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Real-Time Optimization of a Continuous Plant 

Planning & Scheduling!

Decision Levels!Disturbances!

Market Fluctuations, 
Demand, Price!

Catalyst Decay, Changing 
Raw Material Quality!

Fluctuations in 
Pressure, Flowrates, 
Compositions!

Long term 
week/month!

Medium term 
day!

Short term 
second/minute!

Real-Time Optimization!

Control!

Production Rates 
Raw Material Allocation!

Optimal Operating  
Conditions - Set Points!

Manipulated  
Variables!Measurements!

Measurements!

Measurements!

Changing conditions!
 Real-time adaptation!

Large-scale complex 
processes!
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Optimization of a Discontinous Plant  
 

Production Constraints 

•  meet product specifications!
•  meet safety and environmental constraints!
•  adhere to equipment constraints!

Differences in Equipment and Scale 
•  mass- and heat-transfer characteristics!
•  surface-to-volume ratios!
•  operational constraints!

LABORATORY 

Different conditions  Run-to-run adaptation!

BATCH PLANT RECIPE PRODUCTS 

Scale-up"

PRODUCTION 
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Outline 

What is real-time optimization 
o  Goal: Optimal plant operation 
o  Tool: Model-based numerical optimization, experimental optimization 
o  Key feature: use of real-time measurements 

Real-time optimization framework 

o  Three approaches 
o  Key issues: Which measurements? How to best exploit them? 
o  Simulated comparison 

Experimental case studies 
o  Fuel-cell stack 
o  Batch polymerization 
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Optimize the steady-state performance of a (dynamic) process !
while satisfying a number of operating constraints!

Plant!

Static Optimization Problem 

min
u

Φ p u( ) := φp u, y p( )
s. t. G p u( ) := g p u, y p( ) ≤ 0

(set points)!

? u"u

min
u

Φ(u) := φ u, y( )                                

s. t. G u( ) := g u, y( ) ≤ 0          
NLP"

Model-based Optimization!

? 

F u, y,θ( ) = 0

(set points)!

? u"u
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Optimize the dynamic performance of a (dynamic) process !
while satisfying a number of operating constraints!

Plant!

Dynamic Optimization Problem 

u(t) x p(t f )

min
u[0,t f ]

Φ := φ x p(t f )( )
s. t.      S(x p,u) ≤ 0

           T x p(t f )( ) ≤ 0
           

Model-based Optimization!

? 

       ? u"u(t)

 

min
u[0,t f ]

Φ := φ x(t f ),θ( )                                          

s. t. x = F(x,u,θ ) x(0) = x0                                  
           S(x,u,θ ) ≤ 0

           T x(t f ),θ( ) ≤ 0

Predicted 
States x(t) 
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Run-to-Run Optimization of a Batch Plant 

 

min
u[0,t f ]

Φ := φ x(t f ),θ( )                                          

s. t. x = F(x,u,θ ) x(0) = x0                                  
           S(x,u,θ ) ≤ 0

           T x(t f ),θ( ) ≤ 0

u(t) xp (t f )

Batch plant with!
finite terminal time!

u[0,t f ] = U(π )
Input Parameterization 

u(t)!
umax"

umin"
tf"t1! t2!

u1!

0"

min
π

Φ π ,θ( )                                            

s. t. G π ,θ( ) ≤ 0                     

Batch plant!
viewed as a static map!

π Φ p

G p NLP"
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Outline 

What is real-time optimization 
o  Goal: Optimal plant operation 
o  Tool: Model-based numerical optimization, experimental optimization 
o  Key feature: use of real-time measurements 

Real-time optimization framework 

o  Three approaches 
o  Key issues: Which measurements? How to best exploit them? 
o  Simulated comparison 

Experimental case studies 
o  Fuel-cell stack 
o  Batch polymerization 
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Example of Plant-Model Mismatch 
Williams-Otto reactor 

3-reaction system  
A + B  C 
B + C  P + E 
C + P  G 
 

Objective: maximize operating profit 

Model  
   - 4th-order model 
   - 2 inputs 
   - 2 adjustable parameters (k10, k20) 
 

2-reaction model 
 
A + 2B    P + E 
 
A + B + P    G 

k2!

k1!



10 

Three RTO Approaches 
How to best exploit the measurements?"

