Learning from Failed Demonstrations in Unreliable Systems

Akshara Rai, Guillaume de Chambrier and Aude Billard

Abstract— This paper presents a method to teach a robot
to play Ping Pong from failed demonstrations in a highly
noisy and uncertain setting. To infer useful information from
failed demonstrations, we use a MultiDonut Algorithm [7] that
minimises the probability of repeating a failed demonstration
and generates new attempts similar but not quite the same as
the demonstration. We compare human demonstrations against
a random strategy and show that human demonstrations
provide useful information and hence yield faster learning,
especially in higher dimensions. We show that learning from
observing failed attempts allows the robot to perform the task
more reliably than any individual demonstrator did. We also
show how this algorithm adapts to gradual deterioration in the
system and increases the chances of success when interacting
with an unreliable system.

I. INTRODUCTION

The ability of an agent to learn a control policy to
accomplish a specific task given partially correct information
provided by a teacher (human or another agent) is a vital
component for successful transfer of knowledge. Assuming
that the teacher is an expert in the specific task at hand is
restrictive. Ball games are a specific example, where quite
often the teacher knows the goal of the game but might very
well be suboptimal in demonstrating it. In other words it
is necessary for the student/agent to learn from failure and
self-improve, to be able to quickly attain the goal. This work
takes a Programming by Demonstration (PbD) approach to
learn a control policy in which the training data provided by
human teachers is mostly suboptimal.

We consider a task in which a human teaches a robot
to play a Ping-Pong like game. The set-up is similar to
an arcade, where the user can control an articulated robot
through a joystick (see figure 1). Through this interface, the
players controlled the launch of the ball, with the right arm
of the robot, and the hitting motion, with the left arm. A set
of volunteers were asked to play the game during which their
control actions were recorded. For each set of demonstrations
a novice user is asked to play repeatedly for a fixed number
of times. This way we leave enough time for each player
to learn how to play the game. As they do so, we gather
numerous failed, as well as successful trials, which we can
then use for training our robotic system. The catapult which
the robot must hit to launch the ball is imprecise and leads to
stochastic behaviour. Hence, reproducing simply previously
successful strategies leads to failure from time to time. The
robot must hence learn a strategy to optimize its average
successful trials and use human demonstration solely as a
guidance but not as ground truth.

Teaching skills to agents by demonstrating by an experi-
enced agent is the focus of a large area of research referred

Axis to control Left Arm Orientation

~—

(b) ©

Fig. 1. The Ping-Pong Set Up (a) The humanoid robot, Robota, with the
ping-pong racket attached to its right arm and a catapult with a ping-pong
ball.(b)The joypad used to control the orientation of left arm and speed of
right arm. (c) Speed Level scaled from O (blue) to 1 (red) to control speed
of right arm

to by the umbrella term PbD, also commonly known as
Imitation Learning, the reader is referred to [3] and [2] for
a literature survey on the field at large.

Here, we consider ways in which the robot self-improves
by searching actively region around the demonstrations. This
approach resembles in its principle Active Learning (AL)
[51.[12] (also known as futelage). AL is a sub-field in which
the agent actively queries the teacher about specific aspects
of the task [6], which he is uncertain about so as to increase
the learning rate. In AL there is a strong focus on high level,
outcome-defined tasks, where the goal is formulated with
symbols and intent is communicated through social cues,
such as natural language and facial expressions, see [4], [9].
Interactive Learning (IL) is similar to AL, with the exception
that the learner doesn’t query the teacher about aspects of
the task but rather is continuously corrected by the teacher.
IL research is focused on process-defined tasks, where the
goal is the refinement of a skill and teaching is commonly
done kinesthetically, see [13]. Both AL and IL are interactive
learning procedures where multiple refinements and correc-
tions of the control policy are performed. The drawback
is that self-improvement cannot be achieved autonomously
(the teacher encodes the task) and the teacher has to be an
expert, which as stated previously can be disadvantageous.
Reinforcement Learning (RL) refers to a wide area of tech-

niques whereby the agent self-improves through trial and
error given partially successful demonstrations. RL has been
combined with imitation learning [10], [8], [11] to provide a
framework where a teacher can initialize the control policy
through demonstrations and then lets the student search
autonomously for the correct policy. The search is driven
by a reward signal provided by the teacher. The drawback is
the specification of the reward function is often non-intuitive.
A remedy is Inverse Reinforcement Learning (IRL) [1],
where the reward signal is inferred from the demonstrations.
However it requires the choice and predefinition of features,
whose weighted combination encodes the reward signal, and
often requires very good demonstrations.

