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Preface

In Switzerland most motorway bridges have been built before modern seismic design guide-
lines were introduced in 1989. As a consequence, these structures feature to a large extent
unknown resistances to lateral forces which are most likely considerably smaller than to-
days seismic codes require for new structures. Retrofitting all bridges to todays standard
for new bridges would be very costly. New bridges are designed using force-based ap-
proaches which are well known to yield rather conservative estimates of the structures
seismic behavior. Before deciding on any retrofit measures for existing bridges, their seis-
mic behavior should be assessed using displacement-based methods which render a more
realistic estimate of the expected seismic response. To apply these methods, the inelastic
force-displacement response of the bridge piers needs to be assessed.

The reinforced concrete bridge piers addressed in this thesis are rectangular in section
and feature low shear reinforcement ratios and no confining reinforcement. In addition,
the effect of lap splices at the base of the pier on the force-deformation response of the
pier is assessed. Since shear deformations can constitute a significant part of the total
deformations of the piers and the piers can even fail in shear, methods need to be developed
that take into account the interaction of shear and flexural deformations. Within the scope
of her thesis, Pia Hannewald in particular addressed two types of mechanical models for
estimating the force-displacement response of such bridge piers, i.e., plastic hinge models
and kinematic models. Both types of models have in common that they are relatively
simple engineering models that aim at capturing the influence of the key parameters on
the force-displacement response. For the plastic hinge models, Ms Hannewald developed
extensions that allow her to estimate the shear deformations and to account for the effect
of lap splices. Plastic hinge and kinematic models were validated against experimental
results and can be readily applied in engineering practice.

I would like to thank the Federal Roads Office for their financial support which enabled
us to carry out this research project.

Lausanne, August 2013
Prof. Katrin Beyer
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Abstract

Existing bridges may have been designed and constructed according to codes without
any provisions for seismic design and detailing. Particularly in countries with moderate
seismicity, such as Switzerland, modern seismic design standards might have been in-
troduced only in recent years, as this hazard may have been underestimated previously.
Existing bridge piers may thus have small deformation capacities due to their layout and
detailing. Critical detailing includes lap-splices in the potential plastic hinge region above
the foundation, low transverse reinforcement ratios and a lack of confining reinforcement.
Displacement-based methods, which compare the deformation capacity with the imposed
demand, may be used for the assessment of these bridges.

As the assessment is performed by practicing engineers and the bridge stock to be as-
sessed is large, models to predict the deformation capacity need to be easily applicable
while yielding good results. Therefore, the purpose of this study is to contribute to the
development of modeling approaches fulfilling these criteria. A series of tests that are rep-
resentative of existing piers with the above mentioned detailing deficiencies was used as
experimental database to check and validate the models. Two modeling approaches were
investigated in detail: the plastic hinge modeling approach and a kinematic approach for
shear critical wall-type piers.

The first part of this report deals with the plastic hinge modeling approach. Equations to
determine the plastic hinge length, the flexural deformation and the shear deformation as
well as strain limits for the deformation capacity are reviewed. Based on the experimental
data a procedure to predict the force-deformation response of wall-type piers is identified.
The influence of lap-splices on the response and shear deformations are accounted for in
a simple manner.

The second part of this report deals with shear strength degradation and a kinematic
approach for shear critical rectangular wall-type piers with which this degradation can be
predicted. The model is based on the kinematics that develop if extensive shear cracking
occurs in a pier and has been developed elsewhere. It is validated here against an extended
experimental database and used to illustrate the influence of some key characteristics, such
as the reinforcement contents and the aspect ratio, on the force-deformation response,
particularly with regard to the deformation capacity.

Comparison of the predictions with the experimental data showed that the plastic hinge
modeling approach is, despite its simplicity, well suited to predicted the response of the
only partially flexure controlled walls investigated here. With this approach, deformation
capacities approximately corresponding to the peak load are obtained. To also take into
account the post-peak response, the kinematic approach should be used, which is shown
to capture very well the onset of shear degradation and axial load failure.

Keywords: Wall-type piers, lap-splice, plastic hinge, shear deformation, kinematic model



Zusammenfassung

Bestehende Briicken kénnen geméss Normen ohne Vorgaben zur Bemessung fiir Erdbeben-
lasten konstruiert worden sein. Besonders in Landern mit moderater Seismizitdt, wie
zum Beispiel der Schweiz, sind moderne Erdbebennormen oft erst in den letzten Jahren
eingefiihrt worden, da die Erdbebengefahr lange unterschétzt wurde. Existierende Briicken
haben daher moglicherweise eine geringe Verformungskapazitit aufgrund ihrer Bauart
und ihrer konstruktiven Details. Zu den kritischen Details gehoren Bewehrungsstosse
in der potenziellen plastischen Region iiber dem Fundament, geringe Querbewehrungs-
grade und das Fehlen von Umschniirungsbewehrung. Fiir die Uberpriifung dieser Briicken
konnen verformensbasierte Methoden, welche die bei einem Erdbeben aufgebrachten Ver-
formungen mit der Verformungskapazitit vergleichen, verwendet werden.

Da diese Uberpriifungen von praktisch titigen Ingenieuren durchgefithrt werden und eine
grosse Anzahl Briicken zu tiberpriifen ist, sollten die erforderlichen Modelle relativ ein-
fach anwendbar sein und gleichzeitig gute Resultate liefern. Mit dieser Arbeit soll zur
Entwicklung solcher Modelle beigetragen werden. Versuche an Stiitzen mit den genannten
Konstruktionsdefiziten dienen als experimentelle Datenbasis zur Uberpriifung und Vali-
dierung. Zwei Ansatze wurden auf Basis der genannten Kriterien zum vertieften Studium
ausgewahlt: die Modellierung mit plastischem Gelenk sowie ein kinematisches Modell fur
schubkritische Wande.

Der erste Teil dieses Berichtes befasst sich mit der Modellierung mit plastischem Ge-
lenk. Es wird ein Uberblick iiber Gleichungen zur Bestimmung der Linge des plastischen
Gelenkes, zur Ermittlung der Biege- und Schubverformung sowie zur Berechnung der
Dehnungslimite die den Versagenszustand definieren gegeben. Durch Uberpriifung mit den
experimentellen Daten wird ein Verfahren identifiziert, mit dem die Last-Verformungskurve
der Stiitzen ermittelt werden kann. Der Einfluss der Bewehrungsstosse auf das Verhalten
sowie die Schubverformungen werden dabei in einfacher Weise beriicksichtigt.

Im zweiten Teil des Berichtes werden die Schubdegradation sowie ein kinematisches Modell
zur Vorhersage des Verhaltens von rechteckigen, schubkritischen Stiitzen behandelt. Das
Modell basiert auf der bei Schubrissbildung einsetzenden Kinematik und wurde andernorts
entwickelt. In diesem Bericht wird es mit Hilfe einer erweiterten Datenbank validiert.
Ausserdem wird der Einfluss einiger wichtigen Charakteristiken, wie zum Beispiel der
Bewehrungsgehalte und der Schlankheit, insbesondere im Hinblick auf die Verformungska-
pazitat, anhand dieses Modells dargestellt.

Der Vergleich der Vorhersagen mit den experimentellen Daten zeigte, dass die Modellierung
mit plastischem Gelenk, trotz ihrer Einfachheit, gute Ergebnisse fiir die nur teils biegebes-
timmten Wande, die hier betrachtet wurden, lieferte. Mit diesem Modellierungsansatz
werden Verformungskapazitdten vorhergesagt, die in etwa der Verformung bei Maximal-
last entsprechen. Um auch die post-peak Verformungskapazitdt in Betracht zu ziehen,
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sollte das kinematische Modell verwendet werden, mit welchem sowohl Querkraft- als
auch Axiallastversagen erfasst werden konnen.

Schlagworte: Wandartige Stiitzen, Bewehrungsstoss, plastisches Gelenk, Schubverfor-
mung, kinematisches Model
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Résumé

Une grande part des ponts existants sont construits selon des normes qui n’incluaient
pas encore de directives pour le dimensionnement parasismique. Surtout dans les pays a
sismicité modérée, tels que la Suisse, le risque de séismes a longtemps été sous-estimé. Les
nouvelles normes avec des exigences parasismiques n’ont été introduites que récemment.
En conséquence, les piles existantes peuvent posséder une faible capacité de déformation
a cause de leur détails constructifs. Les détails d’armature qui sont critiques incluent
le recouvrement des barres au-dessus de la fondation ou peut se développer une rotule
plastique, des taux d’armature d’effort tranchant insuffisants et 'absence d’armature de
confinement. La sécurité parasismique de ce type de pile peut étre évaluée selon la méthode
basée sur les déformations, qui consiste en la comparaison de la capacité de déformation
avec la déformation exigée par ’action sismique.

Comme I’évaluation des ponts existants est effectuée par des ingénieurs pratiquant et qu’un
grand nombre de ponts est a évaluer, les modeles avec lesquelles la capacité de déformation
est calculée doivent étre faciles a appliquer en plus de donner de bons résultats. L’objectif
de cette étude est ainsi de contribuer au développement de ce type de modele. Les résultats
d’une série d’essais représentant des piles existantes avec les détails d’armature susmen-
tionnés ont été utilisés pour le développement et la validation des modeles. Deux types
des modeles ont été traités : la méthode de la rotule plastique et un modele cinématique
pour le calcul des murs de refend qui développent des fissures importantes dues a 'effort
tranchant.

La premiere partie de cette these traite de la méthode de la rotule plastique. D’abord, des
équations existantes pour 1 évaluation de la longueur de la rotule plastique, I’estimation des
déformations de flexion et de cisaillement ainsi que les limites d’allongement qui définissent
la capacité de déformation sont discutées. Puis, une procédure pour le calcul de la relation
force-déplacement est développée en se basant sur les résultats d’essais. L’influence du
recouvrement des barres sur le comportement des piles et les déformations de cisaillement
sont considérés d’une maniere simplifiée.

La deuxieme partie de cette these traite de la dégradation de la résistance a 'effort tran-
chant ainsi que d’un modele cinématique pour les murs de refend fissurés du a effort
tranchant qui permet d’intégrer cette dégradation dans les calculs. Ce modele est basé
sur la cinématique qui se produit lors de 'apparition extensive de fissures inclinées qui a
été développé ailleurs. Dans cette partie de la these, le modele est vérifié avec une quan-
tité importante de résultats d’essais. Par ailleurs, I'influence de quelques caractéristiques
importantes, comme par exemple le taux d’armature et 1’élancement, sur la relation force-
déplacement et la capacité de déformation est montrée en utilisant ce modele.

La comparaison des résultats de calcul avec ceux des essais montre que la méthode de la
rotule plastique, malgré sa simplicité, est fiable pour le calcul des piles qui n’ont qu’un
comportement partiellement dominé par la flexion, comme celles étudiées ici. Avec cette
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méthode, une capacité de déformation qui correspond environ a la déformation sous la
charge maximale mesurée lors des essais est obtenue. Pour calculer une capacité de
déformation moins conservatrice en tenant compte de la réponse post-pic de la structure,
le modele cinématique doit étre utilisé. Avec ce dernier, la dégradation de la résistance a
leffort tranchant et de la résistance a la charge axiale a pu étre estimée correctement.

Mots clés: piles des ponts rectangulaires, recouvrement de barre, rotule plastique,
déformation de cisaillement, modele cinématique
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Riassunto

I ponti esistenti possono essere stati progettati e costruiti conformemente a norme che non
ponevano alcuna attenzione nei riguardi della progettazione sismica e ai dettagli costruttivi
richiesti da tale problematica. In particolare in paesi a moderata sismicita, come per
esempio la Svizzera, le moderne norme antisismiche sono state introdotte solamente di
recente, in quanto precedentemente il rischio sismico veniva sottostimato. Le pile dei ponti
esistenti possono quindi presentare basse capacita deformative a causa di una progettazione
dei dettagli costruttivi inadeguata. In quest’ottica dettagli critici sono la sovrapposizione
dei ferri nella zona al di sopra della fondazione dove si puo verificare la forazione di
una cerniera plastica, una bassa percentuale di armatura transversale e un insufficiente
confinamento delle armature. Metodi di analisi basati sugli spostamenti, che comparano la
capacita deformativa alla domanda di spostamento, possono essere utilizzati per ’analisi
di tali ponti.

Considerato che tale analisi viene effettuata da ingegneri progettisti e che il numero di
ponti da anlizzare & molto elevato, i modelli utilizzati per la valutazione della capacita
deformativa di tali strutture devono essere quindi di facile applicazione conducendo pero a
risultati accurati. L’obbietivo di questo studio & quindi quello di contribuire allo sviluppo
di modelli di analisi capaci di soddisfare tali criteri. I modelli proposti sono stati controllati
e validati utilizzando i risultati di una campagna di test sperimentali rappresentativi delle
problematiche delle pile da ponte esistenti. Due approcci per la modellazione di tali
strutture sono stati analizzati in dettaglio: il modello della cerniera plastica e un approccio
cinematico per pile da ponte soggette a rottura a taglio.

La prima parte della tesi tratta la modellazione attraverso l'utilizzo del modello della
cerniera plastica. Vengono prese in rassegna le equazioni per la definizione della lunghezza
della cerniera plastica, delle deformazioni flessurali e a taglio e infine per la definizione
dei limiti di deformazione. Sulla base dei dati sperimentali viene proposta una procedura
per stimare la risposta in termini di forza-spostamento delle pile da ponte. L’influenza
della sovrapposizione dei ferri e delle deformazioni a taglio viene presa in considerazione
attraverso un approccio semplificato.

La seconda parte della tesi si occupa della degradazione delle forze di taglio e presenta
un approccio cinematico per pile da ponte rettangolari soggette a rottura a taglio capace
di stimare tale degradazione. Tale approccio, proposto in studi precedenti, ¢ basato sulla
cinematica che si viene a formare quando un’estensiva fessurazione a taglio si svilluppa
nella pila. Questo modello viene quindi validato utilizzando un vasto database di risultati
sperimentali e viene qui utilizzato per illustrare I'influenza di alcuni parametri chiave sulla
risposta forza-spostamento e sulla capacita deformativa della pila, quali la percentuale
d’armatura e la geometria del muro.

Un confronto con i risultati sperimentali ha mostrato che il modello basato sulla cerniera
plastica e, nonostante la sua semplicita, valido per stimare la risposta delle pile solo



parzialmente caratterizzate da comportamento flessionale. Con tale approccio ¢ possibile
stimare la capacita deformativa fino al raggiungimento del carico massimo; per tenere
in considerazione la risposta dopo il picco deve essere utilizzato il modello cinematico.
Quest’ultimo si ¢ dimostrato in grado di cogliere I'inizio della degradazione delle forze di
taglio e la rottura a sforzo assiale.

Parole chiave: Pile da ponte a sezione rettangolare, sovrapposizione delle armature,
cerniera plastica, deformazioni a taglio, modello cinematico
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1. Introduction

1.1. Background of the project

Switzerland is a region with moderate seismicity where the maximum horizontal peak
ground acceleration on rock ground is ag;, = 1.6111/52 = (0.16¢g for a return period of 475
years [SIA03]. With a viscous damping of 5%, this results in elastic peak spectral acceler-
ations of Se = 2.5a4, = 0.4g for rock and S, = 3.5a4, = 0.56¢g for the most unfavorable,
alluvial soils. These values are modified in the design depending on the importance of the
building and the ductility of the structure. Because of the relatively moderate hazard,
the seismic action has long been underestimated and earthquake provisions have found
their way into the codes only in recent years. Back in 1970 [SIA70], the maximum peak
ground acceleration that was only considered when assigned by local authorities for a
certain area, was merely ag, = 0.05g. This had to be increased by 40% for buildings in
which a large number of people was expected, similar to STA 261 [STA03]. In 1989 some
measures for construction details, such as ensuring a vertical support in the case of bridge
bearing failure, were added to the codes. Furthermore, the peak ground accelerations were
raised to the values that still apply today, even though the resulting elastic design spectral
accelerations went up to only 0.35g.

Hence, structures that were constructed before 1989 were designed for a significantly
lower seismic input than that assumed today and do not meet seismic requirements with
regard to the detailing. According to a technical documentation issued by the Federal
roads office (FEDRO) [Wen05], only 10% of existing Swiss bridges were constructed after
1989, while half of the bridges were constructed between 1970 and 1989 and the rest
before. This means that only 10% of the then existing 3350 road bridges were constructed
according to modern design codes. The remaining 90% of the bridges, and hence about
3000 existing bridges, were not designed to withstand seismic loading and need to be
assessed. For this assessment, a two step procedure targeted towards the most widespread
type of girder-bridges was suggested by [Wen05]: In a first step, bridges are checked
for typical deficiencies which render the structure prone to damage under seismic loading.
Bridges that are identified as potentially vulnerable undergo an in-depth assessment in the
second step. Besides deciding on whether measures such as providing lateral supports for
the superstructure to prevent its unseating are necessary, the performance of a structure
itself must be assessed. If this assessment is necessary, it may be done according to either
a force-based or a displacement-based approach [Wen05]. In recent years, there is a strong
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tendency towards displacement-based approaches, as these often prove to be the more
economical, especially for the assessment of existing structures. While the force-based
approach may almost inevitably lead to the conclusion that costly retrofitting measures are
necessary to increase the resistance of a structure, the displacement-based approach may
lead to the conclusion that the deformation capacity of a structure is actually sufficient.
This might be the case particularly in countries like Switzerland, where the displacement
demands are only moderate.

The research project which provides the framework for the study presented here stems
out of the need to establish a displacement-based approach for the assessment of existing
Swiss bridges. In the first part of this project a survey of the Swiss bridge stock was
conducted to identify critical bridge layouts [Bim10]. To this end, the database of the
FEDRO, containing all Swiss bridge structures, was evaluated and combined with the
results of the first step assessment by [Wen05], which were then available for three cantons.
Out of the bridges for which the latter results were available, almost 40% were multi-span
girder-bridges followed by a large percentage of frame bridges which were deemed uncritical
[Wen05]. Hence, it was decided to focus the research on multi-span girder-bridges [Bim10].
Within this bridge type, it was found that primarily relatively short and squat piers may
prove critical, because they have a low displacement capacity and are prone to shear failure
[Bim10, Bim06, BD06].

Based on a sample set of three different existing bridges that feature this type of piers, a
test series was initiated to gain experimental evidence on the cyclic behavior of these piers
[Bim10]. The test units resembled the existing wall-type bridge piers with rectangular cross
section that were considered to be the most critical type of bridge piers and featured the
following, commonly found detailing deficiencies: i) The equally distributed longitudinal
reinforcement was not confined near the boundaries, which means that neither was the
concrete confined nor the reinforcing bars themselves restrained against buckling; ii) the
transverse reinforcement ratio was very low and the stirrups did not have hooks that
were anchored in the concrete core; iii) the longitudinal reinforcement of one of the test
units had a lap splice at the base of the pier in the potential plastic hinge zone. Within
the second part of this project, the test campaign was continued to enlarge the available
database [HBD13]. The results from this test series serve as experimental data for the
evaluation and validation of models for the displacement capacity of these piers, which are
required for a reliable displacement-based assessment.

1.2. Problem statement

As outlined in the previous section, a large number of existing bridges has been constructed
before earthquake provisions were included in the design codes. A previously identified
potentially critical structural component of these bridges are relatively short wall-type
piers with detailing deficiencies [Bim10]. Their design and construction does usually not
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comply with modern capacity design requirements. While their force-capacity may thus be
found to be insufficient, their displacement-capacity is largely unknown. Existing models
to evaluate the displacement-capacity of structural members have often been developed
for columns and validated with the corresponding data. Using these models to predict
the displacement-capacity of the mentioned wall-type piers is hence linked to considerable
uncertainty, as little suitable experimental data exists to validate the applicability of these
models to wall-type piers.

However, to perform a displacement-based assessment of existing bridges, reliable models
to predict the force-deformation relationships are necessary. Hence, first, additional ex-
perimental data is required to complement the existing data and, second, existing models
need to be evaluated and new models need to be developed that allow estimating the force-
deformation relationship. An experimental test campaign containing seven large scale pier
tests of the investigated type has already been carried out in the framework of the research
project [Bim10, HBD13|. Based on the results of these tests, models that account for the
typical detailing deficiencies need to be developed.

1.3. Objectives of this study

The objective of this study is to develop easily applicable engineering type models which
can be used for the displacement-based assessment of existing wall-type bridge piers. They
need to take into account common detailing deficiencies such as low transverse reinforce-
ment ratios and a lack of confining reinforcement. In light of the large bridge stock that
needs to be assessed, the models need to be fairly easy to apply but must yield sufficiently
reliable results. Therefore, two types of models are evaluated: the plastic-hinge modeling
approach and an approach based on the kinematics of shear critical piers.

The first approach is chosen because it is easily applicable and is known to yield good
results in predicting the behavior of flexure dominated members. In this study, the ap-
plicability of this modeling approach to shear critical members is evaluated and modifica-
tions of the approach to better capture the response are examined and developed. Due to
the mentioned deficiencies and the geometry of the piers, the focus within this modeling
approach lies on two aspects: Incorporating the shear deformations, which constitute a
significant part of the total deformation, into the modeling approach as well as accounting
for the influence of lap-splices in the plastic hinge region on the behavior of the pier.

The second approach is chosen because it represents a mechanical modeling approach that
is capable of predicting the force and displacement capacity of a pier. As it is a newly
developed approach, it is validated against a database of wall-type piers in this study.
Furthermore, the influence of several pier characteristics on the displacement-capacity is
studied with this approach.
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1.4. Outline of the report

Chapter 2 provides a review of existing plastic hinge modeling approaches and all necessary
quantities. It starts with introducing the basic mechanical concept behind the modeling
in Section 2.1. Section 2.2 then introduces the key quantity that is needed for this type of
modeling, i.e. the plastic hinge length. Several suggestions that are either developed for
walls or modified for the application to wall-type structures are introduced and discussed.
Section 2.3 deals with the rotation due to anchorage slip, which is either taken into account
by adding a strain penetration length to the plastic hinge length or by adding an additional
rotation component to the deformation. The then following Section 2.4, summarizes strain
and curvature limits for the plastic hinge region from the literature that are used for
estimating the displacement capacity of the piers. Section 2.5 treats the prediction of
the flexural response. Section 2.6 introduces some approaches to incorporate the shear
deformations into the plastic hinge modeling approach. Section 2.7 treats the behavior of
lap splices under seismic loading and gives example of models to predict the strength and
failure strain limits of lap splices.

Chapter 3 contains the application of the previously introduced plastic hinge models and
a validation and discussion of results based on the test data provided in [Bim10, HBD13].
First, the plastic hinge length predictions are compared to experimentally derived mea-
sures for the plastic hinge length. Differences in determining the plastic hinge length are
discussed and a suitable approach for the investigated piers is identified based on the ex-
perimetal data. Section 3.4 compares anchorage slip predictions with the experimental
data in the elastic and inelastic range. In Section 3.5 the computation of the moment
curvature response is discussed and in Section 3.6 the flexural response of the piers is de-
termined based on the results of the preceding sections of this chapter and discussed based
on the comparison with the experimental data. Section 3.7 contains an in-depth discussion
of shear deformations. Besides the models introduced in Chapter 2, the experimental data
is evaluated in detail and different approaches to model shear deformations are evaluated.
Section 3.8 discusses the incorporation of the lap splice behavior into the modeling and
identifies possible limit states for the onset of splice degradation. Finally, in Section 3.9
the determination of the complete force-deformation relationship, taking into account the
findings of the preceding sections, is discussed. The chapter closes with conclusions on
the plastic hinge modeling approach for the modeling of piers with detailing deficiencies
in Section 3.10.

Chapter 4 provides both review and evaluation of existing models to predict the shear
strength degradation. Section 4.2 introduces various kinds of models which were primar-
ily developed to capture the shear strength degradation of columns. First, shear capacity
models which are based on truss or strut-and-tie approaches and include a partially em-
pirically determined shear strength degradation depending on ductility are introduced.
Second, empirically determined drift capacity models, which aim at directly predicting
the deformation capacity of a member, are briefly discussed. In the following sections, a
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truss model with plastic limits for the compression zone, a shear-flexure interaction model
and an approach to predict the shear degradation based on the degradation of the load
transfer mechanisms across the shear crack are presented. In Section 4.3, the performance
of these models when applied to wall-type piers is evaluated and discussed.

Chapter 5 contains the validation of a three parameter kinematic approach to predict the
load-displacement response and the degradation of shear critical piers, which has been
developed by [MHB13]. The chapter begins with an explanation of the mechanical and
kinematic assumptions underlying the approach. Section 5.3 then presents the experimen-
tal database used for the validation of the approach in Section 5.4. Section 5.5 discusses
the influence of some main characteristics, namely the transverse reinforcement ratio,
the aspect ratio, the axial load ratio and the longitudinal reinforcement ratio, on the
force-deformation response, especially with regards to their influence on the drift capacity.
Section 5.6 provides an in-depth discussion of one of the main parameters of this model:
the so-called critical loading zone which represents the area damaged in compression and is
a modeling quantity comparable to the plastic hinge length. Finally, Section 5.7 contains
the conclusions of this chapter.

The final Chapter 6 provides a summary of the report as well as the key conclusions drawn
from this study. Furthermore, topics for which further research is deemed necessary are
outlined in the last section.






2. Review of plastic hinge models

2.1. Introduction

Plastic hinge modeling builds on the idea that the global force-deformation response of
a structural component can be computed from the local moment-curvature (M-¢) rela-
tionship determined for the section at which the maximum moment occurs. Furthermore,
inelastic curvatures are assumed to concentrate in a limited region along which they are
linearly distributed. In plastic hinge models, this region is substituted with an equivalent
plastic hinge with constant curvature. Outside the plastic hinge, deformations are taken to
be elastic. Figure 2.1 shows the assumptions and simplifications that were just described.

With the procedure briefly outlined above, only flexural deformations can be estimated,
which is not sufficient especially for the wall type structures investigated herein. Shear
deformations may constitute a significant part of the total deformations of these members.
Therefore, models have been developed which relate shear to flexural deformations. They
can be used in conjunction with the plastic hinge models to account for shear deformations.
The total deformation is then obtained as the sum of flexural and shear deformations.
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Figure 2.1.: Linear approximations of the true curvature profile (left) and assumptions for the plastic
hinge model (right). In the displayed case, the strain penetration length L), is assumed
to be part of the plastic hinge length L,.
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The reason for choosing such a lumped plasticity method over direct integration of the
curvature profile of a member obtained from section analysis is that, according to [PCKO07],
the latter was not suitable to obtain deformation estimates because neither shear deforma-
tions nor tension shift and strain penetration effects can be accounted for. Furthermore,
the deflection could only be determined up to maximum load and not beyond peak, when
the tangent stiffness might be negative. The assumption of a plastic hinge length L,
with constant curvature captures the tension shift as well as strain penetration effects and
partially compensates for shear deformations, according to [PCKO07].

In the following sections, procedures outlined by several researchers to determine all neces-
sary quantities for plastic hinge analysis, i.e. the plastic hinge length, the flexural response
and the shear response, are briefly introduced. Section 2.2 presents several plastic hinge
length equations that were either directly developed for walls or modified to be applicable
to wall-type structures. Section 2.2.1 introduces some of the parameters which are typi-
cally regarded to influence the length of the plastic hinge of wall-type structures. Section
2.3 deals with anchorage slip, which is either accounted for in the modeling by increas-
ing the plastic hinge length or by introducing a fixed end rotation component. In this
section, some approaches to directly determine the slip are introduced and the results of
these are compared with those obtained with an increased plastic hinge length. Strain
and curvature limits which are used to predict the deformation capacity are introduced in
Section 2.4. Section 2.5 then presents approaches to determine the flexural response of a
member by using the quantities introduced in the preceding sections. Section 2.6 presents
models with which shear deformations can be accounted for within plastic hinge model-
ing. Finally, stress and strain limits which can be employed to account for the influence of
spliced reinforcement in the plastic hinge region are discussed in Section 2.7. In Chapter
3, these modeling approaches are applied to seven test units tested in the framework of
this project [Bim10, HBD13] and the results are compared to their experimental data.

2.2. Plastic hinge length

2.2.1. Parameters influencing the plastic hinge length

Most of the plastic hinge lengths proposed by researchers have originally been developed
for and calibrated against beams or columns, but some explicit suggestions or adaptions
have been made for wall type structures, such as the suggestion in [PCKO07] to increase the
tension shift component for walls. Besides the tension shift, the effects primarily accounted
for are:

e Spread of plasticity due to moment gradient M,, /M,
e Spread of plasticity due to strain hardening f,/ f,

e Pullout of longitudinal reinforcement of the anchorage (or strain penetration effect)
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e Aspect ratio
e Axial load
e Type of loading: monotonic or cyclic

It seems that researchers do often not explicitly distinguish between the spread of plastic-
ity due to M, /M, and f,/f,. Though both effects are certainly also related, the first one
can also occur if the steel does not exhibit any strain hardening, because moment capacity
will increase from first yield to the ultimate inelastic capacity. For that reason, the two
parameters are mentioned separately here. In the following, a brief summary of differ-
ent plastic hinge length equations for wall-type structures is given, for more exhaustive
overviews on plastic hinge lengths in general the reader is referred elsewhere, e.g. [Hin02].

2.2.2. Plastic hinge length according to Priestley et al.

Over the years, several modifications of the plastic hinge length have been suggested by
Priestley, Paulay, Park and their co-workers. However, here only the proposition from the
latest book [PCKO07] is included, since it is expected to reflect the latest development of
the equation. The plastic hinge length of beams and columns is:

L, =kLs+ Ly, > 2Ly, (2.1)

where L is the length from the critical section to the point of contraflexure in the member,
k a factor accounting for strain hardening according to Equation (2.4) and L, the strain
penetration length according to Equation (2.3). For a cantilever, L is equal to the column
height H. A lower limit of L, = 2L, for the plastic hinge length is suggested, to account
for the reinforcement slip out of the structural member as well as the footing.

As tension shift has a larger effect on wall structures than on beams, an additional term
of 0.2h is recommended for comparison with experimental data. For design, this value
is conservatively reduced to 0.1h. Hence, the total plastic hinge length for a wall-type
structure is:

L, =kLs+0.2h+ Ly, (2.2)

The strain penetration length is calculated according to the following equation:

Ly, = 0.022f, - dy  SI units (2.3)

where f, is the yield strength of longitudinal reinforcement in MPa and dj; is the bar
diameter of the longitudinal reinforcement in mm. If US customary units are used, the
factor 0.022 changes to 0.15.



Chapter 2. Review of plastic hinge models

It is stated that the strain penetration length is related to anchorage slip, which here refers
to the pullout of the reinforcement from the foundation, as well as the spread of concrete
compressive strains into the foundation. The derivation of the factor 0.022 is not included
in [PCKO07], but in [PS91], 6dy were suggested for grade 40 reinforcement and 9dy; for
grade 60 reinforcement. Those values were determined from large scale tests and result
in the recommended factor 0.022 if divided by the respective steel strength. Including a
constant strain penetration length implicitly implies that the development length of the
anchorage is constant and increasing slip is related to increasing steel strain only.

To also account for the spread of plasticity due to strain hardening of the reinforcement,
the following factor k is introduced:

k=02 (& — 1) <0.08 (2.4)
fy

Note that here the spread due to strain hardening is directly addressed via the steel
properties and not via any moment relation. An explanation on the derivation of the
equation and hence the derivation of the factor 0.2 is not presented in [PCKO07]. The plastic
hinge length expression introduced in this section is mainly targeted towards determining
the ultimate displacement of a structure. However, as the authors also introduced a
“refined” approach to predict the entire load-displacement response, which is “suitable
for prediction of experimental response”, and provide no restrictions for the use of L,
according to Equation (2.2), it can be assumed that L, may be used for prediction of the
entire response as well.

2.2.3. Plastic hinge length according to Fardis et al.

Based on a large test database a plastic hinge length accounting for the loading type
(monotonic or cyclic) was presented by [PF01]. To obtain an estimate for L, with which
the deformation capacity could be determined, the authors evaluated 875 tests for which
an ultimate drift 6,, defined as the point of at least 20% drop of the lateral load, was
reported. From the test data it was concluded that L, should, in addition to the loading
type, be a function of the shear span as well as the reinforcement yield strength and bar
diameter. The equations proposed for L, yield the best fit values for the experimentally
determined 6,,. The plastic hinge length was derived based on analytical estimates for the
curvatures ¢, and qﬁg/. For the derivation of the curvature expressions an elastic-perfectly
plastic steel model and a parabolic-linear concrete model were used.

The plastic hinge length L, was assumed to be a linear function of Ly and dy f,. With
this assumption, the experimental data for cyclic loading was evaluated and the equation
for L, that matched the data best was found to be:

10
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Ly.eye = 0.12L + 0.014k,dy f, (2.5)

where k), is a factor accounting for whether bar pullout is possible (k, = 1) or not (k, = 0).
The former applies if a plastic hinge develops right above the foundation of a member,
which causes pullout of the reinforcement out of the foundation, whereas the latter applies
if the plastic hinge develops at midlength of a beam, for instance. For monotonic loading,
the plastic hinge length was found to be 1.5 times longer than for cyclic loading: Ly, mon =
1.5Ly cye-

According to [BA11] this equation did not yield good results if only the slender (i.e.
Lg/h > 2.5) wall-type structures of the above mentioned database were considered: For
those walls, the ratio of predicted to observed plastic hinge length varied between 0.25
and 5. However, in [Far07] this equation is still included as recommended plastic hinge
length for bridge piers, this time with the factors 0.1 and 0.015.

In [BF10b] two different equations are presented, one for cyclic loading and good seismic
detailing (Equation (2.6b)) and one for monotonic loading regardless of detailing (Equa-
tion (2.6a)). The reinforcement bar slippage is no longer included in the plastic hinge
length, but as additional rotation component. Models also adopted in Annex A.3.2.2 (8)
of [CENO05] were employed for the concrete strength together with a maximum strain re-
lation which takes the confined depth into account. Eventually, the plastic hinge length
was again taken to be the length for which the best datafit in conjunction with Equation
(2.36), which yields an ultimate drift estimate and is thus included in Section 2.5, was
achieved:

L
Lpmon = h <1.1 + 0.04 min <9, 7)) (2.62)

1 Ly
Ly eye = 0.2h <1 + 5 min <9, 7)) (2.6b)

Note that no distinction was made between beams and walls, since the results apparently
fit both data sets. The equation does differentiate, however, between monotonic and cyclic
loading. One should keep in mind that this plastic hinge length has been developed to
match the ultimate rotation best and not the entire flexural response.

2.2.4. Plastic hinge length in Eurocode
In Annex A of Eurocode 8 (EC8) Part 3 [CENO05] for the assessment and retrofitting of

buildings two slightly different plastic hinge lengths are recommended for use. The choice
between the two lengths depends on the choice of the models with which ultimate steel

11
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and concrete strains are computed. If the more complex strain limits according to A.3.2.2
(8) are used, the plastic hinge length is recommended to be:

Ly dy fy
L,=—+02h+0.11—2
P30 * * NG2

For the steel, the proposed limit strain is 5, = 0.06 for ductile steel of class C. For
concrete, strains have to be evaluated using a confined concrete model similar to Equations
(3.3) and (2.26). The confined concrete strength and ultimate strain are then:

(2.7)

Je

kcon Ov fyv
Jee

0.86
fcc = fc (1 +3.7 (M> ) (28&)

Ecu = 0.004 + 0.5 (2.8b)

where ko, is obtained from Equation (2.29). The strain penetration component of L,
corresponds to the component suggested in Equation (2.5) if the concrete strength is
fe = 62MPa and to the one proposed in Equation (2.3) if f. = 25 MPa. With this plastic
hinge length and the curvatures corresponding to the defined limit strains, the ultimate
deflection and not the entire response of a member can be determined.

2.2.5. Numerically determined plastic hinge lengths

A study in which a plastic hinge length was developed explicitly for walls is presented in
[BA11]. Based on experiments conducted by one of the authors, a VecTor2 [WV02] model
was set up and used to conduct a parametric study with the objective to investigate the
influence of shear on L,. The latter was taken as half the length over which plasticity
spreads. The spread of plasticity was obtained from the distribution of inelastic steel
strains predicted in the analysis. Furthermore, it was investigated whether the compara-
tively low normal force ratios of walls and their geometry and reinforcement distribution,
which is different from columns, influence L,. All walls in the study were modeled as can-
tilever with the same concrete and steel constitutive relationships. The steel was modeled
with a yield plateau and linear strain hardening setting in at 10%c. The ratio of ultimate
to yield stress was f,/f, = 625/400 = 1.625. It was found that cyclic loading did not
have much influence on the distribution of vertical strains compared to monotonic loading,
but resulted in a slight increase in horizontal and shear strains. Furthermore, the authors
observed that the spread of plasticity was not directly proportional to the wall length.

Shear was found to have a significant influence on the spread of plasticity, especially in
squat walls after the onset of diagonal cracking. Contrarily to what [BA65] observed for

12
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columns, an axial load was found to reduce the plastic hinge length of walls. This was
explained with the observation that the ratio M, /M, decreases when the normal force
increases.

Even though shear was found to have a significant influence, the authors eventually con-
cluded that if shear span and wall length are included in the formulation for the plastic
hinge length, the shear stress does not need to be explicitly accounted for. The proposed
equation is hence merely a function of wall length h, shear span Ls; and normal force P.
The plastic hinge length was taken as half the length over which plasticity spreads, Ly,
since the authors observed that the inelastic curvature varies linearly over this length.
That means, unlike for instance [BF10b], the authors did not adjust the plastic hinge
length to fit the overall displacement best, but used the actual plasticity spread from the
numerical model. Comments on the agreement of the top displacement, which is predicted
with this plastic hinge length, with experimental or numerical results are not provided in
[BA11]. The authors interpret the resulting L,, as a lower bound estimate for the plastic
hinge length of an isolated cantilever wall:

p
Agfe

L, = (0.2h + 0.05Ly) <1 ~15 > < 0.8h (2.9)

Another numerical study to investigate the plastic hinge length of structural walls has
been conducted by [Kaz13] using the software ANSYS. Structural walls that were several
stories high were analyzed with a hybrid FE model: the two bottom stories were modeled
with solid continuum elements and the upper stories with Timoshenko-beam elements.
The wall was modeled with horizontal flanges at the height of the floors in the two bottom
stories to account for the influence of floor-slabs on the shear flow in the wall. Material
properties were again kept constant throughout the study with a concrete strength of
fe = 25MPa and a steel yield strength of f, = 420 MPa. The steel was modeled bilinear
with a hardening modulus of Ez, = 1500 MPa which would result in a ratio f,/f, =
1.35 if a strain of 5, = 0.10 is assumed. The objective of this numerical study was to
investigate the influence of the wall length h, shear span L, axial load ratio n, longitudinal
reinforcement ratio of the boundary element g;; and transverse reinforcement ratio g, on
the spread of plasticity and the length of the plastic hinge. The latter was not assumed to
correspond to half the length over which plasticity spreads L,,, but was calculated from the
numerically determined curvatures and top displacement by rearranging Equation (2.34).
No distinction between top displacements due to flexure and shear was made. Finally, the
plastic hinge length was derived by means of a regression analysis taking into account the

varied parameters:
P f v Qv Ly 045
L, =0.27h <1 — > <1 — =Y > <—> 2.10
v A7, AN (2.10)
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In the analysis, the wall and the foundation were modeled with smeared reinforcement.
The latter was modeled to capture a potential strain penetration effect. However, no
detailed information is provided on how this is done with the smeared reinforcement ap-
proach and on whether or how possible influences such as bond strength and bar diameters
were considered. As yielding did not proceed into the foundation, strain penetration was
concluded to be negligible and hence not included in L,. Furthermore it was observed that
the plastic hinge length corresponded to about 43% of L,, rather than 50%, as usually
assumed. The provided curvature profiles do not indicate a perfectly linear shape and the
value of 43% can hence stem from a slight concentration of curvatures towards the base.

2.2.6. Experimentally determined plastic hinge length

Techniques to evaluate the plastic hinge length using experimental data are presented in
[Hin02] and [HRS04]. The plastic flexural deformations A, ¢, which are needed to back-
calculate L, can be computed from the total deformations A if the flexural deformations
at first yield Af% PR well as the shear deformations Ay, are known:

M

Ap i =A—Ag — ;;,flﬁ
Yy

(2.11)

All the deformation values are experimentally determined. The flexural deformation at
first yield is the experimentally determined flexural deformation corresponding to the
analytically determined first yield force (e.g. the first yield force according to moment-
curvature analysis). With A, ¢, the plastic hinge length L, can be computed as:

A L
SpLsLy = Appy— Ly = 2L 70 4 p (2.12)
’ opLls 2

where L; is the length over which plasticity spreads and ¢, the plastic flexural curvature
at the base of the wall:

M

bp = b — (%M (2.13)
y

To obtain the base curvature ¢, a least squares approximation of the curvature profile,
using at least three inelastic curvature values, is recommended. For a cantilever pier,
developing the inelastic curvatures right above the base, this means that at least the first
three measurements taken above the basecrack should be used. If the inelastic curvatures
spread further up, more measurements may of course be used. The intersection between
the linear least-squares approximation of the inelastic curvatures and the horizontal axis is
assumed to be the base curvature. The difference between this value and the one measured
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at the base is usually ascribed to strain penetration effects. Figure 2.1 visualizes the
assumptions on which the calculation of the plastic hinge length is based. Omne of the
assumptions is that inelastic curvatures follow an approximately linear trend. Often, this
is not exactly the case for experimentally derived curvature profiles. Compressive strain
concentrations due to a fan-like crack pattern and variations in crack locations render
them slightly irregular [Hin02]. Plastic hinge lengths determined according to Equation
(2.12) contain a strain penetration component Lg,, because the latter is also included in
the top displacement used for the computation of L,. Based on the assumption that L),
is independent of the curvature and that the rotation due to strain penetration can be
calculated by multiplying L, with the base curvature ¢, the strain penetration length
can be calculated as follows:

Ly = Ly <7¢me;zmd —~ 1) (2.14)

where L is the actual base length of the measurement devices covering the base crack
and Ppeasured the curvature determined with the readings of those devices in conjunction
with L.

2.2.7. Summary of plastic hinge lengths

Table 2.1 summarizes the different plastic hinge length equations which were introduced
in Sections 2.2.2 to 2.2.5. It also lists the components that are included in the equations,
to give an overview over which characteristics that influence the plastic hinge length were
taken into account by different researchers. Differences in the equations do not only exist
with regard to the effects that are assumed to influence the net plastic hinge length along
the member L;, but also with regard to whether strain penetration is included as extra
component Lg, in the plastic hinge length. Furthermore, the assumed location of the
center of rotation — at the center or at the bottom of the hinge — influences the length. Or
in other words, if the same plastic hinge length with different centers of rotation is used,
different top displacements are predicted. Hence, all plastic hinge lengths derived from
top displacements are influenced by the assumed center of rotation.

Table 2.1 summarizes also which influences are considered in the plastic hinge length
formulation. If strain penetration is included in the hinge length, column “SP” is checked
and if the loading type, i.e. cyclic or monotonic loading, is considered, column “LT” is
checked. The last column indicates, where the center of rotation is assumed in the equation
for the flexural response that is recommended in combination with the respective plastic
hinge length. Two locations are possible, either at the base (b) of the plastic hinge and
hence the base of the pier or at midheight (m) of the plastic hinge. If no recommendation
for the location of the center of rotation is made, the last column is dashed. Another short
summary with comparison to the experimental data is given in Table 3.2.
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Table 2.1.: Summary of plastic hinge length equations.

Includes influence of

Ju P
- e

h

Equation for plastic hinge length

Eq. (2.2): 0.2 (§— - ) Ly +0.2h+ Ly, X X X X b

Eq. (2.6b): 0.2h(1 + £ min (9, 22)) X X X m

Eq. (2.7): L= +0.2h + 0.11% X X X m
. P

Eq. (2.9): (0.2 + 0.05L,) (1 - 1?H> B X X X ]

Eq. (2.10): 0.27h(1 — 25) (1 - y}?f”) ()" x «x X m

2.3. Rotation due to anchorage slip

2.3.1. Anchorage slip

As indicated previously, the deformation due to anchorage slip or strain penetration can be
included by increasing the plastic hinge length, see for instance Equations (2.1) and (2.7).
Another possibility is to include the component when the flexural response is computed,
see for instance Section 2.5.1. For the latter, different methods exist to calculate the slip
of the anchored bars with which the rotation is determined. To compare the results of
the methods and the influence of some parameters, three common approaches to calculate
the slip are briefly examined: 1) Integration of bond-slip relations along the development
length of a bar, 2) use of simplified, constant bond stress distributions and integration of
the reinforcement strains along the development length and 3) use of stress-slip relations
obtained from pull-out tests with long embedment length. The first method requires
some computational effort, because it is an iterative procedure requiring a rather fine
mesh. Furthermore, bond-slip relations are generally determined from tests on bars whose
strains are low, but for determining the total slip, the bond conditions of reinforcement
bars that are yielding, need to be known [SCO87]. To overcome this deficit and include
the effect of inelastic strains in the bond slip relations, modification factors have been
proposed by several researchers. The second method requires less computational effort
than the first by assuming a stepped bond stress distribution with constant values for
both elastic and inelastic steel strains. With this assumption, the development length I
can easily be calculated. The slip is then calculated by integration of the linear strain
profile along [;. This approach is appealing because of its simplicity. Furthermore, since
the results have sometimes been calibrated against tests with long embedment length
satisfactory agreement is expected despite the simplified bond stress distribution. Method
3) uses slip-strain relations which have been determined from pullout tests on specimen
with long embedment length, which closely reflect the real conditions in a pier footing.
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2.3. Rotation due to anchorage slip

Due to the mentioned computational efforts and shortcomings of approach 1), only models
following approaches 2) and 3) are included in this section.

Researchers have proposed different bond strength values 7, for approach 2), which are
typically related to the concrete strength. Cyclic loading effects are generally not consid-
ered which means this approach serves to calculate the envelope of the expected slip under
cyclic loading. For steel strains below yield, bond stresses of e.g. 7,1 = v/f. [SS08, BF10a]
or 7,; = 0.6 fcz/ K [Sig95] have been proposed and for inelastic strains bond stresses of
Tpe = 0.5751 [SS08, Sig95]. These bond stresses are then used to calculate the development
length. The development length [z, which corresponds to the elastic range of the reinforce-
ment bar, and I}, which corresponds to the length along which yield strain is exceeded,
can be derived from:

fsAsp = ymdylq (2.15a)
Sy
lg="— 2.15b
i 4Tb1 ( )
/I (fs - fy)dbl
—lg = Sy (2.15¢)

where dy; and Ag, are the diameter and the cross section of a reinforcement bar, respec-
tively, fs is the considered steel stress and f, the yield strength of the steel. With the
development length, the slip d; can be calculated:

sl

5, = 52d for e, <e, (2.16a)
l s I

8 = 63’2‘1 + (e +2€y) d for e, > ¢, (2.16b)

In [SCOB87] pullout tests on deformed bars with an anchorage length long enough to prevent
end slip as well as varying concrete strength and bar diameter have been reported. Bar
diameters were not smaller than 19.5 mm and the rib orientation was almost perpendicular
to the bar axis. An unbonded region was provided at the loaded end and the bars were
pulled against the casting direction. The aim of the tests was to develop a bar strain-slip
relationship which can be used for seismic analysis in both the elastic and inelastic range.
Relations developed from tests with long embedment length seem appealing to determine
the anchorage slip, because the slip and corresponding steel strain conditions reflect the
real conditions of an anchored reinforcement bar. It was found that the non-dimensional

slip 0,
05 ( £\
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Chapter 2. Review of plastic hinge models

could be expressed uniquely as a function of the steel strain 5 according to the following
equations:

0sn = €5(2 + 3500e,) for e, <¢gy (2.18a)
Osm = 05y + 0.047 (fu — fy) (€5 — €sn) for e5> ¢y (2.18Db)

These strain-slip relations are presented as envelope for cyclic loading and are therefore
well suited for monotonic analysis of piers subjected to cyclic loading.

Based on the tests of [SCO87], amongst others, monotonic and cyclic stress-slip relation-
ships have been proposed in [ZS07]. For the slip at yield d, ,, the following equation is
presented for monotonic loading;:

dy fy
8437/ f.

where a is a parameter stemming from the assumed bond-slip relation which is here
a = 0.4. Two different models have been proposed for the stress-slip relation between
s,y and the ultimate slip d5,: a cyclic and a monotonic one. The cyclic model partially
depends on the loading history and is thus not suitable for monotonic analysis. The
monotonic relationship is as follows:

1/a
@w:254( @a+10 +0.34 (2.19)

5 (= 1)
—0s u Yy
fs = S s+ (2.20a)
)"+ (5)"
pm u—0os
— 05—
s = 2 (2.20Db)
6siy
Osy — 0
W= % (2.20c)
s?y
with R, = 1.01 to create a gradient close to zero in the vicinity of the ultimate bar

strength. That means the stress-slip relationship is not bilinear but curved after the yield
stress has been exceeded and asymptotically approaching the ultimate stress value. For
some quantities, namely transition factor m and the ultimate slip d, ,, a range of possible
values was proposed by [ZS07]. In the following computations, intermediate values were
chosen to evaluate Equation (2.20). Thus, the stiffness transition factor m was assumed
to be m = 0.4 (recommended 0.3 — 0.5) and the ultimate slip ds, = 35d,, (recommended
30—406s,,). Hence, in contrast to slip at yield d, , according to Equation (2.19), which has
been obtained by linear regression analysis of experimental data, only a range of possible
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2.3. Rotation due to anchorage slip

ultimate slip values ds ,, is proposed, due to a lack of sufficient test data. Recommendations
on how to choose 5, and m are not provided which renders evaluation of the applicability
of the model rather difficult.

As mentioned previously, there is no direct calculation of slip values or the rotation due
to slip if the strain penetration effect is included in the plastic hinge length. According
to [PCKO7] the strain penetration length is assumed to capture not only the effect of the
pullout of steel in tension, but also the spread of the concrete compressive strains into
the footing. However, to compare the results obtained with the different approaches, slip
values are derived from the rotation 6, according to Equation (2.25) by means of the
following equation:

5y = Ospd — ) (2.21)

where d is the distance of the outer reinforcement bar to the opposite edge of the section
and z. the compression zone depth which is determined from moment-curvature analysis
corresponding to 0.

In Figure 2.2 the slip values predicted with the equations presented in this section are
plotted against the maximum strain in the reinforcement bar. A bilinear stress-strain
relationship with a strain hardening ratio of f,/f, = 1.17 and bar diameter dy; = 14 mm
has been used for the steel. Differences in the estimated slip are significant, especially after
the onset of yielding. When the slip is predicted according to Equation (2.21) [PCKO07] the
steel properties are, except for the yielding stress, not explicitly taken into account. Hence,
the slip is predicted to increase in proportion to the curvature regardless of the strain
hardening characteristics. Even for an elastic-perfectly plastic steel the slip is predicted
to increase proportionally to the curvature, which does not appear physical. All other
predictions are either based on integration of steel strains along the development length
[Sig95, SS08, BF10a] or steel strain-slip relationships at the loaded end of the bar [SCO87,
ZS07] and exhibit significant differences between pre-yield and post-yield range. Only
two values are contained in the graph displaying the estimated slip values according to
[BF10b], one for yielding and one for the ultimate slip, which were determined based on
the strain limits proposed by the same authors, provided in Section 2.4. All the models
mentioned in this paragraph have been developed to capture the envelope of the cyclic
response, except for the one by [Sig95], who does not explicitly mention this loading case.

2.3.2. Rotation due to anchorage slip

The rotation due to anchorage slip 0, can be calculated from the slip and the depth of the
cross section under tension d — x., following the procedure also used by e.g. [SS08]. The
distance between the outer reinforcement bars and the outer compression fiber is used as ef-
fective section depth d. The compression zone depth z. is obtained from moment-curvature
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PCKO7] (2.21)
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Figure 2.2.: Slip predictions according to equations presented in this section against reinforcement
strain for reinforcement bars with dy; = 14 mm and f./f, = 1.17.

analysis which also yields the reinforcement strains necessary for the slip calculation. With
these values the rotation can be calculated:

ds
d— z.

Oyp = (2.22)

If the strain penetration effect is included in the choice of the plastic hinge length L,, the
flexural top displacement Ay ;,, of a member with shear-span length L, in the inelastic
range follows as [PCKO7]:

M (Lg + Lgp)* M
Ato —¢’—7”+<¢—¢’—> (L}, + Lsp) Ls (2.23)
Fror = %vpr, 3 YN, ) P

where gbfy is the first yield curvature, M the current moment, M, the first yield moment and
L;, the part of the plastic hinge length along the member. Within plastic hinge modeling,
it is commonly assumed that the inelastic curvature profile is linear and Lj, corresponds
to half the length over which plasticity spreads. If only the top displacement due to strain
penetration is of interest, L;, is not considered in the second part of the equation. In the
first term of the equation, the separation of the components is not as simple because of the
quadratic relation. The rotation corresponding to a certain top displacement is obtained
by dividing Ay o, by the shear-span length L;. To remove the dependency of the rotation
due to strain penetration on Lg, the following assumption is made:
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2.3. Rotation due to anchorage slip

L+ Lgp)? L?
% = Lo+ 2Ly, + Ls” ~ Ly + 2L, (2.24)
S S
~—~

~0

Equation (2.23) is then divided by L, the components due to Ls and L;, are neglected and
the simplifying assumption according to Equation (2.24) is introduced. This yields the
rotation due to strain penetration fy,, which has already been used in Equation (2.21):

2
Osp = o5 Lsp for ¢ < ¢, (2.25a)
1, M
Osp = PLsp — g%ﬁ[/sp for ¢ > ¢, (2.25Db)
Yy
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2.4. Strain and curvature limits

To define the ultimate limit state, a so called “damage-control compression strain” as
well as “damage-control tension strain limit” are recommended by [PCKO07]. Following
the assumptions made for the ultimate compression strain and corresponding stress in
the confined concrete model by [MPP88] the ultimate compression state is assumed to
be reached when the confining reinforcement fractures. Hence, the formulation for the
ultimate compressive strain was derived by equating the strain energy absorbed by the
concrete post-peak to the strain energy absorbed by the confinement. This yields the
following expression for the ultimate compression strain e, qe:

C2Qvfyv£su — 0.004 + 1‘4Qvfyvgsu

€ = 0.004 + e
e Cl fcc fcc

(2.26)

where the coefficients C'1, C5 depend on the shapes of the stress-strain relationships of con-
crete and steel and f,. is the confined concrete strain according to Equation (3.3) [MPP88|.
The average ratio Co/C1 is considered to be 1.4. The ultimate strain of the unconfined
concrete is assumed to be €., = 0.004. Because this relation is based on pure axial com-
pression and does not consider confinement provided by an adjacent member, such as a
foundation, [PCKO07] state it underestimates the actual ultimate strain at combined flex-
ure and axial force by about 23 - 37%. A criterion for buckling of the longitudinal bars
is not included in the limit, but the authors include a recommendation for the maximum
spacing of the stirrups to prevent buckling before €., is reached.

With regard to the steel strain limit, the authors advise to use a lower limit for structures
subjected to cyclic loading than for those subjected to monotonic loading: Under cyclic
loading, the ultimate tensile strain capacity is affected by previously experienced compres-
sion strains in reversed cycles. Due to previously experienced plastic tensile strains, the
reinforcement is also prone to buckling under compressive loading and hence to low cycle
fatigue. Furthermore, reinforcement bar slip and tension shift are stated to contribute
to a strain capacity under cyclic loading that is lower than the strain determined with
monotonic testing e4,. Hence, [PCKO07] suggest to limit the strain capacity under cyclic
loading to 60% of the monotonic value:

Esu,cyc = 0.6y (227)

In [BF10b], experimentally determined strains of an extensive database at ultimate dis-
placement were examined and employed to derive strain limits for cyclic loading. Ultimate
displacement was defined as corresponding to a drop of the lateral load of at least 20%.
For the ultimate concrete compression strain €.y, cye, the authors propose a formulation
that accounts for the size of the area of the confined concrete under compression and the
effectiveness of the confining reinforcement:
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2.4. Strain and curvature limits

3/2 I
) 4 0.4 Keon oSy (2.28)

Ecueye = 0.0035 + ( 2

Lc,con

where z. con is the depth of the neutral axis in the confined core in mm. Factor kcon
accounts for the effectiveness of the confinement according to [SU82]:

2
B s s > Sl,c/6
kcon B (1 B 2bcon> (1 B 2hcon> <1 B bconhcon> (229)

where s is the stirrup spacing and heon, beon are the dimensions of the confined core, all
measured to the centerline of the stirrups, and s; . the distance between those longitudinal
bars that are confined by stirrup corners or cross ties.

For the ultimate tensile steel strain, [BF10b] suggest the following value:

3
Esu,cye = §€su = 0.375¢e4, (2.30)

Instead of defining limit strains with which an ultimate curvature is defined, [KGY12]
directly presented curvature limits. Based on a numerical study, ultimate curvature, drift,
and rotation values were derived. The ultimate state here refers to the point at which
one of the following occurs: Either the shear capacity has slowly degraded to 85% of the
peak load or experienced a sudden drop, or the steel strains exceed 10% on the tension
side or buckling and spalling strain on the compression side. The objective of the study
by [KGY12] was to investigate the influence of certain parameters on the deformation
capacity, namely that of aspect ratio Ls/h, axial load ratio P/(Ayf.), wall length h,
detailing of boundary elements, transverse reinforcement ratio o, and shear stress v. All
resulting limit responses have been derived from a finite element model, in which the
two bottom stories were modeled with solid continuum elements. The curvatures were
computed from the strains in the elements along the edge of the wall. The ultimate
curvature was obtained by extrapolating the linear approximation of the curvature profile
of the two bottom stories to the base. Afterward, a regression analysis was performed on
all curvatures obtained for the various investigated parameters. This yielded the following
formulation for the ultimate curvature:

1 P fS’l}QU LS 029
— 0. 1-2. 1. = 31
du= 70 8klkcsasu( 24Agfc> <1 1.5 5 ) <h> (2.31)

where the correction factors k; and k. take into account the loading conditions and the
shape of the cross section and are 0.75 and 1.0 for cyclic loading and rectangular cross
sections, respectively.
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Besides the above mentioned strain limits, which provide an estimate for the damage
of the material, strain limits based on stability considerations have been developed as
well. Under cyclic loading the edges of a wall may be subjected to large tensile strains
and hence feature cracks in which the reinforcement yields. Due to irregularities in the
structure and — in the event of an earthquake — out of plane response, the compression
force under reversed loading might not be introduced centrically and hence cause out-
of-plane buckling [PP93]. To prevent this buckling, equations to compute the minimum
wall thickness have been developed. They are based on the expected tensile strain in
the plastic hinge and the assumption that the compression force acts with the largest
possible eccentricity [PP93, CE99]. If the wall thickness is given, these equations can be
rearranged to yield the maximum allowable tensile strain. However, this stability problem
occurs mainly if the wall thickness is small in relation to the height over which plastic
tensile strains occur, which is not the case for the wall-type piers considered herein.

2.5. Flexural response

2.5.1. Bilinear approaches

Using the results from the moment-curvature analysis and the mentioned strain limits,
one can predict the overall flexural force-deformation response of a structural member. A
very simple approach to do so is the bilinear approach presented in [PCKO07]. With this
approach, the response is described by two characteristic points only. The first point is
the so-called nominal yield point, which is a fictitious point inserted after the point at
which the yield strains of the materials are first reached. The second point corresponds
to the ultimate displacement value. To compute these values, the following equations are
used:

F= L% (2.32a)
Ay = ¢y (Ls + Lgp)* /3 (2.32b)
Aw =Dy + Ay = Ay + dpLyLy = Ay + (6 — ) LpLs (2.32¢)

where ¢, is the nominal yield curvature according to Equation (2.33) and ¢, is the plastic
curvature. Using Ly as lever arm to calculate the deformation is strictly speaking only
correct if the center of plastic rotation is at the member end. This holds if the plastic
hinge length is twice the strain penetration length L, = 2L,,. However, it is deemed an
acceptable approximation even if L, > 2L,,. Nevertheless, [PCK07] note that predictions
could in this case be improved by using the distance between the point of contraflexure
and the center of the plastic hinge.
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2.5. Flexural response

The nominal yield curvature is not obtained from section analysis, but computed as first
yield curvature times the ratio of nominal to first yield moment. The nominal yield
moment, on the contrary, is obtained from moment-curvature analysis. It corresponds to
the lowest curvature at which either £, = 0.015 steel strain or . = 0.004 concrete strain
are reached. These strains are defined as serviceability limit strains, as they are assumed
to correspond to residual crack widths of approximately 1 mm and the onset of spalling of
concrete, respectively.

M
by = Wjd»; (2.33)

A frequently found variation of the above equations assumes that there is no influence of
strain penetration at yield and the center of rotation is in the center of the plastic hinge.
With these modifications, the flexural displacement is calculated as:

¢y L3
3

Ay=Ay+A)= + (¢pu — ¢y) Lp(Ls — 0.5L,) (2.34)
Several similar suggestions to calculate the drift at yield and ultimate have been made
by Fardis and his co-workers in [PFO01, Far07, BF10a, BF10b] and [BF11]. In general,
the equations proposed therein have been slightly changed over the years by fitting them
to a more extensive experimental database. Different recommendations were made for
varying cross sections and loading conditions, i.e. monotonic or cyclic loading. Originally,
all equations were presented in a form that yields the rotation, but to be consistent with
the previously presented equations they are multiplied with the shear span herein. As
mentioned, the formulations depend on the cross section shape. For brevity, only the
ones recommended for wall-type or hollow rectangular bridge piers [BF10a] are noted
here. They include, contrary to the previous equations, a shear component and a factor
accounting for a potential deformation increase due to inclined shear cracking. Based
on the database used in [BF10a] criteria for the application of the equations have been
set. They include boundaries for the normal force ratio n = P/(Ayf.), aspect ratio and
transverse reinforcement ratio. Those criteria are assumed to ensure that flexural yielding
of the test units occurs before shear failure or yielding of the transverse reinforcement and
are met by the tests reported in [Bim10, HBD13].

At first yield of either concrete or steel, the displacement is assumed to be composed of
flexural Ay, and shear displacement Ay as well as displacement due to anchorage slip Ag):

A;/ = Afl +As +Asp
& dyi f, (2.35)
8v'fe

Lo+k
Al =gl % L+ 0.0013Lg + ky L
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In [BF10a] it is recommended to multiply the theoretical yield curvature qﬁ; by 1.02 as
this was the median of the predicted to experimentally determined moment Mp,cq/MEzp.
However, the moments were calculated assuming bilinear constitutive laws for concrete
and steel. If shear cracking occurs before flexural yielding, the factor k, is set to 1 to
account for an increased top displacement due to tension shift. Shear cracking is assumed
to occur before flexural yielding if V., < M, /L,, where V., is the shear resistance of a
member without transverse reinforcement according to Equation (2.55b) from [CENO04].

The second component in Equation (2.35) represents the shear deformation and is a purely
empirical component obtained from data fitting. In [PF01], where this term was presented
in a slightly different form, the authors state that the component corresponds to the dif-
ference between the measured total top displacement and the calculated flexural top dis-
placement. This difference was determined for members where bar pullout was physically
impossible, for instance because the plastic hinge was at the center of a simply supported
beam.

The third component is the rotation caused by pulling the reinforcement bars out of the
foundation. When pullout is not possible, kg = 0, otherwise kg = 1. Since a constant
bond stress of 7, = \/f. is assumed in the elastic range, the third component can be
derived from Equations (2.15¢), (2.16b) and (2.22).

The authors also recommend using the rotation 0, = A; /Ls instead of (b; to calculate the
effective flexural stiffness at yield, El.g = M,Ls/(30,), whereas in [Far07] a more complex
equation is presented for E1.g.

The ultimate displacement is calculated according to the following formulation [BF10b]:

L
Ay = A + kgAby gipLs + (o — &) Ly <1 -3 L” > L, (2.36)

The rotation due to bar slip that has to be added to the yield rotation is estimated as:

/
+ Gu
Aeu,slz‘p,mon = %16dbl (237&)
/
+ Gy
Aeu,slip,cyc = %IOdbl (237b)

These formulations were determined from data fitting. It is noteworthy that neither shear
nor additional deformations due to inclined cracking, which have been explicitly included
in Equation (2.35), are included in Equation (2.36). This means that these deformation
components are either, contrarily to what one might expect, not assumed to increase after
yield or they are accounted for in the choice of the plastic hinge length. The authors
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2.5. Flexural response

themselves state that they were not satisfied with the scatter of the results obtained with
this equation together with the plastic hinge length according to Equation (2.6). Therefore,
they developed alternative empirical models. Those empirical formulations are the basis
of the equations included in [CENO5], which are presented in Section 2.5.3. However, the
agreement of predictions and experiments does not differ significantly according to the
table provided in [BF10b]. The median predictions are generally good, but the scatter is
considerable in all cases with coefficients of variation between 30% and 50%.

2.5.2. Refined approach according to Priestley et al.

A “refined” approach for the prediction of the entire load deformation relationship is pro-
posed by [PCKO07]. According to the authors, this might be used for comparison with
experimental results. In this approach, the strain penetration is only considered after
flexural cracking A, and the deformation A after first yield Afy is calculated from the dif-
ference in current and first yield curvature. Between cracking and first yield displacement,
the deformation is simply interpolated linearly.

Acr = ¢crL§/3 ¢ = (2507» (238&)

Ay = ¢, (Ls + Lyp)* /3 ¢ =4, (2.38b)
! M / M /

A = Ayﬁy =+ <¢ — (Zsyﬁy) LpLS ¢ > ¢y (238C)

2.5.3. Drift according to Eurocode

Annex A of [CENO5] includes several equations to calculate yield and ultimate deforma-
tions of structural components for seismic assessment. The yield deformation of rectan-
gular, barbelled or T-shaped walls can be estimated according to the following equation:

Ls —+ kvz Ls e dblf
0 =/ == —"" 1 0.002(1—0.135== _— . 2.39
v =g < i ) Ta-a)evr (2:39)

where d — d’ is the distance between tension and compression reinforcement. To compute
the ultimate drift the following equation is proposed:

11 max(0.01;w) "% (L \"* ot
0, = kg—-—0.016 - 0.3" [ ——~2—~ — 25" con 51 9510004 (9 4()
v ML 16 <max(0.01;w) fc) h (2.40)
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where w' = 0compfy/fes W = Otensfy/fc are the mechanical reinforcement ratios of the

longitudinal reinforcement in compression and tension, n = P/(Af.) is the normal force
ratio, keon is a factor accounting for the effectiveness of the confinement according to
Equation (2.29) and p,, 04 are the ratios of the transverse and diagonal reinforcement. ~;
is a safety factor set to 1.5 for “primary” and 1.0 for “secondary seismic elements” and
factor 1/1.6 is recommended to compute the drift of walls. Thus, for any other type of
structure, drift values that are more than 60% larger are predicted with this equation. If
no detailing for earthquake resistance is provided, factor kg is kg = 0.825 and otherwise
kq = 1. The formulation is based on work that was presented over several years in e.g.
[PFO01] and [BF10b], where it was given in a slightly different form. In the latter, factor
0.016 was replaced by a longer formulation taking into account the steel type, loading and
slip. The ultimate state from which the formulation was derived was defined to correspond
to a 20% drop in the shear force capacity. Some noteworthy trends that are included
in the formulation are an increased drift with i) decreasing normal force, ii) increasing
compressive to tensile reinforcement ratio and iii) increasing slenderness. This equation is
used to predict the “limit state of near collapse” according to Section 2.1 in [CENO05]. It
was statistically derived from a large database and can therefore also be compared to the
drift capacity models presented in Section 4.2.2.

As an alternative to Equation (2.40), an equation to calculate the ultimate drift based on
a plastic hinge approach is included in [CENO05]. Together with the plastic hinge length
according to Equation (2.7), the ultimate rotation may be calculated as:

1/ , 0.5L
b= (0 Gu -y, (1- 222 (2.41)

2.6. Shear response

2.6.1. Shear deformations based on axial strains

So far, only the flexural response of a RC structural member has been treated. But,
especially for wall-type structures, shear deformations constitute a significant part of the
total deformation and need to be considered. Based on the observation that the shear
to flexural deformation ratio of flexure-dominated walls is roughly constant, a model to
account for shear deformations in conjunction with plastic hinge modeling was presented
in [BDP11]. The constant ratio was observed for walls whose shear mechanism was not
significantly degrading, such as capacity designed walls. Furthermore, the simplifying
assumption that significant shear deformations only occur in the plastic hinge, where a
constant curvature is assumed, was made. If, additionally, the strain state in this region is
regarded as homogeneous, the shear strain v can be expressed using relations from Mohr’s
circle:

28



2.6. Shear response

& + e, tan @ 22
= —— anf —
7T fang sin(20)

(2.42)

where ¢; is the longitudinal strain along the centroidal axis of the wall, ¢, the transversal
strain, @ the crack angle and e the principal compressive strain which is assumed to
be the strain along the compression strut. It was concluded that the transversal and
compressive strains were small in the examined cases and that the shear strains could
hence be expressed as a function of the axial strains only. As v is assumed constant along
the length of the plastic hinge L, and approximately zero outside it, the shear deformation
can be estimated as:

€l
ALy = —=L, (2.43)

where 0 is an average angle of the crack pattern in the plastic region. If both elastic and
inelastic flexural deformations are computed with a plastic hinge mechanism

Ap = @LyL, (2.44)
the shear to flexural deformation ratio can be expressed as:

A
S — 1.5ii
Aﬂ otan 6 Ly

(2.45)

In this case, 6 is the crack angle at the top of the fan-like crack pattern, where cracks start
to be rather parallel and 1.5 is an empirically determined correction factor.

2.6.2. Shear deformations based on crack inclination

Based on the same observation of a constant ratio between shear and flexural deformations
in the inelastic deformation range, an equation to include the shear deformations in the
plastic hinge models is also suggested in [HRS04]. The idea behind the model is that shear
deformation stems from deformation in shear cracks. The elongation of the longitudinal
reinforcement due to flexure causes a rotation at the crack and thus causes horizontal
deformations, which is defined as shear deformation. Shear deformation is assumed to
occur between the lowest crack, with an estimated crack angle of 60°, and the highest
crack whose tip reaches the base, with an angle 6,,,,. Based on the examined test data, it
was concluded that 35% of the flexural displacement stem from the deformation in between
these two cracks and contribute to the shear deformations. Hence, the shear deformation
was related to 35% of the flexural deformation, which is the reason why a factor of 0.35 is
included in Equation (2.46). Because of the dependence on the crack angle, the A;/Ay
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relationship is partially geometrical, which is also evident in the included inverse aspect
ratio h/Lg. Since it was found that this approach underestimated the shear deformation
if little transverse reinforcement was provided or the web was thin, a correction factor
a was introduced. With this, deformations are increased if the ratio of shear demand
to diagonal tension capacity V/V,, or shear demand to web crushing capacity V/Vy,. is
high. V,, is assumed to be the total capacity according to the “revised UCSD model”, see
Equation (4.1). Based on the considerations mentioned in this paragraph, the shear to
flexural deformation ratio follows as:

A

h
— 20.35 (1.6 — 0.20,,5,) — 9.4
Y a0.35 (1.6 )Ls (2.46a)
VoV
l<a=|— <2 2.46b
= <Vn+vwc>— (2.46b)

Shear deformations are assumed to occur in the region over which plasticity spreads L,,.
To predict this length L,,, an equation derived from moment equilibrium along the crack
was proposed, which can be rearranged to yield the crack angle:

B ﬁ 1 2(T — Tyav)2
O = =7 = \/ ATy ) T (b2} J(142) (247
Tyaw = 0.5 (T, + T))) (2.47b)

where T is the tensile force resultant, Té is the tensile force resultant at first yield of
the extreme steel fiber, T}, is the tensile force resultant when either a tensile steel strain
of ¢, = 0.015 or a compression strain of . = 0.004 first occur and d,, is the lever arm
between the tensile and compressive force resultant.

2.6.3. Shear deformations based on stiffness

[PCKOT7] present an approach in which shear deformations are calculated for three different
stages of the response: prior to shear cracking, prior to attainment of the nominal flexural
strength and in the inelastic range. Before shear cracking, while the structural member is
assumed to be elastic, it is suggested to estimate the shear deformations using the elastic
shear stiffness together with the relation of cracked to uncracked flexural stiffness. Shear
cracking is estimated using the concrete component of the “revised UCSD model” with
k., = 0.29, see Equation (4.1). The effective shear stiffness K, o is computed as follows:
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2.6. Shear response

GAy, Elgy
L, ElI,

Kop,eff = (2.48)

where Ay, = 0.87A, is the shear area and G = 0.43F the shear modulus. The relation
between the effective and uncracked flexural stiffness, El.g and El,, respectively, can be
obtained from moment-curvature analysis. Using this stiffness, the shear displacement at
shear cracking is:

Ve
Ksh,eﬁ

Asp1 = (2.49)

Once the nominal flexural strength is reached, a unitary shear stiffness Ky, cracked, based
on a strut-and-tie model with a 45° compression strut is defined. This shear stiffness
equates to:

02500 4y (2.50)

K pr—
sh,cracked 0.25 + (Es/E.) oy ’

where g, is the transverse reinforcement ratio, F; and E. are the modulus of elasticity of
steel and concrete, respectively, and b and d the width and effective depth of the section.
Using this stiffness, the shear deformation corresponding to the attainment of nominal
flexural strength is:

(Vv — Vo)

Ash,N = Ash,l +
Ksh,cracked

L, (2.51)

Afterward, in the plastic deformation range, assuming a constant ratio of shear to flexural
deformations Ay, n/A g N is suggested.

2.6.4. Shear crack angles

To determine the crack angle 6 that is needed to evaluate Equation (2.42), [BDP11] rec-
ommend an equation given in [CM91]:
A
f = arctan <i (fctb + Lfyv)) < 90° (2.52)
\%4 S
where z is the internal lever arm, V the shear force, f.; the concrete tension strength
and Ay, fyo and s are the transverse reinforcement area, yield strength and spacing.

Originally, the equation was presented as shear strength equation for beams and 6 denotes
the angle between the longitudinal axis of the structural component and the crack.
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Another possibility to calculate the crack angle for shear panels has been suggested in
[BVCO06], based on a number of MCFT calculations:

s
0 = (20° ( . ve ) < 75° 2.
(29° 4 7000¢;) ( 0.88 + 5500, = 75 (2.53a)
39558
-7 2.53b
Sze a 16 ( )

where ¢; is the unitless strain along the member axis at shear failure, s; the horizontal
distance between the longitudinal reinforcement bars and a, the maximum aggregate size.
The equation contains components accounting for the influence of the longitudinal strain
(first term) as well as for a size effect (second term) and was developed for cases in which
g; was below yield strain. Equally to Equation (2.52) this equation estimates the angle
between longitudinal member axis and crack.

For fully cracked concrete membranes, subjected to plane stress conditions, the crack
angle may also be derived based on the elastic energy [HHF11]. Both concrete and steel
are considered to be linear elastic in this case and Poisson’s effect is neglected. It is
furthermore assumed that the concrete is subjected only to compression stress and the
tensile strength of the concrete is zero. The crack angle corresponds in this case to the
angle of the principal compression stress, i.e. they are perpendicular to the principal
tensile stress. The crack angle can then be derived from equilibrium equations and the
minimization of elastic energy. If the membrane is subjected to stresses in the direction of
both axes and shear, the crack angle will depend on the applied stresses. If the membrane
is subjected to only shear, the equation for the crack angle relative to the z-axis simplifies

to [HHF11]:
k
tanf = 2 Oy + FEOzOy (2.54)
0z + kEQ:ch

where kg is the ratio of the modulus of elasticity of steel and concrete kg = Eg/E. and o,
and g, are the geometrical reinforcement contents in = and y direction, respectively. The
crack angles obtained with this relatively simple equation correspond well to the maximum
crack angles predicted with the software Membrane-2000 [BC00a], which is based on the
MCEFT. For this study, equations to predict a representative crack angle of a cantilever
wall subjected to lateral load are necessary and using an equation that is valid for a
membrane subjected to pure shear might seem approximate. However, within the wall the
stress state varies along the height of the wall as well as along the width of the section
and it is thus difficult to define a membrane with a representative stress state. As this
would furthermore complicate the determination of the crack angle significantly, only the
equation for pure shear, i.e. Equation (2.54), is considered here.
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2.6. Shear response

2.6.5. Shear cracking

As indicated in previous sections, shear deformations are sometimes estimated to increase
once shear cracking occurs, see for instance Equations (2.35) and Section 2.6.3. For the
former, it is suggested to assume shear cracking initiates once the shear resistance of a
member without shear reinforcement according to [CENO04] is exceeded. With the recom-
mended standard values this yields:

V.= |k 1+\/% f§/3+0.15£ bd (2.55a)
d A,
1 / 2

k= jo (1000,)? > 35 1+,/07f§/6 (2.55b)

where b and d are the section width and the effective flexural depth in m and ~, is a
safety factor for concrete which is assumed to be one for comparison with experimental
data. The upper bound for the size effect factor is 1/0.2/d < 2.0. Since a crack angle of
45° is assumed for the formulation one may conclude that V. corresponds to the force at
which the first cracks steeper than 45° are expected to form. Based on results of MCFT
analyses [SP06] performed regression analysis and proposed a formulation depending on
the vertical load P and the shear stiffness of the uncracked structure GA. With units MN
and m, it follows as:

P 1 \GA
Ver = <8757 * 6351) L (2.56)
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2.7. Influence of lap-splices

2.7.1. Behavior of lap-splices under cyclic loading

Several experimental studies have been conducted to investigate the behavior of lap-splices
under cyclic inelastic loading. An overview of selected studies including their main findings
is presented in [ACI12]. In the following, a few studies and findings which provide insights
into the behavior of splices in general and are of interest for this project are summarized.

The influence of load history, transverse and longitudinal reinforcement as well as lap-
splice length was investigated in uniaxial monotonic and reversed cyclic tests by [AFC82].
A test setup with square columns with concrete blocks at both ends, through which the
loading was applied, was used in this study. The cyclic load history comprised six fully
reversed cycles between 1.0f, and 1.25f, in tension and approximately 0.31 — 0.42f. in
compression before the test unit was loaded to failure in tension. Transverse reinforce-
ment was found to have more influence on the deformation capacity than on the strength
of the relatively long splices (44 — 60dy;) tested in this study. All splices were sufficiently
strong to transfer the yield load, but the splices with less transverse reinforcement failed
at a smaller displacement and under lower ultimate load than those with larger transverse
reinforcement ratios. Several other researchers also found that the behavior of lap-splices
subjected to reversed inelastic cyclic loading is significantly improved in terms of attained
ductility or number of cycles prior to failure, if sufficient transverse reinforcement is pro-
vided (e.g. [SGW83, SR86, RZT88]). However, in another experimental study on beams
with lap splices, the effectiveness of the transverse reinforcement was found to depend also
on the relative rib area of the longitudinal bars and the strength of the aggregate used
in the concrete [DT196]. Inconsistent observations have been made regarding the opti-
mum distribution of the confining reinforcement: concentrated at the ends of the splice
or evenly distributed [ACI12]. With regards to the length, some researchers argue that
a mere increase of lap-splice length is no useful measure to improve the earthquake re-
sistance of splices, due to an “unzipping” effect of the splitting failure [Pau82]. Others,
on the contrary, include the length of the splice as factor for the strain criteria, based on
experimental data [BF10b].

Comparison between the monotonically and cyclically loaded tests [AFC82] showed that
the load history applied in this study, with six fully reversed cycles, did not have a signif-
icant effect on strength or deformation capacity of the test units. However, load histories
with more cycles proved more detrimental than static or repeated loading in terms of
sustained deformation ductility elsewhere [SR86, RZT88]. In the latter studies it was also
found that the number of sustained cycles is very sensitive to the peak load applied in the
cycles.
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Figure 2.3.: Residual moment of a section according to [PSC96] to the left and lap-splices with
splitting cracks to the right.

2.7.2. Modeling approach

A lap-splice at the base of a pier may result in a reduced flexural strength of the section if
the splice length is insufficient. However, even if the length is sufficient to transfer the load
under monotonic loading, the strength may still be reduced in the inelastic deformation
range under cyclic loading. Initially, the concrete surrounding a splice transfers the load
from one reinforcement bar to another. If the splice is not well confined it will thus
loose its load bearing capacity once the splitting cracks forming around the bars (compare
Fig. 2.3b) are too wide to transfer stresses. If, on the contrary, sufficient confinement is
provided, some force may still be transferred when the concrete is cracked.

The influence of lap-splices on the behavior of a pier can be modeled by reducing the
flexural strength of a section once the strain that triggers degradation of the lap-splice
has been reached, as suggested in [PSC96]. The procedure presented therein consists of
three steps. First, the load bearing capacity of the splice is checked based on the tensile
strength of the concrete or the confining reinforcement of the splice. Second, if the flexural
strength of the section is not reduced due to a weak splice, it is assumed to degrade under
cyclic loading once the compression strain causing microcracking of the concrete has been
reached. It is argued that, when these cracks develop, the tension strength of the concrete
and thus the capacity of the splice is reduced. In a third step, the residual moment
capacity M, is calculated from the maximum eccentricity of the normal force within the
core concrete, see Fig. 2.3a. The normal force is assumed to result in a stress block with
width b. and length a = P/(0.85f.b.). With this assumption, the residual moment follows
to be:

(2.57)

35



Chapter 2. Review of plastic hinge models

Based on experimental results of circular and rectangular bridge piers, the authors sug-
gested to assume that the residual capacity is reached at curvature ductility pg ~ 8 or at
ity = 8 plus the curvature ductility at which degradation starts: g = fig deg + 8, respec-
tively. In the following sections, some possible definitions of limit strengths and strains are
summarized. The aim is to provide a concise overview over different modeling approaches
rather than a complete survey of existing models. Therefore, the overview focuses on
recent developments and models for cyclic loading. Generally, the strength limits may for
instance be used in a section analysis to limit the tensile strength of the reinforcement to
the tensile strength of the lap-splice. The strain limits may equally be used in the section
analysis to limit the maximum tension or compression strain, whichever applies. Hence,
the moment or curvature capacity of a section may be limited due to the lap-splice.

2.7.3. Strength of lap-splices

The transfer of forces in a lap-splice is often described with two mechanisms: The bond
mechanism transferring the force from one bar to the surrounding concrete and a truss
mechanism transferring the load from one reinforcement bar to another through concrete
and confining reinforcement. The concrete may in this case act as both strut (compression
strength) and tie (tensile strength) while the transverse reinforcement provides a tie. The
bond and truss mechanism interact in a real structure, but models assume that one or the
other controls the strength of the lap-splice. The strength of the lap-splice is therefore
either expressed in terms of the bond strength between reinforcement and concrete or in
terms of the tensile strength of concrete. In the first case, the force capacity of a lap-splice
is assumed equal to that of an embedded bar with the same length. In the second case,
the maximum tensile force of a splice is assumed to be the force which is necessary to form
a splitting crack around the splice.

In [PSC96] the resistance of the splice is estimated with the second approach. The max-
imum possible force of a reinforcement bar T} is thus expressed in terms of the concrete
tensile strength f.; as follows:

Tb = Abfs = fctpls (2.58&)
p=0.5s; +2 (dbl +c) < 2\/5 (C + dp) (2.58b)

where [ is the length of the lap-splice, s; the spacing of the longitudinal bars measured
between the center lines, dp; the diameter of the longitudinal reinforcement bars and ¢
the clear concrete cover of the longitudinal bars, see Figure 2.3b. The limit in the second
equation accounts for the possibility that two cracks with a 45° angle could form at a
splice instead of the cracks in between the splices and perpendicular to the surface, as
indicated in Figure 2.3b. Furthermore, [PSC96] advised that the lap-splice should have
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sufficient confinement in case the tensile strength of the concrete is lower than expected.
To calculate the required confinement, a coefficient of friction of 1.4 is recommended for
the force transferred on the surface of the splitting crack and a limit strain of ¢ = 0.0015
for the stirrups to restrain crack opening. As the confinement is only active when the
concrete is cracked, the authors suggest to not sum up the resistance provided by the two
mechanisms.

A similar approach to determine the strength of a splice has been suggested by [CF05]. Also
here, the strength is expressed in dependence of the concrete tensile strength. However, the
model was not derived purely theoretically but validated against an experimental database
containing 203 beams with unconfined splices and 278 beams with confined ones. Splice
length varied between ~ 10 dy; and 58 dy; with bar diameters between 9.5 mm and 57 mm.
There are two main differences between this model and the preceding one: Splitting cracks
are assumed to either form only in between the spliced bars over the width of the beam
(“side splitting”) or only perpendicular to the beam surface (“face splitting”). The bond
stress is assumed to vary along the splice and the radial tensile stresses around the bars
are assumed to decrease with increasing distance to the bar. To account for this variation
of stresses, the forces are computed based on effective crack areas instead of total crack
areas. Based on the available experimental data, the following geometrical relations for
the effective concrete cover ¢ and splice length [; were derived:

0.77 -
Cheff = Cb—F——= = Cp
¢ Veo/dy

7
07 _ .. (2.59b)

c = Cyo—F——
so,eff SO Cso/dbl >

0.77
[ (2.59¢)

(2.59a)

(2.59d)

where ¢, is the clear cover between the longitudinal reinforcement and the bottom face
(corresponding to ¢ in Fig. 2.3b), cs; = s; — 2dy; the clear distance between longitudinal
reinforcement bars and c¢,, the clear cover between a longitudinal reinforcement bar and
the side face. With the effective crack areas, the splitting forces F§, can be calculated:

Fsp,side - ls,ejj” [2Cso,eﬁ+ (nbl - 1)2031',6]3’] fct (2603)
Csi

C
Fsp,face = ls,eﬁ [201,76]90(0.1%; + 0.9) + 2Cb,eﬁ(nbl — 1) <0.1C—b + 0.9>:| fet (2.60b)

with (0.10—3 T 0.9) >1.0
Cp
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where ny; is the number of lap-splices at the considered face of the member. The correction
factor 0.1(cs/cp) + 0.9 accounts for the observation that the crack inclination and thus
the crack surface increased with an increasing concrete cover at the side. If transverse
reinforcement is present in the splice area, an increase of the splice resistance due to the
provided confinement is considered:

Fst,side = Z Avbfsv = nstnst,lAvbfsv (261&)
Fst,face = Z Avbfsv = nstnblAvbfsv (261b)

where ng is the number of stirrups crossing the splitting cracks, ng,; the number of
stirrup legs, fs, the stress in the stirrups and A, the cross sectional area of one transverse
reinforcement bar. From the test data, the angle of the resultant, which is composed
of the force along the longitudinal reinforcement bar and the splitting and transverse
reinforcement forces perpendicular to it, was found to be 8 = 20°. With this angle, the
maximum bar stress can be evaluated:

Fsp+Fst
. 2.62
! np Agp tan 5 ( 6 )

Note that in this model the resistance due to the tensile strength of concrete and due to
confinement are summed up.

A formulation based on the bond strength is proposed by [BF10a] to estimate the yield
moment of a section with spliced reinforcement. Instead of using the yield strength of
the reinforcement as limit, it is suggested to use the minimum value of yield and bond
strength. To estimate the bond strength a formulation now included in the fib model code
[FIB12] is recommended:

fc 0.25 25 0.2 ls 0.55 Comim 0.33 Cina 0.1 < kb\/ﬁ4ls
Js =54 25 I a d P + km Ky dy;
bl bl bl min < fy
(2.63)

where ¢, = min(cp, €50, Csi) and Cpae = max(cg, Cs;) are the minimum and maximum
value of the concrete covers and distance between longitudinal bars, respectively: Confine-
ment conditions are considered with factors k,, and Ky.. The former takes into account
the effectiveness of the confinement and is 12 if a hook of at least 90° or comparable is
provided. The latter is Ky = ngAyw/(ndys) < 0.05 where ng is the number of stirrup
legs crossing a splitting surface at one section, ny; is the number of considered splices along
a splitting crack, s is the stirrup spacing and A, is the cross sectional area of a stirrup.
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Factor kj considers bond conditions and is 2.5 or 1.25 for good and poor bond conditions,
respectively.

Another simplified expression has been proposed in [BF10a] and adopted in EC8 Part 3
[CENO5]:

fy

fs = min L ;= Vels F (2.64)
ls,min v 0-3dblfy Y

[BF10a] recommend to use this equation only when properties of a member are within the
range of those included in the database for derivation of the equation. Otherwise Equation
(2.63) should be applied. With regard to the lap-splice, the piers investigated here (see
Table 3.1) meet all criteria, the only difference is that the columns in the database were
more slender with a minimum aspect ratio of 2.75. In EC8 Part 3 the use is only restricted
to splices with deformed, straight bars.

2.7.4. Strain limits

As mentioned previously, the strength of a section with spliced bars might degrade once
certain strains are exceeded in either tension or compression. Hence, the strain limit which
defines the ultimate curvature of a section with a lap-splice should correspond to the strain
at which splice failure initiates. [PSC96] assumed this strain to be the concrete compression
strain corresponding to peak stress, e. = 0.002, because at this strain microcracking of
the concrete initiates. [PSC96] suggest this strain limit regardless of any confinement.

A database of experiments with spliced reinforcement, mainly on columns and beams,
was evaluated by [BF10a, BF10b] to derive relations for yield and ultimate deformations.
The latter was defined as corresponding to a 20% drop of lateral force. It is noteworthy
that [BF10b] observed in their database that members with long splice lengths had larger
ultimate rotations than members with continuous reinforcement. Hence, they recommend
to consider both bars of the splices in compression for the section analysis, which results in
a higher flexural stiffness of the section and thus in larger curvature estimates and therefore
partially evens out this underestimation. Furthermore, limiting stress and strain in the
reinforcement according to the length of the splice was recommended. In combination
with the plastic hinge length and deformation estimate according to Equations (2.6) and
(2.36), respectively, the steel strain at ultimate limit state should be limited to a fraction
of the limit strain for continuous bars under cyclic loading €4y, ¢y (Equation (2.30)):
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l l
Esu,s = (1.2 = 0.2) Esucye > ————Ey (2.65a)
Su,min su,min
d
lsu,min = blfy 7 (265b)
(105 +145 (1= 0555 ) (1 0552 ) s eefon) /T

where n,.cs/ny is the ratio of the number of restrained splices n,.s, which are placed in a
stirrup corner or held by a cross tie, to the total number of splices ng;, s is the centerline
spacing of the stirrups and hcon, beon, are the dimensions of the confined core defined by
the center of the stirrups. The minimum splice length increases with increasing transverse
reinforcement spacing, decreasing transverse reinforcement content and decreasing bond
strength, expressed in terms of v/f.. The transverse reinforcement ratio is inserted dimen-
sionless and not as percent value. This expression for the length of splices has also been
included in EC 8, Part 3 [CENO05]. There it is suggested to double the reinforcement in
compression in Equation (2.40) and multiply the resulting ultimate drift with l5/lsy min, if
the latter is smaller than 1.0. [BF10b] did not derive a concrete strain limit explicitly for
members with lap-splices, hence it can be assumed that the limit according to Equation
(2.28) was still valid based on the experimental results included in their database.
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3.1. Introduction

In the following sections, the plastic hinge models presented in Sections 2.2 through 2.7
are applied to test units VK1 - VK7 [Bim10, HBD13]. As stated previously, modeling
the behavior of a structural member using a plastic hinge approach is based on the obser-
vation that inelastic curvatures spread approximately linearly over a certain height and
can therefore be substituted with a constant inelastic curvature over half that height.
With this approach, the local curvature is linked with the global deformation, i.e. the
top displacement, in a simple manner. While the assumption of a linear curvature profile
roughly holds for the test units with continuous reinforcement, this is not the case if the
reinforcement is spliced at the bottom. The application of the plastic hinge models to
determine the force-deformation response of those test units rests therefore solely on the
notion that even though local measures (e.g. curvatures) are considerably affected by the
splice, global measures (e.g. top displacement) are similar before the splice fails.

In Section 3.3, the plastic hinge length is determined from the experiments according to
the procedure outlined in Section 2.2.6 and compared to the predicted plastic hinge lengths
according to Sections 2.2.2 through 2.2.5. Furthermore, the influence of some underlying
assumptions on the experimentally determined plastic hinge length and differences between
experiments and predictions are discussed. The influence of strain penetration on the
experimental results is examined in Section 3.4. In Section 3.5 the material models and
assumptions underlying the moment-curvature analysis are presented and the analytical
relation is compared with measurements. In Section 3.6 the predicted and measured
flexural responses are compared and evaluated; in Section 3.7 the same is done for the
shear deformations. Section 3.8 briefly discusses the predicted and measured influence of
lap splices on the flexural response. Finally, in Section 3.9, the predicted and measured
total deformations are compared and evaluated.

3.2. Experimental data

To ease the understanding of the following sections, the seven tests that were conducted
within the framework of the research project that this study was a part of are briefly intro-
duced in this section. Some important characteristics, i.e. dimensions, longitudinal and
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Table 3.1.: Characteristics of test units VK1 - VKZ7.

Reference Test unit Ls/h [m] Reinforcement Lap splice  f. [MPa]

VK1 3.3/1.5 =22 o = 0.82%, 0, = 0.08%  no splice 39.0
[Bim10] VK2 3.3/1.5 =22 o =0.82%, 0, = 0.08% 43dy, 35.0
VK3 3.3/1.5 =22 o = 1.23%, 0, = 0.08%  no splice 34.0

VK4 3.3/1.5 =22 o = 1.23%, 0, = 0.08% 43dy; 34.6
[HBD13] VK5  4.5/15 =30 o = 1.23%, 0o = 0.08%  43dy 35.2
VK6 45/1.5 =3.0 o = 1.23%, 0, = 0.08%  no splice 44.4
VK7 3.3/1.5 =22 o = 1.23%, 0, = 0.22%  no splice 30.0

transverse reinforcement ratios g; and o, concrete strength f. and lap splice characteris-
tics, of the test units are listed in Table 3.1. In the graphs in the following sections, the
data of each of these tests is always plotted with its specific marker to ease comparisons
between the graphs.

VK1 VK2 VK3 VK4 VK5 VK6 VK7

Figure 3.1.: Sketches of the seven test units [Bim10, HBD13] which are used for model validation
in this chapter after failure.

Figure 3.1 shows the failure modes of the test units. Two test units (VK1 & VK3) failed in
tensile shear combined with a severe damage of the compression zone at the tip of the shear
crack. Test unit VK6, which was a variation of test unit VK3 with higher slenderness,
failed in a flexural shear mode with significant shear cracking and a loss of the concrete in
the compression zone. VK7, which had the largest transverse reinforcement ratio, failed
due to crushing of the concrete in compression. All test units with spliced reinforcement
exhibited a splice failure with spalling of the concrete surrounding the splice.
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Figure 3.2a shows a photo of the test setup. The test units were rigidly connected to
the strong floor by means of post-tensioned bars and rigid horizontal supports and the
horizontal force and deformation at the top was applied with a servo-hydraulic actuator.
Figure 3.2b shows a scheme of the instrumentation whose readings are used in this chapter.
Each test unit was instrumented with a rectangular grid of either optical or Demec mea-
surements on the surface. Furthermore, chains of LVDTs were provided along the sides
of the wall over almost the entire height. The horizontal deformation Ar,, was measured
with LVDTs as well. For further information on the test setup, the testing procedure as
well as a comprehensive summary of the test results, the reader is referred to the reports
[Bim10, HBD13].

ATop F
Optical
measurement
grid
oooooooooo LVDT

e 0 o 0 o o 5 o'Zchains

oooooooooo

oooooooooo

oooooooooo

oooooooooo

oooooooooooooooo

oooooooooo

S . Optical targets and strain
_____ o T gages on reinforcement

(a) Test setup (b) Instrumentation

Figure 3.2.: Photo of the test setup and drawing of the instrumentation which is used in this chapter.

3.3. Plastic hinge length

3.3.1. Experimental plastic hinge length

The experimental plastic hinge length L, has been determined according to the procedure
outlined in Section 2.2.6. To obtain the plastic base curvature ¢, curvature profiles along
the height of the test units have been calculated from the measurements of the LVDTs
along the narrow faces of the piers, see Figure 3.3. In these graphs one can see that the
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Figure 3.3.: Curvature profiles of two test units calculated from LVDT measurements.

profiles determined from positive and negative loading directions are not absolutely equal,
partially due to a not exactly symmetric crack pattern. Furthermore, significant differences
between test units with spliced (Fig. 3.3a) and continuous (Fig. 3.3b) reinforcement are
visible. While the latter has a roughly linear curvature profile near the base once the crack
pattern is fully developed, the former has not. Curvatures clearly concentrate below (at
0mm height) and above the splice (at approximately 600 mm height), before the splice is
damaged at LS pa= 3.0. At later load steps the curvature concentrates in a few cracks
at the bottom. Thus, only test units with continuous reinforcement are considered for the
experimental determination of the plastic hinge length in the following.

Following the suggestion in [Hin02], the curvatures at positive and negative loading direc-
tion at first cycles were averaged and then approximated with a linear least-square error
fit. The first four curvature measurements above the base crack were used for the linear
fit in each case, because inelastic curvatures were commonly observed up to this value,
see Figure 3.4. In these graphs one can also see that while averaging the curvatures may
remove some of the effects of asymmetry, the effect of inclined cracking is still visible and
a clear linear trend was not always perceptible, especially before load steps pa~ 1.5 —2.0
were reached.
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Figure 3.4.: Mean curvature profiles of test units with continuous reinforcement.

If the plastic hinge length corresponded to half the height over which inelastic curvatures
develop, it could be determined from the intersections between the linear approximations
and the first yield curvature. If the first yield curvature which is obtained from moment-
curvature analysis is used in combination with this technique, lengths from approximately
L;, = 230 mm to L;, = 413 mm are obtained, see Figure 3.5. These lengths do not include
strain penetration effects and are plotted against the base curvature obtained by extrapo-
lation of the linear fit of the inelastic curvature profile. As Figure 3.4 shows, extrapolated
base curvatures that are smaller than 0.01 m~! mostly stem from curvature profiles for
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Figure 3.5.: Plastic hinge length that corresponds to half the spread of plasticity, which is determined
from the linear approximation of the inelastic curvature and the intersection with the
analytical first yield curvature.

which the linear fit does not approximate the curvature very well, i.e. the crack pattern in
these cases is not yet fully developed. These results should hence be taken with caution.

To employ the procedure suggested by [Hin02] for the determination of the experimental
plastic hinge length, the experimental plastic flexural deformation A, ¢ needs to be deter-
mined. It was here not determined according to Equation (2.11), i.e. by subtracting the
elastic flexural deformation as well as the shear deformation from the top displacement,
but from the flexural displacements at each load step and at first yield, both computed
by double integration of the experimentally determined curvature profiles:

M

Dpji=8p = Ay g
)

(3.1)

In this equation, the ratio of the moment to the first yield moment M /Mz// is a theoretical
value whereas the displacements are determined from the experimental data. Subtracting
the elastic curvature at the base of the pier ¢; ,M /M, from the total base curvature ¢
yields an estimate of the experimental plastic base curvature ¢, according to Equation
(2.13). In this equation ‘%,a is an analytical value obtained from section analysis, see
Section 3.5, and the total base curvature corresponds to the extrapolation of the linear
curvature approximation to the base. With the so obtained plastic base curvature ¢, and
the previously computed plastic flexural displacement A, ¢, the plastic hinge length L,
corresponding to these deformation was calculated according to Equation (2.12). Table
3.2, row one (L,y(A! ..,)), and Figure 3.6 summarize the results. In Figure 3.6b the plastic

y,exp
flexural drift A, ¢/Ls was plotted against the plastic base curvature ¢, to check if the
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Figure 3.6.: Experimentally determined plastic hinge lengths L, (a) and plastic flexural drift (b).

trend is in fact linear, which it should be if L, was a constant. Both graphs indicate
a decreasing plastic hinge length with increasing deformation and exhibit some scatter
in the predictions. The observation that plastic hinge lengths decrease with increasing
ductility, if they are determined as outlined in this section, has also been made for other
structural walls [DBB09, BDP08]. However, Figure 3.6b also suggests that reasonable
average deformations should be predicted when a constant length is used.

One needs to keep in mind that the plastic hinge lengths determined according to Equation
(2.12) contain a strain penetration component, which can be calculated from the extrapo-
lated and measured base curvatures, ¢, and ¢peasured, according to Equation (2.14). This
equation is based on the assumption that L, is constant in the inelastic deformation range
and rotation due to strain penetration is directly related to Lg, through the plastic base
curvature ¢,. In Figure 3.7a the plastic hinge length from which this strain penetration
length has been subtracted is presented. Even though the factor between the upper and
lower bound, framing most of the values, remains approximately two, the absolute differ-
ence slightly decreased. The graph containing the strain penetration lengths L, against
plastic curvature ¢, in Figure 3.7b suggests that also for Lg,, if the rotation due to strain
penetration is related to ¢,, decreasing lengths L, are necessary instead of constant ones.
Predictions of L, according to Equations (2.5), i.e. with factor 0.014, and (2.3), i.e.
with factor 0.022, have been included for comparison. The other approaches do not all
include a strain penetration component in the plastic hinge length, but add a deformation
component due to anchorage pullout to the top deformation instead.
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Figure 3.7.: Experimentally determined plastic hinge length without strain penetration component
to the left and experimentally determined strain penetration length to the right.

3.3.2. Variations in experimentally determined plastic hinge lengths
a. Previous assumptions and observed trends

As mentioned before, the trend of decreasing plastic hinge length with increasing ductility
has been observed for structural walls before, but for circular bridge columns, the inverse
trend has also be observed [GKN12]. To find out why opposite trends were obtained,
the assumptions underlying the determination of L, were investigated, as shown in the
following sections. In the previous section, the center of rotation was assumed to be at
the base of the pier. Furthermore, the first yield flexural displacement as well as the total
flexural displacement were calculated by integrating the curvature profiles obtained from
the LVDT readings. To obtain the first yield flexural displacement, the LVDT readings
taken when the theoretical first yield force according to moment-curvature analysis was
reached were integrated. This means that all deformation values were measured ones and
contained the influence of anchorage pullout. Anchorage pullout was not measured directly
in the inelastic range in any test and could hence not simply be corrected for. When
the plastic hinge length was determined, the averaged curvature profile from positive
and negative loading direction was used for the linear fit and the extrapolation of the
base curvature ¢, and the average flexural deformation of both excursions was taken as
corresponding displacement. Theoretical values from the moment curvature analysis were
used for both the first yield curvature and moment.

b. Experimental and analytical first yield displacement

While the detailed experimental values are necessary references to evaluate the accuracy of
a theoretical prediction or assumption, one also needs to bear in mind that in a prediction
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several assumptions are combined to obtain a result. Hence, an estimate that provides
the best global results in combination with other assumptions is not necessarily the most
accurate estimate of the actual local deformations. In the plastic hinge analysis, a hinge
length estimate is combined with an analytically determined first yield displacement with
the aim to obtain a good estimate of the total flexural deformation. Therefore, a possible
influence of exchanging the experimental flexural deformation at the theoretical first yield
load for the analytical first yield displacement (Aj , = gng /3) should be considered.
Figure 3.7 shows the plastic hinge length that corresponds best to the actual flexural
displacements when the procedure in Section 2.2.6 is followed, whereas Figure 3.8a shows
the plastic hinge lengths that correspond best to the total flexural deformation if only
analytical input values (¢}, ,, A} ;) are used. The latter follow a more constant trend
over the ductility range. At low ductility levels, the flexural deformations are small and
an overestimation of the first yield displacement has a larger relative influence on the

predicted plastic flexural displacements and thus the plastic hinge lengths derived from
these.
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Figure 3.8.: Influence of using theoretical first yield displacement on experimentally determined
plastic hinge lengths from which the strain penetration component according to Eq.
(2.14) has been subtracted.

A change in the trend of experimentally obtained plastic hinge lengths has not only been
observed for VK1 to VK7, but also for the mostly capacity designed walls with slenderness
Ls/h = 2.26 — 2.28 tested by Dazio [DWB99], refer to Figure 3.8b. As mentioned above,
decreasing plastic hinge lengths with increasing ductility are predicted for these walls
as well when only experimental displacements are used (compare Fig. 15e in [DBB09)).
Using analytical first yield displacements instead even leads to a reversed trend for some
walls. Especially for WSH5, which had a relatively high axial load ratio of n = 0.13
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in combination with a low longitudinal reinforcement ratio of p = 0.39, the first yield
displacement is grossly overestimated, which leads to short plastic hinge lengths. The first
yield curvature was calculated according to Section 3.5 and the ductilities were calculated
using the nominal yield displacements reported in [DBB09].

As already indicated, the change in the trend is mainly due to the fact that the experi-
mental first yield displacement is overestimated with the analytical expression, which has
a larger relative influence at low ductility levels. For test units VK1 to VK7, the predicted
displacements are 5-36% larger than the measured ones. One possible reason for this is the
neglect of tension stiffening in the moment-curvature analysis, which results in an overes-
timation of the predicted first yield curvature. Another reason is the observed nonlinear
curvature profile along the height of the test unit. Figure 3.9 shows averaged curvature
profiles (VK3: curvature at LS F, South, as no data was available for F North) at the
load step at which the theoretical yield force was reached that were normalized with the
corresponding analytical curvature qﬁfy,a. For comparison, the curvature profile that results
from the moment-curvature analysis (M-¢) is included as well. As the dashed line in the
figure indicates, the curvature along the height is overestimated with the assumption that
it is decreasing linearly. The real curvature profile has a more concave shape, that means
especially the curvatures in the central to upper part of the structure are smaller than
assumed. Comparison with the analysis shows that this corresponds well to the results of
the moment-curvature analysis, according to which the pier is at this stage still uncracked
in the upper part. The photos taken of the test units also show that the piers are only
partially cracked when the first yield load is reached. The linear curvature profile on the
contrary would results if the pier had a uniform bending stiffness over the height, i.e. was
either fully cracked or completely uncracked.

c. Incorporation of strain penetration

As mentioned previously, slip of the reinforcement bar right above the foundation was not
measured in the inelastic deformation range. Hence, no direct correction for the deforma-
tion component due to anchorage slip could be made. However, by linear extrapolation
of the experimentally determined curvature profiles to the base of the pier one obtains
an estimate of the base curvature without strain penetration influence. One possibility to
correct for the influence of strain penetration is then to use this extrapolated curvature
¢y instead of the measured curvature ¢,,cqsured When integrating the curvature profile. By
doing so, the top displacement A = Ay, + Ay, is obtained, whereas, so far, the top
displacement A = Ay + Ay, + Ay, was computed and the strain penetration length
subtracted from the plastic hinge length.

Figure 3.10a shows the plastic hinge lengths that result if the curvature profile which con-
tains the extrapolated base curvature instead of the measured base curvature is integrated.
Comparison with Figure 3.8a reveals that, again, changing the calculation procedure, has
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a pronounced influence at low ductility levels. Besides the correction for strain penetra-
tion, all calculations were performed as in the previous section. The differences between
the results in this and the previous section can be explained by looking at the equations
with which each quantity was determined and the formulation that results for L;, if all
equations are combined in one. In the previous approach, L, was calculated from the
top displacement Ag + Ay, and Lgy = Li(dmeasured/ Py — 1) was subtracted afterwards to
obtain Lj, = L, — Lg,. According to Equation (2.14), Ly is the actual base length of the

measurement device. This means the final equation results as L; = L, — Lb@ where

[
¢5p = (bmeasured - ¢b-

If, on the contrary, the measured curvature at the base ¢.cqsured 1S replaced with the
extrapolated curvature ¢, before the integration of the curvature profile and the top dis-
placement Ay is determined, L; changes. In this case, the plastic hinge length finally

follows to be L), = L, — Ly ¢>ij:¢§,( - 2LTbS) The term (1 — 2LTbS) is approximately one and
does hence not explain the difference between the obtained plastic hinge lengths. But
comparison between the this equation and that of the previous section shows that while in

this case the term L ¢;bj’(’z), is subtracted from L,, the term L, (Zf” is subtracted from L, in
Y

b
the previous case. Especially at small ductility levels, when ¢, might not be much larger
than gb; (compare Figure 3.4), this changes results significantly. Hence, even though the
strain penetration effect is corrected for based on the same curvature ¢, in both cases, the
term that is subtracted from the plastic hinge length L, varies.
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Chapter 3. Application of plastic hinge models

d. Location of the center of rotation in the plastic hinge

Another assumption with a potential influence on the experimental plastic hinge length
estimate is the location of the center of rotation. As mentioned, this far the center of
rotation was assumed to be at the base of the structures, which complies to Equations
(2.32) and (2.38) for the flexural response. However, one can also assume that the center
of rotation is located at the center of the plastic hinge. This assumption conforms to the
solution obtained by integration of the idealized curvature profile shown in Figure 2.1,
which is also employed in Equation (2.41). With this assumption, the plastic flexural
displacement and the corresponding plastic hinge length L;, = L, — L, are computed as
follows:

L/
Ap 1= dpLy, <Ls - 7”) (3.2a)

[ 28,5
— L =L — L2~ (;;f (3.2b)

Strictly speaking, this is only valid if the plastic hinge length and hence also the plastic
flexural top displacement do not contain a component due to strain penetration. To
obtain a flexural top displacement that reflects only the deformation in the pier itself, the
measured base curvature has been substituted for the linearly extrapolated base curvature
prior to the integration. This replacement of curvatures has already been done in the
previous section. The analytical first yield flexural displacement and the experimental
total flexural displacement have been used again. Figure 3.10b shows that, compared to
Figure 3.10a, shifting the center of rotation to midheight of the plastic hinge leads to a
further reduction of the plastic hinge lengths by about 5%. The reduction can easily be
explained by examining the plastic top displacement and Equation (2.12). The plastic
displacement is either calculated by multiplying the curvature with L or Lg — 0.5L,,
hence the ratio between the top displacements obtained with the different locations of the
center of rotation is (Ls — 0.5L,)/Ls. With a plastic hinge length of L, = 400 mm ratios
of ~ 95% and thus 5% difference between the top displacements are obtained for the four
examined test units with continuous reinforcement. Therefore, if the top displacement is
given and the plastic hinge length is derived from it, the difference in the obtained plastic
hinge length must also be approximately 5%.

3.3.3. Summary and comparison of plastic hinge lengths
The equations presented in Section 2.2, have been used to predict the plastic hinge lengths

of test units VK1-VK7. The material properties that are necessary for the determination
of the plastic hinge length are provided in [Bim10, HBD13] and repeated in Table 3.1.
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Figure 3.10.: Influence of the method for the correction of strain penetration and of the assumed
location of the center of rotation.

For the steel, yielding stresses of f, = 521 MPa were used in all cases and ultimate steel
stresses of f, = 630 MPa (VK1-VK3) and f, = 609 MPa (VK4-VKT), respectively. The
bar diameter was always dp; = 14 mm.

Table 3.2 summarizes the results for all test units. It shows the mean values and standard
deviation of the plastic hinge lengths that were back-calculated from the peak flexural dis-
placements of cycles with displacement ductilities pa > 1.0 according to the procedures
in the preceding paragraphs. The equations that were used for the predictions are re-
peated below the table for convenience. Furthermore, it is indicated whether a component
accounting for strain penetration is included in L, or whether the value represents a net
plastic hinge length without this component L}, and where the center of rotation is assumed
to be located (at midheight of the plastic hinge or at its base). When the experimental
first yield displacement AJ ., is exchanged for the analytical A} ,, the strain penetration
component is not affected, hence the plastic hinge length LP(A;M) can be obtained by
adding Lg, (row 2 of Table 3.2) to Lj,(A] ,) (row 4 of Table 3.2). For comparison with
the plastic hinge lengths calculated from the top displacement, the plastic hinge lengths
determined from the spread of plasticity, shown in Figure 3.5, are included in row 6 of
Table 3.2.
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Table 3.2.: Summary of experimentally determined and predicted plastic hinge lengths L,, strain
penetration lengths Ls, and net plastic hinge lengths L, = L, — L. All lengths are
given in mm as mean value with standard deviation.

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7
Experimental
L, (A; cap) 5404260 4914181 4834138 478+132
Ly, 51447 T7+£54 73+66 14080
Ly, (A} cxp) 4894218 4144132 410472 338452
L, (A;M) 303+£22 337467 386+54 325442
L, (A} 4:6%) 286+41 263446 368+32 266£37
L;),mh (A 4,¢%) 300+45 275+50 385435 278+40
Lj, = 0.5L,, 317+36 275£31 386429 319+42
Predicted
Eq. (2.2) =L, 599 599 599 572 612 612 572
Eq. (2.9) = 419 414 412 412 467 479 405
Eq. (2. 6b) pmh 520 520 520 520 600 600 520
Eq. (2.7) = pmh 538 546 548 546 585 570 556
Eq. (2.10)= p mh 535 530 529 530 610 621 509

A’ o and A;’emp indicate whether the analytical or experimental first yield displacement has been used.

¢* indicates that the measured base curvature has been replaced with the extrapolated base curvature
prior to integrating the curvature profile and thus determining A ;.

Index mh indicates that the center of rotation was assumed at the center of the hinge, whereas in all other
cases it was assumed at the base of the hinge.

Eq. (2.2) [PCKO07] L, = kL, +0.2h + Ly,
Eq. (2.9) [BA11] L, = (0.2h + 0.05L,) (1 - 1.5&) < 0.8h
Eq. (2.6b) [BF10b] L, = 0.2h (1 + % min (9, %2))
Eq. (2.7) [CEN05] L, = Ls +02h+011d\”/’%

_ fyvou Ls 0.45
Eq. (2.10) [Kazl3] L, = 0.27h( - —f) (1 — Ju ) (L)

54



3.3. Plastic hinge length

3.3.4. Discussion of plastic hinge lengths

Two main conclusions can be drawn from the experimental results shown in the previous
section: The experimentally determined plastic hinge length is very sensitive to some of
the assumptions made for backcalculating the length and it does not necessarily appear
to be constant but rather dependent on ductility.

Regarding the sensitivity to certain assumptions, Section 3.3.2 has shown that especially
the determination of the first yield displacement and the approach to correct for the in-
fluence of strain penetration influence the results. In the original approach, the first yield
displacement was taken as the mean flexural displacement in positive and negative loading
direction corresponding to the analytical first yield force. However, in plastic hinge mod-
eling one obviously has to add the predicted plastic flexural deformation to an analytical
estimate of the first yield displacement. Hence, the plastic hinge length was also backcal-
culated from plastic flexural deformations that were determined based on an analytical
first yield deformation. This method yielded, in contrast to the original method, a more
constant estimate of the plastic hinge length. This was mainly due to an overestimation of
the first yield displacement which influences in particular the plastic hinge length at low
displacement ductilities. Besides the first yield displacement, the method that was chosen
to correct for the influence of strain penetration significantly influenced the results. As the
rotation due to anchorage slip, which essentially corresponds to the rotation due to strain
penetration, was not measured directly during the experiments, the strain penetration had
to be corrected for in an approximate manner. As outlined in Section ¢ this does again
influence primarily the plastic hinge lengths that are obtained for low ductility levels.

Due to the approximate correction for the strain penetration effect and because all predic-
tions must be based on an analytical first yield displacement, it seems reasonable to use
mainly L, (A} ,) and Ly ,n(Aj ) for comparison with the predicted plastic hinge lengths.
Regarding the estimate of the first yield displacement, one might of course argue that
the prediction of Afy needs to be improved instead of correcting for an overestimation of
the displacement with an underestimation of the plastic hinge length at low ductilities.
However, one needs to keep in mind that the two main causes for the error in the first
yield displacement seem to be the nonlinear curvature profile and possibly the neglect of
tension stiffening in the moment-curvature analysis. However, the curvature profiles of
the different test units are not uniform, as evident in Figure 3.9, and tension stiffening
can only be incorporated in the moment-curvature analysis with certain approximations.
Hence, accounting for these effects would complicate the determination of the first yield
displacement, but not improve it significantly. For this reason, the experimental plastic
hinge lengths that are based on the analytical estimate of the first yield displacement are
used for comparison here. As Table 3.2 shows, the predictions generally overestimate the
plastic hinge lengths. The prediction according to Equation (2.9) yields the estimate that
is closest to the experimental ones. In the following sections, the plastic hinge lengths will
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be further evaluated based on the predictions of the displacements that are obtained with
them.

3.4. Strain penetration influence

3.4.1. Experimentally determined strain penetration influence

As the first part of the examined test series showed that this issue needed to be investigated
[Bim10], the anchorage slip was directly measured with an optical system and targets that
were glued to some reinforcement bars right above the foundation in the second part of the
series (i.e. VK6 and VK7, [HBD13]). To measure the strain of the same bars, these bars
were also instrumented with strain gages. Figure 3.11a shows the experimental data for
load steps that were reached prior to the attainment of the first yield load. For comparison,
the predictions according to the approaches introduced in Section 2.3 are included in the
graph as well. As evident from Figure 3.11a, the experimental data follows a clear trend
and from extrapolation of the slip to the yield strain a slip value between those according
to [BF10a] and [ZS07] would result. These two predictions are made only for the yield
strain and were linearly connected to zero in the plot.
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Figure 3.11.: Anchorage slip against strain measured during the experiment compared to predic-
tions (a) and experimentally determined rotation due to strain penetration against
extrapolated base curvature compared to predictions (b).

With a slip of §; = 0.35 mm at yield and the neutral axis location according to the respec-
tive moment-curvature analysis a rotation due to strain penetration g, of 0.33 - 1073 and
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3.4. Strain penetration influence

0.35- 1073 is predicted for VK6 and VK7, respectively. With this rotation top displace-
ments of Ay, = 1.5mm (VK6) and A, = 1.2mm (VK7), corresponding to around 10% of
the flexural deformation at first yield, are obtained.

When the load steps in the inelastic range were reached, the measurement targets had
usually fallen off because the concrete started spalling and the strain gages were no longer
working either [HBD13]. Hence, the slip corresponding to the strain could no longer be
experimentally determined. Therefore, another way of investigating the strain penetration
effects and visualizing the data had to be chosen. Figure 3.11b shows the rotation due
to strain penetration 6y, against the extrapolated base curvature ¢,. The experimental
base curvature was determined by linear extrapolation of the curvature profile as shown in
Figure 3.4. The rotation due to strain penetration corresponds to the difference between
the measured rotation and the rotation resulting from this extrapolated base curvature.
Predicted rotations were obtained from the slip estimates determined with the various
equations and the neutral axis location, strains and curvatures from the moment-curvature
analysis of VK7. If the strain penetration length was constant, a linear prediction of the
rotation due to strain penetration with gradient Ly, = 05,/¢, would result. This is the
case for the prediction according to [PCKO07], whereas the remaining predictions as well
as the experimental data in Figure 3.11b do not indicate such a linear relationship.

3.4.2. Discussion of strain penetration estimates

With regard to the estimate of the reinforcement slip in the elastic range, Figure 3.11a
shows that the differences in the examined approaches are relatively small and all equations
yield satisfying estimates. The best prediction of the slip is here obtained with Equation
(2.19) [ZS07], which exactly matches the strain-slip relationship that was obtained from
the experimental data.

Concerning the slip and the corresponding rotation in the inelastic range, Figure 3.11b
shows that it is difficult to draw conclusions from the available experimental data. As
already obvious in Figure 3.7, assuming a constant strain penetration length seems to
overestimate the strain penetration effect in the inelastic range. However, which approach
is most suitable to determine the actual effect is hard to tell as the experimental data does
not show a clear trend. This might be due to the way the experimental base curvature
is determined. Linear extrapolation can be difficult, depending on how well the crack
pattern is developed (see load step ua=2.0 of VK6 in Figure 3.4, for instance), and it is
also questionable to which extend the linear approximation is usable. As evident in Figure
3.4 it is certainly a reasonable assumption, but Figure 3.9 indicates that the curvature
profile is in fact slightly curved. This curved shape is also visible at load steps in the
inelastic range. Even though this appears to be a minor variation in the curvature profile,
the extrapolated base curvature and the results obtained with it could be notably affected
due to the high gradient of the inelastic curvatures.
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Chapter 3. Application of plastic hinge models

3.5. Moment curvature analysis

The results of moment-curvature (M-¢) analyses made with varying material models and
softwares were compared with the experimentally obtained M-¢ relationship. For the
latter, the readings from the LVDTs just above the basecrack, measuring the elongation
between 50-200 mm height, were used. Eventually, fiber based calculations made with
MATLAB® [Mat10] were employed for all further calculations. The concrete was modeled
according to the confined concrete model proposed by [MPP88], see Figure 3.12b:

fee = fe —1.254+2.254\/1+ L _ofi

A (3.32)

Eec = o <1 +5 (ff— - 1)) (3.3b)

where f.. and e.. are the confined concrete strength and strain corresponding to peak
stress, respectively. f/ is the lateral confining pressure exerted by the stirrups and is
calculated as fl"x = kcon0s fyv and fl/,y = kcon 0y fyv in each direction with the confinement
effectiveness factor k.o, according to Equation (2.29). This constitutive relationship for the
concrete was chosen over the modified Popovics model [Pop70, TTJ87], because it provided
better post-peak responses than the latter, with which the moment capacity degraded too
fast. All concrete inside the centerline of the stirrups was assumed to be confined. For
the unconfined cover concrete a spalling strain of . = 0.004 was assumed. Since a linear
degradation of stress between twice the strain at peak stress (here .o = 0.002) and the
spalling strain is recommended, the stress was assumed to drop to f. = 0 at . = 0.004,
see Figure 3.12b. No tension stiffening is considered, because as stated by [BF10a], the
tension stiffening effect is degrading due to the deterioration of bond under cyclic loading
and can therefore generally be neglected in cyclic analysis. The tensile strength of concrete
was considered in the analysis in order to capture the first kink in the M-¢ response that
was also observed in the experiments.

A bilinear steel constitutive law with strain-hardening was chosen over the measured stress-
strain relationship for the determination of the plastic hinge lengths as well as for the
moment-curvature analysis because of the cyclic loading. Depending on the loading his-
tory, the envelope under cyclic loading might be very different from that under monotonic
loading. Test data indicates that when steel is subjected to large load reversals the yield
plateau disappears due to the Bauschinger effect and the ultimate stress might increase due
to isotropic strain hardening. To account for these effects, [SM79] introduced a strain and
stress shift in their cyclic steel model. Similar observations were made in [MBP76, FPB83].
Even though the exact steel strain-history during the tests remains unknown, it is deemed
reasonable to assume that the yield plateau disappears because the steel strains are ex-
pected to alternate between tensile and at least small compressive strains. A stress shift
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Figure 3.12.: Experimental and analytical moment-curvature relationships and constitutive rela-
tionships used for the analysis.

is not included since this is strongly dependent on the load history and reported to be
small [SM79, FPB83]. One can note, however, that due to the rather small f,/f, ratio,
the choice of the steel constitutive relationship has merely a moderate influence on the
results.

All material properties not explicitly mentioned herein were taken from [Bim10, HBD13].
A normal force of P = 1350kN was considered in the M-¢ analysis of all test units with
aspect ratios of Ls/h = 2.2 and P = 1365kN in the analysis of those with Ls/h = 3.0.
The material models as well as the predicted and experimentally determined moment-
curvature relationships are shown in Figure 3.12. The experimental moment-curvature
relationships were obtained by averaging the readings of the LVDTs located 50-200 mm
above the base in positive and negative loading direction. Only the data of the test units
with continuous reinforcement is included here, as the experimental data of the test units
with splice is influenced by the splice and hence not apt for comparison with the analysis.

As evident in the figure, the moment-curvature response is captured well with the predic-
tions. The post peak response is predicted well until a strong degradation sets in for VK1
and VK3. This degradation was due to the onset of shear degradation in the experiment
and thus due to a mechanism that cannot be captured with section analysis. The maxi-
mum moment of VK6 is slightly underestimated but the post-peak response is captured
well, whereas the post-peak moment capacity of VK7 is slightly underestimated. Before
the cracks developed in the instrumented section of the test unit, the stiffness is obviously
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Chapter 3. Application of plastic hinge models

underestimated by the analysis. However, despite these small deviations, one can conclude
that the analyses predict the responses well and should thus provide a good basis for the
plastic hinge modeling approach.

3.6. Flexural response

3.6.1. Summary of approaches

The flexural deformation of test units VK1-VK7 was modeled according to the approaches
introduced in Chapter 2 using the plastic hinge length predictions provided in the bottom
part of Table 3.2. Table 3.3 gives an overview over the employed approaches for deter-
mining the flexural displacement and the plastic hinge length used in relation with each of
them. Note that Equations (2.39) and (2.35) are included here without the components
that account for shear deformations, as only the flexural deformations are of interest at
the moment. The component which accounts for an increase of deformation due to shear
cracking was considered nevertheless, as it was interpreted as a tension shift component
and not as shear deformation component. An approach using the plastic hinge length for
capacity designed walls according to [Kazl3] is not included, but it should yield similar
estimates as that labeled [BF10] as the plastic hinge lengths are similar (see Table 3.2).
The last equation (EC8-3 Equation (2.40)) does not utilize the plastic hinge length and is
repeated here without the terms that are not relevant for the investigated piers for ease
of reading. That means the terms that equal one, i.e. the ratio of the mechanical rein-
forcement contents w’/w and the term accounting for diagonal reinforcement, are omitted
here.

3.6.2. Limit strains and curvatures

The ultimate curvature can either be calculated according to Equation (2.31) or it can be
defined by the strain limits according to Equations (2.26) to (2.30). Table 3.4 provides
on overview over these strain limits and Table 3.5 summarizes the curvature limits that
result from these strain limits as well as the directly calculated curvature limits.

To check whether the predictions agree well with the experiments on a global and a lo-
cal level, the predicted and measured deformations corresponding to certain force and
strain levels were compared. First, the predicted flexural deformation at first yield force
was compared to the experimentally determined flexural deformation at first yield force.
Figure 3.13a shows flexural drifts that were predicted at first yield force against the exper-
imental drifts. In case of the first yield values, the mean flexural first yield displacement,
determined from the first cycle in positive and negative loading direction, was used as
experimental value. As the first yield displacement is defined by the corresponding lat-
eral force, the displacements of all test units can be used for comparison. The shapes of
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3.6. Flexural response

Table 3.3.: Overview over approaches to determine the flexural displacement and related plastic
hinge lengths. The last column shows the legend entry that is used for the corresponding
approach in the following figures.

Reference Equations for flexural deformation and plastic hinge length.  Legend
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[CENO5]  Eq. (241): A, = ( 0, + (b — &)L, ( - pr)) Ly EC8-3
d
Eq. (2.7): L,=%:+02h+0.11 yfiu
o d
[BF10a] Eq. (2.35): Al =g Lathey 4 oih
L
By O (2307 Au= A)+ Suy + (90— ) Ly (1-32) L, [BF10)
Eq. (2.6b): L, =0.2h (14 $min (9, %))
Eq. (2.38): Al =6/ (Ls+ Lgy)* /3
[PCKO7] A=nyM (¢ - %Mﬂy) LyL, [PCKO7]
Eq. (22): Ly =02(fu/fy — 1)Ls + 0.2k + L,
Eq. (2.38): ' 12/3
peKor] Do (238) o/
A AL (¢> ¢, )LpLS [BA11]
[BA11]  Eq. (29): L, = (0.2h+0.05L,) ( - 1.5&) <0.8h
8.25 0.225 L 0.35 kcongvfy'u
[CENO5] Eq. (2.40): A, = $550.3" )22 (5)77 257 7o L, EC8-3

Eq. (2.40)

Table 3.4.: Steel and concrete strain limits suggested for the use in plastic hinge analysis. Only one
value is given if the strains vary only slightly due to different f..

Test unit VK1-VK3 VK4-VK6 VK7

Eq. (2.26) Eew = 0.004 + 14“}7‘5 ~53%  ~51%  7.8%o

Eq. (2.27) ou = 0.6c54 75.6%0 66.0%  66.0%¢
3

Eq. (2.28) e = 0.0035 + ( L )2 g Othemmnlie 480 AT 86

Eq. (2.30) Esu = Segu = 0.375e4, 47.3%o 41.3%  41.3%o
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Chapter 3. Application of plastic hinge models

Table 3.5.: Curvature limits suggested by [KGY12] compared to the curvatures corresponding to the
strain limits in Table 3.4.

Test unit VKI VK2 VK3 VK4 VK5 VK6 VK7
Curvature m—! x1073 %1073 X103 x1073 x1073 x1073 x103
Eq. (2.31) 52.8 51.7 51.3 45.0 49.4 51.7 41.8

Eq. (2.26) & (2.27) 210 192 160 156 153 176 221
Eq. (2.28) & (2.30) 193 177 146 148 145 163 244

the markers in Figure 3.13 correspond to the respective test unit and the colors indicate
which approach for determining the flexural displacement has been used. The approaches
to calculate the flexural deformations have been named as shown in Table 3.3.

Second, the flexural drift corresponding to the ultimate concrete strain e., according to
Equation (2.28) was compared. Only the experimental flexural displacement in positive
loading direction was used for comparison. The strain was compared to the strain obtained
from the second LVDT above the base, i.e. the one at 50-200 mm height. Only the positive
loading direction was chosen because compressive strains in positive and negative loading
direction showed considerable differences during the same cycle. As the positive loading
corresponds to the first loading direction, the strain measured in this direction was deemed
an appropriate comparison, because it might be slightly less influenced by previously
applied tensile strains. Only test units with continuous reinforcement are included in the
latter plot because the strains measured at the bottom of the pier are affected by the
spliced reinforcement.

The strain limit that is predicted for VK7 (8.6%0) is considerably higher than the strain
limits of the other test units. Furthermore, the concrete to which the LVDTs are attached
is already considerably damaged at this point. Thus, a concrete strain limit e, = 0.004
was chosen for comparison in the plot. The limit strains of all other test units are within
the range that was well measurable by the LVDTs and hence included in the plots. As
the prediction of the displacement according to Equation (2.36) [BF10] can only be made
corresponding to the higher limit strain, it is not included for VK7. The drift capacity
according to EC8-3 Equation (2.40) [CENO5] is not included in Figure 3.13 as it could
only be used for the ultimate drift but is not directly linked to a strain limit.

Comparison between the experimental and analytical first yield drift shows that this drift
is generally slightly overestimated. This can be explained with an overestimation of the
curvature at the first yield moment, see Figure 3.12, as well as with the concave instead
of linear curvature profile at first yield, see Figure 3.9. Nevertheless, the drift is predicted
well, except for VK1 & VK2, if the approaches named [PCKO07] and [BA11] are used.
Considering strain penetration at this stage leads to a slightly larger overestimation of the
drift than not considering it, even though the experimental data is not corrected for this
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Figure 3.13.: Comparison of predicted and measured flexural drifts. The shape of the symbols
corresponds to the test unit and its color to the applied model.

effect. Approaches [BF10] and “EC8-3”, which include an influence due to shear cracking,
significantly overestimate the flexural drift of all test units with Lg/h = 2.2 at first yield,
for which shear cracking is predicted. However, also the flexural drift of VK5 and VK6,
which does not include this component as shear cracking is expected only for forces that
are higher than Fé, is larger than measured. As the equations of both approaches differ
only very little in the term accounting for the reinforcement slip, the predictions obtained
with these two approaches are almost equal.

Similar observations are made for the drift at ., with relatively large overestimation of
drift according to [BF10b] ([BF10]) and [CENO05] (EC8-3). With the approach according
to [PCKO07], the drift prediction of VK6 and VKT is satisfactory, whereas a larger overes-
timation of drift is obtained for VK1 and VK3. The best estimate on average is obtained
with the approach labeled [BA11]. As the same moment curvature analysis is used for all
predictions, this good correspondence of results indicates that the plastic hinge estimate
according to [BA11] yields the best results in combination with the refined approach to
determine the flexural deformations according to [PCKO07]. Concerning the limits them-
selves one can furthermore note that the strain limits result in comparable curvature limits,
whereas the limit curvatures according to [KGY12] are about three times as high, see Ta-
ble 3.5. This is most likely due to the fact that these curvatures were determined from
a numerical model of walls with confined boundaries. This type of walls is expected to
sustain much higher curvatures than piers with detailing deficiencies that are considered
here. Besides, this curvature limit is dependent only on the steel strain, whereas in the
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Chapter 3. Application of plastic hinge models

other cases as well as in the experiments themselves, the limit strain and thus the failure
of concrete was governing.

3.6.3. Force-flexural deformation response

In Figure 3.14, the predictions of the flexural deformations of two test units are compared
with the experimental data. One is the prediction of the force-displacement relationship of
VK1, which is the test unit with the lower longitudinal reinforcement ratio and continuous
reinforcement. Yield and “ultimate” deformation were overestimated with all approaches
for this test unit, see Figure 3.13. However, in Figure 3.14 one can see that especially with
the comparatively short plastic hinge length according to [BA11] and no consideration of
strain penetration, the estimate of the force-deformation relationship is satisfactory. In the
two continuous predictions using the refined approach according to Equation (2.38), the
displacements corresponding to the limit curvatures summarized in Table 3.5 are marked
with dots. These graphs show that the strain limits correspond to a point in the response
that is attained right after peak load and hence provide a conservative displacement limit.
The curvature limit for capacity designed walls, on the other hand, results in displace-
ment capacities that are significantly larger than the measured ones. With the approach
[BF10] the deformation capacity is overestimated as well. For more clarity in the plot,
the prediction named “EC8-3” has not been plotted, but as Figure 3.13 shows, it yields
approximately the same deformation as [PCKO7] in this case. The drift capacity for the
“near collapse” state according to EC8-3 is included in this plot (“EC8-3 Eq. 2.40”), but
overestimates the drift capacity. It should be noted though, according to [CENO05], the
predicted ultimate drift value needs to be divided by 1.5 for “primary seismic elements”.
However, this is not necessary for “secondary” elements and was thus interpreted as safety
factor. Therefore, this factor was disregarded for the predictions displayed in Figure 3.14.

Test unit VK7 is shown because both the first yield displacement and the displacement
at which €. = 0.004 concrete strain was reached were predicted well. In Figure 3.14 one
can notice a difference between the force-displacement relation measured in positive and
negative loading direction, which is due to a better confinement of the compression zone in
positive loading direction. In negative direction, the confinement was weakened because
the locks of all the stirrups were placed at the side of the pier which was the compression
zone in that loading direction. While the force in positive loading direction is underesti-
mated, displacement predictions are partially satisfactory. The force-displacement predic-
tion that is be obtained with the prediction labeled “EC8-3” in Table 3.3 is not included
for clarity, but Figure 3.13 shows that this approach predicts a larger deformation capac-
ity than [PCKO07]. The drift capacity according to [CEN05] “EC8-3 Eq. 2.40” does again
yield unconservative predictions of the deformation capacity if the “safety factor” of 1.5
is neglected.
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Figure 3.14.: Prediction of load - flexural deformation relationships and measured values.

3.6.4. Discussion of flexural deformation results

Generally, Figure 3.13 shows that all approaches tend to overestimate the flexural defor-
mation corresponding to a certain concrete strain at the base of the pier at least slightly.
With regard to the first yield displacement, especially the approaches that consider an in-
crease in deformation due to inclined cracking, i.e. Equation (2.35) [BF10a] and Equation
(2.39) (EC8-3 [CENO05]), overestimate the deformation significantly. Very good agree-
ment is obtained with the other approaches except for the two test units with the lowest
longitudinal reinforcement ratio. For these test units, the first yield displacements was
overestimated by 36% to 93%.

Regarding the displacements at which the concrete strain according to Equation (2.28)
was reached, there are considerable differences in the approaches as well. Also for this
ultimate limit state, Equation (2.36) [BF10b] predicts the largest displacement. The
prediction with the plastic hinge length according to Equation (2.9) [BA11] agrees best
with the measured displacements on average. This plastic hinge length is the shortest
one among all the predictions and contains no strain penetration influence. Besides, it
considers a decreasing effect due to the applied axial load.

Figure 3.14 shows that even though the drift corresponding to a certain strain might be
overestimated (compare Figure 3.13), the overall shape of the response is still captured
relatively well with the refined predictions. The only prediction with a larger deviation is
that according to [BF10a] because of the previously mentioned consideration for inclined
cracking (term ¢ k. Ls/3 in Equation (2.35)). Figure 3.14 also indicates the displacements
at which, according to the predictions, the limit curvatures listed in Table 3.5 are reached.
As mentioned before, the limit curvature according to Equation (2.31) results in a large
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overestimation of the deformation capacity regardless of the plastic hinge length. This
is due to the fact that this curvature limit was derived for capacity designed walls and
depends only on the steel strain. The other two curvature limits, on the contrary, are
defined by the concrete limit strain, which was always reached first, according to the
analyses. This is in line with the experiments, where degradation of the shear capacity
was always triggered by damage of the concrete in compression. One can note, though,
that the displacement capacities predicted with these strain limits are rather conservative
and correspond to a state that is reached shortly after the peak load. The displacement
capacity that corresponds to the onset of the stronger degradation could not be captured
with any of the existing limits. However, this degradation is also related to a changing
mechanism for all test units that eventually failed in shear which cannot be captured with
the plastic hinge modeling approach. Based on the remaining test unit VK7 that failed
in flexural compression, no improved limit strain could be established. A model which is
capable of predicting the onset of shear degradation will be discussed in Chapter 5.
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3.7. Shear response

3.7.1. Introductory remarks

In this section, the shear deformation is investigated in more detail. First, the experimental
data is presented and compared to the predictions according to the models reviewed in
Section 2.6. Based on the evaluation of this comparison, modifications of the existing
models are examined. In particular the prediction of the crack angle and the inclusion of a
correction factor accounting for the shear resistance are investigated to this end. Finally,
based on a different evaluation of the experimental data, an alternative approach to relate
the shear deformation to the axial elongation is developed.

3.7.2. Experimental data

To compare the predictions with the experimental data, flexural and shear deformations
were calculated from the Demec or optical measurement data of each test unit (see Figure
3.2b for a drawing of the measurement grid). The deformation components at the top
of element i were calculated from the outer columns of the measurement grid according
to Equation (3.4) and Figure 3.15, with b = 1350 mm and A = 150mm. The overall
measurement grid was 9 x 150 mm = 1350 mm wide in each case and between 2550 and
3600 mm high, depending on the height of the pier. No correction for curvature was made
as it is assumed that the curvatures are constant over the height of 150 mm, for which the
shear deformations are calculated.

h?
Aygri=Ap i1 +0i—1h + ¢2
D}, — D3,

Agi=A0Ag1+ 0

Figure 3.15.: Calculation of shear and flexural deformation for an element defined by four measure-
ment nodes.

In Figure 3.16 the ratio of shear to flexural deformations of test units VK1-VK7, calculated
according to the procedure outlined above, is plotted against the imposed displacement
ductility. The shear deformations include the sliding deformation and the flexural defor-
mations include the deformation due to strain penetration. In the figure, the average ratios
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Figure 3.16.: Experimentally determined average shear to flexural deformation ratios as computed
from optical measurements at positive and negative first loading cycles against dis-
placement ductility.

of shear to flexural displacements from the first cycles in positive and negative loading di-
rection are displayed. The figure shows that the ratios are approximately constant for the
more slender test units VK5 & VK6 as well as for VK7, which had the highest transverse
reinforcement ratio, from pa~ 1.2 on. These test units were the most flexure-controlled
out if this test series and the observation of approximately constant A;/A is in line with
the observations made by other researchers (e.g. [BDP08, DWB99]). The ratios of the
more shear critical test units deviate from this constant trend. While VK3 appears to
have reached a constant value at the relatively high ratio of Ag/Ag >~ 0.30 at pa~ 1.4,
the ratio of VK1 decreases after the peak ratio has been reached at ua~ 2.0.

The Ag/Ag ratio of the test units considered here are not necessarily constant, which
appears to be contrary to what has been observed for flexure controlled walls. However,
one has to keep in mind that these flexure controlled walls have a much more pronounced
plateau and reach higher ductility, whereas the degradation sets in for the walls investi-
gated here soon after the attainment of the maximum load. One can also note that, the
more flexure-controlled a wall is, the more it has a constant ratio: the A;/Ay ratio of the
slender test units VK5 and VK6 is approximately constant while there is a strong increase
in shear deformation up to ua = 1.4 for the shear critical test units VK3 and VK4.

One important aspect to keep in mind when evaluating the data is the method with which
the shear deformations are determined. As outlined above, the A,/A ratios are computed
from the nodal displacements of a rectangular grid of measurement targets. Computing
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Figure 3.17.: Experimentally determined average shear to flexural deformation ratios: directly and
indirectly determined.

the deformation components this way is considered accurate due to the relatively fine
measurement grid. The accuracy of the deformation components is confirmed by a good
agreement between the sum of the deformation components and the measured total top
displacement. The average ratio of this sum of deformation components to the total top
displacement is 0.987 with a standard deviation of 3.8% in the inelastic range.

However, for comparison with the data according to the measurements taken along the
rectangular grid, the shear deformation can also be determined from the readings of the
LVDT chains along the sides in an indirect manner. Only the flexural deformation can
directly be determined by double integration of the curvatures computed with the LVDTs.
The shear deformation can then be computed as the difference between the flexural de-
formation and the top displacement. Hence, it may be regarded as shear deformation
including an error component due to inaccuracies in the measurements and approxima-
tions underlying the calculations, for instance. However, this error component should be
negligibly small.

Figure 3.17 shows the average Ay/A g ratios obtained with both the direct and the indirect
method in the inelastic range. For clarity, only the ratios of the test units with continuous
reinforcement are shown here. As the indirect ratios were calculated from the average flex-
ural displacement, the average shown here is slightly different to the one shown previously.
Here, A;/Ay; is computed from average displacements in positive and negative loading
direction, whereas previously A;/A was computed for both loading directions and then
averaged. However, the differences are minimal and the data presented in this figure is
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only used to illustrate the differences in the results. As evident in Figure 3.17 there are
some differences in the directly and indirectly determined A,/A 4 ratios of VK3 and VK6,
which stem from differences in the flexural deformation. However, while the differences in
the ratios seem significant (~ 20 — 30%), the differences in the absolute shear deformation
values are rather small (~ 1 —2mm). This comparison of data thus illustrates that even
small differences in the measurements can, depending on the type of evaluated data that is
displayed, cause some variation in the results. This should be kept in mind when the data
is interpreted. In the following, the directly determined shear deformation is used due to
the previously mentioned quality of the data as evident in the good agreement between
the sum of components and the top displacement.

3.7.3. Summary of approaches

Three existing approaches to include the shear deformation in plastic hinge modeling
have been presented in Sections 2.6.1 to 2.6.3. One of them utilizes the crack angle and
centroidal axial strain in the plastic hinge to estimate the shear distortion and, based
on that, the shear deformation [BDP11]. In the second approach, shear deformations
are related to flexural deformations based on the kinematics at a shear crack [HRS04].
The third approach estimates the deformation based on the shear stiffness of a cracked
structure, which is estimated using a truss model [PCKO07]. Table 3.6 summarizes the
mentioned approaches and the predicted shear to flexural deformation ratios for each test
unit at peak load compared to the experimental values. The experimental ratios are the
mean ratios at peak load in positive and negative loading direction. For the test units with
continuous reinforcement this means the ratio at load step ua=3.0 was used. For the test
units with splices load step ua=2.0 was used instead. At this load step, measurements
were still available for both loading directions, while the lap-splice had always started
degrading at the negative loading to ua=3.0. All predictions in Table 3.6 that utilize
the crack angle were evaluated based on the measured crack angle. With Equation (2.51)
very large shear to flexural deformation ratios were predicted, as evident in Table 3.6.
The large ratios stem from the large differences between the nominal yield force and shear
cracking force V.. This difference leads to the prediction of a large shear deformation
at nominal yield and hence a high ratio of shear to flexural deformations. Due to the
considerable overestimation of the shear deformations this prediction is not examined
further. The remaining two models and the predictions obtained with them are discussed
in the following sections.

If a crack angle is necessary to evaluate the model, it was determined from pictures of
the test units taken when the crack pattern was fully developed. The crack angles in the
upper part of the piers was used, according to the suggestion made by [BDP11]. Since it is
necessary for the assessment of bridge piers to estimate the crack angle beforehand, angles
calculated from Equations (2.52), (2.53) and (2.47) are listed in Table 3.7 for comparison.
The measured values represent the angles of the parallel crack pattern at the top of the
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3.7. Shear response

Table 3.6.: Summary of models to estimate shear to flexural deformation ratios As/A fl-

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7

Mean (As/Af)ery 019 021 032 037 013 010 021
[BDP11] Eq. (245) 023 024 023 021 013 016 023
[HRS04] Eq. (2.46) 0.15 0.7 022 020 0.10 0.11 0.1

[PCKO7] Eq. (2.51) 0.89 094 1.32 134 036 024 058
Eq. (2.45) L5Ebg 7
Eq. (2.46) Y4 %) 0.35 (1.6 — 0.20,100) 7=
_ 2
Po @51) (At £2500) /0 B)

test units, which also corresponds to the predictions according to (2.52) and (2.53). The
prediction according to (2.47) yields the angle of the steepest crack reaching to the base,
which also corresponds to the angle of the parallel crack pattern. Equation (2.53) was
initially evaluated for the axial strain corresponding to the maximum moment according
to moment curvature analysis and thus the largest possible axial strain at the base. This
strain is out of the range for which the equation was developed, however. Besides, it
might not be considered to be the optimum choice for the strain with which a crack angle
forming higher up the pier is to be estimated. However, the question is which height
might represent a good location. As the model according to [BDP11] was developed based
on the observation that the shear deformation primarily stems from the plastic region,
which corresponds to roughly 2L,, the crack angle is also evaluated for the strain at 1 m
~ 2L, height. Forces, lever arms and centroidal strains obtained from moment-curvature
analysis were used to calculate the crack angles. All angles were calculated using the
strains and forces obtained from the moment-curvature analysis corresponding to the
predicted maximum moment at the base of the pier. The measured angles were similarly
determined from photos that were taken after the peak load, which is close to the nominal
yield load, had been reached. Only the concrete compression force and the steel tension
force were considered to compute the internal lever arm, because the other forces were
considered to be negligibly small. To compute the crack angle according to (2.54), only
the reinforcement contents and the ratio of the elastic moduli are necessary. The ratio of
the latter has been set to Es/E. = 200GPa/25GPa in all cases.
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Table 3.7.: Measured and calculated crack angles at or after peak force level.

