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Abstract

During the last two decades we have witnessed considerable activity in build-
ing bridges between the fields of information theory/communications, computer
science, and statistical physics. This is due to the realization that many fun-
damental concepts and notions in these fields are in fact related and that each
field can benefit from the insight and techniques developed in the others.

For instance, the notion of channel capacity in information theory, threshold
phenomena in computer science, and phase transitions in statistical physics are
all expressions of the same concept. Therefore, it would be beneficial to develop
a common framework that unifies these notions and that could help to leverage
knowledge in one field to make progress in the others. A particularly striking
example is the celebrated belief propagation algorithm. It was independently
invented in each of these fields but for very different purposes. The realization
of the commonality has benefited each of the areas.

We investigate polarization and spatial coupling: two techniques that were
originally invented in the context of channel coding (communications) thus re-
sulting for the first time in efficient capacity-achieving codes for a wide range
of channels. As we will discuss, both techniques play a fundamental role also
in computer science and statistical physics and so these two techniques can
be seen as further fundamental building blocks that unite all three areas. We
demonstrate applications of these techniques, as well as the fundamental phe-
nomena they provide.

In more detail, this thesis consists of two parts. In the first part, we consider
the technique of polarization and its resultant class of channel codes, called po-
lar codes. Our main focus is the analysis and improvement of the behavior
of polarization towards the most significant aspects of modern channel-coding
theory: scaling laws, universality, and complexity (quantization). For each
of these aspects, we derive fundamental laws that govern the behavior of po-
larization and polar codes. Even though we concentrate on applications in
communications, the analysis that we provide is general and can be carried
over to applications of polarization in computer science and statistical physics.

As we will show, our investigations confirm some of the inherent strengths
of polar codes such as their robustness with respect to quantization. But they
also make clear in which aspects further improvement of polar codes is needed.
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ii Abstract

For example, we will explain that the scaling behavior of polar codes is quite
slow compared to the optimal one. Hence, further research is required in order
to enhance the scaling behavior of polar codes towards optimality.

In the second part of this thesis, we investigate spatial coupling. By now,
there exists already a considerable literature on spatial coupling in the realm of
information theory and communications. We therefore investigate mainly the
impact of spatial coupling on the fields of statistical physics and computer sci-
ence. We consider two well-known models. The first is the Curie-Weiss model
that provides us with the simplest model for understanding the mechanism
of spatial coupling in the perspective of statistical physics. Many fundamental
features of spatial coupling can be simply explained here. In particular, we will
show how the well-known Maxwell construction in statistical physics manifests
itself through spatial coupling.

We then focus on a much richer class of graphical models called constraint
satisfaction problems (CSP) (e.g., K-SAT and Q-COL). These models are
central to computer science. We follow a general framework: First, we in-
troduce interpolation procedures for proving that the coupled and standard
(un-coupled) models are fundamentally related, in that their static properties
(such as their SAT/UNSAT threshold) are the same. We then use tools from
spin glass theory (cavity method) to demonstrate the so-called phenomenon
of threshold saturation in these coupled models. Finally, we present the al-
gorithmic implications and argue that all these features provide a new avenue
for obtaining better, provable, algorithmic lower bounds on static thresholds
of the individual standard CSP models. We consider simple decimation al-
gorithms (e.g., the unit clause propagation algorithm) for the coupled CSP
models and provide a machinery to analyze these algorithms. These analyses
enable us to observe that the algorithmic thresholds on the coupled model are
significantly improved over the standard model. For some models (e.g., 3-SAT,
3-COL), these coupled algorithmic thresholds surpass the best lower bounds on
the SAT/UNSAT threshold in the literature and provide us with a new lower
bound.

We conclude by pointing out that although we only considered some specific
graphical models, our results are of general nature hence applicable to a broad
set of models. In particular, a main contribution of this thesis is to firmly es-
tablish both polarization, as well as spatial coupling, in the common toolbox of
information theory/communication, statistical physics, and computer science.

Keywords: Channel polarization, polar codes, spatial coupling, threshold
saturation, capacity achieving codes, mean field models, Curie-Weiss model,
constraint satisfaction problems.



Résumé

Durant ces deux dernières décennies une activité considerable a developpé des
ponts entre des disciplines telles que la théorie de l’information, l’informatique
et la physique statistique. Ceci est dû au fait que plusieurs concepts fonda-
mentaux et notions reliés à ces disciplines sont en fait connécté et ques chacune
d’entre elles peut bénéficier d’intuitions et de techniques développées pour les
autres.

Par exemple, la notion de capacité de canal en théorie de l’information, les
effets de seuil en informatique et les transitions de phase en physique statistique
sont des manifestations différentes d’un même concept. Par conséquent, il serait
naturel de développer un cadre commun qui unifie ces notions et permettrait
d’exploiter les connaissance d’un domaine pour progresser dans un autre. Un
exemple particulièrement frappant est le célébre algorithme de propagations
des croyances. Il fut indépendamment inventé dans chacun de ces domaines
pour des raisons à priori assez différentes, et il a été bénéfique de réaliser leur
nature commune.

Nous étudions la polarisation et le couplage spatial: deux techniques qui
furent inventées d’abord dans le contexte du codage pour les canaux bruités en
théorie des communications, et ont permis pour la première fois d’atteindre la
capacité grâce à des schémas efficaces en complexité et ceci pour une large classe
de canaux. Les deux techniques jouent un rôle important aussi en informatique
et physique statistique et du coup ces techniques peuvent être vues comme des
élements unificateurs dans chacun de ces trois domaines. Nous illustrons des
applications de ces techniques, aussi bien que la nouvelle compréhension qu’elles
apportent.

Cette thèse comporte deux parties. Dans la première, nous considèrons la
technique de polarisation et sa classe de codes correcteurs correspondant: les
codes polaires. L’objectif principal est la compréhension et l’étude de plusieures
de leur caractéristiques telles que leur performance à longueur finie, leur uni-
versalité et leur complexité (quantification). Pour chacun de ces aspects nous
dérivons les relations fondamentales qui gouvernent la polarisation. Et même
si nous nous concentrons sur les applications en communication, l’analyse que
nous prodiguons est générale et peut être étendue aux applications de la po-
larisation en informatique ou en physique statistique.
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iv Résumé

Comme vous allons le voir, nos recherches confirment certains avontages
inhérents aux codes polaires, comme leur robusticité face à la quantification.
Mais elles mettent aussi en lumière quels aspects des codes polaires restent en-
core à améliorer. Par exemple, nous expliquerons que le comportement asymp-
totique des codes polaires est plutôt lent comparé au comportement optimal
et que par conséquent de plus amples recherches sont nécessaires pour garantir
un comportement asymptotique des codes polaires.

Dans le seconde partie de cette thèse, nous étudions le couplage spatial.
Il existe dès à présent une litterature considérable sur le sujet en théorie de
l’information et en communication et c’est pourquoi nous nous intéressons au
couplage spatial dans la cadre de la physique statistique et de l’informatique.
Nous considérons deux modèles célébres. Le premier est le modèle de Curie-
Weiss qui a l’avantage de permettre une explication des plus simples des pro-
priétés du couplage spatial dans la cadre de la physique statistique. En parti-
culier nous montrerons comment la fameuse construction de Maxwell se mani-
feste à travers le couplage spatial.

Nous nous focaliserons par la suite sur une classe de modèles plus riches
appelé “problème de satisfaction de contraintes (CSP)” (p.ex. K-SAT et Q-
COL), ces modèles jouant un rôle central en informatique. Notre ètude suit
une procèdure systématique: premièrement nous introduisons le procédé d’ in-
terpolation afin de prouver que l’ensemble standard (non-couplé) et l’ensemble
couplé possèdent les même propriétés statiques (comme la seuil de transition
de phase SAT/UNSAT).

Dans un deuxième temps nous utilisons des outiles de la théorie des verres
de spin (méthode de la cavité) pour démontrer dans les modèles couplés le dit
phénomène de saturation de seuil.

Finalement, nous présentons les implications du point de vue algorith-
mique et discutons en quoi ces caratéristiques permettent la création de nou-
velles démonstrations pour de meilleures bornes sur les seuils de transition des
modèles CSP non-couplés. Nous considérons des algorithmes de décimation
simple (comme l’algorithme de propagation de clause unité) pour des modèles
CSP couplés et fournissont une méthode pour les analyser. Ainsi nous obser-
vons que le seuil de transitions de ces algorithmes est significativement amélioré
sur les modèles couplés. Pour certains de ces modèles (p.ex. 3-SAT, 3-QOL),
ces seuils de transitions sur les ensembles couplés dépassent les meilleures
bornes inférieures connues sur les seuils de transition SAT/UNSAT et ainsi
fournissent de nouvelles bornes.

Nous concluons en remarquent que même si nous avons centré notre atten-
tion sur une classe spécifique de modèles, nos résultats sont de nature générale
et peuvent par conséquent s’appliquer à une classe plus large de modèles
graphiques. En particulier, une contribution de cette thèse est de montrer
que la polarisation, comme le couplage spatial sont désormais des outiles in-
contournables en théorie de la communication, en physique statistique, aussi
bien qu’en informatique.

Mots-clés: Polarisation de canal, code polaire, couplage spatial, saturation
de seuil, modèle de Curie-Weiss, problèmes de satisfaction de contraintes.
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Introduction 1
In communication and computer sciences, we typically have to design systems
that are both reliable and efficient (in terms of resources and complexity). Ex-
amples include channel coding, data compression, compressive sensing, machine
learning, and vision. In the last half century, a variety of ingenious designs have
been conceived for each of these issues. However, despite all these efforts there
is still room for improvement.

As a concrete scenario, consider the problem of channel coding: A sender
desires to send K bits of information. The data is to be transmitted through
a noisy channel that accepts input symbols one at a time and produces a
sequence of output symbols. As the channel is noisy, the sender desires (i)
to come up with an explicit (encoding) transform that generates a sequence
of N symbols from the K information bits and transmits these N symbols
through the channel and (ii) to reliably recover (decode) the K information
bits from the N (noisy) output symbols of the channel. Shannon’s channel
coding theorem guarantees that these two requirements can be met, as long
as K and N are sufficiently large, and as long as the “rate” K

N is less than a
fundamental quantity called the channel capacity. If we are interested only in
the existence of such systems and have no constraints on the complexity, then
the problem is solved. Shannon has already showed us how to accomplish this:
just pick a random element from a suitably defined ensemble. The problem
becomes much more difficult when we impose constraints on the complexity, or
if we want an explicit (low-complexity) construction with the above properties.

Throughout this thesis we address two techniques that can be applied to a
broad range of problems and have, roughly speaking, the following property.
Starting with a “hard” problem, these two techniques enable us to transform
the problem into an “easier” one and we will then solve this easier problem
with a standard efficient algorithm. Of course, this “simplification” of the task

1



2 Introduction

does not come entirely for free. As we will see, we lose in terms of the “dimen-
sionality” of the problem, i.e., we have to increase the number of dimensions we
work in. For instance, if we return to the concrete problem of coding, in order
for the above scheme to work, we are required to work on larger instances of
the problem. For some applications that are delay-sensitive (e.g., speech) this
might cause problems, but for other applications the extra delay is acceptable
and this trade-off is very beneficial.

The two techniques are polarization and spatial coupling. Although these
transforms are fundamentally different in nature, they both have led to effi-
cient algorithm designs that solve many seemingly hard problems. Both of
these transforms were originally invented in the context of channel coding and
resulted in very efficient encoding/decoding systems that achieve the capacity
of a wide range of channels. In addition, despite their recent introduction,
both have already had a significant impact on other areas of communications
and signal processing (compressed sensing), and they have led to new insight
in computer science and statistical physics. We proceed by briefly explaining
each of these transforms.

1.1 Polarization

Polarization was introduced by Arikan in 2008 in the seminal paper [1]. Arikan
used this technique in the context of channel coding and on the special class of
channels called binary memoryless symmetric (BMS) channels. The origin of
polarization can be traced back to Arikan’s efforts to improve the rates achiev-
able by convolutional codes and sequential decoding. Let us briefly explain this
technique in the context of channel coding.

Consider a BMS channel W and let I(W ) denote its capacity. The idea
of polarization is to take two independent copies of W and to create two new
channels W 0 and W 1 with the following properties:

(i) The sum of the capacity of W 1 and W 0 is equal to twice the capacity of
W , hence no information is lost.

(ii) The channel W 1 is “better” than W and the channel W 0 is “worse” than
W .

More precisely, consider Figure 1.1 where a simple transform is applied to the
inputs of two independent uses of W . Here, given the output of this system,
namely (y0, y1), assume that we want to infer the value of the bits (u0, u1).
This task can be accomplished in a successive manner: in the first step infer
the value of u0 and, once this task has been accomplished, in the second step
make use of the estimate of u0 to infer the value of u1. In this regard, the
channel W 0 is the channel that u0 “sees”, given the observation (y0, y1) (see
Figure 1.2), and the channel W 1 is the channel that u1 “sees”, given the output
and the actual value of u0. A little thought makes it clear why W 0 is worse
than W and why W 1 is better. In the language of information theory, we say
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Figure 1.1: The basic channel transform where we combine two independent
copies of W .

that W 1 is upgraded with respect to W and that W 0 is degraded with respect
to W and we write

W 0 "W "W 1. (1.1)

Intuitively, we think of W 1 as a less noisy version of W and W 0 as a more

Figure 1.2: The channels W 0 (left) and W 1 (right).

noisy version of W . Degraded-ness/upgraded-ness can be thought of as a kind
of majorization of densities. As a consequence, from two i.i.d. copies of W we
have constructed two channels W 0 and W 1 with the property (1.1). Note that
relation (1.1) already indicates some sort of polarization towards the two ex-
tremal channels: completely noiseless (perfect channel or the best channel) or
completely noisy (useless channel or the worst channel). The idea of polariza-
tion is to apply recursively this simple transform to the channels W 1 and W 0

to create further polarized channels (W 1)1, (W 1)0, (W 0)1, (W 0)0 and so on. So
in general, we begin with N = 2n independent copies of W and create 2n new
channels W 11···1,W 11···0, · · · ,W 00···0. A remarkable phenomenon here is that
as n grows large, the created channels become increasingly polarized, i.e., al-
most all the channels are very close to one of the following two extremal states:
completely noiseless (with capacity 1) or completely noisy (with capacity 0).
Now, by using property (i), it is clear that, in the limit of large block lengths,
the fraction of completely noiseless channels tends to I(W ) and the fraction of
completely noisy channels tends to 1− I(W ). These two extremal channels are
easy to deal with: For the perfect channel, we send the information uncoded;
and for the useless channel, we send no information at all. Thus in a nutshell,
we have introduced a transform that reduces the problem of coding over N
independent uses of a channel W (a hard problem) to coding over N channels
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that are either noiseless or useless (an easy problem). As we will see later, the
price we pay is that N has to be taken sufficiently large in order to achieve a
certain error probability.

The channel codes that are based on this technique are called polar codes.
Note that polar codes achieve the capacity of any BMS channel, i.e., if we use
sufficiently large block-lengths, then we can transmit reliably at any rate below
capacity. In addition, these codes have low complexity, as we discuss in more
detail in the next chapter.

Polar codes have opened a completely new chapter in coding theory. Much
of classic coding is based on algebraic notions (Hamming distance, fields, etc.)
and iterative codes are based on carefully designed bipartite graphs. The design
of polar codes is based on the nature of the capacity of the individual sub-
channels. This makes coding a very natural extension of information theory.
The fact that polar codes can be shown in just a few paragraphs to be capacity
achieving, adds to their appeal.

Soon after the invention of the technique of polarization, a large body of
work generalized the basic technique to a much wider set of scenarios. For a
partial list of references see [29]-[42]. We will have more to say about this later.

1.2 Spatial Coupling

It is convenient to explain the idea of spatial coupling in the general framework
of graphical models. Graphical models and their associated message-passing
algorithms play an increasingly significant role in communications, computer
science and statistical physics. We begin by explaining the general theme of
spatially coupled graphical models, then we will follow with a concrete example.

Given a graphical model that represents a “hard” problem (e.g., decoding,
inference), we construct from it a larger instance of the same problem but with
a particular graphical structure. This structure can be thought of as adding
a spatial dimension to the graphical model at hand. Due to this additional
structure, the new instance is significantly easier to solve. Mathematically
speaking, this change in behavior manifests itself by a significant increase in
the threshold under low-complexity processing. For instance, in inference prob-
lems this “threshold” is a measure of how much “noise” the system can tolerate
and still be expected to work correctly. Naturally, under optimal processing
(which is typically of exponential complexity) a system can tolerate signif-
icantly more noise than under low-complexity (message-passing) processing.
The curious and important characteristic of spatial coupling is that spatially
coupled systems have a threshold under low-complexity processing, which is as
large as the threshold of the underlying system under optimal processing. This
phenomenon is named threshold saturation in [2, 3]. The word “saturation”
indicates that the threshold under low-complexity processing has increased to
its largest possible value, namely the value of optimal processing. In other
words, it has saturated. This threshold saturation effect has an obvious and
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important operational consequence: for a properly designed graphical model,
low-complexity processing suffices to reach the optimal performance.

We illustrate the idea of spatial coupling with a concrete example. The
graphical model that we choose lies in the area of channel coding, where spatial
coupling was first developed. We recall that the task of channel coding1 is to
generate, from K information bits, a codeword consisting of N bits. One way
to do this is via a linear transform. That is, we can think of the set of K
information bits as an element of the vector space {0, 1}K. And to generate
the corresponding codeword, we use a linear transform that maps {0, 1}K to a
K-dimensional subspace of {0, 1}N . Such codes are called linear codes. Given
a linear code C, we can associate to it a binary matrix H of size N × (N −K),
such that the following holds. The set of codewords of C is the set of solutions
of the equation2 xH = 0. Once a particular codeword x is sent through the
channel, a noisy version of the codeword, called y, is obtained. Given y, the
decoding task is to infer the transmitted codeword x.

For general matrices H , and if we require worst-case guarantees, this is
a difficult task (NP-complete to be precise). But if we assume that the ma-
trix is sparse and we only require a good performance on average, we enter
the realm of sparse graph codes. In this setting, graphical models combined
with message-passing decoders perform very well. Message-passing algorithms
have, by definition, low complexity. They exhibit good performance for prop-
erly designed systems and map easily into hardware. The basic idea of such
algorithms is to use the graphical structure and to solve the problem locally
by sending messages along the edges of the graph. In the case of inference
problems, these messages are probabilities that reflect the current estimate of
the system. These estimates are iteratively updated until they converge or a
maximum number of iterations is reached. Figure 1.3 shows and explains the
natural graphical model associated with this problem.

Let us now demonstrate the idea of spatial coupling via the help of the
simple graphical model of Figure 1.3. Let L be a positive integer. Given a
graphical model, call it our base graph or copy, we start with L copies of the
base graph and assign them one by one to positions i ∈ {0, 1, · · · , L − 1} (see
Figure 1.4). Next, we connect the neighboring copies. There are many ways in
which these connections can be done, and experiments indicate that the exact
type of coupling is secondary, as long as the systems are coupled “sufficiently
strongly”. To be concrete, we perform the following operation (see Figure 1.4).
For each copy we randomly label the edges into three equally-sized groups
called left, center, and right. The edges labeled “center” are kept as is. For
the edges labeled “left”, we keep one end of the edge in the current copy
and connect the other end to a corresponding node on the left. In a similar
manner, for the edges labeled “right” we keep one end in the current copy but
connect the second end to a corresponding node on the right. In other words,
we swap some of the edges between neighbors and preserve the local structure

1We assume here that we are transmitting over a channel with binary input.
2Here, addition and multiplication is performed in the binary field F2 = {0, 1}.
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Figure 1.3: Each variable node (circle) corresponds to one code bit, i.e., one
component of x. This corresponds to the columns of matrix H . Each check node
(square) on the right corresponds to one linear constraint imposed by matrix H ;
i.e., one row of H . Finally, each square on the left corresponds to one of the
observations; i.e., one of the components of y. Of course, this is a toy example.
Real applications use codes of length one thousand or even one million.

Figure 1.4: Top figure: we put L copies of a base graph in a row; each at a
position i ∈ {0, 1, · · · , L − 1}. Bottom figure: we then connect the neighboring
copies (with a careful termination at the boundaries) to create the spatially coupled
graph.

(node degrees) of each copy. At the boundary, some of the edges cannot be
connected because either the left or right neighbor is missing. These edges are
terminated in a proper way, depending on the problem at hand. The general
theme is to make the problem slightly easier at the boundaries. For example,
for coding, if we have an edge that goes to a missing variable node then we set
the corresponding variable node to a known value. In this case, we give the
system some additional information, i.e., we make the problem easier at the
boundaries. Note here that if the original graph represents an error-correcting
code then the coupled graph also represents an error correcting code. The
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new code is L times larger and has a particular global graphical structure, but
locally it looks identical to the original model (e.g., it has the same degree
distribution).

As a consequence of the coupling there is a remarkable performance im-
provement under message-passing. This improvement is due to the special
termination, as well as to the special spatial structure. For instance, consider
the decoding problem. Due to the extra help at the boundary, the decoding
problem can be partially solved there, even when using a suboptimal message-
passing decoder. This in turn makes the decoding problem easier for the neigh-
boring copies. This effect cascades over the whole length of the chain. A sim-
ple, albeit not very accurate, analogy is a chain of properly placed domino
pieces. Once we topple a boundary piece, the whole chain is toppled. But
contrary to domino pieces, where forces act in only one direction, in spatially
coupled graphs there is true interaction, and information bounces back and
forth between neighboring systems. The physical effect is akin to what hap-
pens when crystals grow or when super-cooled liquids are seeded. Perhaps the
most surprising aspect of spatial coupling is not that the performance is simply
improved, but that such systems perform under low-complexity processing as
well as if they had been processed optimally, i.e., their performance saturates.

The origins of spatial coupling reach back to the area of channel coding with
the work of Felstrom and Zigangirov in [4]. They introduced a class of sparse-
graph codes with a convolutional structure, which they named “convolutional
LDPC codes”. They observed through numerical simulations that this class of
codes performs very well. In subsequent years, considerable follow-up work was
done on various aspects of the performance of such codes (see [3] for a histori-
cal review). However, a rigorous reason behind the fact that spatially coupled
systems perform so well in channel coding, and in particular the phenomenon
of threshold saturation, was discovered only recently by Kudekar, Richardson
and Urbanke [2,3]. This picture has since been completed/generalized by a vast
amount of studies on graphical models in communications, computer science,
and statistical physics. In each of these studies, the same fundamental phe-
nomenon is observed when we spatially couple the underlying graphical model
into a chain.

One important aspect of [2, 3] is the emergence of a new class of codes,
called spatially coupled LDPC codes, that achieve the capacity of the class of
BMS channels. Later on, in a sequence of works (starting from [44], [45], and
finally in [46]) this technique was applied to compressive sensing and yielded
low-complexity compressive sensing schemes that are optimal in terms of the
required number of measurements, quite a remarkable achievement.

1.3 Outline of this Thesis

This thesis consists of two parts. We focus in the first part (including Chap-
ters 2-6) on the technique of polarization and polar codes. The results and the
conclusions of the first part are summarized in Section 2.1.1. We consider the
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technique of spatial coupling and the threshold saturation phenomenon in the
second part (including Chapters 7-10). The results and the conclusions of the
second part are summarized in Sections 7.2.3 and 7.3.4. At the end of each
chapter possible extensions, improvements and implications are discussed. The
discussions point toward some new research directions and open problems.



Part I

Polarization

9





Polarization and Polar Codes 2
2.1 Introduction

The first part of this thesis concentrates on polarization and polar codes in
the context of channel coding. As mentioned in Chapter 1, channel coding is
a central topic of information theory and its main purpose is for the design of
efficient and reliable encoding/decoding systems that can operate at any rate
below the channel capacity. Throughout the sixty years of the development
of channel coding, we have witnessed many breakthroughs in understanding
fundamental properties of “good” codes. This has lead to various remarkable
code designs. We can divide these code designs into two general groups: al-
gebraic codes and iterative codes. Algebraic codes were the initial focus of
coding theorists after the emergence of Shannon’s framework in 1948, whereas
iterative codes came into serious consideration in 1993 through the invention of
turbo codes. For several channels of practical interest, iterative codes provide
efficient and reliable codes that operate close to the capacity [5].

Polar codes, invented by Arikan [1], are arguably the first family of low-
complexity codes that provably achieve the capacity of any binary symmetric
memoryless (BMS) channel. It is worth mentioning that the class of BMS
channels contains some of the channels of most practical relevance (such as
the binary-input additive white Gaussian noise channel, the binary symmetric
channel, and the binary erasure channel). Soon after the invention of polar
codes, a large body of research generalized the idea of polarization to other
classes of channels, as well as other information theoretic scenarios. As a
consequence, a wide range of channels, including discrete memoryless channels
(DMC) and some of the well-known continuous memoryless channels (such as
the AWGN channel), now have specific polar codes that achieve their capacity.

Although the main focus of coding theory has been on designing efficient

11
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codes that achieve capacity, the recent advancements in real-world technology
have brought about (or accredited) new criteria for the design of “good” codes.
Such newly emerging practical criteria are the main focus of modern coding
theory. For instance, more than half of the traffic in today’s wireless networks
is video and this ratio is still growing. Such kind of real-time traffic brings
about the need of low-delay coding systems.

Let us mention the most significant criteria of modern coding theory.

(i) [Scaling Laws] In coding, the three most important parameters are rate
(R), block-length (N), and block error probability (Pe). Ideally, given a
family of codes, we would like to be able to describe the exact relationship
between these three parameters. This however is a formidable task. It
is slightly easier to fix one of the parameters and then to describe the
relationship (scaling) of the remaining two. We proceed by explaining
the two most relevant scaling laws.

Assume that we fix the rate and consider the relationship between the
error probability and the block-length. This is the study of the clas-
sic error exponent. For instance, for random codes a closer look shows
that Pe = e−NE(R,W )+o(N), where E(R,W ) is the so-called random error
exponent [6] of the channel W .

Another option is to fix the error probability and to consider the rela-
tionship between the block-length and the rate. In other words, given a
code and a desired (and fixed) error probability Pe, what is the block-
length N required, in terms of the rate R, so that the code has error
probability less than Pe? This scaling is arguably more relevant (than
the error exponent) from a practical point of view as we typically have a
certain requirement on the error probability and are interested in using
the shortest code possible to transmit at a certain rate.

In practice, the shorter a code is the better it is, since this implies small
delays. As a benchmark, the shortest block-length that that we can
hope for is as follows. It is not hard to see that the random variations
of the channel themselves require R ≤ I(W ) − Θ( 1√

N
), or equivalently,

N ≥ Θ( 1
(I(W )−R)2 ). Indeed, a sequence of works starting from [8], then

[9], and finally [10] showed that the minimum possible block-length N
required to achieve a rate R with a fixed error probability Pe is roughly
equal to

N ≈ V (Q−1(Pe))2

(I(W )−R)2
, (2.1)

where V is a characteristic of the channel referred to as channel dis-
persion, and Q is the complementary Gaussian cumulative distribution
function. In other words, the best codes require a block-length equal to
Θ( 1

(I(W )−R)2 ).

(ii) [Universality] In reality, no channel is exactly equal to the mathemati-
cal models that we consider. Also, depending on the conditions of the
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transmission medium, the channel might vary inside a set of channels.
This leads us to consider the following scenario. Given a set of chan-
nels, what is the maximum rate achievable simultaneously on all these
channels by a fixed code? Again as a benchmark, we consider the best
possible rates that can be achieved in such a setting. This is known as
the compound channel scenario. Let W denote the set of channels. The
compound capacity of W is defined as the rate at which we can reliably
transmit irrespective of the particular channel (out of W) that is chosen
to transmit. In other words, the channel is not known at the transmitter
and the only information about the channel is that it is inside the set W ,
whereas at the receiver, the channel is known. The compound capacity
is given by [11]

C(W) = max
P

inf
W∈W

IP (W ), (2.2)

where IP (W ) denotes the mutual information between the input and
the output of W , with the input distribution being P . Note on one
hand that the compound capacity of W can be strictly smaller than
the infimum of the individual capacities. This happens if the capacity-
achieving input distributions for the individual channels are different. On
the other hand, if the capacity-achieving input distribution is the same
for all channels inW , then the compound capacity is equal to the infimum
of the individual capacities. This is indeed the case for us, because we
restrict our attention to the class of binary-input memoryless output-
symmetric (BMS) channels.

(iii) [Complexity] Another important aspect of the design of modern codes is
complexity. It is an easy task to theoretically distinguish between having
polynomial or exponential complexity (in the block-length N). However,
a harder and more important task for practical purposes is to see how
“polynomial” a code design is. When it comes to practice, the importance
of complexity goes even beyond being polynomial and it is often the case
that the “constants” matter. For instance, from a practical perspective, a
code with complexity Θ(N10) is not suitable for implementation despite
having polynomial complexity, whereas “good” systems typically require
linear complexity. Also, when it comes to implementation, other issues
become important, such as the issue of how well a particular design maps
into hardware.

Typically, the term complexity can be measured in several ways. Two
well-known aspects are algorithmic complexity and space complexity. The
algorithmic complexity refers to measuring the number of operations in
the encoding and decoding procedures, whereas the space complexity
refers to the amount of memory required for these procedures. Often, the
main bottleneck in the implementation of large- and high-speed coding
systems is memory (especially in the decoding part). In this regard, even
a factor 2 in memory usage can make a significant difference.
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Such considerations have defined a modern framework for efficient code design;
its ultimate goal can be summarized as follows: design universal codes with
low complexity in memory and computation (preferably linear in block-length)
with block-lengths as short as possible (see (2.1)). Let us now see how well
polar codes fit into this framework.

2.1.1 Contributions of the First Part (Chapters 3-6)

In the first part of this thesis, we consider polar codes and their generalizations,
and investigate analytically their suitability in terms of the aforementioned
framework. We often confirm our results with numerical simulations and also
use the numerics to build intuition. All the results of this thesis are specific
to BMS channels. In the following, we summarize the contributions of each
specific chapter.

Scaling laws of polar codes are the main subject of Chapters 3 and 4. In
Chapter 3 we consider the tradeoff between the rate and the block-length for a
fixed error probability, i.e., we consider the finite-length scaling of polar codes.
We show that the finite-length scaling of polar codes is intimately related to
the dynamics of the channel polarization phenomenon. This stimulates us to
derive scaling laws for the speed of polarization. Using such laws, we then
provide scaling laws for polar codes that hold universally for all BMS channels.

The main results of Chapter 3 can be summarized as follows. Let W be a
BMS channel with capacity I(W ). Fix the error probability1 to a given value
Pe > 0. Then the required block-length N scales in terms of the rate R < I(W )
as

N ≥ α

(I(W )−R)µ
, (2.3)

where α is a positive constant that depends on Pe and I(W ). We show that
µ = 3.55 is a valid choice, and we conjecture that indeed the value of µ can
be improved to µ = 3.627, the parameter for the binary erasure channel. A
comparison of (2.3) and (2.1), indicates that polar codes require a larger block-
length with respect to what is optimally achievable. This gives a fundamental
explanation for the numerical observations that polar codes require a larger
block-length with respect to the best codes used in current practice.

Also, in Chapter 3 we show that with a fixed error probability Pe > 0, the
block-length scales in terms of the rate as

N ≤ β

(I(W )−R)µ
, (2.4)

where β is a constant that depends on Pe and I(W ), and µ = 7. In the language
of coding theory, from (2.4) we can say that for polar codes the block-length
N scales “polynomially” with respect to the gap to capacity.

1To be more precise, we consider the sum of Bhattacharyya parameters of the sub-
channels chosen (by the polar coding scheme) as a proxy for the error probability.
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In Chapter 4, we consider the relationship between the error probability
and the block-length at a fixed rate, i.e., we consider the error exponent of
polar codes. It was previously shown by Arıkan and Telatar [7] that for any

fixed rate R < I(W ), the block error probability is upper bounded by 2−Nβ for
any β < 1

2 and N large enough. By a careful study of the asymptotic behavior
of channel polarization, we refine this result to be dependent on R, i.e., for
polar codes with the successive cancellation (SC) decoder

Pe = 2−2
n
2 +

√
nQ−1( R

I(W )
)+o(n)

, (2.5)

where n = log2 N and Q(t) !
∫∞
t e−z2/2dz/

√
2π. We further show that the

MAP decoder shares the the same scaling behavior as (2.5). Our results apply
to general polar codes based on !× ! kernel matrices. We also generalize these
scaling relations for extended polar codes that are based of !× ! matrices.

In Chapter 5, we consider two problems concerning the construction and
the universality of polar codes. We first consider the problem of efficiently
constructing polar codes over BMS channels. The complexity of designing
polar codes via an exact evaluation of the polarized channels (to find which
ones are good) appears to be exponential in the block length. In [25], Tal
and Vardy show that if instead the evaluation is performed approximately, the
construction has only linear complexity. We follow this approach and present a
framework where the algorithms of [25], as well as new proposed algorithms, can
be analyzed for complexity and accuracy. We provide numerical and analytical
results on the efficiency of such algorithms. In particular, we show that one
can find all the good channels (except a vanishing fraction) with almost linear
complexity in block-length (except a poly-logarithmic factor). We then ask how
much the construction of a polar code for a given channel would help in the
construction of a polar code for another channel. This motivates us to consider
the compound capacity of polar codes under the successive cancellation (SC)
decoding for a collection of BMS channels. By deriving a sequence of upper and
lower bounds, we show that in general the compound capacity under successive
decoding is strictly smaller than the unrestricted compound capacity in (2.2).
This indeed indicates that polar codes with the successive decoder are not
universal.

Successive decoding with few messages is the subject of Chapter 6. Ro-
bustness of a decoder with respect to the number of bits per message is a key
element in memory efficiency hence the practicality of that code. The original
successive cancellation decoder of Arikan assumes infinite precision arithmetic.
Given the successive nature of the decoding algorithm, there might be concern
about the sensitivity of the performance to the precision of the computation.
We show that even very coarsely quantized decoding algorithms lead to ex-
cellent performance. More concretely, we show that under successive decoding
with an alphabet of cardinality only three, the decoder still has a threshold and
this threshold is a sizable fraction of capacity. More generally, we show that if
we are willing to transmit at a rate δ below capacity, then we universally need
only O(log 1

δ ) bits of precision.
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2.2 Basic Setting and Notations

Consider a memoryless channel W . Such a channel is characterized by the
following quantities:

• The input alphabet X .

• The output alphabet Y.

• The transition probabilities {W (y | x) : x ∈ X , y ∈ Y}.

In this thesis we restrict ourselves to binary memoryless symmetric (BMS)
channels. We say that W is binary if its input alphabet is binary, i.e., X =
{0, 1}. Further, we say that W is symmetric if there exists a permutation
π : Y → Y such that

• π = π−1.

• W (y | 0) = W (π(y) | 1) for all y ∈ Y.

There are some BMS channels of particular interest. We will often use them
to illustrate specific concepts and properties. We now introduce these channels
and give a brief illustration of them in Fig 2.1.

• Binary erasure channel (BEC) with erasure probability z, which we de-
note by BEC(z). The value of z lies inside [0, 1].

• Binary symmetric channel (BSC) with cross over probability ε which we
denote by BSC(ε). The value of ε lies inside [0, 12 ].

• Binary additive white Gaussian noise channel (BAWGNC) with noise
variance σ2 which we denote by BAWGNC(σ). The value of σ lies inside
(0,∞).

Associated to any BMS channel are the following useful parameters.

I(W ) =
∑

y∈Y
W (y | 1) log W (y | 1)

1
2W (y | 1) + 1

2W (y | 0)
, (2.6)

H(W ) = 1− I(W ), (2.7)

Z(W ) =
∑

y∈Y

√
W (y | 0)W (y | 1), (2.8)

E(W ) =
1

2

∑

y∈Y
W (y | 1) exp

{
−1

2
(ln

W (y | 1)
W (y | 0) +

∣∣ln
W (y | 1)
W (y | 0)

∣∣)
}
. (2.9)

The parameter I(W ) is the capacity of W or the mutual information between
the input and the output assuming a uniform distribution on the inputs. The
parameter H(W ) is equal to the entropy of the input of W given its output
when we assume a uniform distribution on the inputs, i.e., H(W ) = H(X |
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Figure 2.1: Left figure: the BEC with erasure probability z. An input symbol
to this channel is erased with probability z or passed through the channel with
probability 1 − z. Middle figure: the BSC with cross-over probability ε. An input
to this channel is flipped with probability ε or passed through with probability 1−ε.
Right figure: the BAWGN with noise variance σ2. The output y of this channel is
the sum of its input x ∈ {0, 1} and a noise value r which is a gaussian r.v. with
mean 0 and variance σ2.

Y ). Hence, we call the parameter H(W ) the entropy of the channel W . The
parameter Z(W ) is called the Bhattacharyya parameter of W . Finally, E(W )
is called the error probability of W . It can be shown that E(W ) is equal to the
error probability in estimating the channel input x on the basis of the channel
output y via the maximum-likelihood decoding of W (y|x) (with the further
assumption that the input has uniform distribution).

It can be shown that the following relations hold between these parameters
(see for e.g., [1] and [47, Chapter 4]):

0 ≤ 2E(W ) ≤ H(W ) ≤ Z(W ) ≤ 1, (2.10)

H(W ) ≤ h2(E(W )), (2.11)

Z(W ) ≤
√
1− (1 −H(W ))2, (2.12)

where h2(·) denotes the binary entropy function.

2.3 Channel Polarization

We start by illustrating the channel polarization phenomenon in its simplest
form by using Arikan’s original construction [1]. We then briefly mention gener-
alizations of this phenomenon using other constructions. Channel polarization
consists of three stages as follows.

Step 1 (Channel Splitting): LetW denote the class of BMS channels. Let us
define a channel transform W → (W 0,W 1), called channel splitting, that maps
W to (W ,W). In other words, channel splitting is a transform which takes a
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BMS channel W as input and outputs two BMS channels W 0 and W 1 that
are constructed as follows. Having the channel W : {0, 1} → Y, the channels
W 0 : {0, 1}→ Y2 and W 1 : {0, 1}→ {0, 1}× Y2 are defined as

W 0(y1, y2|u0) =
∑

x2∈{0,1}

1

2
W (y1|u0 ⊕ u1)W (y2|u1), (2.13)

W 1(y1, y2, u0|u1) =
1

2
W (y1|u0 ⊕ u1)W (y2|u1). (2.14)

Let us now explain what is the intuitive meaning behind the formulas (2.13) and
(2.14) and why W 0 is worse than W where as W 1 is better. Consider a setting
as in Figure 2.2 where two independent copies of W are used for transmission.
We have two input bits u0, u1 with i.i.d. distribution Bernoulli( 12 ) which are

Figure 2.2: The basic channel transform where we combine two independent
copies of W .

combined using a simple transform

(x0, x1) = (u0, u1)

(
1 0
1 1

)

︸ ︷︷ ︸
G2

. (2.15)

The resulting bits x0, x1 are then transmitted through two independent copies
of W to form the output values y0, y1. One can easily see that the transition
probability of the output (y0, y1) given (u0, u1) is

Pr(y0, y1 | u0, u1) = W (y0 | x0)W (y1 | x1)

= W (y0 | u0 ⊕ u1)W (y1 | u1). (2.16)

Of course, the optimal way to infer the value of the bits (u0, u1), given only
the output (y0, y1), is via ML decoding with transition probabilities (2.16).
Now consider the following sub-optimal successive decoder. First decode u0

assuming no information about u1 (i.e., by treating u1 as noise) and then use
the resulting estimate for u0 to decode u1. Figure 2.3 illustrates this successive
decoder. Now for the analysis of the successive decoder lets us define the two
events

E0 = u0 is decoded incorrectly, (2.17)

E1 = u0 is decoded correctly but u1 is decoded incorrectly. (2.18)
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Figure 2.3: Successive decoding of (u0, u1) from the observation (y0, y1): first
decode u0 assuming no information about u1 (the left figure) and then use the
resulting estimate for u0 to decode u1 (the right figure).

Clearly, the successive decoder fails if and only if at least one of the events E0

or E1 occur. Thus, one can write

Pr(successive decoder fails) = Pr(E0 ∪E1), (2.19)

and as a result

max(Pr(E0),Pr(E1)) ≤ Pr(successive decoder fails) ≤ Pr(E0) + Pr(E1).
(2.20)

Finally, we show how one naturally derives the channels W 0 and W1 defined
in (2.13) and (2.14) from the events E0 and E1 respectively. A close look
at the definition of W 0 in (2.13) reveals that the channel W 0 is precisely the
channel between the bit u0 and the output (y0, y1) when u1 is assumed as noise.
Indeed, in (2.13) the sum over u1 corresponds to the fact that u1 is assumed
as a completely unknown random variable or as noise. The channel W 1 given
in (2.14) is the channel between the bit u1 and the vector (y0, y1, u0). In other
words, for W 1 the value of u0 is given as a part of the output. Hence, the
channel W 1 models the event of decoding the bit u1 given the true value of
u0 and the observation of (y0, y1). It is now clear that the events E0 and E1

are precisely the event of failure in ML decoding the bits u0 and u1 from the
channels W 0 and W 1 respectively (see Figure 2.4 for a better illustration). As
a result, by (2.20) we obtain

max(E(W 0), E(W 1)) ≤ Pr(successive decoder fails) ≤ E(W 0) + E(W 1)
(2.21)

One can interpret W 0 as the channel that u0 ”sees” when u1 is considered as
noise and also W 1 can be interpreted as the channels that u1 ”sees” when u0

is given. From Figure 2.4 one can also see why the channel W 0 is a ”worse”
channel with respect to W and W 1 is a ”better” channel than W . In fact, in
the channel W 0, what the bit u0 sees is the xor sum of two independent (noisy)
observations of the bits x0 and x1. Since the two observations are added, they
mutually corrupt each other and the net result is less profitable (in terms of
inferring about the bit u0) than each of the individual observations. Hence,
the channel W 0 is worse than W . The situation gets better for the bit u1 on
channel W 1 since for u1 the two observations are given directly to u1 without
any further corruption. Hence, given the value of u0, the bit u1 has at hand
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Figure 2.4: The figures on the left hand-side correspond to the channel W 0. The
figure at the bottom left explains why the channel W 0 is a worse channel than
W . In the channel W 0, what u0 sees is intuitively the sum (XOR) of the two
observations y0 and y1. Each of these observations correspond to one usage of W .
The fact that these observations are summed means that they mutually affect each
other as some kind of a noise, making the final result worse that each individual
observation. The figures on the right hand-side correspond to the channelW 1. The
figure at the bottom right explains why the channel W 1 is a better channel than
W . In the channel W 1, the (independent) observations y0 and y1 are separately
given to u1. Hence, u1 has two independent observations of itself each of which
is equivalent to one usage of W . Thus, W 1 is better than W .

two independent observations of itself. So the channel W 1 is a better channel
than W .

Finally, let us point out that by applying the chain rule for mutual infor-
mation one can show that this transform preserves capacity [1]

I(W 0) + I(W 1) = 2I(W ), (2.22)

and regarding the Bhattacharyya parameter, we have

Z(W 1) = Z(W )2, (2.23)

Z(W ) ≤ Z(W 0) ≤ 1− (1 − Z(W ))2, (2.24)

Step 2 (Infinite binary tree): Consider an infinite binary tree with the root
node placed at the top. In this tree each vertex has 2 children and there are 2n

vertices at level n. Assume that we label these vertices from left to right from 1
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to 2n. Here, we intend to assign to each vertex of the tree a BMS channel. We
do this by a recursive procedure. Assign to the root node the channel W itself.
Now consider the channel splitting transform W → (W 0,W 1) and from left to
right, assign W 0 to W 1 to the children of the root node. In general, if Q is
the channel that is assigned to vertex v, we assign Q0 to Q1, from left to right
respectively, to the children of the node v. In this way, we recursively assign a
channel to all the vertices of the tree. Figure 2.5 shows the first 2 levels of the

W

W 0 W 1

(W 0)0 (W 0)1 (W 1)0 (W 1)1

. . .
...

.....
.

Figure 2.5: The infinite binary tree and the channels assigned to it.

binary tree. Let W (i)
2n denote the channel that is assigned to vertex with label

i at level n of the tree, 1 ≤ i ≤ 2n. As a result, one can equivalently relate the

channel W (i)
2n to W via the following procedure: let the 2-ary representation of

i− 1 be b1b2 · · · bn, where b1 is the most significant digit. Then we have

W (i)
2n = (((W b1 )b2)···)bn .

As an example, assuming i = 7, n = 3 we have W (7)
8 = ((W 1)1)0.

Let us recall from above that for the channels W 0 and W 1 defined in (2.13)
and (2.14) there is an interesting interpretation in terms of successively decod-
ing the bits u0 and u1. As we explain very briefly here, one can generalize

this interpretation to the channels {W (i)
2n }1≤i≤2n . We have N = 2n input bits

u0, u1, · · · , uN−1 with i.i.d. distribution Bernoulli( 12 ) which are combined using
the transform

(x0, x1, · · · , xN−1) = (u0, u1, · · · , uN−1)G
⊗n
2 , (2.25)

where G2 is given in (2.25) and ⊗ denotes kronecker power. The resulting bits
x0, x1, · · · , xN−1 are then transmitted through N independent copies of W to
form the output values y0, y1, . . . , yN−1. Now, there is a pre-specified order on
the bits u0, u1, · · · , uN−1 which we denote by ui0 , ui1 , · · · , uiN−1 such that the

channel W (j)
N is precisely the channel that the bits uij sees given the output

y0, · · · , yN−1 and previous bits ui0 , ui1 , · · · , uij−1 . Now, consider successively
decoding the ordered bits ui0 , ui1 , · · · , uiN−1 . In this regard, define the even
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Ej by

Ej =the bit uij is decoded incorrectly assuming that the previous bits

ui0 , · · · , uij−1 are decoded correctly.

Then, we have

Pr(Ej) = E(W (j)
N ). (2.26)

Step 3 (Polarization property): The channels {W (i)
2n }1≤i≤2n have the prop-

erty that ([1]), as n grows large, a fraction close to I(W ) of the channels have
capacity close to 1 (or Bhattacharyya parameter close to 0); and a fraction close
to 1− I(W ) of the channels have capacity close to 0 (or Bhattacharyya param-

eter close to 1). In other words, as n grows large, the channels {W (i)
2n }1≤i≤2n

tend to become polarized to one of the following extremal situations: an almost
perfect channel (capacity is very close to 1) or a very noisy channel (capacity is
very close to 0). The basic idea behind polar codes is to use those channels that
have capacity close to 1 (or equivalently have Bhattacharyya parameter close
to 0) for information transmission. Before going further into the construction
of polar codes using the phenomenon of channel polarization, we proceed by
providing analytic grounds for justification of this phenomenon.

2.3.1 Polarization Process

Let {Bn, n ≥ 1} be a sequence of iid Bernoulli( 12 ) random variables. De-
note by (F ,Ω,Pr) the probability space generated by this sequence and let
(Fn,Ωn,Prn) be the probability space generated by (B1, · · · , Bn). For a BMS
channel W , define a random sequence of channels Wn, n ∈ N ! {0, 1, 2, · · · },
as W0 = W and

Wn =

{
W 0

n−1 if Bn = 0,
W 1

n−1 if Bn = 1,
(2.27)

where the channels on the right side are given by the transform Wn−1 →
(W 0

n−1,W
1
n−1). Let us also define the random processes {Hn}n∈N, {In}n∈N,

{Zn}n∈N and {En}n∈N as Hn = H(Wn), In = I(Wn) = 1 − H(Wn), Zn =
Z(Wn) and En = E(Wn).

Example 2.1. By a straightforward calculation one can show that for W =
BEC(z) we have

W 0 = BEC(1− (1 − z)2) (2.28)

W 1 = BEC(z2). (2.29)

Hence, when W = BEC(z), the channel Wn is always a BEC. Furthermore,
the processes Hn, In, Zn and En admit simple closed form recursions as follows.
We have H0 = z and for n ≥ 1

Hn =

{
1− (1−Hn−1)2, w.p. 1

2
H2

n−1, w.p. 1
2 .

(2.30)
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Also, we have2 2En = Hn = 1− In = Zn.
For channels other than the BEC, the channel Wn gets quite complicated in

the sense that the cardinality of the output alphabet of the channel Wn is doubly
exponential in n (or exponential in N). Thus, tracking the exact outcome of
Wn seems to be a difficult task (for more detail see [?, 23]). Instead, as we
will see in the sequel, one can prove many interesting properties regarding the
processes Hn, Zn and En.

Let us quickly review the limiting properties of the above mentioned pro-
cesses [1, 7]. From (2.22) and (2.27), one can write for n ≥ 1

E[H(Wn) | Wn−1]
(2.27)
=

H(W 0
n−1) +H(W 1

n−1)

2

(2.22)
= H(Wn−1). (2.31)

Hence, the process Hn is a martingale. Furthermore, since Hn is also bounded
(2.10), by Doob’s martingale convergence theorems, the process Hn converges
in L1 (and almost surely) to a limit random variable H∞. As the convergence
is in L1, as n→∞ we have

E
[
|Hn −Hn−1|

]
= E
[
|H(W 0

n)−H(Wn)|
]
→ 0.

As a result, we must have that H(W 0
n)−H(Wn) converges to 0 almost surely

(a.s.). We now claim that for a channel P , in order to have H(P 0) = H(P ) we
must have H(P ) = 0 (i.e., P is the noiseless channel) or H(P ) = 1 (i.e., P is
the completely noisy channel). By this claim and the fact that Hn converges
a.s. to H∞, we conclude that H∞ take its values in the set {0, 1}. Also, as
E[Hn] = E[H∞] = H(W ), we obtain

H∞ =

{
0 w.p. 1−H(W ),
1 w.p. H(W ).

(2.32)

It remains to prove the claim mentioned above. We use the so called extremes
of information combining inequalities [47]. Let P be an arbitrary BMS channel.
To simplify notation, let h = H(P ) and also let ε ∈ [0, 12 ] be such that h2(ε) =
H(P ). We have

h ≤

h2(2ε(1−ε))︷ ︸︸ ︷
H(BSC(ε)0) ≤ H(P 0) ≤

1−(1−h)2

︷ ︸︸ ︷
H(BEC(h)0), (2.33)

H(BEC(h)1)︸ ︷︷ ︸
h2

≤ H(P 1) ≤ H(BSC(ε)1)︸ ︷︷ ︸
2h−h2(2ε(1−ε))

≤ h. (2.34)

Now, to prove the claim, assume that P is such that H(P 0) = H(P ). Using
(2.33) we obtain H(BSC(h)0) = H(P ) or equivalently h2(2ε(1 − ε)) = h2(ε).
As a result, ε must be a solution of the equation ε = 2ε(1 − ε) which yields
ε = 0, 12 . Also, as H(P ) = h2(ε), then H(P ) can either be 0 or 1 and hence the
claim is justified. Using the bounds (2.10)-(2.12) it is clear that the processes
Zn and En converge a.s. to H∞ and 1

2H∞, respectively.

2For the channel W = BEC(z), it is easy to show that 2E(W ) = H(W ) = Z(W ) = z.
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2.3.2 Polar Codes

Given the rate R < I(W ), polar coding is based on choosing a set of 2nR

rows of the matrix Gn =
[
1 0
1 1

]⊗n
to form a 2nR× 2n matrix which is used as

the generator matrix in the encoding procedure. The way this set is chosen is
dependent on the channel W and is briefly explained as follows: At time n ∈ N,
consider a specific realization of the sequence (B1, · · · , Bn), and denote it by
(b1, · · · , bn). The random variable Wn outputs a BMS channel, according to
the procedure (2.27), which we can naturally denote by W (b1,··· ,bn). Let us now
identify a sequence (b1, · · · , bn) by an integer i in the set {1, · · · , N} such that
the binary expansion of i−1 is equal to the sequence (b1, · · · , bn), with b1 as the
least significant bit. As an example for n = 3, we identify (b1, b2, b3) = (0, 0, 1)

with 5 and (b1, b2, b3) = (1, 0, 0) with 2. To simplify notation, we use W (i)
n to

denote W (b1,··· ,bn). Given the rate R, the indices of the matrix Gn are chosen

as follows: Choose a subset of size NR from the set of channels {W (i)
N }1≤i≤N

that have the least possible error probability (given in (2.9)) and choose the

rows Gn with the same indices as these channels. E.g., if the channel W (j)
N is

chosen, then the j-th row of Gn is selected. In the following, given N , we call
the set of indices of NR channels with the least error probability, the set of
good indices and denote it by IN,R. In the sequel, we will frequently use the
term “the set of good indices” and IN,R interchangeably.

It is proved in [1] that the block error probability of such polar coding
scheme under SC decoding, denoted by Pe(N,R), is bounded from both sides
by3

max
i∈IN,R

E(W (i)
N ) ≤ Pe(N,R) ≤

∑

i∈IN,R

E(W (i)
N ). (2.35)

We now briefly explain why such a code construction is reliable for any rate R <
I(W ), provided that the block-length is large enough. Recall from Section 2.3.1
that the process En = E(Wn) converges a.s. to a r.v. E∞ such that P(E∞ =
0) = 1 − H(W ) = I(W ). Hence, it is clear from the definition of the set
good indices , IN,R, that the left side of (2.35) decays to 0 as n grows large.
However, the story is not over yet since this is only a Lower bound on Pe(N,R).
Nonetheless, one can also show that the right side of (2.35) decays to 0. This
was initially shown in [1] and later in [36] the authors showed that all of the

three terms in (2.35) behave like 2−2
n
2 +o(

√
n)

.

2.4 Polar Codes Based on !× ! Matrices

One direct extension of polar codes is the usage of other matrices (kernels)
rather than matrix G2. For an integer ! > 2, let G be an !× ! matrix. We now
explain briefly how polar codes, based on the matrix G, are constructed. We

3Note here that by (2.9) the error probability of a BMS channel is less than its Bhat-
tacharyya value. Hence, the right side of (2.35) is a better upper bound for the block error
probability than the sum of the Bhattacharyya values.
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note here that in order to have the polarization phenomenon, it is necessary
and sufficient that G has the following property [12]: none of its column per-
mutations are upper-triangular. We call such a matrix G a polarizing matrix
and throughout this thesis we always assume that G is polarizing. Also, for
! > 2 there are several polarizing ! × ! matrices. For future convenience, we
define the ensemble of polarizing matrices as follows.

Definition 2.1. By the ensemble of polarizing !-matrices, denoted by G#, we
mean the set of all the polarizing matrices of size ! × ! endowed with uniform
probability.

We proceed by explaining the phenomenon of channel polarization a polar-
izing kernel G. In short, for n ∈ N the method of channel polarization takes
N = !n copies of a BMS channel W and combines them by using the kernel

matrix G to make a new set of !n channels {W (i)
#n }1≤i≤#n . As n → ∞, the set

{W (i)
#n }1≤i≤#n tends to have extremal properties. We explain in more detail the

method of channel polarization through the following three steps.
Step 1 (Channel Splitting): Let W denote the class of BMS channels. Let

us define a channel transform W → (W 0,W 1, · · · ,W #−1), called channel split-

ting, that maps W to (

#︷ ︸︸ ︷
W ,W , · · · ,W). In other words, channel splitting is a

transform which takes a BMS channel W as input and outputs ! BMS chan-
nels W j , 0 ≤ j ≤ ! − 1. The channels W j are constructed using the channel
W and matrix G, according to the following rule: Consider a random row
vector U #−1

0 = (U0, . . . , U#−1) that is uniformly distributed over {0, 1}#. Let
X#−1

0 = U #−1
0 G, where the arithmetic is in GF(2). Also, let Y #−1

0 be the result
of passing each component of X#−1

0 through an independent copy of W (i.e.,
Yi is the outcome of passing Xi through an independent copy of W ). We thus
define the channel between U #−1

0 and Y #−1
0 by the transition probabilities

W#(y
#−1
0 | u#−1

0 ) !
#−1∏

i=0

W (yi | xi) =
#−1∏

i=0

W (yi | (u#−1
0 G)i). (2.36)

The channel W j : {0, 1} → Y# × {0, 1}j is defined as the BMS channel with
input uj, output (y

#−1
0 , uj−1

0 ) and transition probabilities

W j(y#−1
0 , uj−1

0 | uj) =
1

2#−1

∑

u"−1
j+1

W#(y
#−1
0 | u#−1

0 ). (2.37)

Here and hereafter, uj
i denotes the subvector (ui, . . . , uj). An intuitive expla-

nation behind the definition of W j is as follows: Pick uniformly at random
one of the 2# possible realizations of the vector U #−1

0 and let it be denoted by
u#−1
0 = (u0, . . . , u#−1). Construct the vector x#−1

0 = u#−1
0 G and send the !

components of x#−1
0 through ! parallel (and independent) copies of the channel

W and finally let y#−1
0 denote the output (i.e., yi is the result of passing xi

through an independent copy of W ). It is easy to see that the channel between
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u#−1
0 and y#−1

0 is precisely the channel W#(y
#−1
0 | u#−1

0 ) defined in (2.36). Fig-
ure 2.6 gives a schematic representation of this channel. Thus, given the vector

Figure 2.6: Schematic representation of the channel between the random vectors
U #−1
0 and Y #−1

0 .

y#−1
0 , the optimal way to infer about the value of u#−1

0 is via ML decoding of
W#(y

#−1
0 | u#−1

0 ). Now, besides having access to y#−1
0 , assume that a genie also

gives us the values of the bits u0, · · · , uj−1 and asks us to decide on the value

of uj based on the observed vector (y#−1
0 , uj−1

0 ). A little thought shows that
the optimal way to do this is ML decoding of the values of uj by using the

transition probabilities W j(y#−1
0 , uj−1

0 | uj) defined in (2.37). In other words,
W j is precisely the channel between uj and (y#−1

0 , uj−1
0 ) when we do not have

any information about the value of uj+1, · · · , u#−1 (i.e., they are modeled as
independent and identically-distributed (i.i.d.) random variables with a uni-
form distribution). Figure 2.7 gives a schematic representation of the channel
W j .

Finally, a noteworthy point to repeat is that the actual implementation of
the channel splitting transform W → (W 0,W 1, · · · ,W #−1) requires ! indepen-
dent copies of W to generate W 0, · · · ,W #−1. Furthermore, by applying the
chain rule for mutual information one can show that this transform preserves
capacity [1], [12]

#−1∑

j=0

I(W j) = !I(W ). (2.38)

Step 2 (Infinite !-ary tree): Consider an infinite !-ary tree with the root
node placed at the top. In this tree each vertex has ! children and there are !n

vertices at level n. Assume that we label these vertices from left to right from 1
to !n. Here, we intend to assign to each vertex of the tree a BMS channel. We
do this by a recursive procedure. Assign to the root node the channel W itself.
Now consider the channel splitting transform W → (W 0,W 1, · · · ,W #−1) and
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Figure 2.7: Schematic representation of the channel W j . This is the channel
that the bit uj ”sees” when the the value of u0, · · · , uj−1 together with y#−1

0 is
given as output and the bits uj+1, · · · , u#−1 are treated as noise (i.e., there is no
information about their value and we assume their value is chosen uniformly at
random).

from left to right, assign W 0 to W #−1 to the children of the root node. In
general, if Q is the channel that is assigned to vertex v, we assign Q0 to Q#−1,
from left to right respectively, to the children of the node v. In this way, we

recursively assign a channel to all the vertices of the tree. Let W (i)
#n denote the

channel that is assigned to vertex with label i at level n of the tree, 1 ≤ i ≤ !n.
As a result, one can equivalently relate the channel W (i)

#n to W via the following
procedure: let the !-ary representation of i − 1 be b1b2 · · · bn, where b1 is the
most significant digit. Then we have

W (i)
#n = (((W b1 )b2)···)bn .

As an example, assuming i = 7, n = 3 and ! = 2 we have W (7)
8 = ((W 1)1)0.

Step 3 (Polarization property): The channels {W (i)
#n }1≤i≤#n have the prop-

erty that ([1], [12]), as n grows large, a fraction close to I(W ) of the channels
have capacity close to 1 (or Bhattacharyya parameter close to 0); and a fraction
close to 1−I(W ) of the channels have capacity close to 0 (or Bhattacharyya pa-

rameter close to 1). In other words, as n grows large, the channels {W (i)
#n }1≤i≤#n

tend to become polarized to one of the following extremal situations: an almost
perfect channel (capacity is very close to 1) or a very noisy channel (capacity
is very close to 0). The basic idea behind polar codes is then to use those
channels that have capacity close to 1 (or equivalently have Bhattacharyya pa-
rameter close to 0) for information transmission. Accordingly, given the rate
R < I(W ) and block-length N = !n, the rows of the generator matrix of a
polar code of block-length N correspond to a subset of the rows of the matrix
G⊗n whose indices are chosen with the following rule: choose a subset of size

NR of the channels {W (i)
#n }1≤i≤#n with the least values for the Bhattacharyya
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parameter and choose the rows G⊗n with the indices corresponding to those

of the channels. For example, if the channel W (i)
#n is chosen, then the jth row

of G⊗n is selected, where the !-ary representation of j − 1 is the digit-reversed
version of that of i−1. We decode using a successive cancellation (SC) decoder.
This algorithm decodes the bits one-by-one in a prescribed order that is closely
related to how the row indices of G⊗n are chosen.



Scaling Laws for the
Un-Polarized Channels 3
3.1 Problem Formulation

As we have seen in the previous chapter, the process Zn polarizes in the sense
that it converges a.s. to a {0, 1} valued random variable Z∞. In this chapter1,
we investigate the dynamics of polarization. We begin by noting that at each
time n there still exists a (small and in n vanishing) probability that the random
variable Zn takes a value far away from the endpoints of the unit interval
(i.e., 0 and 1). Our primary objective is to study these small probabilities.
More concretely, let 0 < a < b < 1 be constants and consider the quantity
Pr(Zn ∈ [a, b]). This quantity represents the fraction of sub-channels that are
still un-polarized at time n. An important question is how fast the quantity
Pr(Zn ∈ [a, b]) decays to zero. This question is intimately related to measuring
the limiting properties of the sequence { 1

n log Pr(Zn ∈ [a, b])}n∈N.

Example 3.1. Assume W = BEC(z). In this case the process Zn has a simple
closed form recursion as Z0 = z and

Zn+1 =

{
Z2
n, w.p. 1

2 ,
1− (1− Zn)2, w.p. 1

2 .
(3.1)

Hence, it is straightforward to compute the value Pr(Zn ∈ [a, b]) numerically.
Let a = 1 − b = 0.1. Figure 3.1 shows the value 1

n log(Pr(Zn ∈ [a, b]))
in terms of n for z = 0.5, 0.6, 0.7. This figure suggests that the sequence
{ 1
n log Pr(Zn ∈ [a, b])} converges to a limiting value that is somewhere between
−0.27 and −0.28. Note that for different values of z, the limiting values are
very close to each other.

1The material of this chapter is based on [15], [16] and [17].

29
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Figure 3.1: The value of 1
n log(Pr(Zn ∈ [a, b]) versus n for a = 1− b = 0.1 when

W is a BEC with erasure probability z = 0.5 (top curve), z = 0.6 (middle curve)
and z = 0.7 (bottom curve).

For other BMS channels, the process Zn does not have a simple closed form
recursion as for the BEC, and hence we need to use approximation methods (for
more details see [23, 25]). Using these methods, we have plotted in Figure 3.2
the value of Pr(Zn ∈ [a, b]) (a = 1 − b = 0.1) for the channel families BSC(ε),
and BAWGNC(σ) with different parameter values. The above numerical evi-

0 5 10 15 20 25
−0.31

−0.29

−0.27

−0.25
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−0.31

−0.29

−0.27

−0.25

−0.23

−0.21

Figure 3.2: Left figure: The value of 1
n log Pr(Zn ∈ [a, b]) versus n for a = 1−b =

0.1 and W being a BSC with cross-over probability ε = 0.11, 0.146, 0.189. These
BSC channels have capacity 0.5, 0.4 and 0.3, respectively. Right figure: the value
of 1

n log Pr(Zn ∈ [a, b]) versus n for a = 1−b = 0.1 and W is a BAWGN with noise
variance σ = 0.978 (top curve), σ = 1.149 (middle curve), and σ = 1.386 (bottom
curve). These BAWGN channels have capacities 0.5, 0.4 and 0.3, respectively.

dence suggests that the quantity Pr(Zn ∈ [a, b]) decays to zero exponentially
fast in n. Further, we observe that the limiting value of this sequence is de-
pendent on the starting channel W (e.g., from the figures it is clear that the
channels BEC, BSC and BAWGN have different limiting values). Let us now
be concrete and rephrase the above speculations as follows.

Question 1. Does the quantity Pr(Zn ∈ [a, b]) decay exponentially in n? If
yes, what is the limiting value of 1

n log Pr(Zn ∈ [a, b]) and how is this limit
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related to the starting channel W and the choice of a and b?

From Figures 3.1 and 3.2, we observe that the value of 1
n log Pr(Zn ∈ [a, b])

is the least when W is a BEC and this suggests that the channel BEC polarizes
faster than the other BMS channels. This is intuitively justified as follows: Fix
a value z ∈ (0, 1) and assume that W is a BMS channel with Bhattacharyya
parameter Z(W ) = z. Now, consider the values Z(W 0) and Z(W 1). Using
relations (2.24) and (2.23), it is clear that the values Z(W 0) and Z(W 1) are
closest to the end points of the unit interval if W is a BEC. In other words, at
the channel splitting transform, the channel BEC(z) polarizes faster than the
other BMS channels.

Question 2. For which set of channels does the quantity Pr(Zn ∈ [a, b]) decay
the fastest or the slowest?

Let us now be more ambitious and aim for our ultimate goal.

Question 3. Can we characterize the exact behavior of Pr(Zn ∈ [a, b]) as a
function of n, a, b and W?

Finally, we ask how the answers to the above questions will guide us through
the understanding of the finite-length scaling behavior of polar codes. An im-
mediate relation stems from the fact that the quantity Pr(Zn ∈ [a, b]) indicates
the portion of the sub-channels that have not polarized at time n. In partic-
ular, all the channels in this set have a large Bhattacharyya value and hence
cannot be included in the set of good indices. Therefore, the maximum reliable
rate that we can achieve is restricted by the portion of this yet un-polarized
channels. Consequently, the answers to the above questions will be crucial in
finding answers to the following question.

Question 4. Fix the channel W and a target block error probability Pe. To
have a polar code with error probability less than Pe, how does the required
block-length N scale with the rate R?

Finding a suitable answer to the questions 1, 3, and 4 is an easier task when
the channel W is a BEC. This is due to the simple closed form expression of
the process Zn given in (3.1). In the next section (Section 3.2), we provide
heuristic methods that lead to suitable numerical answers to Questions 1 and
3 for the BEC. As we will see in the next section, such heuristic derivations are
in excellent compliance with numerical experiments. Using such derivations,
we also give an answer to Question 4 for the BEC. The heuristic results of
Section 3.2 provide us then with a concrete path to analytically tackle the
above questions. In Section 3.3 we provide analytical answers to Questions 1-
4 for the BEC as well as other BMS channels. Proving the full picture of
Section 3.2 is beyond what we achieve in Section 3.3, nevertheless, we provide
close and useful bounds.
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3.2 Heuristic Derivation for the BEC

3.2.1 Scaling Law Assumption

Throughout this section we assume that the channel W is the BEC(z) where
z ∈ [0, 1]. To avoid cumbersome notation, let us define

pn(z, a, b) = Pr(Zn ∈ [a, b]), (3.2)

where Zn is the Bhattacharyya process of the BEC(z). We start by noticing
that by (3.1) the function pn(z, a, b) satisfies the following recursion

pn+1(z, a, b) =
pn(z2, a, b) + pn(1− (1− z)2, a, b)

2
, (3.3)

with
p0(z, a, b) = {z∈[a,b]}. (3.4)

More generally, one can easily observe the following. Let g : [0, 1] → R be an
arbitrary bounded function. Define the functions {gn}n∈N as

gn(z) = E[g(Zn)]. (3.5)

Note here that in (3.5) the parameter z is the starting point of the process Zn,
i.e., Z0 = z. The functions {gn}n∈N satisfy the following recursion for n ∈ N

gn+1(z) =
gn(z2) + gn(1− (1− z)2)

2
. (3.6)

This observation motivates us to define the polar operator, call it T , as follows.
Let B be the space of bounded measurable functions over [0, 1]. The polar
operator T : B → B maps a function g ∈ B to another function in B in the
following way

T (g) =
g(z2) + g(1− (1− z)2)

2
. (3.7)

It is now clear that

E[g(Zn)] = T ◦ T ◦ · · · ◦ T (g) ! T n(g). (3.8)

In this new setting, our objective is to study the limiting behavior of the
functions T n(g) when g is a simple function as in (3.4). This task is intimately
related to studying the largest eigenvalues of the polar operator T and their
corresponding eigenfunctions. In this regard, to keep things in a simple and
manageable setting, we first consider finite-dimensional approximations of T .
This is done by discretizing the unit interval into very small sub-intervals with
the same length and by assuming that T operates on all the points of these
sub-intervals in the same way. More concretely, consider a (large) number
L ∈ N and let the numbers xi, i ∈ {0, 1, · · · , L − 1} be defined as xi =

i
L−1 .

Hence, the unit interval [0, 1] can be thought of as the union of the small



3.2. Heuristic Derivation for the BEC 33

sub-intervals [xi, xi+1]. Now, for simplicity assume that g is a (piece-wise)
continuous function on [0, 1]. Intuitively, by assuming L to be large, we expect
that the value of g is the same throughout each of the intervals [xi, xi+1]. Such
an assumption seems also reasonable for the function T (g) given in (3.7). We
can approximate the function g as an L dimensional vector

gL ≈ [g(x0), g(x1), · · · , g(xL−1)]. (3.9)

In this way, we expect that the function T (g) can be well approximated by a
matrix multiplication

T ≈ gLTL, (3.10)

where the L× L matrix TL is defined as follows. Let TL(i, j) be an element of
TL in the i-th row and the j-th column. Define TL(1, 1) = TL(L,L) = 1 and
for the other elements of TL we let

TL(i, j) =






1
2 , if j = /L( i

L)
20,

1
2 , if j = 1L(1− (1− i

L )
2)2,

0, o.w.

(3.11)

As an example, the matrix TL for L = 10 has the following form

T10 =





1 0 0 0 0 0 0 0 0 0
1
2 0 1

2 0 0 0 0 0 0 0
1
2 0 0 0 1

2 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0

0 1
2 0 0 0 0 0 1

2 0 0
0 0 1

2 0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0 0 1

2 0
0 0 0 0 0 1

2 0 0 0 1
2

0 0 0 0 0 0 0 1
2 0 1

2
0 0 0 0 0 0 0 0 0 1





.

All the rows of TL sum up to 1. Hence, an application of the Perron-Frobenius
theorem [129] shows that the (absolute value of) eigenvalues of TL are all inside
the interval [−1,+1]. Also, it is easy to see that TL has a trivial eigenvalue
equal to λ0 = 1 with two corresponding eigenvectors

v0 = (1, 0, · · · , 0),
v1 = (0, 0, · · · , 1).

A little thought shows that the v0 and v1 correspond to the two extremal states
of the polarization (i.e., the perfect channel and the useless channel). This can
be justified by the fact that if we start from any initial vector ep that has value
one at position p and value zero elsewhere, then

epT
n
L

n→∞−→ c0v0 + c1v1,
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L 1000 2000 4000 8000
λ2(L) 0.8227 0.8240 0.8248 0.8253
λ3(L) 0.6878 0.6958 0.7012 0.7046

Table 3.1: Values of λ2(L) and λ3(L), which correspond to the second and third largest
eigenvalues of TL (in absolute value), are computed numerically for different values of L.

where c0 and c1 are positive constants. This is just a rough observation of
the polarization phenomenon. In fact, by polarization one can easily guess the
following. Assuming p = zL, we have

c0
L→∞−→ 1− z,

c1
L→∞−→ z.

However, we are interested in finding out how fast such a convergence is taking
place. For this purpose, we look at the second and third largest eigenvalues (in
absolute value) of TL as L grows large. We denote the second largest eigenvalue
of TL by λ2(L) and the third largest is denoted by λ3(L). Table 3.1 contains
the value of these eigenvalues computed numerically for several (large) values
of L. It can thus be conjectured that

lim
L→∞

λ2(L) ≈ 0.826, (3.12)

lim
L→∞

λ3(L) ≈ 0.705. (3.13)

This belief guides us to conclude that for L growing large, if we start from any
vector g which is not a multiple of the eigenvectors of TL, then

gT n
L ≈ c0v0 + c1v1 + c2λ

n
2 v2 +O(nλn3 ). (3.14)

The above approximate relation indicates that for large L, the distance of gT n
L

from the limiting value is roughly equal to c2λn2 .
Now, let us go back the original polar operator T defined in (3.7). As we

argued above, the operators TL, for L large, are good finite-dimensional ap-
proximations of T . The (experimental) relation (3.14) brings us to the following
assumption about T .

Assumption 3.1 (Scaling Assumption). There exists µ ∈ (0,∞) such that,
for any z, a, b ∈ (0, 1) such that a < b, the limit limn→∞ 2

n
µ pn(z, a, b) exists in

(0,∞). We denote this limit by p(z, a, b). In other words,

lim
n→∞

2
n
µPr(Zn ∈ [a, b]) = p(z, a, b). (3.15)

We call the value µ the scaling exponent of polar codes for the BEC.

Note here that by (3.12) we expect that

2−
1
µ = lim

L→∞
λ2(L) ≈ 0.826⇒ 1

µ
≈ 0.275. (3.16)
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Let us now describe a numerical method for computing µ and p(a, b, z). In this
regard, we follow the approach of [22]. First we note that by (3.3) and the
scaling law assumption we conclude that

2−
1
µ p(z, a, b) =

p(z2, a, b) + p(1− (1 − z)2, a, b)

2
. (3.17)

Equation (3.17) can be solved numerically by recursion. First of all, note that
the equation is invariant under multiplicative scaling of p. Also, from the
equation one can naturally guess that p(z, a, b) can be factorized into

p(z, a, b) = c(a, b)p(z), (3.18)

where p(z) is a solution of (3.17) with p(12 ) = 1. We iteratively compute µ and
p(z).

Initialize p0(z) –say– with p0(z) = 4z(1− z) and compute recursively new
estimates of pn+1(z) by first computing

p̂n+1(z) =pn(z
2) + pn(1 − (1− z)2),

and then by normalizing pn+1(z) = p̂n+1(z)/p̂n+1(
1
2 ), so that pn+1(

1
2 ) = 1. We

have implemented the above functional recursion numerically by discretizing
the z axis. Figure 3.3 shows the resulting numerical approximation of p∞(z) as
obtained by iterating the above procedure until ‖pn+1(z) − pn(z)‖∞ ≤ 10−10

(∀z ∈ [0, 1]) and by using a discretization with 106 equi-spaced values of z.
From this recursion we also get a numerical estimate of the scaling expo-

0

1

1

Figure 3.3: The function p(z) for z ∈ [0, 1].

nent µ. In particular, we expect p̂n(1/2) → 2
1
µ as n → ∞, or equivalently

2−
1
µ p̂n(1/2)→ 1. Using this method, we obtain the estimate

2−
1
µ ≈ 0.8260 =⇒ 1

µ
≈ 0.2757. (3.19)

As mentioned above, the function p(a, b, z) differs from p(z) by a multiplicative
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Figure 3.4: The functions 2
n
µ pn(a, b, z) for various values of n. Here we have

fixed a = 1− b = 0.92 and 1
µ = 0.2757. In all of the four plots, the dashed curve

corresponds to c(a, b)p(z) with c(a, b) = 0.92.

constant c(a, b) that is to be found by other means. In Figure 3.4 we plot the
functions 2

n
µ pn(z, a, b) for a = 1− b = 1

10 and different values of n. We observe
that, as n increases these plots and the curve c(a, b)p(z) with c(a, b) = 0.92
match very well. Even for moderate values of n (such as n = 10) we observe
that the curves have a fairly good agreement.

Let us now see what the scaling law assumption implies about the finite-
length behavior of polar codes. For simplicity, we assume that communication
takes place on the BEC(12 ). We are given a target error probability Pe and
want to achieve a rate at least R. What block-length N should we choose?

Consider the process Zn with z = 1
2 . It is easy to see that the set of possible

values that Zn takes in [0, 1] is symmetric around z = 1
2 . Now, according to

the scaling law for x ∈ [0, 12 ], there is a constant p(12 , x,
1
2 ) ! c(x) such that

Pr(Zn ∈ [x,
1

2
]) ≈ c(x)2−

n
µ , (3.20)

As as result, noticing the fact that Zn is symmetric around the point z = 1
2 we

get

Pr(Zn ∈ [0, x]) ≤ 1

2
− c(x)2−

n
µ . (3.21)

From the construction procedure of polar codes (and specially relation (2.35)),
we know the following. Let z(1) ≤ z(2) · · · ≤ z(N) be a re-ordering of the N
possible values of Zn in an ascending order. Then, the error probability of a
polar code with rate R is bounded from below by

Pe ≥ 1−
√
1− z(N.R)2 ≥ z(N.R)2

2
. (3.22)

So in order to achieve error probability Pe, we should certainly have z(N.R)2

2 ≤
Pe or z(N.R) ≤

√
2Pe. Hence, by using (3.21) we deduce that

R ≤ Pr(Zn ∈ [0,
√
2Pe])
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≤ 1

2
− c(

√
2Pe)2

−n
µ

=
1

2
− c(

√
2Pe)N

− 1
µ ,

and finally,

N ≥ (
c(
√
2Pe)

1
2 −R

)µ. (3.23)

Now, from the above calculations we know that 1
µ ≈ 0.2757 as a result for the

channel W = BEC(12 ) we have

N ≥ Θ

(
1

(I(W )−R)3.627

)
. (3.24)

In the next section, we provide methods that analytically validate the above
observations. We also extend some of these observations to other BMS chan-
nels.

3.3 Analytical Approach: from Bounds for the BEC to
Universal Bounds for BMS Channels

In this section we provide a rigorous basis for the observations that were derived
in the previous section. Proving the full picture of Section 3.2 is beyond what
we achieve here, but, we come up with close and useful bounds.

3.3.1 Characterization of µ for the BEC

We provide two approaches, that exploit different techniques, to compute the
scaling exponent µ for the BEC. The first approach is based on a more careful
look at equation (3.7). We observe that simple bounds can be derived on the
largest nontrivial eigenvalue of the polar operator T by carefully analyzing the
effect of T on some suitably chosen test functions. This approach provides us
with a sequence of bounds on µ. We conjecture (and observe empirically) that
these bounds indeed converge to the value of µ that is computed in Section 3.2.
The second approach considers different compositions of the two operations z2

and 2z− z2 and analyzes the asymptotic behavior of these compositions. This
approach provides us with a close lower bound on µ.

First Approach

Consider the polar operator defined in (3.7). The objective here is to compute
the largest eigenvalues of T . Specifically, we want to find the largest solutions
of

T (f) = λf. (3.25)

A check shows that both f(z) = z and f(z) = 1 are eigenfunctions associated to
the eigenvalue λ = 1. Perhaps more interestingly, let us look at the eigenvalues
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of T inside the interval (0, 1). Intuitively, equation (3.17), together with the
scaling law, can be reformulated as follows. The operator T has an eigenvalue
λ = 2−

1
µ and a corresponding eigenfunction p(z) such that if we take any step

function f(z) = {z∈[a,b]}, then

λ−nT n(f)
n→∞−→ c(a, b)p(z). (3.26)

In fact, if the scaling law is true, then we naturally expect that (3.26) holds
for a much larger class of functions rather than the class of step functions.
Heuristic arguments of the previous section also suggest that (3.26) holds for
all (piece-wise) continuos functions f(z) with f(0) = f(1) = 0.

Motivated by this picture, one approach to find bounds on the eigenvalue
consists of the following two steps: (1) choose a suitable “test function” f(z)
for which we can provide good bounds on the behavior of T n(f) and (2) turn
these bounds into bounds on the corresponding eigenvalue (or µ). With this in
mind, for a generic test function f(z) : [0, 1]→ [0, 1], let us define the sequence
of functions {fn(z)}n∈N as fn : [0, 1]→ [0, 1] and for z ∈ [0, 1],

fn(z) ! E[f(Zn)] = T n(f). (3.27)

Here, note that for z ∈ [0, 1] the value of fn(z) is a deterministic value that is
dependent on the process Zn with the starting value Z0 = z. Let us now recall
once more the recursive relation of the functions fn:

f0(z) = f(z), (3.28)

fn(z) =
fn−1(z2) + fn−1(1 − (1− z)2)

2
.

In order to find lower and upper bounds on the speed of decay of the sequence
fn, we define sequences of numbers {am}m∈N and {bm}m∈N as

am = inf
z∈[0,1]

fm+1(z)

fm(z)
, (3.29)

bm = sup
z∈[0,1]

fm+1(z)

fm(z)
. (3.30)

Lemma 3.1. Fix m ∈ N. For all n ≥ m and z ∈ [0, 1], we have

(am)n−mfm(z) ≤ fn(z) ≤ (bm)n−mfm(z). (3.31)

Furthermore, the sequence am is an increasing sequence and the sequence bm
is a decreasing sequence.

Proof. Here, we only prove the left-hand side of (3.31) and note that the right-
hand side follows similarly. The proof goes by induction on n−m. For n−m = 0
the result is trivial. Assume that the relation (3.31) holds for a n−m = k, i.e.,
for z ∈ [0, 1] we have

(am)kfm(z) ≤ fm+k(z). (3.32)
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We show that (3.31) is then true for k + 1 and z ∈ [0, 1]. We have

fm+k+1(z)
(a)
=

fm+k(z2) + fm+k(1 − (1− z)2)

2
(b)
≥ (am)kfm(z2) + (am)kfm(1− (1 − z)2)

2
= (am)kfm+1(z)

= (am)k
fm+1(z)

fm(h)
fm(z)

≥ (am)k
[

inf
z∈[0,1]

fm+1(z)

fm(z)

]
fm(z)

= (am)k+1fm(z).

Here, (a) follows from (3.28) and (b) follows from the left-side inequality in
(3.32), and hence the lemma is proved via induction.

Let us now begin searching for suitable test functions, i.e., candidates for
f(z) that provide us with good lower and upper bounds am and bm. We expect
that having a polynomial test function might be slightly preferable. This is
due to the fact that if f is a polynomial, then T n(f) is also a polynomial and
computing am and bm is equivalent to finding roots of polynomials which is
a manageable task. Of course the simplest polynomial that takes the value
0 on z = 0, 1 is f0(z) = z(1 − z). Hence, let us take our test function as
f(z) = f0(z) = z(1− z) and consider the corresponding sequence of functions
{fn(z)}n∈N,

fn(z) = E[Zn(1− Zn)] = T n(f0). (3.33)

A moment of thought shows that with f0 = z(1 − z) the function 2nfn is
a polynomial of degree 2n+1 with integer coefficients. Let us first focus on
computing the value of am for m ∈ N. If the relation (3.26) holds true, then

we expect that the value of am converges to λ = 2−
1
µ as m grows large.

Remark 3.1. One can compute the value of am by finding the extreme points
of the function fm+1

fm
(i.e., finding the roots of the polynomial gm = f ′

m+1fm−
fm+1f ′

m) and checking which one gives the global minimum. Assuming f0 =
z(1 − z), for small values e.g., m = 0, 1, pen and paper suffice. For higher
values of m, we can automatize the process: all these polynomials have rational
coefficients and therefore it is possible to determine the number of real roots
exactly and to determine their value to any desired precision. This task can be
accomplished precisely by computing so-called Sturm chains (see Sturm’s Theo-
rem [18]). Computing Sturm chains is equivalent to running Euclid’s algorithm
starting with the second and third derivative of the original polynomial. Hence,
we can find the value of am analytically to any desired precision. Table 3.2
contains the numerical value of am up to precision 10−4 for m ≤ 10. As the
table shows, the values am are increasing (see Lemma 3.1), and we conjecture
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that they converge to 2−0.2757 = 0.8260, the corresponding value for the channel
BEC (see (3.19)).

m 0 2 4 6 8 10
am 0.75 0.7897 0.8074 0.8190 0.8228 0.8239

log am −0.4150 −0.3406 −0.3086 −0.2880 −0.2813 −0.2794

Table 3.2: The values of am corresponding to the test function f0 = z(1− z) are
numerically computed for several choices of m.

Let us now focus on computing the value of bm. On the negative side, for
the specific test function f(z) = z(1 − z) we obtain bm = 1 for m ∈ N and
therefore the upper bounds of (3.30) are of trivial use. In fact, it is not hard to
show that if we plug in any polynomial as the test function then we get bm = 1
for any m. On the positive side, we can consider other test functions that
result in non-trivial values for bm. The problem with non-polynomial functions
is that methods such as the Sturm-chain method no longer apply here. Hence,
finding the precise value of bm up to a desired precision can be a difficult task
and we lose the analytical tractability of bm. As an example, choose

f0(z) = zα(1− z)β, (3.34)

for some choice of α,β ∈ (0, 1). Then, from (3.30) we have

b0 = sup
z∈[0,1]

f1(z)

f0(z)
= sup

z∈[0,1]

zα(1 + z)β + (2− z)α(1− z)β

2
. (3.35)

By letting α = β = 2
3 , we numerically get b0 = 0.8312 which is already a close

bound for λ. This suggests that the test function f0(z) = f(z) = (z(1− z))
2
3 is

suitable candidate for obtaining good upper bounds bm. For this specific test
function, the value of bm for various values ofm has been numerically computed
in Table 3.3. As we observe from Table 3.3, even for moderate values of m the
(numerical) bound bm is very close to the true “value” of λ.

m 0 2 4 6 8
bm 0.8312 0.8294 0.8279 0.8268 0.8264

log bm −0.2663 −0.2699 −0.2725 −0.2744 −0.2751

Table 3.3: The values of bm corresponding to f0 = (z(1 − z))
2
3 are numerically

computed for several choices of m.

Finally, let us relate the bounds am and bm to bounds on the functions
pn(a, b, z). We have
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Lemma 3.2. Consider the test function f(z) = z(1−z) and the corresponding
sequence of function fn defined in (3.28). Let a, b ∈ (0, 1) be such that

√
a ≤

1−
√
1− b. Then, there are constants c1, c2 > 0 such that for any z ∈ (0, 1)

1

n
log fn(z)−

c1 logn

n
≤ 1

n
log Pr(Zn ∈ [a, b]) ≤ 1

n
log fn(z) +

c2
n
. (3.36)

Also, for the test function f(z) = (z(1 − z))
2
3 and the corresponding sequence

fn, defined in (3.28), we have for a, b ∈ (0, 1)

1

n
log Pr(Zn ∈ [a, b]) ≤ 1

n
log fn(z) +

c3
n
, (3.37)

where c3 is a positive constant.

We can now easily conclude that

Corollary 3.1. Fix m ∈ N. For a, b ∈ [0, 1] such that
√
a ≤ 1 −

√
1− b and

n ≤ m we have

log am +O(
log n

n
) ≤ 1

n
log Pr(Zn ∈ [a, b]) ≤ log bm +O(

1

n
), (3.38)

where am is defined in (3.29) with the test function f(z) = z(1 − z) (see Ta-
ble 3.2), and bm is defined in (3.92) with the test function f(z) = (z(1− z))

2
3

(see Table 3.3).

Remark 3.2. We expect that the result of of Lemma 3.2 holds for any choice
of a and b such that a < b. That is, the condition

√
a ≤ 1 −

√
1− b is not a

serious condition and is just given to ease out the proof.

Second Approach:

Throughout this section we will prove the following theorem.

Theorem 3.1. We have

lim inf
n→∞

1

n
log
{∫ 1

0
Pr(Zn ∈ [a, b])dz

}
≥ 1

2 ln 2
− 1 ≈ −0.2787. (3.39)

Let us now explain, at the intuitive level, the main consequence of Theo-
rem 3.1. By using the scaling law assumption, and specifically (3.14) and (3.15),

we have that
∫ 1
0 Pr(Zn ∈ [a, b])dz ≈

∫ 1
0 2−

n
µ p(z, a, b)dz+ o(2−

n
µ ). This relation

together with (3.39) results that µ ≥ 1
2 ln 2 − 1 ≈ −0.2787. For the sake of

briefness, we do not address here further (analytic) conclusions of Theorem 3.1
and we refer the reader to [15].

To proceed with the proof, let us recall from Section 2.3.1 the definition of
Zn (for the BEC) in terms of the sequence {Bn}n∈N. We start by Z0 = z and

Zn+1 =

{
Z2
n−1 ; if Bn = 1,

2Zn−1 − Z2
n−1 ; if Bn = 0.

(3.40)
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Hence, by considering the two maps t0, t1 : [0, 1] −→ [0, 1] defined as

t0(z) = 2z − z2, t1(z) = z2, (3.41)

the value of Zn is obtained by applying tBn on the value of Zn−1, i.e.,

Zn = tBn(Zn−1). (3.42)

The same rule applies for obtaining the value of Zn−1 form Zn−2 and so on.
Thinking this through recursively, the value of Zn is obtained from the starting
point of the process, Z0 = z, via the following (random) maps.

Definition 3.1. For each n ∈ N and a realization (b1, · · · , bn) ! ωn ∈ Ωn

define the map φωn by

φωn = tbn ◦ tbn−1 ◦ · · · tb1 . (3.43)

Also, let Φn be the set of all such n-step maps.

As a result, an equivalent description of the process Zn is as follows. At
time n the value of Zn is obtained by picking uniformly at random one of the
functions φωn ∈ Φn and assigning the value φωn(z) to Zn. Consequently we
have,

Pr(Zn ∈ [a, b]) =
∑

φωn∈Φn

1

2n {φωn (z)∈[a,b]}. (3.44)

Using (3.44), it is apparent that in order to analyze the behavior of the
quantity 1

n log Pr(Zn ∈ [a, b]) as n grows large, it is necessary to character-
ize the asymptotic behavior of the random maps φωn . Continuing the theme
of Definition 3.1, we can assign to each realization of the infinite sequence
{Bk}k∈N, denoted by {bn}n∈N, a sequence of maps φω1(z),φω2(z), · · · , where
ωi ! (b1, · · · , bi). We call the sequence {φωk}k∈N the corresponding sequence
of maps for the realization {bk}k∈N. We also use the realization {bk}k∈N and its
corresponding {φωk}k∈N interchangeably. Let us now focus on the asymptotic
characteristics of the functions φωn . Firstly, since {φωn(z)}ωn∈Ωn has the same
law as Zn starting at z, we conclude that for z ∈ [0, 1] with probability one, the
quantity limk→∞ φωk(z) takes on a value in the set {0, 1} . In Figure 10.3 the
functions φωn are plotted for a random realization. As it is apparent from the
figure, the functions φωn seem to converge point-wise to a jump function (i.e.,
a sharp rise from 0 to 1). As intuitive justification of this fact is as follows.
Consider a random function φωn . Due to polarization, as n grows large, almost
all the values that this function takes are very close to 0 or 1. This function
is also increasing and continuos (more precisely, it is a polynomial). A little
thought reveals that the only choice to imagine for φωn is a very sharp rise
from being almost 0 to almost 1. The formal and complete statement is given
as follows.
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Figure 3.5: The functions φωn associated to a random realization are plotted. As
we see as n grows large, the functions φωn converge point-wise to a step function.

Lemma 3.3 (Almost every realization has a threshold point). For almost every
realization of ω ! {bk}k∈N ∈ Ω, there exists a point z∗ω ∈ [0, 1], such that

lim
n→∞

φωn(z)→
{

0 z ∈ [0, z∗ω)
1 z ∈ (z∗ω, 1]

Furthermore, z∗ω has uniform distribution on [0, 1]. We call the point z∗ω the
threshold point of the realization {bk}k∈N or the threshold point of its corre-
sponding sequence of maps {φωk}k∈N.

Looking more closely at (3.44), by the above lemma we conclude that as
n grows large, the maps φωn that activate the identity function {·} must
have their threshold point sufficiently close to z. Let us now give an intuitive
discussion about the idea behind the proof of Theorem 3.1. By using (3.44) we
can write

Pr(Zn ∈ [a, b]) =
∑

φωn∈Φn

1

2n {φωn (z)∈[a,b]}

=
∑

φωn∈Φn

1

2n {z∈[φ−1
ωn (a),φ−1

ωn(b)]}. (3.45)

Hence by Lemma 3.3, for a large choice of n the intervals [φ−1
ωn

(a),φ−1
ωn

(b)] have
a very short length and are distributed almost uniformly along [0, 1]. Now,
if we assume that the length of the intervals [φ−1

ωn
(a),φ−1

ωn
(b)] is very close to

their average, then we can replace the average in (3.45) by the average length
of [φ−1

ωn
(a),φ−1

ωn
(b)]. That is,

Pr(Zn ∈ [a, b]) ≈ E[φ−1
ωn

(b)− φ−1
ωn

(a)].

So intuitively, all that remains is to compute the average length of the random
intervals [φ−1

ωn
(a),φ−1

ωn
(b)].

In fact we are not able to make all these heuristics precise for the point-wise
values 1

n log Pr(Zn ∈ [a, b]). Nonetheless, the picture is naturally precise for
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the average of Pr(Zn ∈ [a, b]) over z ∈ [0, 1], i.e.,

1

n
log
{∫ 1

0
Pr(Zn ∈ [a, b])dz

}
. (3.46)

To see this, we proceed as follows. By (3.45) we have

∫ 1

0
Pr(Zn ∈ [a, b])dz =

∫ 1

0

{∑

φωn

1

2n {z∈φ−1
ωn [a,b]}

}
dz

=
∑

φωn

1

2n
{∫ 1

0
{z∈φ−1

ωn [a,b]}dz
}

= E[φ−1
ωn

(b)− φ−1
ωn

(a)],

and by applying 1
n log(·) to both sides we have

1

n
log
{∫ 1

0
Pr(Zz

n ∈ [a, b])dz
}
=

1

n
logE[φ−1

ωn
(b)− φ−1

ωn
(a))]

≥ 1

n
E[log(φ−1

ωn
(b)− φ−1

ωn
(a))],

(3.47)

where in the last step we have used Jensen’s inequality. The value of limn→∞
1
nE[log(φ

−1
ωn

(b)−
φ−1
ωn

(a))] can be computed precisely.

Lemma 3.4. We have

lim
n→∞

1

n
E[log(φ−1

ωn
(b)− φ−1

ωn
(a))] =

1

2 ln 2
− 1 ≈ −0.2787.

As a result, we have

lim inf
n→∞

1

n
log
{∫ 1

0
Pr(Zn ∈ [a, b])dz

}
≥ 1

2 ln 2
− 1.

The result of Theorem 3.1 provides a lower bound that is very close to the
value we obtained in Section 3.2 but is not exactly equal. This is because we
have used Jensen’s inequality in (3.47).

3.3.2 Speed of Polarization for General BMS Channels

For a BMS channel W , there is no simple 1-dimensional recursion for the
process Zn as for the BEC. However, by using (2.24) and (2.23), we can provide
bounds on how Zn evolves:

Zn+1

{
= Zn

2 ; if Bn = 1,

∈ [Zn

√
2− Zn

2, 2Zn − Zn
2] ; if Bn = 0.

(3.48)
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As a warm-up, we notice that similar techniques as used in Section 3.3.1 are
applicable to provide general lower and upper bounds. For instance, to find
upper bounds we can proceed as follows. For any non-negative function g :
[0, 1]→ R+ such that g(0) = g(1) = 0 let

Lg = sup
z∈(0,1),y∈[z

√
2−z2,z(2−z)]}

g(z2) + g(y)

2g(z)
.

Similar to the discussion in Section 3.3.1, we can show that for the process
Zn = Z(Wn) we have

E[g(Zn)] ≤ cLn
g , (3.49)

where c = supz∈[0,1] g(z) is a constant. Hence, using the Markov inequality we
have for a, b ∈ (0, 1),

1

n
log Pr(Zn ∈ [a, b]) ≤ logLg +O(

1

n
).

For example, assuming g(z) = (z(1− z))
2
3 we numerically obtain that logLg =

−0.169. That is
E[(Zn(1− Zn))

2
3 ] ≤ 2−0.169n, (3.50)

and for a, b ∈ (0, 1) we have

1

n
log Pr(Zn ∈ [a, b]) ≤ −0.169 +O(

1

n
).

The relations of type (3.50) are upper bounds on the speed of polarization
that hold universally over all the BMS channels. Let us now compute universal
lower bounds. In the rest of this section, it is more convenient for us to consider
another stochastic process related to Wn, which is the process2 Hn = H(Wn).
The main reason to consider Hn rather than Zn is that the process Hn is
a martingale and this martingale property will help us to use the functions
{fn}n∈N defined in (3.28) (with the starting function f(z) = z(1 − z)) to
provide universal lower bounds on the quantity E[Hn(1 −Hn)]. We begin by
introducing one further technical condition given as follows.

Definition 3.2. We call an integer m ∈ N suitable if the function fm(z),
defined in (3.28) (with the starting function f(z) = z(1 − z)), is concave on
[0, 1].

Remark 3.3. For small values of m, i.e., m ≤ 2, it is easy to verify by hand
that the function fm is concave. As discussed previously, for larger values of
m we can use Sturm’s theorem [18] and a computer algebra system to verify
this. Note that the polynomials 2mfm have integer coefficients. Hence, all the
required computations can be done exactly. We have checked up to m = 8 that
fm is concave and we conjecture that in fact this is true for all m ∈ N.

2For the BEC the processes Hn and Zn are identical.
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We now show that for any BMS channel W , the value of am, defined in
(3.29), is a lower bound on the speed of decay of Hn provided that m is a
suitable integer.

Lemma 3.5. Let m ∈ N be a suitable integer and W a BMS channel. We
have for n ≥ m

E[Hn(1−Hn)] ≥ (am)n−mfm(H(W )), (3.51)

where am is given in (3.29).

Proof. We use induction on n −m: for n −m = 0 there is nothing to prove.
Assume that the result of the lemma is correct for n−m = k. Hence, for any
BMS channel W with Hn = H(Wn) we have

E[Hm+k(1 −Hm+k)] ≥ (am)kfm(H(W )). (3.52)

We now prove the lemma for m− n = k + 1. For the BMS channel W , let us
recall from Section 2.3 that the transform W → (W 0,W 1) yields two channels
W 0 and W 1 such that (2.22) holds. Define the process {(W 0)n, n ∈ N} as
the channel process that starts with W 0 and evolves as in (2.27). We define
{(W 1)n, n ∈ N} similarly. Let us also define the two processesH0

n = H((W 0)n)
and H1

n = H((W 1)n). We have,

E[Hm+k+1(1−Hm+k+1)]

(a)
=

E[H0
m+k(1−H0

m+k)] + E[H1
m+k(1−H1

m+k)]

2
(b)
≥ (am)k

fm(H(W 0)) + fm(H(W 1))

2
(c)
≥ (am)k

fm(1 − (1−H(W ))2) + fm(H(W )2)

2
(d)
= (am)kfm+1(H(W ))

= (am)k
fm+1(H(W ))

fm(H(W ))
fm(H(W ))

≥ (am)k
[

inf
h∈[0,1]

fm+1(h)

fm(h)

]
fm(H(W ))

(e)
= (am)m+1fm(H(W )).

In the above chain of inequalities, relation (a) follows from the fact that Wm

has 2m possible values among which half of them are branched out from W 0

and the other half are branched out from W 1 . Relation (b) follows from the
induction hypothesis given in (3.52). Relation (c) follows from (2.33), (2.34)
and the fact that the function fm is concave. More precisely, because fm is
concave on [0, 1], we have the following inequality for any sequence of numbers
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0 ≤ x′ ≤ x ≤ y ≤ y′ ≤ 1 that satisfy x+y
2 = x′+y′

2 :

fm(x′) + fm(y′)

2
≤ fm(x) + fm(y)

2
. (3.53)

In particular, we set x′ = H(W )2, x = H(W 1), y = H(W 0), y′ = 1 − (1 −
H(W ))2 and we know from (2.33) and (2.34) that 0 ≤ x′ ≤ x ≤ y ≤ y′ ≤
1. Hence, by (3.53) we obtain (c). Relation (d) follows from the recursive
definition of fm given in (3.28). Finally, relation (e) follows from the definition
of am given in (3.29).

Finally in the following two parts, we rigorously relate the results obtained
in previous sections to finite-length performance of polar codes. In other words,
answering Question 4 is the main focus for the remaining parts of this section.

3.3.3 Universal Bounds on the Scaling Behavior of Polar Codes

Universal Lower Bounds

Consider a BMS channelW and let us assume that a polar code with block-error
probability at most a given value Pe > 0, is required. One way to accomplish
this is to ensure that the right side of (2.35) is less than Pe. However, this
is only a sufficient condition that might not be necessary. Hence, we call the
right side of (2.35) the strong reliability condition. Numerical and analytical
investigations (see [22] and [19]) suggest that once the sum of individual errors
in the right side of (2.35) is less than 1, then it provides a fairly good estimate
of Pe. In fact, the smaller the sum is the closer it is to Pe. Hence, the sum of
individual errors can be considered as a fairly accurate proxy for Pe. Based on
this measure of the block-error probability, we provide bounds on how the rate
R scales in terms of the block-length N .

Theorem 3.2. For any BMS channel W with capacity I(W ) ∈ (0, 1), there
exist constants Pe,α > 0, that depend only on I(W ), such that

∑

i∈IN,R

E(W (i)
N ) ≤ Pe, (3.54)

implies

R < I(W )− α

N
1
µ

, (3.55)

where µ is a universal parameter lower bounded by 3.553.

Here, a few comments are in order:
(i) As we have seen above, we can obtain an increasing sequence of lower

bounds, call this sequence {µm}m∈N, for the universal parameter µ. For each
m, in order to show the validity of the lower bound, we need to verify the
concavity of a certain polynomial (defined in (3.28)) in [0, 1]. We explained in
Remark 3.3 how we can accomplish this using the Sturm chain method. The
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lower bound for µ stated in Theorem 3.2 is the one corresponding to m = 8,
an arbitrary choice. If we increase m, we get e.g., µ16 = 3.614. We conjecture
that the sequence µm converges to µ = 3.627, the parameter for the BEC. If
such a conjecture holds, then the channel BEC polarizes the fastest among the
BMS channels (see Question 9).

(ii) Let Pe,α, µ be as in Theorem 3.2. If we require the block-error prob-
ability to be less than Pe (in the sense that the condition (3.54) is fulfilled),
then the block-length N should be at least

N > (
α

I(W )−R
)µ. (3.56)

(iii) From (2.1) we know that the value of µ for the random linear ensemble
is µ = 2, which is the optimal value since the variations of the channel itself
require µ ≥ 2. Thus, given a rate R, reliable transmission by polar codes
requires a larger block-length than the optimal value.

Proof of Theorem 3.2: To fit the bounds of Section 3.3.1 into the framework
of Theorem 3.2, let us first introduce the sequence {µm}m∈N as

µm = − 1

log am
, (3.57)

where am is defined in (3.29) with starting function f(z) = z(1 − z). In the
previous section, we have proved that for a suitable m, the speed with which
the quantity E[Hn(1 −Hn)] decays is lower bounded by am = 2−

1
µm , i.e. for

n ≥ m we have E[Hn(1 − Hn)] ≥ 2−
(n−m)

µm fm(H(W )). To relate the strong
reliability condition in (3.54) to the rate bound in (3.55), we need the following
lemma.

Lemma 3.6. Consider a BMS channel W and assume that there exist positive
real numbers γ, θ and m ∈ N such that E[Hn(1−Hn)] ≥ γ2−nθ for n ≥ m. Let
α,β ≥ 0 be such that 2α+ β = γ, we have for n ≥ m

Pr(Hn ≤ α2−nθ) ≤ I(W )− β2−nθ. (3.58)

Proof. The proof is by contradiction. Let us assume the contrary, i.e., we
assume there exists n ≥ m s.t.,

Pr(Hn ≤ α2−nθ) > I(W )− β2−nθ. (3.59)

In the following, we show that with such an assumption we reach to a contra-
diction. We have

E[Hn(1−Hn)]

= E[Hn(1−Hn) | Hn ≤ α2−nθ]Pr(Hn ≤ α2−nθ)

+ E[Hn(1−Hn) | Hn > α2−nθ]Pr(Hn > α2−nθ). (3.60)
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It is now easy to see that

E[Hn(1 −Hn) | Hn ≤ α2−nθ] ≤ α2−nθ,

and since E[Hn(1−Hn)] ≥ γ2−nθ, by using (3.60) we get

E[Hn(1 −Hn) | Hn > α2−nθ]Pr(Hn > α2−nθ) ≥ 2−nθ(γ − α). (3.61)

We can further write

E[(1 −Hn)] = E[1−Hn | Hn ≤ α2−nθ]Pr(Hn ≤ α2−nθ)

+ E[1 −Hn | Hn > α2−nθ]Pr(Hn > α2−nθ), (3.62)

and noticing fact that Hn ≥ Hn(1−Hn) we can plug (3.61) in (3.62) to obtain

E[(1 −Hn)] ≥ E[1−Hn | Hn ≤ α2−nθ]Pr(Hn ≤ α2−nθ) + 2−nθ(γ − α).
(3.63)

We now continue by using (3.59) in (3.63) to obtain

E[(1−Hn)] > (I(W ) − β2−nθ)(1 − α2−nθ) + 2−nθ(γ − α)
≥ I(W ) + 2−nθ(γ − α(1 + I(W ))− β),

and since 2α+ β = γ, we get E[1−Hn] > I(W ). This is a contradiction since
Hn is a martingale and E[1−Hn] = I(W ).

Let us now use the result of Lemma 3.6 to conclude the proof of Theo-
rem 3.2. By Lemma 3.5, we have for n ≥ m

E[Hn(1−Hn)] ≥ 2−
(n−m)

µm fm(H(W )).

Thus, if we now let γ = 2
m
µm fm(H(W )) and 2α = β = γ

2 , then by using
Lemma 3.6 we obtain

Pr(Hn ≤
γ

4
2−

n
µm ) ≤ I(W )− γ

2
2−

n
µm . (3.64)

Assume that we desire to achieve a rate R equal to

R = I(W )− γ

4
2−

n
µm . (3.65)

Let IN,R be the set of indices chosen for such a rate R, i.e., IN,R includes the
2nR indices of the sub-channels with the least value of error probability. Define
the set A as

A = {i ∈ IN,R : H(W (i)
N ) ≥ γ

4
2−

n
µm }. (3.66)
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In this regard, note that (3.64) and (3.65) imply that | A |≥ γ
42

n(1− 1
µm

). As a
result, by using (2.10) and (2.11) we obtain

∑

i∈IN,R

E(W (i)
N ) ≥

∑

i∈A

E(W (i)
N ) ≥ γ2

16
2n(1−

1
µm

)h−1
2 (2−

n
µm )

≥ γ2

16

2n(1−2 1
µm

)

8n 1
µm

, (3.67)

where the last step follows from the fact that for x ∈ [0, 1√
2
], we have h−1

2 (x) ≥
x

8 log( 1
x )
. Thus, having a block-length N = 2n, in order to have error probability

(measured by (2.35)) less than γ2

16
2
n(1−2 1

µm
)

8n 1
µm

, the rate can be at most I(W ) −
γ
4 2

− n
µm .
Finally, if we let m = 8 (by the discussion in Remark 3.3, we know that

m = 8 is suitable), then µ8 = 1
− log(a8)

= 3.553 and choosing

Pe = inf
n∈N

[ ∑

i∈IN,R

E(W (i)
N )
]
, (3.68)

where R is given in (3.65), then it is easy to see from (3.67) that Pe > 0 (since
1
µ8

< 1
2 ) and furthermore, to have block-error probability less than Pe the rate

should be less than R given in (3.65).

Universal Upper Bounds

In this part, we provide upper bounds on the required block-length of Ques-
tion 4. Again, the key observation here is the upper-bounds on the speed of
polarization, e.g. the bounds derived in Table 3.3 for the BEC and the universal
bound (3.50).

Theorem 3.3. Let Zn = Z(Wn) be the Bhattacharyya process associated to a
BMS channel W . Assume that for n ∈ N we have

E[(Zn(1− Zn))
α] ≤ β2−ρn, (3.69)

where α,β, ρ are positive constants and α < 1. Then, the block-length N re-
quired to achieve an error probability Pe > 0 at a given rate R < I(W ) is
bounded above by

logN ≤ (1 +
1

ρ
) log

1

d
+ c4(log(log

3

d
))2 + c5 log(log(

2

Pe
)) log(log

3

d
), (3.70)

where d = I(W )−R and c4, c5 are positive constants that depend on α,β, ρ.

Before proceeding with the proof of Theorem 3.3, let us note a few com-
ments:

(i) In the previous sections we have computed several candidates for the
value ρ required in Theorem 3.3. As an example, using the universal candidate
for ρ obtained in (3.50) (i.e., ρ = 0.169), we obtain the following corollary.
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Corollary 3.2. For any BMS channel W , the block-length N required to
achieve a rate R < I(W ) scales at most as

N ≤ Θ
( 1

(I(W ) −R)7
)
. (3.71)

One important consequence of this corollary is that polar codes require a
block-length that scales polynomially in terms of the gap to capacity. (ii) As
we will see in the proof of Theorem 3.3, the result of this theorem is also valid
if we replace Pe with the sum of Bhattacharyya values of the channels that
correspond to the good indices (this sum is indeed an upper bound for Pe).

Proof of Theorem 3.3: Throughout the proof we will be using two key
lemmas (Lemma 3.8 and Lemma 3.9) that are stated in the appendices. Let

d = I(W )−R. (3.72)

We define n0 ∈ N to be

n0 =

⌈
1

ρ
log

3(1 + c1)(1 + 2c2c3)

d

⌉
, (3.73)

where the constants c1, c2 and c3 are given in Lemmas 3.8, 3.9 and 3.10,
respectively. As a result of Lemma 3.8 and (3.73), we have for n ≥ n0

Pr(Zn ≤
1

2
) ≥ R +

2

3
d. (3.74)

We also define the set A as follows. Let N0 = 2n0 and

A =
{
i ∈ {0, · · · , N0 − 1} : Z(W (i)

N0
) ≤ 1

2

}
. (3.75)

In other words A is the set of indices at level n0 of the corresponding infinite
binary tree of W (see Section 2.3) whose Bhattacharyya parameter is not so
large. Also, from (3.74) the set A contains more than a fraction R of all the
sub-channels at level n0. The idea is then to go further down through the
infinite binary tree at a level n0+n1 (the value of n1 will be specified shortly).
We then observe that the sub-channels at level n0 + n1 that are branched
out from the set A are polarized to a great extent in the sense that sum of
their Bhattacharyya parameters is below Pe (see Figure 3.6 for a schematic
illustration of the idea).

We proceed by finding a suitable candidate for n1. Our objective is to
choose n1 large enough s.t. there is a set of indices at level n0 + n1 with
the following properties: (i) sum of the Bhattacharyya parameters of the sub-
channels in this set is less than Pe and (ii) the cardinality of this set is at least
R2n0+n1 . In what follows, we will first use the hypothesis of Lemma 3.9 to
give a candidate for n1 and then we make it clear that such a candidate is
suitable for our needs. Let {Bm}m∈N be a sequence of iid Bernoulli( 12 ) random
variables. We let n1 be the smallest integer such that the following holds

Pr(2−2
∑n1

i=1 Bi ≤ Pe

2n0+n1
) ≥ 1− d

3
. (3.76)
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Figure 3.6: The infinite binary tree of channel W . The edges that are colored
red at level n0 of this tree correspond to the sub-channels at level n0 whose
Bhattacharyya parameter is less that 1

2 (i.e., the set A). The idea is then to focus
on these “red” indices. We consider the sub-channels that are branched out from
these red indices at a level n0 + n1 (as shown in the figure). By a careful choice
of n1, we observe that these specific sub-channels at level n0 + n1 are greatly
polarized in the sense that sum of their Bhattacharyya parameters is less than Pe.
We also show that the fraction of these sub-channels is larger than R.

It is easy to see that (3.76) is equivalent to

Pr(
n1∑

i=1

Bi ≥ log(log
1

Pe
) + log(n0 + n1)) ≥ 1− d

3
. (3.77)

Also, as the random variables Bi are Bernoulli(12 ) and iid, the relation (3.77)
is equivalent to

log(log 1
Pe

)+log(n0+n1)∑

j=0

(
n1

j

)

2n1
<

d

3
. (3.78)

A sufficient condition for (3.78) to hold is as follows:

n
1+log(log 1

Pe
)+log(n0+n1)

1

2n1
≤ d

3
,

and after applying the function log(·) to both sides and some further simplifi-
cations we reach to

n1 − (1 + log(log
1

Pe
) + log(n0 + n1)) logn1 ≥ log

3

d
. (3.79)
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It can be shown through some simple steps that there are constants c6, c7 > 0
s.t. if we choose

n1 =

⌈
log

3

d
+ c6(log(log

3

d
))2 + c7 log(log(

2

Pe
)) log(log

3

d
)

⌉
, (3.80)

then the inequality (3.79) holds. Now, let Ñ = 2n0+n1 and consider the set A1

defined as

A1 =
{
i ∈ {0, · · · , Ñ − 1} : Z(W (i)

Ñ
) ≤ Pe

Ñ

}
. (3.81)

We now show that
|A1|
Ñ

≥ R. (3.82)

This relation together with (3.81) shows that block error probability of the
polar code of block-length Ñ and rate R is at most Pe. In order to show (3.82),
we consider the sub-channels A1 that are branched out from the ones in the set
A. Let i ∈ A and consider the sub-channel W (i)

N0
. By using the relations (3.48),

Lemma 3.9 and (3.76) we conclude the following. At level n0+n1, the number

of sub-channels that are branched out from W (i)
N0

and have Bhattacharyya value

less than Pe

Ñ
is at least

2n1(1− c2Z(W (i)
N0

)(1 + log
1

Z(W (i)
N0

)
))(1 − d

3
).

Hence, by using (3.75) the total number of sub-channels at level n0 + n1 that
are branched out from a sub-channel in A and have Bhattacharyya value less
that Pe

Ñ
is

2n0+n1(R+
2

3
d)(1 − d

3
)(1 − c2

∑

i∈A
Z(W (i)

N0
)(1 + log

1

Z(W (i)
N0

)
). (3.83)

Now, by using Lemma 3.10 we have

c2
∑

i∈A
Z(W (i)

N0
)(1 + log

1

Z(W (i)
N0

)
)

≤ 2c2c3
∑

i∈A
(Z(W (i)

N0
)(1 − Z(W (i)

N0
)))α

≤ 2c2c3E[(Zn0(1− Zn0))
α]

≤ 2c2c32
−n0ρ

(3.73)
≤ d

3
.

Therefore, the expression (3.83) is lower-bounded by

2n0+n1(R+
2

3
d)(1− d

3
)2 ≥ 2n0+n1R = ÑR.
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Hence, the relation (3.82) is proved and a block-length of size Ñ is sufficient to
achieve a rate R and error at most Pe. It is now easy to see that log Ñ = n0+n1

has the form of (3.70).

3.4 Extensions and Improvements

Given the fact that polar codes do not have an optimal finite-length behavior,
an important question, both from the theoretical and practical sides, is to
improve the finite-length performance of these codes. We can approach this
problem from two perspectives: (i) by devising better decoding algorithms and
(ii) by changing the construction of polar codes (e.g., by concatenating them
with other codes, use other polarizing kernels, etc). In any attempt to improve
the finite-length performance, one main objective should be to improve the
scaling exponent. In [26], the authors combine both of these perspectives and
provide experimental evidence that the short-length performance of polar codes
can be improved to be comparable to the best iterative codes used in practice.
However, this improvement comes at the cost of increasing the memory usage
of the decoding procedure which is undesired. It is also an interesting open
question to find out how the scaling exponent changes with the list-parameter
of [26]. We believe that the methods developed in this chapter can be useful
in this regard.

Another approach is to consider polar codes with general !× ! kernels. The
objective of this section is to express hope that polar codes with larger kernels
might have a better finite-length behavior. We provide analytical evidence
that for large ! the scaling exponent tends to 1

2 , i.e., its optimal value. Recall
from (2.1) that the optimal value of µ is 1

2 , and for polar codes (with ! = 2)
the scaling exponent is roughly µ = 1

3.6 ≈ 0.27 (for the BEC). We keep in
mind that, in general, the decoding complexity of (extended) polar codes is
O(2#N logN), where N is the block-length.

Assume now that the !× ! matrix G comes from the ensemble G# defined in
Section 2.4 and we consider a polar code based on G. We recall from Section 2.4
that the length of the polar code constructed from G is equal to N = !n. For
simplicity, we confine ourselves to the BEC. Hence, throughout this section the
channel W is the BEC(z) for a fixed choice of z ∈ (0, 1). In brief, the main
result of this section is as follows. Let β > 0 be an arbitrary (small) positive
number. Then, as ! grows large, for almost all the kernels G ∈ G#, we have

lim sup
n→∞

1

n
log# Pr(Zn ∈ [a, b]) ≤ −1

2
+ β. (3.84)

Here, a, b are arbitrary such that 0 < a < b < 1 and Zn denotes the Bhat-
tacharyya process of a polar code based on the kernel G and channel W =
BEC(z).

Intuitively, Equation (3.84) indicates that when ! grows large, for almost
all the kernels G, the ratio of the un-polarized channels scales roughly like !−

n
2

or equivalently N− 1
2 . This in return suggests that the scaling exponent for
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such polar codes tends to µ = 2 as !→∞. In other words, in order to reach a
target error probability ε with a block-length N , one needs to reduce the rate
to I(W )−Θ(N− 1

2 ).
In order to prove (3.84) we recall from Section 2.4 the channel splitting

transformW → (W 0,W 1, · · · ,W #−1): the channelW j : uj → (Y, u0, · · · , uj−1)
is the channel that the j-th bit uj sees when it considers the bits u0 through
uj−1 as “known” and the bits uj+1 through u# as “unknown”. We state (with-
out proof) the following facts from [13]:

(i) Assuming that W is the BEC(z), then each of the channels W j is also a
BEC.

(ii) The erasure probability of W j is in general dependent of the choice of G
and the value of z. This dependence is in the form of tj(z), where tj is a
polynomial of degree (at most) !. Further, for z ∈ [0, 1] we have

#−1∑

j=0

ti(z) = !z. (3.85)

As a consequence of of these facts, the Bhattacharyya process corresponding
to the channel BEC(z) and matrix G, which we denote by Zn, has a closed
form recursive expression given by Z0 = z and

Zn = tBn(Zn−1), (3.86)

where {Bn}{n∈N} is a sequence of i.i.d. random variables with uniform distri-
bution on the set {0, · · · , !− 1}, i.e., Pr(B1 = i) = 1

# for i ∈ {0, · · · , !− 1}.
In order to bound the value of 1

n log# Pr(Zn ∈ [a, b]), the idea is to look at
the behavior of the process Qn = (Zn(1 − Zn))β for β > 0. By the Markov
inequality we have

Pr(Zn ∈ [a, b]) ≤ E[Qn]

min(a, b)β
.

Hence, it is easy to see that

lim sup
n

1

n
log# Pr(Zn ∈ [a, b]) ≤ lim sup

n

1

n
log# E[Qn]. (3.87)

For the rest of the proof we focus on the behavior of the process Qn. We have

Qn = tBn(Zn−1)(1 − tBn(Zn−1))

= (Zn−1(1 − Zn−1))
β
{ tBn(Zn)(1 − tBn(Zn))

Zn−1(1− Zn−1)

}β

= Qn−1

{ tBn(Zn)(1− tBn(Zn))

Zn−1(1− Zn−1)

}β
.
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Therefore,

E[Qn|Zn−1] ≤ Qn−1

∑#−1
i=0 (ti(Zn)(1 − ti(Zn)))β

(Zn−1(1− Zn − 1))β

≤ Qn−1 sup
z∈(0,1)

1

!

∑#−1
i=0 (ti(z)(1− ti(z)))β

(z(1− z))β
.

Thus, defining

ζβG = sup
z∈(0,1)

1

!

∑#−1
i=0 (ti(z)(1− ti(z)))β

(z(1− z))β
, (3.88)

by the chain rule of expectations, we have

E[Qn] ≤ E[Q0](ζ
β
G)

n

≤ (
1

2
)β(ζβG)

n.

Now, by using (3.87) for β > 0 we have

lim sup
n

1

n
log# Pr(Zn ∈ [a, b]) ≤ log# ζ

β
G. (3.89)

The proof then follows by using the following lemma.

Lemma 3.7. Assume that the kernel G is chosen from the ensemble G#. For
0 < β < 1 we have

lim
#→∞

P(log# ζ
β
G < −1

2
+ 2β) = 1. (3.90)

3.5 Appendix: Auxiliary Lemmas and Proofs

Proof of Lemma 3.2

The proof of the right side (3.36) and also (3.37) is an easy application of
the Markov inequality. To prove the left side of (3.36), we define sequences
{xn}n≥1 and {yn}n≥1 as

xn = 2−n, (3.91)

yn = 1− 2−n. (3.92)

We start by noting that

E(Zn(1− Zn)) ≤
n∑

i=1

2−iPr(Zn ∈ [xi+1, xi])

+
n∑

i=1

2−iPr(Zn ∈ [yi, yi+1])

+ 2−n.
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As a result, there exists an index j ∈ {1, · · · , n} such that at least one of the
following cases occurs:

E[Zn(1− Zn)] ≤ 2n
[
2−jPr(Zn ∈ [xj+1, xj ]) + 2−n

]
, (3.93)

or

E[Zn(1− Zn)] ≤ 2n
[
2−jPr(Zn ∈ [yj , yj+1]) + 2−n

]
. (3.94)

We show that in each of these cases the statement of the lemma holds. Firstly,
note that because of the symmetry of Zn we can write

Pr(Zz
n ∈ [yj+1, yj ]) = Pr(Z1−z

n ∈ [xj+1, xj ]).

Hence, without loss of generality we can assume that (3.93) holds. We first
prove the lemma for a = 1− b = 1

4 . We then use this result to prove the lemma
in its fullest extent. We claim that for any 1 ≤ j ≤ n we have,

2−jPr(Zn ∈ [xj+1, xj ]) ≤ 2(n+ 1)Pr(Zn ∈ [
1

4
,
3

4
]) +

n3

2n
. (3.95)

Assuming that the above claim holds true, by using (3.93) we obtain

E(Zn(1 − Zn)) ≤ 2n
[
Pr(Zn ∈ [

1

4
,
3

4
]) +

n2 + 2

2n
]
,

and as a result, by taking 1
n log(·) from both sides, the first part of the lemma

is proved for a = 1− b = 1
4 .

We now turn to the proof of relation (3.95) for 1 ≤ j ≤ n. For j = 1, the
result of the claim is trivial. Hence, in the following we assume that 2 ≤ j ≤ n.
We now prove that for any fixed j such that 2 ≤ j ≤ n, we have

2−jPr(Zn ∈ [xj+1, xj ]) ≤ 2(n+ 1)Pr(Zn ∈ [
1

4
,
3

4
]) +

n3

2n
, (3.96)

and hence the relation (3.95) is also proved. We fix the index j and prove the
above claim for any value of n ∈ N. The proof consist of two steps.

Step1 : We first show that ∀m ∈ N,

Pr(Zm ∈ [x2j+2, xj ]) ≤ mPr(Zm ∈ [xj ,
3

4
]) +

1

2n
. (3.97)

To prove (3.97), fix m ∈ N and define the sets A and B as

A = {(b1, · · · , bm) ∈ Ωm : tbm ◦ · · · ◦ tb1(z) ∈ [x2j+2, xj ]}.

B = {(b1, · · · , bm) ∈ Ωm : tbm ◦ · · · ◦ tb1(z) ∈ [xj ,
3

4
]}.

In other words, A is the set of all the paths that start from z = Z0 and end up
in [x2i+2, xj ] and B is the set of paths that start from z and end up in [xj , 3

4 ].
We now partition the A into the disjoint sets Ak, k ∈ {0, 1, · · · ,m}, defined as

Ak = {(b1, · · · , bm) ∈ A : bk = 1; bi = 0 ∀i > k}. (3.98)
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It is easy to see that | A − ∪kAk |≤ 1. Our aim is now to show that for
k ∈ {0, 1, · · · ,m},

|Ak| ≤ |B|. (3.99)

To do this, we show that there exists a one-to-one correspondence between Ak

and a subset of B. In other words, we claim that we can map each member of
Ak to a distinct member of B. Consider (b1, · · · , bm) ∈ Ak. We now construct
a distinct member (b′1, · · · , b′m) ∈ B corresponding to (b1, · · · , bm). We first set
b′i = bi for i < k and hence the uniqueness condition is fulfilled. Consider the
number x defined as

x =

{
z ; if k = 1,
tbk−1 ◦ · · · ◦ tb1(z) ; if k > 1.

(3.100)

Note that since (b1, · · · , bm) ∈ Ak we have

tbm ◦ · · · ◦ tbk(x) ∈ [x2j+1, xj ]. (3.101)

Now, note that as (b1, · · · , bm) ∈ Ak, we have bk = 1 and bi = 0 for i > k.
Thus, in this setting (3.101) becomes

m−k times︷ ︸︸ ︷
t0 ◦ · · · ◦ t0(x2) ∈ [x2j+1, xj ]. (3.102)

Hence,

x2j+1 ≤ 1− (1− x2)2
m−k

≤ xj . (3.103)

From the left side of (3.103) and using the fact that 1−(1−x)2 ≤ 2x we obtain

x2j+1 ≤ 2m−kx2 ⇒ 2−j+ k−m+1
2 ≤ x. (3.104)

From the right side of (3.103) we have

ln(1 − xj) ≤ 2m−k ln(1− x2),

and by using the inequality −x− x2

2 ≤ ln(1− x) ≤ −x we obtain

x ≤ 2
−j
2 + k−m+1

2 . (3.105)

Let us recall that we let b′i = bi for i < k. We now construct the re-
maining values b′k, · · · , b′m by the following algorithm: consider the number
x given in (3.100). In the following, we will also construct a sequence x =
xk−1, xk, xk+1, · · · , xm such that for i ≥ k we have xi = tb′i(xi−1). Begin with
the initial value xk−1 = x and for i ≥ k recursively construct b′i from b′i−1 and
xi−1 by the following rule: if tb′i(xi−1) ≤ 3

4 , then b′i = 0 and xi = t0(xi−1),
otherwise b′i = 1 and xi = t1(xi−1). We now show that the value of xm is
always in the interval [xj ,

3
4 ]. In this regard, an important observation is that

for i s.t. k − 1 ≤ i ≤ m, once the value of xi lies in the interval [xj , 3
4 ] then
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for all i ≤ t ≤ m we have xt ∈ [xj ,
3
4 ]. Hence, we only need to show that by

the above algorithm, the exists an index i, s.t. k − 1 ≤ i ≤ m, and the value
of xi lies in the interval [xj , 3

4 ]. On one hand, observe that due to (3.105) and

the fact that j ≥ 2, we have x ≤ 2−
1
2 < 3

4 . Thus, the value of xi is definitely
less than 3

4 for i ≥ k. If the value of xk−1 is also greater than xj then we have
nothing to prove. Else, it might be the case that x < xj . We now show that
in this case the algorithm moves in a way that the value of xm falls eventually
into the desired region [xj ,

3
4 ]. To show this, a moment of thought reveals that

this is equivalent to showing that we always have

m−k+1 times︷ ︸︸ ︷
t0 ◦ · · · ◦ t0 (x) = 1− (1 − x)2

m−k+1

≥ xj . (3.106)

Note that the function 1− (1− x)2
m−k+1

is a strictly increasing function of the
unit interval. Thus, in order to have (3.106) it is equivalent that

2m−k+1 ln(1− x) ≤ ln(1− xj),

and after some further simplification using the inequality −x− x2

2 ≤ ln(1−x) ≤
−x, we deduce that a sufficient condition to have (3.106) is

xj ≤ 2m−kx⇒ 2−j+k−m ≤ x. (3.107)

But this sufficient condition is certainly met by considering the inequality
(3.104) and noting the fact that −j + k−m+1

2 ≥ −j + k − m. Hence, the
claim in (3.99) is proved and as a result, the claim in (3.97) is true.

Step 2 : Firstly note that in order for Zn to be in the interval [xj+1, xj ], the

value of Zn−j should lie in the interval [x2j+1, x2−2j

j ]. As a result, we can write

Pr(Zn ∈ [xj+1, xj ])

= Pr(Zn∈ [xj+1, xj ] | Zn−j∈ [x2j+1, xj ])× Pr(Zn−j∈ [x2j+1, xj ])

+ Pr(Zn∈[xj+1, xj ] |Zn−j ∈(xj , x
2−2j

j ])× Pr(Zn−j∈ (xj , x
2−2j

j ]), (3.108)

and by letting m = n− j in relation (3.97), we can easily obtain

Pr(Zn−j ∈ [x2j+1, xj ]) ≤ nPr(Zn−j ∈ [xj ,
3

4
]) +

n2 + 1

2n
. (3.109)

Thus, by combining (3.108) and (3.109), we obtain

Pr(Zn ∈ [xj+1, xj ])

≤ nPr(Zn−j ∈ [xj ,
3

4
]) + Pr(Zn−j ∈ [xj , x

2−2j

j ]) +
n2 + 1

2n
. (3.110)

Finally, in order to conclude the proof of (3.96), we prove the following rela-
tions:

2−jPr(Zn−j ∈ [xj ,
3

4
]) ≤ Pr(Zn ∈ [

1

4
,
3

4
]), (3.111)
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and

2−jPr(Zn−j ∈ [xj , x
2−2j

j ]) ≤ Pr(Zn ∈ [
1

4
,
3

4
]). (3.112)

Firstly note that since (xj)
1

22
j ≥ 3

4 , then it is enough to prove (3.112). To

prove (3.112), we only need to show that for a value x s.t. x ∈ [xj , (xj)
1

22
j ],

there exists an j-tuple (b1, · · · , bj) ∈ Ωj such that tb1 ◦ · · · ◦ tbj (x) ∈ [ 14 ,
3
4 ]. We

show this by constructing the binary values b1, · · · , bj in terms of x. Consider
the following algorithm: start with y0 = x and for 1 ≤ i ≤ j, we recursively
construct bi from yi−1 by the following rule: If t0(yi−1) ≤ 3

4 , then bi = 0 and
yi = t0(yi−1). Otherwise, let bi = 1 and yi = t1(xi−1). To show that this
algorithm succeeds in the sense that yj ∈ [ 14 ,

3
4 ], we first observe that once the

value of yi lies in the interval [ 14 ,
3
4 ] (for some 1 ≤ i ≤ j), then for all i ≤ t ≤ j

we have yt ∈ [ 14 ,
3
4 ]. Hence, we only need to show that by the above algorithm,

the exists an index i, s.t. 1 ≤ i ≤ j, and the value of yi lies in the interval
[ 14 ,

3
4 ]. On one hand, assume y0 = x ∈ [xj ,

1
4 ). We can then write

j times︷ ︸︸ ︷
t0 ◦ · · · ◦ t0(x) = 1− (1− x)2

j

≥ 1− (1− xj)
2j

≥ 1

2
,

where the last steps follows from the fact that xj = 2−j . On the other hand,

assume x ∈ (34 , (xj)
1
2j ]. We can write

j times︷ ︸︸ ︷
t1 ◦ · · · ◦ t1(x) ≤ ((xj)

1

22
j )2

2j

≤ xj <
3

4
.

As a result, the above algorithm always succeeds and the lemma is proved for
a = 1− b = 1

4 .

We now prove the lemma for any choice of a, b ∈ (0, 1) s.t.
√
a ≤ 1−

√
1− b.

Let pn(z, a, b) be defined as in (3.3). We have

pn+1(z, a, b) =
∑

φωn+1

1

2n+1 {z∈φ−1
ωn+1

[a,b]}

=
∑

φωn

1

2n
{z∈φ−1

ωn [t−1
0 (a),t−1

0 (b)]} + {z∈φ−1
ωn [t−1

1 (a),t−1
1 (b)]}

2

=
1

2
(pn(z, t

−1
0 (a), t−1

0 (b)) + pn(z, t
−1
1 (a), t−1

1 (b), z)).

It is easy to see that if
√
a ≤ 1−

√
1− b, then

[t−1
0 (a), t−1

1 (b)] ⊆ [t−1
0 (a), t−1

0 (b)] ∪ [t−1
1 (a), t−1

1 (b)],
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and hence,
2pn+1(z, a, b) ≥ pn(z, t

−1
0 (a), t−1

1 (b)).

Continuing this way, we can show that for m ∈ N

2mpn+m(z, a, b) ≥ pn(z,

m times︷ ︸︸ ︷
t−1
0 ◦ · · · ◦ t−1

0 (a),

m times︷ ︸︸ ︷
t−1
1 ◦ · · · ◦ t−1

1 (b)). (3.113)

As m grows large, we have

m times︷ ︸︸ ︷
t−1
0 ◦ · · · ◦ t−1

0 (a)→ 0,

m times︷ ︸︸ ︷
t−1
1 ◦ · · · ◦ t−1

1 (b)→ 1.

Therefore, by (3.113) there exists a positive integer m0 such that for n ∈ N

2m0pn+m0(z, a, b) ≥ pn(z,
1

4
,
3

4
).

The thesis now follows from this relation together with the result of Lemma 3.31.

Proof of Lemma 3.3

Recall that for a realization ω = {bk}k∈N ∈ Ω we define ωn = (b1, · · · , bn).
The maps t0 and t1, hence the maps φωns, are strictly increasing maps on
[0, 1]. Thus φωn(z) → 0 implies that φωn(z

′) → 0 for z′ ≤ z and φωn(z) → 1
implies that φωn(z

′)→ 1 for z′ ≥ z. Moreover, we know that for almost every
z ∈ (0, 1), limn→∞ φωn(z) is either 0 or 1 for almost every realization {φωn}n∈N.
Hence, it suffices to let

z∗ω = inf{z : φωn(z)→ 1}.

To prove the second part of the lemma, notice that

z = Pr(Z∞ = 1)

= Pr(φωn(z)→ 1)

= Pr(inf{z : φωn(z)→ 1} ≤ z)

= Pr(z∗ω < z).

Which shows that z∗ω is uniformly distributed on [0, 1].

Proof of Lemma 3.4

In order to compute limn→∞ E[ 1n log(φ−1
ωn

(b) − φ−1
ωn

(a))], we first define the
process {Z̄n}n∈N∪{0} with Z̄0 = z ∈ [0, 1] and

Z̄n+1 =

{ √
Z̄n, w.p. 1

2 ,

1−
√
1− Z̄n, w.p. 1

2 .
(3.114)
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We can think of Z̄n as the reverse stochastic process of Zn. Equivalently,
we can also define Z̄n via the inverse maps t−1

0 , t−1
1 . Consider the sequence of

i.i.d. symmetric Bernoulli random variables B1, B2, · · · and define Z̄n = ψωn(z)
where ωn ! (b1, · · · , bn) ∈ Ωn and

ψωn = t−1
bn
◦ t−1

bn−1
◦ · · · ◦ t−1

b1
. (3.115)

We now show that the Lebesgue measure (or the uniform probability measure)
on [0, 1], denoted by ν, is the unique, hence ergodic, invariant measure for the
Markov process Z̄n. To prove this result, first note that if Z̄n is distributed
according to the Lebesgue measure, then

Pr(Z̄n+1 < x) =
1

2
Pr(Z̄n < t0(x)) +

1

2
Pr(Z̄n < t1(x))

=
1

2
x2 +

1

2
(2x− x2) = x.

Thus, Z̄n+1 is also distributed according to the Lebesgue measure and this
implies the invariance of the Lebesgue measure for Z̄n. In order to prove the
uniqueness, we will show that for any z ∈ (0, 1), Z̄n converges weakly to a
uniformly distributed random point in [0, 1], i.e.,

Z̄n = ψωn(z)
d→ ν. (3.116)

Note that with (3.116) the uniqueness of ν is proved since for any invariant
measure ρ assuming Z̄n is distributed according to ρ, we have

ρ(·) = Pr(Z̄n ∈ ·) =
∫

Pr(Z̄n ∈ ·)ρ(dz) d→ ν(·). (3.117)

To prove (3.116), note that ψωn has the same (probability) law as φ−1
ωn

and we
know that φ−1

ωn
(z)→ z∗ω almost surely and hence weakly. Also, z∗ω is distributed

according to ν, which proves (3.116). We are now ready to show that

lim
n→∞

E[ 1
n
log(φ−1

ωn
(b)− φ−1

ωn
(a))] =

1

2 ln 2
− 1. (3.118)

Using the mean value theorem, we can write

ψn(a)− ψn(b) = ψ′
n(c)(b− a),

for some c ∈ (a, b). And by chain rule,

ψ′
ωn(c) = (t−1

bn ◦ t−1
bn−1

◦ · · · ◦ t−1
b1

)′(c)

= t−1
b1

′
(c).t−1

b2

′
(t−1

b1
(c)). · · · .t−1

bn

′
(t−1

bn−1
◦ · · · ◦ t−1

σ1
(c))

= t−1
b1

′
(ψ0(c)).t

−1
b2

′
(ψ1(c)). · · · .t−1

bn

′
(ψn−1(c))),

and after applying log(·) to both sides we obtain

1

n
log(ψ′

ωn
(c)) =

1

n

n∑

j=1

ln t−1
bj

′
(ψj−1(c)). (3.119)
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By the ergodic theorem, the last expression converges almost surely to the
expectation of log t−1

B1

′
(U), where U is assumed to be distributed according to

ν. Hence, the asymptotic value of (3.119) can be computed as

E[log t−1
B1

′
(U)]

=
1

2

∫ 1

0
log(

√
x)′dx+

1

2

∫ 1

0
log(1−

√
1− x)′dx

=
1

2 ln 2
− 1.

Auxiliary Lemmas

Lemma 3.8. Consider a channel W with its Bhattacharyya process Zn =
Z(Wn) and assume that for n ∈ N

E[(Zn(1− Zn))
α] ≤ β2−nρ, (3.120)

where α,β, ρ are positive constants with α < 1. We then have for n ∈ N

Pr(Zn ≤
1

2
) ≥ I(W )− c12

−nρ, (3.121)

where c1 is a positive constant that depends on α,β, ρ.

Proof. The proof consists of three steps. First, consider an arbitrary BMS
channel W and let Zn = Z(Wn). Also, consider the process Yn = 1− Z2

n . By
using the relations (2.24) and (2.23), it can easily be checked that the process
En has the form of (3.124) and hence Lemma 3.9 is applicable to Yn. We thus
have from (3.125) that for n ∈ N

Pr(Yn ≥
1

2
) ≤ c2Y0(1 + log

1

Y0
).

As a consequence

I(W ) = lim
n→∞

Pr(Yn ≥
1

2
)

≤ c2(1− Z(W )2)(1 + log
1

1− Z(W )2
). (3.122)

In the second step, we consider a channel W for which (3.120) holds for n ∈ N.
By using (3.120), it is easy to see that for n ∈ N

E[(Z2
n(1− Z2

n))
α

{Zn≥ 1
2}
]

= E[(Zn(1 + Zn))
α(Zn(1− Zn))

α
{Zn≥ 1

2}]

≤ sup
z∈[ 12 ,1]

(z(1 + z))α E[(Zn(1− Zn))
α

{Zn≥ 1
2}]

≤ 2αβ2−nρ ≤ β21−nρ. (3.123)
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In the final step, we consider a number n ∈ N and let N = 2n. We then define
the set A as

A = {i ∈ {0, 1, · · · , N − 1} : Z(W (i)
N ) ≤ 1

2
},

with Ac being its complement. We have

∑

i∈Ac

I(W (i)
N )

(a)
≤
∑

i∈Ac

c2(1 − Z(W (i)
N )2)(1 + log

1

1− Z(W (i)
N )2

)

(b)
≤
∑

i∈Ac

4c2c3(Z(W (i)
N )2(1 − Z(W (i)

N )2))α

= 4c2c3NE[(Z2
n(1 − Z2

n))
α

{Zn≥ 1
2}]

(c)
≤ 8c2c3Nβ2

−nρ.

Here (a) follows from (3.122), (b) follows from Lemma 3.10 and the fact that
for x ≤ 3

4 we have 1 + log 1
x ≤ 4 log 1

x , and (c) follows from (3.123). Now, as a
consequence of the above chain of inequalities we have

|A| ≥
∑

i∈A
I(W (i)

N )

= NI(W )−
∑

i∈Ac

I(W (i)
N )

≥ N(I(W )− 2c2c3β2
−nρ),

and consequently

Pr(Zn ≤
1

2
) =

|A|
N

≥ 2c2c3β2
−nρ.

Hence, the proof follows.

Lemma 3.9. Consider a generic stochastic process {Xn}n≥0 s.t. X0 = x,
where x ∈ (0, 1), and for n ≥ 1

Xn ≤
{

X2
n−1 ; if Bn = 1,

2Xn−1 ; if Bn = 0.
(3.124)

Here, {Bn}n≥1 is a sequence of iid random variables with distribution Bernoulli( 12).
We then have for n ∈ N

Pr(Xn ≤ 2−2
∑n

i=1 Bi
) ≥ 1− c2x(1 + log

1

x
), (3.125)

where c2 is a positive constant.
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Proof. We slightly modify Xn to start with X0 = x, where x ∈ (0, 1), and for
n ≥ 1

Xn =

{
X2

n−1 ; if Bn = 1,
2Xn−1 ; if Bn = 0.

(3.126)

It is easy to see that if we prove the lemma for this version of Xn, then the
result of the lemma is valid for any generic Xn that satisfies (3.124).

We analyze the process An = − logXn , i.e., A0 = − logx ! a0 and

An+1 =

{
2An ; if Bn = 1,
An − 1 ; if Bn = 0.

(3.127)

Note that in terms of the process An, the statement of the lemma can be
phrased as

Pr(An ≥ 2
∑n

i=1 Bi) ≥ 1− c2
1 + a0
2a0

.

Associate to each (b1, · · · , bn) ! ωn ∈ Ωn a sequence of “runs” (r1, · · · , rk(ωn)).
This sequence is constructed by the following procedure. We define r1 as the
smallest index i ∈ N so that bi+1 7= b1. In general, if

∑k−1
j=1 rj < n then

rk = min{i |
k−1∑

j=1

rj < i ≤ n, bi+1 7= b∑k−1
j=1 rj

}−
k−1∑

j=1

rj .

The process stops whenever the sum of the runs equals n. Denote the stopping
time of the process by k(ωn). In words, the sequence (b1, · · · , bn) starts with b1.
It then repeats b1, r1 times. Next follow r2 instances of b1 (b1 := 1−b1), followed
again by r3 instances of b1, and so on. We see that b1 and (r1, · · · , rk(ωn)) fully
describe ωn = (b1, · · · , bn). Therefore, there is a one-to-one map

(b1, · · · , bn)←→ {b1, (r1, · · · , rk(ωn))}. (3.128)

Note that we can either have b1 = 1 or b1 = 0. We start with the first case,
i.e., we first assume B1 = 1. We have:

n∑

i=1

bi =
∑

j odd ≤ k(ωn)

rj ,

and

n =

k(ωn)∑

j=1

rj .

Analogously, for a realization (b1, b2, · · · ) ! ω ∈ Ω of the infinite sequence
of random variable {Bi}i∈N, we can associate a sequence of runs (r1, r2, · · · ).
In this regard, considering the infinite sequence of random variables {Bi}i∈N
(with the extra condition B1 = 1), the corresponding sequence of runs, which
we denote by {Rk}k∈N, is an iid sequence with Pr(Ri = j) = 1

2j . Let us now
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see how we can express the An in terms of the r1, r2, · · · , rk(ωn). We begin by a
simple example: Consider the sequence (b1 = 1, b2, · · · , b8) and the associated
run sequence (r1, · · · , r5) = (1, 2, 1, 3, 1). We have

A1 = a02
r1,

A3 = a02
r1 − r2,

A4 = (a02
r1 − r2)2

r3 = a02
r1+r3 − r22

r3 ,

A7 = (a02
r1 − r2)2

r3 − r4 = a02
r1+r3 − r22

r3 − r4,

A8 = ((a0 × 2r1 − r2)× 2r3 − r4)× 2r5

= a02
r1+r3+r5 − r22

r3+r5 − r42
r5

= 2r1+r3+r5(a0 − 2−r1r2 − 2−(r1+r3)r4).

In general, for a sequence (b1, · · · , bn) with the associated run sequence (r1, · · · , rk(ωn))
we can write:

An = a02
∑

i odd ≤ k(ωn) ri −
∑

i even ≤ k(ωn)

ri2
∑

i < j odd rj

= a02
∑

i odd ≤ k(ωn) ri −
∑

i even ≤ k(ωn)

ri2
(−

∑
j odd < i rj+

∑
i odd ≤ k(ωn) ri)

= [2
∑

i odd ≤ k(ωn) ri ][a0 − (
∑

i even ≤ k(ωn)

ri2
−

∑
j odd < i rj )]

= [2
∑n

i=1 Bi ][a0 − (
∑

i even ≤ k(ωn)

ri2
−

∑
j odd < i rj )].

Our aim is to lower-bound

Pr(An ≥ 2
∑n

i=1 Bi)

= Pr(a0 −
∑

i even ≤ k(ωn)

ri2
−

∑
j odd < i rj ≥ 1),

or, equivalently, to upper-bound

Pr(
∑

i even ≤ k(ωn)

ri2
−

∑
j odd < i rj ≥ a0 − 1). (3.129)

For n ∈ N, define the set Un ∈ Fn as

Un = {ωn ∈ Ωn | ∃l ≤ k(ωn) :
∑

i even ≤ l

ri2
−

∑
j odd < i rj ≥ a0 − 1}.

Clearly we have:

Pr(
∑

i even ≤ k(ωn)

ri2
−

∑
j odd < i rj ≥ a0 − 1) ≤ Pr(Un).
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In the following we show that if (b1, · · · , bn) ∈ Un, then for any choice of bn+1,
(b1, · · · , bn, bn+1) ∈ Un+1. We will only consider the case when bn, bn+1 = 1,
the other three cases can be verified similarly. Let ωn = (b1, · · · , bn−1, bn =
1) ∈ Un. Hence, k(ωn) is an odd number (recall that b1 = 1) and the quantity∑

i even ≤ k(ωn)
ri2

−
∑

j odd < i rj does not depend on rk(ωn). Now consider the
sequence ωn+1 = (b1, · · · , bn = 1, 1). Since the last bit (bn+1) equals 1, then
rk(ωn+1) = rk(ωn) and the value of the sum remains unchanged. As a result
(b1, · · · , bn, 1) ∈ Un+1. From above, we conclude that θi(Ui) ⊆ θi+1(Ui+1) and
as a result

Pr(Ui) = Pr(θi(Ui)) ≤ Pr(θi+1(Ui+1)) = Pr(Ui+1).

Hence, the quantity limn→∞ Pr(Un) = limn→∞ Pr(θn(Un)) = limn→∞ Pr(∪n
i=1θi(Ui))

is an upper bound on (3.129). On the other hand, consider the set

V = {ω ∈ Ω | ∃l :
∑

i even ≤ l

ri2
−

∑
j odd < i rj ≥ a0 − 1}.

By the definition of V we have ∪∞
i=1θi(Ui) ⊆ V , and as a result, Pr(∪∞

i=1θi(Ui)) ≤
Pr(V ). In order to bound the probability of the set V , note that assuming
B1 = 1, the sequence {Rk}k∈N (i.e., the sequence of runs when associated with
the sequence {Bi}i∈N) is an iid sequence with Pr(Ri = j) = 1

2j . We also have

Pr(a0 −
∑

i even ≤ m

Ri2
−

∑
j odd < i Rj ≤ 1) (3.130)

= Pr(
∑

i even ≤ m

Ri2
−

∑
j odd < i Rj ≥ a0 − 1)

= Pr(2
∑

i even ≤ m Ri2
−

∑
j odd < i Rj ≥ 2a0−1)

≤ E[2
∑

i even ≤ m Ri2
−

∑
j odd < i Rj

]

2a0−1
,

where the last step follows from the Markov inequality. The idea is now to

provide an upper bound on the quantity E[2
∑

i even ≤ m Ri2
−

∑
j odd < i Rj

]. Let
X =

∑
i even ≤ m Ri2

−
∑

j odd < i Rj . We have

E[2X ]

=
∞∑

l=1

Pr(R2 = l)E[2X | R2 = l]

(a)
=

∞∑

l=1

1

2l
E[2X | R2 = l]

=
∞∑

l=1

1

2l
E[2

R1
2l ]E[2

X
2l ]
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=
∞∑

l=1

1

2l(21−
1
2l )

E[2
X
2l ]

(b)
≤

∞∑

l=1

1

2l(21−
1
2l )

(E[2X ])
1
2l ,

where (a) follows from the fact that Ris are iid and X is self-similar and (b)
follows from Jensen inequality. As a result, an upper bound on the quantity
E[2X ] can be derived as follows. We have

E[2X ] ≤ 1

2(2
1
2 − 1)

(E[2X ])
1
2 +

1

4(2
3
4 − 1)

(E[2X ])
1
4 +

1

4(2
7
8 − 1)

(E[2X ])
1
8 .

The equation y = 1

2(2
1
2 −1)

y
1
2 + 1

4(2
3
4 −1)

y
1
4 + 1

4(2
7
8 −1)

y
1
8 has only one real valued

solution y∗, and y∗ ≤ 3 (more precisely, y∗ ≈ 2.87). As a result, we have
E[2X ] ≤ y∗ ≤ 3. Thus by (3.130) we obtain

Pr(a0 −
∑

i even ≤ m

Ri2
−

∑
j odd < i Rj ≤ 1) ≤ 3

2a0−1

Thus, given that B1 = 1, we have:

Pr(An ≥ 2
∑n

i=1 Bi) ≥ 1− 3

2a0−1
.

Or more precisely we have

Pr(An ≥ 2
∑n

i=1 Bi | B1 = 1) ≥ 1− 3

2a0−1
.

Now consider the case B1 = 0. We show that a similar bound applies for An.
Firstly, note that by fixing the value of n the distribution of R1 is as follows:
Pr(Ri) = 1

2i for 1 ≤ i ≤ n− 1 and Pr(R1 = n) = 1
2n−1 . We have

Pr(An ≥ 2
∑n

i=1 Bi | B1 = 0)

=
n∑

i=1

Pr(An ≥ 2
∑n

i=1 Bi | R1 = i, B1 = 0)Pr(R1 = i | B1 = 0)

=
∑

i≤a0−1,i≤n

Pr(An ≥ 2
∑n

i=1 Bi | R1 = i, B1 = 0)Pr(R1 = i | B1 = 0)

+
n∑

i>a0−1,i≤n

Pr(R1 = i | B1 = 0)

≤
∑

i≤a0−1,i≤n

1
2i

3
2a0−1−i

+
2

2a0−1

≤ 3a0

2a0−1
.
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Hence, considering the two cases together, we have:

Pr(An ≥ 2
∑n

i=1 Bi) ≥ 1− 3(1 + a0)

2a0
.

Hence, the proof follows with c2 = 3.

Lemma 3.10. Let α < 1 be a constant. We have for x ∈ (0, 3
4 ]

x log(
1

x
) ≤ c3(x(1 − x))α, (3.131)

where

c3 =
2

(1 − α) ln 2 . (3.132)

Proof. By applying the function log(·) to both sides of (3.131) and some further
simplifications, the inequality (3.131) is equivalent to the following: For x ∈
(0, 3

4 ]

log(log
1

x
) ≤ log c3 + (1 − α) log 1

x
+ α log(1− x).

As x ≤ 3
4 , we have α log(1 − x) ≥ − log 4. Hence, in order for the above

inequality to hold it is sufficient that for x ∈ (0, 3
4 ]

log(log
1

x
) ≤ log

c3
4

+ (1− α) log 1

x
.

Now, by letting u = log 1
x , the last inequality becomes

(1− α)u − log u+ log
c3
4
≥ 0, (3.133)

for u ≥ log(43 ). It is now easy to check that by the choice of c3 as in (3.132),
the minimum of the above expression over the range u ≥ log(43 ) is always
non-negative and hence the proof follows.





Scaling Laws for the Polarized
Channels 4
4.1 Problem Formulation

In the previous chapter, we studied scaling laws for the set of un-polarized
channels, i.e., the channels whose Bhattacharyya value is bounded away from
0 and 1. The main focus of this chapter1 is the polarized channels, i.e., the
channels that the Bhattacharyya value is close to either 0 or 1. We will see in
the following that different scaling laws, rather than the ones mentioned in the
previous chapter, govern the behavior of the polarized channels.

We begin by recalling that for a channel W , the Bhattacharyya process
Zn = Z(Wn) converges almost surely to a {0, 1}-valued random variable Z∞
with Pr(Z∞ = 0) = I(W ). Let N = !n be the block-length of the polar

code2. Thus, if we consider the sub-channels {W (i)
N }0≤i≤N−1 for a sufficiently

large n, then most of these sub-channels are “polarized” in the sense that their
Bhattacharyya value is very close to either 0 or 1.

Consider a rate R < I(W ) and let IN,R be the set of indices of the NR

channels in the set {W (i)
N }0≤i≤N−1 with the least values for the Bhattacharyya

parameter. For the SC decoder, we recall that

max
i∈IN,R

1

2

(
1−
√
1− Z(W (i)

N )2
)
≤ P SC

e ≤
∑

i∈IN,R

Z(W (i)
N ), (4.1)

where P SC
e denotes the average block error probability of the SC decoder, with

block-length N and rate R. This relation shows that the distribution of the

Bhattacharyya parameters of the channels {W (i)
N }0≤i≤N−1 plays a fundamental

1The material of this chapter is based on [20] and [21].
2Since it entails no extra work, we state all results directly for !× ! kernels.
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role in the analysis of polar codes. The objective of this chapter is to analyze
the asymptotic behavior of

Fn(z) =
|{i : Z(W (i)

#n ) ≤ z}|
!n

, (4.2)

where |A| denotes the cardinality of the set A. Due to the definition of Zn,
the function Fn(z) is equivalent to the cumulative distribution function of the
Bhattacharyya process Zn = Z(Wn), i.e.,

Pr(Zn ≤ z) = Fn(z). (4.3)

The fact that the Bhattacharyya process {Zn}n∈N converges almost surely to a
{0, 1}-valued random variable Z∞ , with Pr(Z∞ = 0) = I(W ), implies that the
functions Fn(z) converge point-wise to a function F∞(z) shown in Figure 4.1.
In this chapter we intend to go one step further and zoom in (or rescale) the
functions Fn(z) around the points z = 0 and z = 1 to discover what the
properly rescaled functions look like. The analysis of the process {Zn}n∈N
around the point z = 0 is of particular interest, as this indicates how the
“good” channels behave (i.e., how the channels that have mutual information
close to 1 behave).

I(W )

n = 0 n = 5 n = 15

I(W )

n = ∞

Figure 4.1: The cdf of the random variables Zn = Z(Wn) for different values of
n when the channel W is BEC(12 ). The rightmost plot corresponds to the cdf of
the limiting random variable Z∞.

We thus ask:

Question 5. How do the cumulative distributions Pr(Zn ≤ z) vary (asymp-
totically) in terms of n, R and W?

The main contribution of this chapter is the study of asymptotics of the
cumulative distribution Pr(Zn ≤ z) and its dependence on R. In more detail,
for a fixed rate R, we study the scaling of Pr(Zn ≤ z) in terms of of n. We
will see in this chapter that for sufficiently large n, if we properly rescale the
functions Fn(z), we will discover the Gaussian Q function. The next question
we address in this chapter is as follows.
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Question 6. What implications does the asymptotic behavior of Pr(Zn ≤ z)
have on the block-error probability of the SC decoder?

A rough answer to this question is that these two quantities share the same
asymptotic behavior up to the leading exponents. We will refine this answer
throughout the text. The final point that we note in this chapter is in regard to
the behavior of other decoders, especially the optimal one (i.e., MAP decoder).

Question 7. What can we say about the asymptotic behavior of the block-error
probability of other decoders, especially the MAP decoder?

In other words, we ask how much the MAP decoder is superior to the SC
decoder in the asymptotic regime.

4.1.1 Relevant Work

The asymptotic behavior of the process Zn is closely related to the “partial
distances” of the kernel matrix G that the polar code is based on3:

Definition 4.1 (Partial Distances). We define the partial distances Di(G),

i = 0, · · · , !− 1, of an ! × ! matrix G =

[ g0
...

g"−1

]
(gi’s are row vectors) as

Di(G) ! dH({gi}, 〈gi+1, . . . , g#−1〉), i = 0, . . . , !− 2,

D#−1(G) ! dH({g#−1}, {0}).

Here, 〈gi+1, . . . , g#−1〉 denotes the linear space spanned by gi+1, . . . , g#−1. Also,
dH(a, b) denotes the Hamming distance between two binary vectors a, b of equal
length and more generally if A,B are two sets of binary vectors all of the same
length, then dH(A,B) = min

a∈A,b∈B
dH(a, b). The first exponent of G is then

defined as

E(G) =
1

!

#−1∑

i=0

log#Di(G),

and the second exponent of G is defined as

V (G) =
1

!

#−1∑

i=0

(log#Di(G)− E(G))2.

In other words, the first exponent E(G) and the second exponent V (G) are
the mean and the variance of the random variable log#DB(G), where B is a
random variable taking a value in {0, 1, . . . , ! − 1} with uniform probability.
It should be noted that the invertibility of G implies that the partial distances

3See Section 2.3.
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{Di(G)} are strictly positive, making the exponent E(G) finite [12]. Note also
that the condition for a matrix G to be polarizing, that none of the column
permutations of G is upper triangular, implies that at least one of the Di(G)’s
is strictly greater than 1. This results in E(G) being strictly positive.

The following theorem partially characterizes the behavior of the process
{Zn}n∈N around z = 0.

Theorem 4.1 ([7] and [12]). Let W be a BMS channel and assume that we
are using as the kernel matrix an !× ! matrix G with exponent E(G). For any
fixed β with 0 < β < E(G),

lim
n→∞

Pr(Zn ≤ 2−#
nβ

) = I(W ). (4.4)

Conversely, if I(W ) < 1, then for any fixed β > E(G),

lim
n→∞

Pr(Zn ≥ 2−#
nβ

) = 1. (4.5)

An important consequence of Theorem 4.1 is as follows. Let PrSCe (N, R)
be the block error probability when using polar codes with the kernel matrix
G, of block-length N = !n and rate R < I(W ) under SC decoding. By using
the inequality on the right-hand side in (4.1) and the limit in (4.4), we can
easily conclude that for any 0 < β < E(G), the value of P SC

e (N, R) is less than

2−#
nβ

for sufficiently large n. Also, by using the inequality on the left-hand
side in (4.1) and (4.5), we can easily conclude that for β > E(G) the value of

P SC
e (N, R) is greater than 2−#

nβ
for sufficiently large n. Hence, P SC

e (N, R)

behaves as 2−#
nE(G)+o(n)

as n tends to infinity. Note that this result is rate-
independent, provided that the rate R is less than the capacity I(W ). We
provide here a refined estimate for Pr(Zn ≤ z). Specifically, we derive the
asymptotic relation between Pr(Zn ≤ z) and the rate of transmission R. From
this, we derive the asymptotic behavior of P SC

e (N, R) and its dependence on the
rate of transmission. We further derive lower bounds on the error probability
when we perform MAP decoding, instead of SC decoding.

Note that, in the following, the logarithms are in base 2 unless explicitly
stated otherwise.

4.2 Asymptotic Behavior of Fn(z)

This section is devoted to the answer of Questions 5 and 6. In particular we
show how the quantity Pr(Zn ≤ z) scales with n and R and what this implies
on the scaling behavior of P SC

e .

Theorem 4.2. Consider an ! × ! polarizing kernel matrix G =

[ g0
...

g"−1

]
. For

a BMS channel W , let {Zn = Z(Wn)}n∈N be the Bhattacharyya process of W .

Let Q(t) !
∫∞
t e−z2/2 dz/

√
2π be the error function and Q−1(·) be its inverse

function.
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1. For R < I(W ),

lim
n→∞

Pr

(
Zn ≤ 2−#

nE(G)+
√

nV (G)Q−1( R
I(W ))+f(n)

)
= R.

2. Let H = [gT#−1, · · · , gT0 ]−1 (·T denotes the transpose) and assume that
Di(H) ≤ Di−1(H) for 1 ≤ i ≤ !− 1. Then, for R′ < 1− I(W ) we have

lim
n→∞

Pr

(
Zn ≥ 1− 2−#

nE(H)+
√

nV (H)Q−1( R′
1−I(W ) )+f(n)

)
= R′.

Here, f(n) is any function satisfying f(n) = o(
√
n).

Theorem 4.2 characterizes the asymptotic behavior of Pr(Zn ≤ z) and
refines Theorem 4.1 in the following way. According to Theorem 4.1, if we
transmit at a fixed rate R below the channel capacity, then the quantity
log#(− logP SC

e ) scales like nE(G)+o(n). The first part of Theorem 4.2 gives us

one further term by stating that o(n) is in fact
√
nV (G)Q−1

(
R

I(W )

)
+ o(

√
n).

Whereas, the second part of Theorem 4.2 characterizes the asymptotic behavior
of Pr(Zn ≥ z) near z = 1, which is important in applications of polar codes for
source coding [29, 30]. Put together, Theorem 4.2 characterizes the scaling of
the error probability of polar codes in terms of the block-length when the rate
is fixed. The rest of this section is devoted to providing the required machinery
and intuition for proving Theorem 4.2.

4.2.1 Preliminaries

Let {Bn}n∈N be a sequence of i.i.d. random variables that take their values
in {0, 1, · · · , ! − 1} with uniform probability, i.e., Pr(B0 = j) = 1

# for j ∈
{0, 1, . . . , !− 1}. Let (Ω,F ,Pr) denote the probability space generated by the
sequence {Bn}n∈N and let (Ωn,Fn,Prn) be the probability space generated
by (B0, · · · , Bn). Recall that {Di(G)}0≤i≤#−1 are the partial distances of the
matrix G. By using the bounds given in [13, Lemma 5.7, Lemma 5.10] we have
the following relationship between the Bhattacharyya parameters of W i and
that of W . We have [13, Lemma 5.10]

Z(W )Di(G) ≤ Z(W i) ≤ 2#−iZ(W )Di(G). (4.6)

Also, let H = [gT#−1, · · · , gT0 ]−1. Assuming Di(H) ≤ Di−1(H), we have [13,
Lemma 5.7]

(1 − Z(W ))Di(H) ≤ 1− Z(W i) ≤ 22i+1(1− Z(W ))Di(H). (4.7)

4.2.2 The Idea behind the Proof

We first provide an intuitive picture behind the result of Theorem 4.2. For
simplicity, assume ! = 2 and G =

[
1 0
1 1

]
. Also, assume that W is a binary
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erasure channel (BEC) with erasure probability z. The capacity of this channel
is 1 − z. For such a channel, the Bhattacharyya process has a simple closed
form [1] as Z0 = z and

Zn+1 =

{
Z2
n, Bn = 1,

2Zn − Z2
n, Bn = 0.

(4.8)

We know from Section 4.1.1 that as n grows large, Zn tends almost surely to a
{0, 1}-valued random variable Z∞ with Pr(Z∞ = 0) = 1 − ε. The asymptotic
behavior of {Zn}n∈N can be explained roughly by considering the behavior of
{− logZn}n∈N. In particular, it is clear from (4.8) that at time n+1, − logZn

is either doubled (when Bn = 1), or decreased by at most 1 (when Bn = 0).
Also, observe that once − logZn becomes sufficiently large, subtracting 1 from
it has a negligible effect compared with the doubling operation (See Figure 4.2).
Now assume that m is a sufficiently large number. Conditioned on the event
that − logZm is a very large value (or equivalently, the value of Zm is very
close to 0: this happens with probability very close to 1 − z), for n > m
the process {− logZn}n∈N evolves each time by being doubled if Bn = 1 or
remaining roughly the same if Bn = 0. Consequently, for n > m the process
{log(− logZn)}n∈N increases by 1 if Bn = 1 or remaining roughly the same if
Bn = 0. In other words, we have log(− logZn+1) = log(− logZn) + Bn. We

Figure 4.2: At time n+1, − logZn is either doubled (when Bn = 0), or decreased
by at most 1 (when Bn = 1). However, once Zn becomes sufficiently small (or
− logZn becomes sufficiently large), subtracting 1 from it has negligible effect
compared with the doubling operation.

can then use the central limit theorem to characterize the asymptotic behavior
of {− logZn}n∈N for n< m.

The proof of Theorem 4.2 is done by making the above intuitive steps
rigorous for a BMS channel W and for a polarizing !× ! kernel matrix G.

4.2.3 A Generic Process

In a slightly more general setting, we study the asymptotic properties of Pr(Xn ≤
x) for any generic process {Xn}n∈N satisfying the conditions (c1)–(c4) defined
as follows.

Definition 4.2. Let S be a random variable taking values in [1,∞). Assume
that the expectation and the variance of log S exist and are denoted by E[log S]
and V[logS], respectively. We let {Sn}n∈N denote i.i.d. samples of S. We also
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let {(Xn, Sn) ∈ (0, 1)× [1,∞)}n∈N be a random process satisfying the following
conditions:

(c1) There exists a random variable X∞ such that Xn → X∞ holds almost
surely.

(c2) With probability 1 we have (Xn)Sn ≤ Xn+1.

(c3) There exists a constant c ≥ 1 such that Xn+1 ≤ c(Xn)Sn holds with
probability 1.

(c4) Sn is independent of Xm for m ≤ n.

The random processes {(Zn, DBn(G))}n∈N and {(1−Zn, DBn(H))}n∈N sat-
isfy the above four conditions. The fact that these processes satisfy the condi-
tion (c1) has been proved in [13, Lemma 5.4], and the result reads that if G is
polarizing, then Z∞ takes only 0 and 1, with probabilities I(W ) and 1− I(W ),
respectively. Conditions (c2) and (c3) also hold because of (4.6) and (4.7).

Our objective now is to prove that for such a process {(Xn, Sn)}n∈N, we
have

lim
n→∞

Pr

(
Xn ≤ 2−2nE[logS]+t

√
nV[logS]+f(n)

)
= Pr(X∞ = 0)Q(t), (4.9)

where f(n) is any function such that f(n) = o(
√
n) holds. The results of

Theorem 4.2 then follow by noting that Pr(Z∞ = 0) = I(W ) and Pr(1−Z∞ =
0) = Pr(Z∞ = 1) = 1− I(W ) hold, and by substituting t = Q−1(R/I(W )) and
t = Q−1(R′/(1− I(W ))), respectively, into (4.9).

We prove (4.9) by showing the two inequalities obtained by replacing the
equality in (4.9) by inequality in both directions.

4.2.4 Proof of (4.9) in the Forward Direction

As the first step we have

Lemma 4.1. Let {(Xn, Sn)}n∈N be a random process satisfying (c1), (c3) and
(c4). For any f(n) = o(

√
n),

lim inf
n→∞

Pr

(
Xn ≤ 2−2nE[logS]+t

√
nV[logS]+f(n)

)
≥ Pr(X∞ = 0)Q(t).

Proof. Without loss of generality, we can assume that c in condition (c3) sat-
isfies c ≥ 2. Define the process {Ln}n∈N as Ln ! logXn. From (c3), we
have

Ln ≤ log c+ Sn−1Ln−1,

and by applying the above relation recursively, for m ≤ n− 1 we obtain

Ln ≤




n−1∑

j=m

n−1∏

i=j+1

Si



 log c+

(
n−1∏

i=m

Si

)
Lm



78 Scaling Laws for the Polarized Channels

≤
(

n−1∏

i=m

Si

)
((n−m) log c+ Lm). (4.10)

Fix β ∈ (0,E[logS]) and let

m ! (log n+ log log c)/β. (4.11)

Conditioned on the event Dm(β) ! {Xm < 2−2βm}, by using (10.13) we obtain

Ln ≤ −
(

n−1∏

i=m

Si

)
m log c.

Let the event Hn−1
m (t) be defined as

Hn−1
m (t) !

{ n−1∑

i=m

logSi ≥ (n−m)E[log S] + t
√
(n−m)V[logS] + f(n−m)

}
,

where f is any function such that f(k) = o(
√
k) holds. Conditioned on Dm(β)

and Hn−1
m (t), we have

log(−Ln) ≥ logm+log log c+(n−m)E[log S]+ t
√
(n−m)V[logS]+f(n−m).

Hence,

Pr

(
log(−Ln) ≥ logm+log log c+(n−m)E[logS]+t

√
(n−m)V[logS]+f(n−m)

)

≥ Pr(Dm(β) ∩Hn−1
m (t)) = Pr(Dm(β))Pr(Hn−1

m (t)).

The last equality follows from the independence condition (c4).
Note that taking the limit n → ∞ also implies m → ∞ and n −m → ∞

via (4.11). From the polarization theorem, we have limn→∞ Pr(Dm(β)) =
Pr(X∞ = 0). We also have limn→∞ Pr(Hn−1

m (t)) = Q(t) due to the central
limit theorem for {logSi}. We consequently have

lim inf
n→∞

Pr

(
log(− logXn) ≥ nE[log S]+t

√
nV[logS]+f(n)

)
≥ Pr(X∞ = 0)Q(t)

for any f(n) = o(
√
n).

4.2.5 Proof of (4.9) in the Reverse Direction

The second step of the proof of (4.9) is to prove the other direction of the
inequality. We have

Lemma 4.2. Let {(Xn, Sn)}n∈N be a random process satisfying (c1), (c2) and
(c4). For any f(n) = o(

√
n),

lim sup
n→∞

Pr

(
Xn ≤ 2−2nE[logS]+t

√
nV[logS]+f(n)

)
≤ Pr(X∞ = 0)Q(t).
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Proof. Let Ln ! logXn. From (c2), for m ≤ n− 1 we have

Ln ≥ Sn−1Ln−1

≥
(

n−1∏

i=m

Si

)
Lm,

and thus

log(−Ln) ≤
n−1∑

i=m

logSi + log(−Lm). (4.12)

Hence, for any fixed m and any δ ∈ (0, 1),

lim sup
n→∞

Pr
(
log(−Ln) > nE[log S] + t

√
nV[logS] + f(n)

)

≤ lim sup
n→∞

Pr

(
log(−Ln) > nE[logS] + t

√
nV[logS] + f(n), Xm ≤ δ

)

+ lim sup
n→∞

Pr

(
log(−Ln) > nE[logS] + t

√
nV[logS] + f(n), Xm > δ

)
.

(4.13)

The first term in the right-hand side of (4.13) is upper bounded as

lim sup
n→∞

Pr

(
log(−Ln) > nE[logS] + t

√
nV[logS] + f(n), Xm ≤ δ

)

(a)
≤ lim sup

n→∞
Pr

( n−1∑

i=m

logSi + log(−Lm) > nE[logS] + t
√
nV[logS] + f(n), Xm ≤ δ

)

(b)
= Q(t)Pr(Xm ≤ δ),

where (a) follows from (4.12), and where (b) follows from (c4) and the central
limit theorem. The second term in the right-hand side of (4.13) is upper
bounded as

lim sup
n→∞

Pr

(
log(−Ln) > nE[logS] + t

√
nV[logS] + f(n), Xm > δ

)

≤ lim sup
n→∞

Pr

(
Xn ≤

δ

2
, Xm > δ

)

(a)
≤ Pr

(
X∞ ≤ δ

2
, Xm > δ

)
,

where (a) follows from (c1). Applying these bounds to (4.13), for any δ ∈ (0, 1),
we have

lim sup
n→∞

Pr
(
log(−Ln) > nE[logS] + t

√
nV[logS] + f(n)

)

≤ lim sup
m→∞

{
Q(t)Pr(Xm ≤ δ) + Pr

(
X∞ ≤ δ

2
, Xm > δ

)}
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≤ Q(t)Pr(X∞ ≤ δ) + Pr

(
X∞ ≤ δ

2
, X∞ ≥ δ

)

= Q(t)Pr(X∞ ≤ δ).

By letting δ → 0, we obtain the result.

4.3 Asymptotic Behavior of the MAP Error

In this section, we provide the relation between the MAP block error proba-
bility, block-length N at a given (fixed) rate R. Similar results as Theorem 4.2
hold for the case of the MAP decoder.

Theorem 4.3. Let W be a BMS channel and let R < I(W ) be the rate of
transmission. Consider an ! × ! kernel matrix G with {w0(G), · · · , w#−1(G)}
the Hamming weights of its rows and define

Ew(G) =
1

!

#−1∑

i=0

log# wi(G), Vw(G) =
1

!

#−1∑

i=0

(log# wi(G)− Ew(G))2. (4.14)

If we use polar codes of length N = !n and rate R for transmission, then the
probability of error under MAP decoding, PMAP

e , satisfies

log#(− logPMAP
e ) ≤ nEw(G) +

√
nVw(G)Q−1

(
R

I(W )

)
+ o(

√
n). (4.15)

Corollary 4.1. Let G be according to Arıkan’s original construction [1], i.e.,
G =

[
1 0
1 1

]
, which is the only polarizing matrix for the case ! = 2. For this G,

we have wi(G) = Di(G) for i = 0 and 1. Hence, the block error probability for
the SC decoder and the MAP block error probability share the same asymptotic
behavior according to Theorems 4.2 and 4.3.

For a general ! × ! matrix G, however, we might have strict inequality
Ew(G) > E(G), in which case we still have an asymptotic gap between the error
probability with SC decoding and the lower bound of MAP error probability.
Whether or not this gap can be filled or made narrower is an open problem.
We start the proof of Theorem 4.3 by stating a general fact regarding the MAP
error probability of linear codes.

Lemma 4.3. The MAP error probability of a linear code C over a BMS channel
W is lower bounded by Z(W )2dmin/4 where dmin is the minimum distance of C.

Proof. Within this proof, the notation Pr(· · · ) should be understood as gener-
ically denoting the probability of an event (· · · ). Since the MAP error proba-
bility of a linear code over a BMS channel does not depend on the transmitted
codeword, we can assume without loss of generality that the transmitted code-
word is the all-zero codeword, denoted by 0. Let YYY be the random variable
corresponding to a received sequence when 0 is transmitted and let P (y | c)
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be the likelihood of received sequence y given a codeword c. Consider an arbi-
trary codeword c ∈ C\{0}. Since MAP and ML are equivalent for equiprobable
codewords, the MAP error probability is clearly lower bounded as

Pr(∪c′∈C\{0} {P (YYY | c′) ≥ P (YYY | 0)}) ≥ Pr(P (YYY | c) ≥ P (YYY | 0)).

That is, assuming that 0 has been sent, the MAP error probability is lower
bounded by the probability that the codeword c is more likely than 0. We now
provide a lower bound for the probability of the latter event. Let us consider c
as a binary vector of length N , i.e., c = (c0, c1, · · · , cN−1). We let A be the set
of indices i ∈ {0, 1, · · · , N−1} such that ci = 1. Thus, the set A has cardinality
equal to the Hamming weight of c which we write as w(c). We thus obtain

Pr(P (YYY | c) ≥ P (YYY | 0)) = Pr
(∏

i∈A

P (yi | 1) ≥
∏

i∈A

P (yi | 0)
)
. (4.16)

For a positive integer m, let us define the BMS channel W⊗m : {0, 1} → Ym

as

W⊗m(ym1 | x) !
m∏

i=1

W (yi | x). (4.17)

It is now easy to see that the right-hand side of (4.16) is equal to the probability
of sending the symbol 0 on the channel W⊗w(c), we receive an output for which
the symbol 1 is more likely than 0. Hence,

Pr
(∏

i∈A

P (yi | 1) ≥
∏

i∈A

P (yi | 0)
)

= Pe(W
⊗w(c))

(a)
≥ 1

2

(
1−
√
1− Z(W⊗w(c))2

)

(b)
=

1

2

(
1−
√
1− Z(W )2w(c)

)

≥ 1

4
Z(W )2w(c),

where step (a) follows from (4.1) and where (b) follows from the fact that for
m ≥ 1 we have Z(W⊗m) = Z(W )m [1].

It should be noted that the lower bound Pe(W⊗w(c)) ≥ (1/4)Z(W )2w(c) in
the proof of Lemma 4.3 is not asymptotically tight in terms of the conventional
exponents. It is possible to obtain tighter lower bounds via more elaborate
arguments as in [47, Chapter 4]. However, as we are only interested in the
behavior of double exponents, the above bound is sufficient for the purpose of
proving Theorem 4.3.

In order to prove Theorem 4.3, from Lemma 4.3 it is sufficient to prove that
given any ε > 0 there exists an integer M ∈ N such that for n ≥M ,

log#(d(n,R)) ≤ nEw(G) +
√

nVw(G)

(
Q−1

(
R

I(W )

)
+ ε

)
,
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where d(n,R) is the minimum distance of a polar code using the kernel matrix
G, with block-length N = !n and rate R. We note that a row weight of the
generator matrix is an upper bound of the minimum distance for a linear code,
and that the weight of the i-th row of G⊗n is equal to

∏n
j=1 wij (G), where ij

is the jth digit of the !-ary representation of i − 1. As a result, it is sufficient
to prove that, given any ε > 0, there exists an integer M ∈ N such that for a
polar code of block-length N = !n ≥ !M , rate R and set of chosen indices I,
there exists i ∈ I for which the inequality

n∑

j=1

log# wij (G) ≤ nEw(G) +
√
nVw(G)

(
Q−1

(
R

I(W )

)
+ ε

)
(4.18)

holds. In the proof of Theorem 4.2, we can observe that the key idea is to apply
the central limit theorem for the i.i.d. sequence {logSn = logDBn(G)}n∈N. In
order to prove Theorem 4.3 we also consider the i.i.d. sequence {logwBn(G)}n∈N
in addition to {logDBn(G)}n∈N. Note that the two sequences {logDBn(G)}n∈N
and {logwBn(G)}n∈N are in general correlated since they are both coupled to
the same process {Bn}n∈N and they are equal with probability one if and only
if Di(G) = wi(G) holds for all i ∈ {0, 1, . . . , !−1}. In the same manner as the
proof of Theorem 4.2, we move on to a more abstract setting. We first intro-
duce a random variable U that takes values in [1,∞), for which we assume that
the expectation and the variance of logU exist and are denoted by E[logU ] and
V[logU ], respectively. We also let {(Sn, Un)}n∈N be i.i.d. drawings of (S,U),
where S is defined as in Definition 4.2. Let {(Xn, Sn, Un)}n∈N be a random
process such that {(Xn, Sn)}n∈N satisfies the conditions (c1) to (c4) together
with the additional condition (c5) for {(Xn, Un)}n∈N:

(c5) Un is independent of Xm for m ≤ n.

It is easy to see that the stochastic process of the triplets {(Zn, DBn(G), wBn(G))}n∈N
satisfies (c1) to (c5). We first note from the proof of Theorem 4.3 that for any
generic process {(Xn, Sn, Un)}n∈N satisfying (c1) to (c5), relation (4.9) holds
for any function f(n) = o(

√
n). We also find that for real numbers v, t such

that v > t and for any function g(n) = o(
√
n) we have

lim sup
n→∞

Pr

(
Xn ≤ 2−2nE[logS]+t

√
nV[logS]+f(n)

,

n−1∑

i=0

logUi > nE[logU ] + v
√
nV[logU ] + g(n)

)
< Pr(X∞ = 0)Q(v). (4.19)

Before proving (4.19) let us see how it leads to the proof of Theorem 4.3.
Since the stochastic process of the triplets {(Zn, DBn(G), wBn(G))}n∈N satis-
fies (c1) to (c5), we can use relations (4.9) and (4.19) by letting (Xn, Sn, Un) =
(Zn, DBn(G), wBn(G)). Now, by (4.9) and (4.19) it is easy to see that for gen-
erator matrices of polar codes with rate R, the number of rows satisfying (4.18)
is asymptotically proportional to the block-length, hence there exists at least
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one row satisfying (4.18) which concludes the proof of Theorem 4.3. Thus, it
remains to prove the relation (4.19).

Lemma 4.4. Let {(Xn, Sn, Un)}n∈N be a random process satisfying (c1) to
(c5). For any f(n) = o(

√
n) and g(n) = o(

√
n),

lim
n→∞

Pr

(
Xn ≤ 2−2nE[logS]+t

√
nV[log S]+f(n)

,

n−1∑

i=0

logUi > nE[logU ] + v
√
nV[logU ] + g(n)

)

= Pr(X∞ = 0)Pr(AS ≥ t, AU ≥ v),

where (AS , AU ) are Gaussian random variables of mean zero whose covariance
matrix is equal to that of

(
logS − E[log S]√

V[logS]
,
logU − E[logU ]√

V[logU ]

)
.

The proof of this Lemma is the same as the proofs of Lemma 4.1 and
Lemma 4.2. The difference is that the central limit theorem is replaced by the
two-dimensional central limit theorem. From the fact that Pr(AS ≥ t, AU ≥
v) ≤ Q(max{t, v}), relation (4.19) is obtained for v > t. This completes the
proof of Theorem 4.3.

4.4 Further Remarks

In this section we will explain two further (and indirect) implications of The-
orems 4.2 and 4.3.

4.4.1 The Common Indices between Polar and Reed-Muller Codes

We begin this section by stating a corollary that is deduced from the proof of
Theorem 4.3.

Corollary 4.2. Assuming G =
[
1 0
1 1

]
, the fraction of the common chosen row

indices of G⊗n between polar codes of rate R and RM codes of rate R′ tends to
I(W )min{ R

I(W ) , R
′} as n→∞.

Let G =
[
1 0
1 1

]
. For this choice of G, we have wi(G) = Di(G) for i = 0 and

1. Hence, the random variables Sn = DBn(G) and Un = wBn(G) are equal
for all n ∈ N. Also note that Sn takes its value in the set {1, 2} uniformly at
random. From the proof of Theorem 4.3, the set of indices of the rows of polar
codes with the kernel matrix G and rate R corresponds to the event

{
Xn ≤ 2−2

nE[logS]+Q−1( R
I(W ))

√
nV[logS]+f(n)

}
.
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Also, with the same G, the set of indices of a RM code with rate R′ corresponds
to the event

{
n−1∑

i=0

logUi > nE[logU ] +Q−1(R′)
√
nV[logU ] + g(n)

}
.

From Lemma 4.4, it is now easy to conclude that the fraction of the common
chosen row indices of G⊗n between polar codes of rate R and RM codes of rate
R′ tends to I(W )min{ R

I(W ) , R
′} as n→∞.

4.4.2 Selection Rule of the Rows

The proof of Lemma 4.1 suggests a way to help us select the good indices in a
computationally efficient way. Let us recall that the construction of polar codes

relies on finding the “quality” of the channels W (i)
#n , 1 ≤ i ≤ !n. “Quality” here

either refers to large capacity (capacity close to 1) or small Bhattacharyya
value. We also recall from Section 2.4 that for each i, 1 ≤ i ≤ N , the channel

W (i)
#n is constructed from W as follows. We first compute the !-ary representa-

tion of i− 1, which is denoted by b1b2 · · · bn, with b1 being the most significant
digit and

W (i)
#n = (((W b1 )b2)···)bn .

The goal of this section is to show that the quality of a channel W (i)
#n depends

on the channel W only through the first o(n) digits of the sequence b1b2 · · · bn.
In other words, to choose the indices of the channels W (i)

#n , 1 ≤ i ≤ N , which
have the best quality, the first o(n) significant digits of the !-ary expansion of
i− 1 should be determined, depending on W and the rest are determined in a
Reed-Muller fashion (i.e., are chosen according to their Hamming weight).

In the proof, the !-ary expansion of row indices of G⊗n corresponds to
realizations of B1, . . . , Bn. The proof of Lemma 4.1 implies that it is sufficient
to select the rows in Dm(β) ∩Hn−1

m (t) in order to achieve the asymptotically
optimum performance. It should be noted that the event Dm(β) applied to the
Bhattacharyya process {Zn = Z(Wn)}n∈N of W depends on the channel W ,
whereas the event Hn−1

m (t) is channel-independent. This observation leads to
the following selection rule: The first m = s(n) ! (logn + log log c)/β digits
of the row indices are determined in the channel-dependent way. Then, the
following (n−m) digits are determined in the RM way, i.e., those combinations
of digits (Bm, . . . , Bn−1) giving large values of

∑n−1
i=m logDBi(G) are selected.

In this rule, only the first Θ(logn) digits should be determined depending on
the channel.

The above argument can further be extended in a recursive manner. Let
Cn−1
m (ε) ! {(n − m)−1

∑n−1
i=m logSi ≥ E[log S] − ε}. Then, it is sufficient to

select rows in Dm0(β)∩ Cm1−1
m0

(ε)∩Hn−1
m1

(t) where m1 = s(n) and m0 = s(m1)
since Dm1(β) and Dm0(β)∩Cm1−1

m0
(E[log S]−β) are asymptotically equal. (Use

Cn−1
m (ε) instead of Hn−1

m (t) in the proof of Lemma 4.1. A similar argument can
be found in [1, Section IV-B].) From this observation, only Θ(log logn) digits
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have to be determined depending on the channel. By iterating this argument,
we obtain the selection rule in which only

Θ(

k︷ ︸︸ ︷
log · · · log n) (4.20)

digits depend on the channel for any k ∈ N. From the argument so far, we
deduce that even though the behavior of Zn = Z(Wn) depends on the channel
W , as well as the whole sequence {B0, B1, . . . , Bn−1}, whether it approaches
0 or 1 when n is large, is mostly determined by the channel W and a prefix of
{B0, B1, . . . , Bn−1} with a relatively small length. Thus, to choose the indices

of the channels W (i)
#n that have the best quality, the first sublinear number of

significant digits of the !-ary expansion of i − 1 are determined depending on
the channel, and the rest are determined in a RM-like fashion. It should be
noted that the above argument is valid in the large-n asymptotics. This does
not mean that one can make arbitrarily small the number of digits that are to
be determined in the channel-dependent manner.

Although the good indices of the rows of G⊗n can be selected using den-
sity evolution [27], in practice storage and convolution of probability density
functions is exponentially (in block-length N) costly in terms of memory and
computation. Recently, several authors have considered efficient algorithms
that closely approximate the density evolution procedure [25], [23]. The above-
mentioned construction rule can be useful in reducing the number of convolu-
tions and the number of levels in the quantization of channels.





Efficient Construction and
Universality 5
5.1 Problem Formulation

5.1.1 Hardness of the Construction

As explained in Chapter 2 designing a polar code is equivalent to finding the set
of good indices. This chapter1 focuses on the set of good indices and how this
set depends on the choice of the channel. For this purpose, given a block-length
N , we need to compute certain parameters (e.g., Bhattacharyya or entropy)

corresponding to each of the channels W (i)
N , 0 ≤ i ≤ N − 1. A naive way to

compute such a parameter is to compute the transition probabilities of each

of the sub-channels W (i)
N and obtain from these probabilities the relevant pa-

rameters. The main difficulty in this task is that, since the output alphabet of

W (i)
N is YN × {0, 1}i, the cardinality of the output alphabet of the channels at

the level n of the infinite binary tree2 is doubly exponential in n and therefore
exponential in the block-length N . So computing the exact transition prob-
abilities of these channels seems to be intractable. Therefore, we need some
efficient methods to “approximate” these channels.

In [1], it is suggested to use a Monte-Carlo method for estimating the
Bhattacharyya parameters. Another method in this regard is by quantization
[24,25,27], [47, Appendix B]: approximating the given channel with a channel
that has fewer output symbols. More precisely, given a number k, the task is
to come up with efficient methods to replace the channels that have more than
k outputs with “close” channels that have at most k outputs. A few comments
are in order:

1The material of this part is based on [23] and [24].
2In this chapter, we consider Arikan’s construction of polar codes (see section 2.3.).
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• The term “close” depends on the definition of the quantization error,
which can be different depending on the context. In our problem, in its
most general setting we can define the quantization error as the difference
between the true set of good indices and the approximate set of good
indices. However, it seems that analyzing this type of error might be
difficult and in the sequel we consider types of errors that are easier to
analyze.

• As a compromise, we intuitively think of two channels as being close if
they are close with respect to some given metric; typically mutual infor-
mation but sometimes probability of error or Bahttacharyya. More so,
we require that this closeness be in the right direction: the approximated
channel must be a “pessimistic” version of the true channel so that the
approximated set of good channels will be a subset of the true set.

• Intuitively, we expect that as k increases the overall error due to quan-
tization decreases; the main art in designing quantization methods is to
have a small error while using relatively small values of k. For any quan-
tization algorithm, however, an important property is that as k grows
large, the approximate set of good indices using the quantization algo-
rithm with fixed k approaches the true set of good indices. We give a
precise mathematical definition in the following.

Taking the above mentioned factors into account, a suitable formulation of
the quantization problem is as follows:

Question 8. Find procedures to replace each channel P at each level of the bi-
nary tree with another symmetric channel P̃ with the number of output symbols
limited to k such that

1. The new set of good indices obtained with this procedure is a subset of the
true good indices obtained from the channel polarization, i.e., channel P̃
is “polar degraded” with respect to P .

2. The ratio of these (new) good indices is maximized.

More precisely, we start from channel W at the root node of the binary tree,
quantize it to W̃ and obtain W̃− and W̃+ according to (2.13) and (2.14). Then,
we quantize the two new channels and continue the procedure to complete the
tree. To state things mathematically, let Qk be a quantization procedure that
assigns to each channel P a binary symmetric channel P̃ such that the output
alphabet of P̃ is limited to a constant k. We call Qk admissible if for any i and
n

I(W̃ (i)
N ) ≤ I(W (i)

N ). (5.1)

Alternatively, we call Qk admissible if for any i and n

Z(W̃ (i)
N ) ≥ Z(W (i)

N ). (5.2)
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Note that (5.1) and (5.2) are essentially equivalent as N grows large. Given an
admissible procedure Qk and a BMS channel W , let ρ(Qk,W ) be3

ρ(Qk,W ) = lim
n→∞

|{i : I(W̃ (i)
N ) > 1

2}|
N

(5.3)

So, the quantization problem is that given a number k ∈ N and a channel W ,
how can we find admissible procedures Qk such that ρ(Qk,W ) is maximized
and is close to the capacity of W . Can we reach the capacity of W as k goes
to infinity? Are such schemes universal, in the sense that they work well for
all the BMS channels? It is worth mentioning that if we first let k tend to
infinity and then n to infinity, then the limit is indeed the capacity. But we are
addressing a different question here, specifically we first let n tend to infinity
and then k (or perhaps couple k to n). In Section 5.2.4, we prove that indeed
such schemes exist.

5.1.2 Is Polar Coding Universal?

We explained in the previous section that given a BMS channel W , computing

the exact transition probabilities of W (i)
N is exponentially hard in N . However,

for the BEC this computation is easy (linear in n or logarithmic in N) and all
the channels at level n of the tree are again BEC channels for which the erasure
can be computed with a simple recursive numerical procedure (as in (2.30)).
Knowing that finding the good indices for the BEC is an easy task, one may
ask whether there is any connection between the indices of the BEC and any
other BMS channels with the same capacity? More generally we can ask:

Question 9. Given two BMS channels W and W ′ with equal capacity; is there
any relation between the set of good indices of the two channels? What is the
ratio of the intersection of the two sets (asymptotically)? Is this ratio equal (or
close) to their capacity?

The answer to Question 9 has several of relevant applications. The first
one, as mentioned above, is in finding the set of good indices. There are
channels, such as BEC, such that their corresponding set of good indices (or
a subset of it) can be found efficiently. Knowing what relation holds between
the set of good indices of these special channels and a desired channel, helps
us in a more efficient construction of polar codes for the desired channel. The
second application is in the design of polar codes for compound or mismatched
scenarios. Consider a communication scenario where the transmitter does not
know the channel. The only knowledge it has is the set of channels to which
the channel belongs. This is known as the compound channel scenario. Let W
denote the set of channels. We consider the compound capacity with respect
to ignorance at the transmitter, but we allow the decoder to have knowledge
of the actual channel. The compound capacity of W is defined as the rate at

3Instead of 1
2 in (5.3) we can use any number in (0, 1).
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which we can reliably transmit irrespectively of the particular channel (out of
W) that is chosen. The compound capacity is given by [11]

C(W) = max
P

inf
W∈W

IP (W ),

where IP (W ) denotes the mutual information between the input and the output
of W , with the input distribution being P . Note that the compound capacity
of W can be strictly smaller than the infimum of the individual capacities. This
happens if the capacity-achieving input distributions for the individual channels
are different. Also note that if the capacity-achieving input distribution is the
same for all channels in W , then the compound capacity is equal to the infimum
of the individual capacities. This is indeed the case here because we restrict
our attention to the class of BMS channels.

We are interested in the maximum achievable rate by using polar codes and
the SC decoder. Let us explain our objective in more detail as follows.

Question 10. Given a collection W of BMS channels, we are interested in
constructing a polar code of rate R that works well (under SC decoding) for
every channel in this collection. This means, given a target block error proba-
bility, call it PB, we ask whether there exists a polar code of rate R such that
its block error probability is at most PB for any channel in W. In particular,
how large can we make R so that a construction exists for any PB > 0?

Why is this problem of practical relevance? When we design a communi-
cations system we typically start with a mathematical model. But in reality
no channel is exactly equal to the assumed model. Depending on the condi-
tions of the transmission medium, the channel will show some variations and
deviations. Therefore, designing low-complexity coding schemes that are si-
multaneously reliable for a set of channels is a natural and important problem
for real systems.

Sections 5.2, 5.3, and 5.4 contain our answer to Questions 8, 9, and 10,
respectively. In Section 5.5, we prove that generalizations of polar codes with
!× ! kernels perform better, in terms of the compound rate, than the original
polar codes.

5.2 Algorithms for Efficient Construction

Any discrete BMS channel can be represented as a collection of binary sym-
metric channels (BSC’s). The binary input is given to one of these BSC’s at
random such that the i-th BSC is chosen with probability pi. The output of
this BSC together with its cross over probability xi is considered as the out-
put of the channel. Therefore, a discrete BMS channel W can be completely
described by a random variable χ ∈ [0, 1/2]. The pdf of χ will be of the form

Pχ(x) =
m∑

i=1

piδ(x− xi) (5.4)
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such that
∑m

i=1 pi = 1 and 0 ≤ xi ≤ 1/2 (see Figure 5.1). Note that Z(W )

and 1− I(W ) are expectations of the functions f(x) = 2
√
x(1 − x) and g(x) =

−x log(x)− (1−x) log(1−x) over the distribution Pχ, respectively. Therefore,

Figure 5.1: A schematic representation of a density that has the form of (5.4)

in the quantization problem we want to replace the mass distribution Pχ with
another mass distribution Pχ̃ such that the number of output symbols of χ̃ is
at most k, and the channel W̃ is polar degraded with respect to W . We know
that the following two operations imply polar degradation:

• Stochastically degrading the channel.

• Replacing the channel with a BEC channel with the same Bhattacharyya
parameter.

Furthermore, note that the stochastic dominance of random variable χ̃ with
respect to χ implies W̃ is stochastically degraded with respect to W . (But the
reverse is not true.)

In the following, we propose different algorithms based on different methods
of polar degradation of the channel. The first algorithm is a naive algorithm,
called the mass transportation algorithm, based on the stochastic dominance of
the random variable χ̃. The second one which outperforms the first, is called
greedy mass merging algorithm. For both of the algorithms, the quantized
channel is stochastically degraded with respect to the original one.

5.2.1 Greedy Mass Transportation Algorithm

In the most general form of this algorithm, we basically look at the problem as
a mass transport problem. In fact, we have non-negative masses pi at locations
xi, i = 1, · · · ,m, x1 < · · · < xm. We then require to move the masses only to
the right, to concentrate them on k < m locations, and try to minimize

∑
i pidi

where di = xi+1 − xi is the amount ith mass has moved. Later, we will show
that this method is not optimal but useful in the theoretical analysis of the
algorithms that follow.

Note that Algorithm 1 is based on the stochastic dominance of random
variable χ̃ with respect to χ. Furthermore, in general, we can let di = f(xi+1)−
f(xi), for an arbitrary increasing function f .
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Procedure 1 Mass Transportation Algorithm

1: Start from the list (p1, x1), · · · , (pm, xm).
2: Repeat m− k times
3: Find j = argmin{pidi : i 7= m}
4: Add pj to pj+1 (i.e. move pj to xj+1)
5: Delete (pj , xj) from the list.

Figure 5.2: The left picture corresponds to how the the mass transportation
algorithm is done on the density given in Figure 5.1.

5.2.2 Mass Merging Algorithm

The second algorithm merges the masses. Two masses p1 and p2 at positions
x1 and x2 would be merged into one mass p1 + p2 at position x̄1 = p1

p1+p2
x1 +

p2

p1+p2
x2. This algorithm is based on the stochastic degradation of the channel,

but the random variable χ is not stochastically dominated by χ̃. The greedy
algorithm for the merging of the masses would be the following:

Procedure 2 Merging Masses Algorithm

1: Start from the list (p1, x1), · · · , (pm, xm).
2: Repeat m− k times
3: Find j = argmin{pi(f(x̄i)− f(xi))−pi+1(f(xi+1)− f(x̄i)) : i 7= m} x̄i =

pi

pi+pi+1
xi +

pi+1

pi+pi+1
xi+1

4: Replace the two masses (pj , xj) and (pj+1, xj+1) with a single mass (pj +
pj+1, x̄j).

Note that in practice, the function f can be any increasing concave function,
for example, the entropy function (i.e. f(x) = h2(

1−x
2 )) or the Bhattacharyya

functional (i.e. f(x) =
√
1− x2). In fact, as the algorithm is greedy and

suboptimal, it is in general difficult to investigate explicitly how changing the
function f will affect the total error of the algorithm in the end (i.e., how far
W̃ is from W ).
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Figure 5.3: The left picture corresponds to how the mass merging algorithm is
done on the density given in Figure 5.1.

5.2.3 Bounds on the Approximation Loss

In this section, we provide some bounds on the maximum approximation loss
we have in the algorithms. We define the “approximation loss” to be the
difference between the expectation of the function f under the true distribution
Pχ and the approximated distribution Pχ̃. Note that the kind of error that is
analyzed in this section is different from what was defined in Section 5.1. The
connection of the approximation loss with the quantization error will be made
clear in Theorem 5.1. For convenience, we will simply continue using the word
“error” instead of “approximation loss” from now on.

We first find an upper bound on the error made in Algorithms 1 and 2 and
then use it to provide bounds on the error made while performing operations
(2.13) and (2.14).

Lemma 5.1. The maximum error made by Algorithms 1 and 2 is upper bounded
by O( 1k ).

Proof. First, we derive an upper bound on the error of Algorithms 1 and 2
in each iteration, and therefore a bound on the error of the whole process.
Let us consider Algorithm 1. The problem can be reduced to the following
optimization problem:

e = max
pi,xi

min
i
(pidi) (5.5)

such that
∑

i

pi = 1,
∑

i

di ≤ 1, (5.6)

where di = f(xi+1)− f(xi), and f(12 )− f(0) = 1 is assumed w.l.o.g. We prove
the lemma by Cauchy-Schwarz inequality.

min
i

pidi =

(√
min
i

pidi

)2

=
(
min
i

√
pidi
)2

(5.7)
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Now by applying Cauchy-Schwarz we have

m∑

i=1

√
pidi ≤

(
m∑

i=1

pi

)1/2( m∑

i=1

di

)1/2

≤ 1 (5.8)

Since the sum of m terms
√
pidi is less than 1, the minimum of the terms will

certainly be less than 1
m . Therefore,

e =
(
min

√
pidi
)2

≤ 1

m2
. (5.9)

For Algorithm 2, achieving the same bound as Algorithm 1 is trivial. Denote
e(1) the error made in Algorithm 1 and e(2) the error made in Algorithm 2.
Then,

e(2)i = pi (f(x̄i)− f(xi))− pi+1 (f(xi+1)− f(x̄i)) (5.10)

≤ pi (f(x̄i)− f(xi)) (5.11)

≤ pi (f(xi+1)− f(xi)) = e(1)i . (5.12)

Consequently, the error generated by running the whole algorithm can be
upper bounded by

∑m
i=k+1

1
i2 which is O( 1k ).

What is stated in Lemma 5.1 is a loose upper bound on the error of Algo-
rithm 2. To achieve better bounds, we upper bound the error made in each
iteration of the Algorithm 2 as the following:

ei = pi (f(x̄i)− f(xi))− pi+1 (f(xi+1)− f(x̄i)) (5.13)

≤ pi
pi+1

pi + pi+1
∆xif

′(xi)− pi+1
pi

pi + pi+1
∆xif

′(xi+1) (5.14)

=
pipi+1

pi + pi+1
∆xi (f

′(xi)− f ′(xi+1)) (5.15)

≤ pi + pi+1

4
∆x2

i |f ′′(ci)|, (5.16)

where ∆xi = xi+1 − xi and (5.14) is due to concavity of function f . Further-
more, (5.16) is by the mean value theorem, where xi ≤ ci ≤ xi+1.

If |f ′′(x)| is bounded for x ∈ (0, 1), then we can prove that mini ei ∼ O( 1
m3 )

similarly to Lemma 5.1. Therefore the error of the whole algorithm would be
O( 1

k2 ). Unfortunately, this is not the case for either the entropy function or the
Bhattacharyya function. However, we can still achieve a better upper bound
for the error of Algorithm 2.

Lemma 5.2. The maximum error made by Algorithm 2 for the entropy func-
tion h(x) can be upper bounded by the order of O( log(k)k1.5 ).
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Proof. Let us first find an upper bound for the second derivative of the entropy
function. Suppose that h(x) = −x log(x) − (1 − x) log(1 − x). Then, for
0 ≤ x ≤ 1

2 , we have

|h′′(x)| = 1

x(1 − x) ln(2)
≤ 2

x ln(2)
. (5.17)

Using (5.17), we can further upper-bound the minimum error by

min
i

ei ≤ min
i
(pi + pi+1)∆x2

i
1

xi ln(4)
. (5.18)

Now suppose that we have l mass points with xi ≤ 1√
m

and m− l mass points

with xi ≥ 1√
m
. For the first l mass points, we use the upper bound obtained

for Algorithm 1. Hence, for 1 ≤ i ≤ l we have

min
i

ei ≤ min
i

pi∆h(xi) (5.19)

∼ O
(
log(m)

l2
√
m

)
, (5.20)

where (5.19) is due to (5.12) and (5.20) can be derived again by applying
Cauchy-Schwarz inequality. Note that this time

l∑

i=1

∆h(xi) ≤ h(
1√
m
) ∼ O

(
log(m)√

m

)
. (5.21)

For the m− l mass points we can write

min
i

ei ≤ min
i
(pi + pi+1)∆x2

i
1

xi ln(4)
(5.22)

≤ min
i
(pi + pi+1)∆x2

i

√
m

ln(4)
(5.23)

∼ O
( √

m

(m− l)3

)
, (5.24)

where (5.24) is due to Hölder’s inequality as follows:
Let qi = pi + pi+1. Therefore,

∑
i(pi + pi+1) ≤ 2 and

∑
i∆xi ≤ 1/2.

min
i

qi∆x2
i =

((
min
i

qi∆x2
i

)1/3)3

=
(
min
i

(
qi∆x2

i

)1/3)3
(5.25)

Now by applying Hölder’s inequality we have

∑

i

(
qi∆x2

i

)1/3 ≤
(
∑

i

qi

)1/3(∑

i

∆xi

)2/3

≤ 1 (5.26)
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Therefore,

min
i

ei ≤
√
m
(
min
i
(qi∆x2

i )
1/3
)3

∼ O
( √

m

(m− l)3

)
. (5.27)

Overall, the error made in the first step of the algorithm would be

min
i

ei ∼ min

{
O
(
log(m)

l2
√
m

)
,O
( √

m

(m− l)3

)}
(5.28)

∼ O
(
log(m)

m2.5

)
. (5.29)

Thus, the error generated by running the whole algorithm can be upper bounded

by
∑m

i=k+1
log(i)
i2.5 ∼ O

(
log(k)
k1.5

)
.

We can see that the error is improved by a factor of log k√
k

in comparison

with Algorithm 1.
Now we use the result of Lemma 5.1 to provide bounds on the total er-

ror made in estimating the mutual information of a channel after n levels of
operations (2.13) and (2.14).

Theorem 5.1. Assume W is a BMS channel and using Algorithm 1 or 2 we
quantize the channel W to a channel W̃ . Taking k = n2 is sufficient to give
an approximation error that decays to zero.

Proof. First notice that for any two BMS channels W and V , doing the polar-
ization operations (2.13) and (2.14), the following is true:

(I(W 0)− I(V 0)) + (I(W 1)− I(V 1)) = 2(I(W )− I(V )) (5.30)

Replacing V with W̃ in (5.30) and using the result of Lemma 5.1, we conclude
that after n levels of polarization the sum of the errors in approximating the
mutual information of the 2n channels is upper-bounded by O(n2

n

k ). In partic-
ular, taking k = n2, we can say that the “average” approximation error of the
2n channels at level n is upper-bounded by O( 1

n ). Therefore, at least a fraction
1− 1√

n
of the channels are distorted by at most 1√

n
i.e., except for a negligible

fraction of the channels, the error in approximating the mutual information
decays to zero.

As a result, since the overall complexity of the encoder construction is
O(k2N), this leads to “almost linear” algorithms for encoder construction with
arbitrary accuracy in identifying good channels.
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5.2.4 Exchange of Limits

In this section, we show that there are admissible schemes such that as k →∞,
the limit in (5.3) approaches I(W ) for any BMS channel W . We use the
definition stated in (5.2) for the admissibility of the quantization procedure.

Theorem 5.2. Given a BMS channel W and for large enough k, there exist
admissible quantization schemes Qk such that ρ(Qk,W ) is arbitrarily close to
I(W ).

Proof. Consider the following algorithm: The algorithm starts with a quantized
version of W and it does the normal channel splitting transformation followed
by quantization according to Algorithm 1 or 2, but once a sub-channel is suf-
ficiently good, in the sense that its Bhattacharyya parameter is less than an
appropriately chosen parameter δ, the algorithm replaces the sub-channel with
a binary erasure channel which is degraded (polar degradation) with respect
to it (as the operations (2.13) and (2.14) over an erasure channel also yield
an erasure channel, no further quantization is needed for the children of this
sub-channel).

Since the ratio of the total good indices of BEC(Z(P )) is 1 − Z(P ), then
the total error that we make by replacing P with BEC(Z(P )) is at most Z(P )
which in the above algorithm is less that the parameter δ.

Now according to Theorem 5.1, for a fixed level n if we make k large enough,
then the ratio of the quantized sub-channels, that their Bhattacharyya value is
less that δ, approaches its original value ( the one obtained with no quantiza-
tion). For these sub-channels as explained above the total error made with the
algorithm is δ. Now, from the polarization theorem and by sending δ to zero,
we deduce that as k →∞ the number of good indices approaches the capacity
of the original channel.

5.2.5 Simulation Results

In order to evaluate the performance of our quantization algorithms, similarly
to [25], we compare the performance of the degraded quantized channel with
the performance of an upgraded quantized channel. An algorithm similar to
Algorithm 2 for upgrading a channel is the following. Consider three neighbor-
ing masses in positions (xi−1, xi, xi+1) with probabilities (pi−1, pi, pi+1). Let
t = xi−xi−1

xi+1−xi−1
. Then, we split the middle mass at xi to the other two masses

such that the final probabilities will be (pi−1 + (1 − t)pi, pi+1 + tpi) at po-
sitions (xi−1, xi+1). The greedy channel upgrading procedure is described in
Algorithm 3.

The same upper bounds on the error of this algorithm can be provided
similarly to Section 5.2.3 with a little bit of modification.

In the simulations, we measure the maximum achievable rate while main-
taining the probability of error less than 10−3. This is accomplished by finding
the maximum possible number of channels with the smallest Bhattacharyya
parameters such that the sum of their Bhattacharyya parameters is upper
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Procedure 3 Splitting Masses Algorithm

1: Start from the list (p1, x1), · · · , (pm, xm).
2: Repeat m− k times
3: Find j = argmin{pi(f(xi)− tf(xi+1)− (1− t)f(xi−1)) : i 7= 1,m}
4: Add (1− t)pj to pj−1 and tpj to pj+1.
5: Delete (pj , xj) from the list.

bounded by 10−3. The initial channel is a binary symmetric channel with ca-
pacity 0.5. Using Algorithms 2 and 3 for degrading and upgrading the channels
with the Bhattacharyya function f(x) = 2

√
x(1 − x), we obtain the following

results:

k 2 4 8 16 32 64
degrade 0.2895 0.3667 0.3774 0.3795 0.3799 0.3800
upgrade 0.4590 0.3943 0.3836 0.3808 0.3802 0.3801

Table 5.1: Achievable rate with error probability at most 10−3 vs. maximum number
of output symbols k for block-length N = 215

We recall that the algorithm runs in complexity O(k2N). Table 5.1 shows
the achievable rates for Algorithms 2 and 3 when the block-length is fixed to
N = 215 and k changes in the range of 2 to 64.

It can be seen from Table 5.1 that the difference of achievable rates within
the upgraded and degraded version of the scheme is as small as 10−4 for k = 64.
We expect that for a fixed k, as the block-length increases the difference will
also increase (see Table 5.2).

n 5 8 11 14 17 20
degrade 0.1250 0.2109 0.2969 0.3620 0.4085 0.4403
upgrade 0.1250 0.2109 0.2974 0.3633 0.4102 0.4423

Table 5.2: Achievable rate with error probability at most 10−3 vs. block-length N = 2n

for k = 16

However, in our scheme this difference will remain small even as N grows
arbitrarily large, as predicted by Theorem 5.2. (see Table 5.3).

n 21 22 23 24 25
degrade 0.4484 0.4555 0.4616 0.4669 0.4715
upgrade 0.4504 0.4575 0.4636 0.4689 0.4735

Table 5.3: Achievable rate with error probability at most 10−3 vs. block-length N = 2n

for k = 16
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We see that the difference between the rate achievable in the degraded
channel and upgraded channel gets constant 2 × 10−3 even after 25 levels of
polarizations for k = 16.

5.3 Polar Codes with SC Decoding Are Not Universal

Consider two BMS channels P and Q. We are interested in finding the ratio
of the common good indices of the two channels. In other words, we are
interested in constructing a common polar code of rate R (of arbitrarily large
block length) that allows reliable transmission (with the SC decoder) over both
channels. Let us denote this ratio by CP, SC(P,Q). Trivially,

CP, SC(P,Q) ≤ min{I(P ), I(Q)}. (5.31)

We will see shortly that, properly applied, this simple fact can be used to give
tight bounds.

For the lower bound we claim that

CP, SC(P,Q) ≥ CP, SC(BEC(Z(P )),BEC(Z(Q)))

= 1−max{Z(P ), Z(Q)}. (5.32)

To see this claim, we proceed as follows. Consider a particular computation
tree of height n with observations at its leaf nodes from a BMS channel with
Battacharyya constant Z. What is the largest value that the Bhattacharyya
constant of the root node can take on? From the extremes of information com-
bining framework ([47, Chapter 4]) we can deduce that we get the largest value
if we take the BMS channel to be the BEC(Z). This is true, since at variable
nodes the Bhattacharyya constant acts multiplicatively for any channel, and
at check nodes the worst input distribution is known to be the one from the
family of BEC channels. Further, BEC densities stay preserved within the
computation graph.

The above considerations give rise to the following transmission scheme. We
signal on the channels W σ that are reliable for the BEC(max{Z(P ), Z(Q)}).
A fortiori these channels are also reliable for the actual input distribution. In
this way we can achieve a reliable transmission at rate 1−max{Z(P ), Z(Q)}.

Example 5.1 (BSC and BEC). Let us apply the above mentioned bounds to
CP, SC(P,Q), where P = BEC(0.5) and Q = BSC(0.11002). We have

I(P ) = I(Q) = 0.5,

Z(BEC(0.5)) = 0.5,

Z(BSC(0.11002)) = 2
√
0.1102(1− 0.11002) ≈ 0.6258.

The upper bound (5.31) and the lower bound (5.32) then translate to

CP, SC(P,Q)) ≤ min{0.5, 0.5} = 0.5,

CP, SC(P,Q)) ≥ 1−max{0.6258, 0.5} = 0.3742.

Note that the upper bound is trivial, but the lower bound is not.
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In some special cases the best achievable rate is easy to determine. This
happens in particular if the two channels are ordered by degradation.

Example 5.2 (BSC and BECOrdered by Degradation). Let P = BEC(0.22004)
and Q = BSC(0.11002). We have I(P ) = 0.770098 and I(Q) = 0.5. Fur-
ther, one can check that the BSC(0.11002) is degraded with respect to the
BEC(0.22004). This implies that any sub-channel of type σ which is good for
the BSC(0.11002), is also good for the BEC(0.22004). Hence,

CP,SC(BEC(0.22004),BSC(0.11002)) = I(Q) = 0.5.

More generally, if the channels W are such that there is a channel W ∈W
that is degraded with respect to every channel inW , then CP,SC(W) = C(W) =
I(W ). Moreover, the sub-channels σ that are good for W are good also for all
channels in W .

So far, we have looked at seemingly trivial upper and lower bounds on the
compound capacity of two channels. As we will see now, it is quite simple
to significantly tighten the result by considering individual branches of the
computation tree separately.

Theorem 5.3 (Bounds on Pairwise Compound Rate). Let P and Q be two
BMS channels. Then for any n ∈ N

CP, SC(P,Q) ≤ 1

2n

N∑

i=1

min{I(P (i)
N ), I(Q(i)

N )},

CP, SC(P,Q) ≥1− 1

2n

N∑

i=1

max{Z(P (i)
N ), Z(Q(i)

N )}.

Furthermore, the upper as well as the lower bounds converge to the compound
capacity as n tends to infinity and the bounds are monotone with respect to n.

Proof. Consider all N = 2n sub-channels. Note that there are 2n−1 such
channels that have b1 = 0 and 2n−1 such channels that have a b1 = 1. Recall
that b1 corresponds to the type of node at level n.

This level transforms the original channel P into P 0 and P 1, respectively.
Consider first the 2n−1 sub-channels that correspond to b1 = 1. Instead of
thinking of each tree as a tree of height n with observations from the channel
P , think of each of them as a tree of height n−1 rooted at P 1. By applying our
previous argument, we see that if we let n tend to infinity then the common
capacity for this half of channels is at most 0.5min{I(P 1), I(Q1)}. Clearly the
same argument can be made for the second half of channels. This improves the
trivial upper bound (5.31) to

CP, SC(P,Q) ≤0.5min{I(P 1), I(Q1)}+
0.5min{I(P 0), I(Q0)}.
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Clearly the same argument can be applied to trees of any height n. This ex-

plains the upper bound on the compound capacity of the formmin{I(P (i)
N ), I(Q(i)

N )}.
In the same way, we can apply this argument to the lower bound (5.32).
From the basic polarization phenomenon we know that for every δ > 0

there exists an n ∈ N so that

1

2n
|{i ∈ {1, · · · , N} : I(P (i)

N ) ∈ [δ, 1− δ]}| ≤ δ/4.

Equivalent statements hold for I(Q(i)
N ), Z(P (i)

N ), and Z(Q(i)
N ).

In words, except for at most a fraction δ, all channel pairs (P (i)
N , Q(i)

N ) have
“polarized.” For each polarized pair both the upper and the lower bound are
loose by at most δ. Therefore, the gap between the upper and lower bound is
at most (1− δ)2δ + δ.

To see that the bounds are monotone, consider a particular index i and
denote the binary expansion of i − 1 by the sequence σ of length n. Then we
have

min{I(P σ), I(Qσ)}

= min{1
2
(I(P σ0) + I(P σ1)),

1

2
(I(Qσ0) + I(Qσ1))}

≥ 1

2
min{I(P σ0), I(Qσ0)}+ 1

2
min{I(P σ1), I(Qσ1)}.

A similar argument applies to the lower bound.

Remark: In general there is no finite n such that either the upper or the
lower bound agree exactly with the compound capacity. On the positive side,
the lower bounds are constructive and give an actual strategy to construct
polar codes of this rate.

Example 5.3 (Compound Rate of BSC(δ) and BEC(ε)). Let us compute up-
per and lower bounds on CP, SC(BSC(0.11002),BEC(0.5)). Note that both the
BSC(0.11002) as well as the BEC(0.5) have capacity one-half. Applying the
bounds of Theorem 5.3 we get

n 0 1 2 5 10 15 20
upper bound 0.500 0.482 0.482 0.481 0.481 0.481 0.481
lower bound 0.374 0.407 0.427 0.456 0.471 0.477 0.479

These results suggest that the numerical value ofCP, SC(BSC(0.11002),BEC(0.5))
is close to 0.481.

5.4 Bounds on Compound Rate of BMS Channels

5.4.1 Trivial Bounds

In the previous example, we considered the compound capacity of two BMS
channels. How does the result change if we consider a whole family of BMS
channels; e.g., what is CP, SC({BMS(I = 0.5)})?
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We currently do not know of a procedure (even numerical) to compute this
rate. But it is easy to give some upper and lower bounds.

In particular we have

CP, SC({BMS(I = 0.5)}) ≤ C(BSC(0.11002),BEC(0.5))

≤ 0.4817,

CP, SC({BMS(I = 0.5)}) ≥ 1− Z(BSC(I = 0.5)) ≈ 0.374. (5.33)

The upper bound is trivial. The compound rate of a whole class cannot be
larger than the compound rate of two of its members. For the lower bound,
note that from Theorem 5.3 we know that the achievable rate is at least as
large as 1−max{Z}, where the maximum is over all channels in the class. As
the BSC has the largest Bhattacharyya parameter of all channels in the class
of channels with a fixed capacity, the result follows.

5.4.2 A Better Universal Lower Bound

The universal lower bound expressed in (5.33) is rather weak. Let us therefore
show how to strengthen it.

Let W denote a class of BMS channels. From Theorem 5.3 we know that in
order to evaluate the lower bound we have to optimize the terms Z(P σ) over
the class W .

To be specific, let W be BMS(I), i.e., the space of BMS channels that have
capacity I. Expressed in an alternative way, this is the space of distributions
that have entropy equal to 1− I.

The above optimization is in general a difficult problem. The first difficulty
is that the space {BMS(I)} is infinite dimensional. Hence, in order to use
numerical procedures, we have to approximate this space by a finite dimensional
space. Fortunately, as the space is compact, this task can be accomplished.
For example, look at the densities corresponding to the class {BMS(I)} in
the |D|-domain ([47, Chapter 4]). In this domain, each BMS channel W is
represented by the density corresponding to the probability distribution of
|W (Y | 0) −W (Y | 1)|, where Y ∼ W (y | 0). For example, the |D|-density
corresponding to BSC(ε) is ∆1−2ε.

We quantize the interval [0, 1] using real values 0 = p1 < p2 < · · · < pm = 1,
m ∈ N. The m-dimensional polytope approximation of {BMS(I)}, denoted by
Wm, is the space of all the densities which are of the form

∑m
i=1 αi∆pi . Let

α = [α1, · · · ,αm],. Then α must satisfy the following linear constraints:

α,1m×1 = 1, α,Hm×1 = 1− I, αi ≥ 0, (5.34)

where Hm×1 = [h2(
1−pi

2 )]m×1 and 1m×1 is the all-one vector.
Due to quantization, there is in general an approximation error.

Lemma 5.3 (m versus δ). Let a ∈ BMS(I). Assume a uniform quantization
of the interval [0, 1] with m points 0 = p1 < p2 < · · · < pm = 1. If m ≥ 1 +

1
1− 4√1−δ2 , then there exists a density b ∈Wm such that |Z(a!a)−Z(b!b)|≤ δ.
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Proof. For a given density a, let Qu(a)(Qd(a)) denote the quantized density
obtained by mapping the mass in the interval (pi, pi+1]([pi, pi+1)) to pi+1 (pi).
Note that Qu(a) (Qd(a)) is upgraded (degraded) with respect to a. Thus,
H(Qu(a)) ≤ H(a) ≤ H(Qd(a)). The Bhattacharyya parameter Z(a ! a)is
given by

Z(a ! a) =

∫ 1

0

∫ 1

0

√
1− x2

1x
2
2a(x1)dx1a(x2)dx2.

Since
√
1− x2 is decreasing on [0, 1], we have

Z(Qd(a) ! Qd(a))− Z(a ! a)

≤
m−1∑

i,j=1

∫ pi+1

pi

∫ pj+1

pj

(√
1− p2i p

2
j −
√
1− x2y2

)

a(x)dxa(y)dy,

Z(a ! a)− Z(Qu(a) ! Qu(a))

≤
m−1∑

i,j=1

∫ pi+1

pi

∫ pj+1

pj

(√
1− x2y2 −

√
1− p2i+1p

2
j+1

)

a(x)dxa(y)dy.

Now note that the maximum approximation error, call it δ, happens when xy
is close to 1. This maximum error is equal to

√
1−
(
1−
( 1

m− 1

))4
−
√
1− 14.

Solving for m, we see that the quantization error can be made smaller than δ
by choosing m such that

m ≥ 1 +
1

1− 4
√
1− δ2

. (5.35)

Note that if a ∈W then in general neither Qd(a) norQd(a) are elements ofWm,
since their entropies do not match. In fact, as discussed above, the entropy
of Qd(a) is too high, and the entropy of Qu(a) is too low. But by taking a
suitable convex combination we can find an element b ∈Wm for which Z(b!2)
differs from Z(a!2) by at most δ.

In more detail, consider the function f(t) = H(tQu(a) + (1 − t)Qd(a)),
0 ≤ t ≤ 1. Clearly, f is a continuous function on its domain. Since every
density of the form of tQu(a)+ (1− t)Qd(a) is upgraded with respect to Qd(a)
and degraded with respect to Qu(a), we have Z((Qu(a))!2) ≤ Z((tQu(a)+(1−
t)Qd(a))!2) ≤ Z((Qd(a))!2). As a result: |Z((tQu(a) + (1 − t)Qd(a))!2) −
Z(a!2)| ≤ δ. We further have f(0) = H(Qu(a)) ≤ H(a) ≤ H(Qd(a)) =
f(1). Thus there exists a 0 ≤ t0 ≤ 1 such that f(t0) = H(a) = I. Hence,
t0Qu(a)+(1−t0)Qd(a) ∈ BMS(I) and t0Qu(a)+(1−t0)Qd(a) ∈Wm. Therefore
t0Qu(a) + (1 − t0)Qd(a) is the desired density.
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Example 5.4 (Improved Bound for BMS(I = 1
2 )). Let us derive an improved

bound for the class W = BMS(I = 1
2 ). We choose n = 1, i.e., we consider

channels at level 1 in Theorem 5.3.
For σ = 0 the implied operation is ". It is well known that in this case the

maximum of Z(a" a) over all a ∈ W is achieved for a = BSC(0.11002). The
corresponding maximum Z value is 0.3916.

Next consider σ = 1. This corresponds to the convolution !. Based on
Lemma 5.3 consider at first the maximization of Z within the class Wm:

maximize :
∑

i,j

αiαjZ(∆pi ! ∆pj ) =
∑

i,j

αiαj

√
1− (pipj)2

subject to : α,1m×1 = 1, α,Hm×1 =
1

2
, αi ≥ 0.

(5.36)

In the above, since the pis are fixed, the terms
√
1− (pipj)2 are also fixed. The

task is to optimize the quadratic form α,Pα over the corresponding α polytope,
where the m×m matrix P is defined as Pij =

√
1− (pipj)2. We find that this

is a convex optimization problem.
To see this, expand

√
1− x2 as a Taylor series in the form

√
1− x2 = 1−

∑

l≥0

tlx
2l, (5.37)

where the tl ≥ 0. We further have

α,Pα =
∑

i,j

αiαj

√
1− (pipj)2 = 1−

∑

l≥0

tl
(∑

i

αipi
2l
)2

. (5.38)

Thus, since tl ≥ 0 and the pis are fixed, each of the terms −tl(
∑

i αipi2l)2 in
the above sum represents a concave function. As a result the whole function is
concave.

To find a bound, let us relax the condition 0 ≤ αi ≤ 1 and admit α ∈ R.
We are thus faced with solving the convex optimization problem

maximize : α,Pα

subject to : α,1m×1 = 1, α,Hm×1 =
1

2
.

The Kuhn-Tucker conditions for this problem yield




2P 1 H
1, 0 0
H, 0 0









α1

α2
...
αn

λ1
λ2





=





0
0
...
0
1
1
2





. (5.39)
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As P is non-singular, the answer to the above set of linear equations is unique.

We can now numerically compute this upper bound and from Lemma 5.3
we have an upper bound on the estimation error due to quantization. We get
an approximate value of 0.799. We conclude that

CP, SC({BMS(I = 0.5)}) ≥ 1− 1

2
(0.392 + 0.799)

= 0.404.

This slightly improves on the value 0.374 in (5.33). In principle even better
bounds can be derived by considering values of n beyond 1. But the implied
optimization problems that need to be solved are non-trivial.

5.5 Extensions and Improvements

Given the fact that polar codes with successive decoding are not universal, one
might wonder if this lack of universality is due to the code structure or due to
the (suboptimal) successive decoding procedure. To answer this question, let
us consider polar codes under MAP decoding. Let I ∈ [0, 1] and consider the
polar code (with the standard kernel G2) designed for the BSC with capacity
I. It is shown in [14] that under MAP decoding such a code achieves the ca-
pacity of any BMS channel of capacity I. Consequently, polar codes, decoded
with the optimal MAP decoder, are universal. Hence, it is the suboptimal
decoder that is to fault for the lack of universality. It is therefore interest-
ing to ask (i) whether there exist universal polar codes with low-complexity
decoders? and (ii) whether some suitable modification of the standard polar
coding scheme allows us to construct “polar-like” codes which are universal
under low-complexity decoding?

One can also consider polar codes with !× ! kernels and ask whether these
codes are universal under SC decoding or other decoding algorithms. Intu-
itively, for exactly the same reason as for the case ! = 2, we expect that a
polar code with a !× ! kernel G and SC decoder is not universal. That is, for a
collection of BMS channel with the same capacity I, there is still a gap between
the value I and the best rate that a polar code with kernel G can achieve. In
the rest of this section, we show that as ! grows large, with high probability
(w.h.p) any matrix G ∈ G# has a good compound rate. In this regard, the
complexity of a polar code with an !× ! kernel grows in general exponentially
with !. Therefore, finding polar codes with !× ! kernels that have a reasonable
complexity and a good compound rate is also an interesting open question.

Let BMS(I) be the set of all BMS channels that have capacity I. Let R < I
be the desired rate. We recall from Section 2.4 that Given a BMS channel Q
and a polar code based on a matrix G ∈ G#, the capacity of the channel that
the i-th bit sees is 1−H(Ui|Y n

Q , U1, · · · , Ui−1).
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Lemma 5.4. For G ∈ G# we have w.h.p

sup
Q∈BMS(I)

#∑

i=.#(1−R)/

H(Ui|Y n
Q , U1, · · · , Ui−1)

#→∞→ 0. (5.40)

In a nutshell, the above lemma states that as !→∞, for any Q ∈ BMS(I)
the last !I channels, namely {Q#(1−I), · · · , Q#} turn out to be nearly noiseless
channels (i.e., their capacity is tending to 1) and therefore the remaining !(1−I)
channels are almost completely noisy (i.e., their capacity is tending to 0).

From Lemma 5.4 it is easy to see that for δ > 0, there exists a L ∈ N such
that for ! ≥ L we have the following property: if we choose G ∈ G# uniformly
at random, then with probability at least 1− δ, uniformly for any Q ∈ BMS(I)
we have h(Qi) ≤ δ for all i ∈ {1!(1 − R)2, · · · , !}, where h(Qi) denotes the
entropy functional of the channel Qi [47]. Further we have,

Lemma 5.5. Let P be a BMS channel with h(P ) ≤ δ, then P is upgraded with
respect to the BMS channel Vδ whose density in the |D| domain ([47, Chapter
4]) is given by

√
δ∆0 + (1−

√
δ)∆1−

√
δ.

In other words, by the above lemma there exist a channel Vδ that is degraded
with respect to all the BMS channels with entropy less than δ. Now, recall that
for ! ≥ L with probability at least 1−δ, uniformly for any Q ∈ BMS(I) we have
h(Qi) ≤ δ for all i ∈ {1!(1 − R)2, · · · , !} and since degradation is preserved
through the channel splitting procedure, we can say the intersection of the set
of good indices of all these channels contains the set of good indices of the
channel Vδ. The proof now follows from the fact that I(Vδ) = 1 −O(

√
δ) and

by tending δ to 0 we get the result.



Robustness of the Successive
Cancellation Decoder 6
6.1 Problem Formulation

In this chapter1, we address one further aspect of polar codes using successive
decoding. We ask whether such a coding scheme is robust. The standard
analysis of polar codes under successive decoding assumes infinite precision
arithmetic. In practice, we are not able to provide decoders that perform
computations with infinite precision. Nonetheless, decoders that have a smaller
number of bits in precision might be preferable due to their efficiency in memory
and power consumption. Given the successive nature of the decoder, one might
worry how well such polar coding schemes perform under a finite precision
decoder.

Question 11. Consider polar codes with a SC decoders in which computation
is performed with a few bits of precision. We ask whether such coding schemes
still show any threshold behavior and, if they do, how do their thresholds scale
in the number of bits of the decoder?

In this chapter, we show that polar coding is in fact extremely robust with
respect to such kinds of quantization of the SC decoder. In Figure 6.1, we
plot the maximum achievable rate by using a simple successive decoder with
only three messages, called the decoder with erasures, when transmission takes
place over several important channel families. As it is apparent from the figure,
in particular for channels with high capacity, the fraction of the capacity that
is achieved by this simple decoder is close to 1, i.e., even this extremely simple
decoder almost achieves capacity. We further show that, more generally, if we
want to achieve a rate which is below capacity by δ > 0, then we need at most
O(log(1/δ)) bits of precision (all the logarithms in this chapter are in base 2).

1The material of this chapter is based on [28].
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I

C(W,Q)

1

1

0

Figure 6.1: The maximum achievable rate, call it C(W,Q), of a simple three message
decoder, called the decoder with erasures, as a function of the capacity of the channel for
different channel families. From top to bottom: the first curve corresponds to the family
of binary erasure channels (BEC) where the decoder with erasures is equivalent to the
original SC decoder and, hence, the maximum achievable rate is the capacity itself. The
second curve corresponds to the family of binary symmetric channels (BSC). The third
curve corresponds to the family of binary additive white Gaussian channels (BAWGN).
The curve at the bottom corresponds to a universal lower bound on the achievable rate
by the decoder with erasures.

The significance of our observations goes beyond the pure computational
complexity required. Typically, the main bottleneck in the implementation
of large high-speed coding systems is the memory. Therefore, if we can find
decoders that work with only a few bits per message, then this can make the
difference whether a coding scheme is implementable or not.

6.1.1 Quantized SC Decoder

Let R∗ = R ∪ {±∞} and consider a function Q(x) : R∗ → R∗ that is anti-
symmetric (i.e., Q(x) = −Q(−x)). We define the Q-quantized SC decoder as
a version of the SC decoder in which the function Q is applied to the output
of any computation that the SC decoder does. We denote such a decoder by
SCDQ.

Typically, the purpose of the function Q is to model the case where we
only have finite precision in our computations perhaps due to limited available
memory or due to other hardware limitations. Hence, the computations are
correct within a certain level of accuracy that the function Q models. Thus,
let us assume that the range of Q is a finite set Q with cardinality | Q |. As
a result, all the messages passed through the decoder SCDQ belong to the set
Q.

Here, we consider a simple choice for the function Q that is specified by
two parameters: The distance between levels ∆, and truncation threshold M .
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Given a specific choice of M and ∆, we define Q as follows:

Q(x) =






⌊
x
∆ + 1

20∆, x ∈ [−M,M ],

sign(x)M, otherwise.
(6.1)

Note here that | Q |= 1+ 2M
∆ .

−4∆

4∆

−∆
2

∆
2− 7∆

2
7∆
2

x

Q(x)

Figure 6.2: A schematic representation of the function Q(x).

6.2 General Framework for the Analysis

6.2.1 Equivalent Tree Channel Model and Analysis of the
Probability of Error for the Original SC Decoder

As we are dealing with a linear code, a symmetric channel and symmetric
decoders throughout this chapter, without loss of generality we confine our-
selves to the all-zero codeword (i.e., we assume that all the ui’s are equal to
0). In order to better visualize the decoding process, the following definition is
helpful.

Definition 6.1 (Tree Channels of Height n). For each i ∈ {0, 1, · · · , N − 1},
we introduce the notion of the i-th tree channel of height n, which is denoted
by T (i). Let b1 . . . bn be the n-bit binary expansion of i. E.g., we have for
n = 3, 0 = 000, 1 = 001, . . . , 7 = 111. With a slight abuse of notation
we use i and b1 · · · bn interchangeably. Note that for our purpose it is slightly
more convenient to denote the least (most) significant bit as bn (b1). Each tree
channel consists of n+ 1 levels, namely 0, . . . , n. It is a complete binary tree.
The root is at level n. At level j we have 2n−j nodes. For 1 ≤ j ≤ n, if bj = 0
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then all nodes on level j are check nodes; if bj = 1 then all nodes on level j are
variable nodes. Finally, we give a label for each node in the tree T (i): For each
level j, we label the 2n−j nodes at this level, respectively, from left to right by
(j, 0), (j, 1), · · · , (j, 2n−j − 1).

All nodes at level 0 correspond to independent observations of the output of
the channel W , assuming that the input is 0.

An example for T (3) (that is n = 3, b = 011 and i = 3) is shown in Fig. 6.3.

T (3)

W W W W W W W W
(0, 0)(0, 1) (0, 2)(0, 3) (0, 4)(0, 5) (0, 6)(0, 7)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 1)

Figure 6.3: Tree representation of the tree-channel T (3). The 3-bit binary ex-
pansion of 3 is b1b2b3 = 011 (note that b1 is the most significant bit). The pair
beside each node is the label assigned to it.

Given the channel output vector yN−1
0 and assuming that the values of the

bits prior to ui are given, i.e., u0 = 0, · · · , ui−1 = 0, we now compute the
probabilities p(yN−1

0 , ui−1
0 | ui = 0) and p(yN−1

0 , ui−1
0 | ui = 1) via a simple

message passing procedure on the equivalent tree channel T (i). We attach to
each node in T (i) with label (j, k) a message2 mj,k and we update the messages
as we go up towards the root node. We start with initializing the messages
at the leaf nodes of T (i). For this purpose, it is convenient to represent the
channel in the log-likelihood domain; i.e., for the node with label (0, k) at the
bottom of the tree that corresponds to an independent realization of W , we
plug in the log-likelihood ratio (llr) log(W (yk|0)

W (yk|1) ) as the initial message m0,k.
That is,

m0,k = log(
W (yk | 0)
W (yk | 1)). (6.2)

Next, the SC decoder recursively computes the messages (llr’s) at each
level via the following operations: If the nodes at level j are variable nodes
(i.e., bj = 1), we have

mj,k = mj−1,2k +mj−1,2k+1, (6.3)

2To simplify notation, we drop the dependency of the messages mj,k to the position i
whenever it is clear from the context.
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and if the nodes at level j are check nodes (i.e., bj = 0), the message that is
passed up is

mj,k = 2 tanh−1(tanh(
mj−1,2k

2
) tanh(

mj−1,2k+1

2
)). (6.4)

In this way, it can be shown that ([1]) the message that we obtain at the root
node is precisely the value

mn,0 = log(
p(yN−1

0 , ui−1
0 | ui = 0)

p(yN−1
0 , ui−1

0 | ui = 1)
). (6.5)

Now, given (yN−1
0 , ui−1

0 ), the value of ui is estimated as follows. If mn,0 > 0
we let ui = 0. If mn,0 < 0 we let ui = 1. Finally, if mn,0 = 0 we choose the
value of ui to be either 0 or 1 with probability 1

2 . Thus, denoting Ei as the
event that we make an error on the i-th bit within the above setting, we obtain

Pr(Ei) = Pr(mn,0 < 0) +
1

2
Pr(mn,0 = 0). (6.6)

Given the description of mn,0 in terms of a tree channel, it is now clear that
we can use density evolution [27] to compute the probability density function
of mn,0. In this regard, at each level j, the random variables mj,k are i.i.d.
for k ∈ {0, 1, · · · , 2n−j − 1}. The distribution of the leaf messages m0,k is

the distribution of the variable log(W (Y |0)
W (Y |1) ), where Y ∼ W (y | 0). We can

recursively compute the distribution of mj,k in terms of the distribution of
mj−1,2k,mj−1,2k+1 and the type of the nodes at level j (variable or check) by
using the relations (6.3), (6.4) with the fact that the random variables mj−1,2k

and mj−1,2k+1 are i.i.d.

6.2.2 Quantized Density Evolution

Let us now analyze the density evolution procedure for the quantized decoder.
For each label (j, k) in T (i), let m̂j,k represent the messages at this label. The
messages m̂j,k take their values in the discrete set Q (range of the function
Q). It is now easy to see that for the decoder SCDQ the messages evolve via
the following relations. At the leaf nodes of the tree we plug in the message
m̂0,k = Q(log(W (yk|0)

W (yk|1) )), and the update equation for m̂(j,k) is

m̂j,k = Q(m̂j−1,2k + m̂j−1,2k+1), (6.7)

if the node (j, k) is a variable node and

m̂j,k = Q(2 tanh−1(tanh(
m̂j−1,2k

2
) tanh(

m̂j−1,2k+1

2
))), (6.8)

if the node (j, k) is a check node. We can use the density evolution procedure
to recursively obtain the densities of the messages m̂j,k.
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Finally, let Êi denote the event that we make an error in decoding the i-th
bit, with a further assumption that we have correctly decoded the previous bits
u0, · · · , ui−1. In a similar way as in the analysis of the original SC decoder, we
get

Pr(Êi) = Pr(m̂n,0 < 0) +
1

2
Pr(m̂n,0 = 0). (6.9)

Hence, one way to choose the information bits for the algorithm SCDQ is to

choose the bits ui according to the least values of Pr(Êi).
We remark here that with the decoder SCDQ, the distribution of the mes-

sages in the trees T (i) is different than the corresponding ones that result from
the original SC decoder. Hence, the choice of the information indices is also
specified by the choice of the function Q, as well as the channel W .

Note here that, since all of the densities takes their value in the finite
alphabet Q, the construction of such polar codes can be efficiently done in
time O(| Q |2 N logN). We refer the reader to [1] for more details.

6.3 Quantized SC Decoders with Different Precisions

6.3.1 1 Bit decoder: The Gallager Algorithm

As our aim is to show that polar codes under successive decoding are robust
against quantization, let us investigate an extreme case. Perhaps the simplest
message-passing type decoder that one can envision is the Gallager algorithm.
It works with single-bit messages. Does this simple decoder have a non-zero
threshold? Unfortunately it does not, and this is easy to see.

We begin with the equivalent tree-channel model. For each channel i of the
polar code we have such a tree of height n, and on each layer nodes are either
all check nodes or all variable nodes.

Since messages are only a single bit, the “state” of the decoder at level j
can be described by a single non-negative number xj that is specifically the
probability that the message at level j is incorrect. Assume that we transmit
over a BSC(p). Let x0 = p ∈ (0, 1

2 ). We are interested in the evolution of xj .
This evolution depends of course on the sequence of levels, i.e., it depends on
which tree channel we consider.

Assume that xj is given and that the next level consists of check nodes.
In this case, the error probability increases. More precisely, xj+1 = 2xj(1 −
xj) > xj when xj ∈ (0, 1

2 ). In other words, the state deteriorates. What
happens if the next level consists of variable nodes instead? A little thought
shows that in this case xj+1 = xj , i.e., there is no change at all. This is true
because if both incoming messages agree then we can make a decision on the
outgoing message; but if they differ then we can only guess. This gives us
xj+1 = x2

j + xj(1− xj) = xj .
As in either case, the state either becomes worse or stays unchanged, no

progress in the decoding is achieved, irrespective of the given tree. In other
words, this decoder has a threshold of zero. As we have seen, the problem is the
processing at the variable nodes since no progress is achieved there. But since



6.3. Quantized SC Decoders with Different Precisions 113

we only have two incoming messages there are not many degrees of freedom
in the processing rules. It is doubtful that any message-passing decoder with
only a single-bit message can do better.

6.3.2 1-Bit Decoder with Erasures

Further to the previous example, let us now add one message to the alphabet
of the Gallager decoder, i.e., we also add the possibility of having erasures. In
this case Q(x) becomes the sign function3, i.e.,

Q(x) =






∞, x > 0,
0, x = 0,

−∞, x < 0.
(6.10)

As a result, all messages passed by the algorithm SCDQ take on only three
possible values: {−∞, 0,∞}. In this regard, the decoding procedure takes a
very simple form. The algorithm starts by quantizing the channel output to one
of the three values in the set Q = {−∞, 0,∞}. At a check node, we take the
product of the signs of the incoming messages and, at a variable node, we have
the natural addition rule (0←∞+−∞, 0← 0+0 and∞←∞+∞,∞←∞+0
and −∞ ← −∞ + −∞,−∞ ← −∞ + 0 ). Note that on the binary erasure
channel, this algorithm is equivalent to the original SC decoder.

Our objective is now to compute the maximum reliable rate that the decoder
SCDQ can achieve for a BMS channel W . We denote this quantity by C(W,Q).

Theorem 6.1. Consider transmission over a BMS channel W of capacity
I(W ) using polar codes and a SCDQ with message alphabet Q. Let C(W,Q) de-
note the maximum rate at which reliable transmission is possible for this setup.
Let |Q| = 3. Then there exists a computable decreasing sequence {Un}n∈N (see
(6.22)) and a computable increasing sequence {Ln}n∈N (see (6.23)), so that
Ln ≤ C(W,Q) ≤ Un and

lim
n→∞

Ln = lim
n→∞

Un.

In other words, Un is an upper bound and Ln is a lower bound on the maximum
achievable rate C(W,Q) and for increasing n these two bounds converge to
C(W,Q).

Discussion: In Figure 6.1 the value of C(W,Q), |Q| = 3, is plotted as
a function of I(W ) for different channel families (for more details see Sec-
tion 6.3.2). A universal lower bound for the maximum achievable rate is also
given in Figure 6.1.

The rest of this section is devoted to providing the machinery and intu-
itions to prove Theorem 6.1. The methods used here are extendable to other
quantized decoders. The analysis is done in three steps as we will see in the
following.

3Note here that we have further assumed that M = ∆ and ∆ → 0.
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The Density Evolution Procedure

To analyze the performance of this algorithm, first note that as all our messages
take their values in the set Q, then all the random variables that we consider
have the following form

D =






∞, w.p. p,
0, w.p. e,

−∞, w.p. m.
(6.11)

Here, the numbers p, e,m are probability values and p+ e+m = 1. Let us now
see how the density evolves through the tree-channels. For this purpose, we
should trace the output distribution of (6.7) and (6.8) when the input messages
are two i.i.d. copies of a r.v. D with pdf as in (6.11).

Lemma 6.1. Given two i.i.d. versions of a r.v. D with distribution as in
(6.11), the output of a variable node operation (6.7), denoted by D+, has the
following form

D+ =






∞, w.p. p2 + 2pe,
0, w.p. e2 + 2pm,
−∞, w.p. m2 + 2em.

(6.12)

Also, the check node operation (6.8), yields D− as

D− =






∞, w.p. p2 +m2,
0, w.p. 1− (1 − e)2,

−∞, w.p. 2pm.
(6.13)

In order to compute the distribution of the messages m̂n,0 at a given level
n, we use the method of [1] and define the polarization process Dn as follows.

Consider the random variable L(Y ) = log(W (Y |0)
W (Y |1) ), where Y ∼ W (y | 0). The

stochastic process Dn starts from the r.v. D0 = Q(L(Y )) defined as

D0 =






∞, w.p. p = Pr(L(Y ) > 0),
0, w.p. e = Pr(L(Y ) = 0),
−∞, w.p. m = Pr(L(Y ) < 0),

(6.14)

and for n ≥ 0

Dn+1 =

{
D+

n , w.p. 1
2 ,

D−
n , w.p. 1

2 ,
(6.15)

where the plus and minus operations are given in (6.12), (6.13).

Analysis of the Process Dn

Note that the output of process Dn is itself a random variable of the form given
in (6.11). Hence, we can equivalently represent the process Dn with a triple
(mn, en, pn), where the coupled processes mn, en and pn are evolved using the
relations (6.12) and (6.13) and we always have mn + en + pn = 1. Following
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along the same lines as the analysis of the original SC decoder in [1], we first
claim that as n grows large, the process Dn will become polarized, i.e., the
output of the process Dn will almost surely be a completely noiseless or a
completely erasure channel.

Lemma 6.2. The random sequence {Dn = (pn, en,mn), n ≥ 0} converges
almost surely to a random variable D∞ such that D∞ takes its value in the set
{(1, 0, 0), (0, 1, 0)}.

Our objective is now to compute the value of C(W,Q) = Pr(D∞ = (1, 0, 0)),
i.e., the highest rate that we can achieve with the 1-Bit Decoder with Erasures.
In this regard, a convenient approach is to find a function f : D → R such that
f((0, 1, 0)) = 0 and f(1, 0, 0) = 1 and for any D ∈ D

1

2
(f(D+) + f(D−)) = f(D).

With such a function f , the process {f(Dn)}n≥0 is a martingale and conse-
quently we have Pr(D∞ = (1, 0, 0)) = f(D0). Therefore, by computing the
deterministic quantity f(D0) we obtain the value of C(W,Q). However, find-
ing a closed form for such a function seems to be a difficult task4. Instead,
the idea is to look for alternative functions, denoted by g : D → R, such that
the process g(Dn) is a super-martingale (sub-martingale) and hence we can
get a sequence of upper (lower) bounds on the value of Pr(D∞ = (1, 0, 0)) as
follows. Assume we have a function g : D → R such that g((0, 1, 0)) = 0 and
g(1, 0, 0) = 1 and for any D ∈ D,

1

2
(g(D+) + g(D−)) ≤ g(D). (6.16)

Then, the process {g(Dn)}n≥0 is a super-martingale and for n ≥ 0 we have

Pr(D∞ = (1, 0, 0)) ≤ E[g(Dn)]. (6.17)

The quantity E[g(Dn)] decreases by n and by using Lemma 6.2 we have

Pr(D∞ = (1, 0, 0)) = lim
n→∞

E[g(Dn)]. (6.18)

In a similar way, we can search for a function h : D → R such that for h with
the same properties as g except that the inequality (6.16) holds in opposite
direction, i.e.,

1

2
(h(D+) + h(D−)) ≥ h(D). (6.19)

In a similar way this leads us to computable lower bounds on C(W,Q). In
other words, the process {h(Dn)}n≥0 is a sub-martingale and for n ≥ 0 we
have

Pr(D∞ = (1, 0, 0)) ≥ E[h(Dn)]. (6.20)

4The function f clearly exists as one trivial candidate for it is f(D) = Pr(D∞ = (1, 0, 0)),
where D∞ is the limiting r.v. that the process {Dn}n≥0 with starting value D0 = D
converges to.
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We also obtain from Lemma 6.2 that

Pr(D∞ = (1, 0, 0)) = lim
n→∞

E[h(Dn)]. (6.21)

It remains to find some suitable candidates for g and h. Let us first note
that a density D as in (6.11) can be equivalently represented as a simple BMS
channel given in Fig. 6.4. This equivalence stems from the fact that for such

−1

+1

−1

+1

?

p

e

m

p

e

m

Figure 6.4: The equivalent channel for the density D given in (6.11).

a channel, conditioned on the event that the symbol +1 has been sent, the
distribution of the output is precisely D. With a slight abuse of notation,
we also denote the corresponding BMS channel by D. In particular, it is an
easy exercise to show that the capacity (I(D)), the Bhattacharyya parameter
(Z(D)) and the error probability (E(D)) of the density D are given as

I(D) = (m+ p)(1− h2(
p

p+m
)),

Z(D) = 2
√
mp+ e, E(D) = 1− p− e

2
,

where h2(·) denotes the binary entropy function. Since the function Q is not

an injective function, we have I(D+)+I(D−)
2 ≤ I(D). This implies that the

process In = I(Dn) is a bounded supermartingale. Furthermore, since I(D =
(1, 0, 0)) = 1 and I(D = (0, 1, 0)) = 0, we deduce from Lemma 6.2 that In
converges a.s. to a 0− 1 valued r.v. I∞, hence

C(W,Q) = Pr(D∞ = (1, 0, 0)) = Pr(I∞ = 1) = E(I∞).

Now, from the fact that In is a supermartingale, we obtain

C(W,Q) ≤ E[In] ! Un, (6.22)

for n ∈ N. In a similar way, we obtain a sequence of lower bounds for C(W,Q).

Lemma 6.3. Define the function F (D) as F (D) = p− 4
√
pm for D ∈ D. We

have F (D = (1, 0, 0)) = 1, F (D = (0, 1, 0)) = 0 and F (D+)+F (D−)
2 ≥ F (D).

Hence, the process Fn = F (Dn) is a submartingale and for n ∈ N we have

C(W,Q) ≥ E[Fn] ! Ln. (6.23)
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Given a BMS channel W , one can numerically compute C(W,Q) with arbitrary
accuracy using the sequences Ln and Un (see Figure 6.1). Also, for a channel
W with capacity I(W ) and error probability E(W ), we have

E(W ) ≤ 1− I(W )

2
. (6.24)

Therefore, inf
{D:E(D)= 1−I(W )

2 }
C(D,Q) ≤ C(W,Q), which leads to the universal

lower bound obtained in Figure 6.1.

Example 6.1. Let the channel W be a BSC channel with cross over probability
ε = 0.11 (hence I(W ) ≈ 0.5). Using (6.25) we obtain

D0 =

{
∞, w.p. 1− ε = 0.89,
−∞, w.p. ε = 0.11.

(6.25)

Therefore, we get L0 = F (D0) = −0.361 and U0 = I(D0) = 0.5. We can also

compute L1 = F (D+
0 )+F (D−

0 )
2 = −0.191, U1 = I(D+

0 )+I(D−
0 )

2 = .5 and

L2 =
F (D++

0 ) + F (D+−
0 ) + F (D−+

0 ) + F (D−−
0 )

4
= −0.075,

U2 =
I(D++

0 ) + I(D+−
0 ) + I(D−+

0 ) + I(D−−
0 )

4
= 0.498.

Continuing this way, one can find L10 = 0.264, U10 = 0.474 and L20 =
0.398, U20 = 0.465 and so on.

One can also use other functions to obtain bounds that converge faster than
the bounds given above. As an example, the function I(D)2 is also an other
suitable choice to obtain lower bounds for the value of C(W,Q). We can check
numerically that for the function I(D)2, the inequality (6.19) holds. As a result,
the sequence E[I(Dn)2] is also a sequence of lower bounds on C(W,Q). For this
choice we experimentally see that the gap between the lower bound E[I(Dn)2]
and the upper bound E[I(Dn)] vanishes very fast. Proving the relation (6.19)
for the function I(D)2 seems to be a challenging task.

Scaling Behavior and the Error Exponent

In the final step, we need to show that for rates below C(W,Q) the block-error
probability decays to 0 for large block-lengths.

Lemma 6.4. Let D ∈ D. We have

Z(D−) ≤ 2Z(D) and Z(D+) ≤ 2(Z(D))
3
2 .

Hence, for transmission rate R < C(W,Q) and block-length N = 2n, the proba-

bility of error of SCDQ, denoted by Pe,Q(N,R) satisfies Pe,Q(N,R) = o(2−Nβ )

for β <
log 3

2
2 .
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6.3.3 Scaling of the Gap to Capacity with Respect to the Number
of Precision Bits

In the previous section we have considered a particular family of decoders. We
have seen that a small number of messages suffice to achieve a considerable
fraction of capacity. In this section we will achieve rates as large as I(W )− d,
where d is a positive (and small) constant. Our objective is to provide bounds
on the number of precision bits that are required for this purpose.

Theorem 6.2. To achieve an additive gap d > 0 to capacity I(W ), it is
sufficient to choose log |Q| = O(log( 1d)).

The rest of this section is devoted to providing a sketch for the proof of
Theorem 6.2. Consider a BMS channel W and assume that we need an al-
gorithm SCDQ capable of achieving rates up to I(W ) − d, where d ≤ 1

2 is a
positive constant (for d ≥ 1

2 the 1-bit decoder with erasures is already a good
choice). Our goal is to find suitable parameters M and ∆ so that the algorithm
SCDQ is capable of achieving a rate at least I(W ) − d. We denote the maxi-
mum achievable rate of the algorithm SCDQ by C(W,Q). In order to compute
C(W,Q), we should precisely compute the ratio of the good indices among the
set {0, 1, · · · , N − 1} when N grows large. Here, we do not intend to compute
the precise value of C(W,Q) but rather provide a universal lower bound on
C(W,Q) that is already applicable for proving the theorem.

Let us first give a very broad picture behind the proof. We first consider the
original SC decoder and choose an integer nd large enough so that for n ≥ nd,
at least a fraction I(W )− d

2 of the sub-channels at level n have Bhattacharyya
value less than e−2n. More precisely, we have for n ≥ nd

Pr(Zn ≤ e−2n) ≥ I(W )− d

2
. (6.26)

As a result, if we perform the original SC decoding, then at level n at least a
fraction I(W )− d

2 of the sub-channels are very perfect. Let In,d denote the set
of indices of these sub-channels. In the second step, we tune the parameters M
and ∆ for a decoder SCDQ (with function Q given in (6.1)) in a way that the
algorithm SCDQ still decodes perfectly on the indices that belong to the set
In,d. In other words, we intend to find candidates for M and ∆ in terms of n so
that the messages that we get by the algorithm SCDQ, with such candidates for
M and ∆, are suitably close the their counterpart in the original SC decoder.
In the last step, we show that the sub-channels branched from the indices in
In,d are still good enough so that we can, as n grows large, achieve a fraction
I(W )− d of very perfect channels. The proof consists of three steps.

First step: (How to choose M and ∆?) The primary problem we consider
here is as follows: Consider a specific realization of independent uses of the
channel W at each of the leaves of the tree; by using the original SC decoder,
this realization results in a specific value at the root node. Now, consider the
same recursive computation process with the following extra operations of the
value that come out of each computation:



6.3. Quantized SC Decoders with Different Precisions 119

1. After each of the computations, we also perturb the resulting value by at
most a fixed value ∆.

2. If the absolute value of the output is larger than a fixed value M , we
replace the value by ±∞ according to its sign.

It is easy to see that the operations (1) and (2) are given to better analyze the
algorithm SCDQ. In this regard, how should we choose the values of M and
∆ so that the final message that is computed at the top of the tree, i.e., m̂n,0

is not too far from its counterpart in the original SC decoder, i.e., mn,0? First
assumeM =∞. As a result, the operation (2) is not applied anymore. Straight
forward computation shows that the partial derivatives of the functions v(x, y)
and c(x, y) (which correspond to (6.3) and (6.4), respectively) are given by

v(x, y) := x+ y, (6.27)

c(x, y) := 2 tanh−1(tanh(
x

2
) tanh(

y

2
)), (6.28)

are always bounded above by 1. Hence, for a, b ∈ R, we have

| v(x + a, x+ b)− v(x, y) |≤| a | + | b |, (6.29)

| c(x+ a, x+ b)− c(x, y) |≤| a | + | b | . (6.30)

As a result, it is easy to see that assuming that only operation (1) is applied,
the cumulative error we get on the top of the tree T (i) is upper bounded by
∆2n+1. Hence, the following lemma follows.

Lemma 6.5. Consider a quantized SC algorithm in which M =∞ (i.e., only
operation (1) is applied). Also, consider the i-th position among the informa-
tion bits with its corresponding binary tree T (i). Then, for any realization of
the channel outputs we have | mj,k − m̂j,k |≤ 2j+1∆ for any label (j, k) ∈ T (i).
As a result, if we choose ∆ ≤ 2−(n+1), then | mn,0 − m̂n,0 |≤ 1.

Let us now assume that M is finite, hence the operation (2) is a non-trivial
operation. Of course, depending on the value of M , the cumulative error varies
in a large range. It seems that, in this case, providing worse case bounds as
in Lemma 6.5 is a difficult task. Consequently, we seek bounds that hold with
high probability.

Lemma 6.6. Let M = 4n and ∆ = 2−(n+1). Then with probability at least
1− 16(n+ 1)(2e )

2n, the following holds: If m̂n,0 7=∞ then | mn,0 − m̂n,0 |≤ 1.

Second Step: (What happens to the almost perfect channels?) Let us now
fix n ≥ nd and consider the algorithm SCDQ with parameters M and ∆ as
given in Lemma 6.6. In this step, we provide a lower bound on the value of
C(W,Q), which is equal to the final ratio of the good indices. In order to
do this, we provide a lower bound only on the final ratio of the good indices
that are branched out from the indices in the set In,d. First, we consider
the original SC decoder. By definition, we have for each index i ∈ In,d that
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Z(W (i)
Nd

) ≤ e−2n, where Nd = 2nd . Assuming that the Bhattacharyya value of
the distribution of mn,0 is less that 2−2n, we obtain

Pr(mn,0 ≥ 2n+ 1) ≥ 1− e1−n. (6.31)

Now, by using Lemma 6.6 and (6.31), at level n with probability at least
1 − e1−n − 16(n + 1)(2e )

2n ≥ 1 − 16(n + 2)(2e )
2n, at an index i ∈ In,d, the

algorithm SCDQ outputs the +∞ message. This implies that at i ∈ In,d the
distribution of the messages that we get by the algorithm SCDQ stochastically
dominates the following distribution

D =

{
∞ w.p. 1− 16(n+ 2)(2e )

2n,
−∞ w.p. 16(n+ 2)(2e )

2n.
(6.32)

Now, let Ci be the final ratio of the perfect sub-channels that are branched
from i ∈ In,d. It is now easy to see that Ci is lower bounded by the ratio that
we get by plugging the density D, given in (6.32), into the 1-bit decoder with
erasures. In this way, by using Lemma 6.3 we obtain for i ∈ In,d

Ci ≥ p− 4
√
pm ≥ 1− 16(n+ 2)(

2

e
)2n − 16

√
n+ 2(

2

e
)n. (6.33)

We thus obtain from (6.26) and (6.33)

C(W,Q) ≥ (I(W )− d

2
)(1− 16(n+ 2)(

2

e
)2n − 16

√
n+ 2(

2

e
)n). (6.34)

Third Step: (Putting things together). In the last step, we relate the values
d, nd and the lower bound (6.34) together. We first choose n1 ∈ N such that
for n ≥ n1 we have

16(n+ 2)(
2

e
)2n + 16

√
n+ 2(

2

e
)n ≤ d

2
. (6.35)

One can easily see that for small values of d, a suitable candidate for n1 is
n1 = 1

log( e
2 )

log( 1d ) + o(log( 1d )). However, to have an explicit candidate for n1

such that (6.35) holds for all values of d, one can fix

n1 = 3 log(
1

d
) + 17. (6.36)

Now, let n = max(n1, nd). From (6.34) and (6.35) it is easy to see that
C(W,Q) ≥ I(W ) − d. In other words, by choosing M = 2n and ∆ = 2−(n+1)

for the function Q given in (6.1), the algorithm SCDQ is capable of achieving
rates that satisfy C(W,Q) ≥ I(W )− d. Also, note that we have

| Q |= 1 +
2M

∆
= 1 + n2n+2.

As a result,

log | Q |≈ n+ logn+ 2. (6.37)

Finally, what remains to be done is to relate nd to d.
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Lemma 6.7. In order to have (6.26) for n ≥ nd, it is enough to let

nd = 7 log(
1

d
) + log(log(

2

d
))2 + 48. (6.38)

With such a choice of nd and n1 as in (6.38) and (6.36), we have nd ≥ n1

and n = nd. Thus, we obtain from (6.37)

log | Q |≤ 7 log(
1

d
) +O(log(log(

1

d
))2).

6.4 Further Remarks and Open Directions

There are several interesting open directions to pursue:

(i) By using the methods developed in Chapter 3, it is not hard to compute
bounds on the speed of polarization (the scaling exponent) of the 1-
bit decoder with erasures. One major drawback of this decoder is that
the speed of polarization is further decreased compared to the original
channel polarization process. As a result, by using the 1-bit decoder with
erasures, we need to construct longer codes than the standard polar codes
(with the original SC decoder). Numerical implementation suggests that
as the number of quantization levels grows, the speed of polarization
converges very fast to the one of original SC decoder. One important
question is then how this speed is related to the number of quantization
levels.

(ii) In this chapter we have considered the perhaps simplest quantization
scheme. It was shown that polar codes exhibit a robust behavior with re-
spect to this scheme in terms of the achievable rate. Other (non-uniform)
quantization schemes might perform better both in terms of robustness
and speed of polarization. It is therefore worth investigating the perfor-
mance of various other quantization schemes.

(iii) Implementation of such quantization schemes into hardware is also an
important practical direction. We refer the interested reader to [43] for
more details.

6.5 Appendix: Proofs

Proof of Lemma 6.2

We first show that the process mn is a super-martingale which converges a.s.
to 0. From (6.12) and (6.13) we obtain,

E[mn+1 | mn] =
m2

n + 2mnen + 2mnpn
2

= mn −
m2

n

2
≤ mn.
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As a result, since mn is also bounded, it converges a.s. to a r.v. m∞. The a.s.
convergence and boundedness of mn also imply that

E[mn+1 −mn] = −1

2
E[m2

n]→ 0.

Therefore, mn → 0 almost surely. In the same way, consider the process en.
We have

E[en+1 | en] = en + 2pnen. (6.39)

The process en is then a bounded sub-martingale which converges a.s. to a r.v.
e∞. This would imply that

E[en+1 − en] = 2E[pnen]→ 0.

Now, since pn = 1− en −mn and mn → 0, we get

E[en(1− en)]→ 0.

Thus, e∞ ia either 0 or 1 and considering the fact that m∞ = 0, the proof
follows.

Proof of Lemma 6.3

The fact that F (D = (1, 0, 0)) = 1, F (D = (0, 1, 0)) = 0 is very easy to check
and thus it remains to prove

F (D−) + F (D+)

2
≥ F (D). (6.40)

By using (6.12) and (6.13) we obtain

F (D+) = p2 + 2pe− 4
√
(p2 + 2pe)(m2 + 2pm),

F (D−) = p2 +m2 − 4
√
2pm(p2 +m2).

After some straight forward simplifications, we get

F (D+) + F (D−)

2

= p+
m2

2
− 2

√
pm(

√
pm

2
+
√
(p+ 2e)(m+ 2e) +

√
2(p2 +m2)).

Thus, in order to show (6.40), it is necessary that the right side of the above
equality is less than p− 4pm. We now prove a slightly stronger inequality: for
p+ e+m = 1 we have

√
pm

2
+
√
(p+ 2e)(m+ 2e) +

√
2(p2 +m2)) ≤ 2. (6.41)
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It is easy to see that the above inequality results (6.19). To prove (6.41), we
use the fact that

√
(p+ 2e)(m+ 2e) ≤ p+ 2e+m+ 2e

2
= 2− 3

2
(p+m),

and apply it to (6.41). Thus, to have (6.41), it is sufficient to prove

√
pm

2
+
√
2(p2 +m2) ≤ 3

2
(p+m), (6.42)

by squaring both sides of (6.42) and some further simplifications we get to

√
2pm(p2 +m2) ≤ 1

4
(p2 +m2) +

17

4
pm.

Finally, the above inequality follows by noting the fact that for x, y ≥ 0 we
have x+ y ≥ 2

√
xy and hence

1

4
(p2 +m2) +

17

4
pm ≥ 2

√
17

16
pm(p2 +m2) ≥

√
2pm(p2 +m2).

Proof of Lemma 6.4

Note that for D ∈ D, the minus operation given in (6.13) is exactly the same as
the original minus operation without any further quantization step, i.e., D− =
D0. We know from (2.24) that for any BMS channel we have Z(W 0) ≤ 2Z(W )
and hence Z(D0) ≤ 2Z(D). We now prove the following

Z(D+) ≤ 2Z(D)
3
2 . (6.43)

Recall that D = m∆−∞ + e∆0 + p∆∞. We have from (6.12),

Z(D+) = 2
√
(p2 + 2pe)(m2 + 2me) + e2 + 2pm

= 2
√
pm
√
(p+ 2e)(m+ 2e) + e2 + 2pm

= 2
√
pm
√
(pm+ 4e2 + 2e(m+ p) + e2 + 2pm

(a)
= 2

√
pm
√
(pm+ 2e(1 + e)) + e2 + 2pm

(b)
≤ 2

√
pm(

√
pm+

√
2e(1 + e)) + e2 + 2pm

= (2
√
pm+ e)2 + 2

√
pm(
√
2e(1 + e)− e)

= Z(D)2 + 2
√
pm(
√

2e(1 + e)− e),

where step (a) follows from the fact that m + e + p = 1 and step (b) follows
from the inequality

√
a+ b ≤

√
a +

√
b. Following the above lines, to prove

(6.43), it is enough to show that

2
√
pm(
√
2e(1 + e)− e) ≤ 2Z(D)

3
2 − Z(D)2



124 Robustness of the Successive Cancellation Decoder

= Z(D)(2
√
Z(D)− Z(D)).

Now, by noting that Z(D) ≥ 2
√
pm, we only need to show the following,

√
2e(1 + e)− e ≤ 2

√
Z(D)− Z(D)

= 2
√
2
√
pm+ e− 2

√
pm− e.

Rearranging the terms, we should prove

√
2e(1 + e) + 2

√
pm ≤ 2

√
2
√
pm+ e,

which by dividing both sides by 2 and then squaring both sides gives

e(1 + e)

2
+ pm+

√
2pme(1 + e) ≤ 2

√
pm+ e.

Now, since e ≤ 1, we have e(1+e)
2 ≤ 2 and after further simplifications we finally

reach the following relation to prove

√
pm+

√
2e(1 + e) ≤ 2,

which by noting that
√
pm ≤ p+m

2 = 1−e
2 , reduces to the following inequality

1− e

2
+
√
2e(1 + e) ≤ 2.

It is straight forward to show that the above inequality holds for e ∈ [0, 1].
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Threshold Saturation on
Coupled Graphical Models 7
7.1 Introduction

In the second part of this thesis, we concentrate on the technique of spatial
coupling and the threshold saturation phenomenon in the broad context of
graphical models. Graphical models and low-complexity message-passing al-
gorithms play an increasingly important role in a variety of applications and
branches of engineering and science. For example, most present-day physical-
layer communications schemes are based on these concepts. They are also key
in areas such as machine learning, vision, and social networks, where efficient
inference schemes are required to deal with massive amounts of data.

As we explained earlier in Chapter 1, spatial coupling is a method that starts
with a graphical model and a “hard” computational task (e.g., decoding or more
generally inference) and creates from this a new graphical model for the same
task that has “locally” the same structure but is computationally “easy”. The
basic observation that, on spatially-coupled graphs, low-complexity (message
passing) algorithms suffice to achieve optimal performance, was developed in
the area of channel coding by Kudekar, Richardson and Urbanke [2, 3]. This
picture has since been completed/generalized by a vast amount of studies of
graphical models in communications, computer science, and statistical physics.
The potential benefits of spatial coupling can be broadly classified into the
following two directions.

(i) Spatially coupled constructions with optimal performance: Spatially cou-
pled graphical models have proven to be very successful in providing effi-
cient and optimal schemes for several important scenarios (e.g., channel
coding, compressed sensing, etc). Given the value that spatial coupling
has brought to such standard scenarios, it is tempting to predict sim-
ilar improvements due to spatial coupling for other frameworks. This
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technique works whenever the structure design for the problem is in our
hands. For instance, in channel coding the code design is up to us.

(ii) Spatial coupling as a proof technique: There is a second potentially very
fruitful application of spatial coupling, specifically to use it as a proof
technique. In other words, we can use this technique as a “thought ex-
periment”, particularly when we are not interested in designing efficient
systems but rather want to analyze a given fixed system. As will be ex-
plained in more detail later, this approach allows us to attack problems
that are currently out of the reach of traditional mathematical techniques.
The most immediate application is to prove the existence of thresholds,
such as the threshold of sparse graph codes, or the threshold of standard
constraint satisfaction problems (e.g., random K-SAT). Potentially, it
can also lead to better bounds for these thresholds and a better under-
standing of the solution spaces for these problems.

In this thesis, we investigate these applications of spatial coupling for a variety
of graphical models in the areas of statistical physics and computer science. We
first consider the relatively well-understood Curie-Weiss (CW) model and its
spatially coupled version. This model provides us with the simplest model to
understand the mechanism of spatial coupling and the phenomenon of threshold
saturation in the perspective of statistical physics. In particular, we will see how
the well-known method of Maxwell construction in statistical physics manifests
itself through spatial coupling.

We then consider a much richer class of graphical models called constraint
satisfaction models. Again, we investigate the effect of spatial coupling and
in particular the mechanism behind the phenomenon of threshold saturation.
Here, we will see how spatial coupling can be turned into a new powerful proof
technique.

Let us begin by introducing these models together with their spatially cou-
pled versions.

7.2 The Simplest Mean-Field Model: The Curie-Weiss
Model

The Curie-Weiss (CW) model1 was initially considered in the physics liter-
ature as a simple and exactly solvable model for a class of materials called
ferromagnets. Generally speaking, a simple way to study the behavior and the
interactions between the magnetic moments of the atoms in a material is to
model them by variables called spins. A spin can be either −1 or +1, which
represents the direction in which a magnetic moment (think of a tiny compass
needle) is pointing. Depending on the material that we are modeling, these
spins interact differently. Typically, the number of spins (atoms) that a (con-
densed) matter system contains is in the order of 1023; a huge number. One

1This model is also known as the Ising model on a complete graph.
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main objective of theoretical physics is to capture the macroscopic properties
of such large systems of interacting particles by devising highly idealized but
(to some extent) analyzable mathematical models. The CW model is among
the simplest such models that can be exactly solved and analyzed. While be-
ing simple, this model is a suitable framework for capturing some important
aspects that are typically present in more complex systems. We start with a
brief review of standard material about the CW model.

7.2.1 Basic Setting

Let G = (V,E) be a complete graph with N vertices. We assign to each vertex
i ∈ V an (Ising) spin si ∈ {−1,+1}. All the spins in this model interact
with each other in a pair-wise manner. A configuration of such a system is
given by s = (s1, · · · , sN). For a configuration s of the spins, we associate an
energy function or a cost function called the Hamiltonian of the system. The
Hamiltonian has the form

HN (s) = − J

N

∑

〈i,j〉

sisj , (7.1)

where the sum over 〈i, j〉 is carried over all edges of the graph (i.e., the inter-
action between the spins is pair-wise). The constant J is called the coupling
strength of the edges. Here, we assume that J > 0, i.e., we assume a ferro-
magnetic coupling between the spins. It is also convenient to think of J as
the inverse of the temperature of the system, i.e., J = 1

T , where T denotes the
temperature. Figure 7.1 depicts a simple example of such a system with four
vartices. A useful quantity for expressing the macroscopic properties of the

Figure 7.1: Left: A schematic representation of a CW model with N = 4, i.e., a
complete graph with vertex set V = {1, 2, 3, 4}. Attached to each vertex i ∈ V ,
there is a spin si that takes its value inside the set {−1,+1}. Right: For any two
vertices i, j ∈ V , there is an edge 〈i, j〉. The coupling strength of any such edge in
the graph is equal to J > 0. That is, each edge bears an energy of value − J

N sisj .
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system is its magnetization, which is defined for a configuration s as

m =
1

N

N∑

i=1

si.

The free energy (in the canonical ensemble with fixed magnetization) of the
system is defined as

ΦN (m) = − 1

N
lnZN where ZN(m) =

∑

s:m= 1
N

∑N
i=1 si

e−HN . (7.2)

The free energy is a quantity of great interest in statistical physics. As we will
see in the following, we can relate the thermodynamic state variables (such as
temperature, magnetization and magnetic field) by an equation that involves
the derivative of the free energy. This equation is called the equation of state
of the system.

In order to illustrate well the concepts of this section, it is helpful to estab-
lish an analogy between the variables that we introduce here and those used for
liquids and gases (such as the total volume, pressure, etc). In thermodynamics,
the pressure obeys the thermodynamical relation

p = −∂f
∂v

, (7.3)

where f = F (T, V,N)/N is the thermodynamical free energy, N is the number
of atoms, p is the pressure, and v = V

N is the volume divided by N . This
equation is called equation of state. For the ideal gas (where the atoms do not
interact with each other), we are all familiar with the equation of state that has
the form pv = kT , where k is the Boltzmann constant. When the particles in
the gas (or liquid) interact, such a simple state equation is no longer valid. The
so-called van der Waals equation provides an alternative that better describes
real systems. It assumes that the particles have a non-zero “effective volume”
modeling their molecular repulsion and that there is also a pairwise attractive
inter-particle force between them. The equation is

p =
kT

v − b
− a

v2
, (7.4)

where a is a measure for the attraction between the particles, and b denotes
the effective volume occupied by a particle. Let us now plot p (vertical axis)
as a function of v (horizontal axis) and the value of T is fixed. These plots are
called the van der Waals isotherms (see figure 7.2). For higher values of T , p
is a convex decreasing function of v. There is a critical temperature Tc where
the curves develop an oscillatory region. Below Tc there is a part of the region
where ∂p

∂v > 0, which is signals a mechanical instability. In other words, the
van der Waals equation fails to describe real substances in equilibrium in this
region. The final step for correcting the van der Waals equation is the Maxwell
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Figure 7.2: The van der Waals isotherms for two temperature values, one above
the critical temperature (the left plot) and the other below the critical temperature
(the right figure). For T < Tc, the Maxwell construction is done by replacing the
part of the curve between x and z by a horizontal line positioned so that the areas
of the two colored/shaded regions are equal (the dashed line in the figure).

construction (see Figure 7.2 for T < Tc): replace the isotherm between x and
z by a horizontal line positioned so that the areas of the two hatched regions
are equal.

The CW equation of state, derived below in (7.6), was originally developed
by analogy to the van der Waals theory. The magnetization m corresponds
to the density of the particles or equivalently v. The free energy of fixed
magnetization Φ(m) is analogous to f(T, V,N) and the equation of state h =
∂Φ
∂m is analogous to p = −∂f

∂v . We see that the magnetic field h plays the same
role as the pressure p.

The free energy of the CW model (given in (7.2)) has a well-defined ther-
modynamic limit (large N limit) that can be found as a function of m to be
(we drop an irrelevant additive constant)

lim
N→+∞

ΦN (m) ≡ Φ(m) = −J

2
m2 − ent(m). (7.5)

Here, the term −J
2m

2 is the “internal energy” of the system and the function
ent(·) is called the binary entropy function, and is defined as

ent(m) = −1 +m

2
ln

1 +m

2
− 1−m

2
ln

1−m

2
.

The equation of state or the van der Waals curve is simply

h =
∂Φ(m)

∂m
= −Jm+

1

2
ln

1 +m

1−m
, (7.6)

which is equivalent to the Curie-Weiss mean field equation

m = tanh(Jm+ h). (7.7)
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As is well known, from the van der Waals curve h(m) (7.6), we can derive an
equation of state that satisfies thermodynamic stability requirements from a
Maxwell construction. Similarly a physical free energy is given by the convex
envelope of (7.5). For J ≤ 1, h(m) is monotone (see Figure 7.3) and the

m

h

m

h

m+m−

(−msp, hsp)

(msp,−hsp)

Figure 7.3: Left plot: the van der Waals curve in the high temperature phase J <
1. Right plot: the van der Waals curve in the low temperature phase J > 1. For
m /∈ (m−, m+) the curve describes stable equilibrium states and for m ∈ (m−,−msp)∪
(msp,m+)metastable states. Form ∈ (−msp, msp) the system is unstable. The Maxwell
plateau describes superpositions of m− and m+ states. That is, in the Maxwell plateau
the oscillatory region between m− and m+ is replaced by a straight line at height h = 0.

inverse relation m(h) yields the thermodynamic equilibrium magnetization at
a given external magnetic field h. For J > 1, the equations (7.6)-(7.7) might
have more than one solution for a given h (see Figure 7.3). Starting with h
positive and large, we follow a branchm+(h) corresponding to a thermodynamic
equilibrium state untll the point (h = 0+,m = m+). Then we follow a lobe
corresponding to a metastable state until the spinodal point (h = −hsp,m =
msp) at the minimum of the lobe. Finally from the spinodal point to the origin,

the curve corresponds to an unstable state (where ∂2Φ(m)
∂m2 < 0). The situation

is symmetric if we start on the other side of the curve with h large negative.
We first follow a stable equilibrium state with magnetization equal to m−(h)
until the point (h = 0−,m = m−); we then follow a metastable state till the
left spinodal point (h = hsp, where m = −msp); and finally an unstable state
till the origin.

The first order phase transition line is (hc = 0, J > 1) and terminates at
the critical second order phase transition point (hc = 0, J = 1+). For J < 1
and h = 0, m± = 0. We call J = 1 the critical temperature of the CW model.

For physical systems, the condition

∂2Φ(m)

∂m2
≥ 0 (7.8)

is an stability requirement of the system. In other words, if a physical system
is at a state that the condition (7.8) is not fulfilled, then such a system is not in
thermodynamical equilibrium and will re-arrange itself such that eventually the
condition (7.8) is fulfilled. As a result, for a physical system at equilibrium, the
van der Waals curve cannot be in the form of Figure 7.3 (the right plot). This
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is because for m ∈ (−msp,msp) the stability requirement (7.8) is not fulfilled
and the system is unstable. Moreover, if we initiate a physical system with
an average magnetization m ∈ (−msp,msp) and initial magnetic field h(m) as
in Figure 7.3, then the system starts rearranging itself and will relax (after a
long enough time) in a way that it ends up in thermodynamical equilibrium.
The reason why the CW model predicts an unphysical isotherm is that the
Hamiltonian given in (7.1) does not correspond to a physical (realistic) system,
hence it does not possess a standard thermodynamic behavior. One main
reason for non-physicality of the Hamiltonian (7.1) is the fact that its geometry
(the complete graph) lacks any kind of finite-dimensional structure, whereas
physical systems typically are highly finite-dimensional.

As we will see shortly, by spatially coupling the individual CW models,
we provide to some extent the required finite-dimensional geometry for the
CW model to be relaxed in its equilibrium state (derived from the Maxwell
construction). In fact, for the coupled chain of CW models the difference
between the first order phase transition and spinodal thresholds becomes much
smaller, and vanishes exponentially fast with the width of the coupling along
the chain.

7.2.2 Coupled Curie-Weiss Model

Here, we introduce the coupled ensemble via the simplest instance we can
imagine. We postpone the general methodology of spatially coupling the CW
models to Chapter 8. Consider 2L + 1 integer positions z = −L, . . . ,+L on
a one dimensional line. At each position, we attach a single CW spin system,
i.e., a complete graph with N vertices (see Figure 7.4). Let us denote the i-th
variable at position z by (i, z) and its corresponding spin by siz . We now couple
the CW systems together. We connect each variable (i, z) to all the variables
in positions z − 1 and z + 1, and keep its original connections inside position
z. Also, for the variables at the left boundary (i.e., z = −L), we just connect
them to all the ones at position −L + 1 and similarly all the variables at the
right boundary (i.e., z = L) are connected to the variables at position L − 1.
Thus, for positions z away from the boundary, the degree of each variable is
3N−1 and for the positions at the boundaries the degree of a variable is 2N−1.
For J > 0, we let each edge have a coupling strength equal to J

3 . Thus, for a
variable away from the boundaries, the total strength that it “feels” is equal
to J (assuming N is large). Also, the variables at the boundaries feel the total
strength of 2J

3 and hence are more free.

The coupled model introduced above is among the simplest ways to couple
together the CWmodels placed on a chain. One possible extension is to increase
the range of coupling beyond the neighboring copies, i.e., connect the variables
at position z to all the variables at positions z − w, · · · , z + w, where w is a
positive integer called the coupling width or the coupling range.

Due to this additional spatial structure (or geometry), the coupled chain of
CW models tends to have a number of intriguing properties, which constitute
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Figure 7.4: A simple version of the coupled CW models. Top figure: We place
2L + 1 copies of the individual CW model on the positions −L, · · · , L. Bottom
figure: We then connect the neighboring copies. Each variable at a position z, is
connected to all the variables at positions z − 1, z, z + 1 (as long as they exist).
The coupling strength of all the edges is equal to J

3 .

the main subject of Chapter 8. We conclude this section by a brief summary
of the results of Chapter 8.

7.2.3 Contributions of Chapter 8

The main focus of Chapter 8 is to understand the evolution of the van der Waals
isotherm of the coupled chain when the individual underlying system is infinite
(i.e., N is infinite), and the coupling range w together with the longitudinal
length 2L+1 are large (L >> w >> 1), but still finite. This problem is studied
for temperatures below the critical temperature of the individual system. In
the limit where both L and w become infinite, the van der Waals isotherm of
the coupled chain tends to the Maxwell isotherm of the individual CW system.
In particular, the spinodal points of the coupled chain approach the Maxwell
plateau of the individual system. This is the threshold saturation phenomenon.
Correspondingly, the canonical free energy of the coupled chain is given by the
convex envelope of the individual CW model.
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When L and w are large but remain finite, below the critical point of the
CW model, a fine structure develops around the Maxwell plateau: The straight
line (Maxwell line) is replaced by an oscillatory curve with a period in the
order of the inverse of the chain length with an amplitude that is exponentially
small in the coupling range w (see Figure 7.5). Correspondingly, the finite-
size corrections to the canonical free energy display, in addition to a “surface
tension” shift, the same oscillations along the line joining the two equilibrium
states of the individual system (see Figure 7.5 and formula (8.52)). The series
of stable minima corresponds to kink-like magnetization density profiles, which
represent the coexistence of the two stable phases of the individual system, with
a well-localized interface centered at successive positions of the chain (formulas
(8.44), (8.56), and Figure 8.3). A series of unstable maxima is associated with
kinks centered in-between successive positions. We point out that although
our analytical results are for the regime of large w, we numerically observe
the same phenomena very clearly even when w = 1, which corresponds to
nearest-neighbor coupling between individual CW systems.

One of the virtues of the present simple model is that it can, to a large ex-
tent, be treated analytically by rather explicit methods. Although our analysis
is not entirely rigorous, we believe that it can be made so. We have refrained
from doing so here, so that the mathematical technicalities do not obscure the
main picture. Finally, let us point out that the same results hold for the CW
model with random fields, which we omit for the sake of brevity and we refer
to [50].

Figure 7.5: Qualitative illustration of the main result of Chapter 8. Dotted curves:
free energy and van der Waals isotherm of the single system for a coupling strength
J > 1 (J = 1 is the critical point). Continuous curves: free energy and van der Waals
isotherm of the coupled chain for L >> w >> 1. The oscillations extend throughout the

plateau with a period M/2L and amplitudes O(L−1e−
2απ2w

JM ) (left) and O(e−
2απ2w

JM )
(right) where M = width of plateau, α = O(1) depends on the details of the interaction
(Section 8.3). Close to the end points of the plateau, within a distance O(L−1/2),
boundary effects are important and the curves depend on the details of the boundary
conditions (Section 8.4).
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7.3 Constraint Satisfaction Problems

In Chapters 9 and 10 we consider the class of constraint satisfaction problems
(CSP). Among the main scenarios of this class, we can mention the satisfiability
problem (SAT) and the graph coloring problem (COL). Satisfiability was the
first known example of an NP-complete problem. Also, a wide range of other
naturally occurring decision and optimization problems can be transformed
into instances of satisfiability. As a result, the problem of satisfiability lies at
the heart of computational complexity theory. Speaking in terms of practical
applications, the satisfiability problem is related to a vast variety of other
problems, many of which have enormous practical relevance. Among these
problems, are for instance computer hardware and architecture design, circuit
design, verification problems, computer graphics, and image processing. The
main focus of Chapters 9 and 10 is the problem of satisfiability2. For the sake
of brevity, we do not go into further details on other well-known instances of
CSP, such as graph coloring, and we only mention the final relevant results.

7.3.1 Basic Setting and Notation

Let us begin by a brief illustration of SAT. A SAT formula consists of N
Boolean variables xi ∈ {0, 1}, i ∈ {1, · · · , N}, and a set ofM logical constraints
c ∈ {1, · · · ,M}. Each logical constraint, call it a clause, is a disjunction (logical
OR) of some variables or their negation; the negation of xi is x̄i = 1− xi. For
example, the clause x̄1 ∨ x2 is the logical OR operation of x2 and the negation
of x1. This clause is satisfied if either x1 = 0 (i.e., x1 is false) or x2 = 1 (i.e.,
x2 is true) or both. Analogously, the clause x1 ∨ x2 ∨ x̄3 is satisfied by all the
configurations of the three variables except x1 = x2 = x̄3 = 0. The number
of variables involved in a clause is called the length of the clause. A clause of
length K is typically called a K-clause.

Given a formula consisting of M clauses and N variables, the satisfiability
problem is to find a configuration for the variables such that all the clauses
are satisfied (a decision problem). If such a configuration exists, we call the
formula satisfiable and if not, we call it un-satisfiable.It is equally important
to find a configuration that minimizes the number of violated constraints (an
optimization problem). This is typically called the maximum satisfiability or
the MAX-SAT problem. A formula in which all the clauses have equal length
K, is called a K-SAT formula. The K-SAT problem is then the restriction of
SAT to the set of K-SAT formulas. Similarly, for the K-MAX-SAT problem,
the domain is confined to the set of K-SAT formulas.

It is convenient and natural to represent a SAT formula via a bipartite
graph G = (V ∪C,E), where we denote the set of variable nodes by V and the
set of clause nodes by C. We thus have |V | = N and |C| = M . There is an edge
between a clause c ∈ V and a variable i ∈ V if and only if the clause c contains
the variable xi. We denote such an edge by (c, i). Furthermore, depending on

2To be precise, we consider the problem of random satiability which we explain shortly.
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how the variable xi appears in the clause c (i.e., xi or its negation x̄i) the edge
(c, i) takes the form of a full edge (if xi appears in c) or a dashed edge (if x̄i

appears in c). We denote the set of edges of G by E. For a clause c in the
graph, we denote by ∂c the set of variables it is connected to. Similarly, for a
variable i, ∂i denotes the set of clauses it is connected to. Figure 7.6 illustrates
these concepts via a simple example.

Figure 7.6: A schematic representation of a 3-SAT formula via a bipartite graph
G = (V ∪ C,E). We have the set of variables V = {1, · · · , 6} and the set of
clauses C = {1, 2}. The set of edges of the graph is denoted by E. Hence, the
formula contains 6 variables and 2 clauses of length 3. The first clause represents
x̄1 ∨ x4 ∨ x̄6 and the second clause represents x̄2 ∨ x5 ∨ x6.

7.3.2 The K-SAT Ensemble

As we mentioned earlier, satisfiability was the first problem proved to be NP-
complete. That is, there are cleverly designed SAT formulas for which there
is no known efficient algorithm to solve them, and it is not even clear whether
such efficient algorithms exist or not. Consequently, these kinds of “worst case”
instances are among the main challenges of computer science.

An alternative approach to the problem of satisfiability is to consider for-
mulas that are chosen randomly. For instance, suppose we construct a K-SAT
formula by choosing each of the clauses uniformly at random from the set of
all possible K-clauses. Hence, rather than considering cleverly designed op-
ponents (formulas), we are confronted with an ensemble of formulas endowed
with a probabilistic structure. It is apparent that the analysis of different kinds
of ensembles is deeply entangled with combinatorics and probability theory. In
the following, we introduce the most famous of such probabilistic ensembles,
namely the K-SAT ensemble.

Consider N Boolean variables and M = /αN0 clauses of length K. Here,
we note that α is a positive real number called the clause density. To choose
an instance from the K-SAT ensemble, we proceed as follows: Each of the M
clauses picks uniformly at random a subset of length K of the variables and
flips a fair coin to decide whether or not to negate each variable. Note that all
the above steps are taken independently of one another. We can easily see that
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any instance of the K-SAT ensemble is chosen with uniform probability. In
the following, we use SAT(N,K,α) to denote the ensemble of random K-SAT
formulas with size N and density α.

Due to its simple probabilistic structure and the importance of the satisfia-
bility problem, theK-SAT ensemble has become a central topic of collaboration
between computer scientists, mathematicians and statistical physicists. As we
will see later, randomK-SAT formulas enjoy a number of intriguing mathemat-
ical properties, many of which have been discovered and many others are yet
to be found or made rigorous. Also, most of the ideas and intuitions about this
ensemble have been extended naturally to other CSP problems such as graph
coloring (COL). We keep in mind that whether these random formulas are a
good model for real-world applications or not, is a question that requires much
further investigation. In fact, the ingenious structure in the real-world SAT
formulas is something beyond the capability of simple probability distributions
to capture. However, it is worth mentioning that random K-SAT instances
are computationally hard for a certain range of densities, and this makes them
popular benchmarks for testing and tuning satisfiability algorithms. In fact,
some of the best practical ideas in use today come from the insight gained by
studying the performance of algorithms on random K-SAT instances [70].

We proceed with a brief detour of the current state of the art for the K-SAT
problem. We refer the interested reader to [71], [72] and [73] for an excellent
review of these topics. We then introduce the coupled K-SAT ensemble, which
is the focus of Chapter 9 and 10. Finally, we conclude this section by summa-
rizing the main results of Chapter 9 and 10.

The Threshold Conjecture

Consider a random formula from the K-SAT ensemble. What is the probabil-
ity that such a formula is satisfiable? A moment of thought shows that this
probability is a non-increasing function of α. Also, for small α we expect that
most of the formulas are satisfiable, whereas for α tending to infinity most of
the formulas seem to be un-satisfiable. What more can we say? In particular,
what happens when the size of these formulas grows unbounded, i.e., N →∞?
Numerical experiments, physical arguments (as we will see later), as well as the
experience from simpler CSPs, strongly indicate that as the density crosses a
critical threshold, these formulas undergo a phase transition from becoming al-
most certainly satisfiable to almost certainly unsatisfiable. Despite such strong
evidence, it is yet unknown if such a critical density exists for K ≥ 3 hence has
remained as a conjecture called the satisfiability conjecture.

Conjecture 7.1 (The satisfiability conjecture). For K ≥ 2, there exists a
constant αs(K) such that the following holds

lim
N→∞

Pr
{
SAT(N,K,α) is satisfiable

}
=

{
1 if α < αs(K),
0 if α > αs(K).

(7.9)
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For K = 2, the satisfiability conjecture is known to be true and we have
αs(2) = 1 [74]. The following theorem is the closest we know regarding the
existence of such a threshold.

Theorem 7.1 (Friedgut [75]). For K ≥ 3, there exists a sequence {αs(K,N)}N∈N
such that for any ε > 0 the following holds

lim
N→∞

Pr
{
SAT(N,K,α) is satisfiable

}
=

{
1 if α < (1− ε)αs(K,N),
0 if α > (1 + ε)αs(K,N).

(7.10)

Theorem 7.1 comes very close to proving the satisfiability conjecture except
that the sequence αs(K,N) is not known to converge to a well-defined limit.
In particular, there remains the possibility that such a sequence oscillates in
a small window thus might not converge. From now on, we let αs(K) denote
both the satisfiability threshold from Conjecture 7.1 and also the threshold
sequence of Theorem 7.1, and leave the corresponding interpretation to the
interested reader.

The consequences of Theorem 7.1 are not confined merely to the satisfi-
ability conjecture. Another main application of this theorem is in providing
bounds on αs(K) in the following way. Suppose there exists a method that
proves for some density αmethod(K),

lim
N→∞

Pr
{
SAT(N,K,αmethod(K)) is satisfiable

}
≥ C, (7.11)

where C is a positive constant. Then, from Theorem 7.1 we conclude that for
any α ≤ αmethod(K) we have

lim
N→∞

Pr
{
SAT(N,K,α) is satisfiable

}
= 1.

In particular, this would show that αs(K) ≥ αmethod(K). Similarly, if αmethod(K)
is such that the inequality (7.11) holds in the opposite direction, then the prob-
ability that a random formula is satisfiable at densities above αmethod(K) tends
to 0 and we obtain that αs(K) ≤ αmethod(K).

This consequence of Theorem 7.1 has been the main venue for providing
lower bounds on αs(K). We now proceed by reviewing various methods and
bounds on the threshold.

Various Bounds and Asymptotic Behavior of the Threshold

Let us begin by a simple but important upper bound. For a random K-SAT
formula F , we denote by X(F ) its number of satisfying assignments (if X(F )
is zero then the formula is un-satisfiable). It is an easy exercise to show that

E[X ] = 2N (1− 1

2K
)M .
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As a result, by noticing M = Nα, if we choose

α >
− ln 2

ln(1− 1
2K )

,

then the value of E[X ] is exponentially small in N . Hence, by an application
of the Markov inequality we deduce that the probability of satisfiability is
exponentially small. We thus have

αs(K) ≤ − ln 2

ln(1− 1
2K )

≤ 2K ln 2− ln 2

2
−O(2−K). (7.12)

The above method, which is based on the first moment of X , is called the first
moment method. In fact, this simple upper bound can be made slightly sharper
[82, 83]

αs(K) ≤ 2K ln 2− 1 + ln 2

2
− o(1). (7.13)

where the o(1) term is asymptoticly vanishing in K. To obtain a lower bound,
a method called the second moment method can be used [76, 77]. The idea is
that, by an application of the Cauchy-Schwarz inequality, we can easily show
that

Pr(X > 0) ≥ E[X ]2

E[X2]
. (7.14)

Now, if we find densities α for which the value E[X]2

E[X2] is bounded from below
by a positive constant, it is immediate that such a value of α would be a lower
bound for αs(K). However, on the negative side, for the choice of X = X(F )
to be the number of solutions, it can be shown that for any value of α, the

quantity E[X]2

E[X2] decays to 0 by N . In other words, the number of solutions does
not concentrate around its average. On the positive side, we can choose other
candidates for X , rather than the number of solutions, to plug into (7.14). For
instance, instead of giving an equal weight to all solutions of a formula F (as
done in counting the number of solution), we can assign different weights to
different solutions. This is called the weighted second order method. Using this
method, it can be shown [76] that

αs(K) ≥ 2K ln 2− (K + 1)
ln 2

2
− 1− o(1). (7.15)

Very recently, by a new version of the weighted second order method, a new
lower bound has been obtained in [78]

αs(K) ≥ 2K ln 2− 3 ln 2

2
− o(1). (7.16)

To summarize, for large K we have

2K ln 2− 3 ln 2

2
− o(1) ≤ αs(K) ≤ 2K ln 2− 1 + ln 2

2
− o(1), (7.17)
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K 3 4 5 7 10
Upper bound from (7.12) 5.19 10.74 21.83 88.37 709.44
Best upper bound [81] 4.51 10.23 21.33 87.88 708.94
Lower bound from [76] 2.68 7.91 18.79 84.82 704.94
Best algorithmic bound 3.52 5.54 9.63 33.23 172.65

Table 7.1: Best known rigorous bounds for the location of the satisfiability threshold
αs(K) for small values ofK. The last row gives the largest density for which a polynomial-
time algorithm has been proven to find satisfying assignments. The numbers in this table
are taken from [73].

where the o(1) term is asymptotic in K. These bounds indicate that for large
values of K, the value of αs(K) is just a small constant away from 2K ln 2.
For smaller values of K, the bounds derived from these methods are given in
Table 7.1.

A different venue to find lower bounds is to provide algorithms capable of
solving a random formula with a positive probability. We will have more to say
about these algorithms and the methods used to analyze them in Chapter 10. In
a nutshell, most of these algorithms act in the following way: Given a random
formula, they set the variables one at a time using heuristics that use very
little, and completely local, information about the variable-clause interactions.
Of course, such a confinement is also what enables their analysis. Table 7.1
contains the best such algorithmic lower bounds from [79] and [80].

The MAX-SAT Version

One can also consider the MAX-SAT problem and conjecture a similar sharp
thresholding behavior. Consider a random formula F . For an assignment x of
the variables in F , we define the energy of the assignment, denoted by HF (x),
to be the number of clauses in F that the assignment x violates. For the
formula F , we define its minimum energy level or ground state, HF , to be the
minimum possible energy that can be reached for F over all the assignments
x, i.e.,

HF = min
x

HF (x). (7.18)

It is more convenient to work with the normalized version of the ground state,
i.e., 1

NHF . In fact, it can be shown that almost surely (a.s.) for a random for-
mula F , the ground state per variable, 1

NHF , concentrates around its average.
That is,

HF

N
a.s.−→ lim

N→∞

E[HF ]

N
! H(α,K). (7.19)

The MAX-SAT conjecture is then as follows.



142 Threshold Saturation on Coupled Graphical Models

Conjecture 7.2 (Existence of a sharp threshold for MAX-SAT). For K ≥ 2
there exists a constant αs(K) such that the following holds

H(α,K)

{
= 0 if α < αs(K),
> 0 if α > αs(K).

(7.20)

In other words, the MAX-SAT conjecture states that for α < αs(K) there
is an assignment that satisfies all the clauses except a sub-linear fraction of
clauses, whereas for α > αs(K), any choice of the variable assignments violates
a constant fraction of the clauses. With a slight abuse of notation, we have
intensionally denoted both the threshold of SAT and the threshold of MAX-
SAT by αs(K). This is because it is widely believed (hence conjectured) that
the thresholds of these two problems coincide.

The Physics Picture

Random K-SAT, together with other CSPs, have been systematically studied
also by physicists during the past two decades. Such physical intuitions and
derivations, which originate back to the rich theory of spin glasses, have led
to the discovery of a much more refined framework for studying CSPs. As a
consequence, we believe today that the extent of hardness in finding a satis-
fying assignment for random formulas comes from various phase transitions in
the solutions space geometry of such formulas, not in their probability of sat-
isfiability. We proceed by briefly illustrating the picture of how the geometry
of the solutions space evolves as a function of the clause density. We bear in
mind that such a picture yet lacks a great deal of rigor (except only a few
parts [98–100]), and completing it will remain an intriguing challenge for the
foreseeable future.

Figure 7.7: A symbolic picture of the solutions space for a random K-SAT for-
mula.

Here, we think of the solutions of a formula as members of the Hamming
cube {0, 1}N . Figure 7.7 gives a symbolic representation of the solutions space
of a typical SAT formula based on its clause density. As we observe, there
are several phase transitions occurring as clauses are added. We begin by
illustrating each of these phase transitions.



7.3. Constraint Satisfaction Problems 143

The Easy-SAT phase, α < αclust: For low densities, the set of satisfying
assignments forms a single giant cluster. Such a giant cluster is a well-connected
object in the following sense. Consider any two satisfying assignments x, x′.
Then, there exists a sequence of solutions x = x0, x1, · · · , xr = x′ such that the
Hamming distance between the consecutive solutions xi and xi+1 is very small
compared to N (it is believed to be O(logN)). Thus, the space of solutions
can be imagined as a big cluster in which one can walk from one solution to
another in steps of very small size (sub-linear inN). Such a connected structure
is believed to provide the required ergodicity for the Monte-Carlo methods to
sample the solutions space uniformly and in a reasonable time. Hence, this
region of α is called the Easy-SAT phase.

The Hard-SAT phase or the clustering phase, α ∈ [αclust,αs]: Such
a single-cluster behavior of the solutions space continues up to a specific value
of the clause density called the clustering transition and denoted by αclust. In
the regime α ∈ [αclust,αs] the space of solutions is believed to be fragmented
into exponentially many clusters, each of which is relatively tiny and far apart
from all the other clusters (like the bubbles in Figure 7.7). More precisely, for
densities above αclust, there are exponentially many clusters, each containing
an exponentially small fraction of the solutions. The distance between any
two solutions in two distinct clusters is Θ(N). Moreover, inside each cluster a
constant fraction of the variables are frozen, i.e., take the same value in all the
solutions inside that cluster.

It is widely believed that such a clustering structure is closely connected
to the failure of standard “local” algorithms in finding solutions. In other
words, it is believed that there is a strong connection between the “hardness”
of the problem and the clustering of the solutions space. Therefore, we call this
regime the hard-SAT regime. Let us now argue about the origins of this belief
from two (equivalent) perspectives: (i) As we mentioned above, the clusters are
separate by a distance of order Θ(N). Thus, in order to travel from one cluster
to the other, we need to go through assignments that violate Θ(N) clauses.
Now, if we think of the number of clauses violated by a generic assignment
as the energy of that assignment, then the clusters are separated from each
other by huge “energy barriers”. Consider a Markov chain based on “local”
moves. Due to such huge energy barriers between the clusters, the Markov
chain that starts from a typical high-energy assignment will be trapped inside
a region around its initial point (some sort of high energy cluster), and it
will take an exponential amount of time to explore the whole space. Hence,
uniformly sampling a satisfying assignment becomes exponentially hard. In
other words, when we enter inside the hard-SAT region, the required ergodicity
of the Markov chain breaks and it takes exponential time to find a satisfying
assignment. (ii) As we mentioned above, the clusters are far away from each
other and contain a constant fraction of frozen variables. Let us assume that
the distance between any two clusters is at least δN , where δ is a positive
constant. Consider now a decimation type algorithm that sets the variables
one-by-one with local decisions. Once the algorithm has set (1−δ)N variables,
it will surely be confined to at most one cluster in the solutions space. This
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cluster contains some frozen variables. Hence, if any of the variables that
the algorithm has already set are among the frozen ones of the cluster, and
the variable has been set wrong, the algorithm already fails. To summarize, in
order to perform well inside the clustering region, the algorithm must somehow
“sense” these clusters and their frozen variables.

The condensation phase α ∈ [αcond,αs]: The critical value αclust signals
a phase transition in the number of clusters from a single giant one to an
exponential number of clusters. However, inside the clustering phase, there is
another phase transition in the geometry of the solutions space, which is in
terms of the shape of the clusters. For densities α ∈ [αcond,αs] it is predicted
that almost all the solutions lie in a small (finite) number of (atypically large)
clusters, while exponentially many other clusters exist.

To study the location of these phase transitions, the physicists have de-
veloped the method of Survey Propagation (SP)3, which is derived from the
zero-temperature (level-1) cavity method of spin-glass theory [97]. Let us ex-
plain the predictions of the SP formalism for the K-SAT ensemble [101], [102].
SP is a sophisticated mean-field theory based on a set of fixed point equations.
It predicts the existence of a SAT/UNSAT phase transition when α crosses
a critical threshold αs. At a lower value αSP of the clause density, one finds
a bifurcation from a trivial solution to non-trivial solutions of the fixed point
equations. In the interval [αSP,αs] the solutions space is fragmented into an
exponentially large (in system size) number of well separated clusters of SAT
solutions (ground states) in the Hamming space. The rate of growth of the
number of such clusters with system size is called the zero-energy complexity
and is positive in the interval [αSP,αs]. The complexity goes to zero at αs and
becomes formally negative above αs.

The SP formalism says nothing about the relative sizes (internal entropy) of
clusters of solutions and does not take into account which of them are “relevant”
to the uniform measure over the solutions. As a result, the threshold αSP

does not have a clear algorithmic meaning (in the sense of being a barrier for
algorithms) because SP does not take into account the size of the clusters. This
issue is addressed by the entropic cavity method [84], [86], [103], [104] which
allows us to compute the so-called dynamical and condensation thresholds4 αd

and αc.
These methods enable us to predict such thresholds precisely. We will have

more to say about these thresholds and their numerical values in Chapter 9.
Let us conclude this part, by stating the large K predictions of these thresholds

αclust =
2K lnK

K
(1 + o(1)),

3We refer to [72] for a recent pedagogical account.
4Here, αd denotes the dynamical threshold, which is in contrary to our previous notation

for the dynamical threshold αclust. We keep in mind that αd and αclust are the same concepts
and we have just changed the notation to the convenient notation of the literature. The
same goes with the condensation threshold, i.e., αcond and αc both denote the condensation
threshold.
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αcond = 2K ln 2− 3

2
ln 2 + o(1),

αs = 2K ln 2− 1

2
(1 + ln 2) + o(1).

where the o(1) term is asymptotic in K. In particular, it is worth noticing the
equivalence of the predictions of αcond and αs to the lower and upper bounds
in (7.17). Let us also point out that the “algorithmic barrier” of the clustering

transition, which is 2K lnK
K . So far, all the algorithms known in the literature

have fallen short in breaking this algorithmic barrier and, as we explained
above, this barrier is believed to be tight for local-search algorithms.

7.3.3 The Coupled K-SAT Ensemble

This ensemble represents a chain of coupled underlying K-SAT ensembles.
Figure 9.1 is a visual aid but gives only a partial view. We consider L−w+ 1
clause positions z ∈ {0, 1, · · · , L−w} and L variable positions z ∈ {0, 1, · · · , L−
1}. At each variable position z, we lay down N Boolean variables. Also, for
each check position z, we lay down M = /αN0 clauses of length K. So in
total we have NL variables and M(L − w + 1) clauses. Each clause c at a
position z, chooses each of its K variables via the following procedure. We first
choose a position z + j with j picked uniformly at random from the window
{0, · · · , w − 1}, then we pick a variable uniformly at random among all the
N variables located at position z + j, and finally we connect the clause c and
the variable. All the K variables of the clause c are chosen independently
in this way. The sign of each edge is chosen independently by flipping a fair
coin. This ensemble is called the (spatially) coupled K-SAT ensemble and an
instance of it is called a coupled formula. We denote such an ensemble by
CSAT(N,K,α, w, L).

0 L− w

0 L− w L− 1

Figure 7.8: A representation of the geometry of the graphs with window size w = 3

along the “longitudinal chain direction” z. The “transverse direction” is viewed from
the top. At each position there is a stack of N variable nodes (circles) and a stack M

constraint nodes (squares). The depicted links between constraint and variable nodes
represent stacks of edges.

It would be natural to extend all the concepts developed for the K-SAT
ensemble to the coupledK-SAT ensemble. As the coupled ensemble is equipped
with two additional parameters L and w, our notations for the coupled ensemble
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will bear an additional L and w in their subscript. We denote the SAT/UNSAT
threshold of the coupled ensemble by αs,L,w and also denote the ground state
per variable of the coupled ensemble (as in (7.19)) by HL,w(α,K). The overall
clause density of this ensemble is α(1 − w−1

L ), which tends to α as L grows
large. It is easy to see that at the (left and right) boundaries of the chain
the variables have a smaller average degree compared to the positions in the
middle. Hence, the problem is made easier at the boundaries. Moreover, the
two ensembles have locally the same structure.

It seems possible to extend almost all the results of the K-SAT ensemble
to the coupled ensemble. However, our main objective in this thesis is to show
that due to the additional spatial structure of the coupled ensemble, a new set
of remarkable aspects emerge. We now proceed by a brief explanation of the
main results of Chapters 9 and 10.

7.3.4 Contributions of Chapters 9 and 10

The material of Chapters 9 and 10 can be considered as a general framework to
study the (coupled version of) random ensembles of computational problems
(e.g., K-SAT, Q-COL, K-XORSAT, vertex cover in random graphs, uniquely
extendible CSPs). For the sake of briefness, we mainly discuss the K-SAT
model here but the same approach leads to similar results for all these problems.

We begin Chapter 9 by using the tools from spin glass theory to analyze
and locate the different transition regions of the coupled K-SAT ensemble. In
particular, we investigate various types of threshold saturation on the coupled
ensemble. The net result of our findings in this regard is that the coupled
ensemble is easier to analyze or to find a satisfying assignment than the original
(un-coupled) K-SAT ensemble.

In more detail, we consider the SP equations for the coupled K-SAT en-
semble and solve them by the method of population dynamics. We find a
positive (zero-energy) complexity in an interval [αSP,L,w,αs,L,w], which allows
us to determine the SAT/UNSAT phase transition point αs,L,w (where the
complexity becomes formally negative). We make the following observations
for the interval where the complexity is positive. We have that αs,L,w > αs

and αs,L,w ↓ αs as L increases (and w fixed). We find that threshold saturation
takes place, namely αSP,L,w → αs, as L and w both increase in a way that
L < w < 1. These findings are supported by a large K analysis of the SP
fixed point equations of coupled K-SAT. In this limit, the fixed point equa-
tions reduce to one-dimensional equations, analogous to those found for the
Curie-Weiss chain or coupled LDPC codes on the binary erasure channel. This
enables us to study an “average total warning probability” that characterizes
the phase of the system. This quantity is somewhat analogous to the average
magnetization in the CW chain, or the average erasure probability for LDPC
codes.

As we mentioned above, the SP formalism says nothing about the relative
size (internal entropy) of clusters of solutions and does not take into account
which of them are “relevant” to the uniform measure over zero-energy solu-
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tions. This issue is addressed by the entropic cavity method that allows us
to compute the so-called dynamical and condensation thresholds αd and αc.
Using this method, we have computed the dynamical αd,L,w and condensation
αc,L,w thresholds of coupled K-SAT ensemble, and observe that as L increases
limL→+∞ αc,L,w → αc (w fixed) whereas αd,L,w → αc when both w and L in-
crease in the regime 1B w B L. All these saturation phenomena indicate that
for the coupled ensemble, the algorithmic barrier (or the clustering transition)
is at least as much as the condensation transition. Hence, the coupled formulas
are much easier to solve than the un-coupled ones.

In the second part of Chapter 9, we show how the combinatorial interpo-
lation methods (originally introduced in [85]) can be customized to relate the
coupled ensemble to the underlying uncoupled one. Using such interpolation
arguments, we analytically show that as L grows, the ground state per vari-
able HL,w(α,K) tends to its corresponding value H(α,K) of the individual
ensemble. That is,

lim
L→∞

HL,w(α,K) = H(α,K).

As a consequence, we deduce that as L grows large, the satisfiability thresh-
old (as in (7.20)) of the coupled K-SAT ensemble tends to the satisfiability
threshold of the K-SAT ensemble, i.e.,

lim
L→∞

αL,w,s(K) = αs(K). (7.21)

We notice from (7.21) that any lower bound on αs,L,w can be turned into a
lower bound for αs by taking L→ +∞. In particular, algorithmic lower bounds
on αs,L,w can be turned into lower bounds for αs. Now, as we explained above,
because of the saturation of the SP and dynamical thresholds of coupled K-
SAT, the values of α for which the space of solutions is fragmented into well
separated clusters are substantially larger compared to the values of individual
ensembles. Therefore, we can hope that a form of algorithmic threshold sat-
uration, or at least algorithmic threshold increase, happens when well chosen
algorithms are applied to coupled K-SAT. This results in proving better algo-
rithmic lower bounds on αs,L,w and thus αs. The proposed methodology is our
main motivation for Chapter 10.

In Chapter 10, we focus on algorithmic aspects. We consider two algorithms
for finding a satisfying assignment for a random coupled formulas, namely the
pure literal algorithm and the unit clause propagation algorithm. The pure lit-
eral algorithm is perhaps the simplest known algorithm for solving satisfiability
problems. It works up to a critical density αpl(K) where a non-trivial 2-core
emerges inside the formula. For an uncoupled formula, this critical density can
be found with the help of a simple scalar fixed point equation. This algorithm
extends naturally to coupled formulas. Its critical density αpl,L,w, where the 2-
core develops, is found by analyzing the fixed points of a set of one-dimensional
fixed point equations. The recent one-dimensional theory of [126] and [127] en-
ables us to compute the limiting value of αpl,L,w when L < w < 1. Let us
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K 3 4 5 large K
αcuc(K) 3.67 7.81 15.76 2K−1

αuc(K) 2.66 4.50 7.58 e2K−1

K
αcpl(K) 1.834 1.954 1.986 2
αpl(K) 1.626 1.544 1.402 2 lnK

K

Table 7.2: Thresholds for the peeling and unit clause propagation algorithm correspond-
ing to the coupled and un-coupled ensembles.

denote this limit by αcpl(K); i.e.,

αcpl(K) = lim
w→∞

lim
L→∞

αpl,L,w(K).

The last two rows of Table 7.2 include the corresponding thresholds for coupled
and uncoupled ensembles. For large K, we find

αpl(K)
.
=

2 lnK

K
but αcpl(K)

.
= 2.

Hence, there is roughly a factor K
lnK of threshold improvement via spatial

coupling. However, the coupled threshold of this algorithm is still far below
the satisfiability threshold (which is a constant away from 2K ln 2).

We next consider the unit clause propagation (UC) algorithm that is the
simplest type of decimation algorithm. We first derive a suitable schedule to
perform the decimation steps. We then develop the required machinery to
analyze this decimation algorithm on the coupled formulas. Let us denote by
αuc(K) and αuc,L,w(K) the thresholds of the UC algorithm for the individual
and coupled ensembles, respectively. We also define

αcuc(K) = lim
w→∞

lim
L→∞

αuc,L,w(K).

Table 7.2 contains the corresponding thresholds for the coupled and individual
ensembles. For large K we find that

αuc(K)
.
=

e2K−1

K
but αcuc(K)

.
= 2K−1.

Again, the coupled threshold is improved roughly by a factor K
e over the indi-

vidual threshold. There are a few interesting comments in order:

(i) Comparing the numbers in Tables 7.1 and 7.2, we observe that for small
K the coupled thresholds of the UC algorithm are comparable to the
best lower bounds in the literature. Even for K = 3, the value 3.67 is a
new lower bound for the K-SAT problem5. However, as K grows, these
coupled thresholds tend to 1

2 ln 2 fraction of the best lower bounds.

5To be more precise, this is a new lower bound for the 3-MAX-SAT problem
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(ii) The threshold of the coupled UC algorithm is asymptotically 2K−1. This
intuitively confirms the fact that for the coupled ensembles, the dynam-
ical transition is well above the dynamical transition of the individual
K-SAT ensemble. In other words, the coupled formulas can be consid-
ered “easier” than the uncoupled ones in the sense that they break well
through the algorithmic barrier 2K lnK

K of the individual ensemble.

(iii) We believe that more sophisticated (and analyzable) algorithms for the
coupled formulas can succeed all the way up to the condensation thresh-
old. This is the topic of our current research. As we explained above,
the clustering of the solutions space is believed to be the main barrier
for the success of “local search” algorithms. This immediately raises the
question about the mechanism behind the saturation of the dynamical
threshold to the condensation threshold in the coupled formulas. In other
words, how does the space of solutions change under spatial coupling and
what happens to the clusters? We do not have any definitive answers
for the K-SAT ensemble at the moment. However, there is a relatively
“simpler” CSP ensemble called the K-XORSAT ensemble whose solu-
tions space goes through a similar clustering transition at a well-defined
dynamical threshold [92–95]. For the coupled K-XORSAT ensemble, it
can be shown that at densities above the dynamical threshold of the un-
derlying ensemble, the space of solutions has the following geometrical
structure. The clusters become connected to each other and form a gi-
ant cluster. This connection is in a special form directly related to the
spatial structure of the coupled formula together with the termination at
the boundaries. We refer for further details to [96].

(iv) The same results as above are obtained for the Q-COL ensemble. In
particular, saturation of the SP threshold to the satisfiability threshold,
as well as the saturation of dynamical threshold to the condensation
threshold, can be checked. Also, an algorithm similar to the UC algorithm
is proposed for the coupled Q-COL model. For Q = 3, this algorithm
finds a proper coloring for average connectivity values up to ccuc(3) =
4.44. We note from [86] that the condensation threshold for Q = 3 is
cc(3) = 4, which is below ccuc(3). Hence, for the coupled ensemble we are
capable to go even above the condensation threshold. The SAT/UNSAT
threshold for Q = 3 is cs(3) = 4.69. For large Q, we find that ccuc(Q)

.
=

2Q log(Q)−Q. For the sake of brevity we omit the details for this model
and refer to [68, 125].





Coupled Mean Field Models 8
8.1 Problem Formulation

In this chapter1, we present in detail what we believe is the simplest and clear-
est situation that captures the basic underpinnings of threshold saturation.
The Curie-Weiss2 (CW) spin system was introduced in Section 7.2.1. Here, we
introduce a one dimensional chain of 2L+1 CW spin systems coupled together
by an interaction which is local in the longitudinal (or chain) direction and
infinite range in the transverse direction. The local interaction is of Kac type
with an increasing range and inversely decreasing intensity, and is ferromag-
netic. This model can be viewed as an anisotropic Ising system with a Kac
interaction along one longitudinal direction and a Curie-Weiss infinite range
interaction along the ”infinite dimensional“ transverse direction.

The main focus here is to understand the evolution of the van der Waals
isotherm of the coupled chain when the individual underlying system is infinite
and, the range w of the Kac interaction and the longitudinal length 2L + 1
both become large L >> w >> 1 but are still finite. This problem is studied
for temperatures below the critical temperature of the individual system.

In Section 8.2, we set up our basic coupled model and give a formal solution.
The asymptotic analysis for L >> w >> 1 is performed in Section 8.3 and this
is supplemented by numerical simulations in Section 8.4.

1The material of this part is based on [50].
2Ising model on a complete graph.

151
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8.2 Chain of Ising Systems on Complete Graphs

8.2.1 Curie-Weiss Model

Let us recall from Section 7.2.1 some useful standard material about the Curie-
Weiss model (CW) in the canonical ensemble (or lattice-gas interpretation)
which is the natural setting for our purpose. The Hamiltonian is

HN = − J

N

∑

〈i,j〉

sisj , (8.1)

where the spins si = ±1 are attached to the N vertices of a complete graph.
In (9.3) the sum over 〈i, j〉 carries over all edges of the graph and we take a
ferromagnetic coupling J > 0. In the sequel we absorb the inverse temperature
in this parameter. The free energy, for a fixed magnetization m = 1

N

∑N
i=1 si,

is

ΦN (m) = − 1

N
lnZN , ZN =

∑

si:m= 1
N

∑N
i=1 si

e−HN (8.2)

It has a well defined thermodynamic limit as in (7.5)

lim
N→+∞

ΦN (m) ≡ Φ(m) = −J

2
m2 − ent(m) (8.3)

In the canonical formalism the equation of state is simply

h =
∂Φ(m)

∂m
= −Jm+

1

2
ln

1 +m

1−m
, (8.4)

which is equivalent to the Curie-Weiss mean field equation

m = tanh(Jm+ h). (8.5)

As is well known, from the van der Waals curve h(m) (8.4), one can derive
an equation of state that satisfies thermodynamic stability requirements from
a Maxwell construction. Similarly a physical free energy is given by the convex
envelope of (8.3). The van der Waals curve for two values of J (below and
abve the critical temperature J = 1) is plotted in Figure 8.2.1. We refer to
Section 7.2.1 for a detailed description of the different states regarding the van
der Waals curve of the CW model. The following expressions valid for J > 1,
will be useful in the sequel,





hsp = −

√
J(J − 1) + 1

2 ln
J+

√
J−1

J−
√
J−1

≈ 1
3 (J − 1)

3
2 ,

msp =
√

J−1
J ≈

√
J − 1,

(8.6)

and
m± ≈ ±

√
3(J − 1). (8.7)
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m

h

m

h

m+m−

(−msp, hsp)

(msp ,−hsp)

Figure 8.1: Left: van der Waals curve in the high temperature phase J < 1. Right:
low temperature phase J > 1. For m /∈ (m−,m+) the curve describes stable equilibrium
states and for m ∈ (m−,−msp) ∪ (msp, m+) it describes the metastable states. For
m ∈ (−msp,msp) the system is unstable. The Maxwell plateau describes superpositions
of m− and m+ states. That is, in the Maxwell plateau the oscillatory region between
m− and m+ is replaced by a straight line at height h = 0.

In these formulas ≈ means that J → 1+. The first order phase transition line
is (hc = 0, J > 1) and terminates at the critical second order phase transition
point (hc = 0, J = 1+). For J < 1 and h = 0, we havem± = 0. We will see that
for the chain models the difference between the first order phase transition and
spinodal thresholds becomes much smaller, and in fact vanishes exponentially
fast with the width of the coupling along the chain.

8.2.2 Chain Curie-Weiss Model

Consider 2L+ 1 integer positions z = −L, · · · ,+L on a one dimensional line.
At each position we attach a single CW spin system. The spins of each system
are labeled as siz, i = 1, · · · , N , and are subjected to a magnetic field h. The
spin-spin coupling is given by

− 1

N
Jz,z′sizsjz′ = − J

Nw
g(w−1|z − z′|)sizsjz′ (8.8)

where the function g(|x|) satisfies the following requirements:

a) It takes non-negative values and is independent of i, j and L. It may
depend on w itself (see comments below) however we still write g(|x|) instead
of gw(|x|).

b) Has finite support [−1,+1], i.e g(|x|) = 0 for |x| > 1.

c) It satisfies the normalization condition

1

w

+∞∑

z=−∞
g(w−1|z|) = 1. (8.9)

This is a purely ferromagnetic interaction which is of Kac type in the one
dimensional z direction and is purely mean field in the transverse ”infinite di-
mensional“ direction. Condition a) ensures that we can find asymptotically
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(as z → ±∞) translation invariant states. Allowing for sign variations cer-
tainly leads to a richer phase diagram and is beyond the scope of this paper.
Conditions b) and c) can easily be weakened without changing the main re-
sults at the expense of a slightly more technical analysis. One could allow for
functions that have infinite support and decay fast enough (with finite sec-
ond moment) at infinity. The normalization condition is set up so that the
strength of the total coupling of one spin to the rest of the system equals J
as N → +∞ (as in the individual CW system). For any given function g̃(|x|)
that is summable, we can always construct one that satisfies this condition
g(|x|) = wg̃(|x|)/

∑+∞
z=−∞ g̃(w−1|z|). This means that in general g(|x|) will de-

pend explicitly on w; however we could relax this slight fine tuning by taking
the normalization condition to hold only asymptotically as w → +∞, namely
that

∫ +∞
−∞ g(|x|) = 1.

The Hamiltonian is

HN,L = − 1

N

∑

〈iz,jz′〉

Jz,z′sizsjz′ . (8.10)

The first sum carries over all pairs 〈iz, jz′〉 (counted once each) with i, j =
1, · · · , N and z, z′ = −L, · · · , L. We will adopt a canonical ensemble with

m =
1

(2L+ 1)N

N,L∑

i=1,z=−L

siz (8.11)

fixed. The partition function ZN,L is defined by summing e−HN,L over all spin
configurations {siz = ±1, i = 1, · · · , N ; z = −L, · · · , L} satisfying (8.11).

We now show that the free energy fN,L = − 1
N(2L+1) lnZN,L is given by a

variational principle. Let us introduce a magnetization density at position z

mz =
1

N

N∑

i=1

siz, (8.12)

and a matrix
Dz,z′ = Jz,z′ − Jδz,z′ . (8.13)

This matrix is symmetric and for any z′ = −L, · · · ,+L it satisfies

L∑

z=−L

Dz,z′ ≤ J I(|z′ ± L| ≤ w) (8.14)

The important point here is that the row sum of (8.13) vanishes except for
z′ close to the boundaries. In this respect one may think of (8.13) as one-
dimensional Laplacian matrix and, as we will see, this becomes exactly the
case in an appropriate continuum limit of the model. The Hamiltonian can be
re-expressed as (up to a constant)

HN,L = −N

2

L∑

z,z′=−L

Dz,z′mzmz′ − NJ

2

L∑

z=−L

m2
z (8.15)
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In the thermodynamic limit the magnetization density becomes a continuous
variable mz ∈ [−1,+1] and the partition sum becomes (up to irrelevant pref-
actors)

ZN,L =

∫

[−1,+1]2L+1

L∏

z=−L

dmz δ

(
(2L+ 1)m−

L∑

z=−L

mz

)

× exp−N
(
−1

2

L∑

z,z′=−L

Dz,z′mzmz′ + Φ(mz)

)
. (8.16)

This integral can be interpreted as the canonical partition function of a one
dimensional chain of continuous compact spins mz ∈ [−1,+1], at nearly zero
temperature N−1, with Hamiltonian

ΦL[{mz}] = −1

2

L∑

z,z′=−L

Dz,z′mzmz′ +
L∑

z=−L

Φ(mz). (8.17)

The free energy of the finite chain obtained from (8.16) is

FL(m) = − lim
N→+∞

1

N
lnZN,L = min

mz:
∑

z mz=(2L+1)m
ΦL[{mz}]. (8.18)

The solutions of this variational problem satisfy the set of equations

{∑L
z′=−L Dz,z′mz′ = Φ′(mz)− λ

m = 1
2L+1

∑L
z=−L mz,

(8.19)

were λ is a Lagrange multiplier associated to the constraint (and where Φ′

denotes the derivative of the function Φ). Denote by (λ∗,m∗
z) a solution of

(8.19) for given m. The van der Waals equation of state is then given by the
usual thermodynamic relation

h =
1

2L+ 1

∂FL(m)

∂m
. (8.20)

In fact h = λ∗. Indeed, differentiating in (8.20) thanks to the chain rule and
then using (8.19) yields,

h =
1

2L+ 1

L∑

z=−L

(
−

L∑

z′=−L

Dz,z′m∗
z′ + Φ′(m∗

z)

)
dm∗

z

dm

=
λ∗

2L+ 1

L∑

z=−L

dm∗
z

dm

= λ∗ (8.21)
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Let us make a few remarks on alternative forms for the above equations. First,
summing over z the first equation in (8.19) we obtain thanks to (8.14)

h =
1

2L+ 1

L∑

z=−L

Φ′(m∗
z) +O(

w

L
) (8.22)

Second, using the explicit expression for the potential Φ(mz), equation (8.19)
for the minimizing profiles can be cast in the form

{
m∗

z = tanh
{
Jm∗

z + h+
∑+L

z′=−LDz,z′m∗
z′

}
,

m = 1
2L+1

∑L
z=−Lm∗

z .
(8.23)

This is a generalization of the CW equation to the chain model. We discuss a
continuum version of the equation in the next section.

For J ≤ 1 the single CW system has a unique equilibrium magnetization so
we expect a unique translation invariant solution for (8.23), namely m∗

z = m
(neglecting boundary effect). It then follows that the van der Waals curve of the
chain model is the same as that of the single CW model. On the other hand
for J > 1 the solutions of (8.19) display non-trivial kink-like magnetization
profiles. These solutions are responsible for an interesting oscillating structure
in the van der Waals curve. This is investigated both numerically and to some
extent analytically in the next two sections.

Before closing this section we want to point out that the same system can be
analyzed in the grand-canonical ensemble (always from the lattice gas perspec-
tive) by adding an external magnetic field term −h

∑
i,z siz to the Hamiltonian

(8.15). The definition of the model is completed by imposing the boundary
conditions:

1

N

N∑

i=1

si,±L = m±(h), (8.24)

wherem±(h) are the local minima of Φ(m)−hm. Note that when the minimum
is unique (for J ≤ 1 or J > 1 and |h| ≥ hsp) the two boundary conditionsm±(h)
are simply equal. The free energy (or minus the pressure of the lattice gas) is
given by the variational problem

min
mz :m±L=m±(h)

(
−1

2

L∑

z,z′=−L

Dz,z′mzmz′ +
L∑

z=−L

(Φ(mz)− hmz)

)
(8.25)

The critical points of this functional satisfy
{∑+L

z′=−LDz,z′mz′ = Φ′(mz)− h

m±L = m±(h)
(8.26)

which is also equivalent to
{
mz = tanh

{
Jmz + h+

∑+L
z′=−L Dz,z′mz′

}

m±L = m±(h).
(8.27)
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The solutions of (8.26) or (8.27) define curves m∗
z(h). Proving the existence of

these curves is beyond our scope here; in general these are not single valued
because the solutions are not unique for a given h. The van der Waals relation
h(m) can be recovered from these curves by using

m =
1

2L+ 1

L∑

z=−L

m∗
z(h) (8.28)

The magnetization profiles of the canonical and grand-canonical ensembles
only differ near the boundaries. Their bulk behavior which is our interest are
identical. In this paper this is verified numerically (Section 8.4). In the next
section we find it more convenient to refer to the grand-canonical formalism
(8.26), (8.27), (8.28).

8.3 A Continuum Approximation

The asymptotic limit of L >> w >> 1 reduces the solution of equations
(8.26), (8.27), (8.28) to a problem of Newtonian mechanics. In this limit we
obtain a non-linear integral equation which cannot be solved exactly; but whose
solutions can be qualitatively discussed for any fixed J > 1 (an exact solution
for all J > 1 is provided in a special case). Near the critical point J → 1+ this
equation is solved and the solutions used to compute an approximate version of
the van der Waals curve. In this way all the features of the numerical solution
are reproduced. Usually continuum limits are obtained when a lattice spacing
a between neighboring sites of the chain is sent to zero. This set up can also be
explored for the present model and one finds that it is non trivial only near the
critical point J → 1+, where it yields qualitatively identical results to the limit
w → +∞, J → 1+. Away from the critical point (J > 1) a → 0 is a trivial
limit which supports only homogeneous states, contrary to the w → +∞ limit
which displays non trivial features for all J > 1.

Asymptotics for L >> w >> 1. We set

z = wx, mz = mwx ≡ µ(x) (8.29)

so equation (8.26) is equivalent to

J

w

L∑

z′=−L

{
g(|x− z′

w
|)− wδx, z′w

}
µ

(
z′

w

)
= Φ′(µ(x)) − h. (8.30)

We take the limits L → +∞ first and w → +∞ second, so that this equation
becomes

J

∫ +∞

−∞
dx′{g(|x′|)− δ(x′)

}
µ(x+ x′) = Φ′(µ(x)) − h. (8.31)
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which can also be cast in a more elegant form (∗ denotes convolution)

tanh(Jg ∗ µ+ h) = µ. (8.32)

We cannot solve this equation in general, except for the special case of uniform
g. Equ. (8.32) for h = 0 appears in [62], [63] and existence plus properties
of solutions has been discussed. For our purpose a qualitative discussion of
its solutions suffices and we briefly outline it for the reader’s convenience. For
|x| >> 1 we can expand µ(x + x′) to second order (in (8.31)) since g(|x|)
vanishes for |x| > 1. This yields the approximate equation

Jκµ′′(x) ≈ Φ′(µ(x)) − h, κ =
1

2

∫ +∞

−∞
dx′ x′2g(|x′|). (8.33)

We recognize here Newton’s second law for a particle moving in the inverted
potential −Φ(µ(x)) where µ(x) is the particle’s position at time x and Jκ its
mass. Note this is not a Cauchy problem with fixed initial position and velocity,
but a boundary value problem with limx→±∞ µ(x) = m±(h); the boundary
conditions automatically fix the initial and final velocities. The nature of the
solutions can be deduced by applying the conservation of mechanical energy
for a ball rolling in the inverted potential. For J < 1 the inverted potential has
a single maximum at m+(h) = m−(h) and the only solution is µ(x) = m±(h),
corresponding to a homogeneous state. In fact this is also true for the integral
equation. Now we consider J > 1 and h = 0. At time −∞ the particle is
on the left maximum and starts rolling down infinitely slowly, then spends a
finite time in the bottom of the potential well, and finally climbs to the right
maximum infinitely slowly to reach it at time +∞. For the magnetization
profile mz this translates to a kink-like state. Note that the center of the kink
is set by the normalization condition (8.28), and thus we have a continuum of
solutions parametrized by the parameter m on the Maxwell plateau [m−,m+].
For J > 1 and h > 0, the particle starts with a positive initial velocity, rolls
down the potential well, and finally reaches the right maximum infinitely slowly.
Thus µ(x) = m+(h) for all x except for an interval of width O(1) near the
left boundary at minus infinity. This translates into an essentially constant
magnetization profile with a fast transition layer near the left boundary. for
J > 1 and h < 0 the picture is similar.

These arguments imply that in a first approximation (L and w infinite)
the van der Waals curve of the chain-CW system is given by the Maxwell
construction of the single CW system. In order to get the finer structure
around the Maxwell plateau we have to do a more careful finite size analysis.

Asymptotics for L >> w >> 1 large and J → 1+. Now we set

t =
√
J − 1x, µ(x) = µ(

t√
J − 1

) ≡
√
J − 1σ(t) (8.34)

and look at the regime J → 1+. A straightforward calculation shows that the
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left hand side of equation (8.31) becomes

J(J − 1)
3
2

2

{∫ +∞

−∞
dxg(|x|)x2

}
σ′′(t) +O((J − 1)

5
2 ), (8.35)

and that the right hand side becomes

(J − 1)
3
2 (−σ(t) + 1

3
σ(t)3)− h+O((J − 1)

5
2 ). (8.36)

Lastly, we set h̃ = h(J − 1)−
3
2 , and thus from (8.31), (8.35), (8.36)

κσ′′(t) = −σ(t) + 1

3
σ(t)3 − h̃. (8.37)

Again, this is Newton’s second law for a particle of mass κ moving in the
inverted potential

V (σ) =
1

2
σ2 − 1

12
σ4 + h̃σ. (8.38)

The boundary conditions (8.26) mean that the initial and final positions of the
particle for t→ ±∞ are the solutions of

σ± −
1

3
σ3± + h̃ = 0, (8.39)

corresponding to the local maxima of the potential. Initial and final velocities
are automatically fixed by the requirement that limt→±∞ σ(t) = σ±.

Summarizing, in the limit

lim
J→1+;h(J−1)−

3
2 fixed

lim
w→+∞

lim
L→+∞

(8.40)

the magnetization profile is

mz ≈
√
J − 1σ

(√
J − 1

z

w

)
(8.41)

where σ(t) is a solution of (8.37).

Kink states. For h̃ = 0 (meaning h = 0) (8.37) has the well known solutions

σkink(t) =
√
3 tanh

{
t− τ√
2κ

}
(8.42)

The center τ of the kink is a parameter that we have to fix from the normal-
ization condition. From (8.41) and (8.42) we have

1

2L+ 1

+L∑

z=−L

mz ≈
√
3(J − 1)

2L+ 1

+L∑

z=−L

tanh(L

√
J − 1

w
√
2κ

(
z

L
− wτ

L
√
J − 1

))

≈
√
3(J − 1)

2

∫ +∞

−∞
dx sign(

√
J − 1

w
√
2κ

(x− wτ

L
√
J − 1

))
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≈
√
3wτ

L
(8.43)

Since this sum must be equal to m we find τ ≈ mL√
3w

. The net result for the

magnetization profile is

mkink
z ≈

√
3(J − 1) tanh

{
1

w

√
J − 1

2κ
(z − mL√

3(J − 1)
)

}
(8.44)

Homogeneous states. When h̃ 7= 0 the solution cannot be put in closed
form. To lowest order in h̃ the solutions of (8.39) are σ± = ±

√
3 + h̃. The

initial velocity is (assuming the final velocity is zero) to leading order,

√
2

κ
(V (σ+)− V (σ−)) ≈ 2

31/4

h̃1/2
(8.45)

Thus, roughly speaking, the particle travels with constant velocity 2 31/4√
κ
h̃1/2

from position −
√
3+ h̃ during a finite time O(3

1/4√κ
h1/2 ) and then stays exponen-

tially close to the final position
√
3 + h̃

2 . The magnetization profile is

mz ≈






−
√
3(J − 1) + h

2(J−1) +
2√
κ
(3(J − 1))1/4h1/2( z+L

w ),

−L ≤ z ≤ −L+O( w
√
κ

2(3(J−1))1/4h1/2 )

√
3(J − 1) + h

2(J−1) , z ≥ −L+O( w
√
κ

2(3(J−1))1/4h1/2 )

(8.46)

Comparison of free energies. In this paragraph we compute a naive ap-
proximation for the free energy (8.18). First consider the energy difference
F kink
L − F const

L between kink mkink
z and constant mconst

z = m states both with
total magnetization m− < m < m+ on the Maxwell plateau. We write this as

F kink
L − F const

L = (FL(m±)− F const
L ) + (F kink

L − FL(m±)) (8.47)

Because of (8.14) the first term is easily estimated as (2L+1)(Φ(m±)−Φ(m))+
O(w) which is negative for m on the Maxwell plateau. Since the magnetization
density of the kink state tends exponentially fast to m± for z → ±∞ the second
term is clearly O(w) and therefore for L large the kink states are stable3. But
our interest here is in a precise calculation of this second term which displays
an interesting oscillatory structure.

F kink
L − FL(m±) =− 1

2

L∑

z,z′=−L

Dz,z′(mkink
z mkink

z′ −m2
±) (8.48)

3this argument breaks down for |m−m±| = O(L− 1
2 ); this is discussed in Section 8.4
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+
L∑

z=−L

(Φ(mkink
z )− Φ(m±))

Using (8.44) and (8.14) it is easy to see that, in the bulk, (8.48) is a periodic

function of m with period
√

3(J−1)

L , as long as the center of the kink is in the
bulk. To compute it we first extend the sums to infinity and use the Poisson
summation formula

∑

z∈N
F (z) =

∑

k∈N

∫ +∞

−∞
dze2πikzF (z) (8.49)

for

F (z) = −1

2

+∞∑

z′=−∞
Dz,z′(mkink

z mkink
z′ −m2

±) + Φ(mkink
z )− Φ(

√
3(J − 1))

(8.50)

A look at (8.44) shows that it has poles in the complex plane at zn = mL√
3(J−1)

+

iπ(n + 1
2 )w
√

2κ
J−1 , n ∈ N. This suggests that the first term in (8.50) has

the same pole structure. The second term involving the potential is more
subtle because its exact expression involves a logarithm which induces branch
cuts. However one can show, keeping the true expression for the potential,

that the branch cuts are outside of a strip |D(z)| < π
2w
√

2κ
J−1 , and therefore

F (z) is analytic in this strip. This is enough to deduce from standard Paley-

Wiener theorems that for w
√

2κ
J−1 large |F (k)| = O(e−|k|w

√
2κ

J−1 (π
2−ε)). In the

appendix we perform a detailed analysis to show (for J → 1+, w large and k
fixed)

∫ +∞

−∞
dze2πikzF (z) ≈ 4(J − 1)κw2π2k

(
1− k2

π2w2κ

J − 1

)
sinh−1

(
kπ2w

√
2κ

J − 1

)

(8.51)
Retaining the dominant terms k = 0 and k = ±1 in the Poisson summation
formula we find for the free energy (m− < m < m+)

F kink
L (m) ≈(2L+ 1)Φ(m±) + 4w(J − 1)3/2

√
κ

2

− 16(πw)4κ2e−π
2w
√

2κ
J−1 cos

(
2πm

L√
3(J − 1)

)
(8.52)

This result confirms the Maxwell construction, namely that the free energy
per unit length converges to the convex envelope of Φ(m). The finite size
corrections display an interesting structure. The first correction O((J − 1)3/2)
comes from the zero mode and represents the ”surface tension” of the kink
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interface. The oscillatory term is a special feature of coupled mean field models.
According to formula (8.44) mL√

3(J−1)
is the position of the kink, thus the profiles

centered at integer positions correspond to minima of the periodic potential
and are stable, while those centered at half-integer positions correspond to
maxima and are therefore unstable states. The energy difference between a
kink centered at an integer and one centered at a neighboring half-integer is a
Peierls-Nabarro barrier

32(πw)4κ2e−π
2w
√

2κ
J−1 . (8.53)

This is the energy needed to displace the kink along the chain. Such energy
barriers are usually derived within effective soliton like equations for the motion
of defects in crystals [65]. Here the starting point was a microscopic statistical
mechanics model.

Oscillations of the van der Waals curve. The van der Waals curve is
easily obtained (m− < m < m+)

h =
1

2L+ 1

∂F kink
L (m)

∂m
=

1

2L+ 1

∂

∂m
(F kink

L − FL(m±)) (8.54)

≈ 16π(πw)4κ2√
3(J − 1)

e−π
2w
√

2κ
J−1 sin

(
2πm

L√
3(J − 1)

)

At this point we note that the limit L → +∞ and ∂
∂h do not commute.

This is so because on the Maxwell plateau we have a sequence of transi-
tions4 from one kink state to another. In accordance with the numerical cal-
culations, we find a curve that oscillates around the Maxwell plateau m ∈
[−
√
3(J − 1),+

√
3(J − 1)] with a period O(

√
3(J−1)

L ). The amplitude of these
oscillations is exponentially small with respect to w and thus much smaller
than the height O((J − 1)3/2) of the spinodal points (see (8.6)). For example
for the uniform coupling function we have κ = 1/6 and the amplitude of the

oscillations is O(e
−π2w

√
1

3(J−1) ).

Uniform interaction: h = 0 and all J . In case of a uniform interaction
along the chain g(|x|) = 1

2 , |x| ≤ 1 and 0 otherwise, it turns out that equation
(8.32) has the exact solution

µ(x) = m± tanh Jm±(x− x0) (8.55)

for all h = 0 and J . This can be checked directly by inserting the function
in (8.32) and seeing that it reduces to the CW equation for m±. Of course
this solution is non trivial only for J > 1. Relating the center x0 to the total
magnetization we get the magnetization profile

mz ≈ m+ tanh

{
Jm±

w
(z − m

m±
L)

}
(8.56)

4these can be thought as first order phase transitions with infinitesimal jump disconti-
nuities
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Here ≈ means that L >> w >> 1. One can check that the formula reduces to
(8.44) when J → 1+. With this expression one can compute an exact formula
for the exponent of the amplitude of oscillations of the van der Waals curve.
Indeed as argued after (8.50) this exponent is solely determined by the location
of the poles of (8.56) for z ∈ C. Therefore we obtain for the case of the uniform
interaction and all J > 1,

h = C(w, J)e
− π2w

Jm± sin
(
2π

m

m±
L
)

(8.57)

where C(J,w) is a prefactor that could in principle be computed by extending
the calculation of the Appendix. Up to this prefactor, the Peierls-Nabarro

barrier is e
− π2w

Jm+ for all J > 1.

Remarks. The main features of these oscillations, their period and exponen-
tially small amplitude, are independent of the details of the exact model and
its free energy. Only the prefactor will depend on such details. The period is
equal to m+−m−

2L where m+ −m− is the width of the Maxwell plateau. The
wiggles have an amplitude e−2π∆ where ∆ is the width of a strip in C where
the kink profile is analytic (when the position variable z is continued to C). In
general we have ∆ = α wπ

2Jm+
were α = O(1). For the uniform window α = 1

and in general when J → 1+ we have α → κ−1/2. The point here is that the
amplitude of the wiggles does not depend on the details of the free energy but
only on the locations of the singularities mkink

z in the complex plane. If an
explicit formula is not available for the kink profiles ∆ can still be estimated
by numerically computing the discrete Fourier transform of the kink and iden-
tifying ∆ with its rate of decay. This quantity will always be proportional to
the scale factor w in mkink

z .

8.4 Numerical Solutions

We have carried out the numerical computations both for the equations in
the canonical and grand-canonical formulations. These confirm the analytical
predictions for the oscillations of the van der Waals curve. Near the end points
of the Maxwell plateau the situation is not identical for the canonical and
grand-canonical ensembles because boundary effects become important. For
simplicity we start with the grand-canonical formulation.

Grand-canonical equations. It is convenient to solve a slightly different
system of equations than (8.27) in order to eliminate boundary effects (one
may think of this as a modification of the model at the boundaries of the
chain)






mz = tanh
{
Jmz + h+

∑+L+w−1
z′=−L−w+1Dz,z′mz′

}
, −L ≤ z ≤ +L

mz = m+(h), L+ 1 ≤ z ≤ L+ w − 1

mz = m−(h), −L− w + 1 ≤ z ≤ −L− 1.

(8.58)
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In other words, we force the profile to equalm−(h) at extra positions −L−w+1
to −L − 1 and to m+(h) at extra positions L + 1 to L + w − 1. The van der
Waals relation h(m) is recovered from the solutions m∗

z(h) of (8.58) by using
(8.28). The first equation is equivalent to

h = −(J +Dzz)mz + tanh−1 mz −
L+w−1∑

z′=−L−w+1,z′ 2=z

Dzz′mz′ (8.59)

Summing over z and using (8.28) we obtain

h = −(J +Dzz)m+
1

2L+ 1

L∑

z=−L

{
tanh−1 mz −

L+w−1∑

z′=−L−w+1,z′ 2=z

Dzz′mz′

}

(8.60)
Also, (8.59) is equivalent to

mz(J +Dz,z − 1) = tanh−1 mz −mz −
L+w−1∑

z′=−L−w+1,z′ 2=z

Dz,z′mz′ − h (8.61)

The last two equations are the basis of:

Procedure 4 Iterative solutions of (8.58)

1: Fix m. Initialize m(0)
z = m for −L ≤ z ≤ L and h(0) = 0.

2: From m(t)
z compute:

h(t+1) ← (J +Dz,z)m+
1

2L+ 1

L∑

z=−L

{
tanh−1 m(t)

z −
L+w−1∑

z′=−L−w+1,z′ &=z

Dzz′m
(t)
z′

}

3: For −L ≤ z ≤ +L, update m(t+1)
z as

m(t+1)
z ← 1

J +Dz,z − 1

{
tanh−1 m(t)

z −m(t)
z −

L+w−1∑

z′=−L−w+1,z′ &=z

Dz,z′m
(t)
z′ −h(t+1)

}

and for a tunable value θ (for θ = 0.9 the iterations are “smooth”)

m(t+1)
z ← θm(t)

z + (1− θ)m(t+1)
z

4: For −L−w+1 ≤ z ≤ −L−1 letm(t+1)
z ← m−(h

(t+1)) and for L+1 ≤ z ≤ L+w−1

let m(t+1)
z ← m+(h(t+1)).

5: Continue until t = T such that the %1 distance between the two consecutive
profiles is less than some prescribed error δ. Output h(T )(m) and m(T )

z .

Figures 8.2 and 8.3 show the output of this procedure for L = 25, w = 1,
g(0) = 1

2 , g(±1) = 1
4 . We see from Figure 8.3 that when J = 1.1, already for

w = 1 the continuum approximation equ. (8.44) for the profile is good.
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m

h

(0.53,−0.15)

(−0.53, 0.15)

0.81−0.81

Figure 8.2: Dotted line: van der Waals curve of single system for J = 1.4. Continuous
line: van der Waals isotherm for J = 1.4, L = 25, w = 1 and g(0) = 1

2 , g(±1) =
1
4 . Circles: 40-fold vertical magnification. Throughout the plateau one has 50 wiggles
corresponding to 50 stable kink states.

−L L0
z

mz

−L L0
z

mz

Figure 8.3: Vertical bars are the numerical values and the continuous lines (blue and
green) are given by equations (8.44), (8.46). Left: kink state centered at m = 0 (so
h = 0) and J = 1.4, L = 25, w = 1, g(0) = 1

2 , g(±1) = 1
4 . Right: homogeneous

solution for the same J , L, w, g and h(m) = 0.017.

Table 8.1 compares the numerical amplitude of the oscillations Nw for the
van der Waals curve with the analytical formula (8.54)

16π(πw)4κ2√
3(J − 1)

︸ ︷︷ ︸
Cw

exp

(
−π2w

√
2κ

J − 1

)

︸ ︷︷ ︸
Ew

. (8.62)

We take J = 1.05, and the triangular window g(|x|) = 2w
1+3w (1− |x|

2 ). In order
to get a stable result for w = 3 we have to go to lengths L = 250. We see that
the agreement is quite good for the exponent while the pre-factor seems to be
off by a constant factor O(1).

For larger values of J and uniform window g(|x|) = w
2w+1 we can use formula

(8.57) to compare the numerical amplitude Nw with Ew = e
− π2w

Jm± . Table 8.2
shows the results for J = 1.4 and L = 80.

Canonical equations. Let us now discuss the numerical solutions of (8.23).
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Table 8.1: Amplitude of wiggles: J = 1.05 and triangular window.

w Nw Ew Cw
logNw

logCwEw

log Nw
Cw

logEw

log Nw
Ew

logCw

1 2.5× 10−12 2.8× 10−14 7.9× 102 1.09 1.07 0.67
2 3.4× 10−22 9.3× 10−25 7.8× 103 1.07 1.06 0.66
3 6.7× 10−32 5.1× 10−35 3.2× 104 1.05 1.04 0.69
4 3.2× 10−41 3.3× 10−45 9.2× 104 1.02 1.02 0.80

Table 8.2: Amplitude of wiggles: J = 1.4 and uniform window.

w Nw Ew
logNw

logEw

1 2.2× 10−5 1.7× 10−4 1.24
2 3.5× 10−9 3.0× 10−8 1.12
3 5.9× 10−13 5.2× 10−12 1.08
4 1.0× 10−16 9.0× 10−16 1.06

Here the boundary conditions are not forced at the outset and adjust themselves
to non-trivial values when m is on the plateau. It turns out that for some values
of m the output of iterations is greatly affected by the choice of the initial
profile. Thus in order to find the correct global minimum of the canonical
free energy a suitable initial condition must be chosen. A natural choice is to
choose the solution of (8.58) as the initial point. The numerical procedure is
as follows:

Procedure 5 Iterative solutions of (8.23)

1: Fix m. Initialize m(0)
z and h(0) to a solution of (8.58) given by algorithm 1.

2: From m(t)
z compute:

h(t+1) ← (J +Dz,z)m− 1
2L+ 1

{ L∑

z=−L

tanh−1 m(t)
z +

L∑

z=−L

L∑

z′=−L,z′ &=z

Dz,z′m
(t)
z′

}

3: For −L ≤ z ≤ +L, first update m(t+1)
z as:

m(t+1)
z ← 1

J +Dz,z − 1

{
tanh−1 m(t)

z −m(t)
z −

L∑

z′=−L,z′ &=z

Dz,z′m
(t)
z′ − h(t+1)

}

and for a tunable value θ (say θ = 0.9),

m(t+1)
z ← θm(t)

z + (1− θ)m(t+1)
z

4: Continue until t = T such that the %1 distance between the two consecutive
profiles is less than a prescribed error δ. Output h(T ) and m(T )

z .

Figure 8.4 shows the van der Waals curve for J = 1.4 with L = 25, w = 1
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and g(0) = 1
2 , g(±1) = 1

2 . Apart from the usual oscillations on the Maxwell
plateau we observe that near the extremities (close to m±) the curve follows
the metastable branch of the single system. This can easily be explained from
equ. (8.52). Indeed, the energy difference between a kink and constant state
(mz = m) is

(2L+ 1)Φ(m±) + 4w(J − 1)3/2
√
κ

2
− (2L+ 1)Φ(m) (8.63)

where we drop the exponentially small oscillatory contribution. When |m−m±|
is very small this difference becomes positive because of the surface tension
contribution of the kink, and the constant state is the stable state. It is easily
seen that this happens for (m−m±)2 < 2w

2L+1

√
κ
2 (J−1)3/2 As seen in Figure 8.5

this boundary effect vanishes as L grows large. Finally Figure 8.6 displays
magnetization profiles: in the bulk they are identical to the grand-canonical
ones, while near the boundaries the magnetization is reduced since the effective
ferromagnetic interaction is smaller.

m

h

(0.53,−0.15)

(−0.53, 0.15)

0.81−0.81

Figure 8.4: Dotted line: isotherm of single system for J = 1.4. Continuous line:
isotherm of coupled model with L = 25, w = 1, g(0) = 1

2 , g(±) = 1
2 . Vertical

magnification factor in the circle is 40. For |m − m±| = O(L− 1
2 ) there is a boundary

effect explained in main text.

m

h

(0.30,−0.02)

(−0.30, 0.02)

0.50−0.50

Figure 8.5: Behavior of the boundary effect for J = 1.1 (same w and g as above) and
L = 25, 100, 400.
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−L L0
z

mz

−L L0
z

mz

Figure 8.6: Magnetization profiles for J = 1.1, L = 25 (same w and g as above). Left:
kink centered at m = 0. Right: homogeneous solution for h(m) = 0.017.

8.5 Further Remarks and Open Directions

We introduced the CW model as a “toy model” to understand the threshold
saturation phenomenon. As mentioned in Chapter 7, the same phenomenon
occurs in a wide variety of spatially coupled systems such as constraint satis-
faction problems, compressed sensing, and communication systems.

What is the generic picture that emerges? All systems considered above
are coupled chains of individual infinite dimensional systems or mean field sys-
tems. Indeed the individual systems are defined on sparse graphs or complete
graphs, which are both, in some sense, infinite dimensional objects. Besides,
their exact (or conjecturally exact) solutions are given by mean field equations
(Curie-Weiss equation, cavity/replica equations, etc). These equations (for the
individual system) have two stable fixed point solutions which describe the
order parameter of the equilibrium states for the individual system. When
boundary conditions are fixed such that the order parameter takes the two
equilibrium values at the ends of the chain, the spatially coupled system has a
series of new equilibrium states corresponding to kink profiles. Since the kink
interface is well localized its free energy is close to a convex combination of the
two free energies corresponding to the boundary conditions. Because of the
discrete nature of the chain there are tiny free energy barriers corresponding to
unstable positions for the kinks in-between two positions on the chain. This is
the origin of the wiggles, both in the free energy functional (of CW or Landau
or Bethe type) and in the van der Waals like curves.

There are many open questions that are worth investigating. To name a
few principal ones, it is worth investigating the connections to coupled MAP
systems, and discrete soliton equations and the stability of their solutions. This
would allow to better understand whether the phenomenon occurs or not. Also
the algorithmic implications of threshold saturation is a largely open direction.

8.6 Appendix

We give the main steps leading to formulas (8.51) and (8.52). First we notice
that

F̂ (k) ≡
∫ +∞

−∞
dz e2πikzF (z) = e

2πik mL√
3(J−1)

∫ +∞

−∞
dze2πikzG(z) (8.64)
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with

G(z) = −1

2

+∞∑

z′=−∞
Dz,z′(m0

zm
0
z′ −m2

±) + Φ(m0
z)− Φ(

√
3(J − 1)) (8.65)

and m0
z is a kink centered at the origin,

m0
z =

√
3(J − 1) tanh

{
1

w

√
J − 1

2κ
z

}
. (8.66)

Now we evaluate the sum over z′ in the first term of (8.65). Setting z′ = wx′

we have for w very large,

+∞∑

z′=−∞
Dz,z′m0

z′ =
J
√
3(J − 1)

w

+∞∑

z′=−∞
(g(| z

w
− z′

w
|)− wδ z

w , z
′

w
) tanh

{√
J − 1

2κ

z′

w

}

≈ J
√
3(J − 1)

∫ +∞

−∞
dx′(g(|x′|)− δ(x′)) tanh

{√
J − 1

2κ
(x′ +

z

w
)

}

≈ J
√
3(J − 1)κw2 d2

dz2
tanh

{
1

w

√
J − 1

2κ
z

}
(8.67)

Therefore

+∞∑

z′=−∞
Dz,z′m0

z′ = −
√
3J(J−1)3/2

(
1−tanh2

{ 1
w

√
J − 1

2κ
z
})

tanh
{ 1
w

√
J − 1

2κ
z
}

(8.68)
In a similar way one shows that the −m2

± term does not contribute, and one
finds

G(z) ≈ 3

2
J(J − 1)2

(
1− tanh2

{ 1
w

√
J − 1

2κ
z
})

tanh2
{ 1
w

√
J − 1

2κ
z
}

+ Φ
(√

3(J − 1) tanh
{ 1
w

√
J − 1

2κ
z
})
− Φ
(√

3(J − 1)
)

(8.69)

Replacing in (8.64) we get after a scaling,

F̂ (k) = w

√
2κ

J − 1
e
2πik mL√

3(J−1)

∫ +∞

−∞
dze2πikw

√
2κ

J−1 zG̃(z) (8.70)

where

G̃(z) ≈3

2
J(J − 1)2

(
1− tanh2 z

)
tanh2 z

+ Φ
(√

3(J − 1) tanh z
)
− Φ
(√

3(J − 1)
)

(8.71)

As a function of z ∈ C, G̃(z) is analytic in the open strip |D(z)| < π
2 . In-

deed tanh z has poles at zn = (n + 1
2 )iπ, n ∈ Z and Φ has branch cuts for
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√
3(J − 1) tanh z ∈]−∞,−1] ∪ [1,+∞[, or equivalently on the intervals

z ∈ ∪n∈Z

[
zn, zn −

1

2
sign(n) ln

∣∣∣∣
1 +
√
3(J − 1)

1−
√
3(J − 1)

∣∣∣∣

]
. (8.72)

It is easy to see that the integrand in (8.70) tends to zero exponentially fast,
as R → +∞, for z = ±R+ iusign(k), |u| ≤ π

2 − δ (any 0 < δ < 1). Therefore
we can shift the integration over R to the line z = t + i(π2 − δ)sign(k), t ∈ R,
which yields,

F̂ (k) =w

√
2κ

J − 1
e
2πik mL√

3(J−1) e−|k|w
√

2κ
J−1π(π−2δ) (8.73)

×
∫ +∞

−∞
dte2πitw

√
2κ

J−1 G̃(t+ i(
π

2
− δ)sign(k))

From expression (8.71) it is possible to show the estimate (for |J − 1| << 1
and 0 < δ << 1 and C a numerical constant) |G̃(t + isignk(π2 − δ))| ≤ C(J −
1)2e−2|t|δ−4. Since δ can be taken as small as we wish, this allows to conclude
that

F̂ (k) = Cδ,J,w(k)δ
−4(J − 1)3/2w

√
2κe

2πik mL√
3(J−1) e−|k|w

√
2κ

J−1π(π−2δ) (8.74)

where Cδ,J(k) < C for all k. This result implies that the Van der Waals curve

has oscillations, around the Maxwell plateau, of period
√

3(J−1)

L and amplitude

e−w
√

2κ
J−1π

2

. By replacing the first terms of the expansion of Φ when J → 1+.
we can obtain a completely explicit approximation for F̂ (k). Thanks to the
exact formula ∫ +∞

−∞
dzeikz(1− tanh4 z) =

π

6

k(8− k2)

sinh kπ
2

(8.75)

and using Φ(m) ≈ −J−1
2 m2 + 1

12m
4 we get

G̃(z) ≈ 3

4
(J − 1)2

(
1− tanh4 z

)
, (8.76)

we find asymptotically for w large, J → 1+ and any fixed k

F̂ (k) ≈ 4(J − 1)κw2π2k
(
1− k2

π2w2κ

J − 1

)
sinh−1

(
kπ2w

√
2κ

J − 1

)
. (8.77)

This is formula (8.51) of the main text. For the zero mode k = 0 we get

F̂ (0) ≈ 4(J − 1)3/2w

√
κ

2
(8.78)

and for the other ones k ∈ Z∗

F̂ (k) ≈ −8(πw)4κ2|k|3e−|k|π2w
√

2κ
J−1 e

2πik mL√
3(J−1) (8.79)

Finally, for the reader’s convenience, we point out that to check (8.75)

one can use 1
6 (tanh z)

′′′ + 8
6 (tanh z)

′ = 1 − tanh4 z and
∫ +∞
−∞ dzeikz tanh z =

iπ(sinh πk
2 )−1 [88].



Coupled Constraint Satisfaction
Problems 9
9.1 Problem Formulation

As explained in Chapter 7, the K-SAT ensemble has attracted much attention
in computer science, mathematics and statistical physics during the recent two
decades. By now, we know that random K-SAT formulas enjoy a number
of intriguing mathematical properties. Many properties have been discovered
and there are many others yet to be found or made rigorous. In particular,
the highly intuitive but non-rigorous tools from statistical physics have led
to the discovery of a much more refined framework for studying CSPs. Such
a framework predicts a series of important aspects of the solutions space of
the random K-SAT formulas and is able to locate the corresponding phase
transitions very precisely (for a brief review see Section 7.3.2).

The coupledK-SAT ensemble was introduced in Section 7.3.3. In this chap-
ter and the next, we investigate various properties and aspects of the coupled
K-SAT ensemble. In particular, we show how various versions of the threshold
saturation phenomenon become apparent as a result of the additional spatial
structure. In this chapter1, we focus on the location of different phase tran-
sitions of the coupled ensemble and their relation to the phase transitions of
the individual K-SAT ensemble. The main tools that we use are the interpo-
lation method and the (energetic and entropic) cavity method. We adopt in
this chapter the terminology of statistical physics.

The outline is as follows. In Section 9.2 we review the suitable notation
and terminology required for this chapter. We also introduce the Q-COL and
K-XORSAT ensembles and their coupled versions. In Section 9.3, we use
combinatorial interpolation methods [85] to relate several characteristics of the
coupled ensemble to the individual ensemble. In Section 9.4, we apply the zero

1The material of this chapter is based on [68].

171
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temperature cavity method (the survey propagation formalism) to the coupled
ensemble. Finally, the entropic cavity method on the coupled ensemble will be
the subject of Section 9.6.

We conclude this section by noticing that similar results hold for other CSP
models (e.g. Q-COL), however, we do not address them in detail for the sake
of briefness and refer the interested reader to [68].

9.2 General Setting

We define a general class of CSP that form the individual ensemble. Then
we couple these, to form one-dimensional chains called spatially coupled-CSP
ensembles.

9.2.1 Individual CSP Ensemble [N,K,α].

First, we specify an ensemble (N,K,α) of random bipartite graphs. Let G =
(V ∪ C,E) with variable nodes i ∈ V , constraint nodes c ∈ C and edges 〈c, i〉
connecting sets C and V . We have |V | = N , |C| = M , where M = /αN0
(the integer part of αM) and α is a fixed number called the constraint density.
We call N the size of the graph which is to be thought as large, N → +∞.
All constraints c have degree K, and each edge 〈c, i〉 emanating from c is
independently connected uniformly at random (u.a.r.) to a node in i ∈ V . As
N → +∞, the degrees of the variable nodes tend to independent identically
distributed (i.i.d.) with distribution Poisson(αK).

We denote by ∂i the set of constraints connected to variable node i and by
∂c the set of variable nodes connected to a constraint c.

For each graph G of the ensemble [N,K,α] we define a Hamiltonian (or cost
function). To the variable nodes i ∈ V we attach variables xi ∈ X taking values
in a discrete alphabet X . To each constraint c ∈ C we associate a function
ψc(x∂c) which depends only on the variables x∂c = (xi)i∈∂c connected to c. For
constraint satisfaction problems ψc(x∂c) ∈ {0, 1}; we say that the constraint is
satisfied if ψc(x∂c) = 1 and not satisfied if ψc(x∂c) = 0. The total Hamiltonian
is

H(x) =
∑

c∈C

(1− ψc(x∂c)). (9.1)

For many problems of interest the functions ψc are themselves random. This
will be made precise in each specific example; the only important condition
is that the functions ψc are i.i.d. for all c ∈ C. The ground state energy is
minxH(x), the minimum possible number of unsatisfiable constraints. Our
main interest is in the average ground state energy per node

eN(α) =
1

N
E[min

x
H(x)] (9.2)

where the expectation is taken over the [N,K,α] ensemble and possibly over
the randomness of ψc.
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9.2.2 Coupled-CSP Ensemble [N,K,α, w, L].

This ensemble represents a chain of coupled underlying ensembles. Figure 9.1
is a visual aid but gives only a partial view. We align positions z ∈ Z. On each
position z ∈ Z, we lay down N variable nodes labeled (i, z) ∈ Vz, i = 1, · · · , N .
We also lay down M = /αN0 check nodes labeled (c, z) ∈ Cz, c = 1, · · · ,M .
When the node labels are used as subscripts, say as in a(i,z) or a(c,z), we will
simplify the notation to aiz or acz. Let us now specify how the set of edges, E,
is chosen. Each constraint (c, z) has degreeK, in other words K edges emanate
from it. Each of theseK edges is connected to variable nodes as follows: we first
pick a position z + k with k uniformly random in the window {0, · · · , w − 1},
then we pick a node (i, z + k) u.a.r. in Vz+k, and finally we connect (c, z)
to (i, z + k). The set of edges emanating from (i, z) can be decomposed as
a union ∪w−1

k=0 {〈(c, z − k), (i, z)〉 | c ∈ Cz}. Asymptotically as N → +∞, its
cardinality is Poisson(αK); and the cardinalities of each set in the union are
i.i.d. Poisson(αKw ).

Finally, we restrict the set of constraint nodes to ∪z=0,··· ,L−wCz and delete
edges emanating from constraints that do not belong to this set. Restrict the
set of variable nodes to ∪z=0,··· ,L−1Vz .

0 L− w

0 L− w L− 1

Figure 9.1: A representation of the geometry of the graphs with window size w = 3

along the “longitudinal chain direction” z. The “transverse direction” is viewed from
the top. At each position there is a stack of N variable nodes (circles) and a stack M

constraint nodes (squares). The depicted links between constraint and variable nodes
represent stacks of edges.

As in subsection 9.2.1, we have a set of variables xiz ∈ X and constraint
functions ψcz(x∂cz) taking values in {0, 1}. To each coupled graph in the
ensemble we associate the Hamiltonian depending on x = (xiz), with (i, z)
being inside the set ∪z=−L

2 +1,··· ,L2 +w−1Vz ,

Hcou(x) =
L−w∑

z=0

∑

c∈Cz

(1− ψcz(x∂(cz))). (9.3)

The minimum over x is the ground state energy and its ensemble average per
node is

eN,L,w(α) =
1

NL
E[min

x
Hcou(x)], (9.4)
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where E is over the [N,K,α, w, L] graph ensemble and on the randomness in
ψcz.

Remark about the constraint density. In this paper we have adopted
the constraint density of the underlying ensemble α as our control parameter.
For a chain of coupled ensembles it represents the density of constraints in the
bulk. More precisely, for a chain of length L the ratio of the total number of
contraints to the total number of nodes is M(L−w+1)

NL (see figure 9.1). This
means that the average density of constraints is αav(L,w) = αL−w+1

L < α.
This tends to α as L→ +∞ so that in this limit the average density becomes
insensitive to the boundary. In the present context, the spatial structure makes
it more natural to take the bulk rather than the average density as a control
parameter.

Remark about the boundary conditions. In the formulation above we
have free boundary conditions. However, the average degree of the variable
nodes close to the boundaries is reduced so that the CSP is easier to solve
close to the boundaries. Variable nodes close to the right boundary z = L −
w, · · · , L − 1 have degrees Poisson(αKw (L − 1 − z)), and those close to the
left boundary z = 0, · · · , w − 1 have degrees Poisson(αKw (z)). It is sometimes
convenient to imagine that the boundary nodes are connected to “satisfied
extra constraint nodes”, and all have Poisson(αK) degree.

9.2.3 K-SAT, Q-COL and K-XORSAT

We define the main examples of constraint satisfaction problems that we ana-
lyze in this paper.

The K-SAT problem. The individual system is defined as follows. We take
xi ∈ {0, 1} the Boolean alphabet. Set n(xi) ≡ x̄i for the negation operation,
and define nd(xi) ≡ xi when d = 0 and nd(xi) ≡ n(xi) = x̄i when d = 1. Pick
Bernoulli(12 ) i.i.d. numbers d〈c,i〉 for each edge 〈c, i〉 ∈ E. We say that an edge
is dashed when d〈c,i〉 = 1 and full when d〈c,i〉 = 0. With this convention, a
variable in a constraint is negated when it is connected to a dashed edge, and
is not negated when it is connected to a full edge. We set

ψc(x∂c) = (∨i∈∂c(n
d〈c,i〉(xi)) = 1). (9.5)

These definitions are extended to the coupled system in an obvious way

ψcz(x∂(cz)) = (∨iu∈∂(cz)(n
d〈cz,iu〉(xiu)) = 1), (9.6)

where the important point is that d〈cz,iu〉 are i.i.d. Bernoulli(12 ) for all edges.
The ground state energy counts the minimum possible number of unsatisfiable
constraints. The instance is satisfiable iff the ground state energy is equal to
zero.

The Q-COL problem. For the individual ensemble, we take xi ∈ X =
{0, · · · , Q−1} the Q-ary color alphabet, K = 2 for the constraint node degrees,
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and
ψc(x∂c) = (xi 7= xj for {i, j} = ∂c). (9.7)

Since the constraints have degree 2 one can replace them by edges connecting
directly i and j for i, j ∈ ∂c. The induced graph is, in the large size limit,
equivalent to the Erdoes-Rényi random graph G(N, 2c

N ) ). The constraint (9.7)
forbids two neighboring nodes to have the same color.

These definitions are easily extended to the coupled system. The induced
graph (obtained by replacing constraints by edges) is now a coupled chain of
Erdoes-Rényi graphs. In place of (9.7) we take xiz ∈ X = {0, · · · , Q− 1} and

ψcz(x∂(cz)) = (xiu 7= xjv for {(i, u), (j, v)} = ∂(c, z)). (9.8)

Given an instance of the induced graph, the ground state energy counts the
minimum possible number of edges with vertices of the same color. The graph
is colorable iff this number is zero.

The K-XORSAT problem. We briefly give relevant definitions that will be
used later in the thesis. For the individual system xi ∈ {0, 1} and ψc(x∂c) =
(⊕i∈∂cxi = bc) with bc being i.i.d. Bernoulli(12 ). Similarly for the coupled

system ψcz(x∂(cz)) = (⊕iu∈∂(cz)xiu = bcz) with bcz being i.i.d. Bernoulli(12 ).

9.3 Interpolation Arguments: From the Individual Ensemble
to the Coupled Ensemble and Vice Versa

For the purpose of analysis, it is useful to also consider an ensemble of coupled
graphs with periodic boundary conditions. This ensemble is simply obtained
from the [N,K,α, w, L] ensemble by identifying the variable nodes (i, z) at
positions z = L − w + k with nodes (i, z) at positions z = k for each k =
1, · · · , w− 1. The formal expression of the Hamiltonian Hper

cou(x) is the same as
in (9.3). Quantities pertaining to this ensemble will be denoted by a superscript
”per“.

Theorem 9.1 (Comparison of open and periodic chains). For the general
coupled-CSP [N,K,α, w, L] ensembles we have

eperN,L,w(α)−
αw

L
≤ eN,L,w(α) ≤ eperN,L,w(α). (9.9)

This theorem has an easy proof given in Section 9.8.1.
The next theorem does not have a trivial proof and is stated here for the

special cases of K-SAT. We note here that the same result is true for the
problems of Q-COL and K-XORSAT.

Theorem 9.2 (Thermodynamic limit). For the K-SAT model the two lim-
its limN→+∞ eN (α) and limN→+∞ eperN,L,w(α) exist, are continuous, and non-
decreasing in α. Moreover they are equal,

lim
N→+∞

eperN,L,w(α) = lim
N→+∞

eN (α). (9.10)
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Standard methods of statistical mechanics [109] do not allow to prove the
existence of the limits because the underlying graphs have expansion properties.
When the system is cut in two parts the number of edges in the cut is of
the same order as the size of the two parts and is not just a “surface” term.
Therefore sub-additivity of the free and ground state energies become non-
trivial. However, interpolation methods allow to deal with this issue. The
existence of the limit for limN→+∞ eN (α), as well as the fact that the function
is continuous and non-decreasing, is proved for a range of models including
the present ones in [107], [85], and it is easy to see that the same sort of
proof works for the periodic chain. This proof will not be repeated. In section
9.8.1 we provide the proof for the equality of the two limits. This is again
based on two interpolations which provide upper and lower bounds. Note that
concentration of the ground state and free energies is also implied by standard
arguments not discussed here2.

We are interested in the thermodynamic limit

lim
therm

≡ lim
L→+∞

lim
N→+∞

for the open chain, which captures the regime of a long one-dimensional coupled-
CSP. From theorems 9.1 and 9.2 we deduce that

lim
therm

eN,L,w(α) = lim
therm

eperN,L,w(α) = lim
N→+∞

eN (α). (9.11)

Let pause for a moment and have a look at the satisfiability threshold in (7.20).
Since the energy functions are non-decreasing we can redefine the satisfiability
threshold as a natural “static phase transition” threshold as follows.

Definition 9.1 (Satisfiability threshold or the static phase transition thresh-
old). We define

αs = sup{α| lim
N→+∞

eN(α) = 0}, (9.12)

and
αs,L,w = sup{α| lim

N→+∞
eN,L,w(α) = 0}, (9.13)

Theorem 9.3. We have

αs = lim
L→+∞

αs,L,w. (9.14)

Proof. Because of (9.11) we have

αs = sup{α| lim
N→+∞

eN(α) = 0}

= sup{α| lim
therm

eperN,L,w(α) = 0}

= sup{α| lim
therm

eN,L,w(α) = 0} (9.15)

2However concentration of the number of solutions in the SAT phase is more subtle see
[108].
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By using the right-hand side inequality in (9.9) and (9.10), we deduce that
αsleq lim infL→+∞ αs,L,w. Also note that (9.15) implies αs ≥ lim supL→+∞ αs,L,w.
Indeed if this was not true then one could find α∗ and a sequence Lk ↑ +∞ such
that αs < α∗ < αs,Lk,w for k large enough; but then limN→+∞ eN,Lk,w(α∗) = 0
and thus limk→+∞ limN→+∞ eN,Lk,w(α∗) = 0 which, from (9.15), would mean
α∗ ≤ αs; a contradiction.

The definition of αs implies that, for a given instance, when α < αs (resp.
α > αs) the number of unsatisfied constraints is o(N) (resp. O(N)) with high
probability. However it is not known how to automatically conclude that a
fixed instance is SAT (resp. UNSAT) with high probability when α < αs

(resp. α > αs). For more details see Section 7.3.2.

Remark about finite temperatures. The theorems of this subsection have
finite temperature analogs presented in appendix 9.8.2. As explained in section
9.6 these suggest that the condensation threshold obeys limL→+∞ αc,L,w = αc.

9.4 Zero Temperature Cavity Method and Survey
Propagation Formalism

We briefly summarize the simplest form of the cavity method and survey prop-
agation equations for the coupled-CSP. More details on the formalism are pre-
sented in appendix 9.8.3. When the graph instance is a tree, the minimization
of (9.3) can be carried out exactly. This leads to an expression for minx Hcou(x)

in terms of energy-cost messages Eiu→cz(xiu) and Êcz→iu(xiu) that satisfy the
standard min-sum equations (see equ. (9.95) and (9.96)). These messages are
normalized so that minxiu Eiu→cz(xiu) = minxiu Êcz→iu(xiu) = 0 and they
take values in {0, 1}. They may be interpreted as warning messages. Roughly
speaking, nodes inform each other on the most favorable values that the vari-
able xiu should take in order to avoid energy costs. The ground state energy
(on the tree) is given by the Bethe energy functional E [{Eiu→cz(.), Êcz→iu(.)}]
(see equ. (9.98)). For a general graph instance one considers the Bethe en-
ergy functional (9.98) as an “effective Hamiltonian” and studies the statistical
mechanics of this effective system. The min-sum equations are the stationary
point equations of this functional and the set of solutions {Eiu→cz(.), Êcz→iu(.)}
characterize the state of the system.

It turns out that the min-sum equations may have exponentially many (in
system size) solutions with infinitesimal Bethe energy per node as N → +∞. A

solution {E(p)
iu→cz(.), E

(p)
cz→iu(.)} with infinitesimal Bethe energy defines a pure

Bethe state3 denoted by the superscript (p). We define the average zero-energy
complexity as

ΣL,w(α) = lim
ε→0

lim
N→+∞

1

NL
E[ln(number of states p with

E(p)

N
= ε)]. (9.16)

3We adopt this terminology to make a distinction with the mathematically precise notion
of pure state for usual Ising models [109].
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This quantity counts the number of pure Bethe states. The typical behavior
of the complexity as a function of α is as follows. Below an SP threshold it
vanishes, then jumps to a positive value and decreases until it becomes zero at
the static phase transition threshold (and formally negative above). It therefore
allows to compute

αSP,L,w = inf{α|ΣL,w(α) > 0}, (9.17)

αs,L,w = sup{α|ΣL,w(α) > 0}. (9.18)

One expects on heuristic grounds, and it has been checked numerically for
various models, that the static phase transition thresholds defined according
to the energy (9.12) and complexity (9.18) coincide.

The complexity is the Boltzmann entropy (on the zero energy shell) of the ef-
fective statistical mechanical problem with Hamiltonian
E [{Eiu→cz(.), Êcz→iu(.)}]. It turns out that this can be computed, thanks to an
effective partition function on the same sparse graph instance, again within a
message passing formalism. In this context messages are called surveys. They
count the fraction of pure Bethe states with given warning messages. Surveys
Qiu→cz(Eiu→cz(.)) and Q̂cz→iu(Êcz→iu(.)) are exchanged between variable and
constraint nodes according to survey propagation equations (see (9.103) and
(9.104)). The average complexity (9.16) can be computed by a Bethe type
formula for the entropy of the effective model.

The survey propagation equations (9.103), (9.104) allow to compute the
distribution over pure Bethe states, of the vectors (Êcz→iu(xiu), xiu ∈ X ).
These are |X |-component vectors with components in {0, 1}. Thus the surveys
are supported on an alphabet of size at most 2|X |. Often the effective size of
the alphabet is smaller (it is |X | + 1 in the specific problems considered here)
because the warning propagation equations (9.95), (9.96) restrict the possible
values of (Êcz→iu(xiu), xiu ∈ X ). This simplification is used for each model
separately in the next sections.

Let us summarize the main observations that follow from the detailed anal-
ysis in Section 9.5. As L → +∞, we find that the complexity curves ΣL,w(α)
supported on the interval [αSP,L,w,αs,L,w] converge to a limiting curve Σw(α)
supported on the limiting interval [αSP,w,αs]. Moreover, on this later in-
terval, Σw(α) coincides with the complexity Σ(α) of the individual system
(L = w = 1). This is illustrated on Figure 9.2. We observe that αs,L,w tends
to αs from above. Also for moderate L one generally has αSP,L,w > αs, but this
inequality is reversed for L large enough, and limL→+∞ αSP,L,w = αSP,w < αs.

We observe the threshold saturation, namely limw→+∞ αSP,w ↑ αs. In fact
we expect (from [50]) that the gap |αSP,w −αs| is exponentially small in w (K
fixed) but this is hard to assess numerically. One also observes that for w fixed
the gap increases with increasing K.

We point out that the complexity of the chain with periodic boundary
conditions converges to that of the individual system in the infinite length
limit. In other words there is no threshold saturation as long as the boundary
conditions are periodic. This is easily understood by realizing that the survey



9.5. Coupled K-SAT Problem 179

αSP αSP,w αs
α

zero energy complexity

Σ(α)

Σw(α)

Figure 9.2: Complexity of the individual ensemble Σ(α) (i.e. L = w = 1) and limiting
complexity Σw(α) of the coupled ensemble for L → +∞. We have αSP,w → αs as
w → +∞.

propagation equations are purely local and have a translation invariant solution
when the boundary conditions are periodic.

Finally, let us mention that we observe similar features for the entropic com-
plexity curve. In this case αd plays the role of αSP and αc that of αs. We have
αd,w → αc. In particular, limL→+∞ αc,L,w = αc and
limw→+∞ limL→+∞ αd,L,w = αc (see Section 9.6).

9.5 Coupled K-SAT Problem

9.5.1 Numerical Implementation

We begin with a convenient parametrization of the messages (see e.g [72]).
Since X = {0, 1}, the warning (energy costs) messages are two-component
vectors (Eiu→cz(0), Eiu→cz(1)) and (Êcz→iu(0), Êcz→iu(1)) which take three
possible values (0, 1), (1, 0) and (0, 0). Warning (0, 1) means that xiu should
take the value 0, warning (1, 0) means that xiu should take value 1, and warning
(0, 0) means that xiu is free to take any value. Messages from variables to
constraints can be conveniently parametrized as follows,

QS
iu→cz ≡

{
Qiu→cz(0, 1) if xiu is negated in cz,

Qiu→cz(1, 0) if xiu is not negated in cz.

This is the fraction of pure states for which the variable is forced to satisfy the
constraint. Similarly,

QU
iu→cz ≡

{
Qiu→cz(0, 1) if xiu is not negated in cz,

Qiu→cz(1, 0) if xiu is negated in cz.

This is the fraction of pure states for which the variable is forced to unsatisfy
the constraint. Note that Qiu→cz(0, 0) = 1 − QS

iu→cz − QU
iu→cz. Let us now
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parametrize the messages from constraints to variables. If variable xiu enters
unnegated in constraint cz, then certainly constraint cz does not force it to
take the value 0. Thus Q̂cz→iu(0, 1) = 0, and the message can be parametrized
by the single number Q̂cz→iu(1, 0). On the other hand, if variable xiu enters
negated in constraint cz, then certainly constraint cz does not force it to take
the value 1. Thus Q̂cz→iu(1, 0) = 0, and again the message can be parametrized
by the single number Q̂cz→iu(0, 1). We set

Q̂cz→iu ≡
{
Q̂cz→iu(0, 1) if xiu is negated in cz,

Q̂cz→iu(1, 0) if xiu is not negated in cz.

Message Q̂cz→iu is the fraction of pure states for which cz warns iu to satisfy
it. The survey propagation equations (9.103), (9.104) then become (recall
d〈bv,iu〉 = 1 (resp. 0) for a dashed (resp. full) edge 〈bv, iu〉),

Q̂cz→iu =
∏

jv∈∂(cz)\iu

QU
jv→cz , (9.19)

and

QS
iu→cz

∼=
{d〈bv,iu〉 2=d〈iu,cz〉∏

bv∈∂(iu)\cz

(1 − Q̂bv→iu)

}{
1−

d〈bv,iu〉=d〈iu,cz〉∏

bv∈∂(iu)\cz

(1− Q̂bv→iu)

}
,

(9.20)

QU
iu→cz

∼=
{d〈bv,iu〉=d〈iu,cz〉∏

bv∈∂(iu)\cz

(1 − Q̂bv→iu)

}{
1−

d〈bv,iu〉 2=d〈iu,cz〉∏

bv∈∂(iu)\cz

(1− Q̂bv→iu)

}
,

(9.21)

where ∼= means that the r.h.s has to be normalized to one. Define

Q+
iu→cz =

d〈bv,iu〉=d〈iu,cz〉∏

bv∈∂(iu)\cz

(1 − Q̂bv→iu), (9.22)

Q−
iu→cz =

d〈bv,iu〉 2=d〈iu,cz〉∏

bv∈∂(iu)\cz

(1 − Q̂bv→iu). (9.23)

Then using (9.19) and the normalized form of (9.21)

Q̂cz→iu =
∏

jv∈∂(cz)\iu

Q+
jv→cz(1−Q−

jv→cz)

Q+
jv→cz +Q−

jv→cz −Q+
jv→czQ

−
jv→cz

. (9.24)

We will work with the set of SP equations (9.22), (9.23), (9.24). The complexity
becomes

ΣL,w(α) =
1

NL
E
[∑

cz

Σcz +
∑

iz

Σiz −
∑

〈cz,iu〉

Σcz,iu

]
, (9.25)
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with

Σcz = ln

{ ∏

iu∈∂(cz)

(Q+
iu→cz+Q−

iu→cz−Q
+
iu→czQ

−
iu→cz)−

∏

iu∈∂(cz)

Q+
iu→cz(1−Q

−
iu→cz)

}
,

(9.26)

Σiz = ln

{d〈bv,iz〉=1∏

bv∈∂(iz)

(1− Q̂bv→iz)+

d〈bv,iz〉=0∏

bv∈∂(iz)

(1− Q̂bv→iz)−
∏

bv∈∂(iz)

(1− Q̂bv→iz)

}
,

(9.27)

Σcz,iu = ln

{
(Q+

iu→cz+Q−
iu→cz−Q+

iu→czQ
−
iu→cz)−Q+

iu→cz(1−Q−
iu→cz)Q̂cz→iu.

}

(9.28)
The set of SP equations (9.22), (9.23), (9.24) is solved under the following
assumptions. We treat the set of messages emanating from a constraint at
position z, namely Q̂cz→iu for u = z, . . . , z+w− 1, as i.i.d. copies of a r.v. Q̂z

depending only on the position z. Similarly we treat the messages emanating
from a variable node at position u, namely Q±

iu→cz for z = u−w+1, . . . , u, as
i.i.d. copies of a r.v. Q±

u . Now, fix a position z and pick p, q two independent
Poisson(αK2 ) integers. Pick k1, . . . , kp+q independently uniformly in {0, . . . , w−
1}. Similarly, pick l1, . . . , lK−1 independently uniformly in {0, . . . , w − 1}.
Under our assumptions the SP equations become4

Q+
z =

p∏

i=1

(1− Q̂(i)
z−ki

), (9.29)

Q−
z =

p+q∏

i=p+1

(1 − Q̂(i)
z−ki

), (9.30)

and

Q̂z =
K−1∏

i=1

Q+(i)
z+li

(1−Q−(i)
z+li

)

Q+(i)
z+li

+Q−(i)
z+li

−Q+(i)
z+li

Q−(i)
z+li

. (9.31)

The boundary conditions can be taken into account by setting Q̂z = 0 for
z ≤ −L

2 , z > L
2 . These equations are solved by the standard method of

population dynamics. It is then possible to compute the average complexity
from

ΣL,w(α) =
1

L

L
2∑

z=−L
2 +1

(αE[Σcons
z ] + E[Σvar

z ]− αKE[Σedge
z ]), (9.32)

where

Σcons
z = ln

{ K∏

i=1

(Q+(i)
z+li

+Q−(i)
z+li

−Q+(i)
z+li

Q−(i)
z+li

)−
K∏

i=1

Q+(i)
z+li

(1 −Q−(i)
z+li

)

}
, (9.33)

4In (9.29), (9.30), (9.31) equalities mean that the r.v. have the same distribution.
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Σvar
z = ln

{ p∏

i

(1 − Q̂(i)
z−ki

) +
p+q∏

i=p+1

(1− Q̂(i)
z−ki

)−
p+q∏

i=1

(1− Q̂(i)
z−ki

)
}
, (9.34)

Σedge
z = ln

{
(Q+

z+k +Q−
z+k −Q+

z+kQ
−
z+k)−Q+

z+k(1−Q−
z+k)Q̂z

}
. (9.35)

α

ΣL,w(α)

4.2 4.3 4.4 4.5 4.6 4.7

0.01

0.02

Figure 9.3: Average complexity versus α for the [1000, 3,α, 3, L] ensembles with L = 10
(rightmost curve), 20, 40, 80 (leftmost curve). Values of the corresponding thresholds
are given in table 9.1.

Figure 9.5.1 shows the average complexity for the regime N < L< w, for
K = 3 and w = 3. We find it is positive in an interval [αSP,L,w,αs,L,w] whose
size shrinks as L increases. The two end points of this interval are given in
Table 9.1 (corresponding to Figure 9.5.1). Let us comment on the numerical
findings.

First, we observe that αSP,L,w approaches αs as L increases. It is hard to
compute more than three digits with population dynamics experiments but we
expect that a small difference should remain between limL→∞ αSP,L,w and αs.
This difference should decrease very fast as w grows, and in fact for w = 3
one does not see it in the first three digits. For the Curie-Weiss chain [50] this
difference has been analytically calculated to be exponentially small5 in w. For
the paradigmatic spatially coupled LDPC codes the difference appears only in
the sixth decimal figure when state of the art density evolution numerics is
used [2].

Second, we observe that αs,w,L decreases as L increases. An extrapolation of
the values suggests that as L grows larger (i.e., L = 320, 640, · · · ) αs,L,w should
come closer to αs. However these lengths become prohibitive for population
dynamics. As discussed in Section 9.3 we expect on theoretical grounds that
limL→+∞ αs,L,w = αs is true for all w.

For moderate values of L we have αs < αSP,L,w. However since αSP,L,w <
αs,L,w and limL→+∞ αs,L,w = αs, for L large enough and fixed w we necessarily
have αSP,L,w < αs. This turns out to be difficult to observe within population
dynamics experiments, but can be checked in the large K limit.

5The calculation involves a non-perturbative calculation of potential energy barriers in
terms of a deformation parameter 1

w when going from a continuum to a discrete model.
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individual αSP αs

L = 1 3.927 4.267

coupled αSP,L,3 αs,L,3

L = 10 4.386 4.663
L = 20 4.274 4.425
L = 40 4.269 4.335
L = 80 4.268 4.301
L = 160 4.267 4.284

Table 9.1: SP and static phase transition thresholds of the [1000, 3,α, 3, L] ensembles.

9.5.2 Survey Propagation for Large K

For large K one can derive approximations of the survey propagation equations
that lend themselves to more explicit analysis [120]. We will not attempt to
control the error terms, but it is known for the individual system that the
approximations are excellent already for K ≥ 5. We can check numericaly that
this is also the case for the coupled-CSP.

Fixed point equations. Following [120], we introduce entropic random vari-
ables

q̂z = − ln(1− Q̂z), q±z = − lnQ±
z . (9.36)

From (9.29), (9.30) and (9.31) we obtain

q+z =
p∑

i=1

q̂(i)z−ki
, q−z =

p+q∑

i=p+1

q̂(i)z−ki
, (9.37)

and

q̂z = − ln

{
1−

K−1∏

i=1

eq
−(i)
z+li − 1

eq
−(i)
z+li + eq

+(i)
z+li − 1

}
, (9.38)

we set
E[q±z ] = x±

z and E[q̂z ] = yz, (9.39)

for the averages over the graph ensemble. The number of i.i.d. random vari-
ables in (9.37) is a Poisson(αK2 ) integer. Therefore we assume that for large
K the r.v. q±z are self-averaging. It is reasonable to expect that they can be
replaced by their expectation in (9.38) and that hence q̂z is also self-averaging.
This implies a closed set of equations for the expected values of messages,






x±
z ≈ αK

2w

∑w−1
k=0 yz−k,

yz ≈ −
∑w−1

k1,...,kK−1=0
1

wK−1 ln

{
1−
∏K−1

i=1
e
x−
z+ki−1

e
x−
z+ki+e

x+
z+ki−1

}
.

(9.40)

We further approximate (9.40). A self-consistent check with the final solution
shows that x± = O(K) and hence the product in the log is O(2−K). Linearizing
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the logarithm yields

yz ≈
w−1∑

k1,...,kK−1=0

1

wK−1

K−1∏

i=1

ex
−
z+ki − 1

2ex
−
z+ki − 1

=

{
1

w

w−1∑

k=0

ex
−
z+k − 1

2ex
−
z+k − 1

}K−1

. (9.41)

It is convenient to introduce the rescaled parameters

α̂ = 2−Kα, ϕz = 2K−1α̂Kyz. (9.42)

From (9.36) we see ϕz is a measure of the average (over the graph ensemble)
probability (over pure states) that constraints at position z send warning mes-
sages. From now on we write xz instead of x±

z . The fixed point equations
become 





xz ≈ 1
w

∑w−1
k=0 ϕz−k,

ϕz ≈ α̂K
{

1
w

∑w−1
l=0

exz+l−1
exz+l− 1

2

}K−1

.
(9.43)

Hence, the profile {ϕz} satisfies

ϕz ≈ α̂K
{
1

w

w−1∑

k=0

e
1
w

∑w−1
l=0 ϕz−l+k − 1

e
1
w

∑w−1
l=0 ϕz−l+k − 1

2

}K−1

. (9.44)

These equations have to be supplemented with the boundary condition ϕz = 0
for z ≤ −L

2 and z > L
2 .

The average complexity. Let us now express the complexity in terms of
the fixed point profile. Let us first compute the contributions of variable and
constraint nodes, and of edges.

Contribution of variable nodes. From (9.34), (9.36) and (9.39)

Σvar
z = ln

{
e−

∑p
i=1 q̂z−ki + e−

∑q
i=p+1 q̂z−ki − e−

∑p+q
i=1 q̂z−ki

}
. (9.45)

For K large the sums in the exponentials concentrate on their averages, so that

E[Σvar
z ] ≈ ln

{
2e−

αK
2w

∑w−1
k=0 yz−k − e−

αK
w

∑w−1
k=0 yz−k

}
. (9.46)

Contribution of check nodes. From (9.33), (9.36) and (9.39)

E[Σcons
z ] = E

[
ln

{ K∏

i=1

(e−q+z+li + e−q−z+li − e−q+z+li
−q−z+li )

−
K∏

i=1

e−q+z+li (1− e−q−z+li )

}]

≈
w−1∑

l1,...,lK=0

1

wK
ln

{ K∏

i=1

(2e−x−
z+li − e−2x−

z+li )−
K∏

i=1

e−x−
z+li (1− e−x−

z+li )

}
.

(9.47)
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Factoring the first product out of the log we get

E[Σcons
z ] ≈ K

w

w−1∑

i=0

ln
{
2e−x−

z+l−e−2x−
z+l
}
+

w−1∑

l1,...,lK=0

1

wK
ln

{
1−

K∏

i=1

1− e−x−
z+li

2− e−x−
z+l

}
.

(9.48)
Since the ratio in the second log is O(2−K) we can linearize and obtain

E[Σcons
z ] ≈ K

w

w−1∑

l=0

ln
{
2e−x−

z+l − e−2x−
z+l
}
−
{
1

w

w−1∑

l=0

1− e−x−
z+l

2− e−x−
z+l

}K

. (9.49)

Contribution of edges. Similarly from (9.35), (9.36), (9.39) we have

E[Σedge
z ] =

1

w

w−1∑

l=0

E
[
ln
{
(e−q+z+l + e−q−z+l − e−q+z+l−q−z+l)

− e−q+z+l(1 − e−q−z+l)(1− e−q̂z )
}]

≈ 1

w

w−1∑

l=0

ln

{
(2e−x−

z+l − e−2x−
z+l)− e−x−

z+l(1− e−x−
z+l)(1 − e−yz)

}
.

(9.50)

Now, using (9.40) we can express the total average complexity (9.32) in
terms of rescaled variables (9.42). We find

Σw,L(α̂) =
1

L

L
2∑

z=−L
2 +1

σα̂,w,L(z), (9.51)

with

σα̂,w,L(z) ≈ ln
{
2e−

∑w−1
k=0 ϕz−k − e−

2
w

∑w−1
k=0 ϕz−k

}
− 2Kα̂

{
1

w

w−1∑

l=0

exz+l − 1

2exz+l − 1

}K

− 2K α̂K

w

w−1∑

l=0

ln

{
1− exz+l − 1

2exz+l − 1
(1− e−

ϕz
α̂K2K−1 )

}
. (9.52)

Within our approximations the third term can be simplified further because
1− e−

ϕz
K2K−1 = O(2−K) and we may linearize the log. Thus the second line in

(9.52) can be replaced by

2ϕz
1

w

w−1∑

l=0

{
exz+l − 1

2exz+l − 1

}
. (9.53)

The complexity (9.51) can be viewed as a functional of the profiles {xz,ϕz}
with boundary condition ϕz = 0 for z ≤ −L

2 and z > L
2 . One can check that

the stationary points of this functional are given by the fixed point equations
(9.43).
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9.5.3 Solutions for Large K

We use the notation f
.
= g to mean that limK→+∞

f
g = 1. The large K results

for the individual system [120] are recovered by setting L = w = 1, in which
case the fixed point equations (9.44) reduces to

ϕ ≈ α̂K
{
eϕ − 1

eϕ − 1
2

}K−1

. (9.54)

One may easily check that this is the stationary point equation for the com-
plexity (9.51) as a function of ϕ (and α fixed),

Σ1,1(α̂,ϕ) = ln{2e−ϕ − e−2ϕ}− 2Kα̂

{
eϕ − 1

2eϕ − 1

}K

+ ϕ

{
eϕ − 1

2eϕ − 1

}
. (9.55)

Thus, fixed points of (9.54) are stationary points of (9.55): stable fixed points
correspond to minima and unstable ones to maxima.

The curve α̂(ϕ) is shown as the dotted curve in Figure 9.5. This function
is convex and has a unique minimum at ϕSP

.
= ln(12K lnK) and α̂(ϕSP) ≡

α̂SP
.
= lnK

K . Near this minimum we have α̂(ϕ) ≈ (ϕ−ϕSP

γSP
)2, γSP

.
= 4

3
K

lnK . For

ϕ< ϕSP we have α̂(ϕ) = 1
K (ϕ−ϕSP) and for 0 < ϕB ϕSP we have α̂(ϕ) = 1

ϕ .
Therefore the trivial fixed point ϕ = 0 is unique for α̂ < α̂SP, and there are
two extra non-trivial fixed points for α̂ > α̂SP. Only one of them is stable and
forms the branch ϕmst ≈ Kα̂+ ϕSP for ϕ< ϕSP.

For α̂ < α̂SP , the function (9.55) has a unique minimum at ϕ = 0. For
α̂ > α̂SP a second metastable minimum appears at ϕmst ≈ Kα̂ + ϕSP. At
this minimum we find Σ1,1(α̂,ϕmst)

.
= ln 2 − α̂ which counts the number of

clusters as long as it is positive. Summarizing, the complexity vanishes for
α̂ < α̂SP , and equals (ln 2 − α̂) for α̂ ∈ [α̂SP , ln 2]. In particular the static
phase transition threshold is α̂s

.
= ln 2. Beyond the static phase transition

threshold the complexity is negative and looses its meaning (one has to modify
the SP formalism used here). Higher order corrections can be computed in
powers of 2−K , see [120].

Let us now discuss the coupled case. The picture which emerges is similar to
the one for the much simpler Curie-Weiss Chain model [50] and coupled LDPC
codes over the binary erasure channel [2]. Before discussing the numerical
results we wish to give a heuristic argument that “explains” why threshold
saturation occurs. The argument can presumably be turned into a rigorous
proof using the methods in [2] for LDPC codes on the binary erasure channel.

For the sake of the argument suppose that we fix α̂ > α̂SP and that we look
for profile solutions of (9.44), on an infinite chain L → +∞, that interpolate
between the (asymmetric) boundary conditions ϕz = 0, z → −∞ and ϕz →
ϕmst, z → +∞. We take as an ansatz, a kink approaching its asymptotic values
(at the two ends) fast enough, with a transition region localized in a region of
size O(w) centered at a position zkink = ξL (ξ ∈ [0, 1]). Figure 9.4 gives an
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illustrative picture of the kink profile. We have

ϕ ≡ 1

L

L−1∑

z=0

ϕz ≈
1

L
(L− ξL)ϕmst = (1− ξ)ϕmst. (9.56)

Also, it is easy to see that the associated complexity as a function of ξ, or
equivalently ϕ, is approximately given by a convex combination of the two
minima of Σ1,1(α,ϕ) (given in (9.55)) which correspond to the two points
ϕ = 0 (with Σ = 0) and ϕ = ϕst (with Σ ≈ ln 2− α̂). More precisely,

Σkink(ξ) ≈
1

L

[
ξL× 0 + (L− ξL)× (ln 2− α̂)

]

≈ ϕ

ϕmst
(ln 2− α̂).

0

ϕ = 0 (Σ = 0)

L− 1zkink=ξL

O(w) ϕ = ϕmst (Σ ≈ ln 2− α̂)

Figure 9.4: An illustrative picture of a kink-like ansatz {ϕz}
L
2

z=−L
2 +1

for a solution of

(9.44). At the right end, the kink converges to the value ϕ = ϕst (with corresponding
complexity Σ ≈ ln 2 − α̂) and at the left end it converges to ϕ = 0 (with Σ = 0). The
transition region of size O(w) which is centered at z = zkink.

When α̂ < α̂s, the minimum is at ξ = 1 (ϕ = 0). This means that the kink
center will form a traveling wave through the chain, and reach its unique stable
location at the right end. On the other hand when α̂ > α̂s the minimum is at
ξ = 0 (ϕ = ϕmst) and the kink will travel towards the left to reach its stable
location. Within the present approximation, for α̂ = α̂s any position along the
chain is stable for the kink center.

Summarizing, this heuristic argument suggests that for α̂ < α̂s the fixed
point equations (9.44) only have the trivial solution {ϕz = 0}, while for α̂ > α̂s

the only solution is {ϕz = ϕmst}. This means that the SP threshold coincides
with α̂s. Here, ξ has been treated as a continuous variable, which is expected
to be valid only in a limit of large w. For large but finite w there will subsist
a small gap between the SP and static thresholds, and for α̂ fixed in this gap
only a discrete set of positions for the kink are stable. The number of such
stable positions is roughly equal to 2L.
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We have solved (9.44) numerically with symmetric boundary conditions

ϕz = 0, z < 0, z ≥ L and fixed ϕ ≡ 1
L

∑L−1
z=0 ϕz . In order to find a solution for

all values of ϕ we have to let α̂ vary slightly. In other words we find a solution
(α̂(ϕ); {ϕz(ϕ)}) that is parametrized by ϕ. Define the van der Waals curve
(Figure 9.5) as the function α̂(ϕ). The minimum of the van der Waals curve
yields (as for the individual system) the SP threshold αSP,w,L (see Table 9.2
for numerical values).

ϕ0 2.5

α̂(ϕ)

1

ϕ0 2.5

α̂(ϕ)

1

Figure 9.5: Left: sequence of van der Waals curves α̂(ϕ), for K = 5, w = 3 and
L = 10, 20, 40, 80 (top to bottom). For ϕ ∈ [ϕmst,+∞] they converge to the individual
system curve. Right: a magnification of the plateau region for K = 5, w = 3 and L = 40

shows the fine structure. The dotted line is the curve for the individual system and the
red line shows the static phase transition threshold α̂s = 0.666.

As L increases, the curves develop a plateau at height ≈ α̂s for the interval
ϕ ∈ [0,ϕmst]. Moreover they converge to the van der Waals curve of the
individual system for ϕ ∈ [ϕmst,+∞[, a fact that is consistent with theorems
9.1, 9.2. Precise enough numerics show that as long as w is finite the curves
display a fine structure in the plateau interval: the magnification in Figure 9.5
shows wiggles of very small amplitude. We observe that their amplitude decays
as w grows and K is fixed (we expect from [50] that this decay is exponential);
and grows larger as K increases with w fixed (see Table 9.2).

Figure 9.6 illustrates the solutions of the fixed point equations for α̂ in
the wiggle region for large K. The top curve is the van der Waals curve in
the wiggle region. The middle left warning density profile is the fixed point
solution corresponding the left point with coordinates (ϕl, α̂l). Note that α̂l =
α̂SP,L,w. For this point the total average complexity is approximately equal

to ϕl
ϕmst

(α̂s − α̂l). The bottom left curve shows the complexity profile. In the
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ϕ

α̂(ϕ)

0.678

0.679

0.680

0.681

0 2.25

0 L−1
2

L− 1 0 L−1
2

L− 1

0 L−1
2

L− 1 0 L−1
2

L− 1

Figure 9.6: van der Waals curve in the wiggle region for the coupled system (top) for
K = 7, w = 4 and L = 40. The red line is at the static phase transition threshold.
The left point (ϕl, α̂l) = (1.657, 0.678274) corresponds to the warning (middle left)
and complexity (bottom left) profiles. In the latter the height of the middle part is
α̂s − α̂l ≈ 0.010. The right point (ϕr, α̂r) = (3.00585, 0.688847) corresponds to the
warning and complexity profiles on the right.
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K 5 7 10
α̂s 0.666 0.686 0.692
α̂SP 0.513 0.449 0.370

α̂SP,80,3 0.672 0.682 0.651
α̂SP,80,5 0.672 0.688 0.691
α̂SP,80,7 0.672 0.688 0.692

Table 9.2: SP Thresholds of the individual (L = w = 1) and coupled ensembles
(L = 80, w = 3, 5, 7) are found from the van der Waals curves. For K = 10 we clearly
see that the SP threshold saturates to α̂s from below as w increases.

middle part, the height of this profile is approximately (α̂s − α̂l) ≈ 0.010.
Consider now the point on the right with coordinates (ϕr, α̂r). Note that we
take this point very close to the static phase transition threshold α̂r ≈ α̂s.
As a consequence the total average complexity nearly vanishes. The middle
right warning density profile is flat over the whole chain, except near the ends
because we enforce the boundary conditions, and the complexity density nearly
vanishes except in the transition regions.

9.6 Dynamical and Condensation Thresholds

The SP formalism says nothing about the relative sizes (internal entropy) of
clusters of solutions and consequently does not take into account which of
them are ”relevant” to the uniform measure over zero energy solutions. For
similar reasons, it is not clear that the SP threshold has particular algorithmic
significance. These issues are partly addressed by the more elaborate entropic
cavity method [84], [86], [103]. It predicts the existence of the dynamical and
condensation thresholds αd and αc. The dynamical threshold is believed to
separate a phase (α < αd) where the uniform measure is essentially supported
on one well connected cluster of dominant entropy, and a phase (αd < α < αc)
where the measure is supported on an exponential number of clusters with equal
internal entropy. For α > αc the measure condenses on a ”handful” of clusters
of dominant entropy. The condensation threshold is a static thermodynamic
transition in the sense that the total ground state entropy has a non-analyticity
as a function of α. These thresholds were first computed for CSP in [104],
where their algorithmic significance is also discussed. See also [90], [91] for
recent related algorithmic results.

We have computed the dynamical and condensation thresholds of coupled
CSP. Let us denote them αd,L,w and αc,L,w (with w fixed). We observe that
as L increases αc,L,w → αc. This observation is consistent with the following
rigorous result that we prove in appendix 9.8.2: the thermodynamic limit of
the free energy (at finite temperature) of the chain is identical to that of the
individual model. From the free energy one can formally obtain the entropy by
differentiating the free energy with respect to temperature. The result about
the free energy then suggests that the zero temperature entropy of the chain
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K αSP αSP,80,3 αd αd,80,3 αc αc,80,3 αs αs,80,3

3 3.927 4.268 3.86 3.86 3.86 3.86 4.267 4.268
4 8.30 9.94 9.38 9.55 9.55 9.56 9.93 10.06

Table 9.3: Thresholds of individual and coupled K-SAT model for L = 80 and w = 3.
The condensation and SAT-UNSAT thresholds correspond to non analyticities of the
entropy and ground state energy and remain unchanged (for L → +∞). Already for
w = 3 the dynamical and SP thresholds saturate very close to αc and αs.

and individual models have the same non-analyticity points as a function of
the constraint density. The second important observation is that in the regime
1 B w B L we find αd,L,w → αc. Thus the dynamical threshold saturates
towards the condensation threshold6.

The dynamical and condensation thresholds are analogous to the dynam-
ical and condensation temperatures of p-spin glass models for p ≥ 3, and to
the glassy and Kauzmann transition temperatures in structural glasses [121],
[122], [123]. One expects that a similar saturation of the dynamical towards the
condensation temperature holds for coupled p-spin glass models on complete
graphs for p ≥ 3. On the other hand, for p = 2 the replica symmetry break-
ing transition is continuous, there is no dynamical temperature, and spatial
coupling is not expected to modify the phase diagram.

Table 9.3 summarizes all the behaviors of the SP, SAT/UNSAT, dynamical
and condensation thresholds for theK-SAT problem. The situation for coloring
is similar.

9.7 Further Remarks and Open Directions

In this chapter we have developed in detail the SP formalism for coupled K-
SAT ensemble. We find that the SP thresholds of spatially coupled random
K-SAT ensemble nicely saturate towards the SAT/UNSAT phase transition
threshold of the individual ensemble. Moreover the SAT/UNSAT phase tran-
sition threshold of the coupled and individual ensembles are identical. The
saturation of the SP threshold is remarkably similar to the one of the Belief
Propagation algorithmic threshold (towards the optimal one associated to the
Maximum a Posteriori decoder) observed in coding theory.

Let us point out a few issues that would deserve more investigations. The
large K analysis has shown that when α is in a small interval where the zero-
energy complexity is strictly positive, the warning and complexity densities
form kink-like profiles. These are very similar to the kink-like magnetization
and free energy densities found in the CW chain of Chapter 8. A possible
interpretation of the complexity density profiles is that the clusters do not
only have a “size” given by their internal entropy but also have a “shape” that
could be taken into account by an extension of the entropic cavity method. The

6Note that for K = 3 we already have αd = αc for the individual ensemble.
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simplest system where this issue could be elucidated is the XOR-SAT system
for which the clusters can be precisely defined [113].

As briefly discussed above, the entropic cavity method predicts the exis-
tence of other thresholds, namely the dynamical and condensation thresholds.
We have checked that the condensation one is the same for a coupled and in-
dividual ensemble (for L→∞). This observation is consistent with the result
of Theorem 9.5. We also observe that the dynamical threshold of the coupled
ensemble saturates towards the condensation one, for K ≥ 4. For K = 3
the dynamical and condensation thresholds coincide already for the individual
ensemble. We consistently observe that they remain unchanged by coupling.
These observations deserve more investigations, in particular the nature of the
condensed phase, the freezing of variables, the behavior of correlation functions
and the possible relevance of the shape of clusters.

9.8 Appendix

9.8.1 Proofs of Theorems 9.1 and 9.2

In this section we sketch the proofs of theorems 9.1 and 9.2. The proof of
theorem 9.1 is straightforward and does not depend on the details of the model
at hand. On the other hand that of theorem 9.2 has to adapted for each model
at hand.

Proof of Theorem 9.1

Recall that for the Hamiltonian of the open chain Hcou(x) in (9.3), x = (xiz)
with (i, z) ∈ ∪z=0,··· ,L−1Vz . It will be convenient to set x = (x′, x′′) where
x′ = (xiz ; z = 0, . . . , L − w) and x′′ = (xiz ; z = L − w + 1, . . . , L − 1). Recall
also that the Hamiltonian Hper

cou(x
′) of the periodic chain is given by the same

expression (9.3) with x′ = (xiz ; z = 0, . . . , L − w). Therefore the difference
between the two Hamiltonians only comes because of the terms ψcz(x∂cz) with
z = L− 2w + 1, · · · , L− w. In other words,

|Hcou(x
′, x′′)−Hper

cou(x
′)| ≤Mw, (9.57)

for all x′′. As a result, we obtain

Hper
cou(x

′)−Mw ≤ Hcou(x
′, x′′) (9.58)

and by taking the min, dividing by NL and taking the expectation, we deduce

eperN,L,w(α)−
αw

L
≤ eN,L,w(α). (9.59)

To obtain the right-hand side inequality of (9.9), we recall that the periodic
chain is obtained from the open chain by identifying the variable nodes at the
left boundary of the open chain with their corresponding ones at the right
boundary. Now, since the set of the check nodes of the open and periodic chain
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are identical, it is clear to get the maximum satisfying assignment, the open
chain has more degrees of freedom and hence its minimum Hamiltonian is less.
Hence, the right part of (9.9) is proved.

Proof of Theorem 9.2

As explained in Section 9.2 the proof that the limit exists, is continuous and
non-decreasing, for the individual models is provided in [85] and is essentially
the same for the coupled periodic chain. Here we prove the equality of the two
limits (9.10). The following notation is convenient. For a given graph instance
G (from some ensemble) we call HG(x) the corresponding Hamiltonian. It
always consists, as in (9.3), of a sum of terms 1 − ψcz(x∂cz) over constraints
(c, z) ∈ G . The ground state energy is equal to minx HG(x). To set up suitable
interpolation procedures, it is convenient to first define three extra ensembles.

The “connected” ensemble. This is essentially the individual [N,K,α] ensemble
scaled by L. We have a set of LN variable nodes and a set of LM constraint
nodes. Each constraint node has K edges connected u.a.r. to variable nodes.
Expectations with respect to this ensemble are denoted by Econn. Because of
the existence of the limit we have

lim
N→+∞

1

LN
Econn[min

x
HG(x)] = lim

N→+∞
eN(α), (9.60)

for any fixed L.

The “disconnected” ensemble. This is a variant of the individual [N,K,α]
ensemble replicated L times. We place at positions z = 0, . . . , L− 1, L disjoint
sets of variable nodes Vz containing each N nodes. Each node from the set of
LM constraint nodes is affected u.a.r. to a position z = 0, . . . , L−1. Note that
the set C̃z of constraint nodes at position z has cardinality Mz ∼ Bi(LM, 1

L ).

Each node from C̃z has K edges that are connected u.a.r. to nodes in Vz.
Expectations are denoted by Edisc. Since each Mz is concentrated on M with
a fluctuation O(

√
M), we can show by an argument similar to the proof of

theorem 9.1 that

1

LN
Edisc[min

x
HG(x)] = eN(α) +O(N−1/2), (9.61)

where O(N−1/2) is uniform in L.

The “ring” ensemble. This is a variant of the periodic chain in Section 9.2.
We place at positions z = 0, . . . , L − 1, L disjoint sets of variable nodes Vz,
each containing N nodes. Now we have a set of LM constraint nodes. Each
constraint node is affected to a position z = 0, . . . , L − 1 u.a.r. and (say
the position is z) its K edges are connected u.a.r. to the set of variables
∪w−1
k=0 Vz+k mod L. Note that the sets C̃z of constraint nodes have cardinalities

Mz ∼ Bi(LM, 1
L ). We denote by Ering the expectation with respect to this

ensemble. Since each Mz is concentrated on M with a fluctuation O(
√
M), an
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argument similar to the proof of theorem 9.1 shows that

1

LN
Ering[min

x
HG(x)] = eperN,L,w(α) +O(N−1/2), (9.62)

where O(N−1/2) is uniform in L (and depends on w).

We will show

Econn[min
x

HG(x)] ≤ Ering[min
x

HG(x)] ≤ Edisc[min
x

HG(x)], (9.63)

which allows to conclude the proof of the theorem by using (9.60), (9.61),
(9.62).

Left inequality in (9.63). We build a sequence of interpolating “r-ensembles”,
r = 0, . . . , LM , interpolating between the ring (r = 0) and connected (r = LM)
ensembles. We have two sets of LM constraint and LN variable nodes. The
variable nodes are organized into L disjoint sets Vz each containing N nodes,
placed along the positions z = 0, . . . , L − 1. Expectation with respect to the
r-ensemble is denoted by Er. To sample a graph Gr from this ensemble we
first take r nodes - called type 1 - from the set of LM constraint nodes. Each
one has K edges which are connected u.a.r. to the set of LN variable nodes.
For the remaining LM − r constraint nodes - called type 2 - we proceed as
follows: each one is affected u.a.r. to a position z, and its K edges are then
connected u.a.r. to the wN variable nodes in ∪w−1

k=0 Vz+k mod L. We claim that
for 1 ≤ r ≤ LM ,

Er[min
x

HGr (x)] ≤ Er−1[min
x

HGr−1(x)]. (9.64)

Clearly this implies the left inequality in (9.63). Let us prove this claim. Take
a random graph Gr and delete u.a.r. a constraint from the type 1 nodes: this
yields an intermediate graph G̃. One can go back to a random graph Gr by
adding back a type 1 node according to the above rules, or one can go to a
random graph Gr−1 by adding back a type 2 node according to the above rules.
We will prove that conditioned on any realization of G̃ we have

Er[min
x

HGr(x) | G̃] ≤ Er−1[min
x

HGr−1(x) | G̃]. (9.65)

Claim (9.64) follows by averaging over G̃. We now prove (9.65) for K-SAT
problem.

Consider the set of ”optimal assignments” x that minimize HG̃(x). We say
that a variable is frozen iff it takes the same value for all optimal assignments.
We call F the set of variable nodes with frozen variables and Fz = F ∩ Vz.
Now consider adding a new constraint node n to the graph G̃. This will cost
an extra energy iff the node n connects only to frozen variable nodes and does
not satisfy them. For such an event we have

min
x

HG̃∪n(x)−min
x

HG̃(x) = 1. (9.66)
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When the node n is connected u.a.r. to the LN variable nodes (n is type 1)

this event has probability 1
2K ( |F|

LN )K . Thus

Er[min
x

HGr (x) | G̃]−min
x

HG̃(x) =
1

2K

(
|F|
LN

)K

. (9.67)

Similarly when the node n is affected u.a.r. to a position z and then connected
u.a.r. to ∪w−1

k=0 Vz+k mod L (n is type 2) we get

Er−1[min
x

HGr−1(x) | G̃]−min
x

HG̃(x) =
1

L

L−1∑

z=0

1

2K
( 1

wN

w−1∑

k=0

|Fz+kmodL|
)K

.

(9.68)

Claim (9.65) follows from the last two equations, convexity of xK for x ≥ 0,
and

|F| =
L−1∑

z=0

1

w

w−1∑

k=0

|Fz+k mod L|. (9.69)

Right inequality in (9.63). We construct new r-ensembles, r = 0, . . . , LM
that now interpolate between the disconnected (r = 0) and the ring (r = LM)
ensembles. A random graph Gr is constructed as follows. We have a set of LM
constraint nodes and a set of LN variable nodes organized into L disjoint sets
Vz each containingN nodes, placed along positions z. We first take r constraint
nodes, called type 1. Each of them is affected u.a.r. to a position z, and its
K edges are connected u.a.r. to variable nodes in Vz . Next, the remaining
LM − r constraints nodes - called type 2 - are each affected u.a.r. to a position
z and its K edges are connected u.a.r. to wN nodes in ∪w−1

k=0 Vz+k mod L. Note
that at each position there are Bi(r, 1

L) type 1 nodes and Bi(LM − r, 1
L) type

2 nodes, so in total there are Bi(LM, 1
L ) constraint nodes. Similarly to the

previous interpolation we will prove

Er[min
x

HGr (x)] ≤ Er−1[min
x

HGr−1(x)]. (9.70)

This inequality implies the upper bound in (9.63). To prove (9.70), as before,
we consider the random graph G̃ obtained by deleting u.a.r. a type 1 node
from Gr. From G̃ one gets a random graph Gr by adding back a type 1 node,
or one gets a graph Gr−1 by adding back a type 2 node instead. We first prove
that

Er [min
x

HGr(x) | G̃] ≤ Er−1[min
x

HGr−1(x) | G̃], (9.71)

and then by averaging over graphs G̃ we get (9.70). Let us briefly sketch the
derivation of (9.71).

We use the same sets Fz of frozen variables at position z corresponding to
the ground state configurations of HG̃(x). We have

Er[min
x

HGr(x) | G̃]−min
x

HG̃(x) =
1

L

L−1∑

z=0

1

2K

(
|Fz|
N

)K

, (9.72)
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and

Er−1[min
x

HGr−1(x) | G̃]−min
x

HG̃(x) =
1

L

L−1∑

z=0

1

2K
( 1

wN

w−1∑

k=0

|Fz+kmodL|
)K

.

(9.73)

Estimate (9.71) then follows by the convexity of the function xK for x ≥ 0.

9.8.2 Finite Temperature Version

The finite Gibbs distribution (at “inverse temperature” β) associated to the
coupled CSP Hamiltonian (9.3) is

µβ(x) =
1

Zcou
e−βHcou(x), Zcou =

∑

x

e−βHcou(x), (9.74)

and the average free energy per node is

fN,L,w(α,β) = − 1

βLN
E[lnZcou]. (9.75)

The corresponding quantities Hper
cou(x) are associated a chain to with periodic

boundary conditions (see Section 9.2); these will be denoted by a superscript
”per”. Note that to get these quantities for the underlying system, one sets
L = w = 1 in these definitions; the average free energy per node will be denoted
by fN(α,β).

We sketch the proof of the analogs of theorems 9.1 and 9.2.

Theorem 9.4 (Comparison of open and periodic chains). For general coupled
CSP [N,K,α, w, L] ensembles we have

|fN,L,w(α,β)− fper
N,L,w(α,β)| ≤

αw

L
. (9.76)

Proof. We write (with the same notations than in the proof of theorem 9.1)

Zcou =
∑

x

e−β(Hcou(x) =
∑

x′,x′′

e−βH
per
cou(x

′′)e−β(Hcou(x
′,x′′)−Hper

cou(x
′′)) (9.77)

and from (9.57) we deduce

e−βMwZper
cou ≤ Zcou ≤ eβMwZper

cou . (9.78)

Applying − 1
βNL log on each side of this inequality, we obtain the desired esti-

mate.

Theorem 9.5 (Comparison of individual and periodic ensembles). For K-SAT
and Q-coloring the limits limN→+∞ fper

N,L,w(α,β) and limN→+∞ fN (α,β) exist,
and are continuous in (α,β), for all L. Moreover,

lim
N→+∞

fper
N,L,w(α,β) = lim

N→+∞
fN (α,β) . (9.79)
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Theorems 9.4 and 9.5 yield (recall limtherm = limL→+∞ limN→+∞)

lim
therm

fN,L,w(α,β) = lim
therm

fper
N,L,w(α,β) = lim

N→+∞
fN (α,β). (9.80)

Proof. The proof of existence and continuity of limits for N → +∞ (L fixed) is
identical to [85], so we do not repeat it here. The proof of the equality uses the
same interpolating r-ensembles between the connected, ring and disconnected
ensembles defined in subsection 9.8.1. The associated Gibbs measures, free
energies and expectations will be denoted by scripts r, conn, ring and disc.

By an argument similar to that of theorem 9.4 we have the analogs of (9.60),
(9.61), (9.62),






− limN→+∞
1

βLNEconn[logZconn] = limN→+∞ fN (α,β), for L fixed,

− 1
βLNEdisc[logZdisc] = fN (α,β) +O(N−1/2), uniformly in L,

− 1
βLNEring[logZring] = fper

N,L,w(α,β) +O(N−1/2), uniformly in L.

Thus, it is sufficient to show that

− 1

LN
Econn[logZconn] ≤ − 1

LN
Ering[logZring] ≤ − 1

LN
Edisc[logZdisc]. (9.81)

To prove these inequalities we will use the r-ensembles. It suffices to check the
analogs of (9.65) and (9.71), namely for an intermediate graph G̃,

−
(
Er[logZGr | G̃]− logZG̃

)
≤ −

(
Er−1[logZGr−1 | G̃]− logZG̃

)
, (9.82)

and then average over G̃.
Consider the graph G̃ and add a new constraint node n to it. The precise

way in which n is connected to the variable nodes is deferred to a later stage
of the argument. We have

ZG̃∪n

ZG̃

= e−β
∑

x:n is UNSAT

µβ,G̃(x) +
∑

x:n is SAT

µβ,G̃(x). (9.83)

This is equivalent to

ZG̃∪n

ZG̃

= 1− (1 − e−β)
∑

x:n is UNSAT

µβ,G̃(x). (9.84)

Taking the log and expectation over n for a given G̃, we obtain

−E
[
log

ZG̃∪n

ZG̃

| G̃
]
= −E

[
log
{
1− (1− e−β)

∑

x:n is UNSAT

µβ,G̃(x)
}
| G̃
]
. (9.85)
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Note that the left hand side is identical to that of (9.82). To compute the

expectation we expand − log(1− x) =
∑

l≥1
xl

l ,

−E
[
log

ZG̃∪n

ZG̃

| G̃
]
=
∑

l≥1

(1− e−β)l

l

× E
[ ∑

x(1),...,x(l):n is UNSAT

µβ,G̃(x
(1)) . . . µβ,G̃(x

(l))
}
| G̃
]
.

(9.86)

The sum over “real replicas” x(1), . . . , x(l) is over assignments such that n is
UNSAT for all l of them, so the expectation in (9.86) equals

1

Z l
G̃

∑

x(1),...,x(l)

e−β
∑l
ρ=1 HG̃(x(ρ))E

[
{n UNSAT on all x(ρ), h = 1, . . . , l} | G̃

]
.

(9.87)
Up to this stage the arguments are completely general: they apply both to

coloring and satisfiability. We specialize the rest of the proof to K-SAT and
leave coloring as an exercise.

We first derive (9.82) for the r-ensemble that interpolates between the con-
nected and ring ensembles. This then implies the left inequality in (9.81).
Given G̃ and given a term x(1), . . . , x(l) in (9.87), let F be the set of variable
nodes with frozen bits, i.e those variable nodes such that the bit takes the
same value in all assignments x(1) through x(l). Below we will also need the
sets Fz = F ∩ Vz. When n is connected u.a.r. to the LN variable nodes we go
from G̃ to a Gr graph and

Er

[
{n UNSAT on all x(ρ), h = 1, . . . , l} | G̃

]
=

1

2K

(
|F|
LN

)K

. (9.88)

On other hand when n is first affected u.a.r. to a position z and then connected
u.a.r. to the wN variables in ∪w−1

k=0 Vz+k mod L, we go from G̃ to a Gr−1 graph
and

Er−1

[
{n UNSAT on all x(ρ), h = 1, . . . , l} | G̃

]

=
1

L

L−1∑

z=0

1

2K

(
1

wN

w−1∑

k=0

|Fz+k mod L|
)K

. (9.89)

By convexity, the quantity in (9.88) is smaller than the one in (9.89). Using this
fact together with (9.85), (9.86), (9.87), we obtain the final inequality (9.82).
This implies the left inequality in (9.81).

The derivation of (9.82) for the r-ensemble that interpolates between the
ring and disconnected ensembles is similar. When n is first affected u.a.r. to a
position z, and then connected u.a.r. to N variable nodes in the set Vz we go
from G̃ to a Gr−1 graph. Thus,

Er−1

[
{n UNSAT on all x(ρ), h = 1, . . . , l} | G̃

]
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=
1

L

L−1∑

z=0

1

2K

(
|Fz|
N

)K

. (9.90)

Finally we notice that by convexity, (9.89) is smaller than (9.90), so that using
again (9.85), (9.86) and (9.87) we obtain the final inequality (9.82). This now
implies the right inequality in (9.81).

9.8.3 Review of the Cavity Method and Survey Propagation
Equations

The main assumptions of the cavity method draw on the concept of pure (or
extremal or ergodic) state. While this concept can be given a rigorous meaning
for “simple” Ising-type models [109], [110], it still forms a heuristic framework
in the context of disordered spin systems. We refer the interested reader to
[72], [115], [116], [117], [118] for more information and various approaches.

Infinite volume Gibbs measures form a convex set whose extremal points
play a special role and are called pure states. A crucial property of a pure
state is that the correlations decay (usually exponentially fast) with the graph
distance. This is not true for non-trivial convex superpositions of pure states.
For “simple” Ising-type models the number of pure states is “small” and they
are related by a broken symmetry. Disordered spin systems can have an expo-
nential (in system size) number of pure states and the broken symmetry, if only
there exist one, is hard to identify7. The growth rate of the number of pure
states, is called the complexity. This is a notion analogous to the Boltzmann
entropy, but at the level of pure states, instead of microscopic configurations,
for which one develops a new ”level” of statistical mechanics.

We assume that this picture can be taken over to CSP and even coupled-
CSP. Let p index the set of pure sates. The special feature about systems on
random graphs is that they are locally tree-like with high probability. Thus,
since for each pure state p the correlations decay sufficiently fast, the marginals
of the pure state p can be computed from the sum-product (or BP) equations

ν̂(p)cz→iu(xiu) ∼=
∑

x∂(cz)\iu

ψcz(x∂(cz))
∏

jv∈∂(cz)\iu

ν(p)jv→cz(xjv), (9.91)

ν(p)iu→cz(xiu) ∼=
∏

bv∈∂(iu)\cz

ν̂(p)bv→iu(xiu). (9.92)

In (9.91), (9.92) ∼= means that the right hand side has to be divided by a
normalization factor to get a true marginal on the left. The free energy of the
pure state p is given by the Bethe expression,

βF (p) =
∑

cz

ln

{ ∑

x∂(cz)

ψcz(x∂(cz))
∏

iu∈∂(cz)

ν(p)iu→cz(xiu)

}

7Within the replica formalism it is a formal symmetry between ”a number” of copies of
the system.
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+
∑

iu

ln

{∑

xiu

∏

cz∈∂(iu)

ν̂(p)cz→iu(xiu)

}

−
∑

〈cz,iu〉∈E

ln

{∑

xiu

ν(p)iu→cz(xiu)ν̂
(p)
cz→iu(xiu)

}
. (9.93)

To investigate the zero temperature limit β → +∞ we set

ν(p)iu→cz(xiu) =
e−βE

(p)
iu→cz(xiu)

∑
xiu∈X e−βE

(p)
iu→cz(xiu)

, ν̂(p)cz→iu(xiu) =
e−βÊ

(p)
cz→iu(xiu)

∑
xiu∈X e−βÊ

(p)
cz→iu(xiu)

.

(9.94)
When β → ∞, the sum-product equations (9.91) and (9.92) reduce to the
min-sum equations

Eiu→cz(xiu) = min
{
1,

∑

bv∈∂(iu)\cz

Êbv→iu(xiu)− Ciu→cz

}

≡ Giu→cz

[
{Êbv→iu}bv∈∂(iu)\cz

]
, (9.95)

Êcz→iu(xiu) = min
x∂cz\iu

{
(1− ψcz(x∂(cz))) +

∑

jv∈∂(cz)\iu

Ejv→cz(xj)
}
− Ĉcz→iu

≡ Ĝcz→iu

[
{Ejv→cz}jv∈∂(cz)\iu

]
. (9.96)

Here, Ciu→cz and Ĉcz→iu are normalization constants fixed so that
minxiu Eiu→cz(xiu) = minxiu Ecz→iu(xiu) = 0. The Bethe formula for the
free energy of a pure state reduces to an expression for its ground-state energy

lim
β→+∞

βF (p) = E [{E(p)
iu→cz(.), E

(p)
cz→iu(.)}], (9.97)

where the functional E is given by

E [{Eiu→cz, Ecz→iu}] =
∑

cz

min
x∂(cz)

{
(1− ψcz(x∂(cz))) +

∑

iu∈∂(cz)

Eiu→cz(xiu)
}

+
∑

iu

min
xiu

{ ∑

cz∈∂iu
Êcz→iu(xiu)

}
−
∑

〈cz,iu〉

min
xiu

{
Eiu→cz(xiu) + Êcz→iu(xiu)

}

≡
∑

cz

Ecz
[
{Eiu→cz}iu∈∂cz

]
+
∑

iu

Eiu
[
{Êcz→iu}cz∈∂iu

]

−
∑

〈cz,iu〉

Ecz,iu
[
{Eiu→cz, Êcz→iu}

]
. (9.98)

We assume that the heuristic low temperature picture carries over to the zero
temperature case. In this context pure states become clusters (in Hamming
space) of minimizers of the Hamiltonian. Each cluster is characterized by a

set of messages {E(p)
iu→cz(.), E

(p)
cz→iu(.)}. At zero temperature, two minimizers
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belonging to the same cluster can be connected by successive flips with in-
finitesimal energy cost, while for two minimizers belonging to different clusters
this is not possible.

Now we wish to compute the complexity (9.16) which counts the number
of clusters. For this we introduce a generating function

Ξ(y) =
∑

p

e−yE[{E(p)
iu→cz(.),E

(p)
cz→iu(.)}] . (9.99)

When y → +∞ the sum is dominated by solutions of the min-sum equations
with minimal Bethe energy. This object can be viewed as a partition function
for the effective Hamiltonian (9.98) at inverse “temperature” y (the so-called
Parisi parameter). Now, if we take α in the SAT phase the minimum Bethe
energy vanishes and the complexity (9.16) is given by

ΣL,w(α) = lim
y→+∞

lim
N→+∞

1

NL
lnΞ(y). (9.100)

A negative complexity signals that there are no zero energy states and that
the system is in an UNSAT phase. When this happens one has to generalize
these formulas to allow for an energy dependent complexity (obtained by the
Legendre transform of lnΞ(y)) but this aspect will not concern us here. For
CSP’s it can be shown that the min-sum messages take discrete values in a
finite alphabet. Therefore we have

Ξ(y) =
∑

{Eiu→cz,Êcz→iu}

{ ∏

〈iu,cz〉

e+yEcz,iu

}∏

iu

{
e−yEiu

∏

cz∈∂(iu)

(
Eiu→cz = Giu→cz

)}

×
∏

cz

{
e−yEcz

∏

iu∈∂(cz)

(
Êcz→iu = Ĝcz→iu

)}
. (9.101)

The arguments of the functionals Eiu[−], Ecz[−], Eiu,cz[−] and Giu→cz [−], Ĝcz→iu[−]
are the messages {Eiu→cz(.), Êcz→iu(.)}; they are not explicitly written to ease
the notation. It can easily be seen that this is the partition function of a new
graphical model which is still sparse. Edges 〈(c, z), (i, u)〉 now correspond to
degree two “constraint” nodes, and nodes (c, z) and (i, u) now correspond to
“variable” nodes. Therefore (9.100) can be computed from the Bethe approx-
imation for this new model. The underlying assumption here is that the new
effective model has a unique “pure state“ with fast decaying correlations. This
is called the level-1 cavity method. If this assumption breaks down, one should
repeat the whole scheme, obtaining a level-2 cavity method (and so on). At
level-1, the Bethe approximation can be expressed in terms of new beliefs -
called surveys - Qiu→cz(Eiu→cz(.)) and Q̂cz→iu(Êcz→iu(.)) that count the frac-

tion of clusters p for which E(p)
iu→cz(.) = Eiu→cz(.) and E(p)

cz→iu(.) = Ecz→iu(.).
Note that these are the messages on the induced graph obtained by eliminating
the degree two constraint nodes of the new model. We have

lnΞ(y) =
∑

cz

ln

{ ∑

{Eiu→cz}iu∈∂(cz)

e−yEcz
∏

iu∈∂cz
Qiu→cz

}
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+
∑

iu

ln

{ ∑

{Êcz→iu}cz∈∂(iu)

e−yEiu
∏

cz∈∂iu
Qcz→iu

}

−
∑

cz,iu

ln

{ ∑

Eiu→cz,Êcz→iu

e−yEiu,czQiu→czQ̂cz→iu

}
. (9.102)

The messages satisfy the survey propagation equations

Qiu→cz(Eiu→cz) ∼=
∑

{Êbv→iu}cz∈∂(iu)

(
Eiu→cz = Giu→cz

)
e−yCiu→cz

×
∏

bv∈∂(iu)\cz

Qbv→iu(Êbv→iu), (9.103)

Q̂cz→iu(Êcz→iu) ∼=
∑

{Êjv→cz}jv∈∂(cz)

(
Êcz→iu = Ĝcz→iu

)
e−yĈcz→iu

×
∏

jv∈∂(cz)\iu

Qjv→cz(Ejv→cz), (9.104)

where again ∼= means that the right hand side has to be normalized.
In the SAT phase one takes y → +∞ in order to compute the complexity.

This has the effect of reducing the sums in (9.103), (9.104) and (9.102), to
surveys such that Ciu→cz = Ĉcz→iu = 0 and Ecz = Eiu = Eiu,cz = 0.



Algorithmic Implications 10
10.1 Problem Formulation

In this chapter1 we investigate the performance of some well-known algorithms
on the coupled K-SAT ensemble2. The ideas here can be naturally extended
to other satisfiability problems such as Q-COL or K-XORSAT3 for which we
remove the details and only mention the final results.

Let us first explain one important consequence of analyzing various algo-
rithms on the coupled ensemble. For the individual CSP ensembles, one main
direction of research is to devise algorithms for finding satisfiability assign-
ments. Typically, for an algorithm, there exists a specific “threshold”, denoted
by αalg, with the following property. If we pick a random formula from the CSP
ensemble with clause density less than αalg, then with a positive probability
the algorithm is capable of finding a solution to that formula. This then implies
αalg ≤ αs, where by αs we mean the static threshold (SAT/UNSAT thresh-
old) of the individual CSP ensemble. Consider now the coupled ensemble,
with a proper extension of the same algorithm. Call αalg,L,w the algorithmic
threshold for finding a satisfying assignment with positive probability, and set
αalg,w = limL→+∞ αalg,L,w. From Theorem 9.3 we know that the coupled en-
semble has the same static threshold as the individual one, when L → +∞
and w is fixed. Therefore, one certainly has the lower bound αalg,w ≤ αs. The
point here is that for well chosen algorithms an improvement of the bound may
occur, namely αalg < αalg,w ≤ αs, and one would expect to get the best lower
bounds by increasing the coupling width w. A well chosen algorithm is one
that shows a “threshold improvement” or even the full saturation phenomenon.

1The material of this chapter is based on the work of [125].
2The individual and coupled K-SAT ensembles are described in detail in Chapter 7.
3A detailed description of these ensembles is given in Chapter 9.
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The outline of this chapter is as follows. In Section 10.2 we consider the
simplest of such algorithms, namely the class of peeling algorithms and show
that their threshold improves by spatial coupling. For the K-XORSAT en-
semble, we observe that the coupled thresholds saturate to the static thresh-
old. However, for the K-SAT and Q-COL ensembles, although the amount
of threshold improvement is significant, due to the extreme simplicity of these
peeling algorithms, the coupled thresholds are still far away from the satisfi-
ability threshold. As a result, we consider in Section 10.3 some slightly more
sophisticated algorithms. That is, we consider algorithms that involve deci-
mation, i.e., setting the variables one-by-one according to some heuristic and
reducing the graph. We show that for the simplest choice of decimation al-
gorithms (i.e., the unit clause propagation algorithm), the coupled thresholds
improve significantly and for large values of K they even reach a constant
fraction ( 1

2 ln 2 ) of the satisfiability threshold.

10.2 Peeling Algorithms and Coupled Scalar Recursions

Below we illustrate a simple peeling-type algorithm applied to K-SAT, which in
the literature is called the pure literal algorithm. We then discuss briefly similar
algorithms for Q-COL and K-XORSAT. As we will see in the sequel, such
peeling algorithms can be cast into the framework of one-dimensional coupled
recursions for which a recent elegant characterization has been provided in [126]
and [127].

10.2.1 Pure Literal: A Peeling Algorithm for K-SAT

We begin by a brief explanation of the algorithm. Let G be a K-SAT formula.
The algorithm starts with G and in each step shortens G until we either reach
the empty graph or we cannot make any further shortening. Assume now that
there exists a literal (variable) i in G such that all of its incoming edges have
the same sign. This literal is called a pure literal. One can choose a value for
xi that satisfies all of its neighboring clauses and clearly that is the optimum
choice to fix the variable i in order to find a SAT assignment for G. Hence,
without loss of generality, we can remove i and its neighboring clauses from G
and search for a SAT assignment on the graph G \ i. In other words, finding
a SAT assignment for G is equivalent to finding an assignment for G \ i. As a
result, we can peel the literal i and its neighbors from G and look for new pure
literals on G \ i. We continue this process until the final graph (the 2-core) has
no more pure literals. If the final graph is empty then the algorithm succeeds;
otherwise, it fails. This algorithm determines the 2-core of a graph G and has
been analyzed by the method of differential equations [114]. Here we discuss
the algorithm from the message passing point of view.

Consider the following message passing (MP) rule. As we see later, this MP
rule is equivalent to the pure literal algorithm. At time t ∈ {1, 2, · · · }, assign to
each edge 〈i, c〉 ∈ E two messages µt

i→c and µt
c→i. The messages µt

i→c represent
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the messages going from literals to clauses at time t and the messages µt
c→i are

the messages from checks to variables at time t. The messages at time t + 1
are evolved from the ones at time t via the following procedure:

1. At time 0, initialize all the messages µ0
c→i and µ0

i→c to 0.

2. At time t+ 1,

µt+1
c→i = {

∑

j∈∂c\i

µt
j→c ≥ 1},

µt+1
i→c =

∏

h∈∂i\c,µt+1
h→i=0

{Jc,i = Jh,i}.

Here, we recall that Jc,i denotes the sign of the edge 〈c, i〉. The above message
passing rule is equivalent to the pure literal algorithm in the following sense.
When µt

i→c = 1 for at least one c ∈ ∂i, then the vertex i would have been
peeled by the algorithm some time before t and if µt

i→c = 0, the vertex i would
not have been peeled by the algorithm up to time t. The same statement is
valid for the clauses in a way that if µt

c→i = 1 for at least one i ∈ ∂c, then
the clause c would have been peeled at some time before t in the pure literal
algorithm.

Define pt = P(µt
c→i = 0) and qt = P(µt

i→c = 0). Note that p0 = 1.
We derive the density evolution equations that relates pt+1 to pt. Let G be
randomly chosen from SAT(N,K,α) with N very large. Fix an edge 〈c, i〉.
Observe that µt+1

c→i = 0 if and only if all the incoming messages to the clause c,
other that the one of 〈c, i〉, take value 0. Hence, we can write

pt+1 = (qt)K−1. (10.1)

Relating qt+1 to pt is slightly more subtle. Observe that µt+1
i→c = 1 if and only

if the sign of 〈c, i〉 is equal to the sign of every edge 〈h, i〉 such that h ∈ ∂i \ c
and µt+1

h→i = 0. Moreover, the probability that an edge 〈c, i〉 is incident to a

variable i of degree d is e−αK(αK)d−1

(d−1)! . One can then write

1− qt+1 =
∞∑

d=1

e−αK(αK)d−1

(d− 1)!

d−1∑

j=0

(
d− 1

j

)
(pt+1)j(1− pt+1)d−1−j2−j

=
∞∑

d=1

e−αK(αK)d−1

(d− 1)!
(1− pt+1

2
)d−1

= exp(−αk
2
pt+1).

Hence, from the above two relations we obtain that

pt+1 = (1 − exp(−αK
2

pt))K−1, (10.2)
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with p0 = 1. It is more convenient to do a change of variables in the form of
xt = αpt, which transforms (10.2) to

xt+1 = α(1− exp(−K

2
xt))K−1. (10.3)

For the pure literal algorithm to succeed, the value of xt should tend to 0 and
t increases. Now, from the recursion (10.3) and fact that x0 = 1, it is easy to
deduce that for t growing large, xt tends to 0 if and only if the equation

x = α(1− exp(−K

2
x))K−1 . (10.4)

has only one solution which is the trivial solution x = 0 on [0, 1]. The net result
is that the pure literal rule succeeds w.h.p for α < αpl(K) such that (10.4) has
a unique fixed point x = 0 in the unit interval [0, 1]. Mathematically we can
define αpl as

αpl(K) = sup{α ≥ 0 | x− α(1 − exp(−K

2
x))K−1 > 0 ∀x ∈ (0, 1]}. (10.5)

We now consider the coupled ensemble. The way the pure literal algorithm
works on a coupled formula is similar to what we explained above and hence
needs no further explanation. In order to analyze the pure literal rule we can
think of extending the chain to Z with “pure” variable nodes for z < 0 and
z > L+w−2. The peeling of constraints attached to pure nodes will propagate
inside the chain as long as α is below the critical threshold. A similar message
passing analysis as above yields a set of one-dimensional coupled recursions

xt+1
z = α

{
1

w

w−1∑

l=0

(1− exp(− K

2w

w−1∑

k=0

xt
z+k−l)

}K−1

, (10.6)

with boundary condition xt
z = 0 for z at the boundaries. This recursion results

in the one-dimensional fixed point equations

xz = α

{
1

w

w−1∑

l=0

(1− exp(− K

2w

w−1∑

k=0

xz+k−l)

}K−1

. (10.7)

One can define αpl,L,w(K) as the largest value of α such that (10.7) has only
one fixed point profile to be the all-zero profile.

Table 10.1 contains the numerical prediction of αpl,L,w(K) for L = 80 and
w = 5 and different values of K. As we observe from Table 10.1 there is
an improvement of the coupled threshold over the individual ensemble. For
example for K = 3 we have αpl ≈ 1.636 < αpl,w=5,L=80 ≈ 1.835 < αs ≈ 4.26,
a modest improvement. As we will see in the sequel, the coupled thresholds
αpl,L,w(K) when L,w → ∞ can be precisely and analytically computed. We
postpone further arguments on the amount of the improvement of the coupled
thresholds to Section 10.2.3.
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K 3 4 5 7
αpl(K) 1.626 1.544 1.402 1.190

αpl,L=80,w=5(K) 1.834 1.954 1.986 1.998

Table 10.1: First line: Pure threshold for the uncoupled case. Second line: Pure literal
threshold for a coupled chain with w = 5, L = 80. By halving these numbers, we obtain
the corresponding thresholds of the leaf removal algorithm devised for the K-XORSAT
problem.

10.2.2 Peeling Algorithms for Q-COL and K-XORSAT

We discuss now a similar peeling algorithm for Q-COL4. We start with a graph
G to color with a given set of Q colors. Assume there exists a node i in G that
has degree less than Q. Clearly, if we can color the graph G \ i with Q colors,
then G can also be colored with Q colors. Hence, finding a Q-coloring for G is
equivalent to finding a Q-coloring for G \ i. As a result, we can peel the node
i from G and continue this process until the final graph has no more nodes of
degree less than Q. If the final graph is empty then the algorithm succeeds;
and otherwise it fails. Such a peeling algorithm can be analyzed in the same
way as above. In particular, let us define y = cx, where x is the fraction of
nodes in the final residual graph and c is the average vertex degree. We find

y = cG(y), (10.8)

where the function G is given as

G(y) = 1− e−y
Q−2∑

j=0

yj

j!
. (10.9)

For c < cp there is a unique trivial fixed point y = 0 and the algorithm
succeeds. Non trivial fixed points appear for c > cp which is the threshold for
the emergence of a Q-core. Table 10.2 contains the numerical values of cp for
several values of Q.

We now take coupled instances from the ensemble. We can write down the
density evolution equations and the corresponding one-dimensional fixed point
equations. Not surprisingly, similar calculations show that the message passing
algorithm is controlled by the one-dimensional fixed point equation,

yz = cG
( 1

2w − 1

w−1∑

k=−w+1

yz+k

)
. (10.10)

where yz = cxz and xz is the fraction of remaining nodes at position z. Ta-
ble 10.2 contains the numerical values of cp,w=5,L=80 for several values of Q,
and shows the threshold improvement.

4The Q-COL model and the K-XORSAT models are introduced in Section 9.2.3.
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Q 3 4 5 7
cs 4.69 8.90 13.69 24.46
cp 3.35 5.14 6.79 9.87

cp,L=80,w=5 3.58 5.74 7.84 11.92

Table 10.2: First line: static phase transition threshold for Q-COL. Second line: peel-
ing algorithm threshold for the uncoupled case. Third line: peeling algorithm threshold
for a coupled chain with w = 5, L = 80.

The peeling algorithm for the K-XORSAT problem is known as the “leaf
removal” algorithm. As long as there is a leaf variable node, remove it and
remove the attached constraint node with its emanating edges. If this process
ends with an empty graph the instance is satisfiable. It is known that this algo-
rithm is equivalent to BP message passing, and the density evolution analysis
leads to the fixed point equation

x = (1 − exp(−αKx))K−1. (10.11)

Here, x is interpreted as the probability (when the number of iterations goes
to infinity) that a constraint node is not removed. There is a threshold αlr

above which (10.11) has non-trivial fixed points (i.e, the fraction of remaining
variables is positive), so we get a lower bound αlr < αs. For the coupled
ensemble the density evolution analysis yields the one-dimensional fixed point
equations

xz =

{
1

w

w−1∑

l=0

(1− exp(−αK
w

w−1∑

k=0

xz+k−l)

}K−1

, (10.12)

Note here that these fixed-point equations are equal to the (10.4) and (10.7)
with the replacement α→ 2α. As a result, by halving the numbers in Table 10.1
we obtain the corresponding thresholds for the leaf-removal algorithm.

10.2.3 The Framework of Coupled Scalar Recursions

One-dimensional coupled recursions such as (10.6) have recently been fully
characterized in [126] and [127]. Let us now briefly mention the main results
in this regard.

A scalar recursion as in (10.3) can be written in the general form of

xt+1 = f(g(xt;α)), (10.13)

where f : [0, 1]×R→ [0, 1] is strictly increasing in both arguments for x,α > 0
and g : [0, 1] → [0, 1] satisfies g′(x) > 0 for x ∈ [0, 1]. Such a recursion
with the above mentioned properties for f and g is called an scalar admissible
system. For example, in the recursion (10.3) we have f(x;α) = α(1 + x)K−1

and g(x) = − exp(−K
2 x). Hence (10.3) is a scalar admissible system. The
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threshold of such scalar system , αsys , is defined as the largest value of α such
that the equation x = f(g(x;α)) has the unique x = 0 fixed point for x ∈ [0, 1].

Let us now consider the coupled system of scalar recursions. Consider the
position set L = {0, 1, · · · , L + w − 1} for which we assign variable xt

z ∈ [0, 1]
to z ∈ L for time parameter t ∈ {0, 1, · · · }. Also, let us define xt

z = 0 for z /∈ L
and all times t ≥ 0. For the coupled system we have the recursions

xt+1
z =

1

w

w−1∑

l=0

f(
1

w

w−1∑

k=0

g(xt
z+k−l);α), (10.14)

for z ∈ L. The threshold of the coupled system αsys,L,w is then defined as the
largest α for which the coupled system of equations

xz =
1

w

w−1∑

l=0

f(
1

w

w−1∑

k=0

g(xz+k−l);α), (10.15)

has a unique trivial fixed point, which is the trivial all-zero fixed point.
The limit of αsys,L,w when L,w → ∞ can be computed from the so called

potential function, φ(x,α), that is associated to the scalar admissible system,
and is defined as

φ(x,α) ! xg(x) −G(x)− F (g(x),α), (10.16)

where F (x,α) =
∫ x
0 f(z;α)dz and G(x) =

∫ x
0 g(z)dz.

Theorem 10.1 ([126]). We have

lim
w→∞

lim
L→∞

αsys,L,w = sup{α ≥ 0 | min
x∈[0,1]

φ(x,α) ≥ 0}. (10.17)

Theorem 10.1 provides a practical way to analytically compute the coupled
threshold. It is easy to numerically check that the results of Tables 10.1 and
10.2 are very close (up to the fourth decimal) to the numbers obtained from
Theorem 10.1. However, we do not expect to get exactly the same numbers
as (10.17). This is because the thresholds in these tables are found for finite
choices of L and w.

From (10.17), we can find the asymptotic value of the thresholds when K
is a very large number. For the K-SAT problem, when K → +∞ we find5

αpl(K)
.
=

2 lnK

K
but αpl,L,w(K)→ 2 as L< w → +∞. (10.18)

Thus, the pure literal threshold αpl(K) is “infinitely improved” by coupling.
Of course this is far away from the satisfiability threshold αs

.
= 2K ln 2.

For the problem of Q-COL we obtain from (10.17)

cp(Q)
.
= Q but cp,L,w(Q)

.
= 2Q as L< w → +∞. (10.19)

5For two sequences {an} and {bn}, we say an
.
= bn if an

bn
→ 1 as n → ∞.
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This has to be compared with cs(Q)
.
= 2Q lnQ.

The leaf removal thresholds for K-XORSAT individual and coupled ensem-
bles, αlr(K), αlr,L,w(K), are obtained just by halving the K-SAT pure literal
thresholds. Interestingly enough, it can be shown that the coupled threshold
of the leaf removal algorithm is precisely equal to the SAT/UNSAT threshold
for the K-XORSAT problem. That is, limw→∞ limL→∞ αlr,L,w(K) = αs(K).
Hence, we have a full threshold saturation for the K-XORSAT problem.

For the problems of K-SAT and Q-COL, although the coupled thresholds
improve significantly, they are still far below the static threshold. Hence, we
need to consider slightly more sophisticated algorithms. We proceed by en-
tering the realm of decimation algorithms, the simplest of which are the “unit
constraint propagation” algorithms. For the K-SAT problem, such type of al-
gorithm is called the unit clause propagation algorithm. For the rest of this
chapter, our main focus is on the uint clause popagation algorithm for the cou-
pled ensemble. We also mention the final results for the same type of algorithm
for Q-COL.

10.3 Unit Clause Propagation

10.3.1 Individual Ensemble

The Unit Clause propagation algorithm, or UC for short, is a (randomized)
algorithm which goes through variables one at a time, sets them permanently,
and simplifies the formula as it goes along. This algorithm is like a DPLL algo-
rithm but only explores one branch of the search tree. In brief, the algorithm
works as follows: Consider a K-SAT formula which we represent by a bipartite
graph G consisting of N literals or variable nodes and M = Nα clauses or
check nodes. The algorithm starts with G and in each step removes several
nodes from the graph. The UC algorithm consists of two main steps:

• Free step: which is when all the check nodes have degree at least 2.
This is the situation where the algorithm is free to do whatever it wants.
However, UC does the simplest possible action. It chooses a variable
uniformly at random among the currently unset variables and sets it
permanently to 0 or 1 again with uniform probability.

• Forced Step: which is when we have a unit clause (clause with only one
remaining edge). In this situation, we better try to satisfy this clause
before it is too late. So in some sense we are forced to fix the variable
connected to the unit clause.

Once a variable is set, it is removed from the graph together with the clauses
that are satisfied by the variable. Also, there might be some clauses, connected
to the variable, that are shortened. This is due to the fact that the assigned
value of the variable did not satisfy these clauses. Hence, removing the variable
from the graph will cause these yet unsatisfied clauses to have a less degree. A
detailed description of the UC algorithm is given in Algorithm 6.
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Procedure 6 Unit Clause Propagation Algorithm
1: Start with a given K-SAT formula G.
2: Repeat until all the variables are set.
3: If G contains unit clauses (forced step), then choose one at random and

satisfy it by setting its left variable. Remove or shorten clauses containing
this variable.

4: If there are no unit clauses (free step), then choose one variable at random
from the unset ones and set it by flipping a coin. Remove or shorten clauses
containing this variable.

On the analysis side, the progress of UC can be modeled with differential
equations. The net result is that for α < αUC with αUC given as

αUC =
1

2

(
K − 1

K − 2

)K−2 2K

K
.
=

e

2

2K

K
, (10.20)

the UC algorithm finds an assignment that satisfies all but o(n) number of
clauses. It can also be shown that for densities below αUC, with positive
probability the output assignment satisfies all the clauses.

10.3.2 Description of UC Algorithm for the Coupled Formulas

Let us now focus on the UC algorithm for the coupled formulas. As for the
un-coupled case, the UC algorithm consists of two main steps: free and forced.
The operation of the algorithm at a forced step is clear: remove all the unit-
clauses until no further unit-clause exists. However, at a free step, depending
on how we might want to use the chain structure of the formula, we can have
different schedules for choosing a free variable. As we will see now, for a coupled
formula, the schedule within which we are choosing a variable in a free step is
very important6.

Consider for instance the following naive schedule. At a free step, pick a
variable uniformly at random from all the remaining variables and fix it by
flipping a coin. Computer experiments indicate that this naive schedule gains
no threshold improvement over the un-coupled ensemble. This is not surprising
since this schedule does not seem to exploit the spatial (chain) structure of the
formula and in some ways it greatly resembles the UC algorithm for the un-
coupled ensemble. Hence, in order for the UC algorithm to have a threshold
improvement over the coupled ensemble, we need to come up with schedules
that exploit to some extent the additional spatial structure of the formula. We
proceed by illustrating one such successful schedule.

In the very beginning of the algorithm, all the check nodes have degree K
and there are no unit clauses. Hence, we are free to fix the variables in the first
few stepts of the algorithm. If we fix the variables from the left-most position

6For the peeling algorithms mentioned in Section 10.2, the performance of the algorithm
is independent of the schedule of peeling steps.
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(i.e., the boundary) we are somehow creating a seed at the boundary of the
chain. Continuing this action at the free steps, we will eventually create unit
clauses and at these forced steps a natural choice is just to clear all the unit
clauses as long as long as they exist. However, when we are confronted with
a free step, we will again try to help this seed to grow inside the chain. This
can be done again by fixing a variable from the remaining left-most position.
Consequently, the schedule that we apply is as follows.

• At a free step, pick a variable randomly from the left-most position and
fix it permanently by flipping a fair coin.

• At a forced step, we get rid of unit clauses as long as they exist.

Computer experiments show that this schedule indeed exhibits a threshold
improvement over the un-coupled ensemble. E.g., for the coupled 3-SAT prob-
lem, experiments suggest that the threshold of the UC algorithm is around
3.67. This is a significant improvement compared to the threshold of UC for
the un-coupled ensemble which is 8

3 . Of course, one cannot be certain about
these numbers until they are confirmed with analytic methods. The right tool
to analyze the dynamics of the UC algorithm for the un-coupled ensemble is
the method of differential equations (see [128]). The rest of this chapter fo-
cuses on writing the differential equations for the UC algorithm on the coupled
ensemble and then analyzing these equations. More specifically, in the next
section, we work out these differential equations in detail. Later in the subse-
quent sections, we simplify these equations and provide a general framework
to analyze them. Using this framework, we analytically obtain the threshold
of the UC algorithm on the coupled ensembles.

10.3.3 Analysis of the Evolution of UC via Differential Equations

Phases, Types, and Rounds

For the coupled ensemble, the analysis of the evolution of UC is much more
involved than the un-coupled ensemble. This is because of the fact that the
schedule we have used prefers the left-most variable position in a free step.
Hence, the number of variables in different positions will evolve differently. As
an example, one can easily see that during the algorithm, the first position
that all its variables are set is the left-most position (i.e., position 0). After the
evacuation of position 0, position 1 becomes the left-most position of the graph
and hence, the second position that becomes empty of variables is position
1. Continuing in this manner, the last position that is evacuated is position
L + w − 2. With these considerations, we consider L + w − 1 phases for this
algorithm (see Figure 10.1). At phase p ∈ {0, 1, · · · , L+w−2}, all the variables
at positions prior to p have been set permanently and as a result, at a free step
we will pick a variable from position p.

This statistical asymmetry in the number of variables at each position also
affects the the behavior of the number of check nodes in each position. As a
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Figure 10.1: A schematic representation of how the literals at each of the positions
vary in time. The horizontal axis corresponds to time t which is the number of
free steps. Here we have L = 11 and w = 3. This plot corresponds to an
implementation of the UC algorithm on a random coupled instance. The blue
numbers below the plot are the phases of the algorithm. In the beginning of the
algorithm, we are in phase 0. This phase lasts until all the literals in the first
position are peeled off and as a result !0(t) reaches 0. We then go immediately
to phase 1 and this phase lasts till !1(t) reaches 0 and so on. We have in total
L+ w − 1 = 13 phases.

result, we consider types for the check nodes. For instance, consider a degree
two check node. It is easy to see that the probability that this degree two
check node is hit (removed or shortened) is greatly dependent on the position
of variables that it is connected to. This means that, dependent on the variable
positions to which they are connected, we have different types of degree two
check nodes. Clearly, the same statement holds for clauses of degree three,
four, etc.

Let us now formally define the ingredients needed for the analysis. The
notation we use here is slightly hard to swallow immediately. Thus, for the
sake of maximum clarity, we try to uncover the details as smoothly as possible.
We consider rounds for this algorithm. Each round consists of one free step
followed by the forced steps that follow it. More precisely, at the beginning of
each round we perform a free step and then we clear out all the unit-clauses as
long as they exist (forced steps). We let time t be the number of rounds passed
so far. This time variable will be called round time. The relation between t and
the natural time (the total number of permanent fixes) is not linear. We also let
Li(t) be the number of literals left in variable position i ∈ {0, 1, · · · , L+w−2}.



214 Algorithmic Implications

We now define the check types. Consider a coupled K-SAT formula to
begin with. For such a formula there are L sets of check nodes placed at
positions {0, 1, · · · , L}. Let us consider a specific position i ∈ {0, 1, · · · , L}
and look at the check nodes at position i. Each of these check nodes can
potentially be connected to any set of K variables resting in variable positions
{i, i + 1, · · · , i + w − 1}. Some thought shows that there are various types of
check nodes depending on the variable positions that they are connected to.
For example, there is a type of check nodes for which all of the K edges go only
into a single variable position j ∈ {i, i+1, · · · , i+w− 1} or there is a type for
with some of its edges go to position i and the rest go to position i + 1 and
so on. Also, as we proceed through the UC algorithm, some of these checks
are shortened to create new types of checks with degrees less than K. We now
explain a natural way to encode these various types.

By C(t, i, τ ) we mean the number of check nodes at check position i ∈
{0, 1, · · · , L} that have type τ at round tme t. The type τ = (τ0, · · · , τw−1) is
a w-tuple and indicates that relative to position i, how many edges the check
has in (variable) positions i, i+ 1, · · · , i+w − 1. The best way to explain τ is
through an example. Let us assume w = 4 and consider the set of check nodes
at check position 20 that are only connected to variable positions 20, 22, 23 in
the following way. For each of these check nodes there are exactly two edges
going to position 20, and 1 edge going to position 22 and 1 edge going to
position 23 (thus each of these checks have degree 4). Figure 10.2 illustrates a
generic check node of this set. We denote the number of these checks at time

Figure 10.2: A schematic representation of checks which contribute to
C(t, 20, (1, 0, 2, 1)). All the check nodes that contribute to C(t, i, τ ), were ini-
tially (at time 0) degree K check nodes resting at check position i. However,
the algorithm has evolved in a way that these check nodes have been deformed
(possibly shortened or remained unchanged) to have a specific type τ .

t by C(t, 20, (1, 0, 2, 1)). In other words, the type is computed as follows: the
check position number that the check rests in is 20. This check is connected to a
variable at position 20, and 2 variables at position 22, and a variable at position
23. So, relative to the check position 20, we see the edge-tuple (1, 0, 2, 1). Let
us now repeat and generalize: By C(t, i, τ ) we mean the number of check nodes,
at time t, which rest in position i, and τ is a w-tuple that indicates relative to
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variable position i, the number of edges that go to positions i, i+1, · · · , i+w−1,
respectively. One can easily see that by summing up elements of the w-tuple
τ = (τ0, · · · , τw−1), we find the degree of the corresponding check type. We
denote the degree of a type τ by deg(τ ). It is also easy to see that there are(
d+w−2
d−1

)
different types of degree d for d ∈ {2, 3, · · · ,K}. We are now ready to

write the differential equations. Our approach is as follows. Assume the phase
of the algorithm is p and we are in a round t. At a free step, we fix a variable at
position p (free step). This will create a number of forced steps in each of the
positions p, p+ 1, · · · , L+w− 1. We first compute the average of these forced
fixes in each variable position as a function of the number of degree two check
nodes. Using these averages, we then update the average number of check and
variable nodes at each position. We proceed by explaining a key property for
the analysis.

Uniform Randomness Property

The uniform randomness property means that at any round time t, for any po-
sition i and any type τ , each clause in the set C(t, i, τ ) is uniformly distributed
among all the possible clauses at position i with type τ . In other words, con-
ditioned on the number of variables and check-types of different positions, the
formula is uniformly random. An intuitive justification for the randomness
property in our case stems from the fact that at any step (free or forced) in the
UC algorithm, no information, what-so-ever, can be deduced about the struc-
ture of the remaining formula. The exact proof of the uniform randomness
property in our case can be easily deduced from [128, Lemma 3].

Inside a Round

As mentioned above, a round begins with a free step and proceeds with a possi-
ble sequence of forced steps and ends when there are no more forced steps left.
A crucial task in writing the differential equations is a precise characterization
of the average number of forced steps taken during each round. Our objective
is now to derive this average in a round t as a function of the number of degree
two check nodes. In this regard, let us denote by βi(t) the average number of
variables at position i that are set in round t. Let us also define the vector β̄(t)
as

β̄(t) =





β0(t)
β1(t)
...

βL+w−2(t)




.

Also, it will be useful to choose a specific notation for the degree two types.
For r, s ∈ {0, 1, · · · , w − 1} s.t. r < s, we define the degree two types πr,s and
πr,r as the following w-tuples

πr,s = (0, · · · ,
position r

1 , · · · ,
position s

1 , · · · , 0), (10.21)
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πr,r = (0, · · · ,
position r

2 , · · · , 0). (10.22)

In other words, the tuple πr,s is zero at all its entries except the ones at positions
r, s which it takes value one. Similarly, πr,r is non-zero only at position r where
it takes value 2.

A critical point to consider here is the following. Consider two variable
positions i, j ∈ {0, 1, · · · , L+w− 2}. We ask ourselves if we set one variable at
position j, how many immediate forced steps at position i would this create on
average? We call this average number the effect of position j on i and denote
it by Ai,j . To answer this, we should look at the degree two check nodes that
are connected exactly to positions i and j. Let us now express Ai,j in terms
of the degree two check nodes that are connected to positions i and j. For
simplicity, assume i ≤ j. It is easy to see that if j ≥ i + w, then Ai,j = 0.
This is because each check node can only be connected to variable positions
in a range of size at most w. Assuming i + w > j, we consider two cases:
i = j and i < j. When i = j, we should consider the degree two checks
that are connected to position i twice. The possible positions of theses check
node lie inside the set {i−w + 1, i− w + 2, · · · , i}. For the checks at position
k ∈ {i − w + 1, i − w + 2, · · · , i} the corresponding type would be πi−k,i−k.
Hence, we obtain

Ai,i =
1

Li(t)

i∑

k=i−w+1

2C(t, k,πi−k,i−k). (10.23)

In the case where i < j, we need the number of checks that have one edge in
position i and one in position j. So the possible check positions are inside the
set {j − w + 1, · · · , i}. For a check position k in this set, the corresponding
type would be πi−k,j−k . As a result, we have

Ai,j =
1

Lj(t)

i∑

k=j−w+1

C(t, k,πi−k,j−k). (10.24)

Note that

Lj(t)Ai,j = Li(t)Aj,i =
i∑

k=j−w+1

C(t, k,πi−k,j−k). (10.25)

We now define the matrix

A = [Ai,j ](L+w−1)×(L+w−1), (10.26)

that contains as its entries Ai,j . The matrix A plays a key role in both writing
the differential equations and their analysis. Assume now that we are in phase
p. Having the matrix A, we can compute the vector β̄(t) via considering the
multi-rate Galton-Watson tree starting at position p. We first note that in the
beginning of each round we freely fix a variable at position p. This will create
an effect (i.e., some forced fixes) in other positions. This effect is on average
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equal to Aep, where ep is the vector that has a 1 in its p-th position and 0 in
other positions. These new (forced) fixes will also create an effect which is on
average equal to A2ep and so on. Therefore, we obtain

β̄(t) = (I +A+A2 + · · · )ep = (I −A)−1ep. (10.27)

Of course the relation (10.27) is valid if and only if the matrix A has spectral
radius strictly less than 1. More precisely, we define the spectral radius of A
as

ρ(A) = max
1≤i≤L−w+1

|λi|,

where |λi| denotes the absolute value of the eigenvalue λi of A. For (10.27) to
hold, we must have

ρ(A) < 1. (10.28)

Here, a few comments are in order:

(i) We have assumed that during each round, the statistics of the formula
remain constant. This condition does not completely hold, as by setting
the variables the number of variables and clauses change. However, as
we see in the following, by assuming ρ(A) < 1, the fluctuations of these
statistics is O(1) and when divided by Li, their total influence would be
O( 1

N ). As a result, they can be neglected with respect to the Wormald
framework of differential equations. We thus omit such an additional
factor in (10.27).

(ii) We notice from (10.25) that the matrix A can be written in the form
of A = SL, where S is a symmetric matrix and L is a diagonal matrix.
Hence, the matrix L+ 1

2AL− 1
2 is a symmetric matrix and hence has only

real eigenvalues. However, it can easily be shown that A and L+ 1
2AL− 1

2

have the same set of eigenvalues and thus all the eigenvalues of A are
real. Further with such a representation of A, one can deduce from the
Perron-Frobenius formalism [129] that

ρ(A) = max
1≤i≤L−w+1

λi. (10.29)

Consequently, for (10.27) to hold, the largest eigenvalue of A should be
strictly less than 1.

The Differential Equations

Now, having the vector β we can find how the number of variables and checks
evolve. For all i ≥ 0,

∆Li(t) = Li(t+ 1)− Li(t) = −2βi(t). (10.30)

To see how the check types evolve, we note that for a given check type there
are two kinds of flows to be considered. A negative flow going out and a
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positive flow coming in from the checks of higher degrees. In this regard, for a
type τ = (τ0, · · · , τw−1) with deg(τ ) < K let ∂τ be the set of types of degree
deg(τ ) + 1 such that by removing one edge from them we reach to the type τ .
The set ∂τ consists of w types which we denote by τd, d ∈ {0, 1, · · · , w − 1},
such that

τd = τ + (0, · · · ,
d
1, · · · , 0), (10.31)

where + denotes vector addition in the field of reals. Thus, if deg(τ ) < K, we
obtain

∆C(t, i, τ ) = −2
w−1∑

d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
+

w−1∑

d=0

(1+τd)βi+d(t)
C(t, i, τd)

Li+d(t)
. (10.32)

The right-hand side of (10.32) has two parts. The first part corresponds to
the flow that is going out of C(t, i, τ ) and has negative sign. The right part is
the incoming flow from the check nodes of higher degrees. In the case where
deg(τ ) = K, we only have an outgoing flow since no check node with higher
degrees exist. Hence, for the case deg(τ ) = K we can write

∆C(t, i, τ ) = −2
w−1∑

d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
. (10.33)

We now write the initial conditions for the variables and check types. Firstly,
note that Li(0) = 2N . In the beginning of the algorithm, all checks are of
degree K, thus for types τ such that deg(τ) < K, we have C(0, i, τ) = 0. For
deg(τ ) = K we have

C(0, i, τ) = αN

(
K

τ0,τ1,··· ,τw−1

)

wK
. (10.34)

In order to write the differential equations, we rescale the (round) time by N ,
i.e.

t← t

N
, (10.35)

and also normalize all our other numbers by N , i.e.,

c(t, ·, ·) = C(Nt, ·, ·)
N

and !i(t) =
Li(Nt)

N
. (10.36)

We then obtain for i ∈ {0, 1, · · · , L+ w − 2},

d!i(t)

dt
= −2βi(t). (10.37)

For i ∈ {0, 1, · · · , L− 1} and deg(τ ) < K we have

dc(t, i, τ)

dt
= −2

w−1∑

d=0

βi+d(t)
τdc(t, i, τ)

!i+d(t)
+

w−1∑

d=0

(1 + τd)βi+d(t)
c(t, i, τd)

!i+d(t)
, (10.38)
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and otherwise if deg(τ ) = K we have

dc(t, i, τ)

dt
= −2

w−1∑

d=0

βi+d(t)
τdc(t, i, τ)

!i+d(t)
. (10.39)

The vector β̄ is also found as follows. For p being the current phase, we have

β(t) = (β0(t), · · · ,βL+w−2(t))
T = (I −A)−1ep, (10.40)

where A = [Ai,j ](L+w−1)(L+w−1) has the form

Ai,j =
1

!j(t)






∑i
k=i−w+1 2c(t, k,πi−k,i−k) i = j,∑i
k=j−w+1 c(t, k,πi−k,j−k) 0 <| i− j |< w,

0 otherwise

(10.41)

Finally, the initial conditions are given by:

!i(0) = 2, for 0 ≤ i ≤ L+ w − 2

c(0, i, τ) =

{
α
( K
τ0,τ1,··· ,τw−1

)
wK if deg(τ )= K and 0 ≤ i ≤ L− 1,

0 otherwise
(10.42)

The Criterion for the UC to Succeed

We argue now that the criterion for the UC algorithm to succeed (i.e., to find
a solution that satisfies almost all the constraints) is

ρ(A) ≤ 1− δ, (10.43)

for any time t and where δ is a positive constant. We give an intuitive argument
here and notice that the proof can be followed similar to [128, Lemma 4] and
[80, Proposition 4.9].

Consider a particular time t and assume that the condition (10.43) holds.
When we fix a variable at a free step, a sequence of forced steps follows. The
generation of such forced variables (or unit clauses) during the round follows
the pattern of a multi-rate Galton-Watson branching process. Such a process
starts with a root which is the free variable that we set in the beginning of
the round. Then, at every step of the process all individuals born at the
previous step generate a number of offsprings. The number of offsprings in
a Galton-Watson tree may follow an arbitrary fixed distribution whose mean
is dependent on the position of the variables born at the previous step (the
elements of the matrix A). The net result is that if ρ(A) < 1, then irrespective
the distribution of the offsprings and their position, the population certainly
becomes extinct, eventually. Mathematically speaking, this means that the
Galton-Watson process is sub-critical and with probability 1, the tree is of
finite size.

Assume now that we denote the Galton-Watson tree by T . Also, with a
slight abuse of notation, denote by Ti the set of vertices that T has on position
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K 3 4 5
αUC(K) 2.66 4.50 7.58

αUC,L=50,w=3(K) 3.67 7.81 15.76

Table 10.3: First line: The thresholds for UCP on the uncoupled ensemble. Second

line: UCP threshold for a coupled chain with w = 3, L = 50.

i. Conditioned on T , the probability that at position i a variable is hit more

than once by T is O( |Ti|2
N ). Hence, in expectation there are O( |E[|Ti|2]

N ) un-
satisfied clauses that are generated as position i and at time t. Assuming
ρ(A) ≤ 1 − δ, E[|Ti|2] is uniformly bounded from above by a constant for all
the times t. Hence, after the UC algorithm is completed, the expected number
of un-satisfied clauses at position i is O(1). In fact, with a little bit work, one
can show that there is a positive probability that at a position i, there are no
un-satisfied clauses.

On the other hand, if ρ(A) crosses the value 1 at a time t, then the cor-
responding Galton-Watson process becomes super-critical and it will generate
with high probability a population of size Θ(N) . As a result, there are Θ(1)
number of clauses unsatisfied at time t. So if the value of ρ(A) stays above 1
for a notable amount of time, then Θ(N) clauses would be left unsatisfied at
the end of the UC algorithm.

10.3.4 Numerical Implementation

We have implemented the above set of differential equations in C. We define
the threshold αUC,L,w(K) as the highest density for which the spectral norm
(largest eigenvalue) of the matrix A is strictly less than one throughout the
whole algorithm. A practical point to notice here is that, for the sake of
implementation, we assume a phase p finishes when its corresponding variable
!p(t) goes below a (very) small threshold ε > 0. In our implementations, we
have typically taken ε = 10−5. However, it can be made arbitrarily small as
long as the computational resources allow.

Table 10.3 shows the value of αUC,L,w(K) with L = 50 and w = 3 for
different choices of K. As we observe from Table 10.3, for the UC algorithm
with the specific schedule mentioned above, there is a significant threshold
improvement over the un-coupled ensemble.

For L = 50, w = 3,K = 3 and several values of α, we have plotted in
Figure 10.3 the evolution of largest eigenvalue of A as a function of round
time t.

In order to characterize analytically the ultimate threshold for the UC al-
gorithm when L and w grow large, we proceed by further analyzing the set of
differential equations.
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Figure 10.3: The largest eigenvalue of the matrix A, plotted versus the round
time t (the number of rounds divided by the total number of variables NL). The
plots correspond to an actual implementation of the UC algorithm for the 3-SAT
coupled ensemble with L = 50 and w = 3. As we observe, for α < 3.67, there
is a gap between the largest eigenvalue of A and the value 1 throughout the UC
algorithm. By increasing α this gap shrinks to 0. For α = 3.66 (the right-most
plot) this gap is around 0.006.

10.3.5 Further Simplifications

The set of differential equations (10.37)-(10.42) is an autonomous system of
first order differential equations with fixed initial conditions. Thus, when a
solution exists, it is unique. Our objective in this section is to simplify these
equations and rewrite them in a new setting that only involves the profile of
literals {!i}i≥0. We note here that due to the uniqueness of the solution of
these equations, our methods to simplify the equations are on the safe side.

The first basic observation is that −2βi

#i
= d

dt ln !i. Therefore, the equation
for c(t, i, τ ) with deg(τ ) < K can be written as

dc(t, i, τ ) =

{w−1∑

d=0

τd(d ln !i+d(t))

}
c(t, i, τ)−1

2

K−1∑

d=0

(1+τd)d(ln !i+d(t))c(t, i, τ
(d)),

(10.44)
and similarly when deg(τ ) = K we can write

dc(t, i, τ ) =

{w−1∑

d=0

τd(d ln !i+d(t))

}
c(t, i, τ). (10.45)

In relations (10.44) and (10.45), the term dt has been “simplified” purposedly:
indeed one can view this equation as a set of first order partial differential
equations. The time dependence of c(t, i, τ) is not explicit but only implicit
through the !i(t). Therefore, in the next few lines we consider c(t, i, τ) as a
function of !i’s, and drop the explicit time dependence. From (10.45) one can
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see that for the case deg(τ ) = K we have

∂c(t,i,τ)
∂ ln #i+d

= τdc(t, i, τ), d = 0, . . . , w − 1,

∂c(t,i,τ)
∂ ln #i+d

= 0, d 7= 0, . . . , w − 1.

(10.46)

As a result of the above relations one can easily guess that for the case deg(τ ) =
K we have

c(t, i, τ) = pτ

w−1∏

d=0

(!i+d)
τd , (10.47)

and also by considering the initial conditions, we obtain

pτ =

(
K

τ0,τ1,··· ,τw−1

)

wK

α

2K
. (10.48)

Let us consider types with degree less than K. It turns out that these equations
can be integrated iteratively. In order to represent c(t, i, τ) in terms of the
literals, we first need the following definition. Consider two types τ and τ ′. We
say that τ ′ dominates τ if for any d ∈ {0, 1, · · · , w − 1} we have τd ≤ τ ′d. We
also represent dominance by

τ ≺ τ ′. (10.49)

Lemma 10.1. We have for i ∈ {0, 1, · · · , L− 1}

c(t, i, τ) =
w−1∏

d=0

!τdi+d

∑

τ ′: τ≺τ ′,deg(τ ′)=K

pτ ′

w−1∏

d=0

(1− !i+d

2
)τ

′
d−τd . (10.50)

In particular, for the degree 2 types, which we need in the matrix A, we find
from Lemma 10.1, and after some simple algebra, that for i, k ∈ {0, 1, · · · , L−1}
such that k ∈ {i− w + 1, · · · , i}, we have

c(t, k,πi−k,i−k) =
α

2K
K(K − 1)

2w2
!2i
(
1− 1

w

w−1∑

d=0

!k+d

2

)K−2
.

Also, for i, j, k ∈ {0, 1, · · · , L − 1} such that i < j and k ∈ {j − w + 1, · · · , i}
we have

c(t, k,πi−k,j−k) =
α

2K
K(K − 1)

w2
!i!j
(
1− 1

w

w−1∑

d=0

!k+d

2

)K−2
.

This brings us to the following conclusion.

Corollary 10.1. For i, j ∈ {0, 1, · · · , L + w − 2}, Ai,j can be expressed in
terms of the literals as follows. If 0 ≤ j − i ≤ w − 1, we have

Ai,j =
α

2K
K(K − 1)

w
!i
1

w

w−1∑

k=j−i

(
1− 1

w

w−1∑

d=0

!j−k+d

2

)K−2
. (10.51)
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Also, if 0 ≤ i− j ≤ w − 1, we have

Ai,j =
!i
!j
Aj,i, (10.52)

and Ai,j = 0 otherwise. More compactly, one can write

Ai,j = {| i− j |< w} α
2K

K(K − 1)

w
!i
1

w

w−1∑

k=|j−i|

(
1− 1

w

w−1∑

d=0

!max(i,j)−k+d

2

)K−2
.

(10.53)

Let us summarize: the differential equations can be expressed, solely in
terms of the literals, as an autonomous system of first order differential equa-
tions. Assuming that we are in phase p, the differential equations take the
following form

d!̄

dt
= −2(I −A)−1ep, (10.54)

where the matrix A is expressed in terms of !i’s as in Corollary 10.1 and

d!̄

dt
=





d#0
dt
d#1
dt
...

d#L+w−1

dt




.

10.3.6 Conserved Quantities

The system of equations in (10.54) can be rewritten as

L+w−2∑

j=0

(δij −Ai,j)
d!j
dt

= −2δpi, i = p, p+ 1, . . . , L+ w − 2, (10.55)

where p denotes the phase of the algorithm. Note here that Aij is given as in
(10.53) and

d!j
dt

= 0, ∀j /∈ {p, p+ 1, · · · , L+ w − 2}. (10.56)

By multiplying !−1
i dt on both sides of (10.55) we obtain

d(ln !i)−
i+w−1∑

j=i−w+1

(!−1
i Ai,j)d!j = −2δpi!−1

i dt. (10.57)

Now, after a careful manipulation one sees that the sum

i+w−1∑

j=i−w+1

(!−1
i Ai,j)d!j =
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α

2K
K(K − 1)

w

i+w−1∑

j=i−w+1

d!j

w−1∑

k=|j−i|

(
1− 1

w

w−1∑

d=0

!max(i,j)−k+d

2

)K−2

=
α

2K
K(K − 1)

w

w−1∑

k=0

w−1∑

s=0

d!i−k+s

(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−2
,

is an exact differential form. In other words, by defining

Qi ! − αK

2K−1

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−1
, (10.58)

we have
∂Qi

∂!j
= (!−1

i Ai,j). (10.59)

Equivalently, we can write

dQi =
i+w−1∑

j=i−w+1

(!−1
i Ai,j)d!j . (10.60)

From (10.59) and (10.57) one gets

d(ln !i)− dQi = −2δpi!−1
i dt. (10.61)

which means that

Pi = ln !i −Qi +

∫ t

0
2δpi!

−1
i dt (10.62)

is a conserved quantity or an integral of motion, i.e., the value of Pi’s is inde-
pendent of the time t. The values of Pi’s hence can be found by the initial
conditions !i(0) = 2 for i ≥ 0 and !i(0) = 0 for i < 0. Consequently, we find
that for i ≥ w

Pi = ln 2. (10.63)

However, for i < w the value of Pi is strictly less than ln 2.

10.3.7 Slightly Modified Initial Conditions

The dependence pf Pi to the position i inserts some undesired asymmetry in
the analysis, and makes it quiet cumbersome. As a result, we find it more
convenient to slightly modify the initial conditions of the differential equations
and remove such an asymmetry in the value of Pi’s. As we prove in the sequel,
this modification of the initial conditions does not have any effect on the final
results of this chapter and hence can be assumed without loss of any generality.

So, to summarize, the initial conditions

!i(0) =

{
0 If i < 0,
2 If i ≥ 0,



10.3. Unit Clause Propagation 225

has the deficiency that the value of Pi is dependent on the position i. The
objective here is to devise a new set of initial conditions on the problem so
that the value of Pi given in (10.62) is equal to to ln 2 for all the positions
i ∈ {0, 1, · · · , L+w− 2}. Let us denote the new initial values for literals by !̃i,
0 ≤ i ≤ L+w − 2. We further extend the profile {!̃i} to all the positions in Z
by letting

!̃i = 0 ∀i < 0 (10.64)

!̃i = 2 ∀i > L+ w − 2. (10.65)

We now want to find the values !̃i such that initializing the differential equations
with

!i(0) = !̃i, ∀i ∈ Z (10.66)

will result the fact that

Pi = ln 2, ∀i ∈ {0, 1, · · · , L+ w − 2}. (10.67)

A close look at equations (10.58) and (10.62) shows that this objective is feasible
if and only if the profile {!̃i} is the solution of the following set of equations:

ln
!̃i
2

= − αK

w2K−1

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!̃i−k+d

2

)K−1
, ∀i ∈ {0, 1, · · · , L+ w − 2}.

(10.68)
In order to find a solution of (10.68), we can apply the iterative procedure
given in Algorithm 7.

Procedure 7 Iterative procedure to find a a solution to (10.68)

1: Start by initializing !̃0i = 2 for 0 ≤ i ≤ L+ w − 2.
2: For m = 1, 2, · · · do

For i = 0, 1, · · · , L+ w − 2 do the update

!̃m+1
i = 2 exp

{
− αK

2K−1w

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!̃mi−k+d

2

)K−1}
. (10.69)

Lemma 10.2. The procedure of Algorithm 7 converges to a solution of the
set of equations in (10.68). We denote such a solution by {!̃i}0≤i≤L+w−2.
Furthermore, we have

1. The value of !̃i is non-decreasing on i ∈ {0, 1, · · · , L+ w − 2}.

2. There exists constants c1, c2 > 0 such that

!̃i ≥ 2− c1e
−c2( i

w )2 . (10.70)
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Proof. Consider Algorithm 7. We first show that for m ∈ N and for i ≥ 0, we
have

!̃m+1
i ≤ !̃mi . (10.71)

With this statement in mind, it is easy to see that the profile {!̃mi }i≥0 converges
to a limit as m→∞. In order to prove (10.71), we first note that the function

h(x) = 2 exp
{
− αK

2K−1

(
1− x

2

)K−1}
, (10.72)

is an increasing function on the domain x ∈ [0, 2]. Using this and the definition
of the profile {!̃0i }i∈Z, it is easy to see that for i ∈ Z we have

!̃1i ≤ !̃0i . (10.73)

One can then use (10.73) together with (10.69) and the fact that h is an increas-
ing function, to show that for i ∈ Z we have !̃2i ≤ !̃1i . Finally, by continuing
this procedure inductively, we obtain (10.71).

Furthermore, from the fact that h(x) is an increasing on [0, 2] and also the
fact that the profile {!̃0i }i∈Z is a non-decreasing profile, we deduce that the
profile {!̃1i }i∈Z is also a non-decreasing profile. Again, one can generalize this
statement inductively to deduce that for all m ∈ N, the profiles {!̃mi }i∈Z are
non-decreasing profiles, and hence, the same property holds for their limit. The
relation (10.70) follows easily from Lemma 10.3 and we do not repeat its proof
here.

As a consequence of Lemma 10.2, by starting with the initial conditions
!i(0) = !̃i, we have Pi = ln 2 for 0 ≤ i ≤ L − w + 2. Also, as by (10.70) the
profile {!̃i}i≥0 converges doubly exponentially fast in i to the value ! = 2, we
lose no generality in starting with {!̃i}i≥0 as our initial condition. Let us now
summarize.

Theorem 10.2. Starting with the initial conditions {!̃i}i≥0, for any time t
during the UC algorithm, the profile of literals is a solution of the following set
of equations

ln
!i
2
−Qi +

∫ t

0
2δpi!

−1
i dt = 0, ∀i ∈ {0, 1, · · · , L+ w − 2}. (10.74)

10.3.8 A Potential Function

From the definition of Qi in (10.58), one can explicitly check the following. For
j, k ≥ 0,

∂Qk

∂!j
=
∂Qj

∂!k
. (10.75)

Clearly, the same statement is also true if we replace Qi with ln #i
2 −Qi. Now,

as the space of {!i, i ≥ 0} is simply connected, by the Poincaré Lemma, there
exists a functional Φ such that

∂Φ

∂!i
= ln

!i
2
−Qi, i ≥ 0. (10.76)
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We call Φ the the coupled potential function associated to the system of differ-
ential equations or simply the coupled potential. Fortunately, in our case the
potential Φ is easy to find. Let us first assume L = w = 1, i.e., the individual
system. For this case we only have one literal which we denote by !. From
(10.76) and (10.58) we obtain

∂Φind

∂!
= ln !+

αK

2K−1
(1− !

2
)K−1 − ln 2.

By integrating the above relation, we get

Φind(!,α,K) = 2− !(1− ln
!

2
)− α

2K−2
(1 − !

2
)K , (10.77)

where the constant 2 in the potential is due to the fact that, without loss of
generality, we fix the potential to 0 at the point ! = 2. The coupled potential
can be obtained from the potential of the individual system by a simple formula
derived in [126]. For our case, by using (10.77), we define the coupled potential
to be

Φ =
L+w−2∑

i=0

1−!i(1−ln
!i
2
)− α

2K−2

L+w−2∑

i=0

1

w

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K
. (10.78)

It can easily be checked that for i ≥ 0,

∂Φ

∂!i
= ln

!i
2
−Qi.

From now on, we call the functional Φ given in (10.78) the potential associated
to our system.

10.3.9 The Threshold of the UC Algorithm for the Coupled
Ensemble

Let us go back for a moment and have a look at the result of Theorem 10.1 in
Section 10.2.3: for coupled systems with a state described via a one-dimensional
recursion (as in (10.15)), the threshold of the coupled system can be computed
from the potential function of the individual system by the relation (10.17).

An educated guess for the threshold of the UC algorithm for the coupled
ensemble i the one obtained by (10.17), with the potential function given in
(10.77). Figure 10.4 plots the value of Φind given in (10.77) as a function of
! for different values of α and for K = 3. The potential threshold found in
this way for K = 3 is 3.6717 which is extremely close to the one observed
in the (numerical) solution of the differential equations (see Table 10.3). Is
this a coincidence? Well, let us look at the case where K = 4. The potential
threshold is found to be 7.8146 which is again very close to the one from the
numerical solution of differential equations, and so on. It thus seems that
the potential threshold is equal to the threshold of the UC algorithm for the
coupled instances with L,w tending to infinity. This is indeed true.



228 Algorithmic Implications

Figure 10.4: The potential function associated to the individual ensemble,
Φind(!,α,K), plotted as a function of ! for K = 3 and different values of α.
From top to bottom, the curves correspond respectively to α = 3.2, 3.5, 3.6, 3.67.
The smallest α for which the potential goes below the horizontal axis is around
3.67.

Theorem 10.3. We have

αcUC(K) ! lim
w→∞

lim
L→∞

αUC,L,w = sup{α ≥ 0 | min
#∈[0,2]

Φind(!,α,K) ≥ 0}.

(10.79)

Remark 10.1. For large K we find

αcUC(K)
.
= 2K−1. (10.80)

This is roughly a factor K
e of improvement over the threshold of the UC algo-

rithm for the individual system that is given by

αUC(K)
.
=

e2K−1

K
. (10.81)

However, the threshold of the coupled UC is still below the SAT/UNSAT thresh-
old αs(K) which is roughly 2K ln 2. It is also below the condensation threshold
which is 2K ln 2− 3/2 ln 2 + o(1).

The rest of this chapter is devoted to the proof of Theorem 10.3. We
first derive several properties of the profile of the literals. We then use these
properties to prove that for α ≤ αcUCP, there exists a constant w0 = w(α,K) <
∞ and a constant δ = δ(α,K) > 0 such that if we choose w ≥ w0, for any time
t during the UC algorithm, we have ρ(A) < 1− δ. Hence, the fact that the UC
algorithm succeeds follows from the discussions at the end of Section 10.3.3.
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10.3.10 How Does the Profile Look Like?

As the first step towards the proof of Theorem 10.3, the objective of this section
is to provide various details about the way the profile looks like during the UC
algorithm. Sp far, the only thing that we know for sure is that given the current
phase p, the profiles rests at !i = 0 for i < p and rises up to !i = 2 for i at its
right boundary, i.e., i > L+ w − 2. Let us define the transition region of the
profile to be the region of positions i ∈ {p, p+ 1, · · · , L+w− 2} such that the
value of !i is not very close to 2. One of the main results of this section is that
the transition region is always O(w) during the whole UC algorithm.

Figure 10.5: A schematic representation of the profile. The transition region is
of size O(w).

The idea here is to consider different regions for the position i ∈ {0, 1, · · · , L+
w − 2} and analyze the behavior of the profile in each of these regions. These
regions are specified by the solutions the equation

ln
!

2
= − αK

2K−1
(1 − !

2
)K−1, (10.82)

or equivalently, the fixed points of the equation

! = 2 exp
(
− αK

2K−1
(1 − !

2
)K−1

)
. (10.83)

The reason that we consider the fixed points of (10.83) stems from the con-
servation equations (10.74). Let us give an intuitive explanation. Assume w
is a large but fixed number. We know that the profile is increasing. If the
transition region of the profile is much larger that w (e.g., it is O(w2) ), then
it is easy to see that there is a value !∗ ∈ (0, 2) such that the profile is close to
!∗ for at least O(w) positions. In other words, there is a small constant δ > 0
and two positions i1, i2 such that i2 − i1 ≥ 2w and for i ∈ {i1, i1 + 1, · · · , i2}
we have !i ∈ [!∗ − δ, !∗ + δ]. Now, by looking at the conservations equations
(10.74) for a position i = i1+i2

2 we can easily deduce that !∗ should be close to
a fixed point of (10.82).

We now proceed by specifying the solutions of (10.82). Let us define the
function

f(!) = ln
!

2
+

αK

2K−1
(1− !

2
)K−1. (10.84)
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The first derivative of the function f is

f ′(!) =
1

!

(
1− αK(K − 1)

2K
!(1− !

2
)K−2

)
. (10.85)

Now, one can easily see that the equation f ′(!) = 0 has at most two solutions on
! ∈ [0, 2]. This is because the function !(1− #

2 )
K−2 is a uni-modal function on

! ∈ [0, 2]. Hence, by the Role Theorem, the equation f(!) = 0 (or equivalently
(10.82)) has at most three solutions on [0, 2]. Indeed, a bit of calculus reveals
that there exists a α∗ < αcUCP such that the following holds. For α < α∗ the
equation (10.82) has exactly one solution which is the trivial solution ! = 2 and
for α > α∗ there are three distinct solutions to (10.82). In the following, we
assume the harder case, i.e., we assume that α∗ < α < αcUCP and hence the
equation (10.82) has three distinct solutions on [0, 2]. From what we mention
in the sequel, the other case, α < α∗, is much easier to analyze and in fact will
follow directly from the present analysis.

As shown in Figure 10.6, the fixed points of (10.83) are obtained by inter-
secting the two curves

y1(!) = 2 exp
(
− αK

2K−1
(1− !

2
)K−1), (10.86)

y2(!) = !, (10.87)

on the region ! ∈ [0, 2].

Figure 10.6: A schematic representation of the fixed points of (10.83) which are
equivalently the intersection points of the two curves y1(!) and y2(!).

As mentioned above we assume there are three distinct fixed points. The
largest one ! = 2 is called the trivial fixed point. The middle one is called the
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unstable fixed point !u and the smallest one is called the stable fixed point !s.
Given these fixed points, we consider the following five regions for the positions
i ∈ {0, 1, · · · , L+w− 2}. Let δ > 0 be a fixed constant, the value of which will
be specified in the following lemma in its suitable place. For the moment, we
think of δ as a fixed and given constant. As illustrated in Figure 10.7, the five
regions are as follows:

• region 1 (R1): all positions i such that !i ≤ !s − δ.

• region 2 (R2): all positions i such that !s − δ < !i ≤ !s + δ.

• region 3 (R3): all positions i such that !s + δ < !i ≤ !u − δ.

• region 4 (R4): all positions i such that !u − δ < !i ≤ !u + δ.

• region 5 (R5): all positions i such that !u + δ < !i ≤ 2.

Figure 10.7: Different regions for the value of the profile.

In the following lemma, we provide bounds on the behavior of the profile
in each of these regions. We note here that all the results of the following
lemma (and all the other results that appear later on) are only dependent on
the choice of α and K, Hence, they are independent of the time or phase of
the algorithm and are valid for the profile throughout the whole UC algorithm.
Let us conclude this section by summarizing its results in the following lemma.

Lemma 10.3. The following properties hold for the profile of literals {!i}i≥p

at any time t.

(1) For i > p

!i ≥ 2 exp(− αK

2K−1
).

(2) For i ≥ p

2− !i+w ≤ αK

22K−2
(2− !i)K−1.
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(3) For i > p

ln
!i+w

2

2
≤ −α

22K−1
(
2 − !i
2

)K−1.

Also, There exist positive constants w0 = w0(α,K) and δ = δ(α,K) such that
if we assume w ≥ w0 and define regions R1 − R5 (the regions depend on δ),
then

(4) If i ∈ R1∪R3, there exists a value ζ = ζ(α,K) > 0 such that !i+w−!i ≥ ζ.
Hence, the length of the regions 1 and 3 is at most 2w

ζ .

(5) The length of the regions 2,4 is at most 2w.

(6) Let ε > 0 be an arbitrary positive constant. Define Iε to be the first
position for which the value of profile goes above 2− ε, i.e.,

Iε = argmin{j ≥ p | ∀i ≥ j : !i > 2− ε}.

Then, there exist constants c1 = c1(α,K) and c2 = c2(α,K) such that

Iε ≤ w(c1 + c2 log(log
1

ε
)).

10.3.11 Why Does the UC Algorithm Work?

In this section, we take the last step in order to prove Theorem 10.3. That is,
we show that ρ(A) will be below 1 by a strict gap during the course of the UC
algorithm.

Lemma 10.4. There exist constants δ = δ(α,K) > 0 and w1 = w1(α,K),
such that if we choose w > w1, then for any time t, the largest eigenvalue of
matrix A is less than 1− δ.

Finally, by using (10.28), (10.29), and Lemma (10.4) the result of Theo-
rem 10.3 follows.

10.4 Further Remarks and Open Directions

This chapter was about algorithmic implications of the technique of spatial
coupling. The main two consequences of this chapter are as follows: (i) For
two classes of algorithms, we observed an algorithmic threshold increase on
the coupled ensemble. This threshold increase was indeed expected from the
results of Chapter 9, namely saturation of the SP and dynamical thresholds of
coupled K- SAT. (ii) The satisfiability thresholds of the coupled and standard
ensembles are the same (at infinite L). Hence, the algorithmic thresholds for
the coupled ensemble are also lower bounds for the satisfiability threshold of
the standard K-SAT ensemble. By analyzing the algorithms on the coupled
ensemble we derived in this chapter new (algorithmic) lower bounds on the
satisfiability threshold of the K-SAT ensemble.
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Let us now mention a few open directions. We believe that more sophis-
ticated (and analyzable) algorithms for the coupled ensemble can succeed all
the way up to the condensation threshold. For an algorithm to perform well
on the coupled ensemble, two key features should be carefully designed: (i) the
heuristic step of fixing the variables at each step, (ii) the schedule of the algo-
rithm and in particular how this schedule exploits the 1-dimensional structure
of the formula.

In this chapter, we have mainly used the technique of spatial coupling to
provide analytic results for the standard (uncoupled) ensemble. An interesting
direction is to use this technique to provide algorithms to solve uncoupled
(standard) K-SAT formulas. One approach to do it is as follows. We start
form an uncoupled K-SAT formula and embed it into a coupled formula which
presumably is easier to solve. Given the solution of the coupled formula, the
idea is then to find a solution of the original uncoupled formula. One can think
of several ways to relate a coupled formula to an uncoupled one. For instance,
the interpolation ideas of Chapter 9 seem to be helpful in this regard.

10.5 Appendix: Auxiliary Lemmas and Proofs

10.5.1 Appendix A: A Message Passing Interpretation For UC

In this section we aim to express the UC algorithm in a message passing (MP)
formalism. In particular, we show that with such a formalism the conservation
equations (10.74) are precisely the density evolution equations that govern the
dynamics of this message passing algorithm. An important consequence of this
formalism is to prove that the profile of literals will always remain an strictly
increasing profile during the UC algorithm.

We start by explaining the MP formalism on the individual ensemble (i.e.,
L = w = 1). For this ensemble we will analyze the dynamics of the MP
procedure in a probabilistic manner and derive the so called density evolution
(DE) equations of the MP procedure. We then extend the MP procedure and
the DE equations to the coupled ensemble. Let us stress again the fact that
the following MP procedure is designed to formulate the dynamics of the UC
algorithm in a message passing fashion.

We proceed by recalling that a formula in the individual ensemble can be
thought as a bipartite graph with N literals (variable nodes) and M = Nα
clauses (check nodes). We denote a check by c, h ∈ {0, 1, · · · ,M − 1} and the
variables by i, j ∈ {0, · · · , N − 1} . Each check has K edges which randomly
have chosen one of the N variables. So the graph has MK edges. An edge
of the graph, between a check node c and a variable node i is also denoted
by 〈c, i〉. Also, each edge has an associated sign, being −1 or +1 with equal
probability, which we denote by Jc,i.

For each edge (c, i) of the graph we associate two types of messages: (i) the
check-to-variable message µc→i which takes its value in the set {0, 1} (ii) the
variable-to-check message, (µi→c, si→c) which the value of µi→c is inside {0, 1}
and the value of si→c is in {?, 0, 1}. On the intuitive level, these messages are
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designed to mimic the behavior of the UC algorithm. In this regard, when
a message µc→i is 1, this means that the check c is forcing the variable i to
satisfy it. This situation occurs in the course of the UC algorithm when the
check c is a unit clause. Furthermore, when a message µi→c takes the value 1,
this means that the variable i tells the check c that it has a preset value. This
other message si→c is the preset value of variable i that it sends to check c.

The MP procedure consists of N steps. At each step r = 1, · · · , N we
choose a variable, mark it, and update the messages. Thus, in the end of MP
all the variables are marked. We now describe the MP procedure in detail
through the following stages.

Initialization: In the beginning of the MP procedure, we initialize all the
messages µc→i and µi→c to 0. This indicates that in the beginning all the
checks and variables tell each other that they are essentially free. We also let
all the messages si→c to be ? indicating that the variables do not give any
information about their value to the checks.

During step r: In each step r ∈ {1, · · · , N}, we first choose one variable
uniformly at random among the remaining unmarked variables. Let us denote
the chosen variable by i. We do the following operations once i is chosen.

1. We first mark the variable i for later correspondence.

2. We then fix the value all the outgoing messages µi→c to 1.

3. Let si be a bernoulli rv whose value is chosen by flipping a fair coin. By
flipping a fair coin we specify the value of si and give this value to all the
messages si→c whose value is equal to ? before step r. That is, if si→c =?
then we permanently fix si→c = si.

4. Finally, we update the messages as follows. We run the following update
rules until we rich a fixed state on the messages and no further updates
is necessary. Consider an edge 〈c, i〉. The check to variable message we
have

µt+1
c→i =

∏

j∈∂c\i

{µt
j→c = 1, stj→c = Jc,j}.

For the variable to check messages on 〈c, i〉 we do

µt+1
i→c = 1−

∏

h∈∂i\c

{µt+1
h→i = 0},

st+1
i→c = (−1)

1+Jc,i
2 {sti→c =?}.
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10.5.2 Appendix B: Auxiliary Lemmas and Proofs

Proof of Lemma 10.3

Proof of part (1): we start by a key observation. At a phase p, the conservation
equations (10.74) for a position i > p reads

ln
!i
2

= − αK

w2K−1

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−1
, ∀i > p, (10.88)

or equivalently,

!i = 2 exp
{
− αK

w2K−1

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−1}
, ∀i > p. (10.89)

It is easy to see that (10.89) can be written in the form of

!i = f(
1

w

w−1∑

k=0

g(
1

w

w−1∑

d=0

!i−k+d

2
)), (10.90)

where the functions f and g are given as

f(x) = 2 exp(
αK

2K−1
x), (10.91)

g(x) = −(1− x

2
)K−1. (10.92)

Consider a position i > p. We can now write

!i = f(
1

w

w−1∑

k=0

g(
w−1∑

d=0

!i−k+d

2
))

(a)
≥ f(

1

w

w−1∑

k=0

g(
1

w

w−1∑

d=0

!i−w

2
))

= f(g(!i−w)).

Here, step (a) follows from the fact that the profile of literals is an increasing
profile and also from the fact that the functions f and g are increasing functions
on the unit interval. Using a similar argument, one can also deduce that for
i ≥ p, we have !i ≤ f(g(!i+w)). So to summarize, we have

f(g(!i−w)) ≤ !i ≤ f(g(!i+w)), ∀i > p. (10.93)

The first consequence of the above set of inequalities (10.93) is that

!i > f(g(0)) = 2 exp(− αK

2K−1
), ∀i > p. (10.94)

Hence, part (1) of the lemma is proved.
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Proof of part (2): as discussed above we have for i ≥ p

!i+w ≥ f(g(!i))

= 2 exp
(
− αK

2K−1
(1− !i

2
)K−1)

≥ 2(1− αK

2K−1
(1− !i

2
)K−1).

Thus, by rearranging terms we get for i ≥ p

2− !i+w ≤ αK

22K−2
(2− !i)K−1.

Proof of part (3): starting from the conservation equations (10.74), we have
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Proof of part (4): we first consider the region 1 (R1). In this regard, we
define the sequence {xj}j∈N with x0 = 0 and for j ≥ 0

xj+1 = f(g(xj)). (10.95)

Now, by using the fact that for i ≥ p we have !i+w ≥ f(g(!i)), we obtain

!p+jw ≥ xj , ∀j ≥ 0. (10.96)
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We now claim that there exist a positive value ms ∈ (0, 1) such that for j ≥ 0

!s − xj+1 ≤ m1(!s − xj). (10.97)

This claim can easily be deduced from Figure 10.8. A little calculus reveals
that the line tangent to the curve y1(!) = f(g(!)) at the point ! = !s stays
below the curve y1(!) when ! ∈ [0, !s] (see Figure 10.8). Thus, by defining

m1 = y′
1(!s) < 1, (10.98)

we have for ! ≤ !s
y1(!) ≥ !s −m1(!s − !). (10.99)

Hence, one can write for j ≥ 0

Figure 10.8: The line y(!) is the tangent line to the curve y1(!) at the fixed point
! = !s. As we see from the figure, for ! ∈ [0, !], the line y(!) stays between the
curves y1(!) and y2(!).

xj+1 = y1(xj) ≥ !s −m1(!s − xj),

and as a result
!s − xj+1 ≤ m1(!s − xj),

Thus, the sequence {xj}j∈N converges exponentially fast to !s.
Another important consequence of the discussion above is that for a position

i ∈ R1 we have

!i+w ≥ f(g(!i))

(a)
≥ !s −m1(!s − !i)
= (1−m1)!s +m1!i
(b)
≥ δ(1−m1) + !i,
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where step (a) follows from (10.99) and (b) follows from the fact that !i ≤ !s−δ.
As a result, for i ∈ R1 we have that

!i+w − !i ≥ (1 −m1)δ. (10.100)

For region 3, one can use the same ideas (as in region 1) but with a bit of
more effort to justify that the same results as in region 1 hold here. That is,
for i ∈ R3 we have

!i+w − !i ≥ (1 −m3)δ, (10.101)

for a positive constant m3 < 1.
Now, by letting

ζ = δmin(1−m1, 1−m3), (10.102)

the proof of part (4) follows from (10.100) and (10.101). We further notice
that, as we will specify shortly, the value of δ is chosen to be merely dependent
on α and K.

Proof of part (5): the proof for regions 2 and 4 requires different techniques
than the ones presented above. In fact, one can note that in the above justifi-
cations we did not use the fact that α < αcUCP. Here, we use this assumption.
We also adjust the value of δ in a suitable way. In the sequel, we mainly talk
about region 4 and note that the same reasoning also holds for region 2.

For a properly chosen δ, we intend to show that the size of R4 is at most
2w. For i ≥ p we define !̄i as

!̄i =
1

w

w−1∑

d=0

!i+d. (10.103)

Also, let us define the set R̄4 as

R̄4 = {i > p | i− w ∈ R4, i ∈ R4}. (10.104)

We will now show that for a properly chosen δ the set R̄4 is always empty.
Clearly, this proves that the set R4 has size at most 2w. In order to show that
R̄4 is empty, we first assume the contrary, i.e., the set R̄4 is non-empty, and
then reach a contradiction. So assuming R̄4 has size larger than 1, let i0 be
the smallest position in R̄4. By using the functions f and g defined in (10.91)
and (10.92) and the conservation equations (10.74) we deduce that

!̄i =
1

w

w−1∑

d=0

f
( 1
w

w−1∑

k=0

g(!̄i+d−k)
)
, ∀i ≥ i0. (10.105)

Now, let us define the potential function

Φ̄({xi}) =
∑

i≥i0

xig(xi)−G(xi)− F (
1

w

w−1∑

k=0

g(xi−k)), (10.106)
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where the functions F,G are given as

F (x) =

∫
f(x)dx =

2K

αK
exp(

αK

2K−1
x), (10.107)

G(x) =

∫
g(x)dx =

2

K
(1− x

2
)K . (10.108)

It is easy to check that

(10.105)⇒ ∂Φ̄

∂xi

∣∣∣∣
#̄

= 0, ∀i ≥ i0, (10.109)

where by ∂Φ̄
∂#̄i

∣∣∣∣
#̄

we mean the partial derivative of Φ̄ (with respect to xi) com-

puted at the profile {!̄i}i≥i0−w. The idea is now to use the relation (10.109) to
get a contradiction with the fact that the set R̄4 is non-empty. In this regard,
we define the shifted profile {S!̄i}i≥i0 as

S!̄i = !i+1, ∀i ≥ i0. (10.110)

We first note that since {!̄i}i≥i0 is an increasing profile, then for i ≥ i0 we have
that S!̄i ≥ !̄i. One can telescopically write

Φ̄({S!̄i})− Φ̄({!̄i}) = !̄i0g(!̄i0)−G(!̄i0)+F (
1

w

w−1∑

k=0

g(!̄i0−k))+ o(
1

w
). (10.111)

where the last (small) term comes from the difference of the two profiles at the
very right end (we know from the second part of this lemma that at the right
end both profiles are doubly exponentially close to 2). Now, note that since
R̄4 is assumed to be non-empty, then from the definition of R̄4 it is easy to see
that

!i ∈ [!u − δ, !u + δ], ∀i ∈ {i0 − w, · · · , i0}. (10.112)

Also, we further notice that that the functions f, F, g,G have uniformly bounded
first and second derivatives inside the interval [0, 2], i.e., the value

θ = max
x∈[0,2]

max{| f ′′(x) |, | f ′(x) |, | F ′(x) |, | g′′(x) |, | g′(x) |, | G′(x) |},

(10.113)
is finite. Finally by (10.111), (10.112) and (10.113) we conclude that

Φ̄({S!̄i})− Φ̄({!̄i}) ≥ !ug(!u)−G(!u) + F (g(!u))− (1 + 2θ+ θ+ θ2)δ + o(
1

w
).

(10.114)
Now, as α < αcUCP, we obtain that

!ug(!u)−G(!u) + F (g(!u)) ≥ !sg(!s)−G(!s) + F (g(!s)) ! ∆(α,K) > 0.
(10.115)
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Thus by fixing δ to be

δ = δ(α,K) ! ∆

2(1 + 2θ + θ + θ2)
, (10.116)

we conclude from (10.116), (10.115) and (10.114) that

Φ̄({S!̄i})− Φ̄({!̄i}) ≥
∆

2
+ o(

1

w
). (10.117)

Note here that the choice of δ is merely dependent on ∆ and θ which are
positive static parameters merely dependent on α and K, and hence δ is it self
a static parameter independent of the dynamics of the UC algorithm.

We now show that (10.117) cannot be true provided that the conservation
equations (10.109) hold . By using the mean-value theorem we know that there
exists a profile {!∗i }i≥i0 such that for i ≥ i0 − w we have !̄i ≤ !∗i0 ≤ !̄i+1 and

Φ̄({S!̄i})−Φ̄({!̄i}) =
∑

i≥i0

∂Φ̄

∂xi

∣∣∣∣
#̄

(!̄i+1−!̄i)+
∑

i,j≥i0

∂2Φ̄

∂xi∂xj

∣∣∣∣
#∗
(!̄i+1−!̄i)(!̄j+1−!̄j).

(10.118)

Here, by ∂2Φ̄
∂xi∂xj

∣∣∣∣
#∗

we mean the partial second derivative of Φ̄ given in (10.106)

(with respect to xi and xj) computed at the profile {!∗i }i≥i0−w. Now, by using
(10.109) we conclude that

Φ̄({S!̄i})− Φ̄({!̄i}) =
∑

i,j≥i0

∂2Φ̄

∂xi∂xj

∣∣∣∣
#∗
(!̄i+1 − !̄i)(!̄j+1 − !̄j). (10.119)

We now bound the right-hand side of (10.119). For this purpose let us decom-
pose the function Φ̄ given in (10.106) into two parts

Φ̄({xi}) =
∑

i≥i0

xig(xi)−G(xi)

︸ ︷︷ ︸
Φ̄1

−
∑

i≥i0

F (
1

w

w−1∑

k=0

g(xi−k))

︸ ︷︷ ︸
Φ̄2

. (10.120)

Consequently,
∂2Φ̄

∂xi∂xj
=

∂2Φ̄1

∂xi∂xj
− ∂2Φ̄2

∂xi∂xj
. (10.121)

Consider the value θ defined in (10.113). It is easy to see that

∂2(xig(xi)−G(xi))

∂xi∂xj
≤ 5θ {i = j}. (10.122)

Hence, we conclude that

∑

i,j≥i0

∂2Φ̄1

∂xi∂xj

∣∣∣∣
#∗
(!̄i+1 − !̄i)(!̄j+1 − !̄j) ≤ 5θ

∑

i≥i0

(!̄i+1 − !̄i)(!̄i+1 − !̄i)
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(a)
≤ 2

w
5θ
∑

i≥i0

(!̄i+1 − !̄i)

≤ 10θ

w
(2− !̄i0)

≤ 20θ

w
. (10.123)

Here, step (a) follows from the fact that by definition of !̄i given in (10.103),
we can easily see that for any i ≥ i0 we have that !̄i+1− !̄i ≤ 2

w . Also, one can
write

∂

∂xj

∂

∂xi
F (

1

w

w−1∑

k=0

g(xi−k))

=
g′′(xi)

w
F ′(

1

w

w−1∑

k=0

g(xi−k)) {i = j}+ g′(xi)g′(xj)

w2
F ′′(

1

w

w−1∑

k=0

g(xi−k)) {i− j < w}

≤ θ2

w
{i = j}+ θ3

w2
{i− j < w}.

Therefore,

∑

i,j≥i0

∂2Φ̄2

∂xi∂xj

∣∣∣∣
#∗
(!̄i+1 − !̄i)(!̄j+1 − !̄j)

≤
∑

i≥i0

θ2

w
(!̄i+1 − !̄i)2 +

∑

i≥i0

i∑

j=i−w

θ3

w2
(!̄i+1 − !̄i)(!̄j+1 − !̄j)

≤ 2θ2

w2

∑

i≥i0

(!̄i+1 − !̄i) +
θ3

w2

∑

i≥i0

(!̄i+1 − !̄i)(!̄i+1 − !̄i−w)

≤ 4θ2

w2
+

4θ3

w2
. (10.124)

Finally, as a consequence of (10.119), (10.121), (10.123) and (10.124) we get
that

Φ̄({S!̄i})− Φ̄({!̄i}) ≤
20θ + 4θ2

w2 + 4θ3

w2

w
. (10.125)

Hence, by choosing

w > w0(α,K) ! 4(20θ + 4θ2 + 4θ3)

∆
, (10.126)

we get that

Φ̄({S!̄i})− Φ̄({!̄i}) <
∆

4
. (10.127)

The above inequality contradicts (10.117). Hence, the assumption that R̄4

is non-empty contradicts the conservation equation (10.109) and part (5) is
proved.
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Proof of part (6): our objective here is to find a suitable candidate for the
constants c1 and c2 such that the result of part (5) holds. Let us first prove
part (5) for ε = ε0 given as

ε0 = min{1, (2
2K−3

αK
)

1
K−2 } =⇒ αK

22K−2
(ε0)

K−2 ≤ 1

2
. (10.128)

We first show that there exists a constant c0 such that Iε0 ≤ c0w. We consider
two cases. In the first case, we assume that !u + δ ≥ 2 − ε0. In this case, it is
easy to see that Iε0 − 1 falls in one of the regions R1 − R4. Now, from parts
(4)-(5) we have

|R1|+ |R2|+ |R3|+ |R4| ≤ ζw + 2w + ζw + 2w = (4 + 2ζ)w. (10.129)

Hence, by choosing
c0 ≥ (4 + 2ζ) + 1, (10.130)

we deduce the Iε0 ≤ c0w for the first case. In the second case, we assume that
!u + δ < 2− ε0. In this case Iε0 falls inside the region R5. Define the region of
positions D as

D = {i ≥ p | !u + δ ≤ !i ≤ 2− ε0}. (10.131)

We further have

Iε0 ≤ |R1|+ |R2|+ |R3|+ |R4|+ |D| ≤ (4 + 2ζ)w + |D|. (10.132)

Here, we note that exactly as in the proof of part (4), there exists a constant
r = r(α,K) such that

| D |≤ rw. (10.133)

As a result, it is clear from (10.132) and (10.133) that we have for both of the
above cases

Iε0 ≤ (2ζ + 5 + r)w. (10.134)

Let us now prove part (6) for an arbitrary choice of ε. If ε > ε0, then
(10.134) is also a bound for Iε because Iε is clearly decreasing in ε. Assume
now that ε < ε0 and consider the region of positions E defined as

E = {i ≥ p | 2− ε0 ≤ !i ≤ 2− ε}. (10.135)

We have from (10.134)

Iε = |R1|+ Iε0+ | E |≤ (5 + 2ζ + r)w + |E|. (10.136)

It thus remains to find an upper bound on the size of E. Consider a position
i ∈ E, we now note that for m ∈ N

2− !i+mw ≤ (2 − !i)(K−1)m(
αK

22K−2
)(K−1)m−1

.
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This relation follows easily by m times using the inequality in part (2) of the
lemma. Using this bound, we have

2− !i+mw ≤ (2 − !i)(K−1)m(
αK

22K−2
)(K−1)m−1

= (2 − !i)(K−1)m−1

(
αK

22K−2
(2 − !i))(K−1)m−(K−1)m−1

(a)
≤ (

αK

22K−2
(2− !i))(K−1)m−(K−1)m−1

(b)
≤ (

1

2
)(K−1)m−(K−1)m−1

(c)
≤ (

1

2
)2

m−1

. (10.137)

Here, step (a) follows from the fact that by using (10.128) and (10.135) we
deduce that for i ∈ E we have !i ≥ 1 and hence 2 − !i ≤ 1. Again by using
(10.128) and (10.135) we deduce that for i ∈ E we have αK

22K−2 (2− !i) ≤ 1
2 and

hence step (b) follows. Also, step (c) follows from the fact that K ≥ 3. Now,
for a position i ∈ E, it is apparent from (10.137) that if we choose

m = 11 + log2(log2
1

ε
)2 =⇒ (

1

2
)2

m−1

≤ ε,

then we have 2− !i+mw < ε and hence i+mw /∈ E. Therefore we have

|E| ≤ 1w(1 + log2(log2
1

ε
))2,

and as a result we obtain from (10.136) that

Iε ≤ w(5 + 2ζ + r + 2 + log2(log2
1

ε
))

≤ w(7 + 2ζ + r − log(log 2)

log 2︸ ︷︷ ︸
!c1(α,K)

+
1

log 2︸ ︷︷ ︸
!c2(α,K)

log(log
1

ε
)).

Proof of Lemma 10.4

Let us first explain what is the main approach behind the proof. Consider the
vector d̄ = {di}0≤i≤L+w−1 defined as follows. For i ≥ 0,

di = w(!i+1 − !i). (10.138)

We first note that all the entries of the vector d are strictly positive. In what
follows, we show that there exists a constant δ > 0, such that the vector And
decays to the all-zero vector faster than (1− δ)n. Using this, we conclude that
the largest eigenvalue of the matrix A should be less than (1− δ).
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We begin by defining for n ∈ N, the ratio profile γ̄n = {γn,i}0≤i≤L+w−1 as

γn,i =

{
0 i < p,
(And)i

di
i ≥ p.

(10.139)

where by (And)i we mean the i-th entry of the vector And. Also for n = 0, we
let

γ0,i = {i≥p}. (10.140)

The proof consists of four steps. For technical reasons that will be clear later
on, we begin by confining our analysis to positions i that are inside a specific
region defined as follows. Let ε > 0 be a (small) constant, the value of which
we will specify later in the proof. Define the integer Tε as

Tε = argmin{i ≥ p | ∀j ≥ i : !j−w ≥ 2− ε}. (10.141)

We first confine our analysis to the region 0 ≤ i ≤ Tε. Note here that the
smaller we make ε, the larger the value of Tε will be. Also, in the last step of
the proof, we show that by choosing a sufficiently small ε, all the final results
are valid for the complete region 0 ≤ i ≤ L+ w − 1.

Step 1: Recursive bounds for the ratio profiles: In this step, we
intend to bound the ratio profile γ̄n+1, in terms of the profile γ̄n.

We first write

(An+1d)i = (A(And))i

=
L+w−1∑

j=0

Ai,j(A
nd)j

=
L+w−1∑

j=0

Ai,jγn,jdj .

Now, on one hand, by using (10.53) we have for i ≥ p,

(An+1d)i = !i
αK(K − 1)

2Kw

i+w−1∑

j=i−w+1

γn,jdj
w

w−1∑

k=|j−i|

(
1− 1

w

w−1∑

d=0

!max(i,j)−k+d

2

)K−2

= !i
αK(K − 1)

2K
1

w

w−1∑

k=0

(w−1∑

d=0

γn,i−k+ddi−k+d

)(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−2
.

(10.142)

On the other hand, from the conservation equations (10.74) we can write

ln
!i+1

!i
=
αK

2K−1

1

w

w−1∑

k=0

{
(1− 1

w

w−1∑

d=0

!i−k+d

2
)K−1 − (1− 1

w

w−1∑

d=0

!i+1−k+d

2
)K−1

}

+

∫ t

0
2δpi!

−1
i dt, (10.143)
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We now intend to bound the expression of (10.143). To simplify notation, let
us first define

xi,k = 1− 1

w

w−1∑

d=0

!i−k+d

2
,

ti,k = xi,k − xi+1,k =
1

w

w−1∑

d=0

!i+1−k+d − !i−k+d

2
=

1

w2

w−1∑

d=0

di−k+d

2
.

We first note that for i ≤ Tε we have

ti,k
xi,k

=

∑w−1
d=0

#i+1−k+d−#i−k+d

2∑w−1
d=0

2−#i−k+d

2

=
#i−k+w−#i−k

2∑w−1
d=0

2−#i−k+d

2

≤ 2

wε
,

where the last step follows from the definition of Tε in (10.141) and the fact
that i ≤ Tε. Let us assume here that the value of w is chosen large enough so
that

w ≥ 2K

ε
. (10.144)

Then, we clearly have tk
xk

< 1 and after some simple manipulation we can write

1

w

w−1∑

k=0

xK−1
i,k − (xi,k − tk)

K−1

≥ 1

w

w−1∑

k=0

xK−2
k ti,k(1−

2K

wε
). (10.145)

As a result of inequalities (10.143)-(10.145) we obtain for i ≤ Tε

ln
!i+1

!i

≥ αK(K − 1)

2K
(1− 2K

wε
)
1

w

w−1∑

k=0

( 1
w

w−1∑

d=0

di−k+d

)(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−2

+

∫ t

0
2δpi!

−1
i dt. (10.146)

Now, using the fact that #i+1

#i
= 1 + di

w#i
and the inequality ln(1 + x) ≤ x, we

have

ln
!i+1

!i
≤ di

w!i
. (10.147)
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This inequality together with (10.146) yields

di ≥
αK(K − 1)

2K
(1− 2K

wε
)
1

w

w−1∑

k=0

(w−1∑

d=0

di−k+d

)(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−2

+ w!i

∫ t

0
2δpi!

−1
i dt. (10.148)

Finally, by using (10.142) and (10.148), we obtain for 0 ≤ i ≤ Tε

γn+1,i ≤
1

(1− 2K

wε )

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 γn,i−k+ddi−k+d

)

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)

(10.149)
Step2: Upper bounds on γ̄1 and γ̄2: As we see in the following, and this

is also confirmed by numerical experiments, the behavior of the ration profile
γ̄1 depends heavily on the value of !p. Consequently, we consider the following
two cases which depend on the value of !p and provide an upper bound on
γ̄1 for each case. We then use this upper bound together with the recursion
(10.149) to provide an upper bound for γ̄2 (independent of the cases). We then
use this upper bound in later steps of the proof.

Case1: We assume in this case that

!p+1 ≤ 3!p. (10.150)

By using the recursion (10.149) and the fact that γ̄0 is the profile given in
(10.140), we obtain after some simple manipulations that

γ1,i
(a)
≤

1

(1− 2K

wε )

(
1−

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d {i−k+d<0}

)

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)
)

(b)
=

1

(1− 2K

wε )

(
1−

∑w−1
k=i−p+1

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2
w!p

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)
)

(c)
≤ 1

(1 − 2K

wε )
(1− w − 1− (i − p)

2w
!p)

(d)
≤ 1

(1− 2K

wε )
(1− w − 1− (i − p)

6w
!p+1)

(e)
≤ 1

(1− 2K

wε )
(1− w − 1− (i − p)

3w
exp(− αK

2K−1
)). (10.151)

Here, the relation (a) follows from (10.149) and (10.140). The relation (b)
follows from the fact that dp−1 = w!p and dj = 0 for j < p− 1. The relation

(c) follows from the inequality
∑w−1

d=0 di−k+d ≤ 2w and also from the fact that
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the sequence

yk = (1− 1

w

w−1∑

d=0

!i−k+d

2
)K−2

is an increasing sequence in k, and hence,

∑w−1
k=i−p+1 yk∑w−1

k=0 yk
≥ w − 1− (i− p)

w
.

The relation (d) follows from (10.150) and finally the relation (e) follows from
the first part of Lemma 10.3. As a result of the above series of inequalities, we
deduce the following. For case 1, we have

γ1,i ≤
1

(1 − 2K

wε )

{
1− 1

12 exp(−
αK
2K−1 ) p ≤ i ≤ p+ w−1

2 ,
1 p+ w−1

2 < i ≤ Tε.
(10.152)

A moment of thought reveals that with exactly the same argument as above
we can also show that

γ2,i ≤
1

(1− 2K

wε )
2

{
1− 1

12 exp(−
αK
2K−1 ) p ≤ i ≤ p+ w−1

2 ,
1 p+ w−1

2 < i ≤ Tε.
(10.153)

Case 2: Contrary to the first case, in this case we assume that

!p+1 > 3!p. (10.154)

As a result, we have that
!p+1 − !p

!p
≥ 2.

Now, by using the fact that for x ≥ 2 we have ln(1 + x) ≤ x − 1
2 , we obtain

that

ln
!p+1

!p
= ln(1 +

!p+1 − !p
!p

) ≤ !p+1 − !p
!p

− 1

2
,

and hence

ln
!p+1

!p
≤ dp

w!p
− 1

2
. (10.155)

Now, by using (10.155) and (10.146) we obtain

dp ≥
w!p
2

+ !p
αK(K − 1)

2K
(1− 2K

wε
)
1

w

w−1∑

k=0

(w−1∑

d=0

di−k+d

)(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−2
.

(10.156)
Now, by using (10.156) and (10.142) we reach to the following bound on γ1,p

γ1,p ≤
1

(1− 2K

wε )

∑w−1
k=0

(∑w−1
d=0 γ0,i−k+ddi−k+d

)(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2

w
2 +

∑w−1
k=0

(∑w−1
d=0 di−k+d

)(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2
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(a)
≤ 1

(1− 2K

wε )

2w
w
2 + 2w

=
4

5(1− 2K

wε )
,

where (a) follows from the fact that
∑w−1

d=0 γ0,i−k+ddi−k+d ≤
∑w−1

d=0 di−k+d ≤ 2.
Therefore, for the second case, the ratio profile γ̄0 is bounded from above as
follows

γ1,i ≤
1

(1 − 2K

wε )

{
4
5 i = p,
1 p < i ≤ Tε.

(10.157)

We now find an upper bound on the profile γ̄2 for this case. As the details
of how we reach such an upper bound are exactly the same as in (10.158), we
omit them here to avoid repeating long expressions. We have

γ2,i ≤

1

(1− 2K

wε )

(∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+dγ1,i−k+d

)

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)
)

(a)
≤ 1

(1− 2K

wε )
2

(
1−

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2∑w−1
d=0

1
5dp {i−k+d=p}

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)
)

(b)
≤ 1

(1 − 2K

wε )
2

(
1−

∑w−1
k=i−p

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2 2
15w!p+1

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)
)

(c)
≤ 1

(1− 2K
wε )

2
(1− w − (i − p)

2w
!p)

(d)
≤ 1

(1− 2K

wε )
2
(1− w − (i− p)

w

4

15
!p+1)

(e)
≤ 1

(1− 2K

wε )
2
(1− w − (i− p)

w

4

15
exp(− αK

2K−1
)). (10.158)

Here, step (a) follows from (10.157). Step (b) follows from (10.154). The other
steps follow exactly similar to the proof of (10.158) and hence we omit further
explanations about them. As a result of the above set of inequalities, we have

γ2,i ≤
1

(1− 2K

wε )
2

{
1− 2

15 exp(−
αK
2K−1 ) p ≤ i ≤ p+ w−1

2 ,
1 p+ w−1

2 < i ≤ Tε.
(10.159)

Let us now finalize the result of Step 2 of the proof. By using (10.153) and
(10.159) we deduce that the ratio profile γ̄2 is bounded above as follows:

γ2,i ≤
1

(1− 2K

wε )
2

{
1− 1

12 exp(−
αK
2K−1 ) p ≤ i ≤ p+ w−1

2 ,
1 p+ w−1

2 < i ≤ Tε.
(10.160)
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Step3: A recursive bound on γ̄n : In this step we prove the following
bound on γ̄n: for n ≥ 2, we have

γn,i ≤
1

(1− 2K

wε )
n






1− c1c
n−2
2 p ≤ i ≤ p+ (n− 1)w−1

4 ,

1 p+ (n− 1)w−1
4 < i ≤ Tε,

(10.161)

where the constants c3 and c4, that depend on α and K, are given as

c3 =
1

12
exp(− αK

2K−1
), (10.162)

c4 =
1

8c
, (10.163)

and also the constant c is given in Lemma 10.5. We prove this statement by
induction on n. For n = 2 the result is clear due to (10.160). Let us assume
(10.161) holds for n = m. We now show that it also holds for n = m + 1.
Consider a position p ≤ i ≤ p+mw−1

4 . We can write

(1− 2K

wε
)m+1γm+1,i

(a)
≤
∑w−1

k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2∑w−1
d=0 di−k+dγm,i−k+d(1− 2K

wε )
m

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)

(b)
≤ 1−

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2∑w−1
d=0 di−k+dc3c

m−2
4 {i−k+d≤p+(m−1)w−1

4 }
∑w−1

k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)

(c)
≤ 1−

∑w−1
k=w−1

2

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2∑w−1
4

d=0 di−k+dc3c
m−2
4

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2(∑w−1
d=0 di−k+d

)

(d)
≤ 1− c3c

m−2
4

1

4c

∑w−1
k=w−1

2

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2

∑w−1
k=0

(
1− 1

w

∑w−1
d=0

#i−k+d

2

)K−2

≤ 1− c3c
m−2
4

1

8c
= 1− c3c

m−1
4 .

Here, step (a) follows from (10.149). Step (b) follows from the induction hy-
pothesis and (10.161). Step (c) follows from the fact that i ≤ p+mw−1

4 . Step
(d) follows by noticing from Lemma 10.5 that for integers k1 > k2 we have

w−1∑

d=0

di−k1+d ≤ 4c
w−1∑

d=0

di−k1+d.

Finally, step (e) follows from the fact that the sequence

yk = (1− 1

w

w−1∑

d=0

!i−k+d

2
)K−2
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is an increasing sequence in k.
Step 4: Putting things together: Finally in this step we will complete

the proof of the lemma. The main tools that we use here are the bound (10.161)
and the following facts deduced from the the Perron-Frobenius formalism [129].
Consider an r × r matrix X = [Xi,j ]1≤i,j≤r with non-negative entries.

(F1) There exist a number λX ≥ 0 such that λX is itself an eigenvalue of X
and any other eigenvalue λ of X (possibly complex) is smaller than λX
in absolute value, |λ| ≤ λX . We call λX the largest eigenvalue of X .

(F2) We have

λX ≤ max
1≤i≤r

r∑

j=1

Xi,j . (10.164)

(F3) In addition, ifX is symmetric, the value of λX can be computed as follows

λX = max
{y=(y1,··· ,yr) s.t. ∀j: yj≥0}

yTXy

yT y
. (10.165)

(F4) If there exist integers m ∈ N such that all the entries of Xm are strictly
positive, then λX is a simple eigenvalue of X . If such an assumption
holds, we let vX denote the eigenvector corresponding to λX .

(F5) With the assumptions of (F4), let d be a vector of size r such that dj > 0
for 1 ≤ j ≤ r. Then, there exists a constant e > 0 such that for n ∈ N
we have

Xnd = eλnXvX + o(rλnX ). (10.166)

We now proceed with the proof. Let B be a (L+w− 1)× (L+w− 1) matrix
whose entries are given as follows.

Bi,j =

{
Ai,j 0 ≤ i, j ≤ Tε,
0 o.w.

(10.167)

Also, let D be a (L + w − 1) × (L + w − 1) matrix whose entries are given as
follows.

Di,j =

{
Ai,j i, j ≥ Tε − (w − 1),
0 o.w.

(10.168)

A moment of thought shows that B and D have non-negative entries and for
0 ≤ i, j ≤ L+ w − 1 we have

Ai,j ≤ Bi,j +Di,j . (10.169)

Let us now denote the largest eigenvalue of A, B and D by λA, λB and λD,
respectively. Let us now show that

λA ≤ λB + λD. (10.170)
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Form (10.25), it is easy to see that A = LS, where L is a diagonal matrix and S
is a symmetric matrix. This is also true for the matrices B andD with the same
diagonal matrix L, i.e., B = LS1 andD = LS2, where S1 and S2 are symmetric.
Further, a moment of thought reveals that (i) the matrix L− 1

2AL
1
2 = L

1
2SL

1
2

is a symmetric matrix and (ii) the matrices A and L− 1
2AL

1
2 have the same set

of eigenvalues. Consequently, from the fact (F3) we obtain

λA = max
{y=(y1,··· ,yr) s.t. ∀j: yj≥0}

yTL− 1
2AL

1
2 y

yT y
.

By repeating the exact same argument for B and D, we obtain that

λB = max
{y=(y1,··· ,yr) s.t. ∀j: yj≥0}

yTL− 1
2BL

1
2 y

yT y
,

λD = max
{y=(y1,··· ,yr) s.t. ∀j: yj≥0}

yTL− 1
2DL

1
2 y

yT y
.

Now, by using the above relations for λA,λB,λD and also the relation (10.169),
the relation (10.170) follows easily.

The idea is now to show that if the value of ε is chosen suitably in terms of
α and K, then there exists a constant δ = δ(α,K) such that

λB + λD ≤ 1− δ, (10.171)

and as a result, the whole proof is complete by noting the relation (10.170).
Therefore, what remains to be done is to provide suitable upper bounds of λB
and λD. We start with the matrix D. Note here that the value of ε is at our
hands to choose. In other words, in order to prove that λB + λD is strictly
below 1 by a constant gap, we should “choose” a suitable value of ε. Hence,
in the following we will gradually give several upper bounds (that only depend
on α and K) on the value of ε. We then choose in the end a value of ε that
satisfies all these bounds and show that for this value of ε the quantity λB+λD
is strictly below 1 by a gap that is only dependent of α and K.

To find an upper bound on λD, the idea here is to find an upper bound on
the sum of the components of each row of D and then use the fact (F2). In
this regard, we need to find suitable bounds on the entries of D. Consider a
position j ≥ Tε. From (10.141) we deduce that

!j+w > 2− ε.

Assume here that we choose the value of ε to be

ε < 1. (10.172)

As a result,

ln
!j+w

2
> ln(1− ε

2
) > −ε.
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Now, from this inequality and part (3) of Lemma 10.3 we have

−α
22K−1

(
2− !j+w

2

2
)K−1 > −ε =⇒ 2− !j+w

2
< (ε

22K−1

α
)

1
K−1 .

Now, again by choosing

(ε
22K−1

α
)

1
K−1 ≤ 1 =⇒ ε ≤ α

22K−1
, (10.173)

we obtain that

ln
!j+w

2

2
> ln(1 −

(ε 2
2K−1

α )
1

K−1

2
) > −(ε2

2K−1

α
)

1
K−1 ,

and by using this inequality and part (3) of Lemma 10.3 we deduce that for
j ≥ Tε we have

2− !j ≤ ε
1

(K−1)2 (
22K−1

α
)

K
(K−1)2 . (10.174)

One can repeat the above argument once more to get a similar upper bound,
as in the form of (10.174), for 2 − !j−w and then for 2 − !j−2w and so on.
Since, the arguments are exactly as above, we do not repeat the details and
only mention the net result: by choosing

ε ≤ (
α

22K−1
)K+K(K−1)2+(K−1)4 ! c5(α,K). (10.175)

we have for j ≥ Tε

2− !j−2w ≤ ε
1

(K−1)6 (
22K−1

α
)

K
(K−1)6

+ K
(K−1)4

+ K
(K−1)2

︸ ︷︷ ︸
!c6(α,K)

= ε
1

(K−1)6 c6. (10.176)

Equivalently, we can say that for i ≥ Tε − 2w we have

2− !i ≤ ε
1

(K−1)6 c6. (10.177)

Now, recall the definition of the matrix D from (10.168). For i < Tε − w,
all the entries in the i-th row of D are equal to 0. For i ≥ Tε−w, we first note
from (10.53) that the sum of the entries of the i-th row is

L+w−1∑

j=0

Di,j =
i−w+1∑

j=i−w+1

α

2K
K(K − 1)

w
!i
1

w

w−1∑

k=|j−i|

(
1− 1

w

w−1∑

d=0

!max(i,j)−k+d

2

)K−2

≤ α

2K
K(K − 1)

w
!i

w−1∑

k=0

(
1− 1

w

w−1∑

d=0

!i−k+d

2

)K−2

≤ αK(K − 1)

2K
!i(1−

!i−w

2
)K−2,
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where the last step follows from the fact that the profile of literals {!j}j≥0

is non-decreasing in j. As a result, by using (10.177), provided that (10.175)
holds, we obtain for i ≥ Tε − w

L+w−1∑

j=0

Di,j ≤ ε
K−2

(K−1)6 (
c6
2
)K−2K(K − 1)

2K−1
︸ ︷︷ ︸

!c7(α,K)

. (10.178)

Now, from the fact that for i < Tε − w the i-th row of D has all its entries
equal to 0, we deduce that

max
0≤i≤L+w−1

L+w−1∑

j=0

Di,j ≤ ε
K−2

(K−1)6 c7. (10.179)

Finally, by using the fact (F2) we conclude the following. Provided that
(10.175) holds, we have

λD ≤ ε
K−2

(K−1)6 c7. (10.180)

We proceed by finding an upper bound on λB . Consider the vector d̄ defined
in (10.138). Note here for i ≥ p we have di > 0. The idea here is first to show
that the vector Bnd converges exponentially to 0 in n. From (10.167) we have
for n ∈ N

Bnd ≤ And, (10.181)

and as a result, we obtain from (10.139) that for i ≥ 0

(Bnd)i ≤ γn,idi. (10.182)

From part (5) of Lemma 10.3 we can easily deduce that

Tε − p ≤ w(c1 + c2 log(log
1

ε
)). (10.183)

Consider now the integer m defined as

mε = 18(c1 + c2 log(log
1

ε
))2. (10.184)

It is easy to see from (10.183) that

mε ≥
4(Tε − p)

w − 1
. (10.185)

Now, from the relations (10.182), (10.161) and the fact that Bi,j = 0 for
i, j > Tε, we deduce that

Bmεd ≤ 1− c3c
mε−2
4

(1− 2K

wε )
mε

d. (10.186)
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Let us proceed with further simplification of the above bound. Assume now
that w is chosen to be

2K

wε
≤ 1

2
=⇒ w ≥ 2K+1

ε
. (10.187)

By using the relation 1
1−x ≤ 1 + 2x (for x ≤ 1

2 ), we obtain

1

(1− 2K

wε )
mε

≤ (1 +
2K+1

wε
)mε ≤ 1 + 2mε

2K+1

wε
.

As a result, we obtain from (10.186)

Bmεd ≤ (1 +
2mε+K+1

wε
)(1 − c3c

mε−2
4 ). (10.188)

Now, by choosing

2mε+K+1

wε
≤ c3c

mε−2
4 =⇒ w ≥ 2mε+K+1

εc3c
mε−2
4

, (10.189)

we obtain from (10.188)

Bmεd ≤ 1− (c3c
mε−2
4 )2d. (10.190)

Consequently, for any integer n = mεu we have

Bnd = (Bmε)ud

≤ (1− (c3c
mε−2
4 )2)ud

=
(
(1− (c3c

mε−2
4 )2)

1
mε

)n
d. (10.191)

We are now ready to use the result of the fats (F4) and (F5). But before that,
the assumptions of the fact (F4) should be checked. Let B̃ be a (Tε−p)×(Tε−p)
matrix defined as follows. For i, j ≤ Tε − p

B̃i,j = Bi+p,j+p
(10.167)

= Ai+p,j+p. (10.192)

It is easy to see from the definition of B in (10.167) that

B =




0p×p 0 0
0 B̃ 0
0 0 0(L−w−Tε)×(L−w−Tε)



 . (10.193)

Here, by 0 we mean a matrix whose entries are all zero. It is also easy to check
that for the integer R = 1Tε−p

w 2, all the entries of the matrix BR are strictly

positive. Hence, the results of the facts (F4) and (F5) apply to the matrix B̃.
It is now easy to see from (10.193) that the result of the facts apply also to the
matrix B. That is, from fact (F4) we know that λB is a simple, and from the
fact (F5) we know that for the vector d and n ∈ N we have

Bnd = c8λ
n
Bv + o((Tε − p)λnX), (10.194)
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where c8 is a positive constant and v is the unique right eigenvector of B
corresponding to λB . Now, from (10.191) and (10.194) we can easily see that

λB ≤ (1− (c3c
mε−2
4 )2)

1
mε . (10.195)

Now, by using (10.180) and (10.195), we have

λB + λD ≤ (1− (c3c
mε−2
4 )2)

1
mε + ε

K−2
(K−1)6 c7

≤ 1− 1

mε
(c3c

mε−2
4 )2 + ε

K−2
(K−1)6 c7, (10.196)

where in the last step we have used the fact that for numbers x, y ∈ [0, 1], we
have (1 − x)y ≤ 1 − xy. We proceed by showing that there exists a constant
c9 ! c9(α,K) such that by choosing

ε ≤ c9(α,K), (10.197)

we have

ε
K−2

(K−1)6 c7 ≤
1

2

( 1

mε
(c3c

mε−2
4 )2

)
. (10.198)

To find such a candidate for c9, we note that in order for (10.198) to hold, we
must have

K − 2

(K − 1)6
log ε+ log c7 ≤ − log 2mε + 2 log c3 + 2(mε − 2) log c4.

By rearranging the terms we get to

log
1

ε
≥ (K − 1)6

K − 2

(
log

2c7c44
c23

− 2mε log c4 + logmε

)
,

and by using (10.184), we deduce that in order for (10.198) to hold, it is
sufficient to have

log
1

ε
≥ (K − 1)6

K − 2

(
log

16c7c44
c23

− 16(1 + c1) log c4

− c2 log c4 log(log
1

ε
) + log(c1 + c2 log(log

1

ε
))
)
.

(10.199)

Now, note here that all the constants c1−c8 defined above are positive constants
which only depend on α and K. Also, it is easy to that if ε is sufficiently small,
the relation (10.199) holds true. This proves the existence of a constant c9 =
c9(α,K) such that if choose ε according to (10.197), then the relation (10.199),
and hence the relation (10.198), hold true. Now, from (10.175), (10.197), let
us choose the value of ε to be

ε = min(c5, c9) ! c10(α,K). (10.200)
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For this value of ε, by plugging (10.198) into (10.196) we obtain

λB + λD ≤ 1− 1

16(c1 + c2 log(log(
1
c10

)))
(c3c

8(c1+c2 log(log( 1
c10

)))−2

4 )2

︸ ︷︷ ︸
!δ(α,K)

= 1− δ.

Of course, the above relation holds true provided that from (10.187), (10.189)
and the value of w0(α,K) given in Lemma 10.3, we have

w ≥ max
(2K+1

c10
,
2K+1+8(c1+c2 log(log( 1

c10
)))

c10c1c
8(c1+c2 log(log 1

c10
))−2

2

, w0(α,K)
)
! w1(α,K).

An Auxiliary Lemma

Lemma 10.5. Define
di ! w(!i+1 − !i).

Then, there exist a constant c = c(α,K), which only depends on α and K, such
that the following holds

max
p≤i≤j

dj
di
≤ c. (10.201)

Proof. We first note that using the conservation equations (10.74) we have

ln
!i+1

!i
= Qi −Qi+1 +

∫ t

0
2δpi!

−1
i dt,

and by using (10.58), we obtain

ln
!i+1

!i
=
αK

2K−1

(
(1− 1

w

w−1∑

d=0

!i+1−w+d

2
)K−1 − (1− 1

w

w−1∑

d=0

!i+1+d

2
)K−1

)

+

∫ t

0
2δpi!

−1
i dt, (10.202)

The idea of the proof is to consider two different regions for the positions i ≥ p
and provide a suitable candidate for the value c based on a careful analysis on
these regions. Let us begin by defining i0 to be

i0 = argmin
{
i ≥ p | !i+1 > max{2− 4(

2

αK
)

1
K−2 , 1}

}
. (10.203)

Note here that by using the second part of Lemma 10.3 we deduce that

∀i ≥ i0 : 2− !i+w <
1

2
(2− !i). (10.204)

In order to find a suitable candidate for c in (10.201), we consider two cases
for the positions i, j.
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Case 1: We consider positions i, j such that j ≥ i ≥ i0 + w. For such
positions, on one hand we can write

ln
!i+1

!i
=

αK

2K−1

(
(
1

w

w−1∑

d=0

2− !i+1+d−w

2
)K−1 − (

1

w

w−1∑

d=0

2− !i+1+d

2
)K−1

)

≥ αK

2K−1

(
(
1

w

w−1∑

d=0

2− !i+1+d−w

2
)K−1 − (

1

w

w−1∑

d=0

2− !i+1+d−w

4
)K−1

)

=
αK

2K−1
(1− 1

2K−1
)(

1

w

w−1∑

d=0

2− !i+1+d−w

2
)K−1.

As a result, by noticing that #i+1

#i
= 1 + di

w#i
and using the first part of

Lemma 10.3, we obtain

di ≥ w!i
αK

2K−1
(1− 1

2K−1
)(1 − 1

w

w−1∑

d=0

!i+1+d−w

2
)K−1. (10.205)

On the other hand, by using (10.202) for any position j, we have

ln
!j+1

!j
≤ αK

2K−1
(1− 1

w

w−1∑

d=0

!j+1−w+d

2
)K−1.

Now, as j ≥ i > i0, then by definition we have !j ≥ 1, hence !j+1 − !j ≤ 1 and

hence #j+1−#j
#j

≤ 1. We thus have ln(1 + #j+1−#j
#j

) ≥ 1
2
#j+1−#j

#j
. As a result,

dj ≤ w!j
2αK

2K−1
(1− 1

w

w−1∑

d=0

!j+1−w+d

2
)K−1. (10.206)

Finally, for j ≥ i ≥ i0 + w, we obtain from (10.205) and (10.206)

dj
di
≤ !j
!i
(

2K−1

2K−1 − 1
)
(1− 1

w

∑w−1
d=0

#j+1−w+d

2 )K−1

(1− 1
w

∑w−1
d=0

#i+1−w+d

2 )K−1
,

which easily results in the following simple inequality for j ≥ i ≥ i0 + w

dj
di
≤ 4. (10.207)

Case 2: In this case, we consider positions i, j such that j ≥ i and i < i0+w.
We first note that by using the relation (10.203) and part (3) of Lemma 10.3,
we get that

!i0+w ≤ 2 exp(−αK2−2K exp(−αK2−3K)). (10.208)

Now, using the results of Lemma 10.3 and (10.208), we deduce that there exists
a value ζ ! ζ(α,K) > 0 such that for p ≤ i ≤ i0 + w we have

!i+w − !i ≥ ζ. (10.209)
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Furthermore, by using (10.202) and the fact that for x ≥ y we have xK−1−
yK−1 ≥ (x− y)K−1, we can write for i ≥ p

ln
!i+1

!i
≥ αK

2K−1
(
1

w

w−1∑

d=0

!i+1+d − !i+1+d−w

2
)K−1

≥ αK

2K−1
ζK−1,

and as a result, by using the first part of Lemma 10.3 we get for p ≤ i ≤ i0+w

di ≥ w
αK

2K−2
ζK−1 exp(− αK

2K−1
) ! D(α,K), (10.210)

and by noting that dj = !j+1− !j ≤ 2, we have for positions i, j such that j ≥ i
and i < i0 + w

dj
di
≤ 2

D(α,K)
. (10.211)

Finally, a candidate for the value of c in the lemma is c = max{4, 2
D(α,K)}.
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