Optimization in the presence 
of Uncertainty 

Measurements: 
Adaptive Optimization 

No Measurement: 
Robust Optimization 

  
u* ∈arg min

u
φ(u, y)

  

s.t. F(u, y,θ) = 0
g(u, y) ≤ 0

Adaptation of 
Inputs. 

- tracking active constraints 

-  NCO tracking 
-  extremum-seeking control 
-  self-optimizing control 
 
 

  input update: δu

Adaptation of 
Model Parameters 

-  two-step approach 
(repeated identification  
     and optimization) 
 

 parameter update: δθ

Adaptation of  
Cost & Constraints 

- bias update 

- constraint update 

-  gradient correction 
-  modifier adaptation 

cost & constraint update: δg,δφ
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Does not 
converge to plant 

optimum 

Williams-Otto Reactor 
!- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F

B

 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P

   1.  Adaptation of Model Parameters 
     Two-step approach 
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  Two-step approach 
   

 

  
θ

k
* ∈arg min

θ
J

k
id

    
J

k
id = y

p
(u

k
∗)− y(u

k
∗,θ)⎡⎣ ⎤⎦

T
Q y

p
(u

k
∗)− y(u

k
∗,θ)⎡⎣ ⎤⎦

   
s.t. g u,y(u,θ

k
∗)( ) ≤ 0

Parameter Estimation Problem! Optimization Problem!

   
uk+1

∗ ∈argmin
u

φ u,y(u,θk
∗)( )

  uL ≤ u ≤ uU

Plant!
at!

steady state!
Parameter!
Estimation!

Optimization!

uk+1
∗ → uk

∗

θk*

yp(uk
∗)

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, 
 AIChE Symposium Series - CPC-V, 93, 156-164, 1997 

Current Industrial Practice !
for tracking the changing optimum!

in the presence of disturbances!

y(uk
*,θk*)
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Model Adequacy for Two-Step Approach 

J.F. Forbes, T.E. Marlin. Design Cost: A Systematic Approach to Technology Selection for Model-Based 
Real-Time Optimization Systems. Comp. Chem. Eng., 20(6/7), 717-734, 1996 

A process model is said to be adequate for use in an RTO scheme if it is 
capable of producing a fixed point for that RTO scheme at the plant optimum 

Model-adequacy conditions"

  up
∗

θ

   yp(up
∗ )    Gi(up

∗ ,θ ) = 0, i ∈A(up
∗ )

   Gi(up
∗ ,θ ) < 0, i ∉A(up

∗ )

   ∇rΦ(up
∗ ,θ ) = 0,

   ∇r
2Φ(up

∗ ,θ ) > 0

Opt.!

   

∂J id

∂θ
yp(up

∗ ),y(up
∗ ,θ )( ) = 0,

   

∂2J id

∂θ 2
yp(up

∗ ),y(up
∗ ,θ )( ) > 0,

Par.
Est.!

SOSC!

converged value!θ

Plant!
at !

optimum!
Parameter 
Estimation!

Optimization!

y(uk
*,θ )
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uk+1

∗ ∈arg min
u

Φm(u) := Φ(u)+ λk
Φ [u − uk

∗ ]

   s.t. Gm(u) := G(u)+ εk + λk
G [u − uk

∗ ] ≤ 0

Modified Optimization Problem!
Affine corrections of 
cost and constraint 
functions!

  uL ≤ u ≤ uU

T 

T 

2. Adaptation of Cost & Constraints 
     Input-Affine Correction to the Model 

Force the modified problem 
to satisfy the optimality 
conditions of the plant !

co
ns

tra
in

t v
al

ue
!

   Gm(u)

   Gp(u)

 εk

  G(u)

   λk
G [u − uk

∗ ]T 

 u
  uk

∗

P.D. Roberts and T.W. Williams, On an Algorithm for Combined System Optimization  
and Parameter Estimation, Automatica, 17(1), 199–209, 1981 
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Requires evaluation of 
KKT elements of plant!

   
uk+1

∗ ∈arg min
u

Φm(u) := Φ(u)+ λk
Φ [u − uk

∗ ]

   s.t. Gm(u) := G(u)+ εk + λk
G [u − uk

∗ ] ≤ 0

Modified Optimization Problem!

  uL ≤ u ≤ uU

T 

T 

KKT Modifiers:!

KKT Elements:!