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7
Measured 45° 42° 40° 43° 48° 45° 39°
[HRS04] (2.47) 22° 23° 19° 19° 20° 19° 30°
[CMI1] (2.52) 60° 60° 54° 50° 60° 61° 52°

[BVCO6] (2.53) emae ~ 79°  72°  61°  60° 60° 66° 57°
[BVCO6] (2.53) e(~2L,) 32° 31° 31° 31° 31° 31° 31°

[HHF11] (2.54) 30°  30°  27°  27° 27 27°  34°
1 2T—Tyav)z

[HRS04] (2.47) arccos < \/(A fyu)/(s)+(fctb2dcr)/(1.4z))

[CMOI1] (2.52) arctan < (fctb + S”fy“>> < 90°

[BVCO06] (2.53) (20° + 70002;) (0.8 + 52 ) < 75°

4/ ovtkEoi0v
HEF1L] (254)  aretan {/25Fmne

3.7.4. Evaluation of shear deformation models

a. Shear deformation based on axial strain

To estimate the Ag/Ayg ratios of the test units according to [BDP11], the measured
crack angles and the strains from the moment-curvature analysis were used. Instead of
keeping a constant ratio of €;/¢ for the entire ductility range, as originally suggested, the
ratio was always obtained from the curvature and axial strains from the M-¢ analysis.
The Ay/Ay ratio, that is in then known in relation to the curvature, was related to
the displacement ductility according to Equation (2.38) [PCKO07]. Figure 3.18a shows
the average experimental ratios from positive and negative loading direction against the
imposed displacement ductility in positive direction.

For comparison, the ratios estimated according to Equation (2.45) are also included in the
plot. Since the model was developed for the deformations in the inelastic range, the ratios
are plotted from displacement ductility pa= 1.0 onwards. For clarity, only the test units
with continuous reinforcement have been included in that plot. Figure 3.18b shows the
predicted and experimentally determined ratios at the peak load. As mentioned previously,
this corresponds to load step ua= 3.0 for test units with continuous reinforcement and
ua=2.0 for those with spliced reinforcement. This figure does not include the averaged
experimental ratios but those from positive and negative loading to give an idea of the
difference between the two loading directions.
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Figure 3.18.: Shear deformation according to Equation (2.45) [BDP11].

With predicted instead of measured angles, the ratios shown in Figure 3.19 are obtained.
If the angles predicted for the strain at 1m height are used instead of the measured
crack angles, the ratios increase about 66% (= tan45°/tan31°) and are thus larger than
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Figure 3.19.: Shear deformation according to Equation (2.45) [BDP11] using predicted angles.
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measured, see Figure 3.19a. The increase in the ratios is even larger with the crack
angles according to Equation (2.54). As Table 3.7 shows, these angles are smaller than
the measured ones and even smaller than those according to [BVC06]. However, this
is the only prediction that yields some differences between the different test units and
would thus lead to different shear ratio predictions which corresponds to the experimental
data. Comparison with the photos of the test units shows that these angles correspond
approximately to the steeper part of the shear crack angles. Hence, they might be useful
if the correction factor in Equation (2.45) is modified accordingly.

b. Shear deformation based on crack inclination

Predictions with Equation (2.46) were made using the measured crack angles listed in
Table 3.7 and the web crushing strength was taken to be the compression strut capacity
VRd,maz according to [CEN04] 6.2.3 (3). To compute Vrgmqs the internal lever arm from
the moment-curvature analysis at maximum moment has been used. In the plastic range,
the diagonal tension capacity V;, was calculated with the factor k, = 0.05 according to
Equation (4.1). Shear to flexural deformation ratios were computed for all first cycle peak
load levels. In Figure 3.20a the predicted A;/Ay ratios of the test units with continuous
reinforcement are plotted against the mean measured ones in the inelastic range. The
ratios at the peak load levels are again compared in positive and negative loading direction.
Hence, there are two data points for each test unit in Figure 3.20b.
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Figure 3.20.: Shear deformation according to Equation (2.46) [HRS04].

The shear deformations shown in Figure 3.20 have been computed using measured angles.
For comparison, the shear to flexural deformation ratios obtained with the predicted crack
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angle according to Equation (2.47) are shown in Figure 3.21. As this angle is much steeper
than the measured ones, the predicted ratios exceed the experimentally determined ones.
To examine whether the basic assumptions of the model apply to the investigated test
units, the shear and flexural deformations in between the two cracks where determined
from the measurement grid. In Figure 3.21b one can see that the flexural deformations ra-
tios originating from this region vary significantly between the different test units and that
only a part and not the total shear deformations stem from this region. Both deformation
components were determined from a rectangular grid whose width almost corresponds to
the wall length and whose height equals the distance between the two respective cracks.
That means the deformations were not determined along the cracks by explicitly taking
into account the kinematics suggested by [HRS04].
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Figure 3.21.: Shear to flexural deformation according to [HRS04].

3.7.5. Discussion of results

Generally, one can note that without correction factor, i.e. 1.5 and (V/Vye + V/V,,),
respectively, the predictions according to Equation (2.45) and (2.46) yield relatively con-
stant shear to flexural deformation ratios for all piers at peak load level. Figure 3.18
shows this for Equation (2.45) which utilizes a constant correction factor. The slightly
curved shape of the Ag/Ay predictions is the result of changing €;/¢ ratios according
to moment-curvature analysis. As this model considers the ratios to be related to the
shear span length L, the ones predicted for the shorter piers are generally 36% higher
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(Lsj/Lss =4.5/3.3 = 1.36) than those predicted for the longer piers. Further differences
in the ratios stem from varying material properties, so that generally the ratios of the
shorter piers lie between 21-24%, whereas the ones of the longer piers lie between 13-16%.
Without correction factor, the predicted ratios would hence be around 15% and 10% for
the piers with aspect ratio 2.2 and 3.0, respectively.

The figures show that the predicted ratios are similar to the measured ones, except for
the most shear critical piers VK3 & VK4 and the slender pier VK6. The average ratios
of the shear critical test units are underestimated by about 40% (VK3) to almost 80%
(VK4). One has to keep in mind, however, that, as evident in Figure 3.18b for VK3,
there is also some variation in the experimental ratios. The Ag/A¢ ratio of the test unit
with the highest aspect ratio, VK6, is overestimated by about 50%. Hence, based on the
experimental data considered here one may say that Equation (2.45) yields good estimates
for walls with intermediate aspect ratios (Ls/h < 3.0), but does neither capture well the
response of shear critical piers such as VK3 nor that of more slender piers such as VKG.

The dependence on the geometry is primarily accounted for by means of the correction
factor in the approach according to [HRS04]. Without correction factor «, there are only
slight variations in the predicted ratios. Due to the strength dependent correction factor,
larger Ay/Ay ratios are predicted for test units VK3 & VK4, which also had significantly
higher shear deformations. As evident in Figure 3.20a, the shape of the Ay/Ay is well
predicted but the ratios are too low. The ratio of the more slender test unit VK6 on the
other hand is well predicted both with regard to the magnitude of the ratio and the shape
of the curve. Hence it appears that, especially for predicting good ratios for the shorter,
more shear critical piers, the correction factor plays an important role.

With regard to the crack angle predictions, one can see that very low angles are predicted
with Equation 2.47 and hence application of the original shear model according to [HRS04],
including this predicted angle, leads to an overestimation of the shear deformations. Also
the crack angle predicted for the strain at 1.0m height corresponding to the maximum
lateral load and the one dependent on the reinforcement content are lower than predicted.
On the contrary, the rest of the predicted crack angles that are listed in Table 3.7 are
larger than the measured ones. As both of the investigated models to predict Ag/Ag
depend on the crack angle, the crack angle predictions need improvement for application
with the models if the dependence on the crack angle is not removed.

3.7.6. Modifications of existing models

To use the models for the prediction of deformation, the dependency on measured quanti-
ties, such as the crack angle and the shear resistance, must be replaced by predicted ones.
This may then require an adjustment of correction factors. As previously noted, whether
the trend was captured well depends partially on the correction factor, as this is an easy
way to capture the influence of e.g. increased shear deformation due to low transverse
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Figure 3.22.: Shear to flexural deformation ratios at peak load level according to model by [BDP11]
with correction factor according to [HRS04] using measured crack angles (to the left)
and the angle according to Eq. 2.54 with adjusted correction factor to the right.

reinforcement ratios. Hence, predictions of the shear to flexural deformation ratios were
first made with Equation (2.45) in which the correction factor 1.5 was substituted with
a of Equation (2.46). Compared to the predictions presented in Figures 3.18 and 3.20,
predictions with the modified equation, Figure 3.22, are slightly better. Furthermore, as
previously shown, the crack angle that depends on the reinforcement ratios predicts the
differences between the piers better. However, if this was used, the ratios were predicted
with a slight offset which necessitated the introduction of a correction factor again. Figure
3.22 shows the shear to flexure deformation ratios predicted with the modified crack angle
and correction factor. The shear to flexural deformation ratios in this plot have thus been
determined according to the following equation:

AS £l 1 €l 1 . <V V )

— =a0.75——— =0.750———— with 1<a=|—+ <2

Ay tan 0¢ L </9u+kEQle L, Voo Ve
o1tkEovor

(3.5)

Figure 3.22 shows that the A /Ay ratios predicted with this formulation are on aver-
age well predicted, but with a certain deviation. Also the shear deformation prediction
according to [HRS04] has been modified with the crack angle prediction based on the
reinforcement ratio. With this angle, the equation becomes:

A [ov + kpovor | h
=a0.35( 1.6 — 0.2 arctan {/ ——=— | — 3.6
A ( o+ kgovor | Ls (3.6)
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Figure 3.23.: Shear to flexural deformation ratio according to modified prediction by [HRS04].

Figure 3.23 shows the predictions made with this equation and the correction factor eval-
uated with the peak load according to moment-curvature analysis against the experimen-
tally determined ratios at peak load. As evident in the figure, these simple modifications
add to improved predictions of the A /Ay ratios, compared to the initial prediction,
shown previously.

As evident in Figures 3.22 and 3.23 none of the modified approaches is clearly superior to
the other but both modified equations yield approximately equally good results. Hence,
based on the data of the test units considered here, one may conclude that they may be
used interchangeably.

3.7.7. New approach based on axial elongation
a. Distribution of shear strains

In Figure 3.24 the shear strain distribution of two of the test units is shown. The shear
deformations in the plot were calculated from the measurement grid on the surface of
the test units as explained in Section 3.7.2. The strain corresponds hence to the shear
deformation per row of the measurement grid divided by the height of this row. One
can see that there is no clear concentration of shear deformations, but rather a constant
or linear distribution along the height. To better compare the deformations of the two
presented test units, the vertical axes of both graphs are plotted with the same limit, even
though VK7 was shorter. Similar trends as those shown here were observed for the other
test units. There was a slight difference in whether the strain distribution appeared to be
more linear and decreasing towards the top of the test unit (VK1, VK6 and VK7, see also
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Figure 3.24.: Shear strain distribution as computed from the optical measurement grid along the
height of two of the test units.

Figure 3.24) or almost constant over the entire measurement grid (VK3, see Figure 3.27).
In each case, the shear strain was thus distributed over almost the entire cracked height.

b. Deformation due to crack opening

To gain a better understanding of what types of deformation exactly are interpreted as
shear deformation applying the data evaluation method outlined in Section 3.7.2, the
deformation determined for an element ¢ located at height L; in the pier is looked at with
regard to its relation to deformations along the cracks. As Figure 3.25 illustrates, there
may be cracks running through the entire element and hence crossing it at the top edge, as
well as some crossing at the left edge. As a simplification, the cracks are assumed linear in
the following. The dashed and dotted lines in the right part of Figure 3.25 then indicate
the boundaries for all cracks that cross the element ¢ at the left and top edge, respectively.

In reality, there will be several cracks, but to examine the influence of the displacement
along the cracks on the deformation components, all cracks crossing one edge will be
merged into one crack in the following. Before severe degradation of the entire structure
commences, it is assumed that only crack opening due to rotation around the tip and
little sliding occurs (compare also Chapter 5). This rotation around the crack tip results
in the deformations shown in Figure 3.26. The cracks below element i, do only cause
rigid body rotation of the entire element and do hence not need to be considered. Pure
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Figure 3.25.: Cracked wall with element 7 at height L; and idealization of crack pattern.
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lateral elongation and constant curvature in an element do similarly not contribute to the
shear deformation. If the illustrated mechanism is valid, the shear deformation determined

from the experimental data should be a combination of both deformation modes shown in
Figure 3.26.

Shear deformation due to cracks
crossing left edge
Ax2 As3

Shear deformation due to cracks
crossing top edge

A3

Figure 3.26.: Deformation of element i due to rotation at cracks crossing the element at the left and
top edge.

Figure 3.26 shows that the element to the right is subjected to a horizontal elongation and
a rotation of the part above the crack. The bottom edge of the element to the left is also
elongated, but not the top edge, which is interpreted as shear deformation according to
the method chosen here for the evaluation of the deformation components. The directly
determined shear deformation was computed from the difference in the elongation of the
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two diagonals Dy and Ds, as outlined in Section 3.7.2. This procedure yields the following
shear deformation for an element with cracks crossing at the left edge:

D} = (h+ Ag3)* + h; (3.7a)
D3 =h*+h% (3.7b)
h+ Ags)? + b2, — (h2 + h2,
As: ( + 3) +4;z ( + ez) (370)
1 A2
= 583+ 423 (3.7d)

Diagonal Dy is not elongated and does hence not need to be expressed in terms of the nodal
coordinates and displacements. Doing so would merely add a small error component if
linear kinematics are employed. The displacement of the upper right node can be expressed
as follows by using linear kinematics:

Ags = (Li + hei)bio (3.8)

This displacement can be inserted in Equation (3.7). If the quadratic term is neglected,
as its contribution to the displacement is small, the shear displacement is:

1
Ay = 5 (LZ + hei) Oio (39)

Following the same procedure, the shear displacement of the element displayed at the
right side of Figure 3.26, with cracks crossing at the top edge, can be derived. The shear
deformation due to elongation of the diagonals is:

D} = (h+ Ag3)” + b2 (3.10a)
D2 = (h+ Apa)® + b (3.10b)
B+ Ays)? + h2 — [(h+ Agy)? + b2
As _ ( + 3) + ei [( + 4) + ez] (310(3)
4h
1 A2, — A2
=3 (Ags — Apa) + % (3.10d)
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Again, the quadratic terms A2 will be neglected in the following, as their contribution to
the deformation is small. The nodal displacements, expressed by using linear kinematics,
are:

Ayz = (Li + hei)0; (3.11a)
Agy = Lib; (3.11Db)
(3.11¢)

These displacements are inserted in Equation (3.10). The shear displacement in function
of the rotation 6; is:

A, = =2 (3.12)

The sum of the rotations of all cracks crossing the element at the left edge can be expressed
as a function of the axial strain ¢;(y):

0-5(Li+hei)
Ay 1 1

- dy = —— d 3.1
05k~ 05 J,, W / 1(y)dy (3.13)
0.5L;

0io

The base length for integration of the strains l;y is illustrated in Figure 3.25 and the
boundaries for integration can be obtained by looking at Figure 3.25. The sum of the
rotation of all cracks crossing the top edge of the element can similarly be expressed as:

0.50cr
1 1

0 ), e1(y)dy / e1(y)dy (3.14)
0-5(Li+hei)

The equations presented in this section show, that this approach resembles the previously
presented approaches to determine the Ag/A g ratio. Similarly to the model according to
[Hin02], the shear deformation is here related to the deformation that is expected along
the shear cracks. However, here the shear deformation is not calculated in relation to the
flexural deformation. Furthermore, the shear deformation is not assumed to depend on
the elongation of the outer longitudinal reinforcement, but rather on the centroidal axial
elongation, similar to what is done in the approach by [BDP11].
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c. Check assumed deformation pattern

To check whether the assumptions regarding the shear deformations that were presented
in the previous section are valid, the shear deformations according to the two mechanisms
have been computed with the measured axial strains and compared to the experimental
data. The axial strains were obtained from the readings of the LVDTs along the sides
of the wall. Straight, radial cracks have been assumed to determine the rotation of an
element. That means, to compute the rotations ; and 0, of an element at height L;,
the strains between 0.5L; and 0.5(L; + h¢;) as well as 0.5(L; + h¢;) and the top of the
instrumented area were used. The strains above the instrumented area were assumed to
be zero for simplicity. Figure 3.27 shows the distribution of shear strains as determined
from the experimental data compared to the one obtained with the equations shown in
the previous section.

31 VK3 —— LS ual.5 exp
—=— LS pa3.0 exp
251 A % —~—1LS }LA4O exp
T — — — LS pual.5 pred
2F LS 1a3.0 pred A
A LS 11a4.0 pred
=
&0 15k ]
E?II) .
1k ]
0.5F )
0 . ; ‘
0 2 4 6 8

Shear strain of element ~, ; [mm/m]

Figure 3.27.: Distribution of shear strains.

The approach outlined in Section 3.7.7 would eventually yield shear deformations that
are related to the axial strain, as the rotations are expressed as functions of the axial
strain. Hence, the relation between the shear deformations and the axial elongation of
the piers was checked. Figure 3.28 indicates that there is indeed a good relation between
the elongation of the test units and their shear deformation. Only the data of the test
units with continuous reinforcement was used for this comparison, as the axial elongation
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Figure 3.28.: Experimentally determined shear deformation against experimentally determined axial
elongation of the test units with continuous reinforcement and comparison of predicted
and experimentally determined axial elongation.

of the test units with splices is influenced by the splice. However, as Figure 3.16 indi-
cates, the shear deformations of the test units with lap-splices are almost equal to the
ones of the corresponding test unit without lap-splices. Therefore, it should ultimately
be possible to determine the shear deformations of piers with lap-splices with the same
approach as that used for piers with continuous reinforcement. Furthermore, a prediction
of the axial elongation was compared to the measured axial elongation. The prediction
was obtained in a manner resembling the refined approach for the flexural deformation
according to Equation (2.38). That means the axial strain at first yield, obtained from
the moment-curvature analysis, was multiplied by factor M /Mz// and assumed to follow a
linear distribution over the height of the pier. The difference between this factored axial
strain at first yield and the axial strain corresponding to the current curvature was taken
as plastic axial strain, that was assumed constant in the plastic hinge length according to
[BA11]. As Figure 3.28 shows, the agreement between measured and predicted elongation
is good.

The comparisons between experimental data and predictions shown in this section indicate
that relating the shear deformations to the axial strains, based on the deformation due to
rotation at the cracks, seems possible. Figure 3.27 indicates that this mechanism, while
not yet perfected, seems reasonable and Figure 3.28 shows that it is possible to determine
the axial elongation of the piers with reasonable accuracy within the scope of plastic hinge
modeling.

84



3.7. Shear response

d. Analytical solution and comparison to data

To predict the shear deformations based on the principle outlined in the previous section,
but independent of the measurement grid, an analytical solution is necessary. The shear
deformations stemming from the cracks that cross the elements at the top edge can easily
be obtained with the following equation:

ler 0.5l¢cr
1 1 1
A, = = 0,(y))dyrdy = = [ —— dy,d 3.15
2/@/% (y1)dy1dy 2/0.5,I /El(yl) y1dy (3.15)
0 0.5y

The cracked height [.. was here chosen as upper integration limit as shear deformation
can occur only within the cracked area according to this approach. The solution to this
integral depends on the assumed strain distribution. For the simplest case of a constant
axial strain, it evaluates as:

1 ler 1 0.50cr
Ay== [ — duyrd 1
2/0.5]1 / grdydy (3.16a)
0 0.5y
1 lCT‘
1
— s 5l — 0.5y) d 3.16b
20‘5]1/51(05 y) dy ( )
0
lcr 5llcr 5112
oh 2 4h (3-16¢)
~——
Ay

In plastic hinge modeling, the strains are assumed to be linearly distributed above the
plastic hinge itself. With the linear distribution of strains &;(y) = &, (1 — y/(0.5.)),
where €, is the maximum strain, the integration yields:

1 lc’r 1 0-5lc'r
g
A== [ — m— ——dyd 3.17
2/0.5h / “m 050, Y (3.172)
0 0.5y
Eml? ler
12h "3h (3.17b)

Similarly, the analytical solution for the component due to shear cracks crossing the left
edge of an element and a constant axial strain is:
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€ll2
Ay = —= 3.18
=T (318)
If the strain distribution is linear, the solution is:
Emlzr
= 3.19
s= o1 (3.19)

As Equations (3.16¢) to (3.19) show, cracks crossing the left and the top edge each con-
tribute the same amount of shear deformations. This was already indicated by Equations
(3.12), (3.9), (3.14) and (3.13). With a constant strain, 6; decreases linearly over the
height, which leads to a linear decrease of the shear deformations predicted for each el-
ement. On the contrary, 6,y is constant over the height if the strain is constant. In this
case, however, the term with which the rotation is multiplied increases with the height.
As the maximum A, ; is the same as that obtained with the other mechanism each of the
two mechanisms contributes to half the total deformation.

Hence, if the axial strain €; is constant the total shear deformation follows to be:

2 -
= Sler _ z e (3.20)

A,
2h h

where A; is the axial elongation of the pier. If the axial strain is linearly distributed
between the base and 0.5, with maximum value &, at the base the shear deformation is:

ml2 2 ler
= Smler _ Zp (3.21)

A,
6h 3 " h

To render this approach applicable, two quantities still need to be predicted: The height
over which cracking extends [., and the axial strain distribution (linear or constant). To
get an estimate of the first, the data shown in Figure 3.28 is used again. As the plot shows,
the shear deformation seems to be linearly dependent on the axial elongation. According
to Equation (3.20), the term I../h equals Ag/A;. This means, the gradient of the linear
relationship between shear deformation and axial elongation, which equals Ag/A;, can
be used to calculate [.., as the height of the test unit h is known. Figure 3.8 shows the
data that was already shown in Figure 3.28, but this time the linear approximation and
the gradient of this linear approximation are included. Table 3.9 shows the heights over
which cracking extends [.. that are calculated from the gradients assuming a constant
axial strain, i.e. [ = grad - h.
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Table 3.8.: Measured shear deformation
against axial elongation.

e. Discussion of results

While the experimental data and predictions presented in Section 3.7.7 show that it should
be possible to relate the shear deformation to the axial elongation of a test unit based
on the rotation at shear cracks, the previous paragraph showed that the simple approach
outlined herein needs further improvement. This section should hence not be regarded
as presentation of a perfected model, but rather as an idea for a potential approach to
estimate the shear deformations. Two issues that still need to be solved are how the
height over which cracking extends, and thus the height over which shear deformations
are expected to occur, is predicted and how a reasonable axial strain distribution is chosen.
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3.8. Influence of lap-splices

3.8.1. Previously introduced stress and strain limits

The influence of a lap-splice at the base of the pier is considered based on the strain and
stress levels introduced in Sections 2.7.3 and 2.7.4. The general modeling procedure is
as outlined in Section 2.7.2, which means that the same plastic hinge modeling approach
as for the piers without splice is used up to the onset of splice degradation. Hence, the
difference between a model for a pier with and without splice lies merely in the assumed
strain limits. Those strain limits for splices have either been derived for a certain drop of
lateral resistance [BF10b] or for the onset of splice degradation [PSC96]. The stress limits
can be used as an alternative to strain limits or, as in [BF10a], to check whether the yield
moment can be attained at all. Table 3.10 summarizes the stress and Table 3.11 the strain
limits for piers VK2, VK4 & VKB5.

If the distance between bars is taken into account in the stress criteria, the distance between
the outer bars of the cross section is generally used, because these splices are expected to
fail first. The concrete tension strength of VK2 was assumed to be fo; = 0.61/35 = 3.5 MPa
and that of VK4 and VK5 was measured as 3.0 MPa and 3.3 MPa, respectively [HBD13].
The stress limits determined by splitting failure are calculated with this concrete tension
strength only, i.e. the additional force component of the stirrups in Equation (2.62) was
not considered. Equation (2.63) was evaluated with k,, = 8 according to [FIB10]. In
[FIB12] k,, = 12 is suggested for spliced bars placed in a hook of at least 90°, but no
recommendations are made for other cases.

Table 3.10.: Maximum allowable stress in spliced bars according to splitting strength and bond
stress criteria.

Test unit VK2 VK4 VK5
Eq. (2.58) >, >, > f,
Eq. (2.62) 1.3fy 1.1fy 1.2fy
Eq. (2.63) 1.3fy 1.3fy 1.3fy
Eq. (2.64) 1.6fy 1.6fy 1.3fy
Eq. (2.58) fs=0.58;+2(dy + ¢) fetls
Eq. (2.62) fs = ( s eﬁ[2cb eﬁk + 2Cb ejj” Ny — 1 k nblAsb tan 5)
0.25 25 0 55 ) 0 33 c 0.1
Bo. (263) fo=54(%)  (2) (&) (gee )™ + b Koy
EQ- (2-64) fs = ((ls\/ﬁ)/(o-?’dblfy))fy < fy
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3.8. Influence of lap-splices

Table 3.11.: Maximum allowable strains for sections with spliced bars.

Test unit VK2 VK4 VK5
[PSC96] Eeus = 0.002 g4y s = 0.002 £y 5 = 0.002
Eq. (3.3) Ecu,s = 0.0031 g4y s = 0.0033 £y = 0.0033
Eq. (2.28) (Tab.3.4) ecys = 0.0048 ecy s = 0.0047 £y 5 = 0.0047
Eq. (2.65) Esus = 0.021  £4, 5 =0.018 g4, =0.018
Eq. (3.3) Eee = (1 +5 (ff— - 1)) e
Eq. (265) Esu,s = (1'2lsuljnm - 02> Esu

3.8.2. Additional strain limit

The confined concrete strain corresponding to peak stress is included in Table 3.11 for
comparison with the previously introduced strain limits for concrete. While the strain
limit according to Equation (2.28) [BF10b] is intended as limit to determine the defor-
mation corresponding to 20% degradation of lateral load, [PSC96] estimate the strain
corresponding to the onset of splice degradation. The argument for the latter limit is
that the initiation of microcracking at peak stress weakens the concrete in tension and
hence also the capacity of the concrete to confine the lap-splices. However, the peak stress
fee and the corresponding strain .. at which microcracking begins are larger if the con-
crete is confined. Therefore, €.. may also be considered a reasonable limit for the onset
of splice degradation. To determine &.., Equation (3.3) was employed together with the
confinement effectiveness factor according to Equation (2.29), which is repeated here for

convenience.
$2 /6
keon = (1 — s 1_L 1_M
2bCO7’L 2hCO7’L bCOTL hCOTL

As the piers do not have confined boundaries that could have been used to calculate the
lateral confining stresses, the reinforcement in the outer square section of 350 x 350 mm
was used, see Figure 3.29. The section right above the foundation is subjected to the
highest bending moment and hence concrete crushing with subsequent splice failure may
initiate right above the foundation. Therefore, the confined concrete strength needs to be
estimated for this section. To do so, the foundation was treated like a stirrup in the sense
that the distance between the foundation and the first stirrup above was assumed as stirrup
spacing s and used for the calculation of the reinforcement ratio. It was also assumed that
all longitudinal bars are restrained against lateral movement by the foundation and can
hence be used to evaluate the third term in the above equation for k.,,. The strain limits
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Chapter 3. Application of plastic hinge models

obtained with this calculation are included in Table 3.11 together with the previously
mentioned limits.

3.8.3. Computation of response

Table 3.11 shows that according to the evaluated splitting and bond stress criteria the
lap-splices should be strong enough to sustain yield stress or even ultimate stress, which
is fu, = 1.17f,. The lowest stress limits are predicted with Equation (2.62) which is rather
sensitive to the tension strength of the concrete. With a tension strength of about 2.7 MPa,
which is only about 10% lower than the concrete tension strength of VK4, splitting cracks
are predicted to occur already at yield of the longitudinal reinforcement. The stirrups were
neglected in the evaluation of this equation based on the argument given in [PSC96]: They
are activated only after the concrete cracks and neglecting them was assumed to yield a
better estimate of the stress which causes development of the first cracks. As there is some
scatter associated with the tension strength of concrete, one may come to the conclusion
that, according to this criterion, the splices might not be strong enough to sustain yield
load in reality. However, no experimental data is available to directly compare the stresses
or strains that occurred in the tests with the criteria listed in Table 3.10 and 3.11. Even
though the strains were measured, all measurement devices at the base of the pier cover
also the basecrack which impairs their data.

Despite the above mentioned scatter, it was assumed that the yield stress can be reached.
Hence, only the strain limits were set as boundaries for the outer fiber of a section in
the moment-curvature analysis. The section analysis was made for a section with single
reinforcement, i.e. the splices were not taken into account in any specific way, because
the section right at the end of the splice is assumed to be the one that initiates failure as
it is weaker. Figure 3.30 shows the predicted flexural top displacement compared to the
experimental flexural displacements. The force capacity resulting from the eccentricity of
the normal force according to Equation (2.57) is indicated with a gray dashed line. To
compute the residual moment, an axial load of P = 1300 kN has been used for all test units

h
hCO}’l |
Longitudinal 1
G800 080000 = bars 7
5| |9 |
I ‘ Stirrup
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1] o
-I‘S‘T’J_ ]’lcon

Figure 3.29.: Confined concrete in section with spliced reinforcement.
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Figure 3.30.: Prediction of force-flexural displacement relations according to Egs. (2.38) and (2.9)
for test units with lap-splices compared to experimentally determined displacement.

The markers indicate at which displacements the strain levels listed in Tab. 3.11 are
reached.

and core dimensions were assumed corresponding to the center lines of the longitudinal
reinforcement.

3.8.4. Discussion of results

With regard to the displacement at which degradation begins, several observations can be
made for the examined test units: The strain limit . = 0.002 [PSC96], which intends to
mark the onset of degradation, appears to be a rather conservative strain limit. This is
also confirmed by local measurements above the basecrack, between 50 and 200 mm height,
which even partially indicate higher strains before degradation begins. Hence, it seems
too conservative to assume that a strain of . = 0.002, reached only at the outer fiber of
the section, causes sufficient damage to weaken the splices. On the other hand, the strain
limits according to [BF10b] in rows 3 and 4 of Table 3.11 correspond to a displacement that
is reached just after the splices start degrading, according to the predictions. This seems
logical as they are supposed to capture the point at which the force has dropped by 20%.
While this was apparently a reasonable limit for the test units included in the database
from which the limit was derived, it does not seem to be a good definition for the limit
state of VK2 - VK5. Contrary to what [BF10b] apparently observed in their database,
the response of these piers is characterized by a rapid and not a slow degradation once
the splice starts to loose strength.

Therefore, it seems reasonable to not assume a slow degradation in between the onset of
splice failure and a larger ductility at which the residual capacity is reached, as also sug-
gested by [PSC96], but divide the response in only two parts: before and after degradation
onset with an immediate drop of capacity in between. In the initial part of the response,
the lap-splices are still intact and able to transfer the full load which means that globally
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Figure 3.31.: Prediction of force-flexural displacement relations according to Eqs. (2.38) and (2.9)
for test units with lap-splices compared to experimentally determined displacement.

the pier behaves like one with continuous reinforcement. After onset of splice degradation
it enters the second part of the response in which the resistance corresponds to that pro-
vided by the eccentricity of the axial load. Strain limits similar to that of [PSC96], which
correspond to the onset of degradation, are hence necessary to compute the response.

For the three analyzed test units, the displacement at which the confined concrete strain
according to Equation (3.3) (see Table 3.11) was reached provided the best estimate for the
onset of degradation, see Figure 3.30. With this strain and the residual moment according
to Equation (2.57), the responses shown in Figure 3.31 are calculated.
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3.9. Force-deformation relationship

3.9.1. Computation of response

In the following, the complete force-deformation relationship including flexural and shear
deformations is determined for the investigated piers. The plastic hinge length, strain
limits and all other quantities that are necessary to obtain the response are chosen based
on the results presented in the preceding sections. To compute the flexural response,
Equation (2.38) [PCKO07] was used. This equation allows predicting the envelope of the
force-deformation response and not merely a bilinear approximation. This equation was
evaluated in combination with the plastic hinge length according to Equation (2.9) [BA11].
Both equations are repeated here for convenience:

Acr:(bcr[/g/?’

2
Al = ¢, L5 /3

M M
Apy=AN — — ¢/ — | L,L,
4 y]wy+<ga ¢yMy> b

with

L, = (0.2h + 0.05Ly) <1 —15 > < 0.8h

Agfe

With this plastic hinge length, good estimates of the flexural deformation were obtained,
as shown in Section 3.6. Strain penetration was not considered, since the flexural defor-
mations were overestimated with the approaches that explicitly account for this effect.
The deformation capacity, corresponding to a point that is reached shortly after the peak
load before the onset of significant degradation, is defined based on the attainment of the
concrete and steel limit strains according to Equations (2.28) and (2.30) [BF10b]:

3/2 1
> +0.4 conQvfyv

Ecucye = 0.0035 + ( ;
cc

Le,con

3
gsu7cyc — ggsu = 03756,5%

The confinement effectiveness factor ko, is calculated using Equation (2.29). These limits
yielded slightly higher estimates of the limit curvature and thus a little less conservative
estimates of the deformation capacity than the limits according to Equations (2.26) and
(2.27).
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As Section 3.7.4 shows, the models that were reviewed for the estimation of the Ag/Ag
ratio yield similar results, if some modifications were made. To illustrate the determination
of the complete response, the A;/Ay; ratio will here be included based on Equation (3.5)
(modified approach according to [BDP11]), which directly relates the ratio to the axial
strain:

AS £l 1

— =0.7T5a0—— = 0.7950—————

Aﬂ tan 0¢ L 4/ ovtkroiow L
o+keoiov

The ratio was determined for each curvature based on the corresponding axial strain and
moment obtained from the M-¢ analysis. That means contrary to what was suggested
in the original approaches, no constant ratio was assumed in the inelastic range. Shear
deformation was only considered after Fé was exceeded because shear deformations seemed
negligible for smaller forces, also in light of the inaccuracies of both the experimental data
and the predictions at very small displacement levels. Hence, there is a little kink in
the predicted responses as they pass from flexural deformation only to flexural and shear
deformation. In the inelastic range, the total deformation A = A + Ay is hence evaluated
according to the following equation:

M M £l 1
< M + <¢ gby My> P > + @ \/Qv+kEQlQu ¢ L
o+kEoi0v
Vv Vv
1<a=|— <
= <vn * Vwc> =2

If the test unit had a lap-splice at the base, the strain limit according to Equation (3.3)
[MPP88] was used in combination with Equation (2.29) [SU82]J:

)

fee = fo | —1.254 + 2.254\/1

7.94 fl( cons O ) _2fl/(kconag)
Je fe

s? /6
2bCO7’L 2 hCOTL bCO?’L hCO?’L

Figure 3.32 shows the results obtained with the procedure summarized in this section for
the investigated seven test units. All responses were determined up to the limit strain.
For comparison, the deformation at which this limit strain is reached in the experiments
is indicated with a black marker in the plots.
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Figure 3.32.: Predicted and measured response.

3.9.2. Discussion of results

In Figure 3.32 one can see that even though the modeling is based on relatively simple
assumptions the response is predicted reasonably well. The deformations at which the pre-
dicted limit strains were, according to the LVDT readings, first reached in the experiment
in both positive and negative loading are indicated with black markers. Those strains
were not necessarily reached at peak load and during first cycles. As a result, the markers
may lie well below the envelope of the response. Except for VK6, the displacement that is
predicted for the limit strain level is up to 33% larger than the measured one (VK3). As
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indicated previously, the strain limit for VK7 is rather high and a different strain had thus
been considered in Figure 3.13 for comparison with the experimental data. This time, for
comparison, the experimental deformation corresponding to this strain limit is included.
Generally, as indicated previously, the strain limits yield a rather conservative estimate
of the deformation capacity. However, VK3 failed shortly after the predicted deformation
capacity in a shear mechanism (see [Bim10]). Since the latter cannot be accounted for
within plastic hinge analysis and limits other than those based on strain are difficult to
incorporate, the applied limits hence seem to be a reasonable choice.