This calls for the design of most general formulation to
learn from a teacher; where the task does not need to be
encoded explicitly and where the teacher can be suboptimal.

We build on a recent work whereby we learn from failed
demonstrations [7]. In this work, we had proposed a stochas-
tic search process that decreases the probability of selecting
the demonstrated portions of the joint space that have high
variance in strategy space whilst increasing the areas with
low variance. The rational was that one should reproduce
parts of the demonstrations where all demonstrators agree
(as this likely mean that this encapsulates the essence of
the task at hand), while avoiding the repeat regions of the
trials where demonstrators disagree (as this may reflect their
respective uncertainty as to how to solve the task).

While in our early work, the robotic system was determin-
istic, we here investigate how the approach can be used to
allow the robot to adapt in the face of a stochastic robotic
system whose behaviour changes with time.

A crucial aspect of our work is that the robot should
be able to autonomously succeed at the game given poor
training data and be able to outperform or be at the same
level of an expert user. In other words, given a suboptimal
starting point it should reach optimality without the help of
the teacher.

A. Understanding the System

The system at hand is not the commonly encountered Ping-
Pong game. First, the robot hits a catapult with its right arm,
to launch the ping pong ball. The hitting speed of this arm
(decided by user with help of a color-bar) determines the
launching speed of the ball. The robot then hits the ball with
its left arm, which holds a ping pong racket, see Figure 2.
The user controls the end position of this arm, and its speed
is kept constant.

During the human training stage, the robot is controlled
by the human teacher. By pressing on a switch the teacher
selects the speed on the color-bar and initiates the launching
motion. This automatically drives the right arm to hit the
catapult. A joystick allows the teacher to move the 2 degrees
of freedom left arm to guide the hitting motion (see Figure
1).

Our very first observation was that the task was extremely
difficult to achieve, by humans as well as the robot as it
was very fast and uncertain. It took a little while before

D Success
. Failure

7

6

5

Resuits [| 4

on

repetition ||
2

1

1 2 3 4 5 6 7 8

Fig. 3. Unreliability of the system. We repeated the same input 7 times on
our set up in consecutive trials and observed their results. This was done for
8 different starting points— successes and failures. We observed that there is
never a success after four consecutive iterations. Success could be obtained
by starting from success as well as failed initializations. These results are
due to the highly noisy and unreliable nature of our set up.

humans could get accustomed to the game and even then,
they couldn’t succeed in all trials. Apart from the variable
path of the ball, the robot also has errors introduced from
its motors accumulating over time. This makes the system
highly unreliable as the robot performance deteriorates very
rapidly over the experiments.

One could query why use such an unreliable platform for
conducting the experiments. We see value to have a system
that deteriorates over time, as this is quite realistic. All
machines deteriorate after usage and humans still manage
to get the best of them. Stochastic systems with imperfect
responses are plenty and we learn how to deal with these
to maximize our success rate over time (opening a garage
door with an infra-red remote fails regularly for lack of
good detection of the signal or gripping of the motors due
to change in humidity and temperature). To cope with such
stochastic systems, humans learn which actions are most
likely to yield success (for instance, changing slightly the
direction in which we direct the remote to better align it
with the receiver which is usually invisible, or pressing
several times consecutively on the remote to give more boost
to the door and increase our chance to overcome friction
when needed). This ability that humans have to learn the
“feasibility region”, that is the region of actions that yield
on average success is what we seek to reproduce here.

To estimate the unreliability in our system, we repeatedly
played the same game strategy 7 times and observed its
output. This was repeated for 8 different input starting
points— successes and failures to have a fair estimate. The
results are shown in Figure 3. Along the x-axis we see
different input parameters and along the y-axis, their results
on repetition.

II. PROBLEM STATEMENT
A. Task at hand

In a nutshell, the game can be played by controlling three
parameters: Speed of launch of the ball (with right arm):
v (scaled from O to 1), Delay between launch of ball and
strike: AT (ms), Joint angles for robot’s left (striking) arm:
0 = [61,6,] (in degrees).

(a) () © (d (e)
Sequence of actions in the game: (a) Starting Position (b) Motion of left arm hitting the catapult- speed of hitting controlled (c)-(d) Flight of

Fig. 2.

ball and motion of right arm to hit the ball (¢) End of game.

Human Demonstrations
10000 T T T

T T T
|| Total Trials = 266
9000 Success = 53 (~20%)

80001

« Failure
* Success
70001

60001

50001

AT(ms)

40001
3000+

20001 .

e

. 5 N . e P

A PR SRR R & 2 L

0 01 02 03 04 05 06 07 08 09 1
Speed

10001

Fig. 4. Human Trials using the Joypad. The figure shows the human
demonstrations collected over experiments. The humans could control the
speed of left arm (x-axis) and the time delay between launch of ball and
onset of motion of right arm (y-axis).

Since AT is typically very small, the game is quite fast
(for success: 298ms=+322ms) and needs the user to react very
quickly. Also, only balls launched by high speeds could be
hit by the right arm, making the selection of the correct speed
important. To add to this, the ball could follow different paths
in its flight and the robot motors had some noise, which
would accumulate over time. All this made the task quite
difficult for humans as well as the robot. It took a little while
before humans could get accustomed to the game and even
then they couldn’t succeed in all trials.

B. Experiments with Humans

We asked 13 human subjects to play around 20 trials
(sometimes more as the robot didn’t respond well due to
some communication error) with the robot to give us some
estimate of the distribution of the success and failure region
in the whole parameter space. As can be seen in Figure 4,
the success region is very small as compared to the whole
parameter space. A total of 266 trials led to 53 successes,
concentrated in the bottom right, shown by blue dots. We
see a larger spread of failed trials, shown in red.

C. Formulation

To understand the significance of each parameter in de-
termining success or failure, we measure their variance over
several human trials, shown in Table I.

When we compare the total range of the last two param-
eters with their variance in successful demonstrations, we
see that success is characterised by a unique point in the
space of 0; and 6,. The geometry of the set-up does not

Parameter Range Mean Variance
Success | Overall | Success | Overall
Speed [0 to 1] 0.91 0.81 0.08 0.24
AT (ms) [0 to o] 298.04 | 695.20 | 325.43 | 637.50
6, ° [-105 to 21.27] | 0.0140 0.216 0.0083 0.113
6, ° [-105 to 21.27] 21.27 14.83 0 9.87
TABLE 1

MEAN AND VARIANCES OF THE PARAMETERS OVER SUCCESSFUL
TRIALS AND ALL TRIALS. PARAMETERS 6; AND 6, HAVE VERY LOW
VARIANCE AS COMPARED TO SPEED AND AT OVER SUCCESSFUL TRIALS.

allow for a collision of the ball and ping-pong racket in
other configurations of the arm. This was observed easily
as this point was on the edge of the workspace of the arm.
Hence we performed a learning primarily over the first two
parameters- the speed of hit and the AT.

The aim of our learning was to maximize the probability
of successfully striking the ball by the robot. This required
learning a relation between the ‘feasible’ launching speed
and the AT between the launch and the strike. Thus, we tried
to learn this mapping using a stochastic search algorithm in
the space of the two variables, as explained next.

D. Stochastic Search Model

We need a model that can search for ‘good’ strategies in
the space of the two variables using information provided
by an initial demonstration. In particular, we would like our
search algorithm to have the following three qualities:

« Reduce the probability of repeating a failed strategy

« Assuming the initial demonstration was close to a good

demonstration, increase probability of the area around
the demonstration

« Favouring one set of actions over others by increasing,

or decreasing, the likelihood to pick these must be done
as a function of how good or bad these were.

Such a distribution was introduced in [7] using combi-
nations of Gaussians, known as the Donut distribution. The
Donut is a difference between two Gaussians, centred over
two different points giving rise to a off-centre distribution
as shown in Figure 5. The next strategy is the most likely
strategy in the resultant distribution. This suits our situation
as now we move away from failed demonstrations by reduc-
ing the probability of a failed trial. Also, we remain close
to initial demonstrations by increasing probability of regions
around it and explore them, leading to an overall shift in our
strategies in the parameter space.

Resulting Donut

1D Gauss 1D Gauss with holes
0.4 0.4
—1D Gauss
* Holes

0.3 0.3
= =
202 Fo2

0.1 0.1

i -2 0 2 4 % -2 0 2 4
X X

(a) (b)
Fig. 5.

©

Illustration of a Donut on a 1D Gaussian. The black curve shows the original Gauss and the red curve is the Donut distribution (a) 1D Gauss.

(b) Failed Demonstrations - 'Holes’ represented by red dots on the x-axis. (c) Resultant Donut with minima at holes and higher probability in region
around the hole. Note that the holes outside the 3¢ range of the Gaussian do not affect the Donut Distribution.

To perform learning over more than one demonstration we
need to combine more number of Donuts. We use, instead
of k distributions with k holes, just one distribution with k
holes as formulated below.

K

P = 11
The naught distribution is created over initial human
demonstrations and keeps the MultiDonut close to human
data. The multiplied distributions here take the place of
individual Donuts and are centred over the failed attempts,
called ‘holes’. The height that the resultant MultiDonut
assumes at a hole and the distance of the maxima or the
next most likely strategy from this point can be tuned by
setting a weight to each hole. Z is a normalising constant
to keep integral of the distribution equal to 1. We use the
MultiDonut distribution for all our experiments henceforth.

E. Sampling

Since this distribution is always multi-modal, we cannot
use gradient methods for finding the maxima. Thus, we
use a sampling method based on rejection sampling to
draw a sample from the Multidonut distribution, and use
it as the next trial parameters. This also introduces some
uncertainty and randomness in our search resulting in a
higher exploration of the parameter space.

FE. Fitness Function - The Fitness Gaussian

The result of each trial was binary- 1 if we hit the ball and
0 if we failed. However, to determine a continuous fitness
of our trials, we modelled the fitness function by fitting
a Gaussian on a set of successful human trials gathered
earlier. In the initial iterations, this was used to classify a
trial as success or failure to do a quick, noise-free search
for successful trials using the MultiDonut. Also, the distance
from the mean gave the MultiDonut an estimate of how good
or bad the trial was, which was used in setting the height and
width of our holes.

We considered a 1D Gaussian (using only AT) and 2D
Gaussian (using AT and speed) instead of a GMM as the
success points should be cluttered together in the space of the
parameters. The respective Gaussians can be seen in Figure
6.

A, 20). [T (1 —exp(— 5 (=2 (x— 1)

Fitness Gaussian 1D
1.6 T T

Speed of Launch

0.9
AT

(b)

Fig. 6. Gaussian models: These Gaussians give the probability of winning
a game given a particular set of parameters. Note that the AT was scaled
from 0 to 1 to model the Gaussian. The success points should be cluttered
together but are not due to false negatives by the system. Thus, to model
a noise free system, it is better to have a single Gaussian over the success
points. (a) 1D: The success points are shown as the red dots on the x-axis.
Note that the time was scaled from 0 to 1 to model the Gaussian.(b) 2D: The
red regions represent regions of high probability and the blue are regions
of lower probability. The green dots are the success points over which the
Gaussian was drawn.

G. Algorithm

The fitness of our trials was measured using the Euclidean
distance of these points in the parameter space from the mean
of our Fitness Gaussian. These were classified into success
or failures using a threshold. The points lying outside the
threshold region (line segment in 1D and circle in 2D) were
classified as failures while those inside as successes. This
fitness measure was also used to set the height and width of
the holes by modulating their prior weights. It also modulated
the weights of the successful demonstrations used to form the

positive distribution.
The search algorithm using MultiDonut distribution is
shown in Algorithm 1.

Algorithm 1: The MultiDonut algorithm used
Input: Ping-Pong Trials- Random Initializations or
Demonstrations
Output: New set of parameters
while TotalSuccess <N do
foreach Trial i do
Calculate Fitness(i);
if Fitness(i) > Threshold then
Success = 1;
TotalSuccess + +;
else
L Success = 0;

if TotalSuccess == 0 then
L Draw Gaussian over Failed initializations;

if 0 < TotalSuccess < 10 then
L Draw GMM over successful initializations with
30 o Zall :
if TotalSuccess > 10 then
| Fit GMM over successful initializations;
foreach Failed Demonstration j do
Create holes in the GMM using Fitness
measure;
Sample resultant Multidonut to get the new
most likely point in parameter space;

There are two major stages in our MultiDonut learning
algorithm— when it has only failed demonstrations to learn
over and when it has some success and some failed demon-
strations. These are explained in details in the following.

1) Learning only from Failed Demonstrations: When the
MultiDonut has only failure points to learn over, the positive
distribution was a Gaussian fitted over this data. The negative
distribution was centred on the holes and the height and
width of these holes was determined using the distance of the
corresponding centre from the mean of the Fitness Gaussian.

2) Learning from Successful and Failed Demonstrations:
If the MultiDount has as input some success points along
with failures the positive distribution is built over these
successful points and the negative distribution remains the
same as before. This means that after finding a successful
strategy, Multidonut exploration limits to points in a smaller
space around the successful points.

III. RESULTS

In this section, we introduce two metrics we used for
evaluating the performance of the MultiDonut. We then
compare the performance of humans with our MultiDonut.

To show that initializing the MultiDonut with human
demonstrations improves the performance, we contrast it
with the MultiDonut search when initialized with random

trials. We also compare the performance of the MultiDonut
in 1D (i.e. using a distribution on AT) versus in 2D (i.e.
both AT and v). We finally show the results of implementing
the MultiDonut on an unreliable system and the subsequent
improvement in performance.

We evaluate the performance of the MultiDonut based on
two metrics given below:

1) Measure 1: Number of iterations needed to reach 10
successful trials

2) Measure 2: Success rate of Multidonut after the first
successful trial

For a graphical description of the metrics refer to the
Figure 7.

The first measure is an estimate of how long the Multi-
donut takes to search the region of high success probability.
The second measure gives us an estimate of the consistency
of the Multidonut after reaching the first success.

After reaching 10 successes, the positive distribution is
drawn over these new success points using their variance
as the variance of the distribution. Thus, the percentage of
success after reaching 10 successes is very high 90% — 100%
as the MultiDonut distribution almost duplicates the fitness
Gaussian.

The MultiDonut was initialized using two different initial-
izations, as described below.

e Random Initialization: 5 random points were given as
initial input to the MultiDonut

e Human Demonstrations: 5 human demonstrations given
as initial input to the MultiDonut

The random initializations or Human Demonstrations
could be success or failures, though starting with a successful
point makes the learning of the MultiDonut very quick. With
random initializations, this was more probable in 1D as
they could explore a large portion of the parameter space,
compared to in 2D. Thus, while intuitively we would expect
Human Demonstrations to be better initialization methods
than Random, as they contain useful information about the
parameters, it is more clearly evident in 2D. In 1D, human
initialization and random initializations perform competently,
but in 2D we see that human demonstrations excel over
random initializations.

Thus, we can say that in 2 dimensions human demon-
strations, even if failed, are good initialization points for a
learning method. We can then extrapolate this idea to higher
dimensions where the space to explore becomes even larger

% Success- Measure 2

¢ 3¢ ¢ (¢

Failed Trials in the start

Trials till 10 Successes Trials after 10 Successes

Measure 1

Fig. 7. MultiDonut Metrics- The blocks represent consecutive trials.
The failures are shown with red crosses while successes with green ticks.
The first block are the trials with only failures at the beginning of the
experiment, when the MultiDonut is learning. The second block starts with
the first success and continues until 10 successes. The third block represents
trials after 10 successes till 20 successes.

