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Abstract

Segmenting images is a significant challenge that has drawn a lot of at-

tention from different fields of artificial intelligence and has many practical

applications. One such challenge addressed in this thesis is the segmenta-

tion of electron microscope (EM) imaging of neural tissue. EM microscopy

is one of the key tools used to analyze neural tissue and understand the

brain, but the huge amounts of data it produces make automated analysis

necessary.

In addition to the challenges specific to EM data, the common problems en-

countered in image segmentation must also be addressed. These problems

include extracting discriminative features from the data and constructing

a statistical model using ground-truth data. Although complex models ap-

pear to be more attractive because they allow for more expressiveness, they

also lead to a higher computational complexity. On the other hand, simple

models come with a lower complexity but less faithfully express the real

world. Therefore, one of the most challenging tasks in image segmenta-

tion is in constructing models that are expressive enough while remaining

tractable.

In this work, we propose several automated graph partitioning approaches

that address these issues. These methods reduce the computational com-

plexity by operating on supervoxels instead of voxels, incorporating fea-

tures capable of describing the 3D shape of the target objects and using

structured models to account for correlation in output variables. One of

the non-trivial issues with such models is that their parameters must be

carefully chosen for optimal performance. A popular approach to learn-

ing model parameters is a maximum-margin approach called Structured

SVM (SSVM) that provides optimality guarantees but also suffers from



two main drawbacks. First, SSVM-based approaches are usually limited to

linear kernels, since more powerful nonlinear kernels cause the learning to

become prohibitively expensive. In this thesis, we introduce an approach

to “kernelize” the features so that a linear SSVM framework can leverage

the power of nonlinear kernels without incurring their high computational

cost. Second, the optimality guarentees are violated for complex models

with strong inter-relations between the output variables. We propose a

new subgradient-based method that is more robust and leads to improved

convergence properties and increased reliability.

The different approaches presented in this thesis are applicable to both

natural and medical images. They are able to segment mitochondria at

a performance level close to that of a human annotator, and outperform

state-of-the-art segmentation techniques while still benefiting from a low

learning time.

Keywords: Image processing, computer vision, electron microscopy, im-

age segmentation, kernel methods, mitochondria, statistical machine learn-

ing, structured prediction, segmentation, superpixels, supervoxels, shape

features.



La segmentation d’images est un défi important qui a attiré beaucoup

d’attention dans différents domaines de l’intelligence artificielle et présente

de nombreuses applications. Un de ces défis abordé dans cette thèse est la

segmentation d’images de tissu neural acquises avec un microscope électronique

(ME). Ce type de microscopie est l’un des principaux outils utilisés pour

analyser le tissu neural et pour comprendre le fonctionnement du cerveau,

mais des quantités énormes de données sont produites, ce qui nécéssite

l’automatisation de l’analyse.

En plus des défis spécifiques aux données ME, les problèmes qui provi-

ennent de la segmentation d’images doivent aussi être pris en compte.

Ces problèmes comprennent l’extraction de caractéristiques visuelles des

données et la construction d’un modèle statistique à partir d’annotations

des images. Bien que les modèles complexes paraissent être plus attrayants

car ils sont plus expressives, ils menent aussi à une complexité de calcul

plus élevée. En revanche, les modèles simples s’accompagnent d’une com-

plexité plus basse mais ne peuvent pas représenter fidèlement la réalité.

Par concéquence, une des tâches les plus exigeantes dans le domaine de la

segmentation est la construction de modèles expressifs qui ont aussi une

complexité raisonnable.

Dans ce travail, nous proposons plusieurs approches de partitionnement de

graphes automatiques qui traitent ces problèmes. Ces méthodes réduisent

la complexité de calcul en éffectuant des opérations sur des supervoxels au

lieu de voxels ainsi que par l’intégration de caractéristiques visuelles capable

de décrire la forme 3D des objets cibles et par l’utilisation de modèles struc-

turés pour pour tenir compte de la corrélation des variables de sortie. Un des

problèmes non négligeable de ces modèles est que leurs paramètres doivent

être soigneusement choisi pour une performance optimale. Une approche

populaire pour apprendre ces paramètres est appelée “Machine structuréé

à vecteurs de support” (SSVM) et offre des garanties d’optimalité, mais

souffre aussi de deux inconvénients principaux. Premièrement, SSVM est

généralement limité à des noyaux linéaires, puisque des noyaux non linéaires



engendrent des coûts de calcul prohibitif. Dans cette thèse, nous intro-

duisons une approche qui transforme les caractéristiques visuelles afin qu’un

SSVM linéaire puisse tirer parti de la puissance de noyaux non linéaires,

sans encourir leur coût de calcul. Deuxièmement, les garanties d’optimalité

sont violées pour les modèles complexes avec de fortes inter-relations entre

les variables de sortie. Nous proposons une nouvelle méthode à base de

sous-gradient qui est plus robuste et permet d’améliorer les propriétés de

convergence et de fiabilité.

Les différentes approches présentées dans cette thèse sont applicables aux

images naturelles ainsi que médicales. Elles sont capables de segmenter des

mitochondries et atteignent un niveau de performance proche de celui d’un

annotateur humain et surpasse les techniques de segmentation de pointe,

tout en bénéficiant d’une faible temps d’apprentissage.

Mots-clés: traitement d’image, vision par ordinateur, microscopie électronique,

segmentation d’images, les méthodes de kernel, mitochondries, apprentis-

sage statistique automatique, prédiction structurée, segmentation, super-

pixels, supervoxels, caractéristiques visuelles de forme.
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CHAPTER

ONE

INTRODUCTION

1.1 The segmentation problem

One of the fundamental dreams in artificial intelligence is to design a computer that

could understand an image like humans do. Although this seems to be a trivial task

for humans, it has proved to be an extremely difficult problem, and has received a

lot of interest during the past fifty years. This problem of interpreting the visual

content of an image is often referred to as image segmentation. A simple definition

of image segmentation is the task of finding groups of pixels that “go together”. This

is illustrated in Figure 1.1 for a biomedical image (upper row) and a natural image

(bottom row) where the colors indicate the group to which each pixel is associated.

Early work on image segmentation starting in the 1970s [17, 108] tried to recognize

objects by merging image regions that have similar properties. Figure 1.2 illustrates

the results of two heuristics known as “phagocyte” and “weakness” proposed by Brice

et al. [17]. The “phagocyte” heuristic guides the merging of regions in such a way as to

smooth or shorten the resulting boundary while the “weakness” heuristic joins regions

on the basis of the strength of the boundary that separates them. Image segmentation

has found many different applications over the past 40 years and numerous segmentation

algorithms have been proposed, including thresholding, clustering, region growing and

graph partitioning methods. One of the important applications studied in this thesis

is the segmentation of electron microscopy (EM) images. This type of imagery can
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1. INTRODUCTION

Figure 1.1: Segmentation examples. The left image in the first row shows a mitochondrion

and its segmentation on the right. The second row is an image from the MSRC database

(left) with its segmentation (right).

provide very high resolution images of brain tissue, whose analysis could turn out to

be critical for unlocking the mysteries of the brain.

This chapter is organized as follows. We first discuss the way that images are

represented and processed on computers. We then present the most common algorithms

for image segmentation. We will see that successful algorithms must extract complex

features from images to explain the global context of a scene and determine the shape

of the objects present in the image. There has been significant research in the field

of image segmentation that targets biomedical applications and this will serve as the

primary field of application of this manuscript.

1.2 Image representation

Quantized images are represented as sets of pixels encoding color/brightness informa-

tion in matrix form. Specific structures in image are called “features” and are relevant

for solving computational tasks related to a certain application. Image features range

from simple structures such as points or edges to more complex structures such as whole

objects. Edges are sharp variations of pixel intensities and often indicate important

events and changes in world properties. Consequently, the computer vision community
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1.2 Image representation

(a) (b) (c)

Figure 1.2: (a) Original image. (b) Result produced by the “phagocyte” heuristic. (c)

Result produced by the “weakness” heuristic. Images taken from [17].

has spent a fair amount of energy to develop numerous edge detection algorithms. A

common similarity among these algorithms is the computation of a measure of edge

strength, usually the first-order derivative of the image intensity (gradient magnitude).

The local maxima of the gradient magnitude are then perceived as meaningful edges.

Properties of edges including gradient and orientation can be extracted with the use

of linear filters such as Gabor filters [27]. In the spatial domain, a 2D Gabor filter is

a Gaussian kernel function modulated by a sinusoidal plane wave. Extracting the edge

properties of an image requires convolving the image with a filter. The standard convo-

lution algorithm has quadratic computational complexity, but faster algorithms exist,

for example the Fast Fourier Transform has an O(n log(n)) complexity. The extraction

of edge features is a time-consuming operation as it requires repetitively convolving the

image with a set of Gabor filters with different frequencies and orientations. A faster

alternative is to use steerable filters [33] that can be decomposed into simpler forms

that require less computation. Extracting a feature for a given orientation does not

require the evaluation of new filter responses, but simply multiplying the feature vector

extracted at a given canonical orientation by a predefined matrix.

Because not all edges in an image are meaningful, there has been a lot of work

focusing on creating image features that are highly distinctive and partially invariant to

the variations occurring in an image, such as illumination, 3D viewpoint, etc. The most

famous descriptor used by the computer vision community is the SIFT descriptor (Scale-

Invariant Feature Transform) proposed by David Lowe [86]. SIFT-based descriptors
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have been shown to outperform other local descriptors on both textured and structured

scenes, with the difference in performance larger on the textured scene. For further

details about local descriptors, we refer the reader to [138].

Although low-level features are very useful for image segmentation, it has been

recognized that they alone cannot produce a complete final correct segmentation [120].

While low-level or local features tend to represent small image patches, global features

describe an object or an image as a whole. A simple and reliable global image feature

for scene recognition is obtained by encoding the organization of color blobs in an

image [22]. The GIST descriptor [105] describes the spatial layout of an image using

global features derived from the spatial envelope of an image. The image is divided into

a 4× 4 grid and orientation histograms are computed in each grid element. Although

such global descriptors are very effective for natural images [87], they are not useful for

the type of biomedical images addressed in this thesis. This is because it is known that

certain biological structures like mitochondria or synapses always appear in a biological

dataset, whereas it is not known if a cow or a bird will appear in a particular image

from a natural image dataset such as MSRC.

Other types of commonly used features include shape features. The shape of an

object describes its characteristic outline or contour and is commonly exploited by

humans to recognize objects. Most of the existing approaches used to extract shape

information can be categorized as region-based, contour-based, or template-based. We

here give a simple overview of the existing approaches and refer the reader to a recent

survey [151] for further details.

Region-based features include simple geometric features such as center of gravity,

axis of least inertia, eccentricity, circularity ratio, rectangularity, convexity, hole area

ratio, etc. A more complex description can be extracted with shape context [10] by

discretizing a contour into a set of points. For each point, the relative position of the

other points is encoded in a histogram.

Contour-based methods exploit shape boundary information. They can be divided

into two types: global or structural. Global approaches do not divide shape into sub-

parts but describe the shape from the entire boundary. One example of such features

is called shape signatures and include complex coordinates, centroid distance func-

tions, tangent angles, curvature functions, area functions, etc. More complex methods

such as Fourier or wavelet descriptors are sometimes desirable as they yield rotation or
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translation invariance but can dramatically increase the computational complexity. On

the other hand, structural approaches break the shape boundary into segments, called

primitives or fragments, using a particular criterion. They then match a segment to a

predefined code book of fragments [3, 72] to incorporate some shape information. How-

ever, for highly deformable objects, a prohibitively large code book becomes necessary

making the approach computationally expensive.

Template-based approaches, such as [1, 32, 100], incorporate a shape template that

must be fitted to the image in an alignment or detection step. Such templates can

be a contour [32] or silhouette [1, 100] representing target objects, which is learned

or painstakingly constructed beforehand. It can be used in conjunction with a CRF

model [1, 32, 100]. The complexity of this approach and the problem of aligning multiple

templates to the image often limits its applicability to images of a single well-centered

object. In Chapter 3, we introduce a new kind of shape signature called “ray features”

which are efficient to compute and can also include additional information about an

object like the gradient near the object boundary or the orientation of the surface.

1.3 Trends in image segmentation

In the literature of image processing and computer vision, various theoretical frame-

works have been proposed for segmentation. This section will present some of the

dominant mathematical models such as Markov Random Fields (MRF), active contour

models (or deformable models) and learning-based approaches.

1.3.1 Active contour

Image contours play a very important role in the recognition of objects. Contour inte-

gration [44] is believed to be a fundamental process by which the human visual system

recognizes coherent forms out of a discontinuous sequence of line segments. Although

the neuronal mechanisms are still not well understood, psycho-physical experiments

have shown that humans are remarkably efficient at integrating contours even if they

are jittered or partially occluded [25]. The fundamental role of contours led to the

development of PDE-based techniques that can exploit this cue, such as level sets or

implicit active contours [106]. The idea behind active contours for image segmentation

is the following. An initial guess of the contour is updated by image driven forces to
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Figure 1.3: Segmentation results of level sets methods. The final segmentation shown as a

green overlay was obtained with the same set of parameters for both images. The level set

implementation used in this example uses multiple parameters that have to be hand-tuned

for each object the user wish to segment. As shown on this figure, the segmentation can

easily spill over the image boundaries.

the boundaries of the desired objects. Two types of forces are usually considered. The

internal forces are computed from the curvature and are designed to keep the model

smooth during the deformation process. The external forces, which are computed from

the underlying image data, are defined to move the model toward an object boundary

or other desired features within the image.

Several approaches within the active contour framework have been developed over

the years. The snakes algorithm [58] uses an explicit parametric representation of the

curve which makes it robust to noise and boundary gaps as it constrains the extracted

boundaries to be smooth. However, it also reduces the degree to which the curve can

adapt as no splitting or merging is allowed. In contrast, the implicit active contours

or level sets [106], represent the curve as the zero level-set of a characteristic function,

which allows them to easily change topology and incorporate region-based statistics.

Unlike the parametric form, they are not robust to boundary gaps and suffer from

several other deficiencies as well [128].

While active contours and level sets have been successfully applied to many med-

ical imaging problems [107], they suffer from two important limitations: each object

requires individual initialization and each contour requires a shape prior that may not

generalize well to variations in the target objects. EM image stacks contain hundreds

of mitochondria, which vary greatly in size and shape. Proper initialization and defi-

nition of a shape prior for so many objects is problematic. As shown in Figure 1.3, an

improper initialization of the parameters can easily lead to bad results.
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1.3.2 Graph-Partitioning approaches

In recent years, graph partitioning approaches to segmentation have become popular.

They produce state-of-the-art segmentations for 2D natural images [28, 120], generalize

well, and unlike level sets and active contours, their complexity is not affected by the

number of target objects. In 2010, the top two competitors [21, 37] in the Visual Object

Classes (VOC) segmentation challenge [26] relied on such techniques. Graph partition-

ing approaches minimize a global objective function defined over an undirected graph

whose nodes correspond to pixels, voxels, superpixels, or supervoxels; and whose edges

connect these nodes [2, 14, 18]. The energy function is typically composed of two terms:

the unary term which draws evidence from a given node, and the pairwise term which

enforces smoothness between neighboring nodes. Some works introduce supplementary

terms to the energy function, such as a term favoring cuts that maximize the object’s

surface gradient flux [65]. This alleviates the tendency to pinch off long or convoluted

shapes, which is important when tracking elongated processes [100]. However, as noted

in [59], it cannot entirely compensate for weakly detected membranes and further terms

may have to be added. Another shortcoming of standard graph partitioning methods,

discussed in further details in Chapter 3, is that most do not consider the shape of

the segmented objects. An exception is the Textonboost approach [123]. In contrast to

using explicit models to encode object shape they used a boosted combination of texton

features which jointly modeled shape and texture. They combine the result of textons

with color and location-based likelihood terms in a graph-partitioning approach.

In Chapter 2, we will see how graphical models can be coupled with graph partition-

ing methods. One type of graphical model commonly encountered in computer vision

is the Markov random field (MRF) and a notable variant known as the conditional

random field (CRF). Both variants are described in detail in Chapter 2. Graphical

models are multivariate statistical models defined on graphs. The graph nodes corre-

spond to random variables and are associated with a probabilistic distribution which

corresponds to the unary term of the energy function described previously. The edges

are used to represent the interaction between the random variables which correspond

to the pairwise term in the energy function. Higher degree interaction terms have also

been considered and have been shown to improve results for the problem of multi-class

object segmentation [64, 118] but existing approaches still define higher-order potentials
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on pre-computed image regions. The accuracy of these approaches is thus restricted

by the performance of the method used to compute the regions on which the model

operates. A recent approach [69] showed promising results with a fully pairwise con-

nected graphical model defined directly on pixels instead of image regions, but the use

of high-order potential at the pixel level is still impractical due to the complexity of

inference.

1.3.3 Classification based approaches

Machine learning-based approaches are among the most popular approaches for image

segmentation. They have been successfully coupled with level sets or graph partitioning

approaches and the combination with graph partitioning approaches currently yields

state-of-the art results on most standard benchmark datasets [37].

Machine learning focuses on making prediction from some input data based on

known properties extracted from the training data. Machine learning algorithms can

be organized into several groups. Supervised learning methods generate a function

that maps the input data to desired outputs. The inferred function is also called a

classifier for discrete outputs or a regression function for continuous outputs. Examples

of supervised learning algorithms include Support Vector Machines (SVMs), neural

nets, logistic regression, naive Bayes, memory-based learning, random forests, decision

trees, bagged trees, boosted trees and boosted stumps. Other categories of machine

learning algorithms include unsupervised learning that tries to find hidden structures

in the input data or semi-supervised learning that combines both labeled and unlabeled

examples to generate an appropriate mapping function.

Another distinction commonly made in machine learning is between generative and

discriminative algorithms. We here consider a set of input feature vectors x i ∈ Ω and

associated labels yi ∈ Y , i = {1, . . . , n}. In case of binary classification Y = {−1, 1},
each sample i is classified as being negative or positive. Generative models consider the

joint distribution p(x, y) by trying to model both the likelihood p(y|x) and the prior

p(x). On the other hand, discriminative models assume that the prior distribution is

not relevant and provides a model of the posterior p(y|x) directly.

An example of a discriminative approach is the SVM algorithm that finds a hyper-

plane to separate distinct classes so that the distance between the closest data point

and the hyperplane (margin) is maximized. The decision function can be expressed as
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1.3 Trends in image segmentation

f(x) = wTx+ b where w is a vector that weights the features in the feature space, and

b is a threshold that shifts the hyperplane. The output of SVM can be expressed as the

sign of the distance function f(x) (either 1 or -1 according to which side of the plane

x lies on). The training of an SVM reduces to an optimization problem that can be

solved using a Quadratic Programming (QP) solver.

Whereas the original problem may be stated in a finite dimensional space, it of-

ten happens that the sets to be discriminated are not linearly separable in that space.

A common method for solving this problem is to map the original finite-dimensional

space to a much higher-dimensional space, with the goal of making the separation in

this space easier. In order to learn a correct mapping function, one needs a way to

compute the similarity between training instances in the feature space. A linear SVM

uses the euclidean distance in the feature space to find a linear separation between the

different classes. The similarity metric used in the mapped high-dimensional space is

defined in terms of kernel functions. Classical kernels include the polynomial kernel or

the Gaussian kernel. This mapping to a high-dimensional space substantially increases

the dimension of the feature space which could lead to a much higher computational

complexity. Kernel methods circumvent this issue by using an efficient way to compute

the similarity between objects known as the “kernel trick”. This trick allows us to com-

pute the similarity as a simple dot product without even having to carry the mapping

to the high-dimensional space. We refer the reader to [48] for a comprehensive review

of kernels.

1.3.4 Structured prediction models

Most common learning approaches such as SVM consider the output labels (or pixels)

as being independent. In contrast, a different approach known as graphical models

capture the interactions between image pixels or image regions. As explained in Sec-

tion 1.3.2, graphical models represent a factorization of the joint probability of a set of

random variables. While graphical models, such as Markov random fields and condi-

tional random fields, are very attractive for these tasks due to their ability to represent

the inter-dependency between variables, efficient learning of such models remains a ma-

jor challenge, especially at large scales. The most common method used to estimate

the parameters of graphical models is Maximum likelihood. This training procedure

9
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chooses parameter values such that the logarithm of the likelihood, known as the log-

likelihood, is maximized. The resulting function is concave, guaranteeing convergence

to the global maximum, but computing its derivative is intractable for loopy graphs

like the ones encountered in most computer vision applications. Approximation meth-

ods such as Pseudolikelihood [13] exist, but recent attention has focused on structured

prediction methods, which combine the modeling flexibility of graphical models with

the training capabilities of supervised classification methods.

A structured prediction model is a factorization or decomposition of structures into

parts (nodes, edges or other parts of the structure). It is associated with a scoring

function over a set of combinatorial structures. This scoring function is parametrized

in terms of the weights associated with each part. Learning this parametric scoring

function is an important task. One common supervised technique involves assigning to

the correct prediction a score higher than the scores of all the other possible predictions.

The most popular regularization function to avoid over-fitting is the squared Euclidean

norm. Putting this all together, the problem of finding the parameters of the model

can be posed as a quadratic optimization problem known as structured support vector

machine (SSVM) [136]. Due to the high number of constraints, this problem is usually

solved with a cutting-plane algorithm that involves repetitively finding the highest

scoring structure given a current set of parameters. Further details will be presented

in Section 2.3.4.

1.4 Medical imaging

The segmentation problem has many applications in medical research. This thesis

will mostly focus on biomedical applications but we will show that the methods we

developed can also be generalized to other types of images, particularly the ones of the

Pascal VOC Challenge or the MSRC dataset. The type of biomedical images we will

be dealing with in this thesis were acquired with an electron microscope.

Electron microscopy (EM) is an invaluable tool for mapping the morphology of

neural structures. Recent techniques, such as Focused Ion Beam Scanning Electron

Microscopy (FIB-SEM) depicted in Figure 1.4 can now deliver image stacks at the

nanometer resolution in all three dimensions, such as those depicted by Figure 1.5.

Such stacks show very fine structures that are critical to unlocking new insights into
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Figure 1.4: The FIB-SEM (Focused Ion Beam - Scanning Electron Microscope) technique

uses a focused ion beam to create a cut (increments of 20 nm and greater than 100 µm in

width) at a designated site in the specimen (a rat brain).

brain function, but are still mostly analyzed by hand, which can require months of

tedious labor [95]. As a result, the vast majority of this very high quality data goes

unused. Furthermore, although they contain tens of millions of voxels, these stacks

span volumes smaller than 10× 10× 10 µm, which presents less than a billionth of the

volume of the entire mouse brain. If it is ever to be mapped in its entirety, automation

will be required.

Manual segmentation remains dominant in part because most state-of-the-art au-

tomated algorithms that are reported in the computer vision literature perform well on

standard natural image benchmarking data sets such as the Pascal VOC data set [26],

but much less well when applied to EM imagery. Furthermore, many automated seg-

mentation algorithms specifically designed to handle EM images tend to work on in-

dividual image slices [59, 100] because other EM modalities, such as Transmission

Electron Microscopy (TEM), deliver image stacks with much lower resolution across

slices than within them. As a consequence, they rarely take full advantage of the con-

sistency in all three dimensions. Neither do they usually take into account global 3D

geometric constraints.