For the test units with spliced reinforcement concrete limit strains have been used, as the
splice failure was initiated by damage in compression. VK5 was an exception in the tests, as
failure of the splice was not initiated by a previous damage of the concrete in compression.
Consequently, the deformation capacity is overestimated by using a compressive limit
strain. However, according to the estimates for the tensile force capacity of the lap-splice
that were evaluated here, the length of the splice should be sufficient to transfer the
maximum possible load, see Table 3.10. No further insight into what could have triggered
failure of that splice was gained from the experimental data of the large scale tests. Hence,
a series on test units that are instrumented in more detail with lap-splices corresponding
to those of the large scale tests has been initiated [AHB13].

As evident in Section 3.7, an exact prediction of the shear deformations within the scope
of plastic hinge analysis appears difficult. Simplifying assumptions made in some models
to estimate the shear to flexural deformation ratios of well detailed piers, such as a con-
centration of shear deformations in the plastic hinge and a constant ratio over the entire
ductility range, do not hold for the investigated piers. However, satisfactory results were
obtained through modification of existing models to estimate the shear to flexural defor-
mation ratio. Especially in light of the simplicity of the plastic hinge modeling approach,
the quality of the predicted deformations appears to be good.

3.10. Conclusions

Based on comparison with the experimental data, a plastic hinge modeling approach was
identified with which very good agreement of the flexural deformation was obtained. The
predictions of the flexural deformation were made with the refined approach according to
Equation (2.38) [PCKO07] in combination with the plastic hinge length according to Equa-
tion (2.9), that was explicitly developed for walls by [BA11]. To define the deformation
capacity, the strain limits according to [BF10b] were used as they were larger than the
ones according to [PCKO07] in the examined cases. Nevertheless, they still yield conser-
vative estimates of the deformation capacity, corresponding to a point shortly after peak
shear force. For a less conservative estimate of the deformation capacity, a change in the
mechanism needed to be taken into account in most cases, as all test units with continu-
ous reinforcement, except for VK7, eventually failed in shear or a combined flexure-shear
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mode. This mechanism can, however, not be accounted for within the scope of plastic
hinge modeling, and models such as the one presented in Chapter 5 are necessary. Based
on the test data of VK7 alone, no additional limit for an ultimate flexural state that marks
the onset of a severe degradation of the compression zone could be established.

Regarding the shear deformation, one critical point in the two reviewed models that predict
the shear to flexural deformation ratio Ag/Ay was the dependency on the measured
crack angles. If the models were employed with a crack angle estimate accounting for the
reinforcement contents and a correction factor accounting for the shear resistance of the
pier, satisfactory predictions were obtained with both of them. However, both models do
then partially rely on some correction factors, which might not be regarded an optimum
solution and is linked to a certain scatter.

Besides the existing approaches that aim at predicting A;/Ay;, an approach that re-
lates the shear deformation to the axial elongation of the pier was investigated. While
the preliminary results appear promising, this approach needs further development to be
applicable within the scope of plastic hinge modeling. However, comparison with the ex-
perimental data showed that the mechanism the approach is based on appears reasonable.
Furthermore, it was shown that the prediction of the axial elongation of the piers agrees
well with the experimentally determined one.

With regard to the influence of lap-splices at the base of the pier it was observed that
the global response of these test units is the same as that of corresponding test units
with continuous reinforcement until the degradation of the splice sets in. Hence, the
influence of the lap-splices on the behavior could easily be accounted for with a strain
limit corresponding to the peak strain of confined concrete. Once this limit is exceeded,
the shear force resistance decreases quickly. For this reason, the resistance is assumed
to drop to its residual value which depends on the maximum eccentricity of the axial
load. This limit is applicable for lap-splices without confinement that are long enough to
sustain the maximum force in tension. It may be regarded as an upper bound limit for
these splices and further research is required to investigate whether e.g. certain loading
conditions can cause a splice failure in tension before this limit is reached.
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4. Review and application of shear-strength
degradation models

4.1. Introduction

This chapter presents a brief overview of various types of shear strength degradation
models for RC members. It is beyond the scope of this work to provide a complete summary
of existing models. Instead, only some modeling approaches which are commonly used in
earthquake engineering will be presented as examples.

Generally, three types of shear behavior and failure modes under seismic loading can be
distinguished [ATCS83]: A brittle shear failure occurs if the shear capacity is lower than
the shear demand imposed on the member by the formation of a flexural hinge. In this
case, the member fails at relatively small displacements before its flexural capacity is
reached. Shear failure in the inelastic range may occur if the shear capacity is decreasing
more rapidly than the shear demand with increasing deformations. If the shear capacity is
higher than the shear demand in the entire deformation range the member will eventually
fail in flexure. The emphasis in this chapter will be on shear failure in the inelastic range,
since it is the type of shear failure observed in the experiments that were conducted in the
framework of this project [HBD13, Bim10].

As mentioned, it is commonly recognized that the shear strength of a RC member is
decreasing under cyclic loading for several reasons [BRF04]: (i) The resistance provided
by aggregate interlock is decreasing due to increased crack widths and grinding of the
crack surfaces under cyclic loading; (ii) the shear resistance of the compression zone is
reduced by the formation of flexural cracks; (iii) the resistance due to dowel action is
decreasing due to the formation of plastic strains; (iv) the development of plastic strains
in the reinforcement weakens the capacity of the compression strut, because the tensile
strains perpendicular to the strut increase.

In the following section, ductility-dependent shear strength models will be presented. This
type of models includes a, typically empirically determined, ductility-dependent factor
with which the shear strength in the inelastic range is reduced. Those models are based
on the above mentioned observation that the resistance gradually decreases under cyclic
loading with increasing displacement amplitudes and is commonly used in earthquake
engineering. In the subsequent section, examples of drift capacity models are presented.
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Chapter 4. Review and application of shear-strength degradation models

These models aim at estimating either the deformation capacity corresponding to the
loss of lateral resistance or to the loss of axial load bearing capacity. Drift capacity
models are generally derived from an experimental database, for instance by least square
datafitting. Section 4.2.3 introduces a model which takes into account the shear capacity
of the transverse reinforcement and the compression zone. The latter is based on the
plastic limit of concrete using Rankine’s failure criterion. Section 4.2.4 shows an approach
which treats the section of a column between maximum moment and inflection point as
shear panel. Both the interaction between the shear and the flexural mechanism and the
deformation components due to both mechanisms are determined that way.

4.2. Shear-strength degradation models

4.2.1. Shear-capacity models dependent on ductility

Several researchers have developed shear capacity models on the basis of strut-and-tie
models that comprise also a ductility dependent correction factor, e.g. [AM92, PVX94,
KP00, SM04, WPP93]. Unlike the initial capacity, which is composed of the resistance
of different load bearing mechanisms, the degradation is mostly empirically determined.
Concerning the degradation, the models basically differ with regards to whether only the
concrete or also the transverse reinforcement component is assumed to degrade.

According to the “revised UCSD model” [KP00], which is a further development of the
model presented in [PVX94], only the concrete component degrades. Originally, the model
was developed for circular columns and validated with a database containing all of the
three above mentioned failure types. However, modifications of the geometrical relations
make it also applicable to rectangular columns [PCKO07]. The shear capacity V, is assumed
to be the sum of a transverse steel truss component Vi, the concrete shear strength V.
and a component V}, which is accounting for the inclination of the compression strut of
the axial load.

Ve =Vi+ VotV (4.1a)
h—x.—

V, = A, fyv% cot 0 (4.1b)

V. = aBk,\/f.0.84, (4.1c)
h — x.

= P 4.1d

V, = max < oL, ,O> (4.1d)

where h is the total section depth, z. the compression zone depth, ¢ the concrete cover
measured to the center of the transverse reinforcement, s the transverse reinforcement
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4.2. Shear-strength degradation models

spacing and 6 the crack angle. If the member is under tension, and hence the axial
load negative, V), is set to zero. The factors «, 8 and k, are empirically determined
values which are introduced to consider the influence of the aspect ratio Ls/h, longitudinal
reinforcement content g; and ductility demand.

L
l<a=3--"<15 (4.2a)
B =0.5+200 < 1.0 (4.2b)

An increasing longitudinal reinforcement content is assumed to have a beneficial effect
on the shear force capacity for the following reasons: First, the resistance due to dowel
action increases. Second, the compression zone depth and thereby its shear resistance
increase and third, the crack width is reduced because of a finer, more evenly distributed
crack pattern. To incorporate the ductility dependency in the shear force capacity model
two relations for the factor k, are proposed for the assessment of members subjected to
uniaxial loading. One is dependent on curvature ductility p, and the other on displacement
ductility pa:

0.29 if iy <3 0.29 if pa <2
24(pgp — 24(pa — 2
k.= 4029 — W if3 < pp <15 (43) ku= {029 - % if2 < pa <8 (44)
0.05 if g > 15 0.05 if pa > 8

Unlike in the “revised UCSD model”, not only the concrete component but also the trans-
verse reinforcement component is assumed to degrade in the model proposed by [SM04],
see Equation (4.5). Deterioration of both bond and anchorage of stirrups are stated as rea-
sons for this. Just as in the previous model, an increase of shear strength with decreasing
aspect ratio as well as a beneficial effect of an axial compression force is included. An in-
creasing strength with increasing longitudinal reinforcement ratio has on the contrary not
been observed in the test data used for validation and is thus not incorporated. Diagonal
compression failure was assumed to be decisive only for short columns with a high axial
load ratio. In all other cases, tensile shear failure was assumed to be the mechanism gov-
erning failure. Hence, the concrete component was determined from Mohr’s circle based
on the assumption that the maximum capacity is reached when the principal tensile stress
equals the tensile strength of concrete.
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Figure 4.1.: Resistance of the compression zone V. comp, aggregate interlock V.; and dowel action
Va, which are illustrated in (a), are commonly implicitly included in V.. The ductility
dependency is illustrated in (b).

Vi=ky (Vs +Ve) (4.5a)
Vi = Avtyed (4.5b)

S
V, = <0'5‘/ﬁ 1+ L) 0.84, (4.5¢)

L,/d 0.5V T4,

Note that the aspect ratio is related to the effective section depth d rather than h in
this case and that the axial load P is included in the concrete component. The ductility
dependent degradation factor in this model is:

1.0 i opa <2
HA — 2.
k,=141.0-0.3 1 if 2<puan<6 (4.6)
0.7 if uA > 6

Another model of this kind was developed based on test data of 239 cyclic tests which
exhibited a tensile shear failure after flexural yielding [BRF04]. The database included
circular and rectangular columns, beams and six walls. Two models were proposed whose
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4.2. Shear-strength degradation models

empirical factors were determined by statistical data-fitting, one in which merely the con-
crete component was assumed to deteriorate, as in [KP00], and one in which degradation
was assumed for concrete and steel truss, similar to [SM04]. Only the latter is presented
herein as it is reported to yield better results. The degradation was incorporated based
on the ductility u’ﬁ = (Qu,exp — Oy,eap)/Oy.calc With the rotation 6, 4. according to Equa-
tion (4.7), which corresponds to the drift of beams and columns at first yield in [CENO05].
Contrarily to this, experimental ductilities were used in the above mentioned model by
[SM04] and no information is given for the “revised UCSD model”. For an explanation of
the components included in Equation (4.7) the reader is referred to Section 2.5.1.

L+ kyz h 0.13¢}, dy. f,
0 =g =" 001311+ 1.5— kg——2—"" 4.
y,calc Qby 3 + 0.0013 < + 5Ls> + Kg \/ﬁ ( 7)

The steel truss component is calculated based on the transverse reinforcement content g,
internal lever arm z and a crack angle of 45° as follows:

Vs = 0ubz fiyo (4.8)

The total shear capacity is calculated as sum of the steel truss component and the concrete
component and includes empirical factors accounting for the influence of the normal force,
longitudinal reinforcement content, aspect ratio and displacement ductility:

h — c
v, = Txkl + (1 - 0.05k,) [0.16k2(1 — 0.16k3)\/foAy + V} (4.92)
k1 = min(P,0.55A4, f.) (4.9b)
k,, = min(5, /ﬂﬁ) (4.9¢)
ko = max(0.5,100¢;) (4.9d)
ks = min(5, Lg/h) (4.9¢)

4.2.2. Drift capacity models

When the force - deformation behavior of a structure is computed, the points at which
either shear or axial load failure occur are of particular interest. The former is commonly
defined as a certain drop of shear resistance and the latter as a loss of both horizontal
and axial load bearing capacity. Since the models introduced in Section 4.2.1 are used to
compute shear capacity curves, one might conclude they could be employed to determine
the point of shear failure. However, this is typically not recommended by their authors,
e.g. [SM04, BRF04, PVX96] because the capacity curves have low gradients and hence
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a potential intersection with a force-deformation relationship would occur at a low an-
gle. Small variations in the shear capacity relation then result in large variations of the
predicted displacement at which shear failure occurs.

Therefore, drift capacity models which aim at directly predicting the drift at which failure
occurs have been developed. Different failure criteria, such as Coulomb’s failure criterion in
conjunction with the mean stress of a section [PSR00], strain limits for curvatures [KO02]
or empirically determined dependence on parameters influencing the drift capacity, such
as axial load level n = P/(A,f.) and transverse reinforcement content o, [EM03, EMO05,
LW™03], have been established. Examples of the latter type of models are presented
in Equation (4.10) [LW103] and Equation (4.11) [EMO05] which have been derived by
nonlinear regression and least-square error fit of experimental data, respectively. Both
define drift capacity as the drift corresponding to a 20% drop in lateral load resistance.

A
<L—> = 0.564 + 8.489k; — 7.804k7 (4.10a)
P v fyv

ki = (1+Lg/h)[1- 4.10b
1= ( /)( \/Agfc>\/fc ( )

A 3 1w 1 P 1
Z )= 2 440, — i > 4.11
(LS> 00 T T s g, 4047~ 100 (4.11)

Besides determining the displacement at shear failure, it is also important to determine the
displacement corresponding to the loss of axial load bearing capacity. To predict the latter
and also to estimate the gradient of strength degradation after shear failure, a formulation
based on the degrading shear friction resistance of the critical diagonal crack is suggested
by [EMO03], see Equation (4.12). The friction coefficient is expressed in dependence of the
drift ratio which depends on the transverse reinforcement ratio. The drift ratio at failure is
the intersection with the x-axis according to Equation (4.12a) and the degrading capacity
with Equation (4.12b):

s

4 2
<L2 > X 1+ tan® 0 (4.12a)
s/ avial tan + P (m)
d —925P A, fyvhcon 2 ’ i =
v 0+1 h 6=065° 4.12
d ( A > 1+ tan2 60 < Ps tan b v ( .

where heo, is the depth of the confined core defined by the centerlines of the stirrups.
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Due to their empirical nature, the use of the models presented in this section is restricted
to RC members with the same characteristics as those they were calibrated against, which
renders their possible application range rather narrow. Typically, columns were used for
the derivation of the models and shear and axial stresses are thus high in comparison to
those of walls, for instance.

4.2.3. Truss model with plastic limits

The shear capacity of columns corresponds to the sum of the transverse steel resistance
and the shear resistance of the compression zone, according to the model by [PYC11].
Aggregate interlock and dowel action were considered to be of minor importance. Unlike
in the previously mentioned approaches of that type, the degradation of the concrete
component is not determined empirically but based on Rankine’s failure criterion (see
Figure 4.2). The strain distribution in the compression zone is obtained from moment
curvature analysis and the stress distribution is determined based on the strain. The
allowable shear stress at each point in the compression zone is calculated from Mohr’s
circle as the capacity left until the principal stress exceeds either compression or tensile
strength of the concrete according to Equation (4.13), see also Figure 4.2.

50 T - T T T T
: e )
- Shear capacity v,
aor v, compression controlled ]
= o /S 5 ==
£ 30}
=3
2
£ 20
N
101 I
Tension- Compression- t
failure failure 0 i . . . .
surface surface 0 0.05 0.1 0.15 0.2 0.25
Compression zone depth [m]
(a) Rankine’s failure criterion for (b) Shear and axial stress distribution in the compression
concrete. zone of the section.

Figure 4.2.: Assumptions underlying the model by [PYC11]

(4.13)

/ fe(fe —o(z))  compression failure
0
/ fet(fee +0(x)) tension failure

0

Ve :/ ve(x)bdr =
0
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where v, is the shear stress capacity of concrete, f. and f. are the concrete compression
and tension strength, respectively, and o(x) is the axial stress. The total shear capacity
is the sum of the concrete component V. and the steel truss component Vi:

Vs = 0ubde1 fy cot 0 (4.14)

where d.; is the effective depth measured between the centerlines of the outer longitudinal
reinforcement layers and 6 is the crack angle. For the latter, 35° were recommended.
Furthermore, strain limits for bar buckling as well as bar rupture were proposed and the
deformation was computed using a plastic hinge approach with decreased elastic stiffness
to account for slip and shear deformations according to [EE09]. Note that this model was
developed for columns and the authors state that the model still needs verification for
structures with different characteristics [PYC11]. All listed criteria are met by test units
VKI1-VKT7 except for the required longitudinal reinforcement ratio, which is higher than
that of the examined test units.

4.2.4. Shear - flexure interaction model

An approach in which flexural response of a column, obtained from section analysis of a
uniaxial fiber element, is combined with the shear response obtained from a biaxial shear
panel has been proposed as “axial-shear-flexure interaction” (ASFI) model in [Mos06,
MEKO07] and simplified to a “uniaxial-shear-flexure model” (USFM) in [MV08, MH10].
Originally, the approach included a full analysis of the shear panel according to the MCF'T.
In the more recent publications [MV08, MH10], simplifying assumptions regarding the
axial strain and principal compression strain were made with which an iterative calculation
of the shear response was eliminated. Both versions of the model are based on two section
analyses carried out at the point of inflection and at the point of maximum moment. The
element bound by those two sections is regarded as shear panel subjected to the average
stresses obtained from the two section analysis. All further calculations in the model are
made for this shear panel. Figure 4.3 visualizes some basic assumptions of the USFM
method.

Two sources of strength degradation are included in the model: Compression softening of
concrete due to transversal strains stemming from the combined action of flexure and shear
as well as degradation of the stresses transferred across cracks due to crack opening. The
two main assumptions, which enable the simplified calculation without iterations, concern
the axial and principal strains. Firstly, it is assumed that the principal compressive strain
€9 in the shear panel corresponds to the average strain at the center of the compression
stress block determined from section analysis. Secondly, the axial strain g is assumed
to be the average axial strain at the center line obtained from the two section analysis.
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Figure 4.3.: Fundamentals of USFM method (after [MVKO09]).

g2 = 0.5(eci + €cit1) (4.15a)
et = 0.5(e1,e1,i + €1t it1) (4.15b)

The axial strain at the center line that are due to shear g; . 4, could be added to the
latter equation but, as stated in [MVO08], this has generally little effect on the final result.
Indices ¢ and i+1 denote sections ¢ and i+1 for which section analysis is performed, e,
is the strain corresponding to the concrete stress block, [ is the longitudinal axis and cl
denotes the center line of the member. Relations adapted from the MCFT are then used
to calculate concrete and steel stresses f.1, fey and fs, as well as the principal tensile
strain €1 = €; + £, — €2, which is needed to obtain the compression softening factor S.

1

= 08 03I
c0

(4.16)

where €9 is the concrete strain at peak stress. The stress that can be transferred across a
crack and hence the overall shear force is limited by what can be transferred via aggregate
interlock and the reinforcement crossing the crack:

Umaz = Ve,i + fvav cot 0 (4.17a)

- 0.18v/fe
“ 7 0.31 + 24w/ (ay + 16)

(4.17b)

where a4 is the maximum aggregate size and o, and f,, are the transverse reinforcement
content and yield strength, respectively. To obtain the overall deformation, the drift due
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to flexure 6y, shear 65 and anchorage slip 0y, if applicable, are added. The flexural
deformation is calculated by means of a plastic hinge model. The shear distortion of the
shear panel is equal to the drift due to shear.

etot = 9]0 + 93 + eslip (418)
with
A1
- = _ 4.1
Of 7. I /0 x¢(z)dz (4.19a)
2 gl — 82)
0 4.19b
tan 6 ( )

where ¢(z) is the curvature distribution along the longitudinal axis. Originally, an ap-
proach by Okamura and Maekawa was proposed by the authors to calculate the slip.

To assess the performance of the USFM, the latter was implemented on the basis of a
moment-curvature analysis procedure as outlined in [MV08] for VK1-VK7. Hence, the
moment was not calculated using the concrete stress block and the material models were
the same as those used in Section 3.5. The secondary shear crack check introduced in
[MH10], which deals with the response of a column subjected to double-curvature at the
inflection point, was not included. Instead of including a slip component, the flexural
deformation was again calculated according to [PCKO07], where the influence of strain
penetration is included in the plastic hinge length. The reader is referred to Section 4.3
for an illustration and evaluation of the results obtained with the USFM according to the
procedure outlined in this paragraph.

4.3. Application of models to test units

4.3.1. Introduction

To asses their performance, the results obtained with the shear and drift capacity models
described in Section 4.2.1 to 4.2.4 were compared to the experimental results. Test units
VK6 and VK7 are chosen for the comparison. VK6 did fail in a flexural-shear mode, which
means it exhibited severe damage along a diagonal crack accompanied by failure of the
compression zone. On the contrary, VK7 failed in flexural compression and the shear cracks
did not open significantly during the experiment. Hence, the capacity predicted with all
models should exceed the measured resistance of this test unit, whereas the predictions
for VK6 should capture the degrading branch of the response. However, one needs to
bear in mind that none of the models was specifically developed for wall type structures
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but rather for columns and beams. Although the models are therefore, strictly speaking,
applied outside their original scope, they are examined here as corresponding models for
walls are currently lacking.

4.3.2. Ductility dependent models

Figure 4.4 shows the comparison between the predictions according to the models pre-
sented in Section 4.2.1 and the experimentally determined force-displacement envelopes
in positive and negative loading direction. The predicted shear force capacities for test
unit VK7 exceed the measured ones in the entire deformation range, as it was expected.
While the model according to [KP00] predicts a capacity that is significantly higher than
the measured resistance, the capacity according to [SP06] and [BRF04]| is only slightly
higher than measured. Nevertheless, each of the three models correctly implies that flex-
ural failure occurs eventually. The latter two models consider, besides a degradation of
the concrete component, also a degradation of the resistance of the transverse reinforce-
ment. Comparison of the predictions with the experimental data of VK6 visualizes well
the above mentioned issue regarding the glancing intersection of the force-displacement
response and the shear capacity curve. The predicted gradient of the shear strength
degradation of [SP06, BRF04] agrees well with the experimental degradation right after
attainment of the peak value. However, as evident in Figure 4.4, it would not be possible
to define a certain drift as displacement capacity. Even though the initial degradation
is captured well by the two mentioned models, the onset of stronger degradation is not
predicted by any of the two.
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w23 F g 12 3
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200 neg. env.) 200 = — — [SMO6]
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Figure 4.4.: Ductility dependent shear capacity predictions compared to test results.
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4.3.3. Drift capacity models

As mentioned previously, drift capacity models aim at directly predicting the drift at which
failure occurs rather than the degradation of shear mechanisms. Failure is typically defined
as a certain drop in lateral resistance, or, as in the axial capacity model [EMO03], as loss
of axial load bearing capacity. However, Figure 4.5 shows that the capacities predicted
for both test units significantly exceed the measured ones. The main reason for this
might be that these empirical drift capacity models are derived from databases containing
experimental data of columns and not walls. While the criteria for application are formally
met for the drift capacity model by [EMO05], the other two models are actually applied
outside their scope. The axial capacity model was originally validated against the columns
tested by [LynOl] and [Sez02] which had higher aspect and longitudinal reinforcement
ratios as well as lower steel strengths of the reinforcement. The columns tested by [LW 03]
on the other hand had higher normal force ratios than the test units investigated here.
Generally, it is not advisable to apply empirical models to structures which do not comply
with the database from which the model was derived. Figure 4.5 confirms that if this is
done nevertheless, rather poor predictions of the observed behavior are obtained.
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Figure 4.5.: Ductility dependent shear capacity predictions compared to test results.

4.3.4. Truss and interaction models

The remaining two modeling approaches introduced in Section 4.2 have also been devel-
oped for columns, originally. Figure 4.6 shows their application to test units VK6 and
VKT7. The shear flexure interaction model “USFM” significantly underestimates the shear
capacity of both test units. The peak load is not even reached before the capacity starts
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degrading. This is mainly due to an overestimation of the compression softening. The
simplifying assumption regarding the principal tensile strains leads to an overestimation
of the compression softening factor. The axial strain expected at the centroid of a wall
section is very high and while the simplification that it corresponds to the principal tensile
strain might hold for columns, it seems to be an assumption that is too crude for walls.

The capacity according to the truss model with plastic limits [PYC11] degrades very
fast with increasing deformation. This is due to the prediction of a rapid degradation of
the concrete component with increasing curvature, so that at relatively low displacement
ductility levels, the shear force capacity results almost exclusively from the transverse
reinforcement component V;. As the transverse reinforcement content of VK6 is very
low, the model predicts a much earlier onset of degradation than measured. The early
degradation and low residual capacity might again be due to simplifications which are
feasible for columns but not necessarily for walls. Again, one needs to keep in mind that
the model is applied here outside its originally intended scope. The specific assumptions
that render the model inapplicable for VK6 might be the those concerning the transfer
of shear stresses across the crack. No aggregate interlock or friction forces are considered
in this model, which might be a valid assumption for columns but not for walls, where
aggregate interlock constitutes an important load transfer mechanism (see Chapter 5).
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Figure 4.6.: Shear and drift capacity predictions compared to test results.

4.3.5. Conclusions

As evident from the comparisons of predictions and experiments in the previous sections,
the predictions obtained with the drift capacity models for beams and columns do not agree
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well with the experimental wall data. Especially the models in Sections 4.2.2 through
4.2.4, which have been empirically determined from column and beam data or contain
assumptions which are only valid for columns and beams, yield poor estimates of the drift
capacity of walls. The assumptions on which these models are based, e.g. the neglect
of the aggregate interlock mechanism, simply do not hold for walls. Better estimates are
obtained with the ductility dependent shear models, introduced in Section 4.2.1. For VK7
all of them correctly predict a capacity that is higher than the measured resistance and for
VK6 two of them [SP06, BRF04] predict a degradation that is close to the experimental
gradient. However, Figure 4.4 also shows a large range of capacities predicted with these
models which render the predictions unreliable.

Due to the mentioned shortcomings of the existing models for application to wall-type
structures the development of new models for walls is necessary. Given the lack of ex-
perimental data of wall tests, empirical drift capacity models do not appear to be a good
option. Models that specifically take into account the characteristics of walls are necessary
to obtain reliable estimates of the drift capacity of walls. One such approach is introduced
in Chapter 5.
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5. Validation of a kinematic model

5.1. Introduction

The three parameter kinematic theory (3PKT) [MHB13] was developed to describe the
load-deformation relationship of structural walls. It predicts not only the pre-peak re-
sponse of shear critical walls, but it is capable of capturing the post-peak response until
failure. Thus, the strength of this model is that it allows predicting both the force and
the deformation capacity, while usually a separate approach is required for each.

The theory is based on the simplified kinematics of walls which develop diagonal shear
cracks and fail along such a crack eventually. Based on these kinematics, the deformation
pattern of the walls is described by means of three independent parameters. Therefore,
the 3PKT is a direct extension of the 2PKT, which was previously developed for deep
beams [MBC13]. The deformations of deep beams could be completely described with
two parameters, namely the elongation of the longitudinal reinforcement and the shear
deformation at the tip of the crack. A third parameter, the vertical displacement of the
part above the critical crack due to the axial load, was introduced for walls. The force
components that contribute to the shear resistance of the wall can be estimated from
strains and crack displacements derived from the assumed deformation pattern.

In the following sections, the basics of the 3PKT are explained (Section 5.2) and its per-
formance in predicting the response of potentially shear critical walls is evaluated (Section
5.4). Section 5.3 presents the database used for this evaluation. Furthermore, in Section
5.5 the influence of several characteristics on the response of walls is evaluated using the
3PKT. Section 5.6 discusses the size of the critical loading zone and potential relations
with different parameters. Finally, some conclusions are provided in Section 5.7.

5.2. Three parameter kinematic theory - 3PKT

5.2.1. Kinematics assumed in the 3PKT
The three parameter kinematic theory for the behavior of walls was developed by [MHB13|

as an extension of a two parameter kinematic theory for deep beams [MBC13]. It is a
“kinematic” theory because it is based on an idealized representation of the deformation
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pattern of walls. The theory was developed for shear critical walls, that means walls which
develop diagonal cracks and eventually fail along such a crack. Hence, the 3SPK'T assumes
that such a shear crack develops which separates the upper nearly uncracked part of the
wall, which is thus regarded as rigid body, from the radially cracked fan below. Besides the
crack and the degradation associated with opening and sliding along the crack, the part
just above the crack tip, the so-called “critical loading zone” (CLZ), plays an important
role in describing the failure mechanism. In wall tests, it has been observed that failure
along a shear crack is accompanied by severe damage of the wall around the crack tip,
compare also Figure 5.2 on page 122. The CLZ accounts for this damaged area.

e
i d
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_ : body
= i\ Fa(Ag)
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N Fi(s Fy(s, ~
X A FE
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(a) Deformation pattern (b) Force components

Figure 5.1.: Deformation pattern with three degrees of freedom and force components as assumed
in the 3PKT.

Figure 5.1a visualizes the kinematics and the resulting deformation pattern assumed in the
3PKT. Basically, the wall is divided in three parts: a radially cracked fan under the shear
crack, a rigid body above the shear crack, and the previously mentioned critical loading
zone at the bottom tip of the rigid body. The deformation of these parts is described with
the three parameters also indicated in Figure 5.1a: The elongation of the longitudinal
reinforcement described by the average strain &g 4,4, the horizontal displacement of the
CLZ A. and the shortening of the CLZ A.,. All points below the crack are assumed to
rotate around the crack tip, which means that any deformation is assumed perpendicular
to the radial cracks. The magnitude of this rotation is determined by the average strain
in the longitudinal reinforcement e 4y
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The deformation of the critical loading zone depends on the loading it is subjected to and
the resulting angle of the reaction force. If the reaction force of the CLZ, Frz, is parallel
to the shear crack, the tip of the CLZ is assumed to translate horizontally by A. and the
vertical displacement A, is zero. This is always the case for deep beams which are not
subjected to axial load, hence parameter A., was not included in the 2PKT [MBC13]. If
the wall is, however, subjected to an axial load, the reaction force Fp 7 is more vertically
inclined. The maximum angle of this force corresponds to the inclination of the center
line of the CLZ, i.e. 0.50 in relation to the vertical axis. In this case, the CLZ is also
shortened in compression which yields a vertical deformation component A.,.

The rigid body itself is assumed to rotate around the tip of the shear crack and translate
according to displacements A., and A. of the CLZ. The latter two cause a downward
sliding of the rigid body along the shear crack while the elongation of the longitudinal
reinforcement causes the opening of the shear crack.

Taking into account the deformations described in the preceding paragraphs leads to the
following expressions for the deformations in the radially cracked fan below the crack:

=l
Su(e,y) = 2 / e (1)l (5.1a)
0 nizd
h—zx
oy(x,y) = es(l)dl (5.1b)
Yy d 0/

where [ is a variable along the y-axis and all dimensions are according to Figure 5.1.
Accordingly, the deformation of the rigid body above the crack is described by:

S,av l AC’l}
0z(z,y) = (—6 ’d“ +— >y+Ac (5.2a)
S,av l AC’U
8y(x,y) = eTgt(h_xH H(h—d ) (5.2b)

where [; is the length over which the longitudinal reinforcement is activated and e g4¢ is

the average tensile strain in the reinforcement e .9 = (1/1;) ét es(l)dl. To determine the

crack angle, the formulation based on a simplified expression of the MCFT [BVCO06] is
used again (see Equation (2.53)):

h
0 = 29° 4+ 7000e 41501 (1) < v = arctan (L_>
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Due to the generally low spacing of the longitudinal reinforcement, the size effect term of
Equation (2.53) is not considered here and the maximum angle is bound by the geometry
and the shear span of the wall. Contrary to what has been done in Section 3.7, the equation
is here evaluated based on a procedure included in the Canadian standard [CSA04], which
utilizes a strut-and-tie approach to determined the shear strength on which the estimate
of the angle is based. Hence, the strains used here differ from those used in Section 3.7,
where the model proved to not be the best fit estimate for the angle. Furthermore one
needs to keep in mind that the approach presented here is less sensitive to variations in
the angle. If there is a loading beam at the top of the wall, the clear distance between
the base of the pier and the bottom edge of the loading beam is used instead of the entire
shear span length. The clear distance is used in these cases because it is assumed that the
crack does not cross the loading beam.

5.2.2. Load bearing mechanisms considered in the 3PKT

Figure 5.1b shows the force components that are assumed to contribute to the shear
resistance of walls. At the shear crack itself, an aggregate interlock force Fy; develops
depending on the crack width w and the slip s along the crack. The opening of the shear
cracks also causes a strain ¢, in the transverse reinforcement and thus a force Fi(e,). The
latter is located at the centroid of the activated transverse reinforcement crossing the crack
as the reinforcement is lumped in one tie in the 3PKT. Also the longitudinal reinforcement
distributed in the tension side of the wall, which is assumed to be 0.5hb, is lumped in one
tie at its centroid. Hence, some reinforcement that is possibly in tension in the other
half of the wall is neglected and instead the reinforcement that is considered is assumed
to have equal strains and stresses. Besides the longitudinal force the reinforcement also
exerts a force due to dowel action Fj; as long as it is not yielding at the shear crack. Three
separate force components are acting in the CLZ: The reaction force F 7 originating from
compression of the concrete in the CLZ, a vertical force Fy. stemming from compression
of the reinforcement in the CLZ and a friction force Fi.y due to contact of the CLZ with
the fan underneath the crack. Besides the forces already described, the reaction force F,
depending on the concrete compression strain ., develops in the compression zone at the
base of the radially cracked fan. The following paragraphs summarize the assumptions
behind the determination of the force components and the equations with which they are
calculated.

The aggregate interlock force F,; along the crack is computed in dependence of crack width
and slip utilizing the contact density model by [LMOS89] as follows:
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/
F; = 0.181}02‘1,)i
sin 0
/2 " (5.3)
Vei = / Oeon(W, s) (1 — exp <1 — 0.5—9)) A 0.5 cos psin pdyp
w

—7/2

where d’ is the distance between the outer reinforcement bar and the compression edge of
the wall, 0., is the contact stress normal to the contact surface as a function of crack width
w and slip s, a4 is the maximum aggregate size and A, , = 4/7 is the entire surface area per
unit crack plane. The exponential expression in brackets denotes the ratio of the surface
area which is in contact and 0.5cos ¢ is the contact density function which represents
the statistical distribution of inclinations ¢, which describe the profile of the undulated
crack surface. To determine the contact density function, [LMO89] measured the shapes
of rugged crack surfaces and found that the above equation is a good representation of the
surface profile. The stress is always assumed perpendicular to the surface. To obtain the
shear stress, the horizontal components of o, are integrated for all inclinations occurring
along the crack surface based on the contact density function and the surface area per
unit crack plane.

Close to the top of the shear crack, a wedge shaped concrete piece is assumed to break
out directly under the crack. Dowel action is modeled based on the assumption that
the reinforcement tie is clamped at the top and the bottom of this wedge. The relative
displacement between the two edges A4, which can be calculated from the three parameters
of the 3PKT, causes a clamping moment at both ends. Based on a linear moment profile
over the distance I = lp1 + lp2 (see also Figure 5.1b) between the two clamped ends the
resulting dowel action force F,; can be calculated:

12E7dy, d3

Fy=ny 6403 Ag < nbzfyeﬁ (5.4)

where ny; is the number of longitudinal reinforcement bars, dj; their diameter and fy. is
the effective steel yield stress defining the upper limit of the stress that contributes to
dowel action. If there is no tensile stress in the bars f,. equals the yield stress f,, and if
the bars are yielding in tension f. is zero. Generally, Fy is assumed to be relatively small
compared to other components, especially as the longitudinal strain in the reinforcement
increases towards the yield strain.

The transverse reinforcement is assumed to be activated in between this just mentioned
wedge shaped piece of concrete and the critical loading zone. Its average strain over a
base length of 0.9d, ,, is calculated from the horizontal displacement components in the
cracks below the main shear crack and that shear crack itself. The stress f, is calculated
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from e, based on a bilinear stress-strain relationship with strain hardening. With this
stress, the force in the transverse reinforcement, Fy, follows as:

Fy = 0,b(d cot 0 — Iy — 1.5lp1¢) fo (5.5)

where [j1, is the characteristic length of the CLZ which will be discussed in more detail in
the following paragraphs and Section 5.6.

The reaction force of the critical loading zone F¢p 7 is calculated from the concrete com-
pression strain oz in the CLZ. To calculate this strain, the displacement component in
direction of Fp 7 is distributed over a base length of 3[j;, cos . The average stress corre-
sponding to oz is calculated based on a modification of Popovics stress-strain relation
[Pop70]. With this average stress fc qug, the resulting force Frz follows as:

Forz = adpiebfe.avg(ecrz) (5.6)

The vertical force component of the longitudinal reinforcement in the CLZ which is in
compression, Fg., is calculated from the vertical strain component of the CLZ. Depending
on the displacements and rotation of the rigid body, the CLZ might be pushed against the
bottom face of the shear crack. In this case the force F; develops, which is the resultant
of the contact force perpendicular to the crack and the corresponding friction force. To
compute the friction component, a friction coefficient of p = 0.7 is used.

The compression strains and stresses in the cracked part under the shear crack are cal-
culated based on a section analysis in which the curvature is determined by equilibrium
and the strain of the longitudinal reinforcement tie. Despite the use of this simple anal-
ysis procedure to calculate the stresses, sections are not assumed to remain plane. As
mentioned previously, the region under the shear crack is assumed to be cracked radially
and the cracks are hence all directed towards the compression zone. Therefore, the force
in the compression zone F, is not assumed vertical, but its inclination is obtained from
equilibrium.

Because of the mechanism underlying the 3SPKT, the theory is only applicable if the trans-
verse reinforcement tie is predicted to yield before the longitudinal tie. If the longitudinal
reinforcement tie is the one that yields first, the behavior is of a more flexural type with
significant deformations in the fan below the shear crack and little opening of the shear
crack itself. This means that in the corresponding physical pier predominantly flexural
cracking is expected while shear cracks, if they develop, are expected to open little. One
needs to keep in mind that the longitudinal reinforcement tie in the 3PKT represents half
the total longitudinal reinforcement and yielding of this tie thus corresponds to a state in
which the strain of half the reinforcement on average exceeds yield strain. This is not to
be confused with the first or nominal yield used in the plastic hinge model, which refers
to the strain of the outer reinforcement bars only.
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5.2.3. Failure mechanism

Looking at the assumed kinematics and force components also helps understanding the
failure mechanism generally predicted by the 3PKT. Initially, cracks develop and open
gradually with increasing elongation of the transverse and longitudinal reinforcement.
With increasing transversal load and reinforcement stresses, the reaction force of the CLZ
increases as well. Thus, some part of the applied shear force is resisted directly by the
CLZ, i.e. by a mechanism comparable to direct strut action. When the CLZ enters the
post-peak range the resistance degrades but the deformations continue to grow. This
leads to an increasing sliding deformation along the shear crack which causes an increased
aggregate interlock force. At first, this increase of aggregate interlock force compensates
for the loss of resistance of the CLZ. However, as displacements and rotations get larger
the shear crack opens further. With growing crack width and sliding deformations the
aggregate interlock component eventually decreases as well, which causes failure of the
wall. Even though the mechanism is generally similar for all walls failing in shear, the
ratio of the force resisted by the CLZ depends strongly on the wall geometry, for instance.
Squad walls transfer a much larger portion of the shear load directly through the CLZ
than slender walls, which in turn develop higher aggregate interlock forces.

A completely different failure mechanism might develop if the walls have sufficient rein-
forcement which limits damage at the crack and in the CLZ. In this case, the compression
zone under the shear crack might crush in compression, which causes a rather brittle
failure of the wall.

5.3. Experimental database for comparison

The 3PKT was validated against a database of large-scale, single curvature tests on can-
tilever RC walls with rectangular cross section. As the 3PKT is based on the kinematics
resulting from the formation of a shear crack, a test series had to contain at least one
test unit failing along such a crack, i.e. exhibit tensile shear failure. Seven test series
comprising 36 tests met the required criteria. The SPKT was applicable to 28 out of those
36 tests, meaning that in those cases the transverse reinforcement tie was predicted to
yield before the longitudinal reinforcement tie.

The maximum aspect ratio Lg/h included in the database corresponds to the upper limit
of 3.0 which is set for application of the 3PKT. If walls have higher aspect ratios, they
are expected to exhibit more flexural behavior and thus develop different kinematics than
those assumed in the 3PKT. With regards to the longitudinal reinforcement layout, both
walls with reinforcement that was evenly distributed or concentrated in the boundaries are
included in the database. In the latter case, they usually contain some confining reinforce-
ment in the boundary as well. Longitudinal reinforcement ratios ranged from g; = 0.8% to
3.33% in the database. The reinforcement ratio was calculated as g = 0.5A4,/(0.5bh) where
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0.5A; is the sum of the longitudinal reinforcement in half the cross section. Except for wall
S10 [MT85], which was tested monotonically and had a larger amount of reinforcement
at the tension side, this corresponds to the longitudinal reinforcement ratio calculated
as g = Ag/(bh). If this total reinforcement ratio differs from the longitudinal reinforce-
ment ratio in the web g; e, according to Table 5.1, reinforcement is concentrated at the
boundaries. The transverse reinforcement ratios in the database vary between g, = 0%
and 1.04%. With regard to the material properties, normal strength concrete with com-
pression strengths between 14 MPa and 56 MPa and reinforcing steel with yield strengths
between 384 MPa and 719 MPa were used. Table 5.1 summarizes the tests included in the
database.

Table 5.1.: Database for validation of the 3PKT.

Geometry Concrete and reinforcement n =
Test b h Ls/h o 01, web Syl Qv Sy fe P/(bh)
unit  [mm] [mm] []  [%] [%] [MPa] [%] [MPa] [MPa] [
[Bim10]
VK1 350 1500 2.20 0.82 0.82 515 0.08 518 35 0.07
VK3 350 1500 2.20 1.23 1.23 515 0.08 518 34 0.07
[HBD13]
VK6 350 1500 3.00 1.23 1.23 521 0.08 528 44.4 0.06
VK7 350 1500 2.20 1.23 1.23 521 0.22 528 30 0.08
[DWB95]
WS2 80 500 240 333 042 536 0.3 719 36 0.00
WS4 80 500 240 333 042 536 0.3 719 36 0.00
[MT85]
S4 100 1180 1.12 1.05 1.05 574 1.03 574 32.9 0.07
S9 100 1180 1.12  0.99  0.99 560 0 29.2 0.08
S10 100 1180 1.12 291  1.00 513 0.98 496 31.0 0.07
[Wir85]
Walll 100 2000 0.58 0.80 0.704 435 0.369 425 25.0 0.00
Wall2 100 2000 0.33 0.80 0.704 435 0.369 425 22.0 0.00
[Hir75]
72 160 1700  1.00 1.54 0.5 384 0.26 427 17.6 0.11
73 160 1700  1.00 1.54 0.5 384 0.26 427 21.2 0.09
74 160 1700 1.00 1.54 0.5 384 0.52 430 21.2 0.09
5 160 1700  1.00 1.54 0.5 384 0.52 430 14.0 0.14
76 160 1700 1.00 1.54 0.5 384 1.04 423 15.0 0.13
7 160 1700 1.00 1.54 0.5 384 1.04 423 18.7 0.11
78 160 1700  1.00 091 0.5 390 0.52 429 21.2 0.09
79 160 1700 1.00 0.91 0.5 390 0.52 429 14.0 0.14

continued on mext page...
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Table 5.1.: Continued from previous page

Geometry Concrete and reinforcement n =
b h Ls/h o owes [y 0 fyw Je P/(bh)
mm] [mm] [ (%]  [%] [MPa] [%] [MPa] [MPal 8
80 160 1700  1.00 0.91 0.5 390 1.04 423 15.0 0.13
81 160 1700 1.00 091 0.5 390 1.04 423 18.7 0.11
82 160 850 2.00 2.31 0.4 388 0.52 430 21.2 0.09
83 160 850 2.00 2.31 0.4 388 0.52 430 18.2 0.11
84 160 850 2.00 2.01 0.4 385 0.52 423 18.2 0.11
85 160 850 2.00 2.01 0.4 385 0.52 423 21.2 0.09
[PE95]
SW4 60 600 2.10 2.82 0.31 500 0.39 545 36.9 0.00
SW5 60 600 2.10 3.01 0.47 535 0.31 400 31.8 0.00
SW6 60 600 2.10 2.82 0.31 500 0.31 400 38.6 0.00
SWT7 60 600 2.10 3.01 0.47 535 0.39 545 32.0 0.00
SW8 60 600 2.10 293 0.31 430 0.42 400 45.8 0.00
SW9 60 600 2.10 293 0.31 430 0.56 400 38.9 0.00
[TW12]
RW1 150 1220 2.00 1.29 0.27 470 0.27 515 48.0 0.07
RW2 150 1220  2.00 2.89 0.62 470 0.62 440 48.0 0.07
RW3 150 1220 1.50 1.32 0.33 469 0.33 515 48.0 0.08
RW4 150 1220 1.50  2.59 0.74 469 0.74 440 56.0 0.06
RW5 150 1220  1.50 2,51  0.62 470 0.62 440 56.0 0.02
Max. 350 2000 3.0 333 1.23 574 1.04 719 56 0.14
Min 60 500 0.33 0.80 0.27 384 0 400 14 0

Note: The names of the walls tested by [TW12] correspond to the original names as follows:
RW1: RW-A20-P10-S38, RW2: RW-A20-P10-S63, RW3: RW-A15-P10-S51, RW4: RW-A15-
P10-S78, RW5: RW-A15-P2.5-564

The first four test units VK1-VK7 [Bim10, HBD13] listed in the table are the same ones
as previously used for the study on plastic hinge modeling in Chapter 3. Only the four
test units with continuous reinforcement will be considered for the comparison with the
3PKT, as the test units with lap-splices develop different kinematics. Several failure modes
were observed in these four tests. VK1 and VK3 both failed in shear and VK3 did so in
a relatively brittle manner at a significantly lower drift than VK1. The more slender
VK6 generally showed a more flexural behavior and eventually failed in a shear-flexural
mode characterized by a loss of compression zone and significant deterioration in the lower
part of the inclined cracks. VK7 on the contrary failed in flexural compression. Due to
the higher transverse reinforcement ratio, which was sufficient to resist the shear force
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Figure 5.2.: Illustration of shear cracks which cause failure of test units VK3 [Bim10], VK6 [HBD13],
WS4 [BWT195], S9 [MT85] and SW5 [PE95] drawn to scale 1:50.

corresponding to the moment capacity, the diagonal cracks opened relatively little during
the test.

Walls WS2 and WS4 [DWB95] were not capacity designed either, but the longitudinal
reinforcement was concentrated at the boundaries and not evenly distributed. Both tests
were run in 1:3 scale with equal wall layout. The difference in the tests was the loading
velocity: WS2 was loaded with displacement velocities of up to 5mm/min and WS4 was
subjected to faster loading rates of up to 24mm/min. Both walls eventually failed in shear
along a diagonal crack at approximately the same top displacement.

Different failure modes were observed for the three monotonically tested rectangular walls
of the test series conducted by [MT85]. Walls S4 and S9 developed a shear crack pattern
but the failure clearly concentrated in one crack only in wall S9, which had no transverse
reinforcement at all, while several cracks opened in S4. Test unit S10 had a high longitu-
dinal reinforcement ratio in the boundary element in tension and could thus develop high
forces at the tension side. Yielding of this reinforcement only started right before diagonal
compression failure occurred.

Two very short walls with aspect ratios Ls/h < 1.0 and very long cross sections (h/b = 20)
were tested by [Wir85]. Web reinforcement was relatively low also in this case and the
boundaries were confined. Both walls were subjected to cyclic loading. For the more
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slender Walll a significant movement of the triangular part above the shear crack is re-
ported before failure, which is caused by crushing of the concrete at both corners of this
triangle and significant displacements along the shear crack. However, yielding of half the
vertical reinforcement and significant opening of the basecrack were already observed at
less than 1/3 of the displacement at failure. Wall2 first developed some diagonal cracks
and eventually also slid significantly along the construction joint at the base.

Some wall tests with varying slenderness and reinforcement layouts were summarized by
[Hir75]. All of the ones with rectangular cross section, that were hence considered in the
database, had longitudinal reinforcement that was concentrated in the boundary regions
of the walls. Two walls with the same layout were tested each time which means that the
part of the test series that was considered herein comprises 14 tests with seven different
layouts. According to the plots of the crack pattern provided in the report [Hir75], some
walls showed a failure that concentrated in one diagonal crack (tests no. 72 & 73) while
others also showed some damage in compression at the base of the pier (test no. 82). Other
series of walls with confined boundary elements were tested in cyclic loading by [PE95]

and [TW12] which showed failure modes that were similar to those that were previously
described.

To illustrate how the crack formation and damage in the physical test corresponds to the
idealized deformation assumed in the 3PKT; as well as to show the different dimensions
of the test units in this database, the shear crack which eventually caused failure is drawn
to 1:50 scale in Figure 5.2 for five out of the 28 test units.

5.4. Validation of the 3PKT

The database introduced in the previous section is used to validate the 3PKT. As outlined
in Section 5.2, a key parameter of the 3PKT is the so-called “critical loading zone” at the
tip of the rigid body above the shear crack. So far, the size of this critical loading zone is
a free parameter for which a relation needs to be established. For a first validation of the
3PKT this parameter was chosen so that the measured load-deformation responses of the
test units were captured best. That means this one parameter was determined according
to the available experimental results, while all other relations for the remaining force
components, as well as all the corresponding strains and displacements were calculated
according to equations and assumptions presented in Section 5.2. As the length 1., which
determines the size of the critical loading zone, usually turned out to be very similar for
all specimen of one test series, the same length lp;. was used for all of them in another
step of the validation. The data in the graphs presented in this and the following section
stem from the second step of the validation procedure.
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Table 5.2.: Experimental results and 3PKT predictions.

Experiment 3PKT Vinaz Oult
Test  Vimaz  Var'  Sur' bierv®  lie®  Vmae  Vae® 0w’ ghaly e
unit  [kN]  [kN]  [%] mm]  [mm] [kN]  [kN]  [%] [ [
[Bim10)]
VK1 729 583 1.90 320 320 698 558 1.91 1.04 1.00
VK3 879 703 1.35 300 320 868 694 1.74 1.01 0.77
[HBD13]
VK6 666 533 2.24 320 320 655 524 2.33 1.02 0.96
VK7 877 701 2.25 320 320 881 705 2.19 1.02 1.03
[DWB95]
WS2 137 109 2.14 180 180 136 109 2.23 1.00 0.96
WS4 130 104 2.24 180 180 136 109 2.23 0.96 1.00
[MT85]
S4 392 314 - 3PKT not applicable
S9 342 292" 0.80" 250 250 334 292" 0.94* 1.02 0.85
S10 670 643" 0.92* 250 250 673 643" 0.92* 1.00 1.00
[Wir85]
Walll 540 432 1.50 3PKT not applicable
Wall2 684 547 1.48 280 280 693 554 1.34 0.99 1.11
[Hir75]
72 825 660 - 300 220 714 571 0.67 1.16 -
73 740 592 - 200 220 756 605 0.64 0.98 -
74 830 664 0.89 200 220 878 702 0.75 0.95 1.18
75 825 660 - 220 220 788 630 0.88 1.05 -
76 820 656 1.25 3PKT not applicable
77 930 744 - 3PKT not applicable
78 700 560 - 3PKT not applicable
79 630 504 - 200 220 626 501 1.14 1.01 -
80 720 576 - 3PKT not applicable
81 775 620 - 3PKT not applicable
82 328 262 - 200 220 349 - - 0.94 -
83 340 272 - 200 220 346 - - 0.98 -
84 330 264 - 220 220 312 - - 1.06 -
85 375 300 - 200 220 316 - - 1.19 -
[PE95]
SW4 107 102**  1.73*" 150 130 105 99**  1.82*" 1.02 0.95
SW5 113 90 0.95 90 130 121 97 1.12 0.93 0.85
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Table 5.2.: Continued from previous page

Experiment 3PKT Vinaz Oult
Vimae  Var'  Sue' bierv® i’ Vimae  Var®  du® o 2R
KN DN %] ] [mw] KN] KN % [ 8
SW6 113 90 1.67 130 130 104 83 1.78 1.08 0.94
SWT7 127 102 1.77 180 130 123 113" 1.39*" 1.03 1.27
SW8 94 90  2.00™" 100 130 104 102  2.46™" 0.90 0.82
SW9 103 82 2.04 125 130 103 102" 2.02*" 1.00 1.01
[TW12]
RW1 459 367 3.14 3PKT not applicable
RW2 730 584 2.99 350 300 722 578 1.64 1.01 1.83
RW3 589 471 3.30 300 300 605 484 3.50 0.97 0.94
RW4 841 673 2.97 270 300 865 793 1.61 0.97 1.84
RW5 665 532 2.42 300 300 746 746 2.16 0.89 1.12
Max. 930 744 3.30 350 320 881 793 3.50 1.19 1.84
Min 94 82 0.80 90 130 103 83 0.64 0.89 0.77

Avg.  1.01 1.07
COV  6.41%  26.8%

Note: The names of the walls tested by [TW12] correspond to the original names as follows:
RW1: RW-A20-P10-S38, RW2: RW-A20-P10-S63, RW3: RW-A15-P10-S51, RW4: RW-A15-
P10-S78, RW5: RW-A15-P2.5-S64

1 Generally Vi = 0.8Vinaz. If sudden failure occurred at a higher load or a higher load ratio
was defined as ultimate state, this value and the corresponding drift are given instead.

2 lp1e,7u is the value that provided the best results for this test unit, ly1. the one with the best
results for the series.

3 In accordance with the experiments, 80% of the force or the load at sudden failure and the
corresponding drifts are provided.

* A residual load V' > 80%Vina: was defined as failure and the provided drift corresponds to
this failure load.

** Load and corresponding drift at which sudden failure occurred.

Table 5.2 gives an overview over the 3PKT predictions. It summarizes the measured and
predicted peak loads and drifts corresponding to a 20% drop of load. The latter is here
referred to as ultimate state or displacement capacity in accordance with e.g. most drift
capacity models introduced in Section 4.2.2. If the test was stopped before the load had
dropped by 20% or if a sudden failure occurred, the corresponding drift value is marked
in the table with one or two asterisks, respectively. Also indicated are the test units
for which the 3PKT was not applicable because the longitudinal reinforcement tie was
predicted to yield first. In most cases, the included drift values were obtained from the
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hysteresis plots in the corresponding reference. In [Bim10, HBD13] they are corrected for
the rotation of the foundation. The drift values of [MT85] were corrected for foundation
rotation according to the procedure outlined in [MT85]. For all other test units, either
no specific information is provided regarding the rotation of the foundation or it was not
measured. If the test was stopped without any further explanation before the load had
dropped by 20%, i.e. if it is unknown whether failure occurred or the test was stopped for
another reason, the ultimate drift is not reported in Table 5.2 (indicated with a dash).

Figure 5.3 compares the predicted load-deformation relationships of some of the test units
listed in Table 5.2 with the measured ones. Figure 5.3a shows the envelopes of the positive
loading direction of the four test units with continuous reinforcement reported in [Bim10,
HBD13] compared to the corresponding predictions. One can see that the peak load as
well as the degrading branch are captured very well in most cases. Only the drift capacity
of VK3 is slightly overestimated because the CLZ size that matched the entire test series
best is a bit larger than the optimum fit for VK3. All 3PKT predictions are plotted up
to Oy, 1.€. the drift corresponding to a 20% drop of shear capacity.

Figure 5.3b contains only two test units of the series by [MT85], because the 3PKT was
not applicable to the third one of the series. For the third test unit, the longitudinal
reinforcement was predicted to yield before the transverse reinforcement. For each test
unit, two experimental envelopes are shown: One original envelope (index ezp,orig), which
uses the deformations provided in the report and one envelope corrected for the rotation
of the foundation as explained previously (index exp,cor). In the test report [MT85], data
plots were provided up to the point at which the force dropped by about 10%, which was
defined as failure in Table 5.2. However, the descriptions of the testing provide force and
displacement values measured after failure. As the measurements that are necessary to
correct for the rotation were not provided after failure, only an approximate correction us-
ing the data from the ascending branch was made and the graphs are plotted with dashed
lines. Again, one can note that force and deformation capacity are well predicted by the
3PKT. The drift capacity of S10, corresponding to 96% of the peak load, is predicted
very well, whereas the drift capacity of S9 is overestimated by 19%. Besides the predic-
tion according to the 3PK'T, this plot also contains predictions made with Response-2000
[BCOOb], annotated with “R2K”. The latter may be used to better estimate the pre-peak
part of the response, as the 3PKT may underestimate the stiffness at this stage due to
the underlying kinematics based on the fully developed shear crack. In the other plots,
this prediction of the initial response has not been included to improve readability of the
graphs containing the results of four test units.

Figure 5.3c shows the results for some of the test units by [PE95]. Crushing of the
core concrete is reported for test unit SW4 during the cycles with peak displacement
A = 24mm — § = 1.9% and the hysteresis is provided up to a drift of § = 1.74%, which
indicates that the displacement amplitude 6 = 1.9% had not been reached in the cycle
in which failure occurred. The 3PKT predicts a different failure mechanism with rupture
of the transverse reinforcement at § = 1.82%, which corresponds well to the measured
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Figure 5.3.: Comparison of load-deformation relationships predicted with the 3PKT and experimen-

tal data.

drift capacity. Tests SW8 and SW9 were stopped due to considerable concrete damage.
Also the 3PKT predicts failure due to flexural crushing. Test unit SW5 developed large
shear cracks which eventually caused failure and the crack plots also show significant
deterioration around the crack tips. According to the 3PKT, degradation initiates with
degradation of the CLZ, which is immediately followed by decrease of the V,; component.
Hence, also in this case, the failure mode and the displacement capacity are well captured.

No description of failure modes is available for the tests summarized by [Hir75]. However,
the crack plots indicate a concentration of damage in one shear crack for test unit no.
73 and distribution of damage over several cracks for test unit no. 74. The more slender
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units no. 82 and no. 85 both developed shear cracks and showed crushing of the concrete
at the base. Degradation along the shear crack is also predicted for test units no. 73 and
74, which is again triggered by a decrease of capacity of the CLZ. A similar failure mode
is predicted for test unit no. 82. However, the shear resistance of the CLZ, V1,7, is much
higher than V,; in this case, whereas it was similar to V,; for the two more slender test
units. Also for test unit no. 85, the ratio of the load resisted by Vg7 is predicted to
be rather large whereas V,; is almost negligible and failure is predicted to occur due to
flexural crushing of the concrete at the base section.
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Figure 5.4.: Comparison of 3PKT prediction with experimental data.

Figure 5.4 shows the ratio of the experimental to the predicted peak load and drift capacity
of all test units. As before, the drift corresponding to a 20% drop of shear resistance was
defined as drift capacity. To have a clear definition and not include different criteria
and failure modes in one plot, only test units for which such a degradation occurred are
included. This means that sudden failures due to concrete crushing (i.e. SW4, SWS,
SW9 [PE95]), which may also be well predicted, as shown in Figure 5.3, are not included.
Furthermore, tests S9 and S10 [MT85], for which failure was reported but the provided
hysteresis plots ended at residual loads that were larger than 90% of the peak load, are
not included.

Note that in two cases, namely walls RW-A15-P10-S78 and RW-A15-P2.5-S64 [TW12],
the 20% drop occurred in the experiment but was not predicted by the 3PKT. However,
RW-A15-P10-S78 did not degrade slowly but lost its capacity very rapidly. The 3PKT
predicts failure due to flexural crushing at about half the drift at which failure actually
occurred, hence this is one of the outliers in Figure 5.4b. Flexural crushing is also predicted
for RW-A15-P2.5-S64 at about the drift at which the test unit did start to degrade in
the experiment. For this test series, only a conference paper is availyble at present and
no detailed measurement data. Hence, further investigations to find the source of these

128



5.5. Influence of pier characteristics on response

discrepancies could not be made. As not all values listed in the table are included in the
plot, the mean value and coefficient of variation of the drift capacity is different than that
provided in Table 5.2.

5.5. Influence of pier characteristics on response

5.5.1. Introduction

In the following sections, the influence of several structural characteristics on the behavior
of walls is examined. The focus therein lies on examining the influence of each parameter
on the deformation capacity, as this is the key value for displacement-based assessment.
Furthermore, potential effects on the shear strength and failure modes will be investigated
using the 3PKT.

5.5.2. Transverse reinforcement ratio

An important characteristic for the shear behavior of walls is their transverse reinforcement
content g, which influences especially the deformation capacity. To investigate the effect
of g, on the behavior of walls, some of the tests reported by [Hir75] as well as VK3 [Bim10)]
and VK7 [HBD13]| are considered.

Tests no. 72 to 77 had different transverse reinforcement ratios but were otherwise identi-
cal. Two walls of each layout were tested in this campaign and walls no. 73 (9, = 0.26%),
no. 74 (g, = 0.52%) and no. 77 (g, = 1.04%) will be considered for further comparison.
Some influence of g, is visible even in the crack patterns: While the damage of the test unit
with the lowest o, concentrates in one crack, more evenly distributed cracks are observed
in the other four cases. Generally, more compression damage of the concrete was observed
with higher g,,. Very similar observations were made for test units VK3 and VK7. Failure
concentrated in one shear crack of VK3, whereas the shear cracks of VK7 opened only
little and the test unit finally failed in compression.

To study the influence of the transverse reinforcement content according to the 3PKT,
several analysis with varying o, were run for the considered piers with average material
properties. Figure 5.5 shows the results of these analyses. As expected, the drift capacity is
strongly influenced by the transverse reinforcement ratio in each case. Especially the drift
capacity of the more slender test units (VK3 & VKT7: Lg/h = 2.2) is predicted to increase
significantly if the transverse reinforcement ratio is increased. This is also supported by
the experimental data. On the contrary, the force capacity is not affected as much. Only
at very low transverse reinforcement ratios (from g, = 0.0% to g, = 0.08%) an increase
in shear resistance is observed for this wall layout. With very low ratios of g, the flexural
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capacity of the wall can already be reached and hence no further increase of the force is
possible.
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Figure 5.5.: 3PKT analyses with varying transverse reinforcement ratios compared to experimental
data.

The shorter test units No. 73, 74 and 77, on the other hand, typically fail before their
flexural capacity is reached. In Figure 5.5, the flexural capacity is attained only with
the highest reinforcement ratio of g, = 1.04%, but the 3PKT is not applicable for this
0, because the longitudinal reinforcement tie yields first. As the shear capacity is hence
not limited by the flexural capacity but by the shear capacity and thus the transverse
reinforcement ratio, an increase in o, does not only lead to an increased drift, but also to
an increased force capacity for these walls. Figure 5.6a shows the predicted development
of crack width and slip for the transverse reinforcement ratios that are also included in
Figure 5.5. With increasing transverse reinforcement ratio the opening of the crack and
also the downwards sliding, which eventually causes failure, are delayed. The highest
transverse reinforcement ratio prohibits almost any sliding and only permits limited crack
opening.

Figure 5.6b shows the drift capacity of the two considered wall layouts in dependence of
the transverse reinforcement ratio. For comparison, the drift capacity estimates according
to Equations (2.40) [CENO5] and (4.11) [EMO05] are also included in this figure. The drift
capacity according to Equation (4.10) [LWT03] was derived using test data of columns
with higher aspect and axial load ratio and could hence not be applied. The applied
Equations (2.40) and (4.11) were originally developed to predict the deformation capacity
corresponding to a 20% drop of lateral load. According to the boundary values defined
for certain characteristics [EMO5] is neither applicable to the short walls (“Hir”) nor to
walls with g, < 1.0% (“VK”). Even though the criteria of application are formally met for

130



5.5. Influence of pier characteristics on response

8 ' 3 - . . —
Width % A Exp: Hir dso%
= ) o Exp: VK g9
Bl 7T — Stip . 3PKT: Hir dsg9;
é 0y = 00% ; / 4 . — 3PKT VK 680%
5 / / X - — EC8-3: Hir
E 0, = 0.26% ’ e — — EC83: VK
= - = —EM: VK
g 00 =052% 7 = - -
g ’ A | e =e==---
< L
= 0.5
0 n - L - - - L 0 i i i i i
0 0.2 0.4 0.6 0.8 0 0.2 04 0.6 0.8 1 1.2

Drift 6 [%)
(a) Crack width and slip of tests by [Hir75].

Transverse reinforcement ratio g, [%]
(b) Drift capacity.

Figure 5.6.: Crack development and drift capacity depending on transverse reinforcement content.

higher ¢,, one has to keep in mind that the equation was derived from experimental data
of columns and not of walls. However, the trend of the drift capacity is well predicted
with this model and similar to that obtained with the 3PKT, but the drift capacities are
about 30-40% larger than those calculated using the 3PKT. The drift capacity according
to [CENO05] matches well the experimental data of the squat walls, but not that of the
slender walls. It has been evaluated using a confinement effectiveness factor of k.., = 0.3
for the squat walls, as detailed drawings of the reinforcement layout were not available
for these. For the walls with higher aspect ratio, the factor turned out to be k., = 0.4
according to the provided reinforcement. In both cases, the mechanical reinforcement
content in compression was assumed equal to that in tension and the first term in brackets
hence evaluated as f2-?25. Furthermore, the average material properties of the two tests of
each set were used and the members were regarded to be primary elements without seismic
detailing. The different characteristics of the two wall layouts, such as the distribution
of the longitudinal reinforcement (equally distributed or concentrated at the boundaries)
and the slenderness, are not sufficiently taken into account with this model, as evident
in Figure 5.6. The 3PKT predictions agree well with the experimental data of both test
series on the other hand. Predictions are shown for all transverse reinforcement ratios for
which the 3PKT was applicable and the load eventually dropped by 20%. As indicated
in the previous paragraph, the 3PKT distinguishes between shear failure before and after
reaching the flexural capacity and thus takes into account the behavior of the walls in a
more detailed way than the drift capacity models. It is therefore able to better capture
the different behavior of the two test series and thus also the difference in the drift limits.
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5.5.3. Aspect ratio

Besides the transverse reinforcement content, the aspect ratio Lg/h significantly influences
the behavior of walls. Both strength and deformation capacity are affected by changes
of Lg/h. This is due to a transition from a predominantly shear controlled behavior
towards a flexural behavior with increasing aspect ratio. To visualize the effect of a varying
slenderness, three test units will be considered in the following: Test units VK3 [Bim10]
and VK6 [HBD13] for which the aspect ratio was the varied experimental parameter and
test unit SW6 [PE95]. The first two test units (called VK in the following plots) had
evenly distributed reinforcement, low transverse reinforcement and an axial load ratio of
n = 0.07. The aspect ratio has not been the only varied parameter in any other test series,
hence only an analytical investigation could be made using any other wall layout as basis.
Wall SW6 was chosen because, contrary to VK3 and VK6, it does not have an axial load
and has its longitudinal reinforcement concentrated in the boundaries.
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(a) VK3 and VK6 [Bim10, HBD13]. (b) SW6 [PE95].

Figure 5.7.: 3PKT analyses with varying aspect ratio compared to experimental data.

Figure 5.7 shows the influence of the aspect ratio on the force-deformation response for
the selected test units. The increasing aspect ratio leads to a transition from a rather
brittle to a more ductile response. While the lateral load resistance decreases, the drift
capacity increases. The experimental data of VK3 and VK6 does not only support the
predicted trend but also the absolute values. One has to keep in mind, however, that the
average material properties were used which causes some variation in the predicted and
measured drift capacities. The measured envelope of SW6 is also well predicted and the
predicted trend due to a change in aspect ratio is similar as for VK3 & VKG6.

However, as Figure 5.8a shows, the influence of Ls/h on the drift capacity differs for the
two layouts. The drift capacity is approximately the same up to an aspect ratio of about
1.5. Between Ls/h = 1.5 and 2.0, there is a transition towards a more flexural behavior
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Figure 5.8.: Drift capacity and force components depending on aspect ratio.

with a significant increase of drift capacity in both cases. But while the drift capacity of
the VK3 & VKG6 layout increases with about the same gradient as it did for Lg/h < 1.5,
the gradient with which the capacity of SW6 increases is larger than before. These three
test units, and comparison with other test unit layouts not included in this section, show
that the effect of the aspect ratio on the drift capacity strongly depends also on other
characteristics, such as the distribution of the reinforcement. Contrary to the 3PKT, the
equation of [CENO5] predicts a more steady increase of drift capacity over the entire range
of considered aspect ratios. All material values to evaluate this equation were taken from
Table 5.1, the same assumptions as in the previous Section 5.5.2 were made regarding the
reinforcement ratios in tension and compression and k.., was evaluated according to the
reinforcement layout as 0.4 and 0.04 for VK3 & VK6 and SW6, respectively. Furthermore,
the equation was evaluated for primary elements without seismic detailing. Other drift
capacity estimates introduced in Section 4.2.2 are not included, as they are not applicable
for the low aspect ratios.

The change in the behavior with increasing aspect ratio can also be illustrated with the
force components predicted by the 3PKT. If the aspect ratio is low, the ratio of the load
that is carried by the critical loading zone Vi z/V is relatively high for the layout of
VK3 & VK6, see Figure 5.8b. This indicates a high direct load transfer through the rigid
body. As the aspect ratio increases, the direct load transfer through the CLZ becomes
less important and a larger ratio of the force is transferred along the crack. Not only the
aggregate interlock force, which is included in Figure 5.8b, but also the friction force at
the crack tip increases significantly with Lg/h. This friction force does not occur in test
unit SW6 as it is not subjected to axial load. Concerning the aggregate interlock force
and the resistance of the CLZ, the trends are similar to that of VK3 & VK6 though. If
the test unit is short, a high ratio of the load is transferred directly through the critical
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loading zone, but with increasing aspect ratio an increasing ratio of the force is transferred
at the crack through aggregate interlock.

5.5.4. Axial load ratio

Similarly to the study on the influence of the aspect ratio using SW6 [PE95], the influence
of the axial load ratio could only be studied analytically because none of the included
test series included the axial load ratio as a parameter. The rather slender test unit VK6
[HBD13] is chosen for the analytical study, because it illustrates well the effect that the
axial load ratio may have on the internal force distribution and the drift capacity. For
comparison, the influence of the axial load is also shown based on test unit S9, which has
an aspect ratio of only Lg/h = 1.12 and no stirrups.
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Figure 5.9.: 3PKT analyses with varying axial load ratio compared to experimental data.

Figure 5.9 shows the influence of the axial load ratio on the force-deformation response
of test units VK6 and S9. In both cases, a similar behavior is observed: With increasing
axial load, the shear force capacity increases whereas the deformation capacity decreases.
Within the investigated range of axial loads, an asymptotic behavior is observed towards
the highest ratio n = 0.15. Figure 5.10 shows that the drift capacity only changes very
little for axial load ratios that are higher than about 0.1. Also the shear force resistance
increases at a much lower rate than before from approximately this axial load ratio on.

Initially, an increasing axial load causes a strong decrease of drift capacity, except for
n <~ 0.02 for VK6, which does not influence the drift capacity much, see Figure 5.10.
Towards an axial load ratio of n = 0.1, the influence of the axial load reduces and the drift
capacity approaches a kind of lower bound value. From about this load ratio on (VKG6:
n = 0.11, S9: n = 0.09), the yield strain of the longitudinal reinforcement is no longer
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Figure 5.10.: Drift capacity depending on axial load ratio.

reached and the behavior thus more shear controlled. Also the crack angle does no longer
change from then on. While the crack angle has been controlled by the wall geometry in
the case of S9, it has been getting steeper with increasing load in the case of VK6 up to
n = 0.11 when it reached its final value of § = 29°. Figure 5.11 shows that along with this
steepening of the crack angle goes an earlier increase of crack width and slip.

As evident in Figure 5.10, the 3PKT predicts a much stronger dependence of the drift
capacity on the axial load than Equation 2.40 of EC8-Part 3 [CENO05] does. The latter
estimates a more steady decrease of drift capacity with increasing axial load. At low axial
load ratios, the drift capacity according to [CEN05] is much lower than that according to
the 3PKT, but from around n = 0.08 onwards, they are similar. Equation (2.40) is again
evaluated for primary seismic elements, assuming that no seismic detailing is provided.
The confinement effectiveness factor of VK6 was calculated as k.o, = 0.4 whereas S9 did
not have any transverse reinforcement and hence the corresponding exponent is zero.

As mentioned previously, failure of the test units is initiated when the concrete in the
CLZ crushes and the rigid body starts sliding down the crack. With increasing axial
load ratio, this mechanism initiates at lower drifts. This trend can be well illustrated by
looking at the force components and the development of the displacements — width and
slip — at the crack of VK6. Figure 5.11 shows these for the axial load ratios that mark
significant points in Figure 5.10. One can see that with increasing axial load the shear
resistance due to aggregate interlock V;; and friction V,; become more important. The
aggregate interlock component increases because the sliding displacement grows faster
than the crack width with increasing n. The increase of the friction component hints at
an increasing contact force between the tip of the rigid body and the fan below the crack.
Besides the force components acting at the crack, the behavior of the CLZ is also strongly
influenced by n. With increasing axial load, the peak of the CLZ is reached earlier and
thus also the decrease of Vop 7 starts earlier. Similar trends concerning V7 are observed
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for S9. However, as this test unit does not have any stirrups and is rather short, Vs and
Ver are almost zero. Therefore, the CLZ carries almost the entire load at low axial load
ratios. With increasing axial load, the slip increases faster than the width which causes
an increasing aggregate interlock force.
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Figure 5.11.: Force ratios and development of displacements at the crack for VK6 with varying axial
load ratio.

5.5.5. Longitudinal reinforcement ratio

The effect of the longitudinal reinforcement ratio g; is examined based on test units VK1
& VK3 [Bim10, HBD13] and SW5 & SW6 [PE95]. For the former pair of test units, g;
was the only varied parameter. The longitudinal reinforcement was evenly distributed
around the cross section and hence the location of the reinforcement tie in the 3PKT,
merely varied slightly. Contrary to this, the distribution of the reinforcement was changed
besides the reinforcement content in walls SW5 and SW6. In test unit SW6, a large portion
of the longitudinal reinforcement was concentrated in the boundary elements and hence its
static height d was larger than that of SW5. Furthermore, the concrete strengths of SW5
& SW6 were subject to larger variation (f.sws = 31.8 MPa, f.sws = 38.6 MPa) than
that of VK1 & VK3 (fc vk: = 35MPa, f.viks = 34 MPa). These differences need to be
kept in mind when interpreting the results, which are consequently influenced by several
parameters. Despite this, the test units were deemed suitable to qualitatively illustrate
potential effects of changing longitudinal reinforcement contents. All 3PKT calculations
were made with average material properties and average static height d of each pair of
test units.

Figure 5.12 shows the predicted responses for selected reinforcement contents compared
to the measured force-deformation envelopes. Comparison to Figure 5.9 shows that the
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effect of varying longitudinal reinforcement contents on the envelope is similar to that of
varying axial load: With increasing g; the resistance of the test unit increases and the
deformation capacity decreases. This effect seems straightforward considering the forces
acting on the rigid body, see Figure 5.1b. An increased reinforcement content leads to an
increased vertical force acting on the rigid body, but with a line of action which is shifted
with relation to that of the axial load.
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Figure 5.12.: 3PKT analyses with varying longitudinal reinforcement ratio compared to experimen-
tal data.

The effect of g; on the internal force distribution is nevertheless slightly different than that
of n. An increased reinforcement content does not cause any additional contact force at
the tip of the rigid body, and V. is hence not affected as much as it was the case for an
increasing axial load. But, similarly to what was observed for an increasing axial load, the
peak load of the CLZ is attained at lower drifts with increasing ;. Thus, with increasing o;
the downwards sliding of the rigid body and the increase of V,; initiate earlier. The higher
shear capacity with higher g; is due to an increased aggregate interlock component for
both test unit layouts, which was also observed for n. While the magnitude of V,; as well
as its relative contribution to the resistance V.;/V increase significantly, its degradation
also starts at lower drift ratios. As failure of the test unit is typically triggered by the
degradation of aggregate interlock, the drift capacity is thus reduced.

Figure 5.13 shows the drift capacity of the walls in function of g; according to the 3PKT.
Initially, there is a relatively strong decrease of drift capacity with increasing ;. For rein-
forcement ratios lower than about 1.7%, no degradation of shear resistance was predicted
for the wall layout by [PE95] but the analysis suddenly stopped due to rupture of the
longitudinal reinforcement. The displacement corresponding to this failure is also very de-
pendent on the ultimate strain of the steel and is therefore not included in the plot. With
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Figure 5.13.: Drift capacity depending on longitudinal reinforcement ratio

increasing ratios a significant drop of drift capacity is observed initially before the effect
of oy on § weakens with a further increase of g;. According to the 3PKT, there is even
a slight reverse in the trend for very high reinforcement ratios. This phenomenon occurs
because crack width and slip develop in such a way that the aggregate interlock component
decreases more slowly than for lower g;. This trend cannot be validated by experimental
data, but also the drift capacity estimate according to Equation (4.11) predicts a slight
change in the trend from around the same g; as the 3PKT. However, one needs to keep
in mind that the high ratios for which this reverse in trend occurs are relatively rare and
these are thus rather theoretical examples. The drift capacity according to Equation (4.11)
does not directly include an influence of g; but accounts for the shear stress applied to a
section. It was here evaluated using the maximum resistance as predicted by the 3PKT
for each ;. The trend predicted with this formulation is somewhat similar to that of the
3PKT, especially for the VK1 & VK3 layout, but the predicted capacities themselves are
higher. The drift capacity according to EC8 Part 3, Equation (2.40), does not account for
any influence of the longitudinal reinforcement ratio and is included in Figure 5.13 using
the average properties of the considered test units.

The experimental data supports the trends predicted with the 3PKT. According to this
data, the effect of the longitudinal reinforcement is even a bit stronger than predicted.
However, one needs to keep in mind that predictions were made based on average values of
the material properties and of the static height. While the drift ratio of VK1 (g; = 0.82%)
is well captured, that of VK3 (g; = 1.23%) is a bit overestimated. The data of SW5 and
SW6 seems to imply a much stronger influence of g; than predicted. However, as mentioned
also the static height d and the concrete strength vary significantly between the two test
units. According to the 3PKT, the concrete strength has a considerable influence on the
drift capacity, as the strength of the critical loading zone and consequently the drift at
which it enters the post-peak range depend on f.. Due to these changes between the two
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test units, the behavior is influenced by more than one parameter and while the included
data illustrates a trend, the absolute values cannot be compared with the predictions.
Comparison of the experimental data with the drift estimates according to Equation (2.40)
and (4.11) shows that with the former, which does not account for g;, drift capacities in
between the actual ones are predicted. The latter does predict a decreasing trend with
increasing g; but overestimates the capacity of all the test units.

5.6. Critical loading zone CLZ

5.6.1. Influence of size of the CLZ on the response

As outlined in Section 5.2.3, the behavior of the critical loading zone influences the be-
havior of walls especially with regards to their failure mechanism. The degradation of the
CLZ and thus of the degradation of what can be considered a direct strut mechanism leads
to sliding of the rigid body down the crack. As the CLZ and the aggregate interlock are
the main load bearing components in vertical direction, the degradation of these equals
the degradation of axial load bearing capacity, which can be considered a total failure of
the structure.

700 : = 700 ‘
3PKT 3PKT
600 < 250mm | 600l \J
— S10 exp lh1e = . by —
Z Z. . ble =
2. 500 177mm = 500t Peak load 390mm
g 8 of CLZ
24 e |
:O 00 Strong increase in £ 400
%2 300 crack width and slip g 300} Strong increase in
g 8 crack width and slip lpie
'g 200 Peak load 'g 200f
T of CLZ jas]
100 1 100 VK6 exp|
0 : : : 0 ‘ ‘
0 5 10 15 20 0 50 100 150
Top displacement [mm] Top displacement [mm)]
(a) S10: Ls/h =1.12 (b) VK6: Ls/h =3.0

Figure 5.14.: Influence of the size of the CLZ on the response of a slender and a squat wall.

This far, the size of the CLZ was a parameter which was determined from the available
experimental responses of the walls. Generally, two observations can be made regarding the
choice of the size of the CLZ: For relatively squat walls (Lgs/h <~ 1) the direct load transfer
via the CLZ constitutes a significant part of the total load transfer. An underestimation
of the actual size of the critical loading zone thus leads to an underestimation of the shear
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resistance of the structure, see Figure 5.14a. The 3PKT model would in this case start
to degrade at drifts at which in reality the peak load is not yet reached. Thus, both the
shear strength and the drift capacity are likely to be underestimated.

On the contrary, if the wall is slender (Ls/h >~ 2), the contribution of the CLZ to the shear
resistance constitutes a smaller part than for squat walls whereas the aggregate interlock
gains in importance. If the CLZ is chosen too small in this case, its degradation might
initiate at smaller drifts which does not yet trigger failure, but an increase in aggregate
interlock force. However, while the aggregate interlock initially compensates for a lower
force capacity of the CLZ, an earlier activation of the aggregate interlock mechanisms
also causes an earlier degradation of Fy;. In other words, if the downward sliding of the
rigid body commences earlier, it will also grow too large and cause failure earlier. Hence,
for slender walls, the choice of the size of the CLZ influences mainly the drift at which
the total shear resistance of the structure starts to degrade and not so much the shear
strength, see Figure 5.14b.

5.6.2. Relation of the size of the CLZ to various parameters
a. Experimental observations

If the 3PK'T shall be used for predicting the load-deformation response of bridge piers, a
formulation to predict the size of the CLZ based on the characteristics of the pier must be
found. To obtain a relation for the characteristic length ;1. which defines the size of the
CLZ, potential influences of some pier characteristics on the development of the size of the
CLZ were examined. Figure 5.15 shows the compression zone of test unit VK6 [HBD13]
in the first, i.e. positive, loading direction. The extent of the critical loading zone, as it
is obtained by fitting of the test results, is shaded in Figure 5.15a and the shear crack
leading to failure is indicated as well. One can note that in this case, the angle of the crack
is predicted very well and the size of the CLZ corresponds approximately to the area over
which compression cracks are distributed.

Even though not all test units develop such a clearly visible triangular damage area,
the CLZ can generally be regarded as the volume in which the damage of the part of
the wall above the shear crack eventually concentrates. The following sections give an
overview over the parameters that were estimated to potentially influence the size of the
CLZ and show their relation to the actual characteristic length [;1. determined from the
experimental load-deformation response. Note that, to have as little bias originating from
other assumptions as possible, the length ly1. 717, which is individually determined for
each test unit, is considered to find a relation for ;.. However, as previously indicated,
lp1e is relatively constant for all walls tested within one series, except for two test series
([PE95, TW12]). For a better comparison, the [y, with which all results of a test series
were captured best on average is included in all following plots as well.
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(a) Load step corresponding to drift (b) Load step corresponding to drift
0=22% §=2.6%

Figure 5.15.: Photos of the compression zone of of test unit VK6 [HBD13] with shaded area indi-
cating assumed critical loading zone CLZ.

g

b. Reinforcement content and layout

The reinforcement in the CLZ was considered to be a potential influence for several reasons.
Both the longitudinal and the transverse reinforcement may act as confinement and thus
influence the distribution of damage in the compression zone. The transverse reinforcement
may also anchor the CLZ in the fan underneath the shear crack and hence restrain the
lateral movement of the CLZ. However, as Figure 5.16a clearly shows, no relation between
the transverse reinforcement and the size of the critical loading zone, represented by [y,
can be observed in the test data. The situation is not different if the size of the CLZ is
related to the longitudinal reinforcement content.

In analogy to the effect the loading plate has on the size of the CLZ of a deep beam, the
effect of the bending stiffness of the longitudinal reinforcement was examined. The bars
were regarded as cantilevers with a clamped bearing in the foundation that restrain the
lateral movement of the tip of the CLZ. In this respect, they would resemble a bearing
plate. The size of this virtual plate should be related to the bending stiffness of the bars.
The bending stiffness E'1 of a bar with diameter dy; is calculated as EI = Ewdﬁl /64 = kdﬁl,
with the constant value k = E7/64. Hence, if the size of the CLZ was related to EI, a
relation between Iy, and the stiffness of the reinforcement bars in the CLZ nykd*, where
ny is the considered number of reinforcement bars, should be found. Generally, only
the outer layer of reinforcement bars was assumed to contribute to the stiffness, if the
boundary element was not confined by hoops. If there was confinement, it was assumed
that the two reinforcement layers coupled by hoops could only deflect in parallel and hence
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Figure 5.16.: Relation between the lp1. determined from the experimental response and some rein-
forcement parameters.

both layers were considered. This was the case for Tran and Wallace’s walls [TW12] as
well as for some of Pilakoutas and Elnashai’s [PE95]. But Figure 5.16b clearly shows that
there is no relation between the lateral stiffness of the reinforcing bars and lp;.

Other reinforcement characteristics, such as bar spacing and buckling lengths, which could
influence the extend of the damaged area, were investigated as well and showed no corre-
lation to the actual size of the CLZ. Therefore one can say that, considering the currently
available data, no relation between any reinforcement parameters and the size of the crit-
ical loading zone can be established and the size of the critical loading zone must depend
on other parameters.

c. Height of the damaged zone in compression

Even though the CLZ also deforms in lateral direction and does not have a constant area
throughout its height, it was considered that its damage could be compared to that of
uniaxial compression tests. Similarly to the localization of damage that can be observed
for some materials (e.g. steel) in tension, a concentration of damage has also previously
been observed for concrete in compression. To describe the softening behavior of concrete
in compression, [MH95] developed the “compressive damage zone model”, which is based
on the assumption that damage spreads only over a certain height in slender specimen.
A height of 2.5 times the width of the specimen was assumed for the damage zone. This
corresponds to the observation of [Miel2]| that the failure crack of concrete compression
tests tends to form at an angle of 22° (= arctan(1/2.5)).
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If the critical loading zone would, despite its complex loading condition and its triangular
shape, form following the same rules, its size should be related to the width of the wall.
Figure 5.17 shows that the correlation is better than for the previously examined relations,
but still relatively weak. Hence, the assumption that the CLZ can be compared to the
damaged area in compression tests seems too crude.

d. Geometrical relations

The idea to check a potential dependence of [;;. on the geometry of the walls is based on
considerations similar to those presented in the previous section, where the influence of
the width of the wall was looked at. Besides the two approaches mentioned in the previous
section, models based on fracture mechanics occasionally include the hypothesis that the
damage area is proportional to a specific dimension, e.g. [Baz97]. Even though no fracture
mechanics approach is chosen in the 3PKT or shall be included for the size of the critical
loading zone, the treated problems resemble each other. Fracture mechanics approaches
are sometimes employed if the concentration of damage within a larger volume has to be
described. Also for the 3PKT the dimensions of a small zone (i.e. the CLZ), in which the
damage of a larger volume (i.e. the rigid body) concentrates, are searched for. Besides,
the observation that ly;. usually turned out to be similar for test units of one test series
supports the idea that the size of the CLZ could be related to the geometry. By and large,
the dimensions of the test units within one series are the same provided the aspect ratio
is not a test parameter.

Furthermore, one can also assume that stresses and strains will spread under certain angles
and distribute over specific areas. This was already done for the 2PKT [MBC13], where,
based on an analytical model of the crack tip, it was found that the stresses at the crack
tip concentrate over a length of 3l cos . Further up the crack the stresses in the rigid
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body were found to level at a constant value. Hence, the expression 3lj1. cos & was chosen
as length for the critical loading zone in the 2PKT and kept in the 3PKT [MHB13|.
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Figure 5.18.: Relation between lp1e/h and geometrical properties.

For these reasons, looking for a possible relation between [p;. and values representing the
geometry of the structure was deemed feasible. Figure 5.18 shows that the size of the
critical loading zone does indeed seem to depend on the dimensions of the test unit. In
both graphs, the dimensionless expression Iy /h was used to examine possible correlations.
Both graphs indicate a linear relation for lj./h in dependence of h or Lg/h. However,
the graph showing ly1./h against Ls/h contains one clear outlier: the length of the CLZ
of the shortest test unit in the database. Keeping also in mind that a larger ratio of the
load is transferred directly through the CLZ if the walls are short, it seems well possible
that lp1/h is not linearly dependent on Lg/h but has a larger gradient at low Lg/h.
However, as there is only one data point below an aspect ratio of Ls/h = 1.0 it is hard
to tell whether it is an outlier or whether it indicates a changing trend for squat walls
with aspect ratios below 1.0. Also the relation between lyi. 77 /h and h shows some more
scatter for smaller section heights h. However, all the walls with height h = 600 mm belong
to the same test series [PE95] for which a larger variation with regards to the optimum
lp1e values was noticed than for most other test series. Whether that stems from scatter in
the experimental results or whether the walls vary in some characteristics that influence
the length Iy, is difficult to tell. Only the reinforcement layout was varied between the
different test units, but, as shown previously, no correlation between any reinforcement
parameters and the development of the CLZ was found. Thus it is assumed that scatter
in the experimental results might be the possible source of the variations at small A and
that geometrical relations are, in light of the limited amount of experimental data, suited
to establish a relation for ;.
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Figure 5.19.: Proposed linear relation between lp1./h and h.

e. Conclusions and proposed size of CLZ

As shown in the previous section, the dimensionless value ly./h and the height of the
section h seem to be linearly related, i.e. lp1. < h?. Even though there is some scatter
associated to this relation, there is also reason to assume that at least some of that
scatter is due to variations in the available experimental data, as already indicated in
the previous paragraph. Generally, only hysteresis plots and photos or drawings of the
crack patterns were available but no local deformation measurements, close-up photos
and detailed descriptions of the tests. The latter was only available for the tests reported
by [Bim10, HBD13, MT85]. Available experimental data of good quality is thus rather
limited, which complicates a detailed analysis of the critical loading zone.

Given the limited extent of the database, it seems reasonable to establish a rather simple
expression for ;. as the data is not sufficient to validate more elaborate approaches.
Hence, the following linear approximation of ly1./h dependent on h is proposed:

l
b;e =0.33-0.1h  for 0.5m < h <2.0m with hin m (5.7)

As Figure 5.19 shows, especially the values of [, with which the responses of an entire
test series are captured best, are approximated well with the linear relation. This relation
should, as indicated in Equation (5.7), only be used for walls with depths between h =
0.5m and h = 2.0 m which corresponds to the range included in the database.

If the size of the critical loading zone is estimated according to Equation (5.7), the shear
strength of the walls is still very well predicted with an average ratio of experimental to
predicted peak load of 1.00 and a coefficient of variation of 6.7%, see Figure 5.20. As
expected, the agreement of the predicted drifts is worsened slightly with an average ratio
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Figure 5.20.: Comparison of 3PKT prediction using ls1. according to Eq. (5.7) with experimental
data.

080%,exp/ 980% prea Of 1.25 and a coefficient of variation of 29.5%. However, as evident in
Figure 5.20, the large scatter is mainly due to three test units whose drift capacity was
underestimated by about 50%. Equally to what has been shown in Figure 5.4, a clear cut
regarding the drift corresponding to a drop to 80% of the force resistance was also made
for the data included in this plot. Thus, if the test was stopped before, the data was not
included. The drift capacities of test units for which less than 20% degradation of shear
force capacity was observed in the experiments, namely S9, S10 [MT85] and SW8, SW9
[PE95], were predicted with an average ratio of 0.82, i.e. the drifts were overestimated by
about 20% on average, and a coefficient of variation of 18.7%.

Regarding the outliers in Figure 5.20 the observations are similar to those made when the
optimum l1. was used. All outliers result from the predictions for the walls of [TW12].
There were two test units whose drop to 80% of the load and the according drift capacity
was reached in the prediction: test units RW-A15-P10-S51 and RW-A15-P2.5-S64. RW-
A15-P10-S51 was predicted to fail in flexural crushing just before the load had dropped
20% at about half the drift at which degradation started in the experiment, so the drift
capacity was underestimated by 50%. Nevertheless, RW-A15-P2.5-S64 was predicted to
also fail in flexural crushing at approximately the drift at which the test unit did actually
degrade. However, the 3PKT does not capture the post-peak response if failure due to
flexural crushing occurs but rather stops the analysis. Shear degradation was predicted
for another test unit, RW-A15-P10-S78, but at about half the drift at which it occurred
in the experiment. As mentioned previously, the differences between the predictions and
the experimental data could not be examined in detail, as sufficient measurement data to
do so is not available at present.
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5.7. Conclusions

The aim of this chapter was to validate a three parameter kinematic theory for shear critical
walls, previously developed by [MHB13], against a database of 28 rectangular reinforced
concrete walls. This theory is based on the kinematics of walls exhibiting significant
shear cracking which eventually leads to failure. Hence, only series that contained at
least one test unit with such a failure mode were considered for validation. This led to a
total number of 36 walls with varying characteristics that were initially considered. The
transverse reinforcement ratios of these walls ranged from 0% to 1.04%, normal force ratios
from 0 to 0.14 and the aspect ratio from 0.33 to 3.0, which marks an upper bound for
application of the 3PKT. Yielding of the longitudinal reinforcement was predicted to occur
before yielding of the transverse reinforcement for eight of the walls, which results in a
flexural mechanism and renders the 3PK'T inapplicable. The force-displacement response
of the remaining 28 walls was predicted very well on average. Especially the prediction of
the force capacity agrees well with the experimental data with an average ratio of measured
to predicted peak load of 1.01 and a COV of 6.4%. Slightly more scatter is associated to
the prediction of the drift capacity corresponding to a 20% drop of lateral load bearing
capacity with an average ratio of 1.14 and a COV of 26.6%. However, especially in light of
the scatter associated with the experimental data itself, which is displayed in differences
between drifts in positive and negative loading direction or between two tests with the
same layout, these drift capacity predictions are still good.

Furthermore, the effect several characteristics have on the response of walls was stud-
ied especially with regard to the displacement capacity. To this end, the influence of
the transverse and longitudinal reinforcement ratios, aspect ratio and axial load ratio on
the behavior of the walls was investigated. Experimental data against which the pre-
dictions could be verified was only available for variations of the aspect and transverse
reinforcement ratios. In both cases, this data agrees well with the predictions of the 3PKT.
Generally, the 3PKT shows that, as expected, each of the examined characteristics has a
strong influence on the displacement capacity. The strength of the 3PKT lies in explicitly
taking into account the load bearing mechanism developing in a wall. The drift capacity
formulations which the 3PKT predictions were compared to primarily predict a general
trend due to a change of a certain parameter, e.g. an increasing drift capacity with increas-
ing aspect ratio. These predictions may differ slightly for different wall layouts, but the
gradients typically do not change much, as evident in the graphs in this chapter. Contrar-
ily to the drift capacity models, the 3PKT is able to capture changes in the load bearing
mechanisms, which may have a significant influence on the drift capacity. An example for
this is the prediction of the transverse reinforcement ratio that marks the transition from
brittle to ductile behavior and thus the transition towards a larger gradient of the drift
capacity prediction for a given wall layout.

Finally, the behavior of the critical loading zone, which especially influences at which drift
degradation initiates, was studied in more detail. However, this study was restricted by
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a lack of detailed experimental data for this zone. The correlation of the size of the CLZ
with several characteristics was studied. Based on the currently available experimental
data, a simple empirical expression, which is a function of the geometry of the wall, is
proposed. If the size of the CLZ is determined with this expression, the prediction of the
displacement capacity is slightly worse than before but still satisfactory, with an average
ratio of experimental to predicted drift of 1.25 and a COV of 29.5%. The prediction of
the peak force is almost equally good as before with an average ratio of 1.0 and a COV of
6.7%. The empirical expression for the size of the CLZ should only be used for walls with
characteristics within the range of characteristics included in the database.
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6.1. Summary

The study presented here aims at contributing to the modeling of the inelastic response
of rectangular, reinforced concrete wall-type bridge piers, which are not detailed in a
way that ensures a ductile response. Models to predict the inelastic force-deformation
relationship are necessary for the displacement-based assessment of existing structures.
As this assessment needs to be done by practicing engineers, the aim of the study was to
develop models that are easily applicable but which yield reliable results nevertheless. A
test series of seven large-scale bridge piers with detailing that is representative of existing
structures was used for the validation of the models.

Chapter 2 gives a review of existing plastic hinge models that are applicable to wall-type
structures. Besides a summary of plastic hinge length proposals, this chapter includes
equations to calculate the flexural response of a structural member as well as strain and
curvature limits, which are used to define the deformation capacity. Due to the geometry
of the piers and their detailing deficiencies, two further aspects need to be considered in the
plastic hinge model: shear deformations and the influence of lap-splices in the potential
plastic hinge region on the behavior of the pier. Three different modeling approaches
for predicting the shear deformations that can be used in combination with plastic hinge
modeling are reviewed. As investigating the behavior of lap-splices in detail is outside the
scope of this study, only some models for predicting the strength of lap-splices and for
estimating failure strain limits are reviewed.

In the following Chapter 3 the models that were introduced in the previous chapter are
applied to predict the force-deformation response of the seven experimentally tested piers.
Based on the comparison with the experimental data, an approach with which the flexural
response is well predicted is identified. Furthermore, it is shown that by using strain limits
for the moment curvature analysis relatively conservative estimates of the deformation
capacities corresponding to a point shortly after peak load are obtained. The results of
the approaches to predict the shear deformations are compared to the experimental data
and modifications to better capture the shear response are examined. Based on the failure
mode observed in the experiments and comparison with the experimental data, a concrete
strain limit is established with which the onset of degradation of the test units with lap-
splices is well captured. It is assumed that the lateral strength of the test unit then reduces
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immediately to its residual value which is related to the maximum eccentricity of the axial
load.

Shear strength degradation models are reviewed in Chapter 4, which could provide a
less conservative estimate of the drift capacity. The first part of the chapter introduces
several types of shear degradation models which were mostly developed for columns and
beams, such as ductility dependent models and drift capacity models. The second part
compares the prediction of the models to the experimental data. It is shown that no
reliable estimates of the drift capacity can be obtained with these types of models.

Chapter 5 treats a different modeling approach based on the kinematics of shear critical
piers which allows for predicting the onset of shear and axial failure. At the beginning
of the chapter, a brief introduction to this modeling approach, developed by [MHB13], is
given. This introduction is followed by a validation of the approach against a database of
28 wall-type piers. The model is shown to yield good predictions of the shear force and
deformation capacity of the walls included in the database. Subsequently, the influence
of some important characteristics on the behavior of piers, particularly on their drift
capacity, is examined with the kinematic model. Finally, one characteristic parameter
of this model, the size of the “critical loading zone” which primarily influences the drift
at which degradation initiates, is discussed and an equation for estimating this length is
proposed.

6.2. Conclusions

The aim of this study was to identify and develop easily applicable models that can be
used by practicing engineers for the displacement-based assessment of existing bridges.
The focus of the study was to predict the behavior of rectangular, wall-type bridge piers
with detailing deficiencies such as lap-splices in potential plastic hinge regions and low
transverse reinforcement ratios. Two types of models were investigated to this end: plastic
hinge models and a kinematic model. Regarding the plastic hinge modeling approach,
several conclusions can be drawn from this study. Despite the fact that plastic hinge
models are intended to predict the response of flexure-controlled members, good results
were obtained for the potentially shear critical wall-type piers that were investigated in
this study. Based on a comparison with the experimental data of seven bridge pier tests,
a plastic hinge length and formulations for the response, with which good estimates of
the flexural response were obtained, could be identified. The effect of strain penetration
was neither explicitly accounted for in the formulation of the plastic hinge nor the one of
the flexural response, as no detailed conclusion on how to incorporate it in the inelastic
range could be drawn from the experimental data. Furthermore, comparison with the
experimental data showed that it appears to be small enough to be neglected.
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With the identified plastic hinge modeling procedure, good agreement was obtained not
only on a global, but also on a local level, which means that the deformation predicted
for a certain limit strain in the plastic hinge agreed well with the deformation at which
that limit strain is reached in the tests. Within the scope of plastic hinge modeling, strain
or curvature limits are used to define upper bounds for the curvature in the plastic hinge
and thus define the deformation capacity of the structure. With these curvature limits,
relatively conservative estimates of the deformation capacity are obtained. However, for
a less conservative limit the onset of shear degradation needed to be taken into account.
This is difficult within the scope of plastic hinge modeling, as shear failure is based on a
different mechanism than that assumed in plastic hinge modeling. Hence, models such as
the kinematic model should be applied for less conservative estimates of the deformation
capacity.

With regard to the influence of lap-splices at the base of the pier it was shown that a good
estimate of the onset of failure could be obtained, using a simple limit for the concrete
strain. This strain governs failure if the splice is not well confined and long enough to
sustain the maximum tension forces that could occur. The experimental data showed that
a slow degradation towards the residual shear force capacity, which is determined by the
eccentricity of the axial load, is not guaranteed. Predicting the rate of decay appears
difficult, however, as it may depend on material properties with considerable scatter, such
as the concrete tensile strength, or the actual concrete cover of the reinforcement. Hence,
it should be assumed that the capacity drops to the residual level as soon as the strain
that triggers lap-splice failure is exceeded.

A more extensive study proved to be necessary to capture the shear deformations in com-
bination with the plastic hinge modeling approach. Existing shear deformation models
have been developed based on experimental results of mainly capacity designed and hence
flexure-controlled walls. For this type of walls, the shear deformation in the inelastic range
can be expressed as a constant ratio of the flexural deformation. While this constant ratio
was observed for the slender and thus more flexure-controlled walls of this study, the as-
sumption of a constant ratio did not hold for the more shear critical walls. Nevertheless,
a satisfactory prediction of the shear deformation was obtained by modification of an ap-
proach which relates the shear strain to the axial strain. Instead of assuming a constant
ratio of shear to flexural deformation, the ratio was computed from the axial strain and
curvature obtained from the moment-curvature analysis at each displacement. Further-
more, a correction factor accounting for the increased shear deformations of piers with low
shear force resistance needed to be taken into account. Concerning the applicability of
ductility-dependent shear degradation models or drift capacity models, which are some-
times used in combination with plastic hinge models to estimate the displacement capacity
of a member, comparison with the experimental data showed that good results could not
be obtained with any of the existing approaches. This is due to the fact that most of them
were developed for beams or columns and contain simplifications that are reasonable for
this type of structural components, but invalid for wall-type piers. With these models,
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it is possible to predict general trends in the development of the drift capacity based on
certain characteristics of the walls but not actual drift capacity estimates for a specific
wall-type pier.

To obtain a reliable estimate of the deformation capacity of a pier, its main characteristics
need to be taken into account. Doing so in a simplified manner yields results that are signif-
icantly better than those obtained with the models mentioned in the previous paragraph,
as shown with the validation of a kinematic model. Application of this model revealed
that while the influence of a certain characteristic, such as the transverse reinforcement
ratio, on the drift capacity may qualitatively be the same for varying pier layouts, there
may be significant quantitative differences. The shear force and the drift capacity pre-
dictions obtained with the kinematic model for shear critical, rectangular wall-type piers
were found to be in very good agreement with the data of 28 tests subjected to single
curvature loading. Hence, this model is suitable to predict the deformation capacity that
is defined by the degradation of both the shear and the axial load bearing mechanisms.
Based on the currently available test data, a simple empirical expression that relates the
size of the “critical loading zone”, a parameter that primarily influences the drift capacity
at the onset of shear degradation, to the section depth of the wall is proposed. With this
estimate, the agreement of the shear force prediction with the experimental data remains
very good whereas the agreement of the drift capacity prediction is slightly decreased, but
still good.

6.3. Outlook

Several topics on which further research is necessary can be defined based on this study.
Regarding the plastic hinge modeling approach, two topics that constituted an important
part of this study still leave room for further research: the influence of lap-splices and
the shear deformations. The proposed concrete strain might be regarded as an upper
bound limit for the failure of the splice. The behavior of splices under reversed cyclic
loading needs to be better understood to examine whether a lower limit that initiates
failure before the concrete is crushed in compression is necessary. One of the three test
units with lap-splices considered in this study exhibited such a splitting failure before
significant concrete damage was observed, even though the splice was sufficiently long to
transfer the maximum tension force. However, based on the experimental data of the large
scale tests, no limits to predict this failure could be derived.

With regard to the shear deformations, an approach relating the shear deformation to the
axial elongation of the test unit was investigated. Preliminary results indicated that good
predictions may be possible with this approach. However, only the contribution of one
out of two mechanisms, which contributed to approximately half the shear deformation,
could be expressed as a closed form solution. Such a solution also needs to be established
for the second mechanism.
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6.3. Outlook

Generally, one needs to keep in mind that even though the results obtained for the flexural
deformation of the wall-type piers was good, the plastic hinge modeling approach has been
validated against a very small database. Therefore, it needs to be validated, and improved
where necessary, against a larger database to reduce uncertainties regarding the choice of
e.g. the plastic hinge length and the limit strains that are applied.

Regarding the kinematic theory, the main field of research that remains is the estimate of
the size of the “critical loading zone”. The experimental data that was available to inves-
tigate the development of this zone is, at present, very limited. Detailed measurements
of the area in which that zone forms would be desirable to study the development of this
zone in more detail.

Based on the experimental results and the review of models it seems recommendable to
not use the same models for different cross sections or different types of structures without
verifying the model for each type of structure. If models are applied without verification,
the predictions can be unreliable. This was evident in the drift capacity predictions made
with the beam and column models, for instance. Hence, the applicability of the models
used in this report should be verified for different types of cross section (e.g. flanged
sections, T-sections or hollow-core sections) and modified were necessary.
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Notation and Abbreviations

Notation and Abbreviations

Capital Latin letters

A Cross sectional area

A, Cross sectional area of core

Ay (Concrete) gross section

A Longitudinal reinforcement area

Ag Area of one longitudinal reinforcement bar

Ay Transverse reinforcement area

E Modulus of elasticity

1 Moment of inertia

El g Effective flexural stiffness

El, Uncracked, gross flexural stiffness

G Shear modulus

Ky, Shear stiffness

Ly, Base length (of an LVDT)

L, Plastic hinge length

Lfo Plastic hinge length without influence due to strain pene-
tration

Ly, Length over which plasticity spreads (~ 2Lj,)

Ly Shear span

Lg, Strain penetration component of the plastic hinge length

M Bending moment

M, First yield moment

My Nominal yield moment

P Normal force

T Tension force

Vv Shear force

V. Shear capacity

Ve Shear capacity provided by concrete
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Notation and Abbreviations

S e

&

N

Shear capacity provided by transverse steel
Shear capacity provided by axial load
Shear capacity due to aggregate interlock

Shear cracking load

Small Latin letters

Section width (i.e. parallel to axis around which bending
occurs)

Core section width

Confined section width

Concrete cover to center of stirrup
Effective section depth

Longitudinal reinforcement bar diameter
Transverse reinforcement bar diameter
Bond stress

Concrete compression strength
Compression strength of confined concrete
Concrete tension strength

Concrete stress in x- or y-direction, respectively
Steel stress in x- or y-direction, respectively
Yield strength of steel

Yield strength of transverse reinforcement
Ultimate strength of steel

Total section depth

Core section depth

Confined section depth

Correction factor

Confinement effectiveness factor

Length along which cracks develop

Development length of reinforcement bar
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Notation and Abbreviations

ls Lap-splice length

n Normal force ratio

T Number of longitudinal reinforcement bars
o Number of stirrups

S Transverse reinforcement spacing

S Spacing of longitudinal reinforcement

Sg Crack spacing in x-direction (uniaxial tension)
Sy Crack spacing in y-direction (uniaxial tension)
Sp Crack spacing perpendicular to crack

50,2 X-component of sy

50,y Y-component of sy

v Shear stress

T Compression zone depth

TN Neutral axis depth

z Internal lever arm

Capital Greek letters

Ay First yield displacement

Ay Nominal yield displacement

Ay Flexural displacement

Ay Shear displacement

Agp Strain penetration displacement

Small Greek letters

Ié; Compression softening factor

O Reinforcement bar slip

€ Strain

€c0 Concrete strain under peak stress

Ece Confined concrete strain under peak stress
Ecu Ultimate concrete strain
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Notation and Abbreviations

€h

5su

Py

/
Y

Pu

Vel
mA
He

Ol,web
Qv

Ty

Abbreviations

ASFI
MCFT
RC
USFM
VK

Hardening strain of steel

Yield strain of steel

Ultimate strain of steel

Curvature

Nominal yield curvature

First yield curvature

Ultimate curvature

Shear strain

Safety factor

Displacement ductility

Curvature ductility

Crack angle

Rotation due to strain penetration
Yield rotation

Ultimate rotation

Longitudinal reinforcement ratio
Longitudinal reinforcement ratio of the web
Transverse reinforcement ratio
Stress

Bond stress

Mechanical reinforcement ratio

Axial — Shear — Flexure Interaction method
Modified Compression Field Theory
Reinforced Concrete

Uniaxial — Shear — Flexure Model

Test Unit (= Versuchskorper)
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