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Abstract

The problem of steering a dynamical system toward optimal steady-state performance is

considered. For this purpose, a static optimization problem can be formulated and solved.

However, because of uncertainty, the optimal steady-stateinputs can rarely be applied directly

in an open-loop manner. Instead, plant measurements are typically used to help reach the

plant optimum. This paper investigates the use of optimizing control techniques for input

adaptation. Two apparently different techniques of enforcing steady-state optimality are dis-

cussed, namely, neighboring-extremal control and self-optimizing control based on the null-

space method. These two techniques are compared for unconstrained real-time optimization

in the presence of parametric variations. It is shown that, for the noise-free scenario, the two

methods can be made equivalent through appropriate tuning.Note that both approach can use

∗To whom correspondence should be addressed
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measurements that are taken either at successive steady-state operating points or during the

transient behavior of the plant. Implementation of optimizing control is illustrated through a

simulated CSTR example.

Introduction

Process optimization has received significant attention inthe last 30 years. Long considered an

appealing research tool for design and operation, optimization has become a credible and viable

technology1 that is used extensively and routinely in industry2. In practice, optimization is compli-

cated by the presence of uncertainty in the form of plant-model mismatch, parametric uncertainty

and unknown disturbances. Uncertainty can be very detrimental to optimality, as any model-based

optimization approach tries to push the plant as much as possible based on the available model.

An efficient way to combat the effect of uncertainty is to use plant measurements to either

(i) adapt the model parameters and re-optimize on the basis of the updated model (explicit opti-

mization)3,4, or (ii) adapt the plant inputs directly (implicit optimization). Implicit optimization

typically uses one of the following schemes:

1. Search (zeroth-order) methods – In techniques labeledevolutionary optimization5, a simplex-

type algorithm is used to approach the optimum. The cost function is measured experimen-

tally for various combination of the operating conditions.

2. Perturbation (first-order) methods – In techniques labeledextremum-seeking control6,7, the

gradients are estimated experimentally using sinusoidal excitation. The excitation frequency

has to be sufficiently low for a time-scale separation between the system dynamics and the

excitation frequency to exist. Like the techniques of the first type, this scheme uses only cost

measurements.

3. Control methods – In techniques such asNCO tracking8 andself-optimizing control9, the

optimization problem is recast as a problem of choosing and tracking variables whose op-

timal values are invariant, or nearly invariant, to uncertainty. If these variables vary, for
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example due to disturbances, their measured or estimated values are simply brought back to

their invariant set points using feedback control. In contrast to the other schemes, the mea-

surements in the control methods arenot the cost function but auxiliary measurements such

as the process inputs and outputs.

RTO techniques based on “control” will be discussed in this paper. The control action can be

applied at discrete points in time based on steady-state measurements and computation of updated

inputs. The inputs are then applied to the plant and held constant until the next steady-state mea-

surements become available. Alternatively, the inputs canbe updated continuously on the basis of

transient measurements. No distinction is made here on whether the transient measurements are

available in discrete or continuous time. The important factor is that these measurements are taken

before the plant reaches steady state.

Most “control” approaches rely on the necessary conditionsof optimality (NCO) as these con-

ditions are invariant to uncertainty. The NCO for a constrained optimization problem has two parts:

the feasibility and the sensitivity part. These two parts require different types of measurements

(constraint values vs. cost and constraint gradients) and thus are often considered separately8.

However, the plant inputs typically affect both parts. One solution to this problem consists in using

input separation to generate two decoupled problems, namely, a constraint-tracking problem and a

sensitivity-reduction problem. The sensitivity of the active constraints with respect to the various

inputs can be used to separate the input space in a subspace that affects the active constraints and

a complementary subspace that does not. This input separation defines so-calledconstraint-and

sensitivity-seekingdirections8. This paper addresses only the sensitivity part of the NCO.

Two methods for enforcing steady-state optimality using measurements will be presented. The

first method, neighboring-extremal control (NEC), implements first-order optimality corrections

using state feedback10. It has been shown that NEC is a first-order approximation to gradient-

based optimization11. The second method is self-optimizing control (SOC) based on the null-space

method, which proposes to determine CVs that ensure marginal optimality loss when maintained

at their nominal optimal values9,12. It has been shown that a particular choice of CVs leads to
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an estimation of the cost gradient13, which is precisely the focus of NEC. Although the two ap-

proaches attempt to solve the same static optimization problem, they are still sometimes seen as

being different13, which is probably due to the fact that they were introduced with different types

of measurements, namely, at steady state for NEC11 and in the transient for SOC9. By presenting

the two approaches on the same footing, this paper shows thatthey are indeed very similar and, in

fact, the two methods can be made strictly equivalent through appropriate tuning. The implemen-

tation issue with either steady-state or transient measurements is also discussed. Note that the links

between NEC, SOC and other RTO schemes has also been the subject of a recent publication14.

The paper is organized as follows. The section Preliminaries introduces the dynamical system

and the static optimization problem associated with maximizing steady-state performance. The

next section describes the NEC and SOC algorithms that are used to solve a static optimization

problem and discusses their implementation using either steady-state or transient measurements.

The two techniques are formally compared in the section Comparison Between NEC and SOC

and illustrated on a simulated CSTR example in the section Illustrative Example. Finally, the last

section concludes the paper.

Preliminaries

Optimality can be implemented by enforcing the plant NCO, namely the active constraints and the

reduced gradients. This way, the optimization problem is formulated as a multivariable feedback

control problem. The focus of this paper is on forcing the cost gradient of the plant to zero, and

not on meeting plant constraints. We will therefore assume that the active constraints are known

and enforced using feedback control, thus resulting in anunconstrainedoptimization problem.
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Dynamical System

We consider the following dynamical system:

ẋ(t) = F(x(t),u(t),θ) (1)

y(t) = H(x(t),u(t),θ) , (2)

wherex∈ ℜnx represent the states,u∈ ℜnu the inputs,y∈ ℜny the outputs, andθ ∈ ℜnθ the vector

of uncertain parameters. The time dependency of the variables, that is,x(t), u(t) andy(t), will be

used to indicate that the system is in a transient state. In contrast, the steady-state behavior will

be expressed by the variable without explicit time dependency, namely,x, u andy. F andH are

smooth functions that represent the state and output functions, respectively.

This study assumes no plant-model mismatch and no measurement errors. The emphasis will

be on the comparison of the proposed NEC and SOC techniques. Obviously, the effect of plant-

model mismatch and measurement errors is of importance and could be the subject of further

investigation.

Static Optimization Problem and Optimality Conditions

Consider the following unconstrained static optimizationproblem:

min
u

J(u) = ϕ(x,u,θ) (3)

s.t. F(x,u,θ) = 0, (4)

whereJ is the cost to be minimized andϕ is a smooth function that represents the cost. At steady

state, the output equations read:

y = H(x,u,θ) . (5)
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As indicated above, the variablesx, u, andy represent the states, inputs and outputs at steady state.

Introducing the LagrangianL(x,u,λ ,θ) := ϕ +λ TF, whereλ represents the adjoints, and the

notationab := ∂a
∂b of dimension (dim a)×(dim b), the NCO for Problem (3)-(4) are:

Lu = ϕu +λ TFu = 01×nu (6)

Lx = ϕx +λ TFx = 01×nx (7)

Lλ = FT = 01×nx . (8)

Note that equation (8) is the same as equation (4). AssumingFx to be invertible, the adjoint

variables can be computed fromLx = 0, which givesλ T = −ϕxF−1
x and

Lu = ϕu−ϕxF
−1
x Fu =

dϕ
du

= 01×nu , (9)

which simply says that the total derivative of the cost function with respect tou, that is, accounting

for the direct effect ofu and the effect ofu throughx, vanishes at the optimum. This total derivative

is thegradientof the cost function with respect tou, which is denoted as thenu-dimensional vector

g(x,u,λ ,θ) :=
(

dϕ
du

)T
= JT

u .

First-Order Variations of the Necessary Conditions of Optimality

The two methodologies discussed in this paper rely on linearapproximations around the nominal

optimum, namely the first-order variations of the NCO for NECand the sensitivity of the outputs

and inputs with respect to parametric variations for SOC. The goal of this subsection is to establish

preliminary results through the analysis of the first-ordervariations of the NCO.

Consider the parametric variationsδθ around the nominal values of the parameters,θnom. The
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NCO equations (6)-(8) can be linearized with respect tox, u, λ andθ :

δLT
u ≃ Luxδx+Luuδu+FT

u δλ +Luθ δθ = 0nu×1 (10)

δLT
x ≃ Lxxδx+Lxuδu+FT

x δλ +Lxθ δθ = 0nx×1 (11)

δLT
λ ≃ Fx δx+Fu δu+Fθ δθ = 0nx×1 , (12)

whereδx = x−xnom, δu = u−unom, δλ = λ −λnom andδθnom= θ −θnom, with xnom, unom and

λnom representing the states, inputs and adjoints that correspond toθnom.

The system of linear equations (10)-(12), which contains(2nx + nu) equations for the(2nx +

nu +nθ ) unknownsδx, δλ , δu andδθ , can be solved for given values ofδθ . Indeed,δx andδλ

can be expressed in terms ofδu andδθ from equations (12) and (11) as:

δx = −F−1
x Fuδu−F−1

x Fθ δθ (13)

δλ = −F−T
x Lxxδx−F−T

x Lxuδu−F−T
x Lxθ δθ . (14)

The costϕ is a function ofx, u andθ . From the first-order variations of the NCO,δx can be

expressed in terms ofδu andδθ as in equation (13), which allows expressing the cost variation in

terms ofδu andδθ as the functionδφ(δu,δθ).

Optimal Gradient

Equation (9) indicates that the gradient vanishes at the optimum. Equation (10) expresses that the

gradient needs to be kept at zero to maintain (first-order) optimality. Upon inserting the expressions

for δx andδλ given in (13) and (14) into equation (10), the gradient condition for optimality reads:

gopt(δu,δθ) = A δu+B δθ = 0nu×1 , (15)
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with

A := Luu−LuxF
−1
x Fu−FT

u F−T
x Lxu+FT

u F−T
x LxxF

−1
x Fu =

d2φ
du2 , (16)

B := Luθ −LuxF
−1
x Fθ −FT

u F−T
x Lxθ +FT

u F−T
x LxxF

−1
x Fθ =

d2φ
du dθ

, (17)

with the(nu×nu) Hessian matrixA , assumed here to be regular, and the(nu×nθ ) matrixB.

Equation (15) can be used to express the variationδu that is necessary to offset the effect of

the disturbanceδθ , namely:

δu = C δθ , (18)

with the(nu×nθ ) matrix C := −A −1 B. Hence, if the parametric variationsδθ were known, it

would be straightforward to compute the input correctionsδu to keep the gradient equal to zero

despite parametric disturbances. However, sinceδθ is typically unknown, the challenge will be to

infer it from the known and measured quantitiesδu andδy. NEC and SOC differ in the way this

is done.

Static Real-Time Optimization via NEC and SOC

Neighboring-Extremal Control

NEC attempts to maintain process optimality in the presenceof disturbances through appropriate

state feedback10,15. The technique, which has been revisited recently to handleparametric uncer-

tainty and output feedback11, uses the first-order variations of the NCO to computeδu in terms

of the parametric disturbancesδθ as given in equation (18). More specifically, NEC relies on the

implicit estimation ofδθ from δy andδu, which is described next. The approach is illustrated

here for solving the unconstrained static optimization problem (3).
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For this, the output equations (5) are linearized with respect to x, u andθ :

δy = Hxδx+Huδu+Hθ δθ , (19)

whereδy = y−ynom, with ynom representing the outputs that correspond toθnom.

Usingδx from (13) gives:

δy =
(

Hu−HxF
−1
x Fu

)

δu+
(

Hθ −HxF
−1
x Fθ

)

δθ = Qδu+Pδθ , (20)

with the (ny × nu) matrix Q := dH
du =

(

Hu−HxF−1
x Fu

)

and the (ny × nθ ) matrix P := dH
dθ =

(

Hθ −HxF−1
x Fθ

)

. Note that equation (20) verifies the first-order variationsof the NCO.

Let us assumeny ≥ nθ , that is, there are at least as many output measurements as there are

uncertain parameters. Using (20), the parametric variationsδθ can be inferred fromδy andδu as

follows:

δθ = D (δy−Qδu) , (21)

whereD is a (nθ ×ny) pseudoinverse ofP, that is,DP = Inθ .1 The feasibility of this estimation

is crucial and requires rank(P) = nθ , which corresponds to all uncertain parameters having a

noticeable and distinct effect on the outputsy.

Equation (15) provides a first-order approximation to the cost gradient, which can be estimated

from δy andδu upon using equation (21) to eliminateδθ :

g = Gyδy+Gu δu, (22)

with the(nu×ny) matrixGy := BD and the(nu×nu) matrixGu := A −BD Q.

The gradient can be controlled to zero in basically two different ways, as shown next.

1We purposely do not chooseD to be the unique Moore-Penrose pseudoinverse ofP as we are interested in
generating the maximum number of degrees of freedom that will be used in the comparison of NEC and SOC.
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Implementation using steady-state measurements

Equations (18) and (21) can be combined to eliminateδθ and written in an iterative manner as:

δuk+1 = Ky
NECδyk +Ku

NECδuk, (23)

with the (nu×ny) matrixKy
NEC := C D and the (nu×nu) matrixKu

NEC :=−C DQ. Here, the index

k indicates thekth steady-state iteration, with the measurementsδyk andδuk taken at steady state.

By combining equation (22) written for thekth iteration and equation (23), the “steady-state”

NEC law can be written generically as:2

δuk+1 = δuk +KNEC gk, (24)

whereKNEC is the(nu×nu) controller gain matrix. This equation is a first-order approximation to

the gradient-based optimization scheme as was shown in11. Interestingly, equation (24) indicates

that the NEC law has an integral term and is therefore able to force the estimated gradient to zero.

Remark 1

It is possible to define the generalized gradient,Rg, by multiplying the gradient with a (nu×nu)

regular matrixR. This will not affect the scheme(24)as long asR is considered in designing the

controller, that is,KNEC := −ΓA −1R−1.

2Formally,KNEC := −A −1, whereA represents the Hessian of the cost function at the nominal optimum. Note
that using the inverse of the Hessian enforces decoupling but corresponds to dead-beat control, which may not be
advisable under noise. The gain matrix is often taken asKNEC := −κ A −1, since the adaptation gainκ ∈ (0,1] helps
enforce convergence by ensuring that the step is not too large. Here, the general formulation with the (nu×nu) gain
matrix KNEC is considered in order to have as many tuning parameters as possible in investigating the equivalence
between NEC and SOC. This can be interpreted asKNEC := −ΓA −1, with the (nu×nu) matrixΓ.
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Implementation using transient measurements

If transient measurements are available online, the NEC integral control law (24) can be rewritten

in the equivalent continuous-time formulation:

δ u̇(t) = KNEC g(t), (25)

whereg(t) is the onlineestimateof the steady-state gradient. This control law will be called

“transient” NEC. Because of the presence of an integral term, NEC will drive the dynamical system

to optimal steady-state performance withg(∞) = 0.

It is clear that using NEC with transient measurements has the potential of being faster than

with steady-state measurements16. However, it all boils down to the accuracy with which the

steady-state gradient can be estimated. This topic is outside the scope of this paper.

Self-Optimizing Control

The original approach to determine the CVs has been through the so-called null-space approach12

that uses a model of the plant to compute the optimal inputs and outputs for specific (parametric)

disturbances. Other approaches have also been presented, which use either minimization of an

appropriate loss function17 or measured data directly18.

The approach based on the null-space approach proceeds as follows: (i) calculate the sensitivity

of the optimal outputs and inputs with respect to disturbances and/or parametric variations (as in

this study),

S :=







dy
dθ

du
dθ







opt

, (26)

whereS is the [(ny + nu)× nθ ] sensitivity matrix of ranknθ , (ii) compute the [n× (ny + nu)]

matrix N that spans the left null space ofS , that is,N S = 0n×nθ with n = ny + nu−nθ , and
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(iii) selectnu CVs inN .

The reason for using the left null space ofS is very intuitive. If(ny+nu) output and input mea-

surements are available andnθ parameters vary,N contains then combinations of measurements

that are insensitive to parametric variations and thus mustremain unchanged to enforce optimality.

With nu inputs, we neednu CVs to generate a square control system. Ifny ≥ nθ , that isn≥ nu, it

is always possible to selectnu CVs in the left null space ofS as follows:

c = N







y

u






, (27)

with the [nu × (ny + nu)] matrix N := M N , whereM is an arbitrary full-rank [nu× n] matrix.

These CVs are kept at their nominal setpointscsp to enforce optimality despite the presence of

disturbances (of known identity). Equivalently, the variations of the CVs,

δc := c−csp = Ny δy+Nu δu, (28)

are kept at zero, whereNy is the (nu×ny) matrix including the firstny columns ofN andNu the

(nu×nu) matrix including the lastnu columns ofN. In contrast, forny < nθ , that isn < nu, there

are too few combinations of measurements (CVs) that are insensitive to the disturbances to bring

thenu elements ofg to zero.

Remark 2

Controllability plays an important role in the choice of thenull space. The total derivatives of the

CVs with respect to the inputs are given by

dδc
dδu

= Ny dH
du

+Nu = Ny
Q +Nu.

The matrix NyQ +Nu needs to be invertible to have controllable CVs.

Remark 3

There are several ways of choosing the CVs through the choiceof the arbitrary (nu×n) matrixM.
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Each choice results in no performance loss for variations ofthe parametersθ . In practice, however,

one may favor certain choices for ease and accuracy of measurement. Note that, forny = nθ , the

matrixM is a [nu×nu] regular matrix, and the CVs span the entire null spaceN .

Remark 4

The original formulation of SOC based on the null-space method used the sensitivity of the optimal

values of measured quantities in the broad sense12. No distinction were made between inputs and

outputs, though the authors mentioned that the inputs are often included. The minimal number

of measurements was indicated asnθ + nu, which makes sense asnθ measurements are needed

to estimate the parametric uncertainty andnu measurements are necessary to compute the input

updates. Since the inputs are typically known and available, the term
( du

dθ
)

opt should always be

included inS , thereby increasing the dimension of the null spaceN .

As for gradient control discussed above, drivingδc to zero can also be done in two different

ways.

Implementation using steady-state measurements

The CVs variations can be driven to zero iteratively, using for example the discrete integral control

law:

δuk+1 = δuk +KSOCδck, (29)

whereKSOC is the(nu×nu) controller gain matrix andδck are the variations of the CVs observed

at thekth steady-state iteration.

Combining the last two equations and using the notationsKy
SOC:= KSOCNy andKu

SOC:= (Inu +

KSOCNu) gives:

δuk+1 = Ky
SOCδyk +Ku

SOCδuk , (30)
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with the measurementsδyk andδuk taken at steady state. Equations (29) and (30) represent the

“steady-state” SOC laws.

Implementation using transient measurements

If transient measurements are available online, the SOC integral control law (29) can be rewritten

in the equivalent continuous-time formulation:

δ u̇(t) = KSOCδc(t), (31)

whereδc(t) is an onlineestimateof the steady-state gradient. This control law will be called

“transient” SOC. Because of the presence of an integral term, SOC will drive the dynamical system

to optimal steady-state performance withδc(∞) = 0.

Comparison Between NEC and SOC

A nice feature of both NEC and SOC compared to other RTO techniques lies in their ability to com-

pute the gradient information fromδy andδu at asingle operation point, while other techniques,

such as the search and perturbation methods, require several operating points. The interested reader

is referred to16,19 for a detailed comparison of gradient-based RTO schemes.

Another feature of the NEC and SOC laws is that, upon convergence, either the plant gradient

g or the CV variationsδc vanish, as per equation (24) and (29). The optimizing ideas of NEC and

SOC are illustrated in Figure 1.

Although the two ideas of NEC and SOC seem quite different, there are many similarities

between the two schemes. It has already been pointed out thatthe CVs ideally represent the

gradientg.13 The current paper goes a step further to show that the two methods can be made

equivalent through appropriate tuning.
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Figure 1: Optimizing ideas of NEC (left-hand side) and SOC (right-hand side).

Equivalence Between NEC and SOC

On the outset, NEC seems to have no degrees of freedom at all, while SOC has quite a few asso-

ciated with the choice of the CVs in the null space and the choice of the controller. However, if

NEC uses the degrees of freedom available in the choice ofD , a pseudoinverse ofP, and in the

transformation matrixR introduced to define a generalized gradient, then the next theorem states

that the two methods are strictly equivalent.

Theorem 1

[Equivalence Between NEC and SOC] Consider the optimization problem (3)-(5) withnu inputs,

ny outputs andnθ uncertain parameters, withny ≥ nθ . Let Fx be invertible and the matricesA , B,

P andQ be full rank. Let the controlled variablesg be given by (22) for NEC andδc given by

(28) for SOC.

1. Any generalized gradientRg computed in NEC can be interpreted as CVs in SOC, that is,

for any transformationR and matrixD used to computeg, with D P = Inθ , the generalized

gradient is insensitive to parametric variations.

2. Any controllable vectorδc in SOC is a generalized gradient in NEC, that is, for any choice

of Ny andNu in the left null space ofS such that(NyQ +Nu) is invertible, there exists a

matrixD satisfyingDP = Inθ and a regular matrixR such thatNy = R Gy andNu = R Gu.
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Proof: Part 1.Using Rg = R Gyδy+ R Guδu, the generalized gradient can be expressed as

δc = Ny δy+Nu δu, with Ny = R Gy andNu = R Gu.

We show next that the [nu× (ny +nu)] matrix N = R [Gy Gu] lies in the left null space ofS ,

that is,NS = 0. Using the definitions ofGy andGu, the identitiesD P = Inθ andA C = −B,

and the expressionsdy
dθ = dH

du
du
dθ + dH

dθ = QC +P and du
dθ = C , one can write:

R [Gy Gu]S = R [BD (A −BD Q)]







QC +P

C







= R (BD P +A C ) = 0nu×nθ . (32)

Part 2.Given anyN that lies in the left null space ofS , we need to show that it fits the structure

Ny = R BD andNu = R A −R BD Q = R A −NyQ for someR andD , with DP = Inθ . In

other words, one needs to show the existence of the two matricesR andD such that the following

three conditions are satisfied: (i)Ny = R BD , (ii) Nu = R A −NyQ, and (iii) DP = Inθ .

Among the three conditions, condition (ii) can be used to calculateR, namely,R =(NyQ +Nu)A −1.

SinceA is a positive-definite Hessian, its inverse exists. The term(NyQ +Nu) is regular from the

assumption that the CVs are controllable. Hence,R exists and is regular.

The condition thatN lies in the left null space ofS can be written as

[Ny Nu]S = [Ny Nu]







QC +P

C







= Ny
QC +Ny

P +Nu
C

= Ny
P +R A C = Ny

P −R B = 0nu×nθ . (33)

In what follows, we first chooseD that satisfies condition (i). Then, we will show that the

choice proposed also satisfies condition (iii). We will needto distinguish two cases, namely,nu ≥

nθ andnu < nθ .

If nu ≥ nθ , the pseudoinverse ofRB can be applied to condition (i) to obtainD = (RB)+ Ny,
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with the superscript(.)+ denoting the Moore-Penrose pseudoinverse. Looking into condition (iii),

it can be seen with the help of (33) that

DP = (RB)+ Ny
P = (RB)+ (RB) = Inθ . (34)

If nu < nθ , then the following procedure is followed to chooseD . (a) Compute the null space

of the (nu×nθ ) matrix RB and append the(nθ −nu) rows termedNRB such that







R B

NRB






has

ranknθ . (b) ChooseD =







R B

NRB







−1





Ny

NRBP+






, which obviously satisfies the condition (i). It

can be verified that condition (iii) is verified:

DP =







R B

NRB







−1





NyP

NRBP+P






=







R B

NRB







−1





R B

NRB






= Inθ . (35)

Thus, the existence of the two matricesR andD has been shown. 2

Remark 5

The extra degrees of freedom one has in choosing the CVs in thenull spaceN are translated into

the extra degrees of freedom that exist in the selection of the pseudoinverse ofP in NEC. In the

presence of noise, these extra degrees of freedom could become very handy.

Corollary 1

[Controller Design] Consider the optimization problem (3)-(5) with nu inputs,ny outputs andnθ

uncertain parameters, withny ≥ nθ . Let Fx be invertible, the matricesA , B, P andQ be full

rank, and the matrixD be such thatDP = Inθ . Let the controlled variablesg be given by (22) for

NEC andδc given by (28) for SOC.

1. Given a NEC controller with the gain matrixKNEC, an equivalent SOC control law can be

obtained by choosingNy = BD , Nu = A −BD Q, andKSOC= KNEC.

2. Given a SOC controller withδc = Nyδy+ Nuδu and the gain matrixKSOC, an equivalent

17



NEC law can be obtained by choosingKNEC = KSOCR andg = Gyδy+ Gu δu, with R =

(NyQ +Nu)A −1, Gy = BD , Gu = A −BD Q, and eitherD = (RB)+ Ny if nu ≥ nθ or

D =







RB

NRB







−1





Ny

NRBP+






otherwise.

Proof: The proof is straightforward and is thus omitted here.

Information Required for Control Design

NEC uses the steady-state modelsF(x,u,θ) = 0 andy = H(x,u,θ). Furthermore, the identity

of the disturbances (in this study, the uncertain parameters θ ) need to be known to compute the

corresponding partial derivatives that enter in the computation of most control matrices. However,

the actual sizes of the parametric variations need not be known as they are inferred from the mea-

surementsδy andδu as per equation (21). The conditionny ≥ nθ suffices to reconstructδθ from

δy.

The same information allows designing a SOC law based on the null-space method. The

steady-state models and the identity of the disturbances are needed to compute the sensitivity

matrixS . S can be either obtained via model-based optimization (to determine the optimal out-

puts and inputs for the perturbed model), or fromC , P andQ using (33). The conditionny ≥ nθ

allows selectingnu CVs in the null spaceN . Furthermore, owing to the equivalence between

NEC and SOC, it is no longer necessary to evaluate the sensitivity matrix (26). Instead, one can

computeN = M1
[

−A −1Gy −A −1Gu
]

, with M1 chosen arbitrarily. Note that, ifM1 = −A ,

thenδc represents an estimate of the gradientg. Alternatively,M1 can be chosen to optimize some

other criterion.

The static modelsF(x,u,θ) = 0 andy = H(x,u,θ) are typically identified from steady-state

data. An interesting topic regards the possibility of designing a self-optimizing controller directly

from data, that is, without expliciting the static modelsF(x,u,θ) = 0 andy = H(x,u,θ). One

such attempt was presented recently by Jaeschke and Skogestad18 in the context of SOC. The idea
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implies (i) estimating the output sensitivitiesdy
du via step changes of the inputs, and (ii) estimating

the cost gradient from open-loop process data by fitting a quadratic function to the measured cost.

This allows inferring the matrixN needed to select the CVs.

Illustrative Example

The illustrative example is taken from16,19, where it has been used for comparing gradient es-

timation techniques. Steady-state optimization of an isothermal CSTR is investigated, with the

reactionsA+ B → C and 2B → D. There are two manipulated variables, the feed rates ofA and

B. The goal is to maximize the productivity ofC at steady state. The problem can be formulated

mathematically as follows:

max
uA,uB

J(uA,uB) =
c2
C (uA +uB)2

uAcAin
−w(u2

A+u2
B) (36)

ċA = −k1 cA cB +
uA

V
cAin−

uA+uB

V
cA cA(0) = cA,s (37)

ċB = −k1 cA cB−2 k2 c2
B +

uB

V
cBin−

uA +uB

V
cB cB(0) = cB,s (38)

ċC = k1 cA cB−
uA +uB

V
cC cC(0) = cC,s (39)

ċD = 2 k2 c2
B−

uA+uB

V
cD cD(0) = cD,s (40)

wherecX denotes the concentration of speciesX andcX,s the corresponding steady-state values,V

is the reactor volume,uA anduB are the feed rates ofA andB, cAin andcBin are the inlet concentra-

tions,k1 andk2 are the rate constants of the two chemical reactions, andw a weighting parameter.

The first term ofJ corresponds to the amount ofC produced,cC (uA+uB), multiplied by the

yield factor,cC(uA+uB)
uAcAin

, while the second term penalizes the control effort.

Two different scenarios are considered throughout this section.

1. Scenario 1: We start by considering that the plant differs from the modelonly by the values

19



of the rate constants,k1p andk2p. Hence, the vector of uncertain parametersθ = [k1 k2]
T is

of dimensionnθ = 2. Since it is assumed – although not necessary – that the concentrations

of the four species are measured, we haveny > nθ andnu = nθ .

2. Scenario 2: In addition to the uncertainty on the values of the rate constants, the second

scenario also considers that the inlet concentration ofA is underestimated by the model.

Hence, the vector of uncertain parametersθ = [k1 k2 cAin]
T is thus of dimensionnθ = 3.

Since it is again assumed – although not necessary – that the concentrations of the four

species are measured, we haveny > nθ andnu < nθ .

The values of the uncertain parameters are unknown to the RTOschemes. The plant settling time

is about 50 min, which corresponds to a dominant time constant of about 12 min. The numerical

values of the model and plant parameters are given in Table 1.

Table 1: Model and plant parameters

Model and plant parameters
k1 0.75 L

molmin k1p 1.4 L
molmin

k2 1.5 L
molmin k2p 0.4 L

molmin
cAin 2 mol

L cAin, p 2.5 mol
L

cBin 1.5 mol
L V 500 L

w 0.004 molmin
L2

The normalized cost isJp(t)/Jp,opt , whereJp,opt is the optimal cost of the plant at steady state.

This value is of course different for the two scenarios. Hereafter, “transient” SOC corresponds to

using SOC with transient measurements for implementation.We will use the label “steady-state”

SOC for the case where only steady-state measurements are used for SOC, while “adjusted” SOC

will be used when SOC is tuned to match the performance of NEC.Conversely, “adjusted” NEC

will be used when a NEC controller is tuned to match the performance of a given SOC law.
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Scenario 1

Use of steady-state measurements.We first illustrate the implementation of both NEC and SOC

with steady-state measurements. By defaultKSOC is computed as(NyQ +Nu)−1 since, as dis-

cussed in16,19, this choice allows local decoupling of the CVs.

Figure 2 compares the normalized costs for “steady-state” NEC and SOC. NEC uses the

Moore-Penrose pseudoinverse ofP, and the submatrixN for SOC is arbitrarily chosen as the

last two rows ofN . As seen, it takes 3 iterations to converge close to the plantoptimal perfor-

mance. Both methods perform well and converge in the neighborhood of the plant optimum. The

initial value of about 0.8 corresponds to the cost resulting from using the model optimal inputs.

The difference of about 20% is what is gained via real-time optimization. Note that the transient

cost can be larger than 1 before steady state is reached.
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0.8

0.9

1

1.1

1.2

1.3

Time [min]

J p
(t

)/
J p

,o
p

t

Figure 2: Performance of “steady-state” NEC (solid red line) and SOC (blue crosses). Convergence
in 100 minutes.
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Use of transient measurements.We illustrate next the application of NEC and SOC with tran-

sient measurements. Figure 3 compares the normalized cost for NEC and for SOC for two different

choices of CVs. Here, NEC usesP+, and the submatrixN is chosen as the first two rows and as

the last two rows ofN . Both methods perform well and converge in the neighborhoodof the plant

optimum, with only marginal differences between the converged performances. Note that con-

vergence to the neighborhood of the plant optimum is achieved within a single iteration to steady

state.
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Figure 3: Performance of “transient” NEC (solid red line) and SOC for two different choices ofN.
The solid blue and green lines are obtained whenN corresponds to the two first and the two last
rows ofN , respectively. Convergence in 30 minutes.

Illustration of Theorem 1.Next, we illustrate Theorem 1. That is, we illustrate first that NEC

corresponds to SOC, for which the CVs are the gradient terms.For any regularKSOC, Nideal :=

K−1
SOC[G

y Gu] leads to strict equivalence between NEC and “adjusted” SOC.We also illustrate the

implication of the second part of Theorem 1 – here fornu ≥ nθ – and show that a NEC controller
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can be modified to exactly match SOC, for any choice of controllable CVs. As suggested by

Theorem 1, NEC is adjusted via the two matricesR = (NyQ+Nu)A −1 andD = (RB)+Ny. We

limit the analysis to the two cases for whichN is chosen as the two first rows and the two last rows

of N (other choices would lead to the same conclusions).

Figure 4 compares the performances of “adjusted” NEC and “adjusted” SOC to the correspond-

ing cost profiles obtained with the standard tunings. The comparison of Figure 4 and Figure 3

clearly shows that: (i) “adjusted” NEC matches null-space SOC for both choices ofN and (ii)

“adjusted” SOC matches “transient” NEC, since all the threecorresponding pairs of curves are

superimposed.
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Figure 4: Performance of “adjusted” SOC and “adjusted” NEC.The curve obtained with “ad-
justed” SOC (black circles) lies on top of the solid red line,which corresponds to the “transient”
NEC. The two curves obtained with “adjusted” NEC (black crosses and diamonds) are superim-
posed to the solid blue and solid green curves, which correspond to SOC whenN is chosen as the
two first and two last rows ofN , repsectively.

Scenario 2

The goal of this subsection is to illustrate the second part of Theorem 1 whennu < nθ . As suggested

by Theorem 1, whennu < nθ , the tuning of “adjusted” NEC requires the use of the sameR, i.e.
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R = (NyQ+Nu)A −1 but of a differentD , i.e.D =







R B

NRB







−1





Ny

NRBP+






for “adjusted” NEC

to be strictly equivalent to SOC.

With θ = [k1 k2 cAin], S is now of dimension[6×3] andN is of dimension 3×6. Again,

we consider two possible choices forN, that is, the first two rows and the two last rows ofN .

Sincenu < nθ , rank(RB) < nθ and, thus,R B does not have a left pseudoinverse. It is therefore

necessary to use the null spaceNRB of RB to constructD . Figure 5 illustrates that, also when

nu < nθ , there exists an “adjusted” NEC that is strictly equivalentto SOC, for the two different

choices ofN. Again, the corresponding pairs of curves are superimposed. For the rest, the results

are qualitatively similar to those of the casenu ≥ nθ .
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Figure 5: Performance of “adjusted” NEC (black crosses and black diamonds) compared to that of
SOC (solid red and blue lines for the cases for whichN is chosen as the two first and the two last
rows ofN , respectively) for the casenu < nθ .

Finally, note that, although these techniques are linearization-based and thus are only guaran-

teed to perform well for small perturbations, large parametric variations were successfully handled

in this example, as the plant and model kinetic parameters varied by factors of 2 and 4.
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Conclusions

This paper has investigated the equivalence between neighboring-extremal control and self-optimi-

zing control for unconstrained optimization problems. Only the self-optimizing control scheme

based on the null space of the sensitivity matrix has been considered. Conditions under which the

two techniques are equivalent have been proposed. The key point is that both methods estimate the

total derivatives of the cost function from input and outputmeasurements, directly for NEC and

indirectly through the choice of CVs for SOC. This work confirms the recent results suggesting

that the CVs can be chosen to estimate the cost gradient13. Furthermore, it has been argued that

the matrixS used in SOC should include information regarding input sensitivities with respect to

uncertain parameters.

Both optimizing schemes are set up on the basis of purely static considerations, namely, the

steady-state gradient equal to zero for NEC, and the CVs in the null space of a steady-state sensi-

tivity matrix for SOC. It may seem rather wishful thinking towant to estimatesteady-statevalues

using transient measurements, without any dynamic consideration. However, this is supported by

the fact that the estimated signals tend toward the sought steady-state values when the dynamic

system approaches steady state.

This paper has shown that both NEC and SOC can be used with either steady-state or transient

measurements. The difference that persists in the literature is artificial and is probably due to the

way the implementation was done in the original publications. This means that NEC can also be

used as an online optimizing multivariable controller similar to SOC. In this case, the CVs and

their setpoints are defined offline and correspond to the costgradient and its desired value of zero.

On the other hand, this also means that SOC can be implementediteratively using steady-state

measurements, which helps exploit the measured CVs in termsof steady-state values.
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