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a  b  s  t  r  a  c  t

Reliable  in vitro  models  are  required  to  understand  the  ability  of  cells  to respond  and  adapt  to  mechanical
stimuli.  To  mimic  and  interface  with  the  microenvironment,  lab-on-a-chip  devices  and  microelectrome-
chanical  systems  (MEMS)  provide  excellent  options.  However,  little  effort  has  been  done  in  combining
them.  To  address  this  shortcoming,  we  have  developed  a versatile  microengineered  platform  which  con-
sists of two  parts:  an  electrostatically  actuated  MEMS  device  used  for  mechanobiology  assays,  and  a
fluidic  system  for  cell culture.  A capillary  valve  allows  inserting  a  silicon  chip  horizontally  in the cul-
eywords:
apillary valve
io-microelectromechanical system
bio-MEMS)
ilicon microchip
echanotransduction

ture  medium  without  leakage  and  without  wetting  of  the  electrostatic  microactuators.  The  platform  is
designed  for  mechanotransduction  assay  on  cells  and aims  specifically  human  mesenchymal  stem  cells.
The proof  of principle  of  the  platform  was  performed  by  stable  and  long-term  cultures  of  rat  fibroblasts.
We  could  also  study  the  effect  of periodic  stress  at  various  excitation  frequencies.

© 2013 Elsevier B.V. All rights reserved.

ell assay

. Introduction

Cells have the capacity to adapt to dynamic changes in their nat-
ral microenvironment. In particular, cells can sense and convert
echanical forces into chemical signals via mechanotransduction

1]. The study of those mechanical stimuli and responses, defined as
echanobiology, has led to numerous in vitro studies controlling

he micromechanical environment [2,3]. Multipotent mesenchy-
al  stromal cells (MSC) are the most studied stem cells due to

heir role in the formation and maintenance of load-bearing tis-
ues in the musculoskeletal system. Thus, they are very attractive
or tissue engineering and cell therapy [4]. Even though it is well
nown that the environment influences the fate of stem cells, still
ery little is known about the relative importance of these envi-

onmental factors. Different tools and strategies have been shown
o induce MSC  differentiation by mechanical means, such as in-
lane substrate distension [5], lineage differentiation upon stretch
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[6], and early lineage differentiation of cells according to the stiff-
ness of their natural environment [7]. While it is clearly accepted
that the conjugation of all these factors influences the differentia-
tion of MSC, the importance of each isolated factor remains to be
elucidated.

In recent years, microtechnologies have enabled novel exper-
imental capabilities for (i) the measurement of mechanical
properties of cells, nuclei, cell membranes and cytoskeleton, and
(ii) the study of the reaction of cells to specific mechanical stresses,
such as micropipette aspiration, extracellular matrix microcontact
printing or micromechanical cell stretching [1,8,9]. Thanks to bio-
logical microelectromechanical systems (MEMS/bio-MEMS) tools,
more accurate manipulation on cells, as well as quantitative mea-
surements of cellular responses with high spatial and temporal
resolution are possible.

For single cell mechanobiology studies, the combination of flu-
idics with a microactuator is thought to be a promising alternative
to tedious instrumentation currently used by biophysicists (e.g.,
optical tweezers, micropipetting, AFM indentation). However, such
an approach implies jointly developing the fluidic system and the
MEMS  device, in addition to working on the interface between

immersed and actuated parts. In that matter, one tool that caught
our attention is that of Yang and Saif who  have used an AFM-like
silicon probe for indentation assays on living cells [10]. In the pro-
posed setup, the sensor plane is inclined by few degrees to prevent

dx.doi.org/10.1016/j.snb.2013.07.050
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2013.07.050&domain=pdf
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ontact with the bottom of the culture dish. Thus, it cannot be used
o adhere cells directly to the silicon substrate: to ensure homo-
eneous cell sedimentation, the substrate must remain horizontal.
he latter issue was addressed in a device presented by Serrel et al.
or uniaxial tensile assays on cells [11]. However, while a silicon
ubstrate was used for these experiments, an additional external
robe was also used to actuate the device. Taking full advantage
f microfabrication technologies, the afore mentioned issues could
e addressed by researchers at IMEC, Belgium. They have devel-
ped an encapsulation technique that enables MEMS devices to be
perated in aqueous environment, as they could demonstrate with
n electrostatically actuated inchworm [12]. The basic idea behind
his technique consists in making the surfaces hydrophobic at the
learance, where the actuator shuttle extends off the device [13].