   
ΛT = ε1,,εng

,λG1 ,,λGng ,λΦ⎛
⎝

⎞
⎠ ∈nK

     
CT = G1,,Gng

,
∂G1

∂u
,,

∂Gng

∂u
,
∂Φ
∂u

⎛

⎝
⎜

⎞

⎠
⎟ ∈nK

  nK = ng + nu(ng + 1)

T T T 

Λk = Cp(uk
∗) −C(uk

∗)

Modifier Adaptation (without filter)!

   Input-Affine Correction to the Model 

Λk = (I − K)Λk−1 + K Cp(uk
∗) −C(uk

∗)⎡
⎣

⎤
⎦

Modifier Adaptation (with filter)!

A. Marchetti, B. Chachuat and D. Bonvin, Modifier-Adaptation Methodology for Real-Time Optimization, I&EC Research, 
48(13), 6022-6033 (2009) 

W. Gao and S. Engell, Iterative Set-point Optimization of Batch Chromatography, Comput. Chem. Eng., 29, 1401–1409, 2005 
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Example Revisited 
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Converges to plant 
optimum 

Williams-Otto Reactor 
!- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

Modifier adaptation 

A. Marchetti, PhD thesis, EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009  
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Modeling for Optimization 

Need to be able to estimate the plant gradients 
 
o  From cost and constraint values at previous operating points 
 
o  Must be able to use the key measurements (active constraints and 

gradients) 

Features of a “good” model 
 

o  Must be able to predict the optimality conditions of the plant:  
 active constraints and (reduced) gradients 

 
o  Focuses on the optimal solution 

   “solution model” rather than “plant model” 
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Run-to-Run Optimization  
of Semi-Batch Reactor 

  Objective: 

  Constraints: 

  Manipulated Variables: 

Model 

  Industrial Reaction System 

Simulated  
Reality 
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Nominal Optimal Input 

  Optimal Solution   Approximate Solution 
u"

A solution model 
- 3 arcs: Fmax, Fs and Fmin 

- 3 adjustable parameters tm, ts and Fs 

- Measurements to adjust tm, ts and Fs 

Plant model 
- 3 nonlinear balance equations 

- 2 uncertain parameters k1 and k2 

- Measurements to adjust k1 and k2 
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3.  Adaptation of Inputs       
     NCO tracking 

Real Plant"
Measurements!

Optimizing"
Controller"

Feasibility OK!
Optimal performance OK!

Disturbances!

Inputs ?!

C
on

tro
l p

ro
bl

em
!Set points ?!

CV ?" MV ?"

NCO"
cB(tf)=0.025!
cD(tf)=0.15!

Available degrees of freedom"
Input parameters"

ts, Fs!

So
lu

tio
n 

m
od

el!

B. Srinivasan and D. Bonvin, Real-Time Optimization of Batch Processes by Tracking the 
Necessary Conditions of Optimality, I&EC Research, 46, 492-504 (2007).  
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  Comparison of RTO Schemes 
  Run-to-Run Optimization of Semi-Batch Reactor 

  Objective: 

  Constraints: 

  Manipulated Variables: 

Model 

  Industrial Reaction System 

Simulated  
Reality 
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Adaptation of Model Parameters k1 and k2  

  Exponential Filter for k1, k2: 

  Identification Objective: 

  Measurement Noise: 
   (10% constraint backoffs) 

Large 
optimality 
loss! 
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Adaptation of Constraint Modifiers εG "

  Exponential Filter for Modifiers: 

  No Gradient Correction 

  Measurement Noise: 
   (10% constraint backoffs) 

Recovers most 
of the optimality loss 
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Adaptation of Input Parameters ts and Fs 

  Controller Design: 

  No Gradient Correction 

  Measurement Noise: 
   (10% constraint back-offs) 

Recovers most 
of the optimality loss 

ts
k

Fs
k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ts
k−1

Fs
k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

π = π k−1



25 

Outline 

What is real-time optimization 
o  Goal: Optimal plant operation 
o  Tool: Model-based numerical optimization, experimental optimization 
o  Key feature: use of real-time measurements 

Real-time optimization framework 

o  Three approaches 
o  Key issues: Which measurements? How to best exploit them? 
o  Simulated comparison 

Experimental case studies 
o  Fuel-cell stack 
o  Batch polymerization 
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  Stack of 6 cells, active area of 50 cm2, metallic interconnector 
  Anodes : standard nickel/yttrium stabilized-zirconia (Ni-YSZ) 
  Electrolyte : dense YSZ.  
  Cathodes: screen-printed (La, Sr)(Co, Fe)O3 
  Operation temperatures between 650 and 850◦C.  