1.5 Contributions of this thesis

So far, we have stressed the importance of different components for succesfully seg-

menting images such as designing discriminative image features or constructing a model

faithful to the real world while still being tractable. The biomedical application ad-
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CA1 Hippocampus Striatum

5× 5× 5 µm sample size 9× 5× 2.5 µm sample size

1024× 1024× 1000 voxels 1536× 872× 318 voxels

(5× 5× 5 nm
voxel

) (6× 6× 7.8 nm
voxel

)
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Figure 1.5: FIB-SEM data sets. The top row contains 3D image stacks acquired using

FIB-SEM microscopy. Details in the bottom row are taken from the blue boxes overlaid on

the stacks. Mitochondria, which we wish to segment, are indicated by black arrows. The

high resolution allows neuroscientists to see important details but poses unique challenges.

FIB-SEM image stack dimensions are orders of magnitude larger than conventional images,

which limits the usefulness of many state-of-the-art segmentation algorithms, as discussed

in Section 3.4.4.1. Further complicating the problem is the presence of numerous objects

with distracting shapes and textures, including vesicles and various membranes. Finally,

we can not rely on strong contrasts to indicate object boundaries. Note that the Striatum

data is split into training and testing sections, denoted by a dashed line. A separate

training stack is used for the CA1 Hippocampus (not shown).
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dressed in this thesis implies additional constraints and imposes high quality require-

ments in order to be useful for a biological study. Our attempt to fulfill all these

requirements led us to several innovations that are briefly described in this section and

will be further discussed in the following chapters.

SLIC Image segmentation is closely related to the clustering problem, which aims

to partition image pixels into clusters, also referred to as superpixels. Superpixel al-

gorithms group pixels into perceptually meaningful atomic regions, which can be used

to replace the rigid structure of the pixel grid. They capture image redundancy, pro-

vide a convenient primitive from which to compute image features, and greatly reduce

the complexity of subsequent image processing tasks. Superpixels have become key

building blocks in many computer vision algorithms, such as top scoring multi-class

object segmentation entries to the Pascal VOC Challenge [34, 38, 150], depth estima-

tion [156], segmentation [85], body model estimation [97], and object localization [34].

A first contribution made in this thesis is a joint work with R. Achanta [5] et al. that

led to the development of a new superpixel algorithm named simple linear iterative

clustering (SLIC), which adapts k-means clustering to generate superpixels in a man-

ner similar to [156]. It is also a very fast alternative to other superpixel algorithms and

yields state-of-the-art results on different image segmentation datasets. In Chapter 3,

we present an extension of SLIC to generate supervoxels for 3D volumes. Given the

sheer size of the 3D volumes acquired with electron microscopes, the use of supervoxels

is of tremendous importance to reduce both the computational complexity and memory

footprint of any segmentation algorithm.

Learning the shape of complex objects We have already discussed the impor-

tance of extracting discriminative image features that can be leveraged by a machine

learning algorithm to learn a meaningful representation of certain object classes. This

thesis will introduce a new kind of shape signature called “ray features” that are well-

suited to the task of providing non-local shape information because they can be com-

puted efficiently, and provide a compact description without requiring an explicit shape

template. A detailed description of the ray features is given in Chapter 3, along with

experimental results showing the gain observed on two different EM datasets.
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Figure 1.6: Images segmented using SLIC into superpixels of size 64, 256, and 1024 pixels

(approximately).

Kernelized features A significant amount of work in the computer vision commu-

nity has been focused on constructing discriminative features and training structured

prediction models that offer the ability to add constraints on the expected output of

the segmentation. Kernel methods have also proved very effective for leveraging image

features but their application with structured prediction models, while being theoret-

ically possible, suffers from a very high computational complexity. In Chapter 4, we

propose to map features to an explicit high-dimensional space so that a linear SSVM

framework can leverage the power of non-linear kernels without incurring their high

computational cost.

Learning for structured prediction using stochastic descent with working

sets In Section 1.3.4, we have seen that training a structured model requires repet-

itively finding the highest scoring structure, which is equivalent to finding the most

violated constraint in a very large set of constraints. We instead propose a working

set-based approximate subgradient descent algorithm to minimize the margin-sensitive

hinge loss arising from the soft constraints in max-margin learning frameworks, such

as the structured SVM. We focus on the setting of general graphical models, such as

loopy MRFs and CRFs commonly used in image segmentation. In these cases, exact

inference is intractable and the most violated constraints can only be approximated,
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voiding the optimality guarantees of the structured SVM’s cutting plane algorithm

as well as reducing the robustness of existing subgradient based methods. We show

that the proposed method obtains better approximate subgradients through the use

of working sets, leading to improved convergence properties and increased reliability.

Furthermore, our method allows new constraints to be randomly sampled instead of

computed using the more expensive approximate inference techniques such as belief

propagation and graph cuts, which can be used to reduce learning time at only a small

cost of performance. We demonstrate the strength of our method empirically on the

segmentation of a new publicly available electron microscopy dataset as well as the

popular MSRC data set and show state-of-the-art results.

In the following chapters, we will see how all the innovations described in this section

can be combined into a system that can successfully segment both natural and biomed-

ical images. A final and very important contribution of this thesis will be discussed in

the last chapter where we show that sufficiently good segmentation results can be used

for the analysis of neural structures.
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CHAPTER

TWO

BACKGROUND ON GRAPHICAL MODELS

Probability theory is an essential tool to study real world problems that intrinsically

involve uncertainty. A good example is the roll of a 6-sided fair die. In probability

theory, the space of possible outcomes is denoted Ω = {1, 2, 3, 4, 5, 6} and we talk about

an event as a subset of Ω. For example, the event {1} represents the case where the

die shows 1. We also associate probabilities to each event that determine the degree of

confidence we have for this event to happen. For the 6-sided fair die example considered

above, each face has a probability of 1
6 .

Another important concept in probability theory is the concept of a random vari-

able. Formally, a random variable is a function defined over the space of possible

outcomes. For the die example, the random variable x can take any value in the set Ω

and the probability of each event is defined as P (x) = 1
6 ,∀x = {1, . . . , 6}.

Let’s now consider an example where one rolls a die twice. The number of possible

outcomes to consider is now 6 × 6 = 36. We can associate a random variable to

each throw and study the joint probability associated to each possible outcome. One

might also be interested in marginal probabilities where only a subset of the variables

is retained, marginalizing over the distribution of the variables being discarded. We

can for example ask about the probability of getting a 1 for the first throw which is

computed by marginalizing over all outcomes for the second throw which would give

us a probability equal to 1
6 .

We now come to the key concept of probabilistic graphical models presented in

this chapter that can be used to describe a probability distribution with a graphical
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representation. Let’s consider a probability distribution p(x) with a large number of

random variables x = {x1, . . . , xi, . . . , xn} that makes p(x) a hard function to learn.

The two extremes are :

• Consider the full joint distribution:

p(x) = p(x1, x2, . . . , xn) = p(x1|x2, . . . , xn)p(x2, . . . , xn) . . .

• Consider all the variables as independent:

p(x) = p(x1)p(x2) . . . p(xn)

Another solution is to consider some dependencies that can be expressed with a

graphical model. A graphical model defines a graph that comprises nodes representing

random variables and edges expressing probabilistic relationships between the variables

(missing edges imply conditional independence). The benefits of graphical models are a

compact representation of a joint probability distribution and the induction of efficient

inference algorithms. There exists many different types of graphical models but this

chapter will mainly focus on Markov random fields (MRF) [12] and conditional random

fields (CRF) [77] widely used in segmentation.

2.1 Markov random fields

A Markov random field (MRF), also known as a Markov network or an undirected

graphical model [61], has a set of nodes x = {x1, . . . , xn} and a set of edges connecting

pairs of nodes. Markov random field theory provides a convenient and consistent way of

modeling context dependent entities such as image pixels and other spatially correlated

features. This is achieved through characterizing mutual influences among such entities

using MRF probabilities. The practical use of MRF models is largely ascribed to the

equivalence between MRFs and Gibbs distributions established by the Hammersley-

Clifford theorem [55]. This theorem gives necessary and sufficient conditions under

which a probability distribution is a valid MRF. It states that a probability distribution

that has a positive mass or density satisfies one of the Markov properties with respect

to an undirected graph G if and only if it is a Gibbs random field, that is, its density can

be factorized over the cliques of the graph1. Then the joint distribution is written as

1A clique C is defined as a subset of nodes xc in a graph such that there exists a link between all

pairs of nodes in the subset.
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a product of potential functions φC(xc) over the maximal cliques of the graph denoted

by c ∈ C.

p(x) =
1

Z

∏
c∈C

φC(xc), (2.1)

where Z is a normalizing constant also called the partition function:

Z =
∑
x

∏
c∈C

φC(xc). (2.2)

The choice of the potential function is still an open question. The exponential

distribution is often preferred as it is the maximum-entropy distribution consistent with

given constraints on expected values. Many common distributions used in statistical

modeling, such as the Gaussian, Gamma or Beta distributions are in the exponential

family.

The potential functions that belong to the exponential family are of the form:

φC(xc) = exp{−E(xc)}, (2.3)

where E(xc) is called an energy function.

This representation was first developed in statistical physics where the graph nodes

correspond to particles that are described by a spin. Boltzmann’s law expresses prob-

ability functions in terms of the energy of the system E and the temperature T as:

p(x) =
1

Z
exp

{−∑c∈C E(xc)

T

}
(2.4)

A type of MRF that arises in many contexts is that of pairwise MRF, representing

distributions with factors over single variables or pairs of variables. Pairwise MRFs

are attractive because of their simplicity, and because interactions on edges are an

important special case that often arises in practice.

The energy of the system E(x) = E(x1, . . . , xn) for such pairwise MRF is defined

as:

E(x) =

data term︷ ︸︸ ︷
Ed(x) +

prior term︷ ︸︸ ︷
Ep(x) (2.5)

=
∑
i

Ei(xi) +
∑
i,j

Eij(xi, xj)

=
∑
i

hi(xi) +
∑
i,j

Jij(yi, yj)
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2. BACKGROUND ON GRAPHICAL MODELS

Figure 2.1: An example of an MRF with pairwise potentials. The hidden nodes yi are

denoted with white circles and the observed nodes xi are denoted with filled circles.

where Jij(xi, xj) encodes the intuition that neighboring nodes are likely to belong to

the same class. In statistical physics, the data term hi describes an external magnetic

field. An example of data term for images will be presented in Section 2.2.2.

2.1.1 Example: a 2D MRF for images

In this example, we consider two sets of random variables x = {x1, . . . , xn} and y =

{y1, . . . , yn} where xi denotes the observed variables (for example the value of pixel i)

and yi = {0, 1} is a binary variable denoting the state of pixel i.

Given these two sets of variables, Equation 2.1 can now be written as :

p(x, y) =
1

Z

∏
C

φC(xc, yc) (2.6)

=
1

Z

∏
C

exp{−E(xc, yc)} (2.7)

=
1

Z
exp{

∑
C

−E(xc, yc)}, (2.8)

where Z =
∑

(x,y) exp{
∑

C −E(xc, yc)}.

Note that there exist two types of cliques in the graphical model of Figure 2.1. The

first type relates two hidden nodes yi and yj and is associated to the prior term. The

second type relates a hidden node yi and an observation node xi and is associated to
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2.1 Markov random fields

the likelihood term.

p(x, y) =
1

Z

∏
i,j

prior︷ ︸︸ ︷
ψi,j(yi, yj)

∏
i

likelihood︷ ︸︸ ︷
φi(yi, xi) (2.9)

The pairwise potential ψi,j(yi, yj) is typically defined as a function of the difference

between the states yi and yj .

ψi,j(yi, yj) = ρ(yi − yj) (2.10)

A popular ρ function for binary segmentation problems is based on the Ising model

that will be discussed later on. Truncated linear models and truncated quadratic mod-

els have also been widely used. For applications like image denoising, the labels yi

correspond to pixel intensities. In that case, an intuitive interpretation of the pairwise

potential is that it approximates first order image derivatives.

2.1.2 Labeling problem

The labeling problem consists in assigning a label to each graph node and is often

referred to as MAP-MRF problem [35]. It can be solved by maximizing the posterior

distribution p(y|x) and the solution is usually referred to as the maximum a posterior

(MAP) solution. Since the paper of Geman et al. [35] published in 1984, numerous

vision problems have been formulated using this framework. This section reviews re-

lated concepts and derives involved probabilistic distributions and energies. For more

detailed materials on Bayes theory, the reader is referred to [83].

Notations We are now given p(y, x) in terms of an energy function and the obser-

vations x and we want to evaluate the hidden variables y. This process is called an

inference task.

The posterior distribution p(y|x) is given by applying Bayes’ rule :

posterior︷ ︸︸ ︷
p(y|x) =

likelihood︷ ︸︸ ︷
p(x|y)

prior︷︸︸︷
p(y)

p(x)︸︷︷︸
normalization constant

(2.11)

where p(x) =
∫
y p(x|y)p(y) is the normalization constant to make the distribution

integrate to 1.
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2. BACKGROUND ON GRAPHICAL MODELS

2.1.2.1 MAP inference

To find the most likely solution y∗, we can maximize the posterior term, which is called

the maximum a posteriori estimation (MAP).

y∗ = arg max
y∈Y

p(y|x) = arg max
y∈Y

p(x, y) (2.12)

= arg max
y∈Y

1

Z
exp{−E(x, y)} = arg max

y∈Y
exp{−E(x, y)} (2.13)

= arg min
y∈Y

E(x, y) (2.14)

Since the different number of configurations |Y| is in general very high, solving

the MAP problem is NP-hard. For some simple networks (i.e. chains or trees), the

computation can be done exactly either by summing over all the possibles states or by

using dynamic programming methods. Otherwise, an approximate solution to the MAP

inference can be computed by coordinate descent, minimizing each unknown iteratively

(Iterated Conditional Modes or ICM is an example of such algorithm). This chapter

also presents other inference algorithms such as belief propagation and graph-cuts.

Finally, it is worth pointing out that maximizing p(y|x) seeks the exact true labeling.

In some cases, a more reasonable approach would seem to be to seek the labeling with

the fewest expected number of errors, i.e. choosing yi = arg maxyi p(yi|x) ∀i. This

is known as “maximum expected accuracy” [41] or “maximum posterior marginal”

inference [93].

2.1.2.2 Parameter learning

In this section we discuss how to estimate the set of parameters of a MRF denoted

w. Parameter estimation is typically performed by maximizing the following data

likelihood:

w∗ = arg max
w

p(y, x|w) (2.15)

A maximum likelihood estimator coincides with the most probable Bayesian estima-

tor given a uniform prior distribution on the parameters. However, if prior information

about the parameters w is available, one could also maximize the joint probability

p(y, w|x) = p(y|x,w)p(w), which corresponds to MAP estimation.
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2.2 Inference

2.1.3 Conditional random fields

MRFs suffer from two key limitations with respect to the labeling problem. The first

drawback concerns their locality. Generally, due to the complexity of MAP inference

(see Section 2.1.2.1) and parameter estimation (see Section 2.1.2.2), only local rela-

tionships between neighboring nodes are usually included in the MRF energy function.

Hierarchical MRFs offer one way of capturing label relationships at different scales.

The second drawback of MRFs lies in their generative nature by which they explicitly

attempt to model a joint probability distribution p(y, x) over inputs and outputs. Al-

though there are advantages to this approach, it also has important limitations. Not

only can the dimensionality of x be very large, but the features can have complex de-

pendencies, so constructing a probability distribution over them is difficult. In order

to construct a generative model, many image samples are needed and resources have

to be devoted to learn a prior model, while we are only interested in estimating the

posterior over labels given the observed image. This motivates the use of conditional

random fields (CRF) proposed by Lafferty et al. [77] that directly model the conditional

distribution p(y|x).

p(y|x) =
1

Z(x)

∏
i,j

prior︷ ︸︸ ︷
ψi,j(yi, yj , xi, xj)

∏
i

likelihood︷ ︸︸ ︷
φi(yi, xi) (2.16)

where Z(x) =
∑

y exp{
∑

C −E(xc, yc)}.
Unlike MRFs, the partition function for CRFs is a function of the input x and sums

over all possible labels y. One of the essential differences between MRFs and CRFs lies

in the training procedure. As explained in Section 2.1.2.2, learning the parameters of a

MRF involves maximizing the likelihood p(x, y|w), while CRFs consider the conditional

likelihood p(y|x,w) instead. Further details concerning the training procedure of CRFs

can be found in Section 2.3.

2.2 Inference

This chapter discusses the concept of statistical inference that consists in drawing

conclusions about the distribution of a random variable. We here present inference

to solve the labeling problem introduced in Section 2.1.2 and consisting in assigning a

label y to each graph node.
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2.2.1 Variational methods

The phrase “variational” is an umbrella term that refers to various mathematical tools

for optimization-based formulations of problems. Variational methods are used to de-

termine the function that extremizes a functional. The extremal functions are solu-

tions of the Euler-Lagrange equations that are obtained by setting the first variational

derivatives of the functional F with respect to each function equal to zero. Variational

methods are of general utility for many domains, such as physics or engineering. This

section will provide a description of variational methods as an analytical approxima-

tion to the posterior probability of the unobserved variables y, in order to do statistical

inference over these variables. The general idea is to convert the inference problem

into an optimization problem that can then be relaxed in order to get an approximate

solution.

In variational inference, the posterior distribution p(y|x) over a set of unobserved

variables denoted y given some data x is approximated by a variational distribution

denoted q(y). The distribution q(y) is restricted to belong to a family of distributions of

simpler form than p(y|x), selected with the intention of making q(y) similar to the true

posterior. In order to make these two distributions similar, we minimize a functional

of the two functions p and q that says how close they are. This functionnal denoted

as KL(q||p) is called the Kullback-Leibler (KL) divergence and belongs to the family

of f-divergences that measures the distance between probability distributions. The KL

divergence is written:

KL(q||p) = −
∑

y q(y) log p(y|x)
q(y) (2.17)

=
∑

y q(y) log q(y)
p(y|x)

=
∑

y q(y) log q(y)p(x)
p(y,x)

=
∑

y q(y) log q(y)
p(y,x) + log p(x).

The KL divergence is always non-negative and is equal to zero when the distibutions

p and q are identical. It is a non-symmetric measure and KL(p||q) is in general more

difficult to optimize as the averaging over p is hard to evaluate.

Equation 2.17 leads to the following decomposition:

log p(x) = KL(q||p) + L(q), (2.18)
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2.2 Inference

Figure 2.2: Because the KL divergence satisfies KL(q||p) ≥ 0, we see that the quantity

L(q) is a lower bound on the log likelihood function log p(x).

where L(q) =
∑

y q(y) log p(y,x)
q(y) is a variational lower bound for log p(x) as illustrated

on Figure 2.2. Note that minimizing the KL divergence is equivalent to maximizing the

variational lower bound L(q) with respect to the distribution q(y). The lower bound

becomes tight when KL(p||q) = 0.

Variational free energy This section will focus on one particular exponential family,

namely the Boltzmann distribution which is written as p(y|x) = 1
Z exp{−E(y;x)} 1.

Minimizing Equation 2.17 is intractable since evaluating p(y|x) pointwise is hard as it

requires computing the normalization constant Z.

1Boltzmann’s Law is often includes a variable β that is inversely proportional to the temperature.

The posterior is then written p(y|x) = 1
Z

exp{−βE(y;x)}. The variable β controls how peaky the

distribution is. For β → ∞, it focuses on the MAP labeling while we get a uniform distribution for

β → 0.
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In order to minimize the KL divergence, note the following decomposition:

KL(q||p) =
∑
y

q(y) log
q(y)

p(y|x)
(2.19)

=
∑
y

q(y) log
q(y)Z(x, y)

exp{−E(y;x)}
(2.20)

=
∑
y

q(y) log
q(y)

exp{−E(y;x)}
+
∑
y

q(y) logZ(x, y) (2.21)

=
∑
y

q(y) log q(y) +
∑
y

q(y) log exp{E(y;x)}+ logZ(x, y) (2.22)

=

U(q)︷ ︸︸ ︷∑
y

q(y)E(y;x) +

-H(q)︷ ︸︸ ︷∑
y

q(y) log q(y) + logZ(x, y). (2.23)

The third and fourth lines follow from the properties of the log function (log ab =

log a+ log b and log a
b = log a− log b) and the following equality:

∑
y q(y) = 1.

The variational free energy F (q) is equal to:

F (q) = U(q)−H(q). (2.24)

where U(q) is the average energy and H(q) is the entropy. As stated earlier, evaluating

the exact solution F (p) is intractable but F (q) is easier to compute. It should be

noted that the expression U(q)−H(q) is sometimes called with different names in the

literature (e.g. Gibbs Free energy). In any case, the most important result is that this

quantity is minimal for U(q) = H(q), and is at this point equal to logZ.

Update equations Our goal is minimizing the variational energy with respect to

the parameters, which is equivalent to minimizing the KL divergence (or maximizing

the lower bound) :

argmin
q
KL(q||p) = argmin

q
F (q) (2.25)

In the next section, we will derive the optimal distribution q∗ by setting ∂
∂qF (q) = 0.

2.2.2 Mean field

2.2.2.1 Mean field approximation

The idea of mean field is to calculate the expected value of the node, conditioned on the

mean values of the direct neighbors. Thus, the true distribution p(y|x) is approximated
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2.2 Inference

(a) Original graph. (b) Graph as approximated by mean-field.

Figure 2.3: Mean-field approximation

by a distribution q(y) which has a simple form and factors over pixels:

q(y) =
∏
i

q(yi) (2.26)

We then plug this factorized form in the free energy equation F (q) and obtain the

mean-field free energy :

FMF (q(yi)) = U(q(yi))− TH(q(yi)) (2.27)

=
∑
i

∑
yi

q(yi)E(yi) + T
∑
i

∑
yi

q(yi) log q(yi) (2.28)

= −
∑
i,j

∑
yi,yj

Jij(yi, yj)q(yi)−
∑
i

∑
yi

hi(yi)q(yi) (2.29)

+ T
∑
i

∑
yi

q(yi) log q(yi) (2.30)

We then compute q(yi)
∗ that minimizes Equation 2.30 by setting ∂FMF (q(yi))

∂q = 0.

−
∑
j

∑
yj

Jij(yi, yj)− hi(yi) + T (1 + log qi(yi)) = 0 (2.31)

Then we get :

qi(yi) = exp

{∑
j

∑
yj
Jij(yi, yj) + hi(yi)− 1

T

}
(2.32)
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As explained in Section 2.2.1, q(yi)
∗ can also be derived by minimizing the KL-

divergence KL(q||p) = Eq(log(q)− log(p)). By setting the derivative of the KL diver-

gence to zero, we can show that the optimal q(yi)
∗ satisfies the equation 1:

q(yi)
∗ = exp

β∑
j

∑
yj

q(yj) logψi(yi, yj) + β log φi(yi)− 1

 (2.33)

2.2.2.2 Image denoising with mean field

We illustrate the use of mean field inference for the task of image denoising 2 that

consists in retrieving an image y = {y1, . . . , yn} from a given corrupted image x =

{x1, . . . , xn} with white noise denoted ε such that x = y + ε. Each pixel in the image

corresponds to a random variable yi = {−1,+1}. We here assume a simple graph

connectivity where each pixel is connected to its 4 neighbors (top, bottom, left and

right).

Prior We first define a simple prior over the image y as:

p(y) =
1

Z1
exp{−

∑
i,j

C(yi − yj)2}, (2.34)

where Z1 is a normalizing constant which ensures that p(y) is a true probability dis-

tribution. Here the sum is over all pixels yi and their four neighbors yj so the sum

contributes 4C for each time yi disagrees with a neighbor yj . In other words, the

constant C controls the magnitude of the penalty for pixels which disagree with their

neighbors.

Likelihood We will use a very simple model to describe how observed images are

generated from true images:

p(x|y) =
1

Z2
exp{−

∑
i

D(xi − yi)2}, (2.35)

where Z2 is the normalizing constant. This expression says that the observed image x

is produced from the true image y by adding independent Gaussian random noise at

each pixel. The constant D controls the variance of the Gaussian.

1The proof involves the transition from a sum over all possible random field configurations y to a

sum over local configurations yi which is given in [126]
2This example is adapted from Geoffrey Gordon’s web page.
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Figure 2.4: Mean-field applied to image denoising The left figure represent the noisy

image. The other figures (from left to right) show the denoised image after 1,10 and 50

iterations.

Posterior Using Bayes rule given in Equation 2.11, we can write the posterior over

images y as :

p(y|x) =
1

Z
exp{−(

∑
ij

C(yi − yj)2 +
∑
i

D(xi − yi)2)} (2.36)

Approximating the posterior Since evaluating the true posterior p(y|x) is in-

tractable, we compute an approximate distribution q(y|x) using the mean field dis-

tribution which factors over pixels q(y|x) =
∏
i qi(yi|x). The denoised image is shown

in Figure 2.4.

2.2.3 Bethe approximation

The mean-field approximation described earlier makes use of one-node beliefs qi(yi)

only. The next step taken by the Bethe approximation is to introduce two-node beliefs

qi,j(yi, yj) as well. This results in the following trial distribution:

q(y) =
∏
i,j

qij(yi, yj)
∏
i

qi(yi) (2.37)

By combining Equation 2.37 and 2.24, we obtain the following equation for the

Bethe free energy:
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Fβ(q) =
∑
ij

∑
xi,xj

qij(yi, yj)Eij(yi, yj) +
∑
i

∑
yi

qi(yi)Ei(yi) (2.38)

+ T (
∑
ij

∑
yi,yj

qij(yi, yj) ln qij(yi, yj) (2.39)

−
∑
i

(di − 1)
∑
yi

qi(yi) ln qi(yi)) (2.40)

where di is the degree of the node i in the graph.

This energy function can be minimized with the Belief propagation algorithm pre-

sented in the next section. Yedidia et al. [153] showed that the fixed points of Belief

propagation correspond to stationary points of the Bethe free energy. While the Bethe

approximation is exact for tree-like models, some concerns have been raised for graphs

with loops but good empirical results have been obtained for different applications,

including the image segmentation task presented in Chapter 4.

2.2.4 Belief propagation

Belief propagation can be described as a parallel message-passing algorithm where every

node sends a probability density to its neighbors. Two major algorithms solving dif-

ferent problems have been proposed. The sum-product algorithm estimates marginals

while the max-product algorithm finds the most probable joint states (MAP estimation

problem).

The original Belief propagation algorithm is done in the probability domain in which

the unary and pairwise potentials are related to the energy function by the following

formula:

φij(yi, yj) = exp

{
− 1

T
Eij(yi, yj)

}
(2.41)

φi(yi) = exp

{
− 1

T
Ei(yi)

}
(2.42)

2.2.4.1 Sum-product algorithm

At each step node i sends a message mij(yj) to each neighbor j about what state node j

should be in (see Figure 2.5 for an illustration). Each message is a vector of dimension
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(a) (b)

Figure 2.5: (a) Undirected graphical model representing the BP message update rule. The

summation symbol indicates a sum over all the possible states of node i. The dark circle

indicates the observed variable attached to the hidden node i. (b) Undirected graphical

model representing the BP belief equation.

K, the number of possible labels. At each iteration, new messages are computed for

each possible state in the following way:

mij(yj)← α
∑
yi

φij(yi, yj)φi(yi)
∏

k∈N(j)\i

mki(yi) (2.43)

The beliefs qi(yi) can then be computed as the product of the local evidence φi(yi)

and all the messages coming into node i:

qi(yi) = φi(yi)
∏
j∈Ni

mji(yi) (2.44)

2.2.4.2 Max-Product algorithm

The sum-product algorithm presented in the previous section computes the marginal

probabilities p(yi). Another inference problem is concerned in finding the most probable

joint state y∗ (MAP estimation problem) so that :

y∗ = arg max
y

p(y) = arg max
y1

max
y2

...max
yM

p(y) (2.45)

It can be shown that the max-product algorithm is identical to the sum-product

algorithm where summations are replaced by maximizations. This algorithm is usually
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defined in terms of probability distribution but equivalent forms have been proposed,

minimizing log-probabilities (max-sum algorithm) or negative log-probabilities (min-

sum algorithm).

2.2.5 More advanced variational algorithms

Advanced variational algorithms allow a greater accuracy but this comes at a price

(running time and memory needs are usually greatly increase). For example, Gen-

eralized Belief Propagation algorithms have been developed to minimize Kicuchi free

energy (Yedida, Freeman, Weiss, 2004). Note that all these algorithms rely on tractable

sum-product messages, hence are limited to Gaussian Markov random fields or discrete

random variables. Expectation propagation projections and Monte Carlo approxima-

tions to the sum-product messages get around these limitations, but can be unsuitable

for dense graphs or can introduce extraordinary computational costs [127].

2.2.6 Graph-cuts

Graph-cuts is a popular graph partitioning approach that has been widely used in

the computer vision community to solve the MAP inference problem. The algorithm

formulates the labeling problem as a minimum cut of the graph (i.e. a cut of minimum

weight to partition the graph). Let G = (V,E) be a directed graph including two special

nodes denoted s (source node) and t (sink node). An s-t cut C = (S, T ) is a partition

(or cut) of G into two disjoint subsets S and T such that s ∈ S and t ∈ T . The max-

flow min-cut theorem proves that the maximum network flow is equal to the sum of

the cut-edge weights of any minimum cut that separates the source and the sink. The

minimum cut problem for positive edge weights can then be solved in polynomial-time

with the Edmonds-Karp algorithm.

Each node in the graph has an associated binary random variable yi = {0, 1}. The

cut in the graph creates a partition of the nodes. A total cost can also be associated

to the cut and is equal to the total cost of all the edge costs.

We here use an energy function of the same form as Equation 2.6:

E(x, y) =
∑
i

hi(xi) +
∑
i,j

Jij(yi, yj)) (2.46)

, where hi and Jij are the data and pairwise terms described in Section 2.1.
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The energy function can be reparametrized to a canonical form satisfying the fol-

lowing conditions:

Jij(0, 0) = Jij(1, 1) = 0 (2.47)

Jij(0, 1) = Jij(1, 0) =
D

2
(2.48)

hi(yi) ≥ 0, (2.49)

where D = Jij(0, 0) + Jij(1, 1)− Jij(0, 1) + Jij(1, 0).

This reparametrization is valid as long as it does not change the minimum of the

energy function. An obvious way to satisfy the third condition is to make hi(yi) pos-

itive by subtracting the minimum value. In order to satisfy the first two conditions,

one can add a constant to the rows or columns to transform J . The submodularity

condition requires D >= 0. For problems considering only two labels and assuming the

energy function satisfies the sub-modularity assumption, graph-cuts returns the exact

solution.

2.3 Parameter Learning

This section focuses on the estimation of the parameters of a CRF, briefly mentioned

in Section 2.1.2.2. A popular approach is Maximum Likelihood Estimation (MLE)

and its approximation variants for loopy graphs, such as piecewise pseudo-likelihood or

stochastic gradient methods. Another popular method that gained popularity recently

is the structured SVM approach that couples learning and inference.

2.3.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation learns the parameters of a CRF by maximizing the

likelihood p(y|x,w). If all the nodes follow an exponential family distribution and are

observed during training, this optimization is convex. It can be solved for example using

gradient descent algorithms or Quasi-Newton methods, such as the L-BFGS algorithm.

MLE seeks the optimal parameter vector w∗ that satisfies:

w∗ = arg max
w

p(y|x,w) (2.50)

In order to solve this equation, we make two observations. First, since the loga-

rithm is a monotonic function, Equation 2.50 is equivalent to minimizing the negative
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log-likelihood function. We then use the principle of maximum conditional likelihood

that says to choose a parameter estimate that maximizes the product
∏
i p(yi|xi, w).

Note that we do not need to assume that the yi are independent in order to justify

the conditional likelihood being a product; we just need to assume that the yi are

independent conditional on xi.

We then get:

w∗ = arg max
w

L(w) = arg max
w

log p(y|x,w) (2.51)

= arg max
w

∏
i

log p(yi|xi, w) (2.52)

= arg max
w

∑
i

log p(yi|xi, w) (2.53)

= arg max
w

∑
i

log
1

Z(w)
exp{−E(yi;xi)} (2.54)

= arg max
w

∑
i

−E(yi;xi)− logZ(w) (2.55)

If we assume a log-linear model, the energy E(y;x) can be written as a dot product

between the parameter vector w and a feature function denoted ψ(x, y), i.e. E(y;x) =

−wTψ(x, y). Plugging this expression in the objective function, we get:

L(w) =
∑
i

wTψ(xi, yi)− log
∑
y

exp{wTψ(xi, y)}, (2.56)

which can be maximized by computing the derivative of L(w) with respect to the

parameters w:

∇wL(w) =
∑
i

[ψ(xi, yi)−
∑

y exp{wTψ(xi, y)}ψ(xi, y)∑
y exp{wTψ(xi, y)}

] (2.57)

=
∑
i

[ψ(xi, yi)−
∑
y

p(xi, y|w)ψ(xi, y)] (2.58)

=
∑
i

[ψ(xi, yi)− Ep(xi,y|w)ψ(xi, y)] (2.59)

The first term in the summation is the feature function of the correct label while

the second term takes the expectation over all labels. Since L(w) is differentiable and

convex (it has a positive definite Hessian), the gradient descent of Algorithm 1 will

find the global optimum with ∇wL(w) = 0.
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Algorithm 1 Steepest Descent Minimization

INPUT: tolerance ε, learning rate η

w0 ← 0

repeat

v ← ∇wL(w)

w ← w − ηv
until ||v|| < ε

Since overfitting issues are usually associated to MLE, it is common to find the

MAP estimate by using a prior on w such as a Gaussian prior p(w) = exp{− 1
2σ2 ||w||2}.

An alternative is a Laplace prior which leads to what is known as L1 regularization.

For general CRFs, there is still a problem with the computation of ∇wL(w) because

the number of possible configurations for y is typically (exponentially) large. We then

present approximation methods that try to address this computation issue.

2.3.2 Approximation methods

As stated in the previous section, the conditional maximum likelihood leads to an

intractable problem due to the computation of the partition function that involves an

exponential number of terms. This section will review two approximation methods

that have been proposed to address this problem: pseudo-likelihood and contrastive

divergence.

2.3.2.1 Pseudo-likelihood

The idea in the pseudo-likelihood approximation is for the training objective to de-

pend only on conditional distributions over single variables. The likelihood probability

p(y|x,w) is approximated as a product of individual conditional probabilities for each

yi given its neighbors.

p(y|x,w) =
∏
i

p(yi|yNi , x, w), (2.60)

where Ni are the neighbors of node i.

Because the normalizing constants for these distributions depend only on single

variables, they can be computed efficiently. Assuming that the model family includes
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the true distribution and in the presence of infinite amount of data, [49] showed that

the pseudo-likelihood is a consistent estimator that will converge to true parameters.

Although these assumptions are rarely satisfied, pseudo-likelihood was successfully ap-

plied to train CRFs [130, 145].

2.3.2.2 Contrastive divergence

Markov Chain Monte Carlo (MCMC) inference methods can be used to train a CRF

by setting up a Markov chain whose stationary distribution is p(y|x,w), running the

chain for a number of iterations, and using the resulting approximate marginals to

approximate the true marginals in the gradient ∇wL(w). MCMC methods suffer from

several limitations. First, they require a large number of iterations to reach convergence.

Second, many MCMC methods, such as Metropolis-Hastings, require computing a ratio

of normalizing constants Z(x,w1)
Z(x,w2) for two different set of parameters w1 and w2. This

presents a severe difficulty for models in which computing Z(x,w) is intractable.

One possibility to overcome these difficulties is contrastive divergence (CD) [45]

that uses MCMC but does not require convergence to equilibrium for approximating

the model likelihood gradients used for learning. While CD has been mostly applied

to models such as restricted Boltzmann machines, it can also be applied to CRFs[43].

Another related method is SampleRank [148] which is a supervised parameter estima-

tion method that performs parameter updates during MCMC inference. Specifically,

each pair of consecutive samples is compared, and a parameter update is made if the

ranking of the model scores of the samples disagrees with the ranking implied by the

labeled data.

2.3.3 Loss-sensitive training

Unfortunately, maximum likelihood and its associated approximations all suffer from

the problem that the loss function under which the performance of the CRF is evaluated

is ignored. One way to take into account the loss function is to augment the energy

of a given training example by including the loss function for that example, producing

a Loss-Augmented energy. This idea is similar to the concept of margin re-scaling in

structured SVMs, a similarity that has been highlighted previously by [42] and [147].
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2.3.4 Maximum-margin learning

An alternative method to training structured linear model is based on the maximum-

margin Markov networks [133]. Maximum margin structured learning is a large-margin

method for learning the parameters of structured output models, such as CRFs. Given

the parameters w, a structured model predicts the labeling y ∈ Y for a given input

x ∈ X by maximizing some score function Sw : X× Y→ R, i.e.,

ŷ = arg max
y∈Y

Sw(x, y) = arg max
y∈Y

wTΨ(x, y) (2.61)

The score is usually expressed as a linear function of w and can be written as

wTΨ(x, y), where the vector Ψ(x, y) is the feature map or sufficient statistics corre-

sponding to the input x and the labeling y. The fundamental properties of random

fields imply that the feature map Ψ(x, y) and hence the score Sw decompose into sums

over individual nodes and edges for any pairwise CRFs [12].

Discriminative learning uses the labeled training data to learn the CRF parame-

ters so that the inferred labeling of the CRF is “close” to that of the ground truth,

defined as yielding a low loss. More specifically, given a set of N training examples

D = ((x1, y1), . . . , (xN , yN )) where xi ∈ X is an input example, such as the image or

features associated to it, and yi ∈ Y is the associated labeling, the learning task con-

sists in finding model parameters w that achieve low empirical loss subject to some

regularization. In other words, we seek

w∗ = arg min
w

L(D,w)

= arg min
w

∑
(xn,yn)∈D

l(xn, yn,w) +R(w), (2.62)

where l is the surrogate loss function and R(w) is the regularizer (typically mini-

mizing the L2 norm). The most common choice for the surrogate loss l is the hinge

loss, as used in [133, 136] and defined as:

l(Y n, Y ∗,w) = [Sw(Y ∗) + ∆(Y n, Y ∗)− Sw(Y n)]+ (2.63)

Note that the definition of the surrogate loss l depends on the score function Sw,

since the goal of learning is to make the maximizer of Sw a desirable output for the

given input.
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The structured SVM approach proposed in [136] formulates the parameter learning

problem as a quadratic program (QP) with soft margin constraints:

min
w,ξ≥0

1

2
||w||2 + C

N∑
n=1

ξn (2.64)

s.t. ∀n : Sw(xn, yn) ≥ max
y∈Yn

(Sw(x, y) + ∆(yn, y))− ξn,

where Yn is the set of all possible labellings for example n, the constant C controls

the trade-off between margin and training error, and the task loss ∆ measures the

closeness of any inferred labeling y to the ground truth labeling yn.

The above quadratic program involves a very large, possibly infinite number of

linear inequality constraints. In general, the number of inequalities is too large to be

optimized over explicitly. Instead, a cutting plane method was proposed in [136]. This

method repetitively finds a constraint that is violated and uses it to construct a working

set. It then solves the problem with the constraints contained in the working set, and

if this solution still does not satisfy all the constraints, another violating constraint

is generated and added to the set. This continues until we have accumulated enough

constraints so that all constraints are satisfied in the solution. One of the contributions

of this thesis presented in Chapter 5 is a new training method based on stochastic

subgradient descent.
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CHAPTER

THREE

SUPERVOXEL-BASED SEGMENTATION OF

MITOCHONDRIA IN EM IMAGE STACKS WITH LEARNED

SHAPE FEATURES

3.1 Introduction

In Section 1.4, we emphasized the challenges posed with biomedical images due to

noise and other distracting structures present in such images. In this chapter, we will

present a graph partitioning method that overcomes these limitations and demonstrate

its effectiveness for segmenting mitochondria in 3D EM images.

In addition to providing energy to the cell, mitochondria play an important role in

many essential cellular functions including signaling, differentiation, growth and death.

An increasing body of research suggests that regulation of mitochondrial shape is crucial

for cellular physiology [20]. Furthermore, localization and morphology of mitochondria

have been tightly linked to neural functionality. For example, pre- and post- synaptic

presence of mitochondria is known to have an important role in synaptic function [78].

Mounting evidence also indicates that there is a close link between mitochondrial

function and many neuro-degenerative diseases. Mutations in genes that control fusion

and division events have been found to cause neurodegenerative processes [62]. For

example, mutations of the gene coding for a protein kinase called PINK1, which is

known to regulate mitochondrial division, have been linked to a type of early-onset

Parkinson’s disease [111].
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Unfortunately, because mitochondria range from less than 0.5 to 10 µm in diame-

ter [19], optical microscopy does not provide sufficient resolution to reveal fine struc-

tures that are critical to unlocking new insights into brain function. Recent Electron

Microscopy (EM) advances, however, have made it possible to acquire much higher

resolution images, and have already provided new insights into mitochondrial structure

and function [94]. The data used in this work were acquired by a focused ion beam

scanning electron microscope (FIB-SEM, Zeiss NVision40), which uses a focused beam

of gallium ions to mill the surface of a sample and an electron beam to image the

milled face [63]. The milling process removes approximately 5nm of the surface, while

the scanning beam produces images with a pixel size of 5×5nm. Repeated milling and

imaging yielded nearly isotropic image stacks containing billions of voxels, such as the

ones appearing in Figure 1.5.

Analyzing such an image stack by hand could require months of tedious manual

labor [95] and, without reliable automated image-segmentation tools, much of this

high quality data would go unused. This situation arises in part from the fact that

most state-of-the-art EM segmentation algorithms [59, 100] were designed for highly

anisotropic EM modalities, such as Transmission Electron Microscopy (TEM). Such

data tends to have a greatly reduced resolution in the z-direction, and associated seg-

mentation algorithms often process slices individually to deal with the missing data.

Our approach processes large 3D volumes in a single step, which is advantageous for

isotropic FIB-SEM stacks. More generic Computer Vision algorithms that perform

well on natural image benchmarking data sets such as the Pascal VOC (Visual Object

Classes) data set [26] perform poorly on EM data, whether it is isotropic or not. There

are several reasons for this. The amount of data in a typical EM stack is a major bottle-

neck, rendering these approaches intractable both in terms of memory and computation

time. Furthermore, these approaches rarely account for important shape cues and often

rely only on local statistics which can easily become confused when confronted with

the noise and textures found in EM data. Finally, the conventional assumption that

strong image gradients always correspond to significant boundaries does not hold, as

illustrated in Figure 1.5.

Our approach overcome the challenges presented by EM datasets by combining the

following components.
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• Operating on supervoxels instead of voxels. We cluster groups of similar

voxels into regularly spaced supervoxels of nearly uniform size, which are used

to compute robust local statistics. This reduces the computational and mem-

ory costs by several orders of magnitude without sacrificing accuracy because

supervoxels naturally respect image boundaries.

• Including global shape cues. The supervoxels are connected to their neigh-

bors by edges and form a graph. Most graph segmentation techniques rely only

on local statistics to partition the graph, ignoring important shape information.

We introduce features that capture non-local shape properties and use them to

evaluate how likely a supervoxel is to be part of the target structure.

• Learning boundary appearance. EM data is notoriously complex, violating

the standard assumption that strong image gradients always correspond to signifi-

cant boundaries. Spatial and textural cues must be considered when determining

where true object boundaries lay. We therefore train a classifier to recognize

which pairs of supervoxels are most likely to straddle a relevant boundary. This

prediction determines which edges of the supervoxel graph should most likely be

cut during segmentation.

We demonstrate our approach for the purpose of segmenting mitochondria in two

large FIB-SEM image stacks taken from the CA1 hippocampus and the striatum regions

of the brain. We show that our approach performs close to the level of a human annota-

tor and is much more accurate than a state-of-the-art 3D segmentation approach [125].

3.2 Related Work

In this section, we begin by examining previous attempts to segment mitochondria. We

then broaden our discussion to include the use of machine learning techniques for other

tasks in EM imagery. Finally, we discuss methods that rely on a graph partitioning

approach to segmentation.

3.2.1 Mitochondria Segmentation

As discussed in the introduction, understanding the processes that regulate mitochon-

drial shape and function is important. Perhaps due to the difficulty in acquiring the
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data, relatively few researchers have attempted to quantify important mitochondria

properties in recent years. In [146], a Gentle-Boost classifier is trained to detect mito-

chondria based on textural features. In [101], texton-based mitochondria classification

of melanoma cells is performed using a variety of classifiers including k-NN, SVM, and

Adaboost. While these techniques achieve reasonable results, they consider only tex-

tural cues while ignoring shape information. A recent approach, described in in [125],

using state-of-the-art features and a Random Forest learning approach for segmenta-

tion has been successfully applied to 3D EM data in [70]. We compare our approach

to [125] in Section 3.4.

In [103], shape-driven watersnakes that exploit prior knowledge about the shape of

membranes are used to segment mitochondria from the liver. However, this approach

is adapted to anisotropic TEM data. Recently, new features have been introduced to

segment mitochondria in neural EM imagery. Ray features, first introduced in [124],

were applied to 2D mitochondria segmentation in [89]. Inspired by Ray features,

Radon-like features were proposed in [73], but have shown to perform significantly

worse than Ray features in [139].

3.2.2 Machine Learning in EM Imagery

Besides mitochondria segmentation, machine learning techniques have found their way

into other tasks in EM imagery including membrane detection and dendrite recon-

struction. We refer the reader to [54] for an excellent survey covering some of these

applications. EM data poses unique challenges for machine learning algorithms. In

addition to the large number of voxels involved, a variety of sub-cellular structures ex-

ist including mitochondria, vesicles, synapses, and membranes. As seen in Figure 1.5,

these structures can be easily confused when only local image statistics are considered,

especially given the often low signal-to-noise ratio of the data. This is one of the reasons

why algorithms that perform well on natural images are far less successful on EM data.

While a large body of research is dedicated to segmenting axons and dendrites from

EM data, only a small faction uses a machine learning approach. In [53], a Convo-

lutional Network (CN) performs neuronal segmentation by binary image restoration.

This work is extended in [52] by incorporating topological constraints. In [137], CNs are

used to predict an affinity graph that expresses which pixels should be grouped together

using the Rand index [115], a quantitative measure of segmentation performance. In
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Figure 3.1: Segmenting an image stack into supervoxels. (left) A cropped FIB-SEM image

stack containing a mitochondrion. (right) The cropped stack is segmented using the SLIC

algorithm into groups of similar voxels called supervoxels. For visualization, supervoxels

in the center of the image stack have been removed, leaving supervoxels belonging to the

mitochondrion interior and on the caps of volume. Boundaries between supervoxels are

marked in black. Notice that voxels with similar intensities are grouped while respecting

natural boundaries.

another recent approach [59], a random forest classifier is used in a cost function that

enforces gap-completion constraints to segment TEM slices.

Machine learning techniques have also been applied to detect membranes, a com-

mon preprocessing step in registration and axon/dendrite reconstruction. In [57], Neu-

ral Networks relying on feature vectors composed of intensities sampled over stencil

neighborhoods are trained to recognize membranes in TEM image stacks. In [143],

an Adaboost classifier is trained to detect cell membranes based on eigenvalues and

Hessian features. A hierarchical random forest classification scheme is used to detect

boundaries and segment EM stacks in [7].

3.2.3 Segmentation by Graph-Partitioning

While active contours and level sets have been successfully applied to many medical

imaging problems [107], they suffer from two important limitations: each object re-

quires individual initialization and each contour requires a shape prior that may not

generalize well to variations in the target objects. EM image stacks contain hundreds of

mitochondria, which vary greatly in size and shape. Proper initialization and definition

of a shape prior for so many objects is problematic.

In recent years, graph partitioning approaches to segmentation have become pop-

ular. They produce state-of-the-art segmentations for 2D natural images [28, 120],
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generalize well, and unlike level sets and active contours, their complexity is not af-

fected by the number of target objects. In 2010, the top two competitors [21, 37] in

the VOC segmentation challenge [26] relied on such techniques. Graph partitioning ap-

proaches minimize a global objective function defined over an undirected graph whose

nodes correspond to pixels, voxels, superpixels, or supervoxels; and whose edges con-

nect these nodes [2, 14, 18]. The energy function is typically composed of two terms:

the unary term which draws evidence from a given node, and the pairwise term which

enforces smoothness between neighboring nodes. Some works introduce supplementary

terms to the energy function, including a term favoring cuts that maximize the object’s

surface gradient flux [65]. This alleviates the tendency to pinch off long or convoluted

shapes, which is important when tracking elongated processes [100]. However, as noted

in [59], it cannot entirely compensate for weakly detected membranes and further terms

may have to be added.

A shortcoming of standard graph partitioning methods, as we will discuss in Sec-

tion 3.3.3, is that most do not consider the shape of the segmented objects.

3.3 Method

The first step of our approach is to over-segment the image stack into supervoxels,

small clusters of voxels with similar intensities. All subsequent steps operate on su-

pervoxels instead of individual voxels, speeding up the algorithm by several orders of

magnitude. This step is described in Section 3.3.1. Next, a feature vector containing

shape and intensity information is extracted for each supervoxel, as described in Sec-

tion 3.3.2. The final segmentation is produced by feeding the extracted feature vectors

to classifiers that define the unary and pairwise potentials of a graph cut segmentation

step described in Section 3.3.3. The learning procedure and a list of parameters are

provided in Section 3.4.

3.3.1 Supervoxel Over-segmentation

Many popular graph-based segmentation approaches such as graph cuts [14] become

exponentially more complex as nodes are added to the graph. In practice, this limits

the amount of data that can be processed. EM stacks can contain billions of voxels,

making such methods intractable both in terms of memory and computation time. Even
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Algorithm 2 SLIC Supervoxels

/∗ Initialization ∗/
Initialize cluster centers Ck = [Ik, uk, vk, zk]

T by sampling voxels at regular grid

steps S.

Move cluster centers to the lowest gradient position in a 3× 3× 3 neighborhood.

Set label l(i) = −1 for each voxel i.

Set distance d(i) =∞ for each voxel i.

repeat

/∗ Assignment ∗/
for each cluster center Ck do

for each voxel i in a 2S × 2S × 2S neighborhood surrounding Ck do

Compute distance δik between Ck and voxel i.

if δik < d(i) then

set d(i) = δik

set l(i) = k

end if

end for

end for

/∗ Update ∗/
Compute new cluster centers.

Compute residual error E.

until E ≤ threshold

/∗ Post-processing ∗/
Enforce connectivity.
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Figure 3.2: Supervoxel size and compactness as a function of parameters m and S of

Equation 3.1. (top left) A cropped EM slice containing three mitochondria. (middle left)

Typical supervoxels sizes for S = 10, S = 20, and S = 30. (bottom left) Standard deviation

of supervoxel size as a function of varying m. (right) A matrix of supervoxel segmentations

showing the effect of varying m and S. Increasing m produces more compact, regular

supervoxels. Increasing S increases supervoxel size. Note that supervoxels are three-

dimensional, yet the images above show only a two-dimensional slice of each supervoxel.
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for moderately-sized stacks, standard minimization techniques [66, 68, 153] become

intractable. By replacing the voxel-grid with a graph defined over supervoxels, we

reduce the complexity by several orders of magnitude while sacrificing little in terms

of segmentation accuracy.

To efficiently generate high-quality supervoxels, we extend our earlier superpixel

algorithm, simple linear iterative clustering (SLIC) [5], to produce 3D supervoxels such

as those depicted in Figure 3.1. The approach used in SLIC is closely related to

k-means clustering, with two important distinctions. First, the number of distance

calculations in the optimization is dramatically reduced by limiting the search space to

a region proportional to the supervoxel size. Second, a novel distance measure combines

intensity and spatial proximity, while simultaneously providing control over the size and

compactness of the supervoxels.

The supervoxel clustering procedure is summarized in the table marked Algorithm 2.

Initial cluster centers are chosen by sampling the image stack at regular intervals of

length S in all three dimensions. The number of supervoxels k and the number of voxels

in the volume N determines the length, S =
√
N/k. Next, the centers are moved to the

nearest gradient local minimum. The algorithm then assigns each voxel to the nearest

cluster center, recomputes the centers, and iterates. After n iterations, the final cluster

members define the supervoxels.

SLIC is many times faster than standard k-means clustering thanks to a distance

function measuring the spatial and intensity similarities of voxels within a limited

2S × 2S × 2S region

δik =

√
(Ik − Ii)2

m2
+

(uk − ui)2 + (vk − vi)2 + (zk − zi)2
S2

, (3.1)

where I is image intensity; ui, vi, and zi are the spatial coordinates of voxel i; uk, vk,

and zk are those of cluster center k. Normalizing the spatial proximity and intensity

terms by S and m1 allows the distance measure to combine these quantities which have

very different ranges. Simply applying a Euclidean distance without normalization

would result in clustering biased towards spatial proximity. Supervoxel compactness

is regulated by m. As seen in Figure 3.2, higher m values produce more compact

1 S and m are the average expected spatial and intensity distances within a supervoxel, respectively.

m can be adjusted to control compactness.
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supervoxels while lower m values produce less compact ones that more tightly fit the

image boundaries.

To ensure that the total number of distance calculations remains constant in N ,

irrespective of k, the distance calculations are limited to a 2S×2S×2S volume around

the cluster centers. This makes the complexity O(N), whereas a conventional k-means

implementation would be of complexity of O(kN) where N is the number of voxels.

A post-processing step enforces connectivity because the clustering procedure does

not guarantee that supervoxels will be fully connected. Orphan voxels are assigned to

the most similar nearby supervoxels using a flood-fill algorithm. We refer the interested

reader to [4] for further details.

We found SLIC to be particularly well adapted to EM segmentation as it deliv-

ers high quality supervoxels efficiently, provides size and compactness control, and can

operate on large volumes. Besides SLIC, only a few algorithms are designed to gener-

ate supervoxels. In [142], supervoxels are obtained by stitching together overlapping

patches followed by optimizing an energy function using a graph cuts approach. How-

ever, this approach performs worse than SLIC in terms of segmentation quality using

standard measures [4], consumes too much memory, and it is 20 times slower with a

worst case complexity is O(N2). A second alternative is to apply the watershed algo-

rithm [144] to generate supervoxels, as used in [7, 84]. However, the size and quality

of the watershed supervoxels are unreliable. Finally, other popular superpixel methods

could potentially be extended to 3D, including Quickshift [140], Turbopixels [81], and

the method of [28]. However, these methods all produce lower quality segmentations

than SLIC in 2D [4], and are orders of magnitude slower: 13, 164 and 5 times slower, re-

spectively. They also require much more memory. These comparisons are documented

in [4].

3.3.2 Feature Vector Extraction

After extracting supervoxels, the next step of the algorithm is to extract feature vectors

that capture local shape and texture information. For each supervoxel i, we extract a

feature vector fi combining Ray descriptors and intensity histograms, written as

fi = [fRay
i

>
, fHist

i
>

]> , (3.2)
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Figure 3.3: Ray feature function r(I, ci, θl, γl). All components of the Ray descriptor

depend on this basic function. For a given location ci, it returns the location of the closest

boundary point r in direction l defined by angles (θl, γl). dl is the corresponding distance

from ci to the boundary.

where fRay
i represents a Ray descriptor and fHist

i represents an intensity histogram. For

simplicity, we omit the i subscript in the remainder of the section.

3.3.2.1 Ray Descriptors

Rays are a class of image features introduced in [124] that capture non-local shape infor-

mation around a given point. We extend Ray features to 3D in this work, and propose a

method for bundling a set of Ray features into a rotationally invariant descriptor. Ray

features are attractive because they provide a description of the local shape relative to

a given location. This formulation fits naturally into a graph partitioning framework

because Rays can provide a description of the local shape for locations corresponding

to every node in the graph. Descriptors commonly used for shape retrieval that rely on

skeletonization or contours, including distance sets [40] and Lipschitz embeddings [46],

do not have this property.

A Ray feature is computed by casting an imaginary ray in an arbitrary direction

(θl, γl) from a point c, and measuring an image property at a distant point

r = r(I, ci, θl, γl) (3.3)

where the ray encounters an edge (depicted in Figure 3.3). In our implementation, edges

are found by applying a 3D extension of the Canny edge detection algorithm [50].

For supervoxel i, we construct a Ray descriptor by concatenating a set of 3L Ray

features emanating from the supervoxel center ci, where L is a fixed set of orientations.

The L orientations are uniformly spaced over a geodesic sphere, as depicted in Fig-

ure 3.4, and defined by polar angles Θ = {θ1, . . . , θL} and Γ = {γ1, . . . , γL}. The Ray
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(a) L Rays cast on a geodesic sphere.

(b) The fndist descriptor ordered according to the

canonical orientation defined by n1 and n2.

n1 n2

(c) A cropped EM image stack containing a

mitochondrion. Edges appear in white.

(d) L Rays cast from ci in the mitochondrion to

the closest surface boundary. Principle axes e1

and e2 appear in green and red.

(e) The fndist descriptor re-ordered into the

canonical orientation defined by e1 and e2. e2

e1

Figure 3.4: Rotation invariant 3D Ray descriptor. (a)-(b) depict the Ray descriptor cast

from the center of a unit sphere. The two axes defining the orientation of the descriptor n1

and n2 are shown in green and red, respectively. (c) shows a cropped volume containing

a mitochondria with boundaries highlighted in white. The white point corresponds to the

location of the Ray descriptor in (d)-(e). e1 and e2 are used to estimate the orientation

of the descriptor and are aligned to the canonical orientation.
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descriptor for supervoxel i in an image stack I at orientation (θl, γl) is written

fRay(I, ci, θl, γl) = [fndist, fnorm, fori]
>, (3.4)

where individual Ray features are given by

fndist(I, ci, θl, γl) =
‖r(I, ci, θl, γl)− ci‖

D
,

fnorm(I, ci, θl, γl) = ‖∇I(r(I, ci, θl, γl))‖ , (3.5)

fori(I, ci, θl, γl) =
∇I(r(I, ci, θl, γl))

‖∇I(r(I, ci, θl, γl))‖
· r− ci
‖r− ci‖

,

and ∇I is the gradient of the image stack.

In other words, each descriptor fRay contains three Ray features that measure image

characteristics at the nearest edge point r given by Equation 3.3. The features in

Equation 3.5 are

• fndist, the most basic feature, simply encodes the distance from ci to the closest

edge dl = ‖r(I, ci, θl, γl) − ci‖. It is made scale-invariant by normalizing by D,

the mean distance over all L directions,

• fnorm, the gradient norm at r,

• fori, the orientation of the gradient at r computed as the dot product of the unit

Ray vector and a unit vector in the direction of the local gradient at r.

The final step is to align the descriptor to a canonical orientation, making it rotation

invariant. It is important that the descriptor is the same no matter the orientation of the

mitochondria, otherwise the learning step would have difficulty finding a good decision

boundary. In Figure 3.4(a), two perpendicular axes n1 and n2 define a canonical frame

of reference for the descriptor. These axes are assigned specific locations in the feature

vector shown in Figure 3.4(b), and all other elements are ordered according to their

angular offsets from n1 and n2. To achieve rotational invariance, we re-order the

descriptor such that n1 and n2 align with an orientation estimate.

To obtain an orientation estimate, Principle Component Analysis (PCA) is applied

to the set of Ray terminal points, yielding two orthogonal vectors e1 and e2 in the

directions of maximal variance of the local shape. Because e1 and e2 do not necessarily

correspond to any of the Ray vectors, we pick the two closest Ray vectors e1 and e2 to
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be the principle axes, as shown in Figure 3.4(d). Finally, the extracted feature vector

is re-ordered into the canonical orientation such that e1 and e2 correspond to n1 and

n2, as shown in Figure 3.4(e). Note that the accuracy of the pose estimation depends

on the number of Rays in the descriptor.

3.3.2.2 Histogram Features

Recall from Equation 3.2 that the feature vector f contains intensity histograms fHist

extracted for a given supervoxel i and its neighborhood. It complements the Ray

features by providing low level intensity and texture cues. We tried several types of local

texture and intensity features, including local binary patterns [90] and DAISY [135], but

found that a simple histogram computed from a supervoxel i and its set of neighboring

supervoxels N yields the best results. fHist is a concatenation of two b-dimensional

histograms. The first one is extracted from the central supervoxel i, and the second

from all supervoxels belonging to the neighborhood N of i. We write

fHist(I, i) =

h(I, i, b),
1

|N|
∑
j∈Ni

h(I, j, b)

> , (3.6)

where h(I, j, b) is a histogram extracted from I over the voxels contained in supervoxel

j. Including the neighbors is necessary, because individual supervoxels are not very

discriminative as their intensities are nearly uniform by design.

3.3.3 Graph Cuts with Learned Potentials

The final step of our approach is to segment mitochondria using a graph cuts approach

where the unary and pairwise potentials of the energy function incorporate shape cues

and learned boundary appearance.

3.3.3.1 Energy Function

Graph partitioning approaches minimize a global objective function defined on an undi-

rected graph G = (V,E). In our work, nodes i correspond to supervoxels and edges

connect neighboring supervoxels [2, 14, 18]. Our energy function takes the standard
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form,

E(y|x, λ) =
∑
i∈V

ψ(yi|xi)︸ ︷︷ ︸
unary term

+ λ
∑

(i,j)∈E

φ(yi, yj |xi, xj)︸ ︷︷ ︸
pairwise term

, (3.7)

where E is the set of edges and yi ∈ {0, 1} is a class label assigned to i corresponding to

the foreground and the background. The so-called unary term ψ encourages agreement

between a node’s label yi and the local image evidence xi. φ is known as the pairwise

term, which promotes consistency between labels of neighboring nodes i and j. The

weight λ controls the relative importance of the two terms.

We segment the image stack by finding a graph cut that minimizes the energy

function of Equation 3.7. When the pairwise term is submodular1, which is the case

in our formulation, a global minima of the energy function can be found using the

mincut-maxflow algorithm [39]. This results in an optimal labeling

ŷ = arg min
y

E(y|x, λ). (3.8)

However, following this standard approach does not mean that resulting segmenta-

tions are necessarily perfect, or even good. This is because, as is the case in most other

works, the criterion being minimized fails to take shape information into account, even

though it is crucial for effective segmentation. Another contributing factor is that the

standard pairwise term fails to properly encode the likelihood that edges correspond

to mitochondrial membranes, due to the noisy nature of EM data and presence of dis-

tracting membranes. In the following subsections, we propose machine learning based

solutions to these shortcomings.

3.3.3.2 Learned Shape Cues in the Unary Term

We train a Support Vector Machine (SVM) classifier to predict the unary term in

Equation 3.7 using the feature vector f defined in Section 3.3.2. Because f includes

rotationally invariant shape cues in the form of the Ray descriptor, the SVM injects

1 The submodularity condition requires (1) that the unary term ψ(yi|xi) be positive. This is

achieved by adding a constant to the energy without affecting the minimum. Submodularity also

requires (2) that the pairwise term φ(yi, yj |·) satisfies the following condition: φ(0, 0|·) + φ(1, 1|·) ≤
φ(0, 1|·) + φ(1, 0|·). Note that the minimum energy of binary submodular functions can be found in

polynomial time [67].

53



3. SUPERVOXEL-BASED SEGMENTATION OF MITOCHONDRIA IN
EM IMAGE STACKS WITH LEARNED SHAPE FEATURES

important shape information into the unary term, which is taken to be

ψ(yi|xi) =
1

1 + Pψ(yi|xi)
, (3.9)

where yi = 0 indicates background, yi = 1 indicates foreground, and Pψ represents

the probability that i is within a mitochondria. Because the mitochondria have thick

boundaries with specific gray-level statistics, the classifier is trained using manually an-

notated data with three labels {BG,BD,MI}, corresponding to background, boundary,

and mitochondria instead of only background and mitochondria. Empirically, we found

that introducing an explicit boundary class improved the classifiers’ ability to recog-

nize mitochondrial membranes from other membranes in the image stack. Thus, the

SVM returns probabilities of being within a mitochondria P (MI|xi), within the bound-

ary P (BD|xi), or outside P (BG|xi). Since the boundary label separates background

regions from mitochondria regions, we write

Pψ(yi|xi) =

{
P (BG|xi) , if yi = 0 ,
P (BD|xi) + P (MI|xi) , otherwise .

(3.10)

A three-way one-vs-rest SVM classifier was used to estimate Pψ, using a Radial Basis

Function (RBF) kernel whose parameters were optimized through cross validation to

minimize the estimated generalization error.

Only a few previous graph-partitioning methods have attempted to incorporate

shape information into the energy function, having done so only for 2D images. They

can be categorized as either template or fragment-based. The first category fits shape

templates to the image in an alignment or detection step. Templates represent target

objects as either contours [32] or silhouettes [1, 79, 100], which are learned or painstak-

ingly constructed beforehand. Typically, a distance transform from the template is

used to modulate the potential functions. The complexity of these types of approaches

and the difficulty of simultaneously aligning multiple templates have restricted previous

works to segment singular well-centered objects.

Fragment-based approaches match image patches extracted around a graph node

to a predefined fragment code book in an attempt to encode shape information [3, 72].

However, for highly deformable objects such as mitochondria, an extremely large code

book is necessary, making such an approach prohibitively expensive.
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3.3.3.3 Learned Boundary Appearance in the Pairwise Term

Most graph-partitioning approaches define the pairwise term as a simple function which

favors cutting edges at locations of abrupt color or intensity changes, such as the one

proposed in [14]

φ(yi, yj |xi, xj) =

{
exp

(
− ||xi−xj ||

2

2σ2

)
, if yi 6= yj

0 , otherwise,
(3.11)

where the observation xi is simply Ii, the intensity taken from node i, and σ is a

constant. However, in EM imagery containing many distracting contours, this may

backfire and result in erroneous cuts either along one of the many membranes found in

the data or through a mitochondrial cristae.

We address this problem by learning from the data what types of image charac-

teristics indicate a true object boundary and incorporating this information into the

pairwise potential. The pairwise term φ is defined as

φ(yi, yj |xi, xj) =

{
1

1+Pφ(yi,yj |xi,xj) , if yi 6= yj ,

0 , otherwise,
(3.12)

where Pφ is the SVM output probability that i is within the mitochondria and i’s

neighbor j is outside. In our application, relevant boundaries are characterized by a

very dark membrane separating bright cytoplasm on the exterior, and the dark textured

interior of the mitochondria on the interior, as seen in Figure 1.5. We therefore train the

second three-way SVM using concatenated feature vectors from neighboring supervoxels

i and j

fi,j = [f>i , f>j ]>, (3.13)

where fi and fj are the feature vectors extracted from the individual supervoxels. The

resulting classifier assigns probabilities to one of the three classes yij = {0, 1, 2} where

class 0 corresponds to BD-BG pairs, class 1 corresponds to BD-BD pairs, and class 2

corresponds to any other combination ∗∗-∗∗ of ground truth labels

Pφ(yi, yj |xi, xj) =


P (yij = 0|xi, xj) , if yi 6= yj ,

P (yij = 1|xi, xj) +

P (yij = 2|xi, xj) , otherwise.

(3.14)

Very few other works use a more sophisticated pairwise potential than that of

Equation 3.11. While some incremental extensions based on Laplacian zero-crossings,
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gradient orientations, and local histograms exist [98], very few works go much further.

A recent exception can be found in [2], where the authors define an interaction term that

encodes geometric relations between multi-region objects. In [112], a set of boundary

pixels extracted with an edge detector are pruned using a classifier such that only class-

specific edges remain. These edges are attenuated in the pairwise term of the graph

cuts segmentation.

3.4 Results

In this section, we first provide details related to the experimental setup and the FIB-

SEM data. We then list the parameters we used and describe the learning procedure.

We then present our mitochondria segmentation results, investigate some of the trade-

offs of our approach, and finally compare our approach to a state-of-the-art method.

3.4.1 Experimental Setup

The data used in our experiments, shown in Figure 1.5, come from two different loca-

tions in the brain. The first image stack represents a 5× 5× 5 µm section taken from

the CA1 hippocampus, corresponding to a 1024 × 1024 × 1000 volume which contains

N ≈ 109 total voxels. The resolution of each voxel is approximately 5 × 5 × 5 nm.

The second section measures approximately 9 × 5 × 2.5 µm, and was taken from the

striatum, a subcortical brain region. This image stack contains 1536×872×318 voxels,

with a 6× 6× 7.8 nm resolution.

Because of the forbiddingly large amount of labor involved in generating an accurate

ground truth for such large volumes, we annotated sub-volumes for training and testing

purposes. The testing sub-volume for the CA1 hippocampus consists of the first 165

slices of the 1024×1024×1000 image stack, as indicated by the dotted line in Figure 1.5.

A separate image stack from another hippocampus sample containing 200 similarly sized

slices was annotated for training our algorithm.

For the striatum, the 1536× 872× 318 volume was fully annotated and split into a

training and test set, as indicated in Figure 1.5.

Each of these sub-volumes had a size of 768 × 872 × 318. The results provided

in Figure 3.6 and Table 3.2 are computed on the test sub-volumes after training the

classifiers on the training sub-volumes. The segmentations shown in the top row of
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Figure 3.5 are over the entire 1024×1024×1000 image stack for the hippocampus data

including the test volume and unannotated data, while the striatum segmentations are

shown only for the test sub-volume.

3.4.2 Parameters and Implementation Details

A summary of parameters used in our experiments is provided in Table 3.1. The

sampling interval S for supervoxel centers introduced in Section 3.3.1 was chosen em-

pirically. The resulting supervoxels contain approximately 1000 voxels on average.

Supervoxels of this size typically fit within the membranes which helps to ensure that

superpixels do not straddle boundaries. As discussed in Section 3.4.4.1, using supervox-

els decreases the computational complexity by several orders of magnitude as compared

to what would have been required to operate directly on voxels. A strength of the SLIC

supervoxel generation scheme is that S value can be adapted if the image resolution

were to be changed. The compactness factor m was chosen empirically and provides a

good compromise between compactness and boundary adherence. The typical neigh-

borhood size of a supervoxel is |N| ≈ 8 for the m and S values given in Table 3.1.

The ray descriptors fRay of Equation 3.4 are 3L = 126 dimensional vectors, con-

sisting of 3 Ray feature types and L orientations. We have found L = 42 to be a good

trade-off between computational complexity and angular resolution for the rotational

alignment discussed at the end of Section 3.3.2. Rays terminate when they encounter

edges found in a 3D Canny edge map [50], whose parameters σG, σC , tl, and tu must

be tuned to the data. Because the Canny edge detector can easily miss edges or add

spurious ones, we increase robustness by shooting rays from 5% of the voxels within

each supervoxel—50 in our case—for each direction and average the results. It is those

averages that we use for classification.

All parameters of our algorithm were fixed for both data sets, except for parameters

related to the 3D canny edge detector which was adjusted due to differences in contrast

between the two data sets.

3.4.3 Experiments and Evaluation

We evaluate our segmentation in terms of the so-called Jaccard index, or VOC score [26]

to measure segmentation quality when ground-truth data is available. It is computed
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Table 3.1: Parameters and Settings

Parameter Value(s) Notes

S 10 Normalized spatial distance. Controls the number

of voxels per supervoxel.

m 40 Normalized intensity distance. Controls supervoxel

compactness.

n 5 Number of iterations required for supervoxel

clustering to converge.

L 42 Number of Ray directions. Corresponds to vertices

on a geodesic sphere.

ρ ≈ 50 Number of Ray features computed per supervoxel.

σG 9 Variance of Gaussian derivative filter used to

compute gradient in fori and fnorm.

σC (8,10) Variance used in 3D Canny edge detection for

(CA-1 Hippocampus, Striatum).

tl (8,14) Lower threshold used in 3D Canny edge detection

for (CA-1 Hippocampus, Striatum).

tu (16,27) Upper threshold used in 3D Canny edge detection

for (CA-1 Hippocampus, Striatum).

b 10 Number of histogram bins. fHist concatenates two

b-bin histograms from i and i’s neighborhood.
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Figure 3.5: Segmentation of mitochondria from FIB-SEM image stacks and 3D recon-

structions. We applied our approach to two FIB-SEM test stacks acquired from different

brain regions. The left column shows the 3D reconstructions of extracted mitochondria.

Renderings were produced using V3D [109]. The right column shows segmentation results

on individual image slices taken from the image stack. Automatically segmented mito-

chondria are marked by red contours. Most mitochondria are correctly segmented, but

some mistakes remain. Failure modes are indicated by black arrows. (a) Dendritic or

axonal membranes in close proximity to a mitochondrion can confuse our algorithm, caus-

ing it to include part of the nearby membrane with the mitochondrion. (b) Occasionally,

neighboring mitochondria are erroneously merged by the smoothness constraint in graph

cuts when the space between the membranes is very small. (c) A cluster of vesicles is

mistaken for a mitochondrion. The texture of vesicles can appear deceptively similar to

that of mitochondria.
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Figure 3.6: Segmentation results. First row: Supervoxels vs. regular cubes. We compare

segmentation results obtained using SLIC supervoxels of size S = 10 to simple 10×10×10

cubes. Supervoxels, which respect boundaries in the image stack, significantly outperform

the cubes while similarly reducing computational complexity. Second row: Contributions

of our approach. The dashed blue line labeled “Standard, fHist” represents a baseline

result obtained by using a unary term that only depends on the histogram features of

Equation 3.6 and a contrast-based pairwise term given in Equation 3.11. Replacing this

pairwise term by the learned one of Equation 3.12 results in the improved solid blue curve

labeled “Learned, fHist.” An even larger improvement is obtained by introducing the Ray

features of Equation 3.2, producing the green dashed curve labeled “Standard, f .” Finally,

combining the learned pairwise term and the Ray features yield the high quality result

denoted by the solid green curve labeled “Learned, f”. Last row: Comparing our approach

to Ilastik [125]. We trained the publicly available Ilastik software on the same data we used

to train our SVMs and evaluated the segmentations. The solid green curve was generated

using our approach. Results obtained using Ilastik appear in as yellow dotted lines.
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as

VOC =
True Pos

True Pos + False Pos + False Neg
, (3.15)

which is the ratio of the areas of the intersection between what has been segmented

and the ground truth, and of their union. As an alternative to the Jaccard index,

we also considered using the Rand index [52] which attempts to penalize topological

segmentation errors. However, since the Rand index does not account for all types

of topological errors and the Jaccard index is the de facto standard in the Computer

Vision community, we report our results using the latter.

Table 3.2 summarizes the segmentation results of our approach and several baseline

methods for the hippocampus and striatum test sets. Adding the Rays to the fea-

ture vector f = [fRay
i

>
fHist
i

>
]> (Standard f) is compared to histogram features alone

f = fHist (Standard fHist). We also report results for learning the pairwise term of

Equation 3.12 with the full feature vector (Learned f). Finally, Table 3.2 also contains

the results obtained using Ilastik [125], and results obtained by replacing the super-

voxels with regularly space cubes (Learned Cube f). The discussion in the next section

provides further details for each method.

The VOC scores reported in Table 3.2 were computed by fixing the value of λ to a

value determined through a cross-validation process on the training data. Typically, λ

ranged from 0.07 to 0.13.

In the left of Figure 3.5, 3D reconstructions of mitochondria extracted from the test

volumes using our approach are provided. In the right column of the same figure, seg-

mentation results on individual image slices are shown where segmented mitochondria

Table 3.2: Segmentation Results measured by the VOC Score [26]

Method

Ilastik Standard Learned Standard Learned

fHist Cube f f f

Hippocampus 61% 63% 68% 81% 84%

Striatum 58% 60% 60% 70% 74%
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are marked by red contours. The total training and processing time was 23 hours for

the hippocampus data set and 7 hours for the striatum data set on a 8-core Intel Xeon

CPU 2.4 GHz machine with 48 GB RAM.

3.4.4 Discussion

We now investigate several aspects of our approach in further detail. We will show the

computational advantages of SLIC supervoxels, the benefits of using Ray descriptors,

and the performance gained from learning the pairwise term. We also compare our

approach against the state of the art, and discuss failure modes of our approach.

These discussions refer to results appearing in the ROC-like curves appearing in

Figure 3.6. The ROC-like curves provided in Figure 3.6 explore points within the

operating regimes of the various method we discuss. To generate the curves in the first

two columns and the plain curves in the last row, we vary the value of λ, thus changing

the influence of the unary and pairwise terms in the energy function of our approach.

This results in variations in the true positive rate (TPR) and false positive rate (FPR)

of the segmentation, albeit in a non-linear fashion. These curves were generated by

jointly labeling supervoxels using information from their neighbors through graph cuts,

thus, strictly speaking, they are not ROCs. However, they still provide valuable insight

into how consistently our algorithm performs over a range of false positive rates. The

dotted lines in the last row of Figure 3.6 are true ROC curves and were obtained by

varying a classification or decision threshold for independent elements (supervoxels in

our case). Because Ilastik includes neither smoothing nor regularization, we plot results

obtained by thresholding the unary term of Equation 3.9 in our approach for a more

fair comparison. The dotted curves essentially compare Ilastik’s local texture features

to our shape and texture features. Note that thresholding the unary term does not

perform as well as our full approach but still better than Ilastik, indicating that the

features we use are better adapted to the task at hand.

3.4.4.1 Computational Advantage of SLIC Supervoxels

The major bottleneck in our approach is in applying graph-cuts, which has a worst case

complexity of O(|E| |V|2), where |E| is the number of edges and |V| is the number of ver-

tices [15]. Using supervoxels instead of voxels reduces |V| by several orders of magnitude

(a factor of 1000 given the parameters described in 3.4.2), and therefore significantly
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speeds up the processing. It is also important to note that memory limitations make

it impossible to process a graph of the size required by EM data sets such as ours on a

conventional computer. The graph-cuts implementation of [15] requires 40V+32E bytes

to store the graph on a 64-bit machine, which translates to a 227GB memory footprint

(for 6-connectivity) or a 852GB memory footprint (for 26-connectivity) for the graph

required by the CA1 hippocampus volume. Using supervoxels with our parameters

reduces the memory consumption to a more manageable size of 296MB.

As an alternative to supervoxels, one might consider downsampling the data to re-

duce processing time and memory consumption. However, doing so reduces the quality

of the segmentation. This is because supervoxels adhere to local image boundaries,

whereas downsampling does not. To demonstrate this effect, we compare segmenta-

tions obtained using our method with SLIC supervoxels to segmentations obtained

by replacing the supervoxels with regularly spaced 10 × 10 × 10 cubes, which have

roughly the same size but ignore boundaries. The results appear in Figure 3.6(a) and

Figure 3.6(b). Results using our method with SLIC supervoxels are denoted Learned,f

while the down-sampled results are labeled Cubes, Learned f.

It is clear that downsampling produces significantly worse segmentations than using

similarly sized SLIC supervoxels. Consequently, downsampling reduces the VOC score

by 14 to 16%, as shown in Table 3.2.

3.4.4.2 Benefits of Ray Descriptors

The Ray descriptor fRay in the feature vector of Equation 3.2 captures important

information about the shape of mitochondria. Without it, the feature vector contains

only local information provided by the intensity histograms fHist. To demonstrate

the importance of including shape information, we compare our method using the

full feature vector f = [fRay
i

>
fHist
i

>
]> to our method using only histogram features

f = fHist.

The results appear in Figure 3.6(c) and Figure 3.6(d). Blue lines denote the re-

sults obtained using f = fHist, while green lines incorporate the Ray features f =

[fRay> fHist>]>. Dashed lines and solid lines correspond to a standard or learned

pairwise term, which are discussed in the next section. Rays significantly improve the

segmentation performance. Without them, the VOC score drops by 18% (see Table 3.2).
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(a) Original image slice (b) Unary probabilities from

SVM of Equation 3.9

(c) Thresholded unary probabilities (d) Full approach (“Learned, f”)

Figure 3.7: Thresholding unary SVM predictions vs. our learned pairwise approach. (a)

Original image slice. (b) Unary mitochondria probability from SVM of Equation 3.9 (dark

pixels indicate probable mitochondria). (c) Segmentation results obtained by directly

thresholding (b). (d) Results obtained with our full approach using graph cuts with a

learned the pairwise term (“Learned, f”). The TPR was set to 85% in (c) and (d).

Looking at Figure 3.7, we can see the discriminative power of the combined fea-

ture vector. In Figure 3.7(b) the mitochondria probabilities output by the SVM of

Equation 3.9 are shown. Directly thresholding these probabilities already results in

reasonably good segmentations (Figure 3.7(c)).

3.4.4.3 Learning the Pairwise Term

Further improvement to segmentation performance is gained by learning the pairwise

term of Equation 3.12. Results obtained using the standard pairwise potential of [14],

which uses a gradient based approach of the form given in Equation 3.11, is shown in

Figure 3.6(c) and Figure 3.6(d) as dashed lines. Replacing this pairwise potential with
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one that learns which types of image characteristics indicate a true object boundary

(Equation 3.12) results in a significant increase in performance, as indicated by the

solid lines.

This corresponds to an increase in the VOC score by approximately 4%. In Fig-

ure 3.7(d), segmentation results using the learned pairwise term with graph cuts sig-

nificantly improves the segmentation produced by the unary term in Figure 3.7(c). For

the purpose of this experiment, we set σ = 1
2E[Îi−Îj ]2

in Equation 3.11, where Îi is the

average intensity within supervoxel i and E[.] denotes the expectation over supervoxels.

3.4.4.4 Comparing against a state-of-the-art method

The Interactive Learning and Segmentation Tool Kit (Ilastik) is a software package

for image classification and segmentation [125]. It allows for interactive labeling of

an arbitrary number of classes in data sets of various dimensionality. Similar to the

work of [101] which also segments mitochondria, Ilastik uses texture cues as well as

color and edge orientation in a machine learning framework to perform segmentation.

Ilastik’s Random Forest classifier can provide real-time feedback of the current classi-

fier predictions, allowing it to perform interactive or fully automatic classification and

segmentation.

We provided Ilastik with the same training data used to train our approach, and

compare its output to ours in Figure 3.6(e) and Figure 3.6(f). In addition to compar-

ing Ilastik to our full approach, we also plot results obtained by simply thresholding

probabilities of Equation 3.9 that define the unary term in the energy function. We do

this to provide a more fair comparison of our features against those of Ilastik, which

does not include a smoothing or regularization step.

While Ilastik achieves a reasonable segmentation, our approach consistently out-

performs it, even when using only the unary term. As shown in Table 3.2, our full

approach outperforms Ilastik by a margin of 23% on the hippocampus data and 16%

on the striatum, as measured by the VOC score. Example segmentations comparing

our method to Ilastik are provided in Figure 3.8. Ilastik mistakenly labels vesicles as

mitochondria and has trouble with other various membranes and synapses. Without

the global shape information provided by the Ray features such mistakes are difficult

to avoid.
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(a) Ilastik (b) Our approach

Figure 3.8: Visual comparison of our results vs. Ilastik. (a) The voxels of a particular

slice that are labeled as being within mitochondria by Ilastik are marked by a red contour.

These include a number of voxels that belong to vesicles instead of mitochondria. (b) These

mistakes disappear when using our approach.

3.4.4.5 Failure modes

Qualitatively our segmentation results are very promising. Note that the 84% VOC

score achieved by our algorithm is outstanding in terms of results reported in the

VOC challenge [26]. However, this number should be taken with a grain of salt, as

the VOC Challenge contains 21 categories of objects, while we only deal with 2 – the

mitochondria and the background. Despite the promising results of our approach, there

is still room for improvement. Examples of three failure modes are indicated by arrows

in Figure 3.5. Dendritic or axonal membranes in close proximity to mitochondria can

confuse our algorithm, causing it to include part of the nearby membrane with the

mitochondria. Occasionally, neighboring mitochondria are erroneously merged as a

result of smoothness enforced by graph cuts when the space between the membranes is

very small. Finally, clusters of vesicles are mistaken for mitochondria because texture

of vesicles can appear deceptively similar to that of mitochondria.

The shallow depth of the training data in the z-direction could account for some of

these failure modes, as very few mitochondria were fully contained withing the training

volumes. Increasing the amount of training data or enhancing the learning procedure

using a bootstrapping approach could potentially reduce these errors. Furthermore, it

would be relatively simple to exploit the fact that graph-cut minimization allows for

efficient user interaction [14]. This means that, given an adequate interface, remaining

errors could be quickly corrected by the user.
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3.5 Conclusion

While the EM image stacks used in this work contain over a billion voxels, they span

volumes smaller than 10 × 10 × 10 µm, which represents less than a billionth of the

volume of the entire mouse brain. If it is ever to be mapped in its entirety, efficient

automatic segmentation methods, such as the one we propose in the work, will be

required.

Our fully automatic approach to segment mitochondria from FIB-SEM image stacks

overcomes the limitations of standard graph-partitioning approaches by: operating on

supervoxels instead of voxels for computational efficiency, by using 3D Ray descrip-

tors to model shape in the unary term, and by using a learning approach to model

the appearance of the boundary in the pairwise term. We have demonstrated the

computational efficiency of using supervoxels, and experimentally shown the increases

in segmentation quality attributed with using Ray descriptors and learning to model

boundaries in the pairwise term. Our experiments have also demonstrated that our

approach outperforms a state-of-the-art 3D segmentation method, and that our seg-

mentation closely matches the performance of human annotators.

The method presented in this chapter relied on building both a strong unary and

pairwise term and then combining them using cross-validation. While effective, the

cross-validation method is sub-optimal and the two following chapters will show that the

max-margin approach presented in Section 2.3.4 yield better empirical results. While

the focus of this chapter is on the segmentation of mitochondria in FIB-SEM image

stacks, the proposed technique should be applicable to other cellular structures in EM

as well as in other forms of microscopy.
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CHAPTER

FOUR

STRUCTURED IMAGE SEGMENTATION USING

KERNELIZED FEATURES

4.1 Introduction

In the previous chapter we have seen that CRFs are a class of powerful graphical

models that greatly improve the performance for the segmentation of mitochondria in

EM images. In the CRF framework, the solution is typically obtained by minimizing

an energy function that is the sum of unary and pairwise terms 1. The unary term

encodes the likelihood that a particular label should be assigned to a pixel based on

local image features2. The pairwise term encodes the tendency of neighboring pixels

or superpixels to share the same label, thus enforcing spatial regularity.

In recent years, machine learning techniques have increasingly been used to derive

these terms in favor of simpler traditional models. However, this is usually done sep-

arately for each term: the unary term is optimized for labeling individual pixels while

the pairwise term is optimized for labeling pixel pairs. As a result, the two terms can

often be incommensurate, and an ad hoc weighting step is required to balance their

relative influences. For example, we have seen in Chapter 3 that cross-validation could

be used to find this balance. However, this requires a separate validation set and still

does not guarantee that the two terms are jointly optimized.

1Higher order terms are also possible in theory, though less commonly used in practice due to higher

computational cost. The unary term is also referred to as the data term.
2Alternatively, groups of pixels or superpixels can be used in order to speed up computation.
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(a) mitochondria (b) synapses

Figure 4.1: Two nearly isotropic stacks of neural tissue acquired using EM microscopy

annotated for training and testing. (a) This stack contains 1000 images of 1024 × 1024

pixels, and was used for the task of segmenting mitochondria, indicated by arrows. (b)

This stack contains 250 images of 655× 429 pixels and was used to segment synaptic gaps,

indicated by arrows.

Instead, the parameters of the unary and pairwise terms should be learned jointly to

infer the optimal labeling. This can be done using the recent structured-SVM (SSVM)

framework [136]. It involves learning the unary and pairwise terms jointly through

an iterative cutting-plane scheme that provably minimizes an upper bound on the

empirical loss and the model complexity. Currently, SSVMs can be of practical use

only in conjunction with terms that are linear functions of the input features. This

is because introducing non-linear terms would result in quadratic times for learning

iterations, which quickly becomes unmanageable for regular-size 2D images and even

more so for 3D data. Thus, it is usually not practical to use non-linear kernels in an

SSVM framework, though they are often more powerful than their linear counterparts.

In this chapter, we present a method that overcomes this limitation through a

two-step learning approach. We first use a regular non-linear SVM to create kernel-

transformed feature vectors, each of which consists of kernel products between the input

feature vector and a set of basis vectors that may not be orthogonal to each other. We

then train a linear SSVM on the transformed features. This approach combines the

power of non-linear kernels for individual pixel classification in the unary term with the

regularizing effect of the pairwise term, while enforcing consistency between the two.

This yields both improved segmentation performance and computational efficiency.
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This line of research was primarily motivated by the need to more accurately seg-

ment synapses and mitochondria in electron microscopy (EM) stacks, such as those

of Figure 4.1. In this kind of data, unlike in popular segmentation benchmarks such

as MSRC [123], global features that predict whether or not a type of object appears

anywhere in the image are not useful. This is because it is known that synapses and

mitochondria always appear in EM stacks, whereas it is not known if a cow or bird

will appear in a particular image from a standard benchmark dataset such as MSRC.

Thus, for EM applications, the CRF must rely solely on unary evidence and spatial

smoothness. We demonstrate on all three datasets that our approach indeed boosts

the performance of the learned CRF. Furthermore, it outperforms the previous state-

of-the-art in our target applications: synapse and mitochondria segmentation.

4.2 Related Work

For tasks such as segmentation, consistent labeling of highly-correlated neighboring

pixels is of great importance. Structured prediction has emerged as a powerful tool to

take into account such correlations. In this section, we first discuss current approaches

to structured prediction and the computational complexity issues that restrict them

from use in conjunction with non-linear kernels. We then consider kernel approximation

techniques that can be used to address these issues. Finally, we discuss structural

kernels which, like our approach, rely on kernel functions in a structured prediction

framework. But unlike our approach, they do so over the entire output space, which

carries certain disadvantages.

Structured Prediction Structured prediction methods such as conditional random

fields (CRFs) [77] have been widely applied to problems with structured outputs. While

traditional classifiers, such as decision trees and SVMs independently map each data in-

stance to a single label, structured prediction methods take into account the statistical

correlations between labels. This is critical for tasks such as image segmentation, where

such correlations are strong between nearby pixels. Learning CRF models using large-

margin methods has rapidly gained popularity in recent years. This is because they are

more objective-driven and do not involve the daunting partition function that can ren-

der maximum-likelihood approaches intractable in CRFs with loopy graph structures.
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Compared with earlier approaches including the max-margin Markov network [133],

the structured support vector machine (SSVM) [136] is especially appealing, and has

since been successfully applied to many computer vision tasks, such as in [87, 104, 131],

among others. The SSVM’s appeal is due, in part, to its ability to take into account a

variety of loss functions.

Computational Complexity SSVMs, however, require the CRF energy function to

be linear, which in turn places the same restriction on all the unary and spatial terms

due to the additive nature of CRF energies. While, in principle, the linear function can

be defined in some high dimensional or possibly infinite-dimensional space, reproducing

this kernel Hilbert space through the use of non-linear kernels is often infeasible in

practice given that the number of kernel evaluations grows quadratically with the model

size and must be optimized in the dual space. Though SSVM learning techniques based

on sampled cuts [6, 154] have alleviated this problem to some extent, they do have to

sacrifice some performance for speed and, even with this trade-off, are still generally

much slower than linear SSVMs [154]. Moreover, earlier implementations of these

techniques were intended for use in conjunction with the cutting-plane method to speed

up training of regular non-linear SVMs. This results in a multivariate output space in

the SSVM formulation, analogous to a CRF without edges, which is considerably less

useful for image segmentation.

Kernel Approximation Kernel Approximation is another way to improve SSVM

training efficiency by seeking a lower, finite-dimensional representation of the kernel-

induced feature map that lies in a higher or infinite dimensional space. This can be

achieved by random sampling from the typically infinite-dimensional feature map [8,

113] whose analytical form can be obtained using Fourier analysis when the kernel is

homogeneous or stationary [141]. While promising results have been shown for specific

additive kernels [91, 141], it is less clear how this approach generalizes to non-additive

kernels, such as the Gaussian RBF that is more difficult to approximate. Alternatively,

the recently proposed locally linear SVM [76] can be used to simulate a non-linear de-

cision boundary. However, this does not yield a globally linear function and, thus, does

not fit into the SSVM framework. Moreover kernel approximation typically introduces
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additional tuning parameters such as the number of samples, which often present a

performance-speed trade-off for which well-defined tuning criteria are lacking.

Structural Kernels Finally, it is worth pointing out the difference between our

approach and the recently proposed structural kernels, which also perform structured

prediction using non-linear kernels, but in a very different setting. In [6, 11], the kernels

are defined on the overall output space, that is, the entire CRF, to exploit image-level

“structural” information such as shape and color. While this serves to bias local labels

and is useful for segmenting large dominant objects from the background, it often

requires training data that completely characterizes the possible object configurations,

such as binary masks. Multiple objects, or objects whose pose are not represented in

the trained model will cause the approach to fail. Our approach, on the other hand,

uses regular kernels defined as products between a set of basis vectors and the feature

vectors extracted from individual nodes (i.e. pixels or superpixels). This has the effect

of making it more “local”, and robust to such failures.

4.3 Learning a CRF with Kernelized Features

We begin by describing our CRF model for segmentation in Section 4.3.1. We then

discuss how to learn its parameters using an SSVM framework in Section 4.3.2, with

specific details on how to express the CRF model in the required linear form in Sec-

tion 4.3.3. In Section 4.4, we introduce a technique to create “kernelized” features,

enabling us to leverage the power of non-linear kernels while the SSVM remains linear.

Figure 4.2 outlines our approach.

4.3.1 CRF for Segmentation

As a standard preprocessing step, we perform a preliminary over-segmentation of our

input image into superpixels 1 using SLIC [5]. The CRF G = (V,E) is thus defined

so that each node i ∈ V corresponds to a superpixel and there is an edge (i, j) ∈ E

between two nodes i and j if the corresponding superpixels are adjacent in the image.

Let Y = {yi} for i ∈ V denote the labeling of the CRF which assigns a class label yi to

1Or supervoxels in the case of volumetric data.
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each node i. Its energy function can then be written as

Ew(Y ) =
∑
i∈V

Di(yi) +
∑

(i,j)∈E

Vij(yi, yj), (4.1)

where Di is the unary term and Vij is the pairwise term. Both Di and Vij depend on the

observed data and the CRF parameters w, in addition to the labeling Y . The energy

is also commonly referred to as the “cost” in the literature and we will use the two

terms interchangeably. The inferred optimal labeling is simply the one that minimizes

it, that is, Y ∗ = arg minY ∈YEw(Y ), where Y denotes the set of all possible labelings.

While the exact minimization of the energy function is generally intractable on loopy

CRFs, good approximate solutions can be found efficiently using techniques such as

graph cuts [16] and belief propagation [99]. In our case, we use graph cuts when the

energy function is submodular [67] and belief propagation otherwise.

4.3.2 Learning the CRF Using SSVM

Structured SVM (SSVM) is a large-margin method for learning the parameters of

models with structured outputs, such as the CRF model we use for segmentation.

The SSVM uses the ground truth training data to learn the CRF parameters so that

the inferred labeling of the CRF is “close” to that of the training data, defined as

yielding a low loss. More specifically, given a set of N training examples with ground

truth labelings (Y (1), . . . , Y (N)), the SSVM 1 optimizes a quadratic objective function

of the parameters w subject to a set of linear soft margin constraints

min
w,ξ≥0

1

2
||w||22 +

C

N

N∑
n=1

ξn (4.2)

s.t. ∀n, Y ∈ Yn\Y (n) : δEw(Y ) ≥ ∆(Y (n), Y )− ξn

where Yn is the set of all possible labelings for example n, ξn are the slack variables,

and δEw(Y ) is shorthand for Ew(Y )−Ew(Y (n)). The constant C controls the trade-off

between margin and training error, and the loss function ∆ measures the closeness of

a labeling Y to the ground truth Y (n).

A natural choice for ∆ is the per-superpixel 0-1 loss ∆(Y (n), Y ) =
∑

i∈V ∆(y
(n)
i , yi)

with ∆(y
(n)
i , yi) = I(yi 6= y

(n)
i ), which penalizes all errors equally. However, in image

1 Here, we use the margin-rescaling variant of SSVM [136]
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xi

(a) Superpixel (b) Resulting (c) Linear SSVM (d) Linear SSVM

segmentation graph segmentation

xi
xjS

gK,S (xi)

(e) Standard RBF SVM (f) Kernel (g) “Kernelized” (h) “Kernelized”

trained with individual transform SSVM SSVM segmentation

superpixels

Figure 4.2: Our approach. (a) A superpixel over-segmentation of an image where each

superpixel center is marked (+/• denotes foreground/background). (b) The superpixel

graph used to construct the CRF, where each node corresponds to a superpixel, and edges

indicate adjacency in the image. (c) An illustration of the feature space. Each point

represents a feature vector extracted from a superpixel. Because it is not linearly separable,

the standard SSVM gives a poor segmentation result in (d). (e) To address this, we train

a non-structured kernel SVM on individual superpixels to obtain a set of support vectors

S, indicated by outlined points. (f) Kernel-transformed features gK,S(xi) are obtained for

each feature vector xi from the kernel products of xi and S. (g) Data in the |S|-dimensional

“kernelized” feature space is linearly separable, and can be used to train a linear SSVM.

(h) The improved segmentation result.
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segmentation, it is common for certain classes to occur much more frequently than

others. To ensure good performance across all classes, we adopt a loss function that

weighs errors for a given class inversely proportional to the frequency with which it

appears in the training data

∆(y
(n)
i , yi) =

{
1

frequency(y
(n)
i )

, if yi 6= y
(n)
i

0 , otherwise.
(4.3)

Since the total number of constraints grows exponentially with the CRF size, they

cannot be exhaustively enumerated in most cases. The SSVM solves this by employing

an iterative cutting-plane algorithm, which finds the most violated constraint for each

example n

Ŷ = arg min
Y ∈Yn

Ew(Y )−∆(Y (n), Y ) (4.4)

at every iteration and adds it to the working set of constraints. As with inferring the

optimal labeling, finding the most violated constraint is intractable on loopy CRFs.

However, the approximate most violated constraints can be found efficiently using the

same kind of energy minimization techniques as in inference, and this approach has

proven effective in practice [31, 131].

4.3.3 Linearizing the CRF Energy Function

Since the SSVM operates by solving a quadratic program (QP), all the constraints

in Equation 4.2 must be linear [136]. This requires that the energy function Ew be

expressible as an inner product between the parameter vector and a feature map. Since

the energy is the sum of individual unary and pairwise terms, this implies that Di and

Vij also must be expressible as

Di(yi) =
〈
wD, ψDi (yi)

〉
(4.5)

and

Vij(yi, yj) =
〈
wV , ψVij (yi, yj)

〉
, (4.6)

where ψDi (yi) and ψVij (yi, yj) are feature maps dependent on both the observed data

and the labels, and where

w = ((wD)T , (wV )T )T (4.7)

is the vector of parameters that define the functions Di and Vij respectively.
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If we let ΨD(Y ) =
∑

i∈V ψ
D
i (yi) and ΨV (Y ) =

∑
(i,j)∈E ψ

V
ij (yi, yj), then Ψ(Y ) =

(ΨD(Y )T ,ΨV (Y )T )T . allowing the CRF energy to now be written linearly as

Ew(Y ) = 〈w,Ψ(Y )〉 . (4.8)

Let xi be a feature vector associated with node i extracted from the observed data.

We can define the data feature map as

ψDi (yi) = (I(yi = 1)xTi , . . . , I(yi = K)xTi )T , (4.9)

where K is the number of possible labels, i.e., yi ∈ {1, . . . ,K}. If we write wD =

(wD
1 , . . . ,w

D
K)T , the unary term becomes the inner product

Di(yi) =
〈
wD
yi ,xi

〉
, (4.10)

which represents the energy of node i taking on label yi. Similarly, if we define the

pairwise feature map as

ψVij (yi, yj) = (I(yi = a, yj = b))(a,b)∈{1,...,K}2 (4.11)

with the corresponding parameters wV = (wab)(a,b)∈{1,...,K}2 , then the pairwise term

Vij(yi, yj) = wyiyj (4.12)

reflects the transition cost between nodes i and j from label yi to label yj . Although

the above definition depends only on the labels yi and yj , the pairwise term can, in fact,

be made data-aware (as in [87, 123]). For instance, it can be made gradient-adaptive

by including parameters for each discretized image gradient level. In a similar fashion,

it can be made to consider geometric relationships such as “sky should appear above

grass”1.

4.4 Kernel-transformed Features

As shown in the previous section, standard SSVMs require an energy function that is

linear in the parameters and features. Since unary terms based on non-linear SVMs

1We incorporate both geometric and gradient context in our model. They are omitted from the

notation for brevity, as the extension follows naturally from above.
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are often more powerful and produce better results [37, 87], this constitutes a major

limitation.

It should be possible, in principle, to learn non-linear unary terms within the SSVM

framework by implicitly defining w and xi of Equation 4.10 in a high-dimensional space

through kernels. In practice, however, these kernels are very high- or even infinite-

dimensional, making such an approach computationally intractable.

Our approach aims at circumventing this problem. It starts from the observation

that a non-linear binary (+1/-1 label) SVM classifier always takes the form

Score(x) =
∑
j

αjy
S
j K(xSj ,x) , (4.13)

where xSj ∈ S are the support vectors with corresponding labels ySj . Extended to

multi-class labels (yi ∈ {1, . . . ,K}) for a general unary term, it becomes

Di(yi) = −
∑
j

αjc(y
S
j , yi)K(xSj ,xi) , (4.14)

where c(ySj , yi) is 1 if yi = ySj and −1 otherwise. Note that, although the function is

non-linear in the input features xi, because of the non-linear kernel K, it is linear in

the kernel products K(xSj ,xi).

If we define gK,S(xi) as the vector of kernel products

gK,S(xi) = (K(xS1 ,xi), . . . ,K(xS|S|,xi))
T , (4.15)

and w′yi as their coefficients

w′yi = (−α1c(y
S
1 , yi), · · · ,−α|S|c(yS|S|, yi))

T , (4.16)

then the unary term can be re-expressed as

Di(yi) =
〈
w′yi ,gK,S(xi)

〉
, (4.17)

which is of the finite-dimensional linear form needed for learning within the SSVM

framework, as discussed in the previous section.

This suggests a simple, 2-step learning approach to incorporate kernels into an

SSVM, illustrated in Figure 4.2. First, we train a standard non-structured non-linear

kernel SVM using feature vectors extracted from individual superpixels to obtain a
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Figure 4.3: Comparison of a linear SVM, RBF-SVM, and a linear SVM trained on

feature vectors kernelized using the support vectors of the RBF-SVM. For classification

of individual superpixels (ignoring structure), training a linear SVM on kernelized feature

vectors yields a similar performance to a standard RBF-SVM. Error bars indicate standard

deviation over 10 experiments.

set of support vectors S. S are then used as basis vectors to create a set of kernel-

transformed (or “kernelized”) feature vectors gK,S(xi), which are provided to train the

linear SSVM.

Although our formulation is not equivalent to a non-linear kernel SSVM1, nor can it

be shown to approximate a non-linear SSVM as kernel approximation methods do [91,

113, 141], it does produce models with the same functional form as those learned using a

kernel SSVM and, importantly, performs well in practice. To demonstrate the principle

that a linear SVM trained using kernel-transformed features performs similarly to a non-

linear SVM that uses the same kernel, we conducted a simple experiment. The goal

was to classify individual superpixels, ignoring structure. We compare the performance

of a standard linear SVM, an SVM trained with an RBF kernel, and a simplification

of our approach in which feature vectors kernelized using the support vectors obtained

from the RBF-SVM are used to train a standard linear SVM. The results appearing in

Figure 4.3 support our intuition – so long as we transform the original feature vector

using the right set of basis vectors, learning the new coefficients under a different

objective function (i.e., as primal instead of dual variables) yields performance similar

to a non-linear kernel SVM.

1The parameters w′ now correspond to the primal variables of a linear SSVM instead of the dual

variables of a non-linear SSVM.
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4.5 Results

Our primary motivation for developing the technique presented here was to segment

synaptic gaps and mitochondria from images acquired with an electron microscope,

such as the ones depicted in Figure 4.1. For such data, it is known a priori that

particular cellular structures will appear in the image. Consequently, the use of global

features and/or priors which has proved to be essential when the presence of a particular

category is uncertain, as is the case for segmentation benchmarks such as MSRC [123],

is of no particular benefit. Because EM segmentation methods can not use such global

features, they have to more heavily rely on smoothness terms.

Nevertheless, we demonstrate that our approach boosts performance of the learned

CRF model on the MSRC dataset as well as the EM data. In subsection 4.5.2 we are

able to match state-of-the-art results on the MSRC dataset by incorporating global

features. For the EM data in subsections 4.5.3 and 4.5.4, our approach significantly

outperforms the state-of-the-art.

4.5.1 Competing Methods

To highlight the relative importance of the various components of our approach, we

compare against the following variations which we treat as baselines.

• Linear SVM – A standard linear SVM trained on the original feature vectors

xi. Each superpixel is classified independently (i.e., without CRF).

• Linear SSVM/CRF – As described in Section 4.3.2, a linear SSVM on the

original features is used to learn the parameters of a CRF, which is used for

segmentation.

• RBF SVM – A non-linear SVM trained on the original feature vectors using an

RBF kernel. Each superpixel is classified independently.

• RBF+SSVM/CRF – Instead of being kernelized versions of the original feature

vectors as in our approach, transformed feature vectors contain the per-class

scores of an RBF SVM trained on the original features. A linear SSVM learns

the parameters of a CRF using the transformed features.
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Original Ground truth Linear SVM RBF-SVM Linear RBF+SSVM/CRF Kernelized

SSVM/CRF SSVM/CRF

Figure 4.4: Example segmentations from the MSRC dataset.

• Codebook SVM – The original feature vectors are transformed using a “kernel

codebook” approach inspired by [36]. It relies on k-means clustering to create a

set of basis vectors (codewords) instead of discriminatively learned SVM support

vectors. We used as many codewords as support vectors for all our experiments.

The resulting features are classified independently with a linear SVM.

• Codebook SSVM/CRF – Features are constructed in the same manner as

for Codebook SVM, but a linear SSVM is used to learn a CRF for structured

prediction.

• Kernelized SSVM/CRF – Our method. A linear SSVM learns the parameters

of a CRF for structured prediction, using kernel-transformed features gK,S(xi),

as described in Section 4.4.

In addition to these, we also compare to state-of-the-art methods, [37, 74, 87, 122] for

MSRC and [88] for the EM dataset. All SSVM methods used Joachims’ SVM-struct

software [136] for training.

4.5.2 MSRC Dataset

The MSRC-21 dataset is a popular multi-class object segmentation benchmark dataset

which contains 591 images with objects from 21 categories.
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4.5 Results

Methodology We extract feature vectors from each image by first over-segmenting

the image using SLIC superpixels [5]. We then extract SIFT descriptors and color

histograms from image patches surrounding each superpixel centroid. We also include

location information as in [74]. This information is converted to a bag-of-words de-

scriptor using a nearest-neighbor search1. The resulting descriptor serves as the fea-

ture vector xi used to train the various methods. Training and testing is done using

the standard split of the dataset [123]. Note that the Codebook SVM and Codebook

SSVM methods are not reported since xi already contains a bag-of-words descriptor.

In addition to the baseline methods described above, we compare state-of-the-art ap-

proaches [37, 74, 87, 122] to our approach incorporating global features:

• G-Kernelized SSVM/CRF – Our method as described in Section 4.4 using an

augmented feature vector. In addition to SIFT descriptors and color histograms,

the feature vector contains the global features described in [37].

Analysis Table 4.1 summarizes the segmentation performance of the various ap-

proaches and example segmentations appear in Figure 4.4. The top of Table 4.1 com-

pares our method to the baselines introduced in Section 4.5.1, demonstrating that

structured learning tends to yield higher segmentation performance than unstructured

approaches. It is also clear that non-linear models outperform linear ones for both

structured and instance-based learning. Because our approach combines structured

prediction with the power of non-linear kernels, it yields superior performance over the

baselines in nearly every category.

The bottom of Table 4.1 compares our approach to state-of-the-art methods. As

observed in [87], global features are necessary to obtain state-of-the-art performance on

datasets such as MSRC. Therefore, when we do not use them our performance is lower

but by incorporating the features of [37] into our approach (G-Kernelized SSVM/CRF),

we are able to match state-of-the-art performance and out-perform all other methods

in several categories.

1A dictionary containing 1,000 words for SIFT features and 400 words for color histograms is

constructed using k-means on extracted features.
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Table 4.2: Segmentation results for the synaptic gap EM dataset. We measure segmen-

tation performance using the Jaccard index, the ratio of the correctly segmented area to

the union of the segmentation and the ground truth.

Linear Linear RBF RBF+ Codebook Codebook Kernelized

SVM SSVM/CRF SVM SSVM/CRF SVM SSVM/CRF SSVM/CRF

58% 60% 61% 64% 60% 63% 66%

4.5.3 Synaptic Gap Dataset

Segmenting the synaptic gaps from EM images of neural tissue shown in Figure 4.1(b)

is challenging due to the large amount of clutter including vesicles, mitochondria, and

various cellular membranes that exhibit a variety of distracting shapes and textures.

The dataset of Figure 4.1(b) contains 250 images of 655× 429 pixels and a total of 24

synapses. Each pixel was labeled by an expert as either synaptic or non-synaptic. The

dataset was then split into 2 parts for training and testing.

Methodology We begin by over-segmenting each image using SLIC superpixels [5].

Each image contained an average of 4000 superpixels and 11400 edges. At the location

of each superpixel we extract a feature vector consisting of intensity histograms and

steerable filter responses. The later is computed by convolving a patch extracted at the

center of each superpixel with a set of steerable filters at 3 different scales (σ = {2, 5, 6}).

An SVM with an RBF kernel trained on 40K randomly sampled superpixels provides

the support vectors for the kernel transform in our approach.

Analysis A summary of the segmentation performance is provided in Table 4.2, and

examples appear in Figure 4.5. As with the MSRC baselines, we observe a trend in

which structured learning yields higher segmentation performance than unstructured

approaches and non-linear models outperform linear models. Our approach, which

combines structured learning with non-linear models outperforms all other methods.
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Ground truth Linear SVM RBF SVM Codebook Kernelized

SSVM/CRF SSVM/CRF

Figure 4.5: Segmentation results on the synaptic gap dataset. The kernelized SSVM

correctly segments the synapse in this example, while the baseline methods include spurious

segments.

4.5.4 Mitochondria Dataset

Here, we perform mitochondria segmentation in 3D using the large image stack pre-

sented in Chapter 3 and shown in Figure 4.1(a). This greatly increases the scale of the

problem since the image stacks are orders of magnitude larger than most 2D images.

Methodology We begin by over-segmenting the volume using SLIC supervoxels [5].

For each supervoxel, we extract a feature vector that captures local shape and texture

information using Ray descriptors [88] and intensity histograms. Those feature vectors

xi are used to train each baseline methods, as well as our model. Due to the high

cost of labeling such large volumes, our experiments are restricted to two subvolumes

containing 1024× 768× 165 voxels. The first subvolume, containing 42 mitochondria,

was used to train the various methods; the second, containing 45 mitochondria, was

used for testing. Each subvolume contains ∼13K supervoxels. The resulting graphs

have ∼91K edges. An SVM with an RBF kernel trained on 4K randomly sampled

supervoxels provides the support vectors for the kernel transform in our approach.

Analysis A summary of the segmentation performance is provided in Table 4.3. Ex-

ample segmentations are provided in Figure 4.6. Once again, we observe the trend in

which structured learning yields higher performance than unstructured approaches and

non-linear models outperform linear models. Comparing to [88], we can see that our

approach of jointly learning the data and pairwise parameters in an SSVM framework
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Table 4.3: Segmentation results for the mitochondria EM dataset. We measure segmen-

tation performance using the Jaccard index.

Linear Linear RBF RBF+ Codebook Codebook Lucchi Kernelized

SVM SSVM/CRF SVM SSVM/CRF SVM SSVM/CRF et al. [88] SSVM/CRF

73% 79% 75% 80% 75% 80% 80% 84%

Ground truth Linear SVM RBF SVM Codebook Kernelized

SSVM/CRF SSVM/CRF

Figure 4.6: Segmentation results on the EM dataset. The kernelized SSVM correctly

segments all mitochondria in this example, while other methods fail to detect some mi-

tochondria, poorly delineate certain boundaries, or erroneously insert extra regions. Note

that the data and segmentations are 3-dimensional – the images above correspond to slices

through the test volume.

is superior to learning them independently and then using CRF energy minimization

for inference.

4.5.5 Discussion

The expense of training is an important consideration for any classification-based ap-

proach. As previously noted, an SSVM can, in principle, be trained using a non-linear

kernel. However, this is not feasible in practice as the number of kernel evaluations

grows quadratically with the size of the graph. We keep the cost linear by applying a

kernel-transform to the features. But to do so, we must first train a standard non-linear

SVM to obtain the support vectors used in the kernel transform. The training time of

this step could be a potential cause for concern, as it incurs the same quadratic cost.

Fortunately, it can be kept in check using known techniques such as randomly sampling

the data or iteratively mining for hard examples [29]. However, these techniques cannot
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be applied to directly speed up the SSVM because they disregard the structure of the

graph, which is essential for learning.

Note that while we only used Gaussian radial basis functions in our experiments,

they are not required by design and one could easily substitute them with other kernels

such as Polynomial or Hyperbolic tangent.

4.6 Conclusion

In this chapter, we introduced a technique to leverage the power of non-linear kernels

in a structured prediction framework by applying a kernel transform to the feature vec-

tors. Results on three different datasets demonstrate the advantages of our approach.

Although this work focuses on segmentation, the concept should generalize to other

structured prediction problems such as gene sequencing and natural language parsing.

Although the use of the max-margin method led to better empirical results com-

pared to the method introduced in Chapter 3, one issue persists with the computation

of the most violated constraint. For the kind of loopy graphs we considered, exact

inference is intractable and the most violated constraints can only be approximated,

voiding the optimality guarantees of the structured SVM’s cutting plane algorithm. In

the next chapter we will study a new training method based on stochastic gradient

methods that alleviates this issue.
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CHAPTER

FIVE

LEARNING FOR STRUCTURED PREDICTION USING

STOCHASTIC DESCENT WITH WORKING SETS

5.1 Introduction

While the previous chapter focused on designing more discriminative features for the

unary term of a CRF, we now turn our attention to learning the model parameters.

We have seen that an as alternative to maximum likelihood and maximum a posteriori

learning, the max-margin criteria enjoy the advantage of avoiding the need to estimate

the computationally difficult partition function and being able to optimize for many

different performance metrics. A particularly successful large-margin formulation is

the structured support vector machine (SSVM) [136], where the learning objective is

to minimize a regularized hinge loss due to the violation of a set of soft margin con-

straints. This can be solved iteratively using the SSVM cutting plane algorithm [136]

or by solving the equivalent unconstrained optimization problem using subgradient

based methods [96, 102, 116, 149]. Both approaches require finding at each iteration

the most violated constraint, namely the labeling that maximizes the margin-sensitive

hinge loss [136], which is necessary for obtaining a valid cutting plane or a true sub-

gradient of the objective. Finding such constraints is, however, intractable in loopy

graphical models, such as the MRFs and CRFs usually used in image segmentation.

Although approximate maximizers can be obtained by approximate inference, such as

belief propagation [99] and graph cuts [14], and used as substitutes, the approximation

can sometimes be imprecise enough to have a major impact on learning: An unsatisfac-
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tory constraint can cause the cutting plane algorithm to prematurely terminate if the

new constraint does not have a higher hinge loss than all previous constraints; it can

also induce erratic behavior of subgradient-based methods when the implied descent

direction is too far away from any true subgradients. These phenomena therefore make

the learning process more susceptible to failure.

In this chapter, we propose to use a working set of constraints to increase robust-

ness of approximate subgradient descent based learning. The resulting algorithm is

particularly suited for minimizing the margin-sensitive hinge loss in the SSVM formu-

lation [136] when the most violated constraints and hence the resulting subgradients

are not exact. We show that the proposed method is able to obtain better subgradient

approximations by computing them with respect to the whole working set, as opposed

to existing approaches where only the last constraint is considered. Therefore, we are

able to obtain sufficiently reliable approximate subgradients even when those due to

individual constraints are noisy. This further enables us to replace the most violated

constraints with randomly sampled labelings, thus avoiding the need to perform in-

ference at all during learning. The use of sampling leads to decreased learning time

while still maintaining good levels of performance. We demonstrate the strength of our

method on the task of learning CRF models for image segmentation.

The rest of this chapter is organized as follows. We discuss the prior work in Sec-

tion 5.2 and provide the background on the large-margin framework and learning tech-

niques based on subgradient descent in Section 5.4. Section 5.5 describes our working

set based algorithm in detail and analyze its properties. We present the experimental

results in Section 5.6 and conclude in Section 5.7.

5.2 Related work

Maximum margin learning of CRFs was first formulated in the max-margin Markov net-

works (M3N) [133], whose objective is to minimize a margin-sensitive hinge loss between

the ground-truth labeling and all other labelings for each training example. This is es-

pecially appealing for learning CRFs with loopy structures, due to its more objective-

driven nature and its complete bypassing of the partition function that presents a major

challenge to maximum likelihood based approaches. Nevertheless, the number of con-

straints in the resulting quadratic program (QP) is exponential in the size of the graph,
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hence making it a highly non-trivial problem. In M3N this is handled by rewriting the

QP dual in terms of a polynomial number of marginal variables, which can then be

solved by a coordinate descent method analogous to the sequential minimal optimiza-

tion (SMO) [110]. However, solving such a QP is not tractable for loopy CRFs with

high tree widths that are often needed in many computer vision tasks and even solving

it approximately can become overwhelmingly expensive on large graphs.

Structured SVMs (SSVM) [136] optimize the same kind of objective as M3N, while

allowing for a more general class of loss functions. It employs a cutting plane algo-

rithm to iteratively solve a series of increasingly larger QPs, which makes learning

more scalable. However, the cutting plane algorithm requires the computation of the

most violated constraints, namely the labeling maximizing the hinge loss [136]. This

involves performing the loss augmented inference [132], which makes it intractable on

loopy CRFs. Though approximate constraints can be used [31], they make the cutting

plane algorithm susceptible to premature termination and can lead to catastrophic fail-

ure. Another alternative proposed in [131] is to perform the optimization over a much

smaller set of labelings for which exact optimization can be performed with graph cuts.

An important limitation of these methods is in solving the QP, which can become slow

as the set of constraints grows larger after each iteration, especially when the dimen-

sionality of the feature space is also high. In order to speed up the computation, [56]

proposed a caching strategy where instead of performing the loss augmented inference

at every iteration, the algorithm first tries to construct a sufficiently violated constraint

from the cache. The use of a cache is similar in spirit to maintaining the working set

presented in this chapter. However, the goal of [56] is to decrease the number of calls

to the separation oracle while our method aims at increasing the robustness of approx-

imate subgradient descent-based learning.

An alternative to solving the quadratic program deterministically is to employ

stochastic gradient or subgradient descent. This class of methods has been studied

extensively for non-structured prediction problems [119]. In the context of structured

prediction, learning can be achieved by finding a convex-concave saddle-point and solv-

ing it with a dual extra-gradient method [134]. In [116] max-margin learning is solved

as an unconstrained optimization problem and subgradients are used to approximate

the gradient in the resulting non-differentiable problem. This method trades optimality

for a lower complexity, making it more suitable for large-scale problems. The approach
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of [96] proposes a perceptron-like algorithm based on an update whose expectation is

close to the gradient of the true expected loss. However, the soundness of these meth-

ods heavily depends on the assumption that a valid subgradient is obtained at each

iteration. Hence they become much less reliable when the subgradients are noisy due

to inexact inference, as is the case for loopy CRFs.

The recently proposed SampleRank [148] avoids performing inference altogether

during learning; Instead it samples labelings at random using Markov chain Monte

Carlo (MCMC). At each step, parameters are updated with respect to a pair of sampled

labelings. Though achieving notable speed improvement, the method does not in fact

optimize the actual hinge loss but rather a loose upper bound on it. Hence, unlike our

method, it solves a problem that is substantially different from the original max-margin

formulation.

5.3 Formulation

5.4 Max-margin Learning of CRFs

Conditional random fields (CRF) [77] are graphical models used to encode relationships

between a set of input and output variables. Given its parameters w, a CRF predicts

the labeling Y for a given input X by maximizing some score function Sw : X×Y→ R,

i.e.,

Ŷ = arg max
Y ∈Y

Sw(Y ) = arg max
Y ∈Y

wTΨ(X,Y ) (5.1)

The score is usually expressed as a linear function of w and can be written as

wTΨ(X,Y ), where the vector Ψ(X,Y ) is the feature map corresponding to the input

X and the labeling Y . The fundamental properties of random fields imply that the

feature map Ψ(X,Y ) and hence the score Sw decompose into sums over individual

nodes and edges for any pairwise CRFs [12]. For a comprehensive review of CRF

models, we refer readers to Chapter 2 or [77] and [129].

5.4.1 Discriminative Learning

Discriminative learning uses the labeled training data to learn the CRF parameters so

that the inferred labeling of the CRF is “close” to that of the ground truth, defined

as yielding a low loss. More specifically, given a set of N training examples D =
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((X1, Y 1), . . . , (XN , Y N )) where Xi ∈ X is an input example, such as the image or

features associated to it, and Y i ∈ Y is the associated labeling, the learning task

consists in finding model parameters w that achieve low empirical loss subject to some

regularization. In other words, we seek

w∗ = arg min
w

L(D,w)

= arg min
w

∑
(Xn,Y n)∈D

l(Xn, Y n,w) +R(w), (5.2)

where l is the surrogate loss function and R(w) is the regularizer (typically the L2

norm). The most common choice of l is the hinge loss, as used in [133, 136], which will

be described later on in this section. Note that the definition of the surrogate loss l

depends on the score function Sw, since the goal of learning is to make the maximizer

of Sw a desirable output for the given input.

5.4.2 Max-margin Formulation

The max-margin approach is a particular instance of discriminative learning, where

parameter learning is formulated as a quadratic program (QP) with soft margin con-

straints [136]:

min
w,mξ≥0

1

2
||w||2 + C

N∑
n=1

ξn (5.3)

s.t. ∀n : Sw(Y n) ≥ max
Y ∈Yn

(Sw(Y ) + ∆(Y n, Y ))− ξn,

where Yn is the set of all possible labelings for example n, the constant C controls the

trade-off between margin and training error, and the task loss ∆ measures the closeness

of any inferred labeling Y to the ground truth labeling Y n.

The QP can be converted to an unconstrained optimization problem by incorporat-

ing the soft constraints directly into the objective function, yielding:

min
w

L(w) = (5.4)

min
w

1

2C
||w||2 +

N∑
n=1

[Sw(Y ∗) + ∆(Y n, Y ∗)− Sw(Y n)]+,

where

Y ∗ = arg max
Y ∈Yn

(Sw(Y ) + ∆(Y n, Y )). (5.5)
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It is easy to see that Equation 5.4 has the same form as Equation 5.2 where the hinge

loss is used as the surrogate loss l, i.e.,

l(Y n, Y ∗,w) = [Sw(Y ∗) + ∆(Y n, Y ∗)− Sw(Y n)]+ (5.6)

For most existing approaches, a key challenge to solving Equation 5.4 effectively is the

loss-augmented inference, i.e., finding Y ∗.

5.4.3 Stochastic Subgradient Descent

The objective function of Equation 5.4 can be minimized via stochastic subgradient

descent, similar to [96, 116]. This class of methods iteratively computes and steps in

the opposite direction of a subgradient vector with respect to a example Xn chosen by

picking an index n ∈ {1 . . . N} uniformly at random. We then replace the objective in

Equation 5.4 with an approximation based on the training example (Xn, Y n), yielding:

f(Y n, Y ∗,w) = l(Y n, Y ∗,w) +
1

2C
||w||2 . (5.7)

A subgradient of the convex function f : W→ R at w is defined as a vector g, such

that

∀w′ ∈W,gT (w′ −w) ≤ f(w′)− f(w). (5.8)

The set of all subgradients at w is called the subdifferential at w and is denoted ∂f(w).

The subdifferential is always a non-empty convex compact set.

A valid subgradient g(Y n, Y ∗,w) with respect to the parameter w can always be

computed as the gradient of f(Y n, Y ∗,w) at Y ∗. Hence for the hinge loss, it can be

computed as:
∂f(Y n, Y ∗,w)

∂w
= ψ(Y ∗)− ψ(Y n) +

w

C
. (5.9)

This results in a simple algorithm that iteratively computes and steps in the direction

of the negative subgradient. In order to guarantee convergence, the step size η(t) has

to satisfy the following conditions :

lim
T→+∞

T∑
t=1

η(t) =∞ and lim
T→+∞

T∑
t=1

(η(t))2 <∞. (5.10)

For loopy CRFs, however, true subgradients of the hinge loss cannot always be

obtained due to the intractability of loss-augmented inference. This can lead to erratic

behavior due to noisy subgradient estimates and loss of performance.

94



5.5 Estimating Subgradient Using Working Sets

5.5 Estimating Subgradient Using Working Sets

Our algorithm aims at better estimating an approximate subgradient of f(Y n, Y,w)

by using working sets of constraints, denoted An, for learning loopy CRFs where exact

inference is intractable. The algorithm we propose is outlined in Algorithm 3. It first

solves the loss-augmented inference to find a constraint Y ∗ and add it to the working set

An. It then steps in the opposite direction of the approximate subgradient computed

as an average over the set of violated constraints belonging to An.

Algorithm 3

1: INPUTS :

2: D : Training set of N examples.

3: β : Learning rate parameter.

4: w(1) : Arbitrary initial values, e.g., 0.

5: OUTPUT : w(T+1)

6: Initialized An ← ∅ for each n = 1 . . . N

7: for t = 1 . . . T do

8: Pick some example (Xn, Y n) from D

9: Y ∗ = arg maxY ∈Yn(Sw(Y ) + ∆(Y n, Y ))

10: An ← An ∪ {Y ∗}
11: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
12: η(t) ← β

t

13: g(t) ← 1
|An′ |

∑
Y ∈An′

∂f(Y n,Y,w(t))

∂w(t)

14: w(t+1) ← w(t) − η(t)g(t)

15: end for

Hence unlike dual averaging methods [102, 149] that aggregate over all previous

subgradients, our algorithm only considers the subset of active, namely violated, con-

straints when computing the parameter updates. Therefore all subgradients are com-

puted with respect to the parameters at the current iteration, as opposed to using their

historical values. This produces more meaningful descent directions, as evidenced by

the results in Section 5.6.

We now analyze the convergence properties of the algorithm presented in Algo-

rithm 3. Although finding true subgradients as defined in Equation 5.8 cannot be

guaranteed for loopy CRFs, interesting results can still be obtained even if one can
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only find an approximate ε-subgradient g, as defined in [121]:

∀w′ : gT (w −w′) ≥ f(w)− f(w′)− ε (5.11)

The convergence properties of ε-subgradient descent methods were studied in [116, 117,

121]. The “regret” (i.e., loss) of the parameter vector w can be bounded as follows (the

re-derivation of the proof using our notation is given in the supplementary material):

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
, (5.12)

where G is a constant satisfying the condition ||g||2 ≤ G2 and λ = 1
C .

Given that the choice of the step size satisfies Equation 5.10, we can see that the

first term on the right side of Equation 5.12 goes to 0 so stochastic ε-subgradient descent

converges to a certain distance ε to the optimum. The key to improving convergence is

thus to obtain more accurate ε-subgradients, and we show below how this is achieved

through the use of working sets.

Let g1, . . . ,gm ∈ Rd be the approximate subgradients with respect to example

(Xn, Y n) of L for labelings in the working set An that still violates the margin constraint

at a given iteration. Assume that each gi ∈ Rd comes from some distribution with mean

mµi ∈ ∂L(w) and bounded variance.

Let mδi = gi−mµi be the difference between approximate ε-subgradient gi and true

ε-subgradient mµi, and assume that all mδi are independent of one another. Note that,

by definition, each mδi has zero expectation and hence their average mδ̄ = 1
m

∑
mδi =

1
m

∑
gi − 1

m

∑
mµi.

Therefore, using Hoeffding’s inequality [47] and the union bound, we can show that

the average error mδ̄ concentrates around its expectation, i.e., 0 in this case, as the

number of violated constraints in the working set m increases:

Pr
(∣∣∣∣mδ̄

∣∣∣∣ ≥ r) ≤ 2d exp

(
−mr2

2G2

)
, (5.13)

The convexity of the subdifferential ∂L(w) implies that mµ̄ = 1
m

∑
i mµi ∈ ∂L(w).

Therefore the probability of g(t) , 1
m

∑
gi being more than a distance r away from

any true subgradient is bounded by Equation 5.13 as well.

Algorithm 3 solves the loss-augmented inference to generate new constraints, which

can be expensive to compute. The analysis presented in Section 5.5 suggests that
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Algorithm 4

1: INPUTS :

2: D : Training set of N examples.

3: Q : MCMC walker.

4: β : Learning rate parameter.

5: w(1) : Arbitrary initial values, e.g., 0.

6: OUTPUT : w(T+1)

7: Intialized An ← ∅ for each n = 1 . . . N

8: for t = 1 . . . T do

9: Pick some example (Xn, Y n) from D

10: Sample Y ∗ according to Q(w(t), Y n)

11: An ← A ∪ {Y ∗}
12: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
13: η(t) ← β

t

14: z← w(t)

15: for Y ∈ An′
do

16: g(t) ← 1
|An′ |

∂f(Y n,Y,w(t))

∂w(t)

17: z← z− η(t)g(t) * atomic update *

18: end for

19: w(t+1) ← z

20: end for
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it is possible to use a sampling method instead of the loss-augmented inference to

obtain new constraints, and under similar assumptions the average subgradient ḡ still

converges to a valid subgradient. Based on this observation, we propose an adaptation

of Algorithm 3 that uses sampling instead of solving the loss-augmented inference. This

adapation described in Algorithm 4 generates new constraints using an MCMC walker

denoted Q similar to the one described in [148]. We also replace the standard update

of Algorithm 3 by a sequence of atomic updates that has been shown to improve the

speed of convergence [148]. Concerning the practicality, we would like to point out that

the working set does not lead to a significant increase in memory as we only need to

store the feature maps rather than the whole labellings.

5.6 Experimental Results

We apply our algorithm to image segmentation. We first briefly describe how a CRF

model is used for this task and then present our experimental results on two distinct

datasets to demonstrate the effectiveness of our method.

5.6.1 CRF for Image Segmentation

As a standard preprocessing step, we perform a preliminary over-segmentation of our

input image into superpixels 1 using SLIC [5]. The CRF G = (V,E) is thus defined

so that each node i ∈ V corresponds to a superpixel and there is an edge (i, j) ∈ E

between two nodes i and j if the corresponding superpixels are adjacent in the image.

Let Y = {yi} for i ∈ V denote the labeling of the CRF which assigns a class label yi to

each node i.

The score function associated with the CRF can then be written as

Sw(Y ) =
∑
i∈V

Di(yi) +
∑

(i,j)∈E

Vij(yi, yj), (5.14)

where Di is the unary data term and Vij is the pairwise spatial term. Both Di and Vij

are linear in the CRF parameters w and also depend on the observed data X in addition

to the labeling Y . For inference, we use graph cuts when the corresponding energy

function (i.e., negated score) is submodular [67] and belief propagation otherwise.

1Or supervoxels in the case of volumetric data.
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A natural choice for the task loss ∆ (Equation 5.3) is the per-superpixel 0-1 loss

∆(Y n, Y ) =
∑

i∈V I(yi 6= yni ), which penalizes all errors equally. However, in image

segmentation, it is common for certain classes to occur much more frequently than

others. To ensure good performance across all classes, we adopt a loss function that

weighs errors for a given class inversely proportional to the frequency with which it

appears in the training data.

5.6.2 Methods

In the following, we will compare our learning methods (referred as Working sets +

inference and Working sets + sampling) with the following baselines. We also

experimented with averaging all past subgradients [102, 149], which did not produce

meaningful results for our task.

• Linear SVM – A linear SVM classifying each sample independently (i.e., without

CRF).

• SSVM – The cutting plane algorithm described in [136].

• SampleRank – The method described in [148].

• SGD + inference – solve the loss-augmented inference using graph-cuts or

belief-propagation. This algorithm is the SGD (subgradient descent) formulation

of [116].

• SGD + sampling – Instead of performing inference, use MCMC to sample con-

straints from a distribution targeting the loss-augmented score. This is equivalent

to the method named “SampleRank SVM” described in [148].

In all cases, we used a decreasing step size rule of 1√
t

and used cross-validation on

the training set to determine the regularization constant. The results reported for the

sampling method and SampleRank were averaged over 5 runs.

5.6.3 MSRC Dataset

The MSRC dataset is a popular multi-class object segmentation dataset containing 591

images with objects from 21 categories. Training and testing are done using the stan-

dard split of the dataset [123], and we used the annotated images provided by [92]. We
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Figure 5.1: A nearly isotropic stack of neural tissue acquired using EM microscopy

annotated for training and testing. This stack contains 1065 images of 2048× 1536 pixels,

and was used for the task of segmenting mitochondria, indicated by arrows.

Original

Ground truth

SGD +

inference [116]

Working set +

inference

Figure 5.2: Example segmentations from the MSRC dataset. Best viewed in color.
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Table 5.2: Segmentation performance measured with the Jaccard index for the mito-

chondria EM dataset. We report results for two different set of features (see text for full

description). Note that the original features were already kernelized with a RBF-SVM

in [88].

Features SVM Lucchi SSVM SampleRank SGD + SGD + Working set Working set

[88] [136] [148] sampling inference [116] + sampling + inference

Original 73.0% 80.0% 80.5% 81.2% 77.5% 79.9% 83.0% 84.5%

Kernelized 75.4% - 83.5% 82.9% 80.1% 81.5% 84.4% 86.7%

extract feature vectors by first over-segmenting images using SLIC superpixels [5]. We

then extract SIFT descriptors and color histograms from image patches surrounding

each superpixel centroid. We then create a bag-of-words descriptor by first generating a

dictionary containing 1,000 words for SIFT features, and 400 words for color histograms

are constructed using k-means on extracted features. We also include location informa-

tion as in [74] and the unary potentials of [69]. The resulting feature vector xi is used

to train the various methods. Similarly to [123], the pairwise term we used was made

gradient-adaptive by including parameters for each discretized image gradient level. In

a similar fashion, it also considers geometric relationships such as “sky appears above

grass”.

Table 5.1 summarizes the segmentation performance of the various approaches and

example segmentations appear in Figure 5.2. The quantitative results show that the

working set of constraints improves the average score regardless of whether inference

or sampling was used during learning. The results obtained by the sampling approach

are close to those from using inference, but with a significantly lower running time as

shown in Table 5.3. In addition to the baseline methods described above, we compare

our approach to state-of-the-art approaches [75, 152]. We achieve the best results in

terms of the average score for which we optimize our algorithm.

5.6.4 Electron Microscopy Dataset

Here, we perform mitochondria segmentation in 3D using the large image stack from

Figure 5.1. This electron miscropy dataset is publicly available at http://cvlab.

epfl.ch/data/em. Performance is measured by the Jaccard index commonly used for
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5.6 Experimental Results

Ground truth Linear SVM

SGD + inference [116] Working set + inference

Figure 5.3: Segmentation results on the EM dataset.
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image segmentation [26]. The Jaccard index is the ratio of the areas of the intersection

between what has been segmented and the ground truth, and of their union. It is

written as:

Jaccard index =
True Positive

True Positive + False Positive + False Negative
.

The segmentation process begins by over-segmenting the volume using SLIC super-

voxels [5]. For each supervoxel, we extract a feature vector that captures local shape

and texture information using Ray descriptors [88] and intensity histograms. These

feature vectors are used to train each baseline method, as well as our model. In a

second set of experiments, we also transform the features using the kernel method of

Chapter 4. The original feature vectors are 120-dimensional and are thus mapped to

a higher dimensional space. The details are described in Chapter 4. Due to the high

cost of labeling such large volumes, our experiments are restricted to the two same

subvolumes containing 1024× 768× 165 voxels presented in Chapter 3 and 4. The first

subvolume was used to train the various methods while the second one was used for

testing. Each subvolume contains ∼13K supervoxels. The resulting graphs have ∼91K

edges. Example segmentations are shown in Figure 5.3 and quantitative results are

provided in Table 5.2. The increased reliability due to the use of working sets leads to

higher scores for both the inference and sampling methods. The inference version of

our algorithm outperforms the previous state-of-the-art [88].

5.6.5 Time analysis

We conducted a time analysis of the standard subgradient method of [116] against

the 2 versions of the algorithm introduced in this chapter. As shown in Table 5.3,

the sampling method is much faster than solving the loss-augmented inference to find

the most violated constraint. We can see that the computational overhead due to

the working set is of the order of 5% for the sampling method and less than 10%

when solving the loss-augmenting inference to find the most-violated constraint. The

evolution of the training scores as a function of the number of iterations is shown on

Figure 5.4 for the EM and MSRC datasets. The curves clearly show that the working

set of constraints leads to a much higher score on both the training and test sets.
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Table 5.3: Running time for the EM and MSRC datasets for T = 1000 iterations. The

computational overhead reported in the brackets is the increase in time resulting from the

working set. On both datasets, our method achieves better results at the price of a very

slight overhead.

EM MSRC

SampleRank [148] 2524s 80s

SGD + Sampling 2481s 72s

Working set + Sampling 2619s (+5.5%) 76s (+5.2%)

SGD + inference [116] 5315s 546s

Working set + inference 5842s (+9.9%) 583s (+6.8%)

(a) Training set, EM (b) Test set, EM

(c) Training set, MSRC (d) Test set, MSRC

Figure 5.4: Evolution of the training and test scores (Jaccard index for EM and average

score for MSRC) as a function of the number of iterations t. We report results for the

sampling method with and without working set in green and blue respectively.
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5.7 Conclusion

We have presented a working set based approximate subgradient descent method for

learning graphical models for structured prediction. This is particularly appealing for

learning large CRFs with loops, which are common in computer vision tasks, since

under these circumstances the use working sets of constraints produces better subgra-

dient estimates and higher-quality solutions. We applied our method to the task of

image segmentation, where the results show that it compares favorably against existing

algorithms in terms of segmentation accuracy. We also experimentally demonstrated

that sampling can replace the more expensive inference step without much performance

loss, leading to significantly lower learning time.

Our method makes no assumption that is particular to computer vision and thus

is readily applicable to other structured prediction problems. However, our line of

research was primarily motivated by the need to more accurately segment synapses

and mitochondria in electron microscopy stacks. In the next chapter, we will study

how the method proposed in this chapter can be used for real biological studies.
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CHAPTER

SIX

ENHANCED TECHNIQUES FOR THE SEGMENTATION OF

MITOCHONDRIA

6.1 Introduction

Studying the geometric properties of sub-cellular structures in electron microscopy im-

ages is critical for determining the nature of numerous cellular processes. As mentioned

in Chapter 3, focused ion beam scanning electron microscopy (FIB-SEM) has become

a powerful technology for creating 3D representation of biological specimens at a very

high resolution. This technology can already generate a tremendous amount of data,

which is likely to grow far beyond its capacity to be segmented manually. In order to

perform a reliable analysis of such a big amount of data, a fully automatic method has

to provide very accurate results. Although the method proposed in Chapter 5 got us

one step closer to a fully automatic solution it does nevertheless make mistakes and still

require manual editing before performing a statistical analysis. Figure 6.1 illustrates

one of the main problems that impedes a quantitative analysis. Nearby or touching

mitochondria are segmented as a single entity preventing from inferring statistics for

each individual entity.

In this chapter, we first propose an adaptation of the multi-layer segmentation

model proposed in [2] that can encode geometric interactions between the boundary

and other regions such as interior/exterior. The use of these additional constraints

help the model perform better with regard to the segmentation of mitochondria on the

two datasets presented in Chapter 3. The second innovation introduced in this chapter
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Figure 6.1: The red overlay is the segmentation produced by the algorithm presented in

Chapter 5. The black arrows indicate nearby cells that are merged by the segmentation

algorithm.

is an interactive splitting procedure that allows users to quickly separate touching

mitochondria. We conclude this chapter with a discussion concerning the use of our

method for a statistical analysis.

6.2 Encoding geometric interactions

In this section we compare the SGD + inference method presented in Chapter 5 with

the following two methods:

• Multi-layer - An adaptation of the multi-layer model proposed in [2] that can

encode geometric interactions between a boundary and other regions such as inte-

rior/exterior. As shown in Figure 6.2, the method of [2] extends the multi-surface

segmentation method of Li et al. [82] but their graph construction handles topo-

logical constraints better while still requiring a single graph cut to extract a

segmentation that satisfies the constraints. We used the learning method pre-

sented in Chapter 5 to learn the parameters of the multi-layer model proposed

in [2].
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Figure 6.2: Left: s-t min cut construction corresponding to [82]; any cut must separate

the top row from the bottom row. Right: Basic idea from [82]. Each column separates

top from bottom at two distinct locations, one forced to be strictly above the other. Figure

courtesy of Andrew Delong.

• Projection - A variant of the SGD + inference method where we project the

weights at each iteration of the subgradient descent algorithm to make sure they

satisfy the sumodularity conditions presented in Section 2.2.6. This projection

allows us to use graph cut to solve the loss-augmented inference, which is guar-

enteed to find the global optimum for binary labels. This method is similar to the

one presented in [131] in which the submodularity condition is satisfied by adding

a constraint to the QP formulation of Structured SVM as given in Equation 2.64.

6.3 Results

We present our experimental results for the image segmentation task described in Sec-

tion 5.6 on the two datasets presented in the Section 3.4.1 of Chapter 3, and shown in

Figure 1.5.

The experimental setup is similar to the one described in Section 5.6.4. The seg-

mentation process begins by over-segmenting the volume using SLIC supervoxels [5].

For each supervoxel, we extract a feature vector that captures local shape and texture

information using Ray descriptors [88], intensity histograms and the following features

computed at five different scales: gradient magnitude, laplacian of gaussian and eigen-

values of the hessian matrix, eigenvalues of the structure tensor. These feature vectors

are used to train each baseline method, as well as our model. In a second set of ex-

periments, we also transform the features using the kernel method of Chapter 4. The
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Table 6.1: Segmentation performance measured with the Jaccard index (see Section 5.6.4)

for the Hippocampus EM dataset.

SGD + inference Projection Multi-layer

Original features 85.2% 84.7% 90.6%

Kernelized features 90.2% 91.8% 92.6%

Table 6.2: Segmentation performance measured with the Jaccard index (see Section 5.6.4)

for the Striatum EM dataset.

SGD + inference Projection Multi-layer

Original features 84.4% 84.2% 90.6%

Kernelized features 90.4% 92.1% 93.6%

original feature vectors are 140-dimensional and are thus mapped to a higher dimen-

sional space. The details are described in Chapter 4.

Visual results are shown in Figures 6.3 and 6.4 and quantitative results are given

in Tables 6.1 and 6.2. The projection method suffers from a slight decrease of per-

formance compared to SGD + inference for the original features but does better

for the kernelized features. The Multi-layer method outperforms both the SGD +

inference and Projection methods on both datasets. As seen in Figure 6.5, the

Multi-layer method also returns predictions for the boundary label. This label is

treated as a foreground label for the quantitative evaluation but can still be of interest

for biologists interested in studying properties of cell boundaries.

The Multi-layer method performs fairly well (92.6% and 93.6% on the two datasets

presented in Chapter 3) but some errors persist and have to be eliminated. Some of

the remaining errors are shown in Figure 6.6 and include erroneously detecting packs

of vesicles or missing mitochondria whose appearances are significantly different from

the ones appearing in the training dataset. One of the major problems that impedes a

rigorous analysis of the data is when nearby or touching mitochondria are erroneously

grouped together. In the next section, we propose a method that requires minimal

manual interaction to solve this issue.
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Ground

truth

SGD +

inference

Projec-

tion

Multi-

layer

Figure 6.3: Example segmentations produced by different methods using non-kernelized

features on the Striatum EM dataset. Best viewed in color.
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Ground

truth

SGD +

inference

Projec-

tion

Multi-

layer

Figure 6.4: Example segmentations produced by different methods using kernelized fea-

tures on the Striatum EM dataset. Best viewed in color.
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Ground

truth

Original

Multi-

layer

Figure 6.5: Example segmentations produced by the Multi-layer method on the Stria-

tum EM dataset. Best viewed in color.
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Figure 6.6: The black arrows indicate mistakes made by the Multi-layer method on

several EM datasets. These errors include erroneously detecting packs of vesicles or missing

mitochondria whose apperances are significantly different from the ones appearing in the

training dataset. Another major problem that impedes a rigorous analysis of the data is

when nearby or touching mitochondria are erroneously grouped together. This problem is

discussed in Section 6.4. Best viewed in color.
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6.4 Semi-automated splitting of merged regions

Table 6.3: Unary weights for splitting procedure.

Weight For

ψ(yi = 0|xi)
0 i ∈ O

∞ i 6∈ O

ψ(yi = 1|xi)
0 i ∈ B

∞ i 6∈ B

6.4 Semi-automated splitting of merged regions

The identification of individual cells is crucial in many cytological applications, in

which the expected result is a population count. Although automatic methods such as

[24], [23] have been proposed to separate erroneously grouped objects, this process must

be performed accurately in order to guarantee correctness of the final analysis results

thus justifying the use of a semi-automatic approach where the knowledge of a human

expert can be integrated. We used an algorithm similar to the interactive graph-cuts

technique proposed by [14]. The user marks certain pixels as “object” or “background”

which are used as hard constraints for the segmentation. In the following, we assume O

and B are the subsets of pixels marked as “object” and “background” seeds. Additional

soft constraints are defined to respect the boundaries of the objects to be segmented. A

minimum cost cut generates a segmentation that is optimal given the aforementioned

constraints.

The energy function is similar to the standard form used in Chapter 3 and is defined

as:

E(y|x, λ) =
∑
i∈V

ψ(yi|xi)︸ ︷︷ ︸
unary term

+ λ
∑

(i,j)∈E

φ(yi, yj |xi, xj)︸ ︷︷ ︸
pairwise term

, (6.1)

where V is the set of nodes corresponding to voxels, E is the set of edges and yi ∈ {0, 1}

is a class label assigned to i corresponding to the object and the background classes.

The so-called unary term ψ defined in Table 6.3 encourages agreement between a node’s

label yi and the hard constraints provided by the pixels marked by the user.

The pairwise term φ(yi, yj |xi, xj) is defined in terms of the image gradient between

the pixels i and j. As shown in Figure 6.7, this term is computed by filtering the
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image with a derivative of Gaussian filter. Finally, the weight λ controls the relative

importance of the two terms.

A new volume of rodent tissue was analyzed using the Multi-layer model pre-

sented in Section 6.2. A volume of size 385 × 1000 × 1000 voxels (3.8 × 5 × 5 µm3)

was fully annotated and used for training. A different volume of size 385 × 754 × 508

voxels (3.8×3.8×2.5 µm3) was first segmented using the Multi-layer model and then

post-processed by splitting merged mitochondria and manually cleaning the results.

The volume and surface area of the mitochondria present in the axons and dendrites 1

were then computed and are reported in Figures 6.8 and 6.9. A statistically significant

difference in the geometric properties of the mitochondria coming from the two struc-

tures is observed, and it is seen that the volume and surface area are much smaller for

the mitochondria in the axons, which agrees with prior neuroscientific knowledge on

this subject.

6.5 Conclusion

We have shown that coupling the learning method presented in Chapter 5 with the

multi-layer model of [2] leads to better results on two different EM datasets. The quan-

titative results obtained after post-processing are of sufficiently high quality to perform

quantitative analyses. The neuroscientists who conducted the analysis presented in

Chapter 6.4 (Dr. Bohumil Maco and Dr. Graham Knott) are currently processing the

data and further analysis on several datasets will be conducted in the near future.

1Axons and dendrites are two types of protoplasmic protrusions that extrude from the cell body of

a neuron. Axons typically conduct electrical impulses away from the neuron’s cell body while dendrites

conduct the impulses received from other neural cells to the cell body.
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T

S

Unary term Pairwise term

Figure 6.7: Splitting procedure: Top-left Seeds are manually provided by an expert

user and used to compute the weights for the unary term. Top-right Edge weights are

computed by using a derivative Gaussian filter on the original image. Bottom The result

of the splitting procedure correctly separated the two mitochondria overlaid with different

shades of green.
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Figure 6.8: Volume in µm3 for mitochondria in the axons (top) and dendrites (bottom).
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Figure 6.9: Surface area in µm2 for mitochondria in the axons (top) and dendrites

(bottom). We note that the two distributions are statistically different.

118



CHAPTER

SEVEN

CONCLUSION

We started this thesis with a description of the challenges posed by the image segmenta-

tion problem. We then described some of the dominant mathematical models to address

these issues. The different methods we presented in this thesis are graph-partitioning-

based approaches that rely on machine learning to learn optimal parameters. Chapter 2

reviewed notions related to graph-partitioning based approaches, such as MRFs and

CRFs, and their application to image segmentation. In Chapter 3, we proposed a new

algorithm to cluster groups of similar voxels into regularly spaced supervoxels. The use

of supervoxels reduces the computational and memory costs by several orders of mag-

nitude without sacrificing much accuracy because supervoxels naturally respect image

boundaries. We also focused our attention on extracting discriminative features that

can exploit the shape of the objects being segmented. In order to exploit the inter-

actions between random variables associated to superpixels or supervoxels, we used a

CRF model where the pairwise term was based on the prediction of a classifier trained

to recognize which pairs of supervoxels are most likely to straddle a relevant boundary.

A cross-validation method was used to estimate the parameters of the CRF model.

We showed the effectiveness of our model for the segmentation of mitochondria on a

dataset of electron microscopy images.

In Chapter 4, we investigated the maximum-margin approach to learn the parame-

ters of a CRF model. This approach was limited to linear kernels, since more powerful

non-linear kernels cause the learning to become prohibitively expensive. We introduced

an approach to “kernelize” the features so that a linear structured SVM can leverage
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the power of non-linear kernels without incurring the high computational cost. The

resulting approach outperformed the first approach used in Chapter 3.

In Chapter 5, we proposed a working set-based approximate subgradient descent

algorithm to minimize the margin-sensitive hinge loss arising from the soft constraints

in max-margin learning frameworks, such as the structured SVM. We focused on the

setting of general graphical models, such as loopy MRFs and CRFs commonly used in

image segmentation, where exact inference is intractable and the most violated con-

straints can only be approximated, voiding the optimality guarantees of the structured

SVM’s cutting plane algorithm as well as reducing the robustness of existing subgradi-

ent based methods. We showed that the proposed method obtains better approximate

subgradients through the use of working sets, leading to improved convergence proper-

ties and increased reliability. Furthermore, our method allowed new constraints to be

randomly sampled, instead of computed using the more expensive approximate infer-

ence techniques such as belief propagation and graph cuts, which can be used to reduce

learning time at only a small cost of performance. We demonstrated the strength of

our method empirically on the segmentation of several electron microscopy datasets as

well as the popular MSRC data set and showed state-of-the-art results.

In Chapter 6, we studied a new method combining the learning method presented

in Chapter 5 with a multi-layer model encoding geometric interactions between the

boundary and other regions such as interior/exterior. We showed that this new combi-

nation outperformed the previous methods presented in this thesis. More importantly,

this method was successfully used to study statistical properties of mitochondria in an

EM dataset and further analysis is currently underway.

Limitations and future work

The graph partitioning approaches discussed in Chapter 3, 4 and 5 rely on a pre-

processing step to extract image regions called superpixels/supervoxels. The rest of the

algorithm is then prone to errors made by this pre-processing step. A first attempt to

address this issue was proposed by [51], where a joint image segmentation and labeling

model was proposed in a probabilistic setting. However, it is still unknown if a similar

model would perform well with the maximum-margin setting adopted in Chapter 4

and 5.
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We have seen that the maximum-margin framework on which we relied in Chapter 4

to estimate the model parameters assumes that the loss-augmented prediction problem

can be solved exactly. In such cases, the theoretical properties are well understood. The

cutting-plane algorithm guarantees polynomial time termination and correctness (i.e.

it returns a solution within the desired accuracy) and an empirical risk bound can be

derived [136]. As explained in Chapter 5 the loss-augmented prediction problem can not

generally be solved exactly for the kind of loopy graphs encountered in many computer

vision problems, violating the optimality guarantees. Although approximations exist

(see Section 5.2), it has been shown in [71] that the use of approximate inference

during learning can often lead to surprisingly poor parameter estimates. The impact

of approximate inference on structured learning is still largely misunderstood and is

likely to be an active area of research for the future.

The work presented in this thesis only relies on pairwise CRFs. As discussed in the

introduction, higher order terms have been shown to improve results for the problem

of multi-class object segmentation [64] but they also lead to a higher computational

complexity. The use of high order terms is likely to worsen the approximation of the

most violated constraint during learning but a theoretical or practical understanding

of this issue has yet to be derived.

The training method of Chapter 5 is fully supervised (all the variables were ob-

served) but in the real world some variables might be unobserved even during training.

Labeling a full EM stack is time consuming so a method that can deal with a partial

ground-truth is highly desirable. One possible solution proposed by [155] is to use a

maximum-margin method with maximization over the latent variables.

We have largely focused on the segmentation of mitochondria and we showed that

the most advanced method presented in this thesis was mature enough to be used in

real biological studies. The segmentation of other structures in EM datasets is also

very challenging. In Chapter 4, we applied the kernelized features to the segmentation

of synapses. Since the publication of this work, the authors of [9] showed that complex

features considering the global context around synapses outperformed existing methods

when applied to the segmentation of synapses in EM datasets. Being able to estimate

the density of neurotransmitters is another very challenging problem that has been

addressed by several authors [30, 80]. Finally, the reconstruction of neuronal processes

is an active area of research that has already led to impressive large-scale automatic

121



7. CONCLUSION

reconstructions [60]. A thorough understanding of the brain will require modeling all

these different structures, which will necessitate the collaboration of many researchers

across different fields. No doubt the years to come will be extremely challenging and

will lead to many very interesting discoveries in neuroscience.
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CHAPTER

EIGHT

APPENDIX

8.1 Quadratic complexity of non-linear Structured SVM

For a set of training instances (Xi, Yi)
N
i=1, from a sample space X and label space Y,

the structured SVM minimizes the following primal regularized risk function:

min
w,ξ≥0

1

2
||w||22 +

C

N

N∑
n=1

ξn (8.1)

s.t. ∀n, Y ∈ Yn\Y (n) : δSw(Y ) ≥ ∆(Y (n), Y )− ξn

where Yn is the set of all possible labelings for example n, ξn are the slack variables,

and δSw(Y ) is shorthand for Sw(Y (n))− Sw(Y ).

The dual problem associated to the primal is :

max
α

∑
k,Ŷk∈Sk

αk,Ŷk∆(Yk, Ŷk)−

1

2

∑
k,Ŷk∈Sk

∑
l,Ŷl∈Sl

αk,Ŷkαl,Ŷl < Ψk(Yk)−Ψk(Ŷk),Ψl(Yl)−Ψl(Ŷl) >

s.t. ∀k, Ŷk ∈ Sk, αk,Ŷk ≥ 0, αk,Ŷk ≤ C, (8.2)

where Sk = {Y \Yk} is the set of all possible labels except the ground-truth.
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The dot product between feature maps is defined as:

< Ψk(Yk),Ψl(Yl) > =
∑
vk

∑
vl

1[Yk(vk) = Yl(vl)]K(f(vk), f(vl))

+
∑
ck

∑
cl

1[Yk(ck) = Yl(cl)]K(fE(ck), f
E(cl)),

where fE(x) is the feature vector for edge c.

The quadratic sum in Equation 8.2 shows that the non-linear formulation of Struc-

tured SVM has quadratic complexity.
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8.2 Supplementary: Learning for Structured Prediction

Using Approximate Subgradient Descent with Work-

ing Sets

We analyze the convergence properties of Algorithm 3. Recall that our goal is to find

the parameter vector w∗ that minimizes the empirical objective function:

L(w) =
N∑
n=1

l(Y n, Y ∗,w) +
1

2C
||w||2 . (8.3)

At each iteration, Algorithm 3 chooses a random training example (Xn, Y n) by

picking an index n ∈ {1 . . . N} uniformly at random. We then replace the objective

given by Equation 8.3 with an approximation based on the training example (Xn, Y n),

yielding:

f(Y n, Y ∗,w) = l(Y n, Y ∗,w) +
1

2C
||w||2 . (8.4)

We consider the case where l : W → R is a convex loss function so that f(w) is a

λ-strongly convex function where λ = 1
C .

Recall that the definition of an ε-subgradient of f(w) is:

∀w′ ∈W,gT (w −w′) ≥ f(w)− f(w′)− ε. (8.5)

In the following, we will assume that the magnitude of the ε-subgradients we com-

pute is bounded by a constant G, i.e. ||g||22 ≤ G2.

Let w∗ be the minimizer of L(w). The following relation then holds trivially for

w∗:

gT (w −w∗) ≥ f(w)− f(w∗)− ε. (8.6)

8.2.1 Convergence properties of the tth parameter vector

This proof for subgradients was derived in [114] and we extend it to approximate

subgradients here. We first present some inequalities that will be used in the following

proof.

By the strong convexity of f(w), we have:

〈g(t),w(t) −w∗〉 ≥ f(w(t))− f(w∗) +
λ

2
‖w(t) −w∗‖22 − ε. (8.7)

125



8. APPENDIX

Because w∗ minimizes f(w), g(w∗) and we have:

f(w(t))− f(w∗) ≥ λ

2
‖w(t) −w∗‖22. (8.8)

By combining Equation 8.7 and 8.8 we get:

〈g(t),w(t) −w∗〉 ≥ λ‖w(t) −w∗‖22 − ε. (8.9)

In the following, we first start by bounding ‖w(1) −w∗‖ and then derive a bound

for E‖w(t+1) −w∗‖.

Lemma 1. The error of w(1) is:

‖w(1) −w∗‖22 ≤
G2 + 2ελ

λ2
. (8.10)

Proof. From Equation 8.7, we deduce:

〈g(1),w(1) −w∗〉 ≥ f(w(1))− f(w∗) +
λ

2
‖w(1) −w∗‖22 − ε

≥ λ

2
‖w(1) −w∗‖22 +

λ

2
‖w(1) −w∗‖22 − ε

≥ λ‖w(1) −w∗‖22 − ε, (8.11)

where the last inequality follows from the fact that f(w(1))− f(w∗) ≥ 0.

Using the Cauchy-Schwarz inequality (|〈X,Y 〉| ≤ ‖X‖‖Y ‖), we get:

‖g(1)‖22 ≥
(
λ‖w(1) −w∗‖22 − ε

)2
‖w(1) −w∗‖22

= λ2‖w(1) −w∗‖22 − 2ελ+
ε2

‖w(1) −w∗‖22
, (8.12)

and from the assumption that ‖g(t)‖2 ≤ G2, we have that:

G2 ≥ λ2‖w(1) −w∗‖22 − 2ελ+
ε2

‖w(1) −w∗‖22
. (8.13)

We then derive the following bound for ‖w(1) −w∗‖22:

‖w(1) −w∗‖22 ≤ max

(
G2 + 2ελ

λ2
,

ε2

G2 + 2ελ

)
. (8.14)
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G2 + 2ελ

λ2
− ε2

G2 + 2ελ
=

(G2 + 2ελ)(G2 + 2ελ)− ε2λ2

λ2(G2 + 2ελ)
=

(G2 + 2ελ)2 − ε2λ2

λ2(G2 + 2ελ)

=
(G2 + 2ελ+ ελ)(G2 + 2ελ− ελ)

λ2(G2 + 2ελ)
(8.15)

=
(G2 + 3ελ)(G2 + ελ)

λ2(G2 + 2ελ)
≥ 0. (8.16)

Therefore, we see that:

max

(
G2 + 2ελ

λ2
,

ε2

G2 + 2ελ

)
=
G2 + 2ελ

λ2
. (8.17)

We get Equation 8.10 by combining Equation 8.14 and 8.17 .

Theorem 1. The error of w(t+1) is:

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
. (8.18)

Proof.

E‖w(t+1) −w∗‖22 = E‖w(t) − η(t)g(t) −w∗‖22
= E‖w(t) −w∗‖22 − 2η(t)E(〈g(t), (w(t) −w∗)〉) + (η(t))2(E‖g(t)‖22)

≤ E‖w(t) −w∗‖22 − 2η(t)(λE‖w(t) −w∗‖22 − ε) + (η(t))2G2

= (1− 2η(t)λ)E‖w(t) −w∗‖22 + (η(t))2G2 + 2η(t)ε (8.19)

By applying the inequality recursively:

E‖w(t+1) −w∗‖22 ≤ (1− 2η(t)λ)E‖w(t) −w∗‖22 + (η(t))2G2 + 2η(t)ε

≤ (1− 2η(t)λ)((1− 2η(t−1)λ)E‖w(t−1) −w∗‖22 + (η(t−1))2G2 + 2η(t−1)ε)

+ (η(t))2G2 + 2η(t)ε

≤

(
t∏
i=2

(1− 2η(i)λ)

)
(E‖w(2) −w∗‖22) +

t∑
i=2

t∏
j=i+1

(1− 2η(j)λ)(η(i))2G2 +

t∑
i=2

t∏
j=i+1

(1− 2η(j)λ)2η(i)ε. (8.20)
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Plugging in η(i) = 1
λi , we get:

E‖w(t+1) −w∗‖22 ≤
t∏
i=2

(
1− 2

i

)
(E‖w(2) −w∗‖22) +

t∑
i=2

t∏
j=i+1

(
1− 2

j

)(
1

i

)2 G2

λ2

+

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ

=
G2

λ2

t∑
i=2

t∏
j=i+1

(
1− 2

j

)(
1

i

)2

+
t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ
(8.21)

Rakhlin [114] showed that setting η(i) = 1
λi gives us a O(1/t) rate. Indeed, we have:

t∏
j=i+1

(
1− 2

j

)
=

t∏
j=i+1

(
j − 2

j

)
=

(i− 1)i

(t− 1)t
, (8.22)

and therefore
t∑
i=2

1

i2

t∏
j=i+1

(
1− 2

j

)
=

t∑
i=2

(i− 1)

i(t− 1)t
≤ 1

t
, (8.23)

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ
=

t∑
i=2

2(i− 1)iε

i(t− 1)tλ
=

2ε

(t− 1)tλ

t−1∑
i=1

i =
2ε

(t− 1)tλ

(
(t− 1)t

2

)
=
ε

λ

(8.24)

By combining Equation 8.21 with Equation 8.23 and Equation 8.24, we then get:

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
. (8.25)

We can deduce that the conditions of convergence are the same as the ones for

subgradient descent (i.e. for ε = 0) :

lim
T→+∞

T∑
i=1

η(i) →∞

lim
T→+∞

T∑
i=1

(η(i))2 <∞ (8.26)

As long as the choice of the step size satisfies Equation 8.26, we can see that the first

term on the right side of Equation 8.25 goes to 0 so stochastic ε-subgradient descent

will convergence to a distance ε away from the optimal value.
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