1D Donut vs. 2D Donut: Number of iterations required for 10 successes

lterations

MultiDonut 1D MultiDonut 2D MultiDonut 1D
[_Random] Human D

(@)

1D Donut vs. 2D Donut: Percentage of success

MultiDonut 2D

% Success

O~ MuliDonut 1D
[~ Random Initializations |

(b)

MultiDonut 2D MultiDonut 1D MultiDonut 2D

Human Demonsrations |

Fig. 8. Comparison of mean and variance of Multidonut performance for
human and random initialization. (a) Measure 1- Iteration for 10 successes
(b) Measure 2- % Success after 1 success

and good human demonstrations are capable of starting the
MultiDonut from good regions closer to success.

When we compare the performances of the human subjects
with those of the MultiDonuts (Figure 9), we observe that
even though humans reach success faster than the Multi-
Donut, they are unable to reproduce that success with cer-
tainty. Thus, the iterations needed to reach the first successful
trial are smaller and so is the percentage of success after
reaching 1 success. The MultiDonut on the other hand might
take a longer time to reach the first successful trial but
performs quite consistently after reaching it.

Not all human demonstrators could produce 10 successful
trials in 20 trials, as calculated using the fitness Gaussian.
So we included only those who managed to produce 10
successes to compare with the MultiDonut. Thus, this is a
comparison between the expert humans and the MultiDonut.
We see that the humans are much quicker and take almost
equal number of trials in 1D and 2D to obtain 10 successful
trials while the number of trials almost doubles for the
MultiDonut.

IV. IMPLEMENTING ON THE UNRELIABLE SYSTEM

In Section I-A we had shown how the system was found
to be highly unreliable and biased towards failure and any
successful set of parameters could not produce more than
about 4 successes on repetition. This was explained by the
errors in the motors of the robot arm, which caused the
launching speed of the ball to decrease, making an earlier
successful strategy a failure.

We here investigate how these successive failures can be
used by the Multidonut system to update its strategy, so as
to adapt to the deterioration of the robotic system on-line. A
MultiDonut can update its strategy by incorporating the result

Human vs. Donut: Number of iterations required for 10 successes

Iterations

MultiDonut

Human MultiDonut Human

(@)

Human vs. Donut: Percentage of success
80 T T

Iterations
& @D
= <

N
<

MultiDonut MultiDonut

[1o] feo]

(b)

Fig. 9. Comparison of mean and variance of Multidonut performance
and humans for 1D and 2D. (a) Measure 1- Iteration for 10 successes (b)
Measure 2- % Success after first successful trial

of each trial, whether a success or a failure. If a previously
successful point becomes a failure, the MultiDonut inserts a
hole (albeit small) at this point. This reduces the probability
that this strategy (i.e., set of parameters) be selected again,
while increasing the likelihood of the neighbouring regions.
This leads the MultiDonut to sample away from this region,
which now represents failure, and to explore other points in
its neighbourhood.

To test whether this on-line update of the MultiDonut did
indeed increase the rate of success, we proceeded as follows.
We first trained our MultiDonut on the Fitness Gaussian
until it generated a set of parameters that corresponded to
a successful trial (as per the Fitness Gaussian). This set of
parameters was then run on the robot system and the outcome
of the trial was used to update the MultiDonut distribution.
The method for setting the height and width of the hole was
identical to that used in the first set of experiments, i.e. it
was set proportional to the euclidean distance of the point
from the mean of the Fitness Gaussian, see Section II-F.

We compared the ‘success rate’ of this MultiDonut to
a simple repetition of a successful trial (on the robot). As
mentioned earlier, repeating the same strategy stopped being
successful after around 4 repetitions due to errors in the
motors. On the other hand, MultiDonut was able to score
5-8 successes in 10 trials by exploring neighbouring regions
of a now failure strategy and updating its strategy. However,
we were able to implement this only in 1D and it would be
interesting to see how this behaves in 2D where the region
to explore is larger.

To explain the above concept better, we show the progress
of the trained 1D MultiDonut on the robot in one typical trial
alongside a trial in which an initially successful strategy was
repeated several times in Figure 10.

10
. Failure
9
8 D Success
n
£
.g 6 Repe‘a‘ti‘ng Imp\emlenting
© an initial a trained
8 s Successful MultiDonut
= Strategy on the robot
4
3
2
1
|Dh‘ferent Trials on the Robot |
Fig. 10. Results on repeating an initially successful strategy and imple-

menting the trained MultiDonut on a robot. The green boxes are successful
outcomes while the red ones show the failures. When simply repeating a
strategy, no success is obtained after three iterations. The MultiDonut adapts
to the system bias and changes the strategy.

We implemented a trained MultiDonut starting from ran-
dom initializations and human demonstrations in 1D on the
robot and found them to be producing very similar success
rates. Both were found to score on an average 6 successes out
on 10, over 5 different trials for each. This is because, once
trained, the MultiDonut behaves similarly for both types of
initializations. Also, our implementation is in 1D, for which
both the types of initializations are comparable.

V. CONCLUSIONS

In this paper we presented a method to teach a robot
from failed demonstrations in an unreliable system. The
MultiDonut algorithm described can eliminate regions of
parameters that lead to failure and remains in the region that
leads to success once it has reached this region. It also helps
to modify an earlier good strategy to adapt to changes in the
changing system dynamics.

We also compared using human demonstrations to ran-
dom initializations to train our MultiDonut. Both perform
comparably for lower dimensions but for higher dimensions,
human demonstrations perform better. This is expected as for
lower dimensions random initializations are able to explore
a large part of the space, but with increasing dimensions
human intuition comes in useful by driving the system closer
to good starting regions with higher probability of success.

The convergence for a MultiDonut is faster for 1D and
more reliable than for 2D. This raises concerns over the
convergence of the method for higher dimensions. But since
the method is actually very dependent on the type of ini-
tialization in high dimensions, a good starting demonstration
even in high dimensions might lead to quick convergence of
the MultiDonut.

VI. ACKNOWLEDGEMENTS
This work was funded in part by the European Commis-
sion under contract number FP7-248258 (First-MM).
REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In In Proceedings of the Twenty-first
International Conference on Machine Learning. ACM Press, 2004.

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robot. Auton.
Syst., 57(5):469-483, May 2009.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot program-
ming by demonstration. Handbook of robotics, 1, 2008.

C. Breazeal. Tutelage and collaboration for humanoid robots. Inter-
national Journal of Humanoid Robotics, 01(02):315-348, 2004.
David A. Cohn, Zoubin Ghahramani, and Michael 1. Jordan. Active
learning with statistical models, 1995.

J. de Greeff, F. Delaunay, and T. Belpaeme. Active robot learning
with human tutelage. In Development and Learning and Epigenetic
Robotics (ICDL), 2012 IEEE International Conference on, pages 1-6,
2012.

Daniel H. Grollman and Aude G. Billard. Robot learning from failed
demonstrations. International Journal of Social Robotics, 4:331-342,
2012.

Nikolay Jetchev and Marc Toussaint. Fast motion planning from ex-
perience: trajectory prediction for speeding up movement generation.
Auton. Robots, 34(1-2):111-127, 2013.

A. Lockerd and C. Breazeal. Tutelage and socially guided robot
learning. In Intelligent Robots and Systems, 2004. (IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, volume 4,
pages 3475-3480 vol.4, 2004.

Jan Peters and Jens Kober. Using reward-weighted imitation for
robot reinforcement learning. Adaptive Dynamic Programming and
Reinforcement Learning, pages 226232, 2009.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction
of imitation learning and structured prediction to no-regret online
learning. Journal of Machine Learning Research - Proceedings Track,
15:627-635, 2011.

David Silver, J. Andrew (Drew) Bagnell, and Anthony (Tony) Stentz.
Active learning from demonstration for robust autonomous navigation.
In IEEE Conference on Robotics and Automation, May 2012.

Aude Billard Sylvain Calinon. Incremental learning of gestures by
imitation in a humanoid robot. In In Proceedings of the 2007
ACM/IEEE International Conference on Human-Robot Interaction,
pages 255-262, 2007.