G.A. Bunin, Z. Wuillemin, G. François, A. Nakajo, L. Tsikonis and D. 
Bonvin, Experimental real-time optimization of a solid oxide fuel cell stack 
via constraint adaptation, Energy, 39(1), 54-62 (2012). 

Solid Oxide Fuel Cell Stack 
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RTO via Constraint Adaptation 
 

  Experimental features 
"

•  Inputs: flowrates (H2, O2), current (or load)!

•  Outputs: power density, cell potential, electrical efficiency!

•  Time-scale separation!

  slow temperature dynamics, treated as process drift !  !

  static model (for the rest)!

•  Power demand changes without prior knowledge!
!
•  Inaccurate model in the operating region (power, cell)!
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RTO via Constraint Adaptation 
 

Challenge: Implement optimal operation with changing power demand 

I (A)

p e
lA
c

N c
el
ls
(W
)

U
ce

ll I
!
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Problem Formulation 
  
At each RTO instant k, solve a static optimization problem, with a zeroth-
order modifier in the constraints, regardless of the fact that T has reached 
steady state or not 

max
uk

η uk,Θ( )
s.t. pel uk,Θ( )+ εk−1pel = pelS

Ucell uk,Θ( )+ εk−1Ucell ≥ 0.75V
ν uk( ) ≤ 0.75

4 ≤ 2
u2,k
u1,k

= λair uk( ) ≤ 7

u1,k ≥ 3.14mL/(mincm
2)

u3,k ≤ 30A

uk =

u1,k = nH2,k
u2,k = nO2,k
u2,k = Ik

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

εk
pel = 1-Kpel( )εk-1pel +

Kpel
pel,p,k − pel uk,Θ( )⎡⎣ ⎤⎦

εk
Ucell = 1-KUcell( )εk-1Ucell +

KUcell
Ucell,p,k −Ucell uk,Θ( )⎡⎣ ⎤⎦

RTO via Constraint Adaptation 
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Slow RTO (“Wait for Steady State”) 
 

!

  RTO very 30 min!
  Unknown power changes every 90 min!
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Fast RTO with Random Power Changes 
 

  Use steady-state model for predicting temperature !
  RTO every 10 s, load changes every 5 min!

!
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  Industrial process!
•  1-ton reactor, risk of runaway!

•  Initiator efficiency can vary considerably!

•  Several recipes!

  different initial conditions!

 different initiator feeding policies!

  use of chain transfer agent!
•  Modeling difficulties!
•  Uncertainty!

� 

Fj,T j,in

� 

Tj

T (t)
Mw (t)
X(t)

⎫

⎬
⎪

⎭
⎪

Emulsion Copolymerization Process  

   Objective: Minimize batch time by adjusting the reactor temperature!
•  Temperature and heat removal constraints!

•  Quality constraints at final time!
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Industrial Practice  
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Optimal Temperature Profile 
Numerical Solution using a Tendency Model 

•  Current practice: isothermal!

•  Numerical optimization!
  Piecewise-constant input!
  5 decision variables (T2-T5, tf)!
  Fixed relative switching times!

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

time/tf [ ]

Piecewise Constant Optimal Temperature

Tr [ ]

Tr,max

Isothermal 

Piecewise constant 
2!1! 3! 4!

5!

Time tf 

Tmax!

T [ ]!

•  Active constraints!
  Interval 1: heat removal !
  Interval 5: Tmax!
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Model of the Solution 
Semi-adiabatic Profile!

ts!

t!

T(t)!

Tmax!

Tiso!

tf!

1!

2!Heat removal limitation 
≈ isothermal operation 

Compromise* 
≈ adiabatic 

T(tf) = Tmax!

ts enforces T(tf) = Tmax!

  run-to-run adjustment of ts  

*Compromise between 
 conversion and quality 
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Final time!
•  Isothermal: 1.00 !
•  Batch 1:      0.78!
•  Batch 2:      0.72!
•  Batch 3:      0.65!

Batch 0"

1.0"

Industrial Results with NCO Tracking 

Francois et al., Run-to-run Adaptation of a Semi-adiabatic Policy for the Optimization of an  
Industrial Batch Polymