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Abstract

The problem of steering a dynamical system toward optinmeddst-state performance is
considered. For this purpose, a static optimization probtan be formulated and solved.
However, because of uncertainty, the optimal steady-giptés can rarely be applied directly
in an open-loop manner. Instead, plant measurements amaltypused to help reach the
plant optimum. This paper investigates the use of optimgiziontrol techniques for input
adaptation. Two apparently different techniques of enifigrsteady-state optimality are dis-
cussed, namely, neighboring-extremal control and seifroping control based on the null-
space method. These two techniques are compared for uraiopst real-time optimization
in the presence of parametric variations. It is shown tlaatitfe noise-free scenario, the two

methods can be made equivalent through appropriate tuNiotg that both approach can use

*To whom correspondence should be addressed



measurements that are taken either at successive steaeyoperating points or during the
transient behavior of the plant. Implementation of optimgzcontrol is illustrated through a

simulated CSTR example.

| ntroduction

Process optimization has received significant attentiainénlast 30 years. Long considered an
appealing research tool for design and operation, opttioizdnas become a credible and viable
technology that is used extensively and routinely in industrin practice, optimization is compli-
cated by the presence of uncertainty in the form of plant@hodsmatch, parametric uncertainty
and unknown disturbances. Uncertainty can be very dett@henoptimality, as any model-based
optimization approach tries to push the plant as much aslpedsmsed on the available model.
An efficient way to combat the effect of uncertainty is to usenp measurements to either
(i) adapt the model parameters and re-optimize on the basseaipdated modelekplicit opti-
mization)4, or (ii) adapt the plant inputs directlynfplicit optimizatior). Implicit optimization

typically uses one of the following schemes:

1. Search (zeroth-order) methods — In techniques latesielditionary optimizatio?y a simplex-
type algorithm is used to approach the optimum. The costiimmés measured experimen-

tally for various combination of the operating conditions.

2. Perturbation (first-order) methods — In techniques Ebextremum-seeking contfof, the
gradients are estimated experimentally using sinusoiddtaion. The excitation frequency
has to be sufficiently low for a time-scale separation betwbe system dynamics and the
excitation frequency to exist. Like the techniques of th&t fiype, this scheme uses only cost

measurements.

3. Control methods — In techniques suchNBO tracking andself-optimizing contrdl, the
optimization problem is recast as a problem of choosing eaxking variables whose op-

timal values are invariant, or nearly invariant, to undetia If these variables vary, for
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example due to disturbances, their measured or estimalieelsvare simply brought back to
their invariant set points using feedback control. In casiito the other schemes, the mea-
surements in the control methods a the cost function but auxiliary measurements such

as the process inputs and outputs.

RTO techniques based on “control” will be discussed in tlaiggr. The control action can be
applied at discrete points in time based on steady-statesuneraents and computation of updated
inputs. The inputs are then applied to the plant and heldtaohantil the next steady-state mea-
surements become available. Alternatively, the inputsosanpdated continuously on the basis of
transient measurements. No distinction is made here onheh#éte transient measurements are
available in discrete or continuous time. The importantdais that these measurements are taken
before the plant reaches steady state.

Most “control” approaches rely on the necessary conditaroptimality (NCO) as these con-
ditions are invariant to uncertainty. The NCO for a consiedioptimization problem has two parts:
the feasibility and the sensitivity part. These two pargguree different types of measurements
(constraint values vs. cost and constraint gradients) hos &re often considered separafely
However, the plant inputs typically affect both parts. Oakigon to this problem consists in using
input separation to generate two decoupled problems, iyamebnstraint-tracking problem and a
sensitivity-reduction problem. The sensitivity of theiegtconstraints with respect to the various
inputs can be used to separate the input space in a subspaedfeicts the active constraints and
a complementary subspace that does not. This input sepadiines so-calledonstraint-and
sensitivity-seekindirectiong. This paper addresses only the sensitivity part of the NCO.

Two methods for enforcing steady-state optimality usingsaeements will be presented. The
first method, neighboring-extremal control (NEC), implensefirst-order optimality corrections
using state feedbaéR It has been shown that NEC is a first-order approximationréalignt-
based optimizatiokl. The second method is self-optimizing control (SOC) baseithe null-space
method, which proposes to determine CVs that ensure magptianality loss when maintained

at their nominal optimal valu€s2. It has been shown that a particular choice of CVs leads to



an estimation of the cost gradiédt which is precisely the focus of NEC. Although the two ap-
proaches attempt to solve the same static optimizationlgmglthey are still sometimes seen as
being different2, which is probably due to the fact that they were introducéti different types

of measurements, namely, at steady state for NE@d in the transient for SOT By presenting
the two approaches on the same footing, this paper showshthaare indeed very similar and, in
fact, the two methods can be made strictly equivalent thi@ppropriate tuning. The implemen-
tation issue with either steady-state or transient measemés is also discussed. Note that the links
between NEC, SOC and other RTO schemes has also been thet siilsji@ecent publicatio.

The paper is organized as follows. The section Prelimisangoduces the dynamical system
and the static optimization problem associated with mazimgi steady-state performance. The
next section describes the NEC and SOC algorithms that &e tessolve a static optimization
problem and discusses their implementation using eitleadststate or transient measurements.
The two techniques are formally compared in the section Goispn Between NEC and SOC
and illustrated on a simulated CSTR example in the sectiostthtive Example. Finally, the last

section concludes the paper.

Preliminaries

Optimality can be implemented by enforcing the plant NCOnely the active constraints and the
reduced gradients. This way, the optimization problem ismfdated as a multivariable feedback
control problem. The focus of this paper is on forcing thet gpadient of the plant to zero, and
not on meeting plant constraints. We will therefore assumaé the active constraints are known

and enforced using feedback control, thus resulting inraonstrainedptimization problem.



Dynamical System

We consider the following dynamical system:

X(t) = Fx(),u(t),0) (1)
yt) = Hx(),u(t),0), (2)

wherex € ™ represent the statase [1™ the inputsy € O™ the outputs, ané € 1" the vector
of uncertain parameters. The time dependency of the vasatiat isx(t), u(t) andy(t), will be
used to indicate that the system is in a transient state. trast, the steady-state behavior will
be expressed by the variable without explicit time depeagemamelyx, u andy. F andH are
smooth functions that represent the state and output fursstrespectively.

This study assumes no plant-model mismatch and no measoremers. The emphasis will
be on the comparison of the proposed NEC and SOC techniqumso@ly, the effect of plant-
model mismatch and measurement errors is of importance emd ©e the subject of further

investigation.
Static Optimization Problem and Optimality Conditions
Consider the following unconstrained static optimizagioablem:

muinJ(u) = ¢(xu,0) 3

st. F(x,u,8)=0, (4)

whereld is the cost to be minimized arflis a smooth function that represents the cost. At steady

state, the output equations read:

y = H(xu,0). (5)



As indicated above, the variablesu, andy represent the states, inputs and outputs at steady state.
Introducing the Lagrangiab(x,u,A, 8) := ¢ +ATF, whereA represents the adjoints, and the

notationay, := %‘ of dimension (dim a¥(dim b), the NCO for Problem (3)-(4) are:

Lu = ¢u‘|‘)\TFu = 01><nu (6)
Lx = ¢x‘|‘)\TFx = 01><nx (7)
Ly = FT=01n,. (8)

Note that equation (8) is the same as equation (4). Assumgirtg be invertible, the adjoint

variables can be computed frdm = 0, which givesA T = —¢4F,* and

d
Lu - ¢u - ¢xeilFu - d—(ﬁ - lenu 5 (9)

which simply says that the total derivative of the cost fimtivith respect ta, that is, accounting
for the direct effect ofi and the effect ofi throughx, vanishes at the optimum. This total derivative

is thegradientof the cost function with respect tg which is denoted as theg-dimensional vector

g(x,u,A,0):= (%)T =JI.

First-Order Variations of the Necessary Conditions of Optimality

The two methodologies discussed in this paper rely on linparoximations around the nominal
optimum, namely the first-order variations of the NCO for N&@i the sensitivity of the outputs
and inputs with respect to parametric variations for SO@ gdal of this subsection is to establish
preliminary results through the analysis of the first-ongmmiations of the NCO.

Consider the parametric variatiod® around the nominal values of the parametéxsy,. The



NCO equations (6)-(8) can be linearized with respect tg A ando:

5L;I(— ~ LXX 5X+ Lxu 5U—|— FXT 5)\ + LX959 = Onxxl (11)
SL) =~ FxOx+Fydu+Fgd0 =0n 1, (12)

wheredx = X — Xnom, OU = U— Unom OA = A — Anom andd6nom = 6 — Bnhom With Xhom Unomand
Anomrepresenting the states, inputs and adjoints that comesie®,om.

The system of linear equations (10)-(12), which contdirg + n,) equations for thé€2n, +
Ny + Ng) unknownsdx, 8A, du anddB, can be solved for given values 88. Indeed,dx and dA

can be expressed in termsaif andd 6 from equations (12) and (11) as:

ox = —F R0u—F, 1Fe00 (13)

SA = —F TLOx—F, "Ly ou—F, TLyd0. (14)

The costg is a function ofx, u and 6. From the first-order variations of the NC@x can be
expressed in terms @iu andd 6 as in equation (13), which allows expressing the cost vanan

terms ofdu and 0 as the functio®d@(du, d0).

Optimal Gradient

Equation (9) indicates that the gradient vanishes at thenopt. Equation (10) expresses that the
gradient needs to be kept at zero to maintain (first-ordemnaghity. Upon inserting the expressions

for oxanddA givenin (13) and (14) into equation (10), the gradient cbadifor optimality reads:

Jopt(BU,50) = o7 SU+ 7 56 = Onyu1, (15)



with

d?¢

= Lyu— LuF TR — R R T+ R R TR 1Ry = e (16)
: -1 TE-T Te-T -1 d?e
B = Lyg—LuxF 1o —F P Thyg +F] F T LuF tFg = U e’ (17)

with the (ny x n,) Hessian matrix, assumed here to be regular, and {hex ng) matrix 2.
Equation (15) can be used to express the variabothat is necessary to offset the effect of

the disturbancé®, namely:
ou=% 00, (18)

with the (ny x ng) matrix ¢ := —o/ 1 4. Hence, if the parametric variatiod® were known, it
would be straightforward to compute the input correctidongo keep the gradient equal to zero
despite parametric disturbances. However, stgés typically unknown, the challenge will be to
infer it from the known and measured quantit®sanddy. NEC and SOC differ in the way this

is done.

Static Real-Time Optimization via NEC and SOC

Neighboring-Extremal Control

NEC attempts to maintain process optimality in the presefcksturbances through appropriate
state feedback-®> The technique, which has been revisited recently to hgmatiametric uncer-
tainty and output feedbaék, uses the first-order variations of the NCO to compditen terms

of the parametric disturbancé® as given in equation (18). More specifically, NEC relies am th
implicit estimation oféd0 from dy and du, which is described next. The approach is illustrated

here for solving the unconstrained static optimizatiorbpem (3).



For this, the output equations (5) are linearized with resfmex, u and0:
0y = Hx0x+Hydu+Hgdhb, (19)

wheredy = Y — Ynom With Yhomrepresenting the outputs that correspon@gn.

Using ox from (13) gives:

8y = (Hu—HuFR "Fu) 0u-+ (He — HeFy 'Fo) 56 = 28U+ 236, (20)

with the @y x ny) matrix 2 := 9H — (Hu—HxFR) and the by x ng) matrix & := g” =

u

D

(He — HxF 'Fg). Note that equation (20) verifies the first-order variatiohthe NCO.
Let us assumey > ng, that is, there are at least as many output measurementsraséaite
uncertain parameters. Using (20), the parametric vanad@ can be inferred fromdy anddu as

follows:
00 = Z(0y— 2du), (21)

whereZ is a (ng x ny) pseudoinverse of?, that is,7 & = Ing-> The feasibility of this estimation
is crucial and requires rak”) = ng, which corresponds to all uncertain parameters having a
noticeable and distinct effect on the outpwuts

Equation (15) provides a first-order approximation to th&t gpadient, which can be estimated

from dy anddu upon using equation (21) to eliminad®:
g=G'dy+G"du, (22)

with the (ny x ny) matrix G’ := 2 2 and the(ny x ny) matrixG" := &/ — A9 2.

The gradient can be controlled to zero in basically two d#fe ways, as shown next.

We purposely do not choosg to be the unique Moore-Penrose pseudoinversg?oéis we are interested in
generating the maximum number of degrees of freedom thbbevilsed in the comparison of NEC and SOC.



| mplementation using steady-state measurements

Equations (18) and (21) can be combined to elimideeand written in an iterative manner as:

Sukir = KiiecOVk+ KNecOuk, (23)

with the (y x ny) matrix K,{’l ec .= ¢ Z and the (y x ny) matrixK\gc:= —¢ 2. Here, the index
k indicates thé!" steady-state iteration, with the measuremeéiyisandduy taken at steady state.
By combining equation (22) written for tHé" iteration and equation (23), the “steady-state”

NEC law can be written generically &s:

Oukr1 = Ouk+ Knec Ok, (24)

whereKnec is the(ny x ny) controller gain matrix. This equation is a first-order apgmeation to
the gradient-based optimization scheme as was sholin interestingly, equation (24) indicates
that the NEC law has an integral term and is therefore ablertefthe estimated gradient to zero.
Remark 1

It is possible to define the generalized gradiezty, by multiplying the gradient with an(; x ny)
regular matrix%. This will not affect the schem@4) as long as7 is considered in designing the

controller, that isKngc = —T o7 12~ 1.

2Formally, Knec := —a7 1, wheres” represents the Hessian of the cost function at the nomirimham. Note
that using the inverse of the Hessian enforces decouplihgdmwesponds to dead-beat control, which may not be
advisable under noise. The gain matrix is often takeKyas: := —k .«7 2, since the adaptation gainc (0,1] helps
enforce convergence by ensuring that the step is not toe.lafgre, the general formulation with th&, (x ny) gain
matrix Kyec is considered in order to have as many tuning parametersssibpmin investigating the equivalence
between NEC and SOC. This can be interpretelas := —I .7 1, with the (i, x ny) matrixT".
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I mplementation using transient measurements

If transient measurements are available online, the NE€yrat control law (24) can be rewritten

in the equivalent continuous-time formulation:

ou(t) = Knecg(t), (25)

whereg(t) is the onlineestimateof the steady-state gradient. This control law will be adlle
“transient” NEC. Because of the presence of an integral tBH&C will drive the dynamical system
to optimal steady-state performance wgffwo) = O.

It is clear that using NEC with transient measurements hagptitential of being faster than
with steady-state measuremefits However, it all boils down to the accuracy with which the

steady-state gradient can be estimated. This topic isdmutise scope of this paper.

Self-Optimizing Control

The original approach to determine the CVs has been thrdwasd-called null-space approaéh
that uses a model of the plant to compute the optimal inpudsoatputs for specific (parametric)
disturbances. Other approaches have also been preseriiett, wge either minimization of an
appropriate loss functidri or measured data directf§;

The approach based on the null-space approach proceedi®asfdi) calculate the sensitivity
of the optimal outputs and inputs with respect to disturlearend/or parametric variations (as in

this study),

<

(26)

b

ol Qlo
gz g

opt

where.” is the [(ny +ny) x ng] sensitivity matrix of rankng, (ii) compute the fi x (ny + ny)]

matrix .4 that spans the left null space of, that is,.#" . = Onxn, With T = ny+ny —ng, and

11



(iii) selectny CVsin .4,

The reason for using the left null space#fis very intuitive. If(ny+ny) output and input mea-
surements are available angl parameters vary,/” contains thé combinations of measurements
that are insensitive to parametric variations and thus meusain unchanged to enforce optimality.
With ny inputs, we neediy CVs to generate a square control systemmyIB ng, that isn > ny, it

is always possible to seleng CVs in the left null space of” as follows:

c=N , (27)

with the [ny x (ny 4+ ny)] matrix N := M .47, whereM is an arbitrary full-rank iiy x n] matrix.
These CVs are kept at their nominal setpoitysto enforce optimality despite the presence of

disturbances (of known identity). Equivalently, the véiaas of the CVs,

dc:=c—Csp=NYdy+N"du, (28)

are kept at zero, whe®” is the i, x ny) matrix including the firsny columns ofN andN" the
(ny x ny) matrix including the lash, columns ofN. In contrast, fomy < ng, that isn < ny, there
are too few combinations of measurements (CVs) that areitbee to the disturbances to bring
theny elements ofj to zero.

Remark 2

Controllability plays an important role in the choice of thall space. The total derivatives of the

CVs with respect to the inputs are given by

ddc dH
_— = y— U: y u
954 N du-i—N NY2+N".

The matrixNY2 + NY needs to be invertible to have controllable CVs.

Remark 3

There are several ways of choosing the CVs through the cloditte arbitrary §, x N) matrixM.
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Each choice results in no performance loss for variatiotBeparameter8. In practice, however,
one may favor certain choices for ease and accuracy of mexasut. Note that, fon, = ng, the
matrixM is a jhy x ny] regular matrix, and the CV's span the entire null space

Remark 4

The original formulation of SOC based on the null-space wetised the sensitivity of the optimal
values of measured quantities in the broad s&hsd¥o distinction were made between inputs and
outputs, though the authors mentioned that the inputs des afcluded. The minimal number

of measurements was indicatedrgs+ ny, which makes sense ag measurements are needed
to estimate the parametric uncertainty agdmeasurements are necessary to compute the input
updates. Since the inputs are typically known and availabke term(%) opt should always be

included in.#, thereby increasing the dimension of the null space

As for gradient control discussed above, drivibgto zero can also be done in two different

ways.

| mplementation using steady-state measurements

The CVs variations can be driven to zero iteratively, usmgeikample the discrete integral control

law:
OUxr1 = Ouk+ Ksocdc, (29)

whereKsocis the(ny x ny) controller gain matrix andcy are the variations of the CVs observed
at thek!" steady-state iteration.
Combining the last two equations and using the notatidfs.:= KsocNY andKdne:= (In, +

KsocNY) gives:

Suki1 = KZodYk+ KEocdUk, (30)

13



with the measurementyy, and duy taken at steady state. Equations (29) and (30) represent the

“steady-state” SOC laws.

I mplementation using transient measurements

If transient measurements are available online, the SG&giak control law (29) can be rewritten

in the equivalent continuous-time formulation:
ou(t) = Ksoc dc(t), (31)

where dc(t) is an onlineestimateof the steady-state gradient. This control law will be ddhlle
“transient” SOC. Because of the presence of an integral, t8BMC will drive the dynamical system

to optimal steady-state performance witt(«) = 0.

Comparison Between NEC and SOC

A nice feature of both NEC and SOC compared to other RTO teciasilies in their ability to com-
pute the gradient information frody anddu at asingle operation pointwhile other techniques,
such as the search and perturbation methods, require beperating points. The interested reader
is referred t3%1%for a detailed comparison of gradient-based RTO schemes.

Another feature of the NEC and SOC laws is that, upon convesgeeither the plant gradient
g or the CV variation®c vanish, as per equation (24) and (29). The optimizing idé&EE and
SOC are illustrated in Figure 1.

Although the two ideas of NEC and SOC seem quite differerdrettare many similarities
between the two schemes. It has already been pointed outhinalVs ideally represent the
gradientg.13® The current paper goes a step further to show that the twoaustban be made

equivalent through appropriate tuning.
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Estimation [« of CVs |
(22) (28)
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dy disturbances dy disturbances
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Figure 1: Optimizing ideas of NEC (left-hand side) and SQ@hfrhand side).

Equivalence Between NEC and SOC

On the outset, NEC seems to have no degrees of freedom ahdk, 80C has quite a few asso-
ciated with the choice of the CVs in the null space and theaghof the controller. However, if
NEC uses the degrees of freedom available in the choice, @ pseudoinverse o, and in the
transformation matrix#Z introduced to define a generalized gradient, then the negtrém states
that the two methods are strictly equivalent.

Theorem 1

[Equivalence Between NEC and SOC] Consider the optimingtimblem (3)-(5) withy inputs,
ny outputs andhg uncertain parameters, withh > ng. LetF, be invertible and the matrices, 2,

& and2 be full rank. Let the controlled variablesbe given by (22) for NEC andc given by
(28) for SOC.

1. Any generalized gradienzg computed in NEC can be interpreted as CVs in SOC, that is,
for any transformation? and matrix2 used to computg, with ¥ &7 = |, the generalized

gradient is insensitive to parametric variations.

2. Any controllable vectodc in SOC is a generalized gradient in NEC, that is, for any ahoic
of NY andN" in the left null space of” such thafNY2 + NY) is invertible, there exists a

matrix 7 satisfying? & = ln, and a regular matrisz such thaNY = % GY andN" = % G!.
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Proof: Part 1.Using Zg = #ZGYdy + % G"du, the generalized gradient can be expressed as

oc = NY dy+ NYdu, with NY = 2 GY andN" = 7 GY.
We show next that then[, x (ny +ny)] matrix N = % [GY G| lies in the left null space of”,
that is,N.# = 0. Using the definitions o&” andG", the identities? & = |, and.«/ ¢ = — %,

and the expressior% = %—Z' % + ﬂ—'; =2%¢+ <% and % = ¥, one can write:

2¢+ S
©
- %(%.@L@‘i_d%) :Onuxne. (32)

RGNS = RBD (o —BDD)

Part 2.Given anyN that lies in the left null space o, we need to show that it fits the structure
N=%%2 and\N" =R o —RB D 2 =% o/ — N2 for someZ andZ, with 2 F = Ip,. In
other words, one needs to show the existence of the two rea@nd % such that the following
three conditions are satisfied: Y = Z %4 2, (i) N = Z .o/ —NY 2, and (jii) 22 = |p,.

Among the three conditions, condition (i) can be used towateZ, namely,%Z = (NY.2 + NY) o7 1.
Since/ is a positive-definite Hessian, its inverse exists. The @2 + N") is regular from the
assumption that the CVs are controllable. Herw€esxists and is regular.

The condition that/” lies in the left null space of” can be written as

2¢+2

€
= NY2¥€+NZ+N%

INY N7 = [NY NY]

= NP+ RAC =N D — R B = Onxng (33)

In what follows, we first choos&’ that satisfies condition (i). Then, we will show that the
choice proposed also satisfies condition (iii). We will néadistinguish two cases, namety, >
ng andny < ng.