Rather than rendering the silicon chip microfabrication more
omplex, capillary action can also be used judiciously to interface

 fluidic system with a silicon device [14,15]. It is on this basis that
e have developed our platform dedicated to the study of the influ-

nce of mechanical stress (e.g., stretching and compression) on cell
ifferentiation. As cell-on-chip mechanical assays must accommo-
ate the stringent requirements for cell culture, we  have opted for
he design of a microengineered platform consisting of an elec-
rostatically actuated silicon chip and an open fluidic system. A
assive capillary valve was chosen to allow for a partial horizontal

mmersion of our MEMS  device in the culture medium. We draw
he reader’s attention to the fact that the biological experiments
iscussed in this paper form a pre-study for the validation of our
evice and were performed on rat fibroblasts (RFB). Those cells are
nown to differentiate into myofibroblasts under mechanical stress
16].

. Materials and methods

.1. Fabrication

The chips were microfabricated using silicon-on-insulator tech-
ology, following a three-mask process similar to that presented

n ref. [17]. Micromachining was performed on a (100)-oriented
OI wafer having a resistivity in the range of 1–10 �cm,  a 50 �m
hick device layer, a 2 �m thick buried oxide layer, and a 380-�m
hick handling substrate. First, a 100-nm thick aluminium film was
vaporated on the device layer. After a first frontside photolitho-
raphy (mask No. 1 defining the electrical pads for wire bonding),
luminium was patterned using an inductively coupled plasma sys-
em. Subsequently, a second photolithography (mask No. 2) was
erformed on the frontside and the silicon device layer was etched
y deep reactive ion etching (DRIE) using the Bosch process. After
esist removal, the wafer backside was patterned with a thick pho-
oresist (mask No. 3). To protect the device layer and strengthen
he wafer, a 2 �m thick parylene conformal coating was deposited
n the frontside. Then, etching of the handling substrate was per-
ormed by DRIE (with high etch rate compared with frontside
tching) using the Bosch process. Finally, after resist and pary-
ene removal by plasma etching, HF vapor was used to remove the
uried oxide beneath the moving structures. Chip-on-board pack-
ging on printed circuit boards (PCB) was achieved by aluminium
edge-bonding and glob-top encapsulation in an epoxy resin.

Regarding the various elements composing the fluidic platform,
ll the materials were carefully chosen to ensure compatibility
ith conventional sterilization techniques (namely, autoclaving,

0% ethanol disinfection or UV germicidal irradiation). The culture

hamber and its protection lid were machined in polycarbonate
PC). For firm assembly of the silicon chips to the setups and their
onnection to electronic instruments, the PCB were screwed by
eans of PC parts containing all the electrical plugs. To facilitate
tors B 188 (2013) 1019– 1025

centering and insertion of the MEMS  device into the fluid compart-
ment, a holder and a sliding mechanism were designed in PC and in
teflon. Partial immersion of the silicon chip in liquid could be con-
trolled with the naked eye thanks to a blue-coloured valve moulded
with a mixture of polydimethylsiloxane (PDMS, Sylgard 184 silicon
elastomer, ratio 1:10, Dow Corning, USA) and commercially avail-
able ink. Also, to perform several cell assays simultaneously, three
identical platforms were fabricated on which the disposable PDMS
valves were systematically replaced after each experiment.

2.2. Sterilization and functionalization

The packaged chips were autoclaved at 100 ◦C for 10 min. The
platforms and PDMS valves were sterilized in 70% ethanol for 2 h
and dried 1 h under laminar flow. For surface functionalization,
100 �L/mL fibronectin (Invitrogen, USA) in phosphate buffered
saline (PBS, pH 7.4, Invitrogen) were incubated on the silicon
devices for 1 h at room temperature (RT). The chips were consecu-
tively washed with PBS.

2.3. Cell culture

RFB were obtained by tissue extraction [18] and were kept in
filtered Dulbecco’s modified Eagle medium (DMEM, Invitrogen)
supplemented with 10% fetal calf serum (FCS, Thermo Scientific,
USA), 1% l-glutamine, 1% penicillin–streptomycin (Invitrogen) at
37 ◦C and 5% CO2. Experiments were performed between passages
3 and 4 with a seeding density of 10,000 cells/cm2, in both the
platforms and the polystyrene Petri dishes used as controls.

2.4. Immunohistochemistry

RFB were fixed with 4% filtered paraformaldehyde (PFA,
Sigma–Aldrich, Switzerland) for 10 min, then permeabilised in 0.2%
Triton X-100 (Applichem, Switzerland) in PBS for 10 min  at RT. Cells
were subsequently washed extensively with PBS. For fibronectin
detection, cells were stained with the primary antibody F3648 anti-
fibronectin (Sigma–Aldrich) for 1 h. The secondary antibody Alexa
647 (Invitrogen) was  simultaneously incubated for 1 h in the dark
with the cell nuclei and F-actin stains, DAPI (Invitrogen) and phal-
loidin Alexa 488 (Invitrogen), respectively. After PBS washing, RFB
were analysed by confocal microscopy (LSM 700, Zeiss, Germany).

2.5. Statistical analysis

Data were analysed using the Tukey’s test for which a P-
value <0.05 was  accepted as statistically significant. Each time an
experiment was launched, three microchips were simultaneously
analysed (one per platform), of which one served as control and was
used without coating nor actuation. Each experiment was repeated
three times to ensure consistency of the results. Each data point
in Fig. 5 represents the mean value plus or minus one standard
deviation calculated from these measurements.

3. Results and discussion

3.1. Open fluidic platform

The working principle of our open fluidic platform is depicted in
Fig. 1A. Thanks to the principle of the passive capillary valve, the sili-
con microchip is partially immersed in the culture medium while its

comb-drives are kept dry. The immersed part of the chip consists of
fixed and mobile plates. The mobile plates are electrostatically actu-
ated and move back and forth between the immobile plates. After
cell seeding, uniform deposition of cells occurs. In this research, we
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ush–pull electrostatic actuator is driven by an ac power supply (UC) and two dc po
oung–Laplace pressure drop �Psurf, the liquid falls inside a hydrophobic tube until
ide  aperture. In (D), we  show equilibrium state after a thin plate has been introduc

re interested in the impact of stretching and compression of cells
ridging between the immobile and mobile plates.

Leak-free insertion of the MEMS  device into the side opening
f the fluidic system is based on capillary action, as illustrated in
ig. 1B–D. Capillary effects are significant at length scales smaller
han the capillary length, �c, defined as [19]

c =
√

�

�g
, (1)
here � is the surface tension of the liquid/air interface
� = 0.07 J m−2 for a water/air interface at 37 ◦C), � is the liquid
ensity and g is Earth’s gravity. For water, the capillary length

s �c ≈ 2.7 mm.  Hence, for a thin and wide rectangular aperture

ig. 2. Photographs of the experimental setups. (A, B) Demonstration system with the PD
B)  Close-up view of the PDMS valve. (C–E) Different views of the platform used for cell 

 mm long) is partially immersed in medium. The inset in (C) shows a magnification of th
pplies (UL , UR). The dashed lines represent the fixed parts of the chip. In (B), due to
ches equilibrium. In (C), thanks to capillary effect, the liquid stops in a hydrophobic
the capillary valve.

of height d = 1 mm (width w � d), the hydraulic diameter is DH =
2 wd

w+d ≈ 2d = 2 mm,  and gravity does not significantly influence the
shape of the free water/air interface [19].

Let us consider capillary action that happens in a narrow, verti-
cally standing microtube with a circular cross-section of diameter
2a < �c, as depicted in Fig. 1B. The liquid/air interface is curved,
which causes a Young–Laplace pressure drop, �Psurf, across it
which is given by [19–21]

�Psurf = 2� = �gh, with R = a
, (2)
R cos(�)

where R is the curvature radius of the meniscus, � is the contact
angle at liquid/solid/air interface, and h is the equilibrium height of
the liquid column (h < 0 in the case of capillary fall). Untreated PDMS

MS passive capillary valve. The reservoir in (A) is filled with cell culture medium.
experiments (culture compartment lid not shown). The silicon chip (7 mm wide ×
e silicon chip. Opening dimension of the valve: 11 mm wide × 1 mm high.
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Fig. 3. Schematic of the push–pull electrostatic comb-drive actuator and dynamic
characterization of a fabricated device. (A) Two  dc power supplies are connected to
the  left and right fixed combs (UL and UR , respectively), while an ac power supply
(UC) drives the central combs (sinusoidal signal of frequency f). The displacement
�x  is measured by “temporally aliased video microscopy” thanks to the periodic
patterns [25,26]. (B, C) Typical frequency responses of a MEMS  device (B) in air and
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Fig. 4. Measurement of device oscillations in air and in water. For these experi-

In Fig. 3B and C, we  show typical frequency responses of a MEMS
device actuated in air and in water. These measurements were
performed by “temporally aliased video microscopy”1, through

1 “Temporally aliased video microscopy” is an optical method used for the in-
C) in water. It is a damped harmonic oscillator with medium dependent resonant
requency f0 = ω0/2	  and damping coefficient 
.

s hydrophobic and has an advancing contact angle of � ≈ 110 ◦ [23],
eading to capillary fall (�Psurf < 0).

The case depicted in Fig. 1C can be solved similarly. Consider
 circular aperture of hydraulic diameter DH = 2a. From Eq. (2), the
iquid height (h > 0, see the sign convention in Fig. 1) that the valve
an withstand is

 = − 4�

�gDH
cos(�), with � > 90 ◦. (3)

rom Eq. (3) we find that, for a 11 mm wide ×1 mm high rectan-
ular opening in PDMS, the admissible liquid height is h ≈ 5.3 mm.

e have tested the setup shown in Fig. 2A and B with either

MEM or deionized water to measure the burst pressure. In all
ur experiments, the valves withstood larger hydrostatic pres-
ures than expected: liquid burst occurred for h≈ 10–15 mm.  This
ments, the device was excited with a 1 Hz sinusoidal signal using identical actuation
voltages. Water damping causes a decrease of the oscillation amplitude by about 5
%.

difference may  be explained by the roughness of valve sidewalls
which increases the effective contact angle.

Young–Laplace pressure drop can also be estimated across
plates with different contact angles [19]. This case occurs when a
plate (thickness e, contact angle �2) is introduced inside the PDMS
valve (contact angle �1), as illustrated in Fig. 1D. It causes the menis-
cus to reshape around the solid surfaces. In this paper, for the sake of
simplicity, we have assumed that the pressure drop is only slightly
modified when a silicon chip (with hydrophilic surfaces) is inserted
in the capillary opening. Readers interested in such calculations
may  find useful information in works dealing with self-assembly
or AFM-like probing [14,15,23].

3.2. MEMS device characterization

The linear motion of the silicon device is obtained thanks to
a push–pull electrostatic actuator [24]. With the driving scheme
illustrated in Fig. 3A, the electrostatic force, Fx(t), is proportional to
the ac driving voltage, UC(t), and can be written [25]

Fx(t) = F0 sin(ωt), with F0 = 2
∂C

∂x
U0 · UL, (4)

where t is the time, ω is the angular frequency of the ac signal, U0 is
the amplitude of the ac voltage, UL is the amplitude of the dc voltage,
and ∂C/∂x is the spatial derivative of the comb-drive capacitance,
which can be assumed constant for interdigitated comb electrodes
and small displacements [24]. Hence, the amplitude of the driving
force, F0, is a constant and the equation of motion of the MEMS
device is simply given by the linear differential equation [25]

ẍ + 2
ω0ẋ + ω2
0x = F0

M
sin(ωt), (5)

where x is the lateral displacement of the structure, 
 is the damping
coefficient which depends on the medium (air or liquid), M is the
effective mass of the moving structure, and ω0 is the undamped
angular frequency.
plane dynamic characterization of MEMS with a conventional CCD camera. Using a
digital microscope recording videos at a limited frame rate (typically 28 fps), despite
undersampling, this method is efficient at extracting the frequency response func-
tions of MEMS devices having resonant frequencies up to a few kHz.
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ig. 5. Effect of fibronectin and influence of sinusoidal actuation on cell adhesion
ntreated silicon (Si) or on fibronectin-coated silicon (Si +FN), as well as in polysty
-value:  *P < 0.05. (B, C) RFB were cultured inside the microengineered platform on

nalysis of the dynamic motion of periodic patterns etched in the
ilicon device [25,26]. For comparison purposes, these experiments
ere performed consecutively on the same packaged chip (see inset

n Fig. 2C). They were observed under an upright digital micro-
cope (VHX-600, Keyence Corp., Japan) using the setup shown in
ig. 2C-E, first without liquid, then after filling the fluidic chamber
ith deionized water. Because of damping, the resonant frequency
ecreased when the chip was partially immersed in water. How-
ver, for low frequencies (typically �100 Hz for mechanobiology
ssays), the influence of damping remained negligible. This can be
erified in Fig. 4 where we show typical measurements performed
n a chip excited at 1 Hz in air and in water under identical actuation
oltages.

.3. Biological experiments

Ensuring biocompatibility of bio-MEMS is a key issue for bio-
ogical systems such as cells. Thus, we assessed RFB survival and
roliferation inside the platform after 1 and 3 days. Within the
ame experiment, we also compared the adhesion of cells between
ntreated and fibronectin-coated silicon chips. However, the chips
ere not actuated for these experiments. In Fig. 5A, the graph shows

hat cells survived and grew in the platform for 3 days. The num-
er of cells differs significantly between Petri dishes and silicon
hips. This can be explained by the difference in surface properties
27]. On the other hand, no significant effect on cell adhesion was
oticed between uncoated and fibronectin-coated silicon chips. We
lso observed a higher cell number variability on fibronectin-coated
hips. This discrepancy can be explained by the weak binding forces
etween fibronectin and silicon. Therefore, the following experi-
ents were performed with uncoated silicon chips.
Our ultimate goal being to use the platform for stretching and

ontraction assays on cells adhered to the substrate, RFB were
ultured for 2 days inside the platform prior to the experiments.
ignals between dc and 1 Hz were used to actuate the devices,
hile the amplitude and actuation duration (±5 �m,  1 h) were

ept identical for all the experiments. Fig. 5B and C show typ-
cal results observed on unactuated chips and chips actuated at

 Hz, respectively. A drastic cell detachment was  observed as the
ctuation frequency was increased (results not shown). For 1 Hz
xcitation, only 10% of the cells remained attached to the chips.

ccording to Couette flow theory [19], the shear stress sensed by

he cells at 1 Hz can be estimated to be ≈2 ×10−6 Pa. Compared
o the average shear strength required for cell detachment from
lass (530–750 Pa) [28] or from silicon (80 Pa) [29], the calculated
licon chips. (A) Rat fibroblasts (RFB) were cultured inside the platform either on
ishes (PS). The results show no significant effect of fibronectin coating. Significant
ated silicon before fixation for immunofluorescent imaging. Scale bar: 50 �m.

stress is 8 orders of magnitude lower. Thus, shear flow alone cannot
explain cell detachment. It is more likely due to the weak binding
forces between cells and the silicon substrate. Therefore, we  believe
that covalent patterning of fibronectin to silicon (e.g., through a
silanization process [30]) would improve cell attachment.

We observed that cells tended to adhere preferentially on
unstructured large surfaces, as well as on the periodic structures
aimed for displacement measurements. As shown in Fig. 5B, these
structures are separated by <5 �m gaps. On the other hand, the
cells did not make the expected bridging over the 20 �m wide
gaps designed for that purpose. Referring to the recent work of
Kuribayashi-Shigetomi et al. on bovine aortic smooth muscle cells,
the gap for cell bridging should actually not exceed few microme-
ters, typically ≤8 �m [31].

4. Conclusion and outlook

We have presented a proof of concept for a platform consisting of
a fluidic device and an electrostatically actuated MEMS  device. We
could demonstrate the functionality of passive capillary valves over
extended periods, as well as fibroblast viability inside the platform.
Using immunofluorescent imaging, we  have studied cell adhesion
efficiency on uncoated and fibronectin-coated chips. In the lat-
ter case, coating did not improve cell adhesion due to the weak
link between fibronectin and silicon. On uncoated silicon, we  have
observed drastic cell detachment, even for low actuation frequen-
cies. Furthermore, in order to use the platform for stretching and
compression assays, the design of the chip should be slightly mod-
ified: The gap between the mobile and the immobile part should
not exceed 8 �m [31]. Improving cell adhesion to silicon substrate
as well as cell bridging across the microplates will be crucial for
future cell-on-chip experiments. Once these two aspects will be
optimized, stretching and contraction assays could be feasible.

We think that this platform will be a versatile instrument for
cell mechanobiology. It can serve as a dedicated tool for biophysical
experiments on adherent cells, with direct application to mechan-
otransduction assays on more complex and relevant cell types, such
as stem cells.
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