K j

(uH ,RB (xK j ))‖F , (6.3.50)

rRB := sup
K∈TH ,xK j ∈K

‖a0
N ,K j

(uH ,RB (xK j ))−a0
N ,K j

(uH ,RB (xK j ))‖F . (6.3.51)

To estimate the quantities rM IC and rMOD , we make the following smoothness and structure

assumptions on the tensor:

(HN1) Given the degree q of the micro FE space Sq (Kδ j ,Th), the cell functions χi ,s
K j

solution of

(6.2.20) satisfy the bound |χi ,s
K j
|H q+1(Kδ j ) ≤Cε−q

√
|Kδ j |, with C independent of ε, the quadrature

point xK j , the domain Kδ j , and the parameter s for all i = 1. . .d .

(HN2) for all m,n = 1, . . . ,d , we assume aεmn(x, s) = amn(x, x/ε, s), where amn(x, y, s) is y-periodic

in Y , and the map (x, s) 7→ amn(x, ·, s) is Lipschitz continuous and bounded from Ω×R into

W 1,∞
per (Y ).

We next discuss the reduced basis error. Consider the space MN (Y ) as defined in (6.2.29). We

want to quantify how well MN (Y ) can be approximated by the linear space SN (Y ) of dimension

N . Such a quantification relies on the Kolmogorov N -width, see Definition 4.5.2.

In [48, Corollary 4.1] and [43], it is shown, for a class of symmetric linear uniformly coercive

elliptic problems with continuity bound Λ and coercivity constant λ, that if the parametrized

space of the RB algorithm has an exponentially small N−width, then the RB algorithm converges

exponentially fast with respect to the dimension N of the RB space.

Notice that problem (6.2.25)-(6.2.28) with solution (χ̂i ,s
N ,K j

,∂s χ̂
i ,s
N ,K j

) ∈ W (Y )2 is not coercive

due to the nonlinearity of the tensor. Nevertheless, problem (6.2.25)-(6.2.28) still satisfies the

following Céa inequality (see Lemma 6.4.3 in Section 6.4) in the Hilbert space W (Y )2 with norm
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defined in (6.2.30),

‖(χ̂i ,s
N ,K j

,∂s χ̂
i ,s
N ,K j

)− (χ̂i ,s
l ,K j

,∂s χ̂
i ,s
l ,K j

)‖W ×W ≤C0 inf
z∈Sl (Y )

‖(χ̂i ,s
N ,K j

,∂s χ̂
i ,s
N ,K j

)− z‖W ×W (6.3.52)

where we consider the solution (χ̂i ,s
l ,K j

,∂s χ̂
i ,s
l ,K j

) of (6.2.25)-(6.2.28) in the space Sl (Y ) (i.e. taking

test functions (ẑl , ζ̂l ) ∈ Sl (Y )). The above constant is given by

C0 =
√
Λ1

λ

(
3+ 8Λ2

2

λ2

)
(6.3.53)

where λ,Λ1,Λ2 are the coercivity and continuity bounds (6.1.1),(6.2.26). In addition, recall the a

posteriori estimate (6.2.39) of the form Cl ow∆
i
l ,Tδ

≤ ‖(ê i ,s
l ,Tδ

,∂s ê i ,s
l ,Tδ

)‖W ×W ≤Cup∆
i
l ,Tδ

, with

Clow = (2Λ1 +Λ2)−1λ1/2
LB , Cup = 2λ−1/2

LB +Λ2λ
−3/2
LB . (6.3.54)

We obtain the following result which states that the reduced basis method converges exponen-

tially. This is a slight adaptation of the result in [48, Corollary 4.1] and [43].

Theorem 6.3.2. In addition to (6.1.1) and (6.2.26), assume that the parametrized cell solution

space MN in (6.2.29) has an exponentially small Kolmogorov N -width,

dN (MN ,W (Y )2) ≤Ce−r N , with r > log((1+Cup /Clow )C0), (6.3.55)

with constants in (6.3.52),(6.3.54). Then, there exists constants c,κ> 0 independent of N such that

‖χ̂i ,s
N ,K j

− χ̂i ,s
N ,K j

‖W ≤ ce−κN , ‖∂s χ̂
i ,s
N ,K j

−∂s χ̂
i ,s
N ,K j

‖W ≤ ce−κN (6.3.56)

for all K ∈TH and all xK j ∈ K , where χ̂i ,s
N ,K j

and χ̂i ,s
N ,K j

are the solutions of the cell problem (6.2.25)

in Sq (Y ,N ) and SN (Y ), respectively, with corresponding test functions ẑN ∈ Sq (Y ,N ) and ẑN ∈
SN (Y ).

Proof. Inspecting the proof of [48, Corollary 4.1] reveals that the coercivity of the problem is

not needed and the Céa inequality (6.3.52) is sufficient to obtain the exponential convergence

(6.3.56) of the RB algorithm using the RB space SN (Y ) constructed in the Greedy algorithm

6.2.4.

Theorem 6.3.3. Consider u0 the solution of problem (6.1.2), and uH ,RB the solution of (6.2.10).

In addition to the assumptions of Theorem 6.3.1, assume that uH ,RB (xK j ) ∈ (u0,low ,u0,up ), for all

K ∈TH , xK j ∈ K . Assume further (HN1), (HN2), and (6.3.55). Then, there exist H0 > 0 and r0 > 0
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such at if H ≤ H0, h/ε≤ r0, and ce−κN ≤ r0 then for µ= 0,1,

‖u0 −uH ,RB‖H 1−µ(Ω) ≤



C (H`+µ+ ( h
ε )2q +δ)+ rRB , if W =W 1

per and δ/ε ∈N,

C (H`+µ+ ( h
ε )2q )+ rRB ,

if W = W 1
per , δ/ε ∈ N,

and aε(x, s) is replaced

by a(xK j , x
ε , s) in (6.2.18),

(6.2.11), (6.2.12), (6.2.20),
C (H`+µ+ ( h

ε )2q +δ+ ε
δ )+ rRB , if W =H 1

0 (δ> ε),

where rRB ≤ Λ1(ce−κN )2 with Λ1 given in (6.1.1). We also assume δ ≤ r0 or δ+ ε/δ ≤ r0 in the

first and third cases, respectively. We use the notation H 0(Ω) = L 2(Ω). The constants C are

independent of H ,h,ε,δ, N ,N .

Proof. In view of Theorem 6.3.1, we estimate rH M M . Using (HN1), the estimate rM IC ≤C (h/ε)2q

follows from [1] (see also [4]). Using (HN2), The estimates rMOD ≤ Cδ, rMOD = 0, rMOD ≤
C (δ+ε/δ) follows from [22, 60]. Finally, the estimate rRB ≤Λ1(ce−κN )2 follows from (6.3.56) and

the identity (6.2.43).

6.3.2 Uniqueness of the RB-FE-HMM solution and the Newton method

Consider the derivatives with respect to s of the exact and numerical homogenized tensors in

(6.1.2) and (6.2.14). We define

r ′
H M M := sup

K∈TH ,xK j ∈K

∥∥∥∂s a0(xK j ,uH ,RB (xK j ))−∂s a0
N ,K j

(uH ,RB (xK j ))
∥∥∥

F
. (6.3.57)

The proof of the uniqueness of the RB-FE-HMM solution relies on the following result which is

an adaptation of Lemma 4.11 in [26].

Theorem 6.3.4. Assume that the hypotheses of Theorem 6.3.1 and (6.3.55) hold. Then, there exist

positive constants H0,r0 such that if

H ≤ H0 and H−1/2rH M M + r ′
H M M ≤ r0 (6.3.58)

then the solution uH ,RB of (6.2.10) is unique.

The proof of Theorem 6.3.4 relies on the convergence of the Newton method stated in the

following lemma.

Lemma 6.3.5. Assume that the hypotheses of Theorem 6.3.4 hold. Let uH ,RB be a solution of

(6.2.10). Then, there exists H0,r0,ν> 0, such that provided a smallness assumption of the form

(6.3.58), for all uH
0 ∈ S`0(Ω,TH ) satisfying

σH‖uH
0 −uH ,RB‖H 1(Ω) ≤ ν, (6.3.59)
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the sequence {uH
k } of the Newton method (6.2.17) with initial value uH

0 is well defined and ‖uH
k+1−

uH ,RB‖H 1(Ω) ≤CσH‖uH
k −uH ,RB‖2

H 1(Ω)
, where C is a constant independent of H ,h,k,N , N ,ε.

Proof. We apply Lemma 6.4.2 (a result from [26] stated in Section 6.4 Appendix) with ã(xK j , s) =
a0

N ,K j
(s) and ũH = uH ,RB .

Proof of Theorem 6.3.4. The proof is an immediate consequence of Lemma 6.3.5, where given

two numerical solutions uH ,RB , ũH ,RB of (6.2.10), we apply the Newton method with the initial

guess uH
0 := ũH ,RB . The smallness assumption (6.3.58) together with the H 1 a priori error

estimate of Theorem 6.3.1 permits to satisfy the condition (6.3.59).

For the estimation of r ′
H M M in (6.3.57), we consider the decomposition

r ′
H M M ≤ r ′

MOD + r ′
M IC + r ′

RB

where r ′
MOD , r ′

M IC , r ′
RB are defined similarly to (6.3.49),(6.3.50),(6.3.51), respectively, with the

exception that all the tensors are differentiated with respect to the s parameter. Hence hypothesis

(HN1’) and (HN2’), similar to (HN1) and (HN2) but for ∂sχ
i ,s
K j

are needed. Following [23], the

quantities r ′
MOD , r ′

M IC satisfy analogous estimates to those of rMOD , rM IC . It remains to estimate

r ′
RB := sup

K∈TH ,xK j ∈K

∥∥∥∂s a0
N ,K j

(uH ,RB (xK j ))−∂s a0
N ,K j

(uH ,RB (xK j ))
∥∥∥

F
.

This is done in the following lemma.

Lemma 6.3.6. Assume that the hypotheses of Theorem 6.3.3 hold with a periodic coupling with

δ= ε. Assume further (6.2.26), and (6.3.55). Then, there exist constants c,κ> 0 such that

r ′
RB ≤ (2Λ1 +Λ2)(ce−κN )2.

Proof. Differentiating (6.2.43) with respect to s and using Theorem 6.3.2 conclude the proof.

Remark 6.3.7. Notice that a similar a posteriori estimator as used here in the offline stage to control

rRB and r ′
RB could be used to define a RB-FE-HMM for linear parabolic multiscale problems with

a time-dependent tensor of the form ∂uε

∂t (x, t ) =∇· (aε(x, t )∇uε(x, t ))+ f (x, t ) as analysed in [24].

In this case, the micro problems would be parametrized by the location of the cell problem in the

domain Ω and the time variable of the tensor aε.

6.4 Some technical lemmas

The proof of Theorem 6.3.1 relies on the following lemma taken from [26] and based on the

analysis for standard FEM with numerical quadrature from [25]. It is a reformulation of the

statement of Theorem 3.1 in [26], its proof is thus omitted.
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Lemma 6.4.1. Consider u0 the solution of problem (6.1.2). Assume the assumptions of Theorem

6.3.1. Then, there exist r0 > 0 and H0 > 0 such that, for all tensor ã(x, s) satisfying (6.1.3), (6.1.1)

and continuous on Ω×R, for all H ≤ H0, and for all solution ũH of the nonlinear FEM problem

∑
K∈TH

J∑
j=1

ωK , j ã(xK j , ũH (xK j ))∇ũH (xK j ) ·∇w H (xK j ) =
∫
Ω

f (x)w H (x)d x, ∀w H ∈ S`0(Ω,TH ),

(6.4.60)

provided

QH := sup
K∈TH ,xK j ∈K

∥∥ã(xK j ,uH (xK j ))−a0(xK j ,uH (xK j ))
∥∥

F
≤ r0,

we have the H 1 and L 2 error estimates

‖u0 − ũH‖H 1(Ω) ≤ C (H`+QH ) if µ= 0,1

‖u0 − ũH‖L 2(Ω) ≤ C (H`+1 +QH ) if µ= 1,

where C is independent of H ,QH and the tensor ã.

The proof of Theorem 6.3.4 relies on the following result which is a reformulation of Lemma 4.11

in [26].

Lemma 6.4.2. Assume that the hypotheses of Lemma 6.4.1 hold. Assume further that ã(x, s) is

twice continuously differentiable with respect to s with derivatives continuous and bounded on

Ω×R. Then, there exists H0,R0,ν> 0, such that for

QH ≤ H ≤ H0, Q ′
H := sup

K∈TH ,xK j ∈K

∥∥∂s ã(xK j ,uH (xK j ))−∂s a0(xK j ,uH (xK j ))
∥∥

F
≤ R0,

for all ũH solution of 6.4.1 and for all for all uH
0 ∈ S`0(Ω,TH ) satisfying

σH‖uH
0 − ũH‖H 1(Ω) ≤ ν,

the sequence {uH
k } of the Newton method (6.2.17) applied to the problem (6.4.60) with initial

value uH
0 is well defined and ‖uH

k+1 − ũH‖H 1(Ω) ≤ CσH‖uH
k − ũH‖2

H 1(Ω)
, where C is a constant

independent of H ,h,k.

Finally, for the proof of Theorem 6.3.2, we need to prove the Céa inequality (6.3.52) for the

problem (6.2.25)-(6.2.28).

Lemma 6.4.3. Assume (6.1.1) and (6.2.26). Then (6.3.52) holds with constant C0 in (6.3.53).

Proof. We denote ê = χ̂i ,s
N ,K j

−χ̂i ,s
l ,K j

and ∂s ê = ∂s χ̂
i ,s
N ,K j

−∂s χ̂
i ,s
l ,K j

. Considering the problem (6.2.25)-

(6.2.28) with test functions in Sq (Y ,N )2 and Sl (Y ), respectively, and subtracting, we deduce for
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all (zl ,ζl ) ∈ Sl ,

b(∂s ê, ζ̂l ) =−
∫

Y
∂s axK j ,s(y)∇ê(y) ·∇ζ̂l d y, (6.4.61)

where the symmetric bilinear form b(·, ·) is defined in (6.2.21). Using

b(∂s ê,∂s ê) = b(∂s ê,∂s χ̂
i ,s
N ,K j

−ζl )+b(∂s ê,ζl −∂s χ̂
i ,s
l ,K j

),

we obtain from the Cauchy-Schwarz inequality and (6.4.61),(6.2.26),

b(∂s ê,∂s ê) ≤ b(∂s ê,∂s ê)1/2b(∂s ê −ζl ,∂s ê −ζl )1/2 +Λ2‖ê‖W (‖∂s χ̂
i ,s
N ,K j

−ζl‖W +‖∂s ê‖W ).

We deduce from the Young inequality and (6.1.1),

λ‖∂s ê‖2
W ≤ b(∂s ê,∂s ê) ≤Λ1‖∂s χ̂

i ,s
N ,K j

−ζl‖2
W +2Λ2‖ê‖W ‖∂s χ̂

i ,s
N ,K j

−ζl‖W +2Λ2‖ê‖W ‖∂s ê‖W

Using again the Young inequality yields

‖(ê,∂s ê)‖2
W ×W ≤ (1+ 2Λ1

λ
)‖∂s χ̂

i ,s
N ,K j

−ζl‖2
W + (1+ 8Λ2

2

λ2 )‖ê‖2
W .

Finally, the application of the Céa lemma to (6.2.25) yields ‖ê‖W ≤
√

Λ1
λ infzl∈Sl (Y ) ‖χ̂i ,s

N ,K j
− zl‖W

which permits to conclude the proof.
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7 Implentation issues for the quasilinear
RB-FE-HMM

This chapter is taken from [10]. Here we discuss implementation issue for the RB-FE-HMM

applied to quasilinear problems, We also discuss an extension of the method to parabolic

problems. Finally we explain the construction of corrector function that can be used to obtain

energy approximation of the fine scale problem. We consider quasilinear elliptic problems of the

form

−∇· (aε(x,uε(x))∇uε(x)
)= f (x) in Ω, uε = 0 on ∂Ω, (7.0.1)

or quasilinear parabolic problems of the form

∂uε(x, t )

∂t
−∇·(aε(x,uε(x, t ))∇uε(x, t )

)= f (x, t ) inΩ× [0,T ], uε = 0 on ∂Ω× [0,T ], (7.0.2)

where aε is a nonlinear tensor that oscillates rapidly in space at the scale ε and aε satisfies

the assumptions (6.1.1) and (6.2.26). As discussed in last chapter, there exists a homogenized

equation for (7.0.1) or (7.0.2), i.e.

−∇· (a0(x,u0(x)
)∇u0(x)

)= f (x) in Ω, u0 = 0 on ∂Ω, (7.0.3)

or

∂u0(x, t )

∂t
−∇· (a0(x,u0(x, t )

)∇u0(x, t )
)= f (x) in Ω, u0 = 0 on ∂Ω. (7.0.4)

For the completeness of the algorithm description, we restate the following macro FEM for the

quasilinear problem. Considering a FEM space S`0(Ω,TH ) with mesh grid size H , such method

approximates a solution uH of

BH (uH ;uH , w H ) = FH (w H ), ∀w H ∈ S`0(Ω,TH ), (7.0.5)

by a sequence uH
k ,k = 0,1,2,3, . . . and reads in weak form

∂BH (uH
k ;uH

k+1 −uH
k , w H ) = FH (w H )−BH (uH

k ;uH
k , w H ), ∀w H ∈ S`0(Ω,TH ), (7.0.6)
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where ∂BH (zH ; v H , w H ) := BH (zH ; v H , w H )+B ′
H (zH ; v H , w H ). We used the notations

BH (zH ; v H , w H ) := ∑
K∈TH

J∑
j=1

ωK j a0(xK j , zH (xK j ))v H (xK j )∇zH (xK j ) ·∇w H (xK j ), (7.0.7)

B ′
H (zH ; v H , w H ) := ∑

K∈TH

J∑
j=1

ωK j ∂s a0(xK j , zH (xK j )v H (xK j )∇zH (xK j ) ·∇w H (xK j ), (7.0.8)

and FH (w H ) is an approximation of
∫
Ω f w H d x.

This chapter is organized as follows. In Section 7.1, we present the offline procedure of the

RB-FE-HMM and related implementation issues. Then, we describe in Section 7.2 how an

online procedure, with a computational cost analogous to that of solving a one scale problem,

permits to compute the homogenized solution u0. In Section 7.3, we describe a reconstruction

procedure for approximating the oscillatory solution uε at a negligible overcost. In Section 7.4,

the performance of the algorithm is illustrated by several numerical examples.

7.1 Offline procedure

This section describes the offline stage of the RB-FE-HMM which permits to precompute the

nonlinear homogenized tensor a0 that is needed in the online stage to compute the homogenized

solution u0 itself.

Based on the mapping defined in (6.2.8), we can write oscillatory tensor as

axK j ,s(y) := aε(GxK j
(y), s). (7.1.9)

Notice that if the tensor aε is locally periodic, i.e. has the form aε(x, s) = a(x, x/ε, s) with period-

icity with respect to the second argument x/ε, then we shall consider instead

axK j ,s(y) := a(xK j ,GxK j
(y), s),

and if in addition the oscillatory period ε is known, we shall take δ= ε for the size of the sampling

domains Kδ j . We need to assume the following affine representation for simplicity (if not

available, then the EIM introduced in Section 3.3 can be applied):

ax,s(y) =
P∑

p=1
Θp (x, s)ap (y), ∀y ∈ Y .

For all the point x in Ω and all parameter s, we recall the linear cell problem: Find χ̂i ,s
N ,x ∈
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Sq (Y ,N ) 1 such that

b(χ̂i ,s
N ,x , ẑN ) =−

∫
Y

ax,s(y)ei ·∇ẑN (y)d y ∀ẑN ∈ Sq (Y ,N ), (7.1.10)

where

b(v̂ , ẑ) :=
∫

Y
ax,s(y)∇v̂(y) ·∇ẑ(y)d y ∀v̂ , ẑ ∈W 1

per (Y ).

We consider the Sobolev space W 1
per (Y ) 2, and still use notation Sq (Y ,N ) for the micro FE space.

Our aim is to compute a small set of representative basis functions ξ̂l ,N , l = 1, . . . , N that span

the RB space

SN (Y ) := span{ξ̂1,N , . . . , ξ̂N ,N }. (7.1.11)

The above hatmap notation is used to recall that these functions are defined over the reference

domain Y .

A posteriori error estimator. We recall that the a posteriori error estimator for the parameter

(xτ, s, i ) is defined as

∆i ,s
l ,Tδ

:=
‖ē i ,s

l ,Tδ
‖W +‖∂s ē i ,s

l ,Tδ
‖W√

λLB

, (7.1.12)

where λLB with λLB ≤λ is an approximation of the coercivity constant λ defined in (6.1.1) (the

detailed computation is introduced in Section 3.2). The residual ∂s ē i ,s
l ,Tδ

in (7.1.12) is defined

by differentiating with respect to s the FE problem (4.2.19). As discussed in last chapter, this a

posteriori error estimator is designed to guarantee not only the convergence of the RB-FE-HMM,

but also the Newton method convergence and the uniqueness of the numerical solution, as

analyzed in [25] using the a posteriori error estimates for i , j = 1, . . . ,d , l = 1, . . . , N ,

C1∆
i
l ,Tδ

≤ ‖ê i ,s
l ,Tδ

‖W +‖∂s ê i ,s
l ,Tδ

‖W ≤C2∆
i
l ,Tδ

(7.1.13)

where C1,C2 depend on λ,Λ1,Λ2,λLB in (6.1.1), (6.1.3). The above estimator can be computed

as follows. In view of (4.2.19), considering the decomposition ξ̂i ,s
l−1,Tδ

=∑l−1
j=1α j (s)ξ̂ j ,N in the RB

space Sl−1, we compute following the implementation in [92, Section 4.4]

ē i ,s
l ,Tδ

=
P∑

p=1
Θp (x, s)

(
l−1∑
j=1

α j (s)Lp, j −Mp,i

)
(7.1.14)

1For the simplicity of presentation, we write χ̂i ,s
N ,x as the cell solution instead of χ̂i ,s

N ,Tδ
used in Chapter 6.

2Notice that H 1
0 (Y ) could also be considered for a coupling with Dirichlet boundary conditions and sampling

domain size δ> ε, see the review [14].
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where Lp, j , Mp,i ∈ Sq (Y ,N ), p = 1, . . . ,P, i = 1, . . . ,d , j = 1, . . . , N are obtained by solving the FE

projection problems

(Lp, j , ẑN )W =
∫

Y
ap (y)∇ξ̂ j ,N (y)·∇ẑN (y)d y, (Mp,i , ẑN )W =

∫
Y

ap (y)∇ei ·∇ẑN (y)d y, ∀ẑN ∈ Sq (Y ,N ).

Notice that the functions Lp, j , Mp,i are independent of the parameter x, s and thus computed

only once. We refer to Remark 6.2.2 for the computation of ∂s ē i ,s
l ,Tδ

.

RB construction by the Greedy algorithm We now describe the construction procedure of the

RB in (7.1.11) based on the a posteriori error estimator (7.1.12).

A first step is the guess of the range of nonlinear parameters s = uH (xK j ) involved in the nonlinear

tensor a(x, s). This is done using the following empirical algorithm motivated by the Voigt-Reiss

inequality [74, Chapter 1.6],

(∫
Y

ax,s(y)−1d y
)−1 ≤ a0(x, s) ≤

∫
Y

ax,s(y)d y, (7.1.15)

for parameters x, s, and where a0(x, s) is the homogenized tensor. We then apply the following

procedure to derive the training set D, a compact of Ω×R.

Algorithm 7.1.1 (Construction of the training set).

1. Using a standard one-scale FEM method, solve (6.1.2) where the homogenized tensor a0(x, s)

is replaced alternatively with the tensors of the left and right-hand sides of (7.1.15).

2. Set a maximum range (u0,low ,u0,up ) by taking the minimum and maximum values of the

two solutions using theses easy to evaluate tensors.

3. Define the training set as D =Ωδ× [u0,low −α,u0,up +α] where Ωδ is a compact subset of Ω

such that for any x ∈Ωδ the corresponding sampling domain centered at x is inscribed in Ω,

and the range of parameter s is enlarged by ±α (a safety factor of about 10%).

Based on the training set D, we can launch the greedy procedure to construct the basis functions.

This procedure has been described in Algorithm 6.2.4 of Section 6.2.4. We just mention here that

the following offline outputs are required for the online stage: the N ×N stiffness matrices Ap

and the length N vectors Fp,i , with p = 1, . . . , P, i = 1, . . . ,d , defined as

(Ap )mn =
∫

Y
ap (y)∇ξ̂n,N (y) ·∇ξ̂m,N (y)d y, Fp,i =

∫
Y

ap (y)ei ·∇ξ̂m,N (y)d y.

We shall also need the matrix of averages

(Gp )mn =
∫

Y
ap (y)em ·end y =

∫
Y

(ap (y))mnd y.

The above integrals on Y can be computed using a sufficiently accurate quadrature formula on

the micro mesh Tĥ of the micro FEM space Sq (Y ,N ).
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7.2 Online procedure

The online version of the RB-FE-HMM is identical to a standard FEM with numerical quadrature

applied to a one-scale problem (6.1.2) using a Newton method. The only difference is that one

has to approximate the homogenized tensor a0(xK j , s) for a given quadrature node xK j and a

nonlinear parameter s. We explain how this can be performed at a negligible overcost using the

outputs of the offline procedure.

In the case of a locally periodic tensor aε, the homogenized tensor coefficients given by the

homogenization theory [44] can be written as

(a0(x, s))mn =
∫

Y
axK j ,s(y)

(
χ̂m,s

x (y)+em
) ·end y, m,n = 1, . . . ,d ,

where χ̂m,s
x ∈W 1

per (Y ) is the solution of the cell problem (7.1.10) with test functions in W 1
per (Y ).

Analogously, we define the numerical homogenized tensor a0
N as

(a0
N (x, s))mn =

∫
Y

ax,s(y)
(
∇χ̂m,s

N ,x (y)+em

)
·end y, m,n = 1, . . . ,d , (7.2.16)

where χ̂m,s
N ,x ∈ SN (Y ), m = 1, . . . ,d is the solution of (7.1.10) in the RB space SN (Y ), i.e. with test

functions in SN (Y ). This function can be decomposed in the RB space SN (Y ) as

χ̂m,s
N ,x (y) =

N∑
j=1

α(x,s,m)
j ξ̂ j ,N , (7.2.17)

whereα(x,s,m) = (α(x,s,m)
1 , . . . ,α(x,s,m)

N )T is the vector of coordinates in this basis.

Elliptic case. Inspired by (7.2.16) and the decomposition (7.2.17), we are now in position to

state the algorithm for the online procedure to compute the homogenized solution u0 of the

multiscale quasilinear problem (7.0.1).

Algorithm 7.2.1 (Online algorithm for elliptic problems (7.0.1)). Given an initial guess uH
0 ∈

S`0(Ω,TH ), compute the Newton method sequence uH
k ,k = 1,2,3, . . . defined in (7.0.6), where BH

and ∂BH are defined similarly to (7.0.7), (7.0.8), with the unknown homogenized tensor a0(x, s)

replaced by the numerical tensor a0
N (x, s) and computed as

(a0
N (x, s))mn =

P∑
p=1

Θq (x, s)
(
α(x,s,m) ·Fp,n + (Gp )mn

)
, m,n = 1, . . . ,d ,

where the vectorsα(x,s,i ) ∈RN with i = 1, . . . ,d are obtained by solving the N ×N linear system

(
P∑

p=1
Θp (x, s)Ap

)
α(x,s,i ) =−

P∑
p=1

Θp (x, s)Fp,i . (7.2.18)
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The derivative ∂s a0
N (x, s) of the numerical tensor involved in ∂BH can be computed using a finite

difference formula (analogously to ∂s ē i ,s
l ,Tδ

in Remark 6.2.2).

It is shown in Chapter 6 that under suitable smoothness assumptions, the Newton method in the

online algorithm 7.2.1 is well defined and converges for sufficiently fine mesh parameters H ,h to

the approximation uH of u0. This numerical solution uH is uniquely defined. We observe that

the a posteriori estimator (7.1.12) involving the derivative of the Riesz projection of the residual

(4.2.17) is instrumental for establishing the convergence of the Newton method.

Parabolic case. We next explain the extension of the algorithm for solving parabolic prob-

lems (7.0.2). First, we note that for quasilinear parabolic problems, the effective tensor can be

computed by solving time-independent (quasilinear elliptic) problems. Second, we observe

that Algorithm 7.1.1 can be applied to obtain the training set by solving standard parabolic FE

problems using the bounds in (7.1.15). Finally, we can use the Algorithm 6.2.4 for the Greedy

procedure.

Notice that various time integrators can be used in the online stage of RB-FE-HMM, see e.g. [24]

in the context of linear multiscale parabolic problems. Here, we use the linearized backward

Euler (see [82] for details) and consider a constant time stepsize. Its advantage over the standard

backward Euler scheme is that it permits to avoid Newton iterations.

Algorithm 7.2.2 (Online algorithm for parabolic problems (7.0.2)). Given the time step ∆t and

uH
0 ∈ S`0(Ω,TH ) associated to the initial condition, compute uH

n , n = 1,2,3, . . . the solution at time

t = n∆t , of the linear system

∫
Ω

uH
n −uH

n−1

∆t
v H d x +BH (uH

n−1;uH
n , v H ) = FH (v H ), ∀v H ∈ S`0(Ω,TH ), (7.2.19)

where the form BH is computed identically as is Algorithm 7.2.1.

7.3 Construction of a corrector

The online algorithm 7.2.1 permits to approximate the homogenized solution u0 of the multiscale

problem (7.0.1) as ε→ 0. To reconstruct the oscillatory solution uε of (7.0.1) for a fixed value

of ε, and in turn obtaining an approximation of uε in the energy norm (i.e. uε
cor r ' u0 +εu1), a

suitable corrector procedure is needed [42, 74] and can be obtained as follows. Consider the

linear multiscale problem

−∇· (aε(x,u0)∇vε(x)
)= f (x) in Ω, vε = 0 on ∂Ω,

where compared to (7.0.1), the tensor is evaluated at u0 instead of uε. It is shown in [44, Section

3.4.2] that a corrector ucor r for the above linear problem is also a corrector for the solution uε of

the nonlinear problem (7.0.1). This permits to define the following numerical corrector for the

approximation of uε similarly to the linear case.
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Nonlinear corrector. Given a quadrature point xK j ∈ K ∈ TH , we consider the inverse map

G̃xK j
:=G−1

xK j
: Tδ j → Y where GxK j

is defined in (6.2.8). We next extend this map periodically on

the macro element K by setting G̃xK j
(x +δk) = G̃xK j

(x) for all k ∈Zd , x ∈ Tδ j . We next define for

all x ∈ K ,

uH ,ε
cor r (x) := uH (x)+εχ̂m,s

N ,x0

(
G̃xK j

(x)
)' uε(x),

where uH ∈ S`0(Ω,TH ) is the output of the online algorithm 7.2.1 and the functions χ̂m,s
N ,x0

∈ SN (Y )

can be evaluated using the RB decomposition (7.2.17) with the RB produced by the Greedy

algorithm 6.2.4. Notice that the coefficients α(x,s,m)
j in (7.2.17) are already computed (7.2.18) and

need not to be recomputed.

7.4 Numerical experiments

We illustrate the performances of the proposed implementation of RB-FE-HMM on various

elliptic and parabolic multiscale problems in 2D and 3D. We compare the algorithm with the

standard nonlinear FE-HMM code [26] designed without the reduced basis technique, and based

on the implementation in [19] in the context of linear problems. We consider here (non-parallel3)

implementations in Matlab on a desktop computer.

7.4.1 A simple illustrative example

We consider the model problem (7.0.1) inΩ= [0,1]2 with f = 50e(x1−0.2)2+(x2−0.3)2
, and the follow-

ing mixed boundary conditions,

uε(x) = 2x2
1(x1 −1)2 +3x2

2(x2 −1)2 +1 on {x1 = 0}∪ {x1 = 1},

n · (aε(x,uε(x))∇uε(x)) = 0 on {x2 = 0}∪ {x2 = 1}. (7.4.20)

Consider a diagonal multiscale tensor with the following affine expression 4

aε(x, s)11 = (x2
1 +0.2)+ (x2 sin(sπ)+2)(sin(2π

x1

ε
)+2),

aε(x, s)22 = (
1

s +1
ex2 +0.05)+ (x1x2 +1)(sin(2π

x2

ε
)+2). (7.4.21)

Using the homogenization theory [74], the corresponding homogenized tensor is also diagonal

with entries given by the harmonic averages

a0
i i =

(∫
Y

a(x, y ; s)−1d y
)−1, i = 1,2. (7.4.22)

3Notice that the linear systems (7.2.18) involving different parameters x, s are independent and can be solved in
parallel.

4 Recall that since the RB-FE-HMM computes the solution of the effective problem as ε→ 0, the actual value of ε is
not needed in the algorithm.
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Offline stage. In the offline stage, we set the parameter space to be D = Ωi ×U , where Ωi

is a closed subset of Ω such that T̄δ = xτ + [−δ/2,δ/2]d ⊂ Ω̄ for all τ ∈ Ωi , and U is a closed

bounded interval of R (an estimation of the range for u0). In order to obtain U , motivated by

(7.1.15), we first solve (7.0.1) on a coarse 8×8 macro mesh by replacing the homogenized tensor

respectively with the arithmetic and harmonic averages of the multiscale tensor. The ranges of

the corresponding solutions are shown in Table 7.1 and we choose U = [0.9,3.66] adding a safety

correction.

Table 7.1: A priori estimate for the solution range. Mesh size = 8×8.

tensor type solution range∫
Y a(x, y ; s)d y [1, 3.14]

(
∫

Y a(x, y ; s)−1d y)−1 [1, 3.56]

For the RB offline stage, we propose in Section 6.2.4 a new a posteriori error estimator (7.1.12) in

order to guarantee the convergence of the Newton method. We will also check the computational

overhead of this new estimator compared to the (standard) a posteriori estimator

∆̃i ,s
l ,Tδ

:=
‖ē i ,s

l ,Tδ
‖W√

λLB

(7.4.23)

used for linear problems in Chapter 4. The offline parameters are collected in Table 7.2 and the

comparison of the two estimators are shown in Table 7.3.

We observe in this test that the offline outputs using∆l ,Tδ have only one additional basis function.

Online stage: convergence rates for the P1 and P2 RB-FE-HMM. Using the computed offline

outputs (obtained by via ∆l ,Tδ as the offline estimator), we consider a P1 FEM and a P2 FEM for

the online stage. The reference solution ur e f ≈ u0 is obtained using the P2 FEM with a 1024×1024

uniform mesh.

By the a priori estimates of Theorems 6.3.1-6.3.3 and the mesh size used for the offline com-

putation, we have the bound ∆2
l ,Tδ

= O (tolRB ) ∼ 10−10 for rRB and rM IC ∼ 10−7. As we choose

sampling domains with size δ= ε with periodic boundary condition we have rMOD = 0 and we

expect rH M M ∼ 10−7. We observe in Fig. 1 the expected convergence rates with respect to the

macro mesh.

RB-FE-HMM v.s FE-HMM. In this test, we compare the efficiency and accuracy between the

Table 7.2: Offline parameters

Parameter space [0,1]2 × [0.9,3.66]
Training set size 4400

Solver P1 FEM
Mesh 1500×1500
tolRB 1e-10

Table 7.3: A posteriori estimators

∆l ,Tδ ∆̃l ,Tδ

Basis number 9 8
Offline CPU time 1300 1100
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(a) P1 RB-FE-HMM (b) P2 RB-FE-HMM

Figure 1: Test problem (7.0.1)-(7.4.20)-(7.4.21). The errors ‖uH ,RB −ur e f ‖L 2(Ω) and ‖uH ,RB −
ur e f ‖H 1(Ω) versus NM AC = 1/H for the P1 RB-FE-HMM and the P2 RB-FE-HMM, respectively.

P1 RB-FE-HMM and the P1 FE-HMM. For the P1 FE-HMM, we set NM IC = NM AC for each

refinement step (L 2 refinement strategy), where NM AC and NM IC are the numbers of macro and

micro DOF in one space direction, respectively. We can see in Table 7.4 that the H 1 and L 2 errors

for the two methods decay with the same rates which is consistent with the a priori estimates.

However, the RB-FE-HMM has a considerably reduced computational cost for fine meshes (up to

two orders of magnitude in this example). Next we present in Table 7.5 a comparison that takes

Table 7.4: Comparison between the RB-FE-HMM and the FE-HMM.

RE-FE-HMM FE-HMM
DOF H 1 error L 2 error online time (s) H 1 error L 2 error time cost (s)
5×5 0.3727 0.0471 0.08 0.3724 0.0481 0.26
9×9 0.2086 0.0176 0.23 0.2082 0.0167 1.59

17×17 0.1053 0.0058 0.90 0.1052 0.0056 11.49
33×33 0.0632 0.0013 3.82 0.0631 0.0012 160.20
65×65 0.0316 3.15e-04 19.83 0.0316 3.03e-04 2802.68

129×129 0.0159 7.89e-05 146.75 0.0159 7.61e-05 49260.89

into account the computational overhead from the offline stage for the RB-FE-HMM. Here we

have t o f f l i ne
RB = 1300s and we denote the total offline and online time by t tot al

RB . We see that the FE-

HMM is still significantly more expensive except for coarse macroscopic meshes. This indicates

that even for one computation, the RB-FE-HMM can provide an important computational

speed-up.

Table 7.5: CPU comparison between the RB-FE-HMM and the FE-HMM.

DOF t onl i ne
RB /tF E−H M M t tot al

RB /tF E−H M M

33×33 2.38% 813.87%
65×65 0.69% 47%

129×129 0.3% 2.9%
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Table 7.6: Offline settings and outputs for the time dependent problem (7.0.2) with boundary
conditions (7.4.24).

Parameter space [0,1]2 × [0.9,3.93]
Train set size 4400

Mesh 1500×1500
tolRB 1e-10

RB Basis number 8

7.4.2 A 2D time dependent problem

We consider a time dependent test problem of the form (7.0.2). We choose an example where a

reference solution can be easily computed to check the accuracy of the method, and for simplicity

we still take the affine tensor (7.4.21) defined on domain Ω= [0,1]2 and we choose the boundary

conditions

uε(x, t ) = 1, on {x1 = 0}∪ {x1 = 1},

n · (aε(x,uε(x, t ))∇uε(x, t )) = 0, on {x2 = 0}∪ {x2 = 1}. (7.4.24)

We set f (x) = 50e(x1−0.2)2+(x2−0.3)2
for the right hand side function, uε(x,0) = 1 as the initial

condition, and consider the time interval [0,T ] = [0,0.5].

We apply the offline stage as described in Algorithm 6.2.4 and obtain the RB with 8 functions.

The offline settings and outputs are presented in Table 7.6.

In this computation, we set the time step ∆t = 0.001 (so that the corresponding O (∆t) error

is negligible compared to the spatial discretization). A reference solution ur e f is computed

by using the standard FEM with piecewise linear FEs applied to the homogenized problem

with tensor a0, with a mesh grid 257×257 and the linearized backward Euler scheme as time

integrator. We can see from Fig. 2 that we obtain the usual convergence rates for the FEM

applied to parabolic problems. Indeed, ‖uH −ur e f ‖L 2([0,T ];H 1(Ω)) decreases with rate O (H) and

‖uH −ur e f ‖L ∞([0,T ];L 2(Ω)) decreases with rate O (H 2).

We list the online CPU times in Table 7.7 for various macro meshes of the square domainΩ.

We tested that the CPU time cost for the FE-HMM with NM AC = NM IC = 65 for one time step is

280s. As we have T /∆t = 500 time steps, the total CPU time for the FE-HMM without reduced

basis would be about 39 hours. In contrast, the RB-FE-HMM CPU time is only 446s, i.e. 300 times

less.

The total CPU time of the RB-FE-HMM (including the offline procedure) is only 1.3% of the

FE-HMM cost.

152



7.4. Numerical experiments

Figure 2: Time dependent problem (7.0.2), (7.4.24) with T = 0.5. We plot the errors ‖uH −
ur e f ‖L ∞([0,T ];L 2(Ω)) and ‖uH −ur e f ‖L 2([0,T ];H 1(Ω)) versus NM AC = 1/H for the RB-FE-HMM.

Table 7.7: Online CPU times for the parabolic test problem (7.0.2), (7.4.24), T = 0.5,∆t = 0.001.

Macro mesh 5×5 9×9 17×17 33×33 65×65
Online CPU time 14.87 17.53 19.49 26.46 445.93

7.4.3 Stationary Richards problem

We consider the stationary Richards equation for describing the fluid pressure in an unsaturated

porous media

−∇· (K ε(x,uε(x))∇(uε(x)−x2) = f (x) in [0,1]2. (7.4.25)

with a nonlinear permeability tensor K ε(s) similar to the one in [50, Section 5.1] written as

K ε(x, s) = (200αεe−(s−2−x2)2αε(x) + (x1 −0.3)2 +x2
2 +2)I , αε(x) = 0.005

2+1.8sin(2π x2
ε −6π x1

ε )
.

Notice that this problem can be cast in the form (7.0.1) by using the change of variable vε(x) =
uε(x)− x2. We set f = 1 and consider Dirichlet conditions on the top boundary of the domain

and Neumann conditions on the rest of boundaries, that is

uε(x) = 1−1.9x2
1 , on [0,1]× {1},

n · (K ε(x,uε(x))∇(uε(x)−x2)
)= 0, on [0,1]× {0}∪ {0,1}× [0,1].

Offline stage. The parameters are given in Table 7.8. We determine an a priori range for the

homogenized solution U = [0.9,3.93]. As the permeability tensor K ε does not have an affine

representation (6.2.19), we need to apply the EIM, which introduces another error term rE I M in

rH M M , as discussed in [7] (this term can be controlled by the prescribed tolerance tolE I M [37]).
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Table 7.8: RB offline settings and outputs for the nonaffine test problem (7.4.25).

Parameter space [0,1]2 × [−3.1,−0.8]
Training set size 4400

Mesh 1000×1000
tolE I M 1e-6

EIM basis number 5
EIM CPU time 550.19s

tolRB 1e-9
Solver P1-FEM

RB Basis number 4
Offline CPU time 912.73s

Online stage. We plot in Fig. 3 the online solution uH ,RB on a uniform 65×65 macro mesh for

the P1 RB-FE-HMM (left picture) and the FE-HMM (right picture). We observe that the two

solutions are very similar as expected.
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Figure 3: Richards stationary problem (7.4.25). The RB-FE-HMM solution and the FE-HMM
solution on a 65×65 macro mesh.

We notice that the range of uH ,RB is [−2.9,−1] which safely lies in our a priori range [−3.1,−0.8].

Therefore, the offline outputs can be successfully used for the online computation. In Table 7.9,

we present the errors of the Newton method iterations and the corresponding CPU times. Due

to the quadratic convergence rate of the Newton method, only four iterations are needed in all

considered cases to reach the machine precision.

7.4.4 Heat transfer in a 3D rotor

To illustrate the performances of the RB-FE-HMM, we consider in this section a simplified model

in 3D inspired from [102] of a car brake rotor in a stationary regime (see left picture of Fig. 4).

We focus on the heat propagation in a part of the rotor as the break system is activated. The

geometry of this part is represented in Fig. 4 (right picture). Its external and internal radius
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Table 7.9: Richards stationary problem (7.4.25). Online CPU times and Newton iteration errors
for the RB-FE-HMM.

DOF CPU time Iteration 1 err Iteration 2 err Iteration 3 err Iteration 4 err
5×5 0.15 2.78 0.0053 4.87e-8 1.78e-15
9×9 0.2 2.80 0.0047 5.76e-8 5.77e-15

17×17 0.8 2.81 0.0046 5.78-8 1.46e-14
33×33 3.13 2.82 0.0045 5.71e-8 1.42e-14
65×65 14.72 2.82 0.0045 5.70e-8 3.02e-14

129×129 55.56 2.82 0.0045 5.70e-8 4.39e-14

are given respectively by R = 15cm and r = 8cm and its thickness is 5cm. We assume that the

Figure 4: Left picture: example of a rotor break system in a car. Right picture: the geometry of
the brake rotor part considered as the computational domainΩ.

material has a composite structure with a microscopic characteristic length ε. We consider a

nonlinear heat propagation modeled by problem (7.0.1) with heat source f = 0 where uε(x)

denotes the temperature (in Kelvin degrees) as a function of x in the 3D computational domain.

The nonlinear multiscale conductivity tensor is assumed diagonal with entries given by

aε11(x, s) = α(s)
(

cos(4π
x3

ε
)+2

)+β(x)
(

sin(2π
x1

ε
)+2

)
,

aε22(x, s) = α(s)
(

cos(4π
x1

ε
)+2

)+β(x)
(

sin(2π
x2

ε
)+2

)
,

aε33(x, s) = α(s)
(

cos(4π
x2

ε
)+2

)+β(x)
(

sin(2π
x3

ε
)+2

)
,

where α(s) = 0.01
(
e−(s−300)2 +0.5

)
, β(x) = (

0.001(x2
1 +x2

2 +x2
3)

)1/2 +0.005.

Our aim here is to show the capability of our nonlinear algorithm on a realistic 3D geometry

and we therefore choose to model the microstructure by ad-hoc oscillatory tensors. We note

that for realistic composite materials these conductivity tensors could be obtained via imaging

techniques. We next describe the boundary conditions that are considered in the model. The
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external circular boundary surface (diameter R) of the considered rotor part is attached to a

brake plate (see left picture in Fig. 4). It permits to slow down and stop the disk rotation by the

friction due to the brake pads pushing against this brake plate (yellow part). The heat flux arising

from the braking is modeled by a Neumann boundary condition on this external cylindrical

boundary

−∇· (aε(x,uε(x))∇uε(x)
) ·n = gB (7.4.26)

where n is the external unit vector normal to the boundary and we set the surface power gB =
75W m−2.

(a) (b)

Figure 5: RB-FE-HMM macro solution uH of the 3D brake rotor elliptic problem.

The six small holes in the computational domain (see Fig. 4) as well as the main hole in the

center are normally filled with screws or other components (not considered here) and we choose

for simplicity homogeneous Neumann boundary conditions at these interfaces (we thus use

(7.4.26) with gB replaced by zero). The rest of the boundary is in contact with air at temperature

uext = 293.15K . The corresponding convective heat transfer is modeled by a Robin boundary

condition and we use (7.4.26) with gB replaced by −α(uε(x)−uext ) and set α= 10W m−2K −1.

Table 7.10: RB offline pre-process for the 3D rotor problem. DOF = 17804.

Tensor type min ū0
H max ū0

H
< a(x, y ; s) >Y 293.2 348.7

< a(x, y ; s)−1 >−1
Y 293.2 353.7

We apply the RB-FE-HMM to this 3D problem and we collect the offline parameters and in Table

7.11. For the online stage, we consider a macro mesh of the computational domain Ω with about
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Figure 6: RB-FE-HMM macro solution of the 3D brake rotor parabolic model at times
t = 0.6,2.4,4.2,6.0,7.8,50 (respectively from left to right and top to bottom).

Table 7.11: Offline parameters and outputs for the 3D rotor problem.

Parameter space Ω× [288,360]
Training set size 4000

Number of tetrahedra 29478000
tolRB 1e-8

RB Basis number 6
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90000 tetrahedra generated by Cubit13.2 [98], see Fig. 5 (a). The CPU time for the online stage

of the nonlinear elliptic RB-FE-HMM is 96.4s for 6 Newton iterations. In Fig. 5 (b), we plot the

computed temperature distribution on the rotor (a cut parallel to the top surface is displayed

to see the internal heat distribution). As we can see, the range of the computed temperature is

[293.85,349.2] which lies in our training set based on the data in Table 7.10.

We finally consider the parabolic model of the form (7.0.2) where we use the same boundary

conditions as above and we consider the initial temperature uε(x,0) = uext = 293.15K and

consider the time interval [0,T ] = [0,50]. The RB produced by the offline procedure of the elliptic

problem can be reused for this time evolutionary problem because the range of temperature in

Table 7.10 remains valid. The CPU computational time for the parabolic online stage is 8 s per

time step, using a constant time step ∆t = 0.2. We plot in Figure 6 the RB-FE-HMM solutions

obtained by the parabolic online procedure. We observe that the heat propagates from the

exterior to the interior of the rotor and approaches the steady solution (Figure 5).

7.5 Discussion

We have presented an efficient implementation of the RB-FE-HMM algorithm for the resolution

of elliptic or parabolic nonlinear multiscale problems at the cost of single-scale nonlinear prob-

lems. This proposed algorithm combines a numerical homogenization strategy (the FE-HMM)

with a model reduction strategy (the RB method). The accuracy of the model reduction strategy

and the outputs of interest are controlled by an appropriate a posteriori error estimator for

nonlinear problems. A remarkable feature of the offline-online strategy is that the computational

cost of the method is independent of the smallness of the oscillatory parameter ε and the oscilla-

tory solution uε can be reconstructed from the homogenized one u0 with negligible overhead.

The efficiency of the proposed algorithm has been illustrated on two and three dimensional time

dependent nonlinear problems on a non-trivial computational domain.
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8.1 Conclusion

In this thesis we have first provided a detailed analysis for the generalized FE-HMM applied to el-

liptic multiscale problems with a finite number of well separated scales. Then, we have proposed

a new multiscale method that combines the FE-HMM with reduced order modeling techniques

such as the reduced basis. This method has been shown to be significantly more efficient than

the FE-HMM, in particular for high-dimensional problems or high order simulations.

As previous a priori error analysis for the FE-HMM was restricted to two-scale problems, we

proposed and analyzed a generalized FE-HMM for an arbitrary number of well-separated scales.

In our analysis, both the FE error and the quadrature error are considered and detailed estimates

for various quadrature formulas are presented. Due to the hierarchic structure of the algorithm

and the cascade of inter-related cell problems, the cost of this method can be prohibitive for

complex problems. Nevertheless, the a priori error analysis provides a theoretical foundation

for future research in combining with the generalized FE-HMM with reduced order modeling

techniques.

For two-scale FE-HMM, the efficiency issue arising from the large number of repeated micro

computations has been addressed by our new method, based on an offline-online strategy. In the

offline stage, several representative micro cell problems are selected by an a posteriori estimator

that controls the reliability of the offline output to form the microscopic reduced basis. In the

online stage, this microscopic reduced basis is then used to assemble the FE-HMM. The online

computational time cost can be compared to the single scale FEM for the macro triangulation.

Thanks to the fact that the construction of the RB space is independent of the macro solver, the

same RB space can be coupled with macro solvers of different orders or iterative macro solvers.

This has been exploited to extend the RB-FE-HMM in two directions. In the first direction, we

designed the adaptive RB-FE-HMM that can be used to deal with complex and real engineering

problems. We considered two different adaptive a posteriori error estimators: the energy norm

based estimator and the goal oriented estimator. In the second direction, we extended the

RB-FE-HMM for quasilinear multiscale problems. For such problems, the computation of new
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micro problems at each iteration of the macro solver (needed for the solution of the nonlinear

equation) needed with classical numerical homogenization methods, can be avoided with the

RB-FE-HMM. Therefore the use of RB-FE-HMM largely reduces the computing time cost of the

FE-HMM. Of special interest is the design of a new a posteriori error estimator for the RB offline

stage which does not only controls the precision of the offline output but also guarantees the

convergence of the Newton method used in the online stage.

In each part of this thesis, we have presented extensive numerical examples to corroborate our

numerical analysis and illustrate large efficiency improvement compared to the FE-HMM.

8.2 Outlook

For the future work, we would like to extend the RB-FE-HMM for different problems. Based on

the numerical methods proposed in this thesis, various research topics could be explored that

we summarize in the following.

N+1 scale problems. As mentioned in the Chapter 2, the hierarchic structure of the cell problems

in the FE-HMM makes the method costly. Combing this method with RB technique is certainly

of high interest.

The adaptive RB-FE-HMM for modeling fluid in porous media. In [12] a multiscale method,

where the effective permeability of Darcy problem recovered from Stokes problem is proposed.

Optimal convergence rates for the multiscale method can only be obtained when the adaptive

algorithms are applied for both micro problems and macro problem.Therefore it would be of

great interest to use RB techniques in this methodology.

The RB-FE-HMM for monotone nonlinear problems. In this thesis we have proposed the RB-

FE-HMM for quasilinear problems of nonmonotone type. An obvious question is the applicability

of RB techniques for (nonlinear) monotone problems. Based on the structure of the monotone

problem studied in [17], for standard FE-HMM, the Newton method is applied to solve both

macro and micro problems. However the design of the RB-FE-HMM is not straight forward

because of the nonlinearity in the micro problems. Furthermore, the analysis for the FE-HMM

for this type of problems is already very involved, and thus for the extension to the RB-FE-HMM

could be quite challenging.

The RB-FE-HMM for stochastic problems. In this thesis, all the problems discussed and numer-

ical examples presented were based on deterministic PDEs. It would be of interest to study if and

how our techniques could account for stochastic coefficients.

In the end, we hope that the RB-FE-HMM with efficient performance and certified error control

could be considered for real world engineering applications.
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