If ny > ng, the pseudoinverse 682 can be applied to condition (i) to obtain = (Z2.2)" N,

16



with the superscript.)™ denoting the Moore-Penrose pseudoinverse. Looking intdigion (iii),

it can be seen with the help of (33) that
9P = (RB) " NP = (RB)" (RB) = |n,. (34)

If ny < ng, then the following procedure is followed to choage (a) Compute the null space

K B
of the (y x ng) matrix #% and append théng — n,) rows termed 44 such that has

Nan
-1
R KA NY . . - L
rankng. (b) ChooseZ7 = , Which obviously satisfies the condition (i). It
Na® Nz P "
can be verified that condition (iii) is verified:
-1 -1
KRB NY %2 X B 4
9P = = =In,- (35)
N Nz P TP Naw Nz
Thus, the existence of the two matric#sand 2 has been shown. O

Remark 5

The extra degrees of freedom one has in choosing the CVs imuthspace 4~ are translated into
the extra degrees of freedom that exist in the selectioneopgeudoinverse a¥ in NEC. In the
presence of noise, these extra degrees of freedom couldhieeaery handy.

Corollary 1

[Controller Design] Consider the optimization problem-(8) with ny inputs,ny outputs anahg
uncertain parameters, witly > ng. LetF be invertible, the matrices/, %, & and 2 be full
rank, and the matri% be such thay &7 = |,. Let the controlled variablagbe given by (22) for
NEC anddc given by (28) for SOC.

1. Given a NEC controller with the gain matiec, an equivalent SOC control law can be

obtained by choosinyY = Z2,N" = &/ — % 9 2, andKsoc = Knec.

2. Given a SOC controller withc = NYdy + NYdu and the gain matriXsoc, an equivalent

17



NEC law can be obtained by choosiKgec = Ksoc#Z andg = GY oy + G" du, with #Z =
(N2 4N 1, =29, G =of — B9 2, and eithe? = (Z#A)" NY if ny > ng or

-1

R RB NY ]
9 = otherwise.

r Nan P+

Proof: The proof is straightforward and is thus omitted here.

I nformation Required for Control Design

NEC uses the steady-state modelx,u,0) = 0 andy = H(x,u, 8). Furthermore, the identity
of the disturbances (in this study, the uncertain pararaéteneed to be known to compute the
corresponding partial derivatives that enter in the comfporh of most control matrices. However,
the actual sizes of the parametric variations need not berkas they are inferred from the mea-
surement®y anddu as per equation (21). The conditiop> ng suffices to reconstrugi6 from
oy.

The same information allows designing a SOC law based on tliespace method. The
steady-state models and the identity of the disturbancesi@eded to compute the sensitivity
matrix .. . can be either obtained via model-based optimization (terdehe the optimal out-
puts and inputs for the perturbed model), or frsm<” and 2 using (33). The conditiony > ng
allows selectingy, CVs in the null space/’. Furthermore, owing to the equivalence between
NEC and SOC, it is no longer necessary to evaluate the sgtysinatrix (26). Instead, one can
computeN = M; [-«# 1@ —.&~1GY], with My chosen arbitrarily. Note that, ¥; = —«,
thendc represents an estimate of the gradggnAlternatively,M; can be chosen to optimize some
other criterion.

The static model& (x,u, 8) = 0 andy = H(x,u, 8) are typically identified from steady-state
data. An interesting topic regards the possibility of desig a self-optimizing controller directly
from data, that is, without expliciting the static modé&lsx,u,0) = 0 andy = H(x,u,0). One

such attempt was presented recently by Jaeschke and Ska'§éstthe context of SOC. The idea
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implies (i) estimating the output sensitiviti% via step changes of the inputs, and (ii) estimating
the cost gradient from open-loop process data by fitting a@iciie function to the measured cost.

This allows inferring the matriN needed to select the CVs.

| llustrative Example

The illustrative example is taken froffi'°, where it has been used for comparing gradient es-
timation techniques. Steady-state optimization of anhiswhal CSTR is investigated, with the
reactionsA+ B — C and B — D. There are two manipulated variables, the feed rates ard

B. The goal is to maximize the productivity 6fat steady state. The problem can be formulated

mathematically as follows:

2 (ua+ug)®

max J(ua,Ug) = —W(UZ + U3 36
ma (Ua, UB) UnCAT (Ua+ug) (36)
. u Ua+u
ca= —kicacg+ VACAin — AV B ca(0) = Cas (37)
. u Ua+U
Cg=—kicacg—2ky C% + VBCBin - AV BCB cs(0) =cCas (38)
. Ua+ U
Cc = k]_ Ca CB — AV B CC(O) =Ccs (39)
) Ua+U
Cp =2ko 3 — At Beo cp(0) =cps (40)

wherecy denotes the concentration of speckeandcy s the corresponding steady-state valiés,

is the reactor volumela andug are the feed rates éfandB, caj, andcgj, are the inlet concentra-

tions,k; andk; are the rate constants of the two chemical reactionsyeagveighting parameter.
The first term ofJ corresponds to the amount Gfproducedcc (ua + ug), multiplied by the

up+Up)

yield factor, CC&ACAm , While the second term penalizes the control effort.

Two different scenarios are considered throughout thismsec

1. Scenario 1. We start by considering that the plant differs from the maatgy by the values
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of the rate constantk; , andkz,. Hence, the vector of uncertain parametgrs [k; kz]T is
of dimensiomg = 2. Since it is assumed — although not necessary — that thectatons

of the four species are measured, we haye ng andn, = ng.

2. Scenario 2: In addition to the uncertainty on the values of the rate amtst the second
scenario also considers that the inlet concentratioA & underestimated by the model.
Hence, the vector of uncertain parametérs [k; ko Cain]" is thus of dimensiomg = 3.
Since it is again assumed — although not necessary — thabtieewtrations of the four

species are measured, we haye- ng andny < ng.

The values of the uncertain parameters are unknown to these@mes. The plant settling time
is about 50 min, which corresponds to a dominant time constiagbout 12 min. The numerical

values of the model and plant parameters are given in Table 1.

Table 1: Model and plant parameters

Model and plant parameters
C C
ky 0.75 mo,_min klp 14 mo,_min
ko 15 —m%n?in kzp 0.4 —m%ln?in
cgin 15 Mo |y 500 L

w  0.004 @‘

The normalized cost idy(t)/Jp,opt » Wheredy opt is the optimal cost of the plant at steady state.
This value is of course different for the two scenarios. ldéeg, “transient” SOC corresponds to
using SOC with transient measurements for implementaiidawill use the label “steady-state”
SOC for the case where only steady-state measurementsaatéonSOC, while “adjusted” SOC
will be used when SOC is tuned to match the performance of NEs@Qversely, “adjusted” NEC

will be used when a NEC controller is tuned to match the paréorce of a given SOC law.
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Scenario 1

Use of steady-state measuremehte. first illustrate the implementation of both NEC and SOC

with steady-state measurements. By def#géc is computed agNY 2 + N”)*l since, as dis-
cussed if®1° this choice allows local decoupling of the CVs.

Figure 2 compares the normalized costs for “steady-stateCNMind SOC. NEC uses the
Moore-Penrose pseudoinverse &f, and the submatriN for SOC is arbitrarily chosen as the
last two rows of_#". As seen, it takes 3 iterations to converge close to the plaimtnal perfor-
mance. Both methods perform well and converge in the neigiidoal of the plant optimum. The
initial value of about B corresponds to the cost resulting from using the modeh@dtinputs.
The difference of about 20% is what is gained via real-timegnoigation. Note that the transient

cost can be larger than 1 before steady state is reached.

1.3 ! !

Jo O oo

QG+ RN R HRITIRI

0.8F

T

Time [min]

Figure 2: Performance of “steady-state” NEC (solid red)lared SOC (blue crosses). Convergence
in 100 minutes.
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Use of transient measurementge illustrate next the application of NEC and SOC with tran-

sient measurements. Figure 3 compares the normalizedocd$ELC and for SOC for two different
choices of CVs. Here, NEC use8™, and the submatri¥l is chosen as the first two rows and as
the last two rows of/". Both methods perform well and converge in the neighborloddlde plant
optimum, with only marginal differences between the cogedrperformances. Note that con-
vergence to the neighborhood of the plant optimum is acliewthin a single iteration to steady

State.

1.25 ! ! ! !

0.9f S S R R

0ss| — T ]
08 : : : :
0 10 20 30 40 50
Time [min]

Figure 3: Performance of “transient” NEC (solid red linefla&80C for two different choices .
The solid blue and green lines are obtained wNetorresponds to the two first and the two last
rows of 4", respectively. Convergence in 30 minutes.

lllustration of Theorem 1Next, we illustrate Theorem 1. That is, we illustrate firsitthNEC

corresponds to SOC, for which the CVs are the gradient teffos.any regulaiksoc Nigeal :=
KsddG GY] leads to strict equivalence between NEC and “adjusted” S@also illustrate the

implication of the second part of Theorem 1 — hererigt> ng — and show that a NEC controller
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can be modified to exactly match SOC, for any choice of colatoté CVs. As suggested by
Theorem 1, NEC is adjusted via the two matriggs- (NY.2 +NY) .7~ and2 = (#%)TNY. We
limit the analysis to the two cases for whibhis chosen as the two first rows and the two last rows
of .4 (other choices would lead to the same conclusions).

Figure 4 compares the performances of “adjusted” NEC andiséeld” SOC to the correspond-
ing cost profiles obtained with the standard tunings. Thepaomon of Figure 4 and Figure 3
clearly shows that: (i) “adjusted” NEC matches null-spa€@CSor both choices oN and (ii)
“adjusted” SOC matches “transient” NEC, since all the thregresponding pairs of curves are

superimposed.

1.15
1.1

1.05}

O,

0.95 -

09 | -

0.85|- ~ : : -

0.8

5 10 15 2 30 35 40 45 50

0 25
Time [min]

Figure 4. Performance of “adjusted” SOC and “adjusted” NEGe curve obtained with “ad-
justed” SOC (black circles) lies on top of the solid red liménich corresponds to the “transient”
NEC. The two curves obtained with “adjusted” NEC (black sessand diamonds) are superim-
posed to the solid blue and solid green curves, which cooresppo SOC whem is chosen as the
two first and two last rows off", repsectively.

Scenario 2

The goal of this subsectionis to illustrate the second garheorem 1 whem, < ng. As suggested

by Theorem 1, wheny < ng, the tuning of “adjusted” NEC requires the use of the sa#e.e.
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-1

_ _ X B NY _
# = (NY2+NY) o7 1 but of a different2, i.e. 2 = for “adjusted” NEC

Na% Nz P
to be strictly equivalent to SOC.

With 6 = [k; ko cajn], - is now of dimension6 x 3] and.#" is of dimension 3< 6. Again,
we consider two possible choices fdf that is, the first two rows and the two last rows.df.
Sinceny < ng, rankZ %) < ng and, thusZ % does not have a left pseudoinverse. It is therefore
necessary to use the null spadg,», of Z% to construct?. Figure 5 illustrates that, also when
ny < Ng, there exists an “adjusted” NEC that is strictly equivalenBOC, for the two different
choices ofN. Again, the corresponding pairs of curves are superimpdsedthe rest, the results

are qualitatively similar to those of the cage> ng.

0.65H

0.6

0.55§ _

05 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time [min]

Figure 5: Performance of “adjusted” NEC (black crosses dackidiamonds) compared to that of
SOC (solid red and blue lines for the cases for whitis chosen as the two first and the two last
rows of 4", respectively) for the casg, < ng.

Finally, note that, although these techniques are linaaadgz-based and thus are only guaran-
teed to perform well for small perturbations, large paraioeariations were successfully handled

in this example, as the plant and model kinetic parameteted/ay factors of 2 and 4.
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Conclusions

This paper has investigated the equivalence between rarigigbextremal control and self-optimi-
zing control for unconstrained optimization problems. Yittle self-optimizing control scheme
based on the null space of the sensitivity matrix has beesidered. Conditions under which the
two techniques are equivalent have been proposed. The k&yigpthat both methods estimate the
total derivatives of the cost function from input and outmegasurements, directly for NEC and
indirectly through the choice of CVs for SOC. This work comf& the recent results suggesting
that the CVs can be chosen to estimate the cost grddieRurthermore, it has been argued that
the matrix.¥ used in SOC should include information regarding input giertges with respect to
uncertain parameters.

Both optimizing schemes are set up on the basis of purelic stahsiderations, namely, the
steady-state gradient equal to zero for NEC, and the CVsaimtii space of a steady-state sensi-
tivity matrix for SOC. It may seem rather wishful thinkingwant to estimatsteady-statealues
using transient measurements, without any dynamic coragida. However, this is supported by
the fact that the estimated signals tend toward the soughtigtstate values when the dynamic
system approaches steady state.

This paper has shown that both NEC and SOC can be used widr sittady-state or transient
measurements. The difference that persists in the literaguartificial and is probably due to the
way the implementation was done in the original publicaionhis means that NEC can also be
used as an online optimizing multivariable controller $anto SOC. In this case, the CVs and
their setpoints are defined offline and correspond to thegraslient and its desired value of zero.
On the other hand, this also means that SOC can be implemgetatively using steady-state

measurements, which helps exploit the measured CVs in tefsteady-state values.
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