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Abstract. An iterative scheme based on the kernel polynomial method is
devised for the efficient computation of the one-body density matrix of weakly
interacting Bose gases within Bogoliubov theory. This scheme is used to analyze
the coherence properties of disordered bosons in one and two dimensions. In the
one-dimensional geometry, we examine the quantum phase transition between
superfluid and Bose glass at weak interactions, and we recover the scaling of
the phase boundary that was characterized using a direct spectral approach by
Fontanesi et al (2010 Phys. Rev. A 81 053603). The kernel polynomial scheme
is also used to study the disorder-induced condensate depletion in the two-
dimensional geometry. Our approach paves the way for an analysis of coherence
properties of Bose gases across the superfluid–insulator transition in two and
three dimensions.
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1. Introduction

More than 20 years ago, the discovery that superfluidity may be suppressed in 4He adsorbed
on porous media [1–4] triggered investigations into the conducting and insulating phases of
interacting bosons in quenched disorder. In this effort to understand what is now known as the
dirty-boson problem [5], most studies focused on the zero-temperature quantum phases, with a
variety of approaches including Luttinger-liquid theory [6, 7], general scaling arguments [8, 9],
Bogoliubov theory [10–13], strong-coupling expansions [14], as well as numerical calculations
with Monte-Carlo [15–17] and DMRG algorithms [18]. The picture that emerged revealed a
rich interplay of bosonic statistics, disorder, repulsive interactions and commensurability effects
in the presence of a lattice. The hallmark of this interplay is the restriction of the superfluid
phase to a regime of moderate interactions and weak disorder, surrounded both at weak and
strong interactions (or strong disorder) by a compressible gapless insulator called Bose glass
[6, 9, 15, 16]. This picture holds for bosons both in the continuum and on a lattice, with the
difference that in the case of lattice Bose gases, commensurate fillings give rise to an additional
incompressible Mott-insulator phase at strong coupling, provided the disorder is bounded [9].
The Bose glass then intervenes between the superfluid phase and the Mott insulator [9, 17–20],
a feature of the commensurate lattice case that may nevertheless prove difficult to observe
in experiments [20, 21]. At incommensurate fillings or weak interactions, on the other hand,
the lattice case qualitatively resembles the continuous case [6, 18, 20]. Additionally, in the
presence of special symmetries, the lattice Bose gas may exhibit insulating phases of another
kind, such as an incompressible and gapless Mott glass [22–24]. In spite of an important
body of available results, however, the characterization of the generic Bose-glass phase and
the superfluid–insulator transition remains to a large extent an open problem. This appears
to be the case even for the one-dimensional (1D) geometry in view of recent work [25–28],
which highlights the challenges related to the connection of the weakly and strongly interacting
regimes and the extension of the ground-state phase diagram to finite temperatures.
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The superfluid–insulator transition of disordered bosons attracted renewed interest in the
context of ultracold atoms [29], due to the high degree of control over disorder, interactions
and confining potentials achieved in these systems [30–32]. While pioneering experiments
with disordered bosons [33–37] aimed at observing Anderson localization in the noninteracting
limit [38–41], more recent ones have provided first results toward a quantitative characterization
of the phase diagram for nonvanishing interactions [42–48]. With this experimental activity,
theoretical investigations also turned to the weakly interacting regime, which hitherto had been
only poorly characterized. The scaling of the superfluid–insulator phase boundary as a function
of the strength of disorder and interactions was established at the mean-field level [49–53],
and shown to depend in an essential way on the microscopic disorder correlations. For the
1D geometry, the fragmentation mechanisms driving the transition were analyzed by means of
Bogoliubov theory [54], while universal features of the transition and many-body corrections
at intermediate disorder strengths were worked out with real-space renormalization group (RG)
techniques [25, 55]. In the latter approach, making contact with experiments is a challenging
task [55], and the method itself is not generalized to higher dimensions in a straightforward
way [24].

To date, the details of the superfluid to Bose-glass transition in dimension d > 1 are not
well known, and the mechanisms driving the transition are expected to be more complex than
in 1D. The notion of weak links and fragmentation, for instance, involves connectivity in higher
dimensions, i.e. percolation [24, 51, 56]. Moreover, while providing a natural step toward
higher dimensions, the two-dimensional (2D) case is particularly interesting in several respects.
Firstly, it stands for the marginal dimension of Anderson localization at the single-particle
level, for the orthogonal and unitary Wigner–Dyson universality classes [57, 58]. Naively, one
would therefore expect this geometry to be very sensitive to the introduction of interactions.
Secondly, the clean (disorder-free) weakly interacting system forms a true condensate at
T = 0, and an algebraic superfluid for 0 < T < TBKT, where TBKT is the temperature of the
Berezinskii–Kosterlitz–Thouless transition [59]. An outstanding question in this respect is how
the zero-temperature superfluid–Bose-glass transition connects to the clean BKT transition as
disorder and temperature are varied. Experiments are ongoing in this regime to characterize the
properties of the disordered Bose gas in 2D [60, 61].

The features of the 2D superfluid to Bose-glass transition beyond the mean field have
been addressed recently. In [62], the Lifshitz-tail physics associated with the deep insulating
regime was analyzed by means of a multi-orbital Hartree–Fock method based on a set of low-
lying single-particle states [62]. A real-space RG approach was devised for the 2D dirty-boson
problem in [24], and applied to the particle–hole-symmetric case, where the insulating phase is
an incompressible Mott glass instead of a Bose glass. The analysis also emphasized the possible
limitations of the strong-disorder RG in the 2D study. In [63] the T = 0 phase diagram was
studied by means of a weak-disorder expansion of Bogoliubov theory, valid far away from
the transition, and quantum Monte-Carlo calculations. Upon finite-size scaling of superfluid
fractions obtained numerically, the authors concluded in favor of a smooth crossover between
the superfluid and insulating phases. However, the ad hoc scaling law used in the analysis may
deserve a careful examination, as the system sizes used in the numerics cover a relatively modest
range. Hence, the development of a method reaching beyond the mean field and affording large
system sizes appears highly desirable in order to fill the existing gaps in the understanding of
the 2D case.
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In this contribution, we present a numerical scheme for the efficient computation of the
one-body density matrix of a weakly interacting Bose gas in the framework of Bogoliubov
theory, appropriately extended to account correctly for diverging phase fluctuations in low
dimensions [64]. The asymptotic behavior of the one-body density matrix determines the
superfluid or insulating behavior of the disordered Bose gas, and thereby allows a discussion
of the phase diagram. Our scheme accommodates arbitrary disorder strengths, it has no
intrinsic limitation in dimensionality, and it admits a straightforward extension to nonvanishing
temperatures within the range of validity of Bogoliubov theory. The underlying density-phase
representation allows for an accurate description of condensate, quasicondensate and insulating
phases in the limit of large densities for any fixed interaction energy. The key feature of
our approach is that it is based on an iterative scheme called the kernel polynomial method
(KPM) [65], which allows the computation of correlation functions in large systems.

The paper is organized as follows. Section 2 provides a reminder on Bogoliubov theory
in the density-phase formulation and on the form of the one-body density matrix within that
framework. The KPM scheme for the computation of the one-body density matrix is detailed
in section 3. In section 4, we validate our scheme by applying it to the case of disordered
bosons at T = 0 in 1D and 2D, and by comparing our results with existing literature. In the 1D
geometry, we analyze the destruction of quasi-long-range order by disorder, and recover the
phase diagram obtained through a direct approach in [52, 54]. In the 2D case, we compute the
condensate depletion induced by both interactions and disorder, and compare our findings with
those of [66]. In section 5, we conclude and discuss extensions of the present work.

2. One-body density matrix of weakly interacting Bose gases

2.1. Long-range and quasi-long-range order

We consider a dilute gas of Bose particles described by the many-body Hamiltonian

Ĥ =

∫
dr

[
9̂†(r)Ĥ09̂(r) +

g

2
9̂†(r)9̂†(r)9̂(r)9̂(r)

]
, (1)

where 9̂(r) is the bosonic field operator, g > 0 is the coupling constant parameterizing a
repulsive contact interaction and Ĥ0 = −

h̄2

2m ∇
2
r + V (r) is the single-particle Hamiltonian. In the

following, the external potential V is a homogeneous random potential with zero mean, root-
mean-square amplitude 1 and a correlation length η defined as the spatial width of the two-
point correlation function V (r)V (r ′). Here and in the following, the bar denotes a statistical
average over the disorder configurations, while the brackets 〈.〉 indicate quantum-mechanical
expectation values.

In the weakly interacting regime and close to the ground state, the properties of the
dilute Bose gas are well described by standard Bogoliubov theory in three dimensions
(3D) [67]. In this standard approach, the field operator 9̂(r) is split into a classical component
90(r) representing a condensate wave function with a well-defined phase and a field δ9̂(r)
describing quantum fluctuations. An effective Hamiltonian is then derived from the expansion
of Ĥ to second order in δ9̂. In dimensions d 6 2, however, the Mermin–Wagner–Hohenberg
theorem [68, 69] rules out the presence of a condensate (i.e. long-range order [70, 71]) at any
temperature T > 0, as well as T = 0 in 1D. At sufficiently low temperatures in 2D and T = 0 in
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1D, the Bose gas nevertheless forms a quasicondensate with a power-law decay of the one-body
density matrix

G(r, r ′) = 〈9̂†(r)9̂(r ′)〉 (2)

at large distances (‖ r ′
− r ‖→ +∞), and exhibits superfluidity [26, 59]. While the absence of a

true condensate in those cases precludes a straightforward application of standard Bogoliubov
theory, the reformulation of the latter in a density-phase representation [72, 73] leads to a theory
that is free of divergences, and which captures the algebraic decay of correlation functions
in quasicondensates [64, 74]. In this formulation the field operator reads 9̂(r) = eiθ̂ (r)

√
ρ̂(r),

where θ̂ (r) is a phase operator that is safely defined in the high-density limit and ρ̂(r) is
the density operator. The latter is split into a classical component ρ0(r) corresponding to the
mean-field condensate (or quasicondensate) density and a fluctuation δρ̂(r). As in standard
Bogoliubov theory, an effective Hamiltonian is derived from the expansion of Ĥ at leading
order in the fluctuations. At low temperature, such an approach is valid wherever [64]

ρ0(r)ξ d
� 1. (3)

In this expression, d is the spatial dimension and ξ is the healing length, defined here as

ξ =
h̄

√
mU

, (4)

where U = gρ0 is the average interaction energy. In a disordered system, the density ρ0(r)
may locally assume small values, but the regime of validity is recovered at identical U and
local interaction energy U (r) = gρ0(r) for sufficiently large ρ0 (i.e. small g). It is also worth
noting that, although the regions of low density determine the physics of the superfluid–insulator
transition, the latter is also observed within Bogoliubov theory in the limit of asymptotically
large average densities (ρ0 → ∞ and g → 0 with constant U = gρ0), where the theory is
expected to be exact [54, 75]. Many-body effects beyond Bogoliubov theory arise as subleading
terms in an expansion in terms of the inverse density [55, 64]. Current experiments with weakly
interacting disordered Bose gases fulfill inequality ρ0ξ

d
� 1 by at least one or two orders of

magnitude (see e.g. [44, 60]), so that the spatial regions where Bogoliubov theory breaks down
may be neglected in a good approximation.

While the relation between superfluidity and condensation or quasicondensation is rather
subtle, the presence of a compressible superfluid appears both necessary and sufficient for the
existence of a condensate or quasicondensate [31]. Thus, the long-distance behavior of the one-
body density matrix (2) allows a distinction between superfluid and insulating phases. In the
clean (interacting) 1D system, G(r, r ′) decays algebraically at T = 0. In the clean 2D system at
T = 0, the one-body density matrix exhibits a plateau at long distances, which characterizes a
true condensate. For 0 < T < TBKT, the 2D system is also an algebraic superfluid with a power-
law decay of correlations. In 3D, finally, the system is a true Bose–Einstein condensate below the
critical temperature TBEC. All these phases can be distinguished from the normal phases found
at higher temperatures, which exhibit an exponential decay of G(r, r ′). Similarly, the complete
suppression of superfluidity by disorder at the phase transition to the Bose-glass phase coincides
with the destruction of long-range order or quasi-long-range order, i.e. with the emergence of an
exponential decay of the one-body density matrix [52]. Since the ground state of the interacting
Bose gas is globally extended and G(r, r ′) depends on the disorder configuration, the disordered
phases can be characterized by the long-distance behavior of the statistical average

g1(‖r − r ′
‖) = g1(r, r ′), (5)
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where g1 is the reduced one-body density matrix

g1(r, r ′) =
G(r, r ′)√
ρ(r)ρ(r ′)

, (6)

with ρ(r) the total gas density [64].
As anticipated above, G(r, r ′) and g1(r, r ′) can be calculated in a density-phase

formulation of Bogoliubov theory [64]. Sections 2.2 and 2.3 provide a reminder on both the
number-conserving and nonconserving variations of such a theory. These results are used in the
following sections for the computation of the one-body matrix with the KPM.

2.2. Bogoliubov theory in number-conserving and nonconserving approaches

In the ground state, the density ρ0 obeys the Gross–Pitaevskii equation (GPE)

[Ĥ0 + gρ0(r)]
√

ρ0(r) = µ
√

ρ0(r), (7)

where µ corresponds to the chemical potential in a grand-canonical description of the system.
The quantum fluctuations and elementary (quasiparticle) excitations of the Bose gas are
described by the field B̂(r) = δρ̂(r)/(2

√
ρ0(r)) + i

√
ρ0(r)θ̂(r), which obeys the equation of

motion [64, 76]

ih̄
∂

∂t

(
B̂
B̂†

)
= LGP

(
B̂
B̂†

)
. (8)

Here LGP is the standard Bogoliubov operator

LGP =

(
ĤGP + gρ0(r) − µ gρ0(r)

−gρ0(r) −ĤGP − gρ0(r) + µ

)
, (9)

with ĤGP = Ĥ0 + gρ0(r). The field B̂ admits the expansion [64, 77]

B̂(r) =

∑
j

[
u j(r)b̂ j + v∗

j (r)b̂†
j

]
− i

√
N0φ0(r)Q̂sb +

φa(r)
√

N0
P̂sb, (10)

where b̂ j is a bosonic quasiparticle operator, and the two last terms are explained below.
The mode functions u j(r) = 〈r|u j〉 and v j(r) = 〈r|v j〉 are given by the solutions of the usual
Bogoliubov–de Gennes equations (BdGEs)

LGP

(
|u j〉

|v j〉

)
= E j

(
|u j〉

|v j〉

)
(E j > 0). (11)

The operator LGP is non-Hermitian, but its eigenvalues are real in the ground state of
Hamiltonian (1). As LGP

∗
= LGP, the components u j(r) = 〈r|u j〉 and v j(r) = 〈r|v j〉 can be

chosen as real-valued functions. We nevertheless consider the more general case of complex
u j and v j . For each eigenvector (|u j〉, |v j〉)

T with eigenvalue E j > 0, the operator LGP

also has an eigenvector (|v∗

j 〉, |u
∗

j〉)
T with eigenvalue −E j < 0. The adjoint vectors of these

positive and negative eigenvectors are (|u j〉, −|v j〉)
T and (−|v∗

j 〉, |u
∗

j〉)
T, respectively [78]. The

biorthogonality of both positive and negative solutions of the BdGEs is thus expressed by the
well-known relation

〈u j |u j ′〉 − 〈v j |v j ′〉 =

∫
dr[u∗

j(r)u j ′(r) − v∗

j (r)v j ′(r)] = δ j j ′ . (12)
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The operator LGP also has an eigenvector pertaining to the eigenvalue E = 0, namely
(|φ0〉, −|φ0〉)

T, where φ0(r) =
√

ρ0(r)/N0 is the normalized ground state, with N0 =
∫

drρ0(r).
As the set of eigenvectors of LGP is not complete, an eigenvector (|φa〉, |φa〉)

T of L2
GP with

eigenvalue zero, such that φa(r) ∈ R and 〈φ0|φa〉 = 1/2, is added to the set to obtain the closure
relation [77]

1 =

(
|φ0〉

−|φ0〉

)
(〈φa|, −〈φa|) +

(
|φa〉

|φa〉

)
(〈φ0|, 〈φ0|)

+
∑

j

(
|u j〉

|v j〉

)
(〈u j |, −〈v j |) +

(
|v∗

j 〉

|u∗

j〉

)
(−〈v∗

j |, 〈u
∗

j |). (13)

The P̂sb and Q̂sb terms in equation (10) account for fluctuations in the particle number and
are responsible for the phase diffusion of condensates in symmetry-breaking approaches [79].
These terms do not arise in number-conserving approaches [77, 80, 81], which retain only
fluctuations that are orthogonal to the ground state φ0(r). The field 3̂(r) that describes the
orthogonal fluctuations obeys an equation similar to equation (8):

ih̄
∂

∂t

(
3̂

3̂†

)
= L

(
3̂

3̂†

)
, (14)

where LGP has been replaced by [77]

L=

(
ĤGP + gQ̂ρ0(r)Q̂ − µ gQ̂ρ0(r)Q̂

−gQ̂ρ0(r)Q̂ −ĤGP − gQ̂ρ0(r)Q̂ + µ

)
, (15)

and Q̂ = 1 − |φ0〉〈φ0| projects orthogonally to the ground state. Equation (10) is replaced by the
modal expansion

3̂(r) =

∑
j
u⊥

j (r)b̂ j + v⊥

j
∗
(r)b̂†

j , (16)

where u⊥

j (r) and v⊥

j (r) are solutions of the modified BdGEs

L

(
|u⊥

j 〉

|v⊥

j 〉

)
= E j

(
|u⊥

j 〉

|v⊥

j 〉

)
(E j > 0). (17)

The operator L has the same spectrum as LGP, and its positive and negative families of
eigenvectors are simply obtained through the projections |u⊥

j 〉 = Q̂|u j〉 and |v⊥

j 〉 = Q̂|v j〉,
which leave the biorthogonality relations (12) unaffected. Unlike LGP, however, the operator
L is diagonalizable. The zero eigenspace is spanned by the vectors (|φ0〉, 0)T and (0, |φ0〉)

T, so
that the resolution of identity reads [77]

1 =

(
|φ0〉

0

)
(〈φ0|, 0) +

(
0

|φ0〉

)
(0, 〈φ0|)

+
∑

j

(
|u⊥

j 〉

|v⊥

j 〉

)
(〈u⊥

j |, −〈v⊥

j |) +

(
|v⊥∗

j 〉

|u⊥∗

j 〉

)
(−〈v⊥∗

j |, 〈u⊥∗

j |). (18)

As we shall see below, equations (7), (15) and (18) (or, equivalently, equations (9) and (13)) are
all that is needed for the efficient calculation of the one-body density matrix of disordered Bose
gases in the weakly interacting regime.
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2.3. One-body density matrix in the density-phase representation

The expression of the one-body density matrix G(r, r ′) = 〈9̂†(r)9̂(r ′)〉 was derived in the
density-phase formalism in [64]. At zero temperature, it can be cast into the form [54, 75]

G(r, r ′) =

√
ρ(r)ρ(r ′) exp

−
1

2

∑
j

∣∣∣∣∣ v⊥

j (r)
√

ρ0(r)
−

v⊥

j (r ′)√
ρ0(r ′)

∣∣∣∣∣
2
 , (19)

where j enumerates the Bogoliubov modes with E j > 0. This expression is valid in the limit of
small density and phase fluctuations, which is realized at large average density ρ0 for any given
interaction energy U = gρ0. In this limit, one has ρ(r) ' ρ0(r), which in the presence of a true
condensate amounts to a small condensate depletion (see section 4.2). Note also in this respect
that, owing to the form of the GPE (7) and BdGEs (17), the v⊥

j (r) numerators in the exponent of
equation (19) depend only on the product U = gρ0 rather than on the coupling constant g and
the average density ρ0 independently. Because of the denominators, the above exponent thus
admits a simple scaling as a function of density for fixed interaction energy U .

Remarkably, expression (19) accurately describes weakly interacting Bose gases in any
dimension. In particular, it is not plagued by divergences in low dimensions, and captures
the power-law decay of the one-body density matrix of quasicondensates in 1D Bose gases
at T = 0 [64, 74, 82]. This expression was also used in [54] in conjunction with a numerical
diagonalization of the Bogoliubov operator to analyze the destruction of quasi-long-range order
by disorder in the 1D geometry. While equation (19) involves all Bogoliubov modes, the sum
is typically dominated by the modes of the low-energy phonon regime. However, even with a
restriction to low-energy modes, the calculation of the one-body density matrix G(r, r ′) through
complete or partial diagonalization of the Bogoliubov operator becomes prohibitive for large
system sizes. In the following section, we present an alternative scheme, based on the KPM [65],
which circumvents the solution of the Bogoliubov eigenvalue problem and constitutes the main
result of the present work.

3. Kernel polynomial scheme for the one-body density matrix

The KPM [65, 83, 84] is an iterative numerical scheme for the computation of correlation
functions. The KPM bypasses the spectral decomposition of the operators involved in those
correlation functions, which may be numerically intractable. The KPM technique and some
applications have been recently reviewed in [65]. In section 3.1 we introduce the elementary
aspects of KPM that are relevant to the present study. In section 3.2, we show how a KPM
scheme can be devised to compute the one-body density matrix G(r, r ′) on the basis of
equation (19).

3.1. Basics of the kernel polynomial method

The core ingredient of KPM is the expansion of correlation functions on Chebyshev polynomials
of the first kind. The latter are orthogonal polynomials on the interval I = [−1, 1], defined by
the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x) with T0(x) = 1 and T1(x) = x . Consider a
Hermitian operator X̂ with a discrete or continuous spectrum contained in I , and the correlation
function

f (|a〉, |b〉, x) = 〈a|δ(X̂ − x)|b〉, x ∈ I. (20)
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The latter is a formal writing for

f (|a〉, |b〉, x) =

∑
j,α

δ(x j − x)〈a|x j,α〉〈x j,α|b〉, (21)

where {|x j,α〉} is an orthonormal eigenbasis of X̂ , which provides the spectral decomposition
X̂ =

∑
j,α x j |x j,α〉〈x j,α|, with x j ∈ I , and the resolution of identity

1 =

∑
j,α

|x j,α〉〈x j,α|. (22)

The above correlation function has the expansion

f (|a〉, |b〉, x) =
1

π
√

1 − x2

[
µ0(|a〉, |b〉) + 2

∞∑
n=1

µn(|a〉, |b〉)Tn(x)

]
, (23)

where the coefficient µn(|a〉, |b〉), called Chebyshev moment of order n, is defined as

µn(|a〉, |b〉) =

∫ 1

−1
f (|a〉, |b〉, x)Tn(x)dx . (24)

Owing to equations (21) and (22), the moments of f (|a〉, |b〉, x) are simply given by

µn(|a〉, |b〉) =

∑
j,α

Tn(x j)〈a|x j,α〉〈x j,α|b〉 = 〈a|Tn(X̂)
∑

j,α

|x j,α〉〈x j,α|b〉, (25)

which boils down to the matrix element of a polynomial of X̂ :

µn(|a〉, |b〉) = 〈a|Tn(X̂)|b〉. (26)

Instead of calculating Tn(X̂) for each new n index, which is computationally costly, one takes
advantage of the recurrence relation between Chebyshev polynomials and keeps track of two
vectors, |bn〉 = Tn(X̂)|b〉 and |bn−1〉 = Tn−1(X̂)|b〉, with the initialization |b0〉 = |b〉 and |b1〉 =

X̂ |b〉. Then, a single application of X̂ (matrix–vector multiplication) yields the new vector
|bn+1〉 = 2X̂ |bn〉 − |bn−1〉, along with the next Chebyshev moment µn+1(|a〉, |b〉) = 〈a|bn+1〉.

In practice, the expansion (23) is truncated at some finite order N , and f (|a〉, |b〉, x) is
approximated by

f (N )(|a〉, |b〉, x) =
1

π
√

1 − x2

[
g(N )

0 µ0(|a〉, |b〉) + 2
N−1∑
n=1

g(N )
n µn(|a〉, |b〉)Tn(x)

]
, (27)

where the g(N )
n factors are introduced to damp the Gibbs oscillations caused by the

truncation [65]. These factors amount to the action of a convolution kernel on f (|a〉, |b〉, x),
whence the name of KPM. Finally, the functional dependence of f (N )(|a〉, |b〉, x) on x
is usually efficiently computed for a set of points xk ∈ I by using a discrete cosine
transform [65].

In summary, the KPM offers a simple iterative scheme for the calculation of correlation
functions akin to expression (20), and avoids the numerical complexity associated with the
spectral representation (21). Let us now examine how this method can be applied to the
Bogoliubov operator for the computation of G(r, r ′).
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3.2. Calculation of the one-body density matrix

Expression (19) for the one-body density matrix involves the eigenmodes of the Bogoliubov
operator L, the spectrum of which lies on the real line. As all subsequent numerical calculations
are carried out with a finite-difference scheme and finite-size systems, the spectrum of L has a
compact support [−Emax, Emax], where Emax depends on the hopping term t associated with
the Laplacian in the finite-difference scheme, the strength of interactions and the disorder
configuration V (r). In the calculations presented in section 4, the upper bound Emax is obtained
by solving the sparse Bogoliubov eigenvalue problem (11) for the largest eigenvalue with a
Lanczos method. Taking a slightly larger Emax to ensure good KPM convergence at the spectrum
boundaries [65], the spectrum is mapped to I by the rescaling L→ L/Emax.

To exhibit correlation functions akin to equations (20) and (21), we cast expression (19)
into the following form:

G(r, r ′) =

√
ρ(r)ρ(r ′) exp

[
−

1

2

∫ 1

0
F(r, r ′, ε)dε

]
, (28)

with

F(r, r ′, ε) = f (r, r, ε)− f (r, r ′, ε)− f (r ′, r, ε) + f (r ′, r ′, ε) (29)

and

f (r, r ′, ε) = −

∑
k

δ(εk − ε)
〈r|w⊥

k,2〉〈w̃
⊥

k,2|r
′
〉√

ρ0(r)ρ0(r ′)
, (30)

where |w⊥

k,2〉 and |w̃⊥

k,2〉 are the second components of the eigenvector (|wk,1〉, |wk,2〉)
T of L

and its adjoint vector (|w̃⊥

k,1〉, |w̃
⊥

k,2〉)
T, respectively. In equation (30), the index k runs over

the positive (Ek > 0), null (Ek = 0) and negative (Ek < 0) families of eigenvectors, and εk =

Ek/Emax. Because of the integration boundaries in equation (28), the term f (r, r ′, ε) contributes
to the exponent by∫ 1

0
f (r, r ′, ε)dε = −

1

2N0
+

∑
j

v⊥

j (r)v⊥

j
∗
(r ′)√

ρ0(r)ρ0(r ′)
, (31)

where j enumerates the modes with E j > 0. The −1/(2N0) term, which stems from the zero
eigenvector (0, |φ0〉)

T, cancels out of the f sum in equations (28) and (29), so that equation (28)
is indeed equivalent to equation (19).

The modes with Ek 6 0 are included in sum (30) to use the resolution of identity (see
equation (18))

1 =

∑
k

(|w⊥

k,1〉, |w
⊥

k,2〉)
T(〈w̃⊥

k,1|, 〈w̃
⊥

k,2|). (32)

Indeed, rewriting equation (30) as

f (r, r ′, ε) = −

∑
k

δ(εk − ε)
(0, 〈r|)(|w⊥

k,1〉, |w
⊥

k,2〉)
T(〈w̃⊥

k,1|, 〈w̃
⊥

k,2|)(0, |r ′
〉)T√

ρ0(r)ρ0(r ′)
,

(33)

we find that the Chebyshev moments of f (r, r ′, ε) are

µn(r, r ′) = −
(0, 〈r|)
√

ρ0(r)
Tn

(
L

Emax

)
(0, |r ′

〉)T√
ρ0(r ′)

, (34)
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and those of F(r, r ′, ε) follow as

Mn(r, r ′) = µn(r, r) − µn(r, r ′) − µn(r ′, r) + µn(r ′, r ′). (35)

Finally, there is no need for a Chebyshev inversion by discrete cosine transform, as the
expansion (23) can be integrated analytically on [0, 1], and we obtain∫ 1

0
F(r, r ′, ε) dε =

M0(r, r ′)

2
+

2

π

∞∑
p=0

(−1)p M2p+1(r, r ′)

2p + 1
. (36)

Note that the contributions of all even moments except M0(r, r ′) are integrated out on [0, 1].
The moments µn(r, r ′) are calculated iteratively following the recurrence scheme outlined in
section 3.1, for the four (r, r ′) pairs in Mn(r, r ′). This requires only two Chebyshev sequences
as, for instance, Tn(L/Emax)(0, |r ′

〉)T may be used to compute µn(r, r ′) and µn(r ′, r ′). When
the Chebyshev iterations are truncated at order N , the reduced one-body density matrix is
approximated by

G(N )(r, r ′)√
ρ(r)ρ(r ′)

= exp

−
g(N )

0

4
M0(r, r ′) −

b
N
2 −1c∑
p=0

(−1)pg(N )

2p+1

(2p + 1)π
M2p+1(r, r ′)

 , (37)

where the g(N )
n are convolution kernel factors (see section 3.1). We found the standard Jackson

kernel [65] to be suitable in this scheme.
The Chebyshev iterations based on equation (34) involve projections orthogonally to the

ground state by means of Q̂ = 1 − |φ0〉〈φ0|. Interestingly, the Bogoliubov operator L may be
replaced by LGP in the iterations, so that projections are not necessary. This provides a further
simplification of the KPM calculation of the one-body density matrix. Indeed, upon expansion
with v⊥

j (r) = v j(r) − 〈φ0|v j〉φ0(r), one easily sees that equation (19) also reads as

G(r, r ′) =

√
ρ(r)ρ(r ′) exp

−
1

2

∑
j

∣∣∣∣∣ v j(r)
√

ρ0(r)
−

v j(r ′)√
ρ0(r ′)

∣∣∣∣∣
2
 . (38)

The function FGP(r, r ′, ε) is defined as the analogue of F(r, r ′, ε) in equations (28) and (29),
with four terms of the form

fGP(r, r ′, ε) = −

∑
k′

δ(εk′ − ε)
〈r|wk′,2〉〈w̃k′,2|r ′

〉√
ρ0(r)ρ0(r ′)

, (39)

where k ′ enumerates the eigenmodes of LGP with Ek′ 6= 0. Owing to the closure relation (13),
the Chebyshev moments of fGP(r, r ′, ε) read

µGP
n (r, r ′) = −

(0, 〈r|)
√

ρ0(r)
Tn

(
LGP

Emax

)
(0, |r ′

〉)T√
ρ0(r ′)

+ R(1)
n (r, r ′) + R(2)

n (r, r ′), (40)

where

R(1)
n (r, r ′) = −

φa(r ′)√
ρ0(r)ρ0(r ′)

(0, 〈r|) Tn

(
LGP

Emax

) (
|φ0〉

−|φ0〉

)
, (41)

R(2)
n (r, r ′) = +

φ0(r ′)√
ρ0(r)ρ0(r ′)

(0, 〈r|) Tn

(
LGP

Emax

) (
|φa〉

|φa〉

)
. (42)

New Journal of Physics 15 (2013) 045006 (http://www.njp.org/)

http://www.njp.org/


12

Given that LGP(|φ0〉, −|φ0〉)
T

= (0, 0)T and LGP(|φa〉, |φa〉)
T

= α(|φ0〉, −|φ0〉)
T with constant α,

as detailed in [77], we find

R(1)

2p (r, r ′) = (−1)p φa(r ′)√
N0ρ0(r ′)

, (43)

R(1)

2p+1(r, r ′) = 0, (44)

R(2)

2p (r, r ′) = (−1)p φa(r)
√

N0ρ0(r)
, (45)

R(2)

2p+1(r, r ′) = (−1)p+1 (2p + 1)α

N0 Emax
. (46)

These R(i)
n (r, r ′) terms cancel out of the sum

MGP
n (r, r ′) = µGP

n (r, r) − µGP
n (r, r ′) − µGP

n (r ′, r) + µGP
n (r ′, r ′). (47)

Hence, the comparison of equations (34) and (40) shows that LGP can be used instead of L in
the Chebyshev iterations underlying equation (37).

The expressions (34), (35) and (37) are the main results of this section. They provide
an iterative scheme for the calculation of the reduced one-body density matrix of a weakly
interacting Bose gas, once the solution of the GPE (7) is given. In the following section, this
scheme is applied in various geometries, with and without disorder.

Remarkably, the above approach can be extended in a straightforward way to nonzero
temperatures within the framework of Bogoliubov theory. In addition to the v j(r) terms, the
thermal G(r, r ′) also contains contributions from the Bogoliubov components u j(r), which
can be calculated through additional KPM iterations. As the u j and v j terms are weighted
by Bose–Einstein occupation factors, the integration in equation (36) no longer has a simple
analytical solution. However, this analytical step may be replaced by a discrete cosine transform
at low computational expense.

Our results also show that the operator involved in the correlation function and the KPM
iterations need not be Hermitian. Some illustrations of this fact can be found in the literature,
with special cases such as the computation of retarded Green’s functions [65] or the solution
of generalized Hermitian eigenvalue problems [85]. The Bogoliubov operators L and LGP

provide two other interesting examples in that context. Firstly, L is diagonalizable, albeit non-
Hermitian, and its eigenvalues are real. As a consequence, the eigenvectors and their adjoints
form a complete biorthogonal set that can be used for the closure relation, and there is no
need for a twofold KPM iteration to retrieve the spectral information on a compact set of the
complex plane. Secondly, LGP is not diagonalizable, and yet its generalized eigenvectors (and
their adjoints) can be used for the closure relation. In the derivation of equations (43)–(46), we
took advantage of the fact that (|φ0〉, −|φ0〉)

T and (|φa〉, |φa〉)
T are generalized eigenvectors of

low order, so that the action of Tn(LGP) can be evaluated easily.

4. Application to disordered bosons

We now employ the KPM scheme introduced above to analyze the asymptotic behavior of the
one-body density matrix of disordered bosons in 1D and 2D. While the approach of the previous
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sections is general, we consider here a Gaussian random potential V with Gaussian correlation
function

V (r)V (r ′) = 12 e−(r−r ′)2/(2η2). (48)

The numerical procedure for the computation of g1(r, r ′) is the following. The continuum
problem (1) is represented on a finite volume Ld in a finite-difference scheme with lattice
spacing ` = L/n`. To emulate the continuum limit, the hopping term t = h̄2/(2m`2) is chosen to
be much larger than all the other energy scales of the problem. In all the calculations presented
here, the correlation length of the disorder is taken to be η = 4`, which is sufficient for our
purposes. The correlation length η and the associated energy

Ec =
h̄2

2mη2
(49)

are used as reference scales throughout this section, even in the absence of disorder
(1 = 0). For each configuration V (r), the ground-state solution

√
ρ0(r) of the GPE (7) and

the corresponding chemical potential µ are computed through imaginary-time propagation with
a standard Crank–Nicolson scheme, at fixed particle number N0 =

∫
drρ0(r). We denote by

U = g
N0

Ld
(50)

the average mean-field interaction energy. Periodic boundary conditions are imposed on the
GPE and on the BdGEs (11). The Bogoliubov operator LGP is set up on the basis of V (r) and
ρ0(r). Then, g1(r, r ′) may be calculated with the KPM iteration detailed in the last section for
any (r, r ′) pair.

4.1. Superfluid to Bose-glass transition in one dimension

In [52, 54], the destruction of quasi-long-range order was used as a signature of the superfluid
to Bose-glass transition at T = 0 in 1D, and this criterion was used to draw the quantum phase
diagram on the basis of the asymptotic behavior of the (averaged) reduced one-body density
matrix g1(|r − r ′

|). Here, we use the 1D setting as a testbed for the KPM approach described
above.

In the absence of disorder, g1 is expected to decay at large distances with a power law given
by [64, 86]

g1(r, r ′) '

(
e2−Cξ

4|r − r ′|

) 1
2πρξ

, |r − r ′
| � ξ, (51)

where C = 0.57721 . . . is Euler’s constant, the density ρ can be approximated by ρ0 within
our Bogoliubov approach, and ξ is the healing length defined in equation (4). Figure 1 shows
the result of a KPM calculation for a system of length L = 216η, and the excellent agreement
obtained with the power law (51) for |r − r ′

|& ξ , i.e. in its regime of validity. The regrowth
observed at large |r − r ′

| is due to the periodic boundary conditions, and does not affect
significantly the data for |r − r ′

|. L/4. In all the subsequent analyses, we retain only this
range for determining the asymptotic behavior of g1. Note the large system size achieved in this
computation. In this homogeneous case, a single KPM iteration suffices for the computation of
g1(r, r ′). The number of moments N required to resolve all individual Bogoliubov modes in
the phonon regime and achieve a good convergence of the KPM result grows linearly with the
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Figure 1. Reduced one-body density matrix g1(r, r ′) in the absence of disorder
for a 1D system of length L = 216 η, with interaction strength U = 0.10 Ec

(i.e. ξ ' 4.5 η). The blue solid line is the result of the KPM calculation. The
red dashed line is the asymptotic power law given by equation (51) with ρ ' ρ0.

system size n` = L/`. The required storage space is also a few n`. This has to be compared to
the storage space and computation time required for a full diagonalization of LGP, which scale
as n2

` and n3
`, respectively [65].

For 1 > 0, the reduced one-body density matrix g1(r, r ′) depends on the disorder
configuration, and is no longer translation invariant. Figure 2 shows the behavior of g1(0, r)

for a single disorder configuration, and the results obtained with the KPM scheme for various
moment numbers N (see equation (37)). When N is sufficiently high, the KPM results coincide
with those obtained from complete diagonalization, and faithfully reproduce the spatial details
of g1(r, r ′). As a general trend, we also observe that the KPM estimates of g1(r, r ′) converge
from above with increasing N . This can be attributed to the fact that low N values imply poor
spectral resolution, and hence are not able to resolve the small energy scales associated with the
long-distance decay of g1, such as for example the vanishing energy separation that can arise
when Bogoliubov modes are strongly localized in different spatial regions. While the number
of moments required for convergence scales linearly with the system size in the clean case, we
also observed that this scaling is slightly faster than linear in the disordered case.

After averaging over disorder, the one-body density matrix exhibits either a power-law or
an exponential decay at large distances, depending on the strength of interactions and disorder.
For long-enough systems a similar behavior may already be observed qualitatively with a single
disorder configuration in the spatial average

gL
1 (r) =

1

L

∫ L

0
g1(r

′, r ′ + r) dr ′. (52)

Figure 3 shows spatial averages computed with the KPM scheme for two sets of parameters in
a system of length L = 512η. We display here the range r . L/4, and the crossover to the long-
distance behavior is visible on both panels. The linear behavior found for U = 1.12Ec on the
double logarithmic scale indicates a power-law decay of the averaged g1, corresponding to the
superfluid phase. For U = 0.3Ec, on the other hand, we find an exponential decay indicating a
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Figure 2. Reduced one-body density matrix g1(0, r) for a single disorder
configuration, in a 1D system of length L = 512 η. The interaction strength
is U = gN0/L = 1.12Ec, and the disorder strength is 1 = 0.8Ec. The black
dashed line shows the result obtained from the complete diagonalization of
the Bogoliubov operator LGP. The other curves are the KPM results obtained
for various numbers of moments. The curve for 50 000 moments (green solid
line) is indistinguishable on this scale from the result obtained from complete
diagonalization.
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Figure 3. Spatial average gL
1 (r) for a single disorder configuration with

amplitude 1 = 0.8Ec and two interaction energies U , in a 1D system of length
L = 512 η. The case U = 1.12Ec (left panel) exhibits a power-law decay of gL

1 ,
while the case U = 0.3Ec (right panel) shows an exponential decay for r & 20 η.
The left panel corresponds to the spatial average obtained with the parameters
and the disorder configuration of figure 2.

Bose glass. For the same system size, the convergence of the KPM result in the insulating phase
requires a higher number of moments than in the superfluid phase. This may be attributed to the
increase of the Bogoliubov density of states near zero energy and to a reduced level repulsion.
Indeed, as the disorder increases, the system turns progressively into a collection of superfluid
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Figure 4. Ground-state phase diagram of weakly interacting disordered bosons
in 1D. The phases are characterized by the power-law decay (blue circles;
superfluid) or the exponential decay (green squares; Bose glass) of the averaged
one-body density matrix g1(r). The latter was obtained through KPM iterations
with system sizes varying between 64η and 2048η. The black triangles lie on
the estimated phase boundary. Linear fits to these data points on the double
logarithmic scale yield the slope 0.75 ± 0.04 in the white-noise regime U � Ec,
and 0.94 ± 0.03 in the Thomas–Fermi regime U � Ec. The purple crosses
correspond to the parameters used in the panels of figure 3.

puddles separated by high potential barriers. As a consequence, the efficiency of the KPM
scheme is reduced deep in the insulating regime, where the number of moments required for
convergence typically becomes very large. In the superfluid regime and in the parameter range
of interest around the superfluid–insulator transition, however, our KPM approach converges
quickly and outperforms complete diagonalization in terms of memory usage and computation
time already for system sizes as moderate as those used in figure 3.

The quantum phase diagram of the weakly interacting regime can be drawn by varying
1 and U , and determining for each parameter set whether the asymptotic part of the disorder-
averaged g1 behaves as a power law or an exponential. This procedure is put on a systematic
footing by fitting the long-distance part of g1(r) with both power laws and exponentials, and
monitoring the fit quality. Figure 4 shows the phase diagram obtained with the KPM technique.
The blue circles and green squares have been identified as belonging to the superfluid and Bose-
glass phases, respectively. The black triangles cannot be attributed to one phase or the other
with the accuracy of the data, and are assumed to lie on the phase boundary. The red solid lines
are fits to the black triangles in the regimes U . Ec and U & Ec. In the white-noise regime
U � Ec (i.e. ξ � η), the phase boundary is expected to scale as 1/Ec ∼ (U/Ec)

3/4, while
in the Thomas–Fermi regime U � Ec (i.e. ξ � η) the critical 1 is expected to grow linearly
with U [51, 52, 54, 87]. The fits of figure 4 are in good agreement with these scaling laws.
Our findings thus reproduce the results of [52, 54] without the need for partial or complete
diagonalization. This validates our approach.
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4.2. Condensate depletion in two dimensions

In the absence of disorder, weakly interacting bosons form a true condensate at T = 0 in 2D.
In this case, the reduced one-body density matrix g1(r, r ′) tends to a constant equal to the
condensate fraction ρ0/ρ for ‖ r − r ′

‖→ ∞. To leading order in the strength of interactions,
the condensate fraction is given by [59, 64, 66, 88]

ρ0

ρ
' 1 −

g′

8π
= 1 −

1

4πρ0ξ 2
, (53)

where g′
= 2mg/h̄2 and g is the 2D coupling constant. While scattering theory shows that

this constant actually depends logarithmically on the 2D density ρ and the 3D scattering
length a [59], we take it as a given parameter of Hamiltonian (1) in 2D, even for the strongly
inhomogeneous case. According to equation (53), interactions reduce the condensate fraction.
In the presence of disorder, the condensate fraction is expected to be further reduced (but
nonzero) in the superfluid regime, and completely suppressed in the Bose-glass phase, due to
the (exponential) decay of the one-body density matrix.

The KPM algorithm introduced above is expected to reduce significantly the computational
cost of a study of the superfluid–insulator transition on the basis of the one-body density matrix.
A fully fledged analysis of this transition nevertheless lies beyond the scope of the present
paper, and is left for future work. Here, we restrict ourselves to the superfluid regime and
consider the calculation of the disorder-induced condensate depletion as a benchmark for the
KPM technique. This depletion has been calculated analytically in [66] for the limit of weak
interactions and weak disorder. To leading order in 1/U , the depletion δρ = ρ(r) − ρ0(r) reads

δρ = δρ(0)

[
1 +

(
1

U

)2

h

(
η

ξ

)]
, (54)

where δρ(0) is the interaction-induced condensate depletion in a clean system, given by
equation (53). The function h depends only on the ratio of the disorder correlation length η

and the healing length ξ . Note that h differs from a similar function introduced in [66] by a
trivial factor

√
2 in the argument due to a different definition of ξ .

The left panel of figure 5 shows the result of a KPM calculation of g1(0, r) in a clean
2D system. Starting from the origin, the one-body density matrix drops and reaches a plateau
beyond a few healing lengths. The regrowth of g1 on the system edges is due to the periodic
boundary conditions, as in the 1D case. The condensate fraction is extracted from the value
assumed at the center of the system. With this procedure, we studied the dependence of the
condensate fraction on the interaction strength. The numerical results are plotted in figure 6,
and stand in perfect agreement with equation (53).

The disordered case was examined with a similar procedure. The right panel of figure 5
displays the values of g1(0, r) obtained for a single disorder configuration with 1/U = 0.125.
For this value the effect of disorder is weak, and the one-body density matrix still exhibits a
plateau, at roughly the same level as the clean case shown in the left panel. As a definition
of the averaged condensate fraction in the disordered case, we use the asymptotic value of the
disorder-averaged reduced one-body density matrix g1(r, r ′) at large distances. This definition
follows the Penrose–Onsager criterion for Bose–Einstein condensation, based on off-diagonal
long-range order [70], and agrees with the definition of the condensate fraction in the clean case.
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Figure 5. Reduced one-body density matrix g1(0, r) for a 2D system of size
64η × 64η, at T = 0, in the absence of disorder (left panel) and for a single
disorder configuration with amplitude 1 = 4 Ec (right panel). In both cases the
interaction strength is U = 32Ec and the density is N0/L2

= 160 η−2, which
amounts to a reduced coupling constant g′

= 0.2 (see equation (53)).

0   0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
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1

g’

ρ 0/ρ

Figure 6. Condensate fraction ρ0/ρ versus interaction strength for a 2D system.
The interaction strength is parameterized by the reduced coupling constant
g′

= 2mg/h̄2, where g is the 2D coupling constant. The data points are the
values extracted from numerical calculations of the one-body density matrix
for particle densities N0/L2

= 160 η−2 (blue circles; system size 64η × 64η)
and N0/L2

= 10 η−2 (green crosses; system size 256η × 256η), and variable
interaction energies U = gN0/L2. The solid red line is a fit to the data with
N0/L2

= 160 η−2. The fitted slope agrees with the factor 1/(8π) predicted by
equation (53) within 2.5%. The other set of data is not fitted for the sake of
clarity. The data for N0/L2

= 160 η−2 and g′
= 0.2 correspond to the plateau in

the first panel of figure 5.

In the presence of disorder, this definition yields a condensate fraction equal to one at the mean-
field level (where the Bose gas is described solely by the GPE), and properly takes into account
the role of condensate deformation [66]. Because of this deformation of the condensate in the
presence of an inhomogeneous potential, the condensate depletion cannot simply be associated
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Figure 7. Fractional condensate depletion versus disorder strength in a system
of size 64η × 64η, for an interaction energy U = 6.4Ec. The numerical data in
blue represent the statistics of the reduced one-body matrix, evaluated by KPM
at a distance

√
2L/2 (see text) for 100–200 disorder configurations. The open

circles correspond to average values, and the error bars indicate the root-mean-
square fluctuations around those averages. The red solid line represents the weak-
disorder prediction (54) for the depletion, normalized by the average density.

to the fraction of atoms with momenta k 6= 0. More generally, in the presence of disorder, the
superfluid component should be characterized by spatial inhomogeneity. Hence, the superfluid
fraction is not expected to be related in a straightforward way to the fraction of atoms with
k = 0. Even if the two quantities might vanish simultaneously at the superfluid–insulator phase
boundary, the precise relation between the condensate fraction, the superfluid fraction and
the fraction of atoms with vanishing momentum in the presence of disorder remains an open
issue. With the above definition, the statistical average and fluctuations of the condensate
fraction are evaluated by calculating g1(0, r), with r at the system center, for several disorder
configurations. Figure 7 shows the average and the standard deviation of the fractional depletion
1 − limr→∞g1(0, r) (i.e. the complement of the condensate fraction) as a function of the disorder
strength. For weak disorder (1 � U ), we indeed find good agreement with the theoretical
prediction (54), as shown in the inset. For 1& 1.3 Ec (i.e. 1& 0.2 U ), however, the numerical
averages clearly lie below the theoretical curve. While differences due to the averages used
in equation (54) and in g1 are not excluded, this discrepancy is likely to be due to the
breakdown of leading-order perturbation theory in the disorder amplitude. The results of figure 7
thus suggest that higher orders in the weak-disorder expansion may reduce the condensate
depletion.

5. Summary and outlook

We have developed an iterative scheme, based on the kernel polynomial method, for the efficient
computation of the one-body density matrix of weakly interacting Bose gases in the framework
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of Bogoliubov theory. Such a scheme is relevant for regimes of strong disorder, which cannot be
tackled analytically. The scheme was applied to the case of disordered bosons at T = 0 in one
and two dimensions. In the 1D case, we characterized the superfluid–insulator phase transition
on the basis of the long-range behavior of the one-body density matrix, and successfully
reproduced the results of [52, 54] with a low computational overhead. In the 2D geometry, we
analyzed the quantum depletion induced by interaction and disorder in the superfluid regime,
and found good agreement with the results available for the weakly disordered regime. These
case studies validate our approach and suggest that it may be used to study the coherence
properties of weakly interacting Bose systems for system sizes that remain hardly tractable
with other numerical techniques. This feature is particularly interesting for investigations into
the superfluid–insulator transition in higher dimensions. As outlined here, our approach is also
easily extended to regimes of low but nonzero temperatures, which are relevant to ongoing
experiments with ultracold atomic gases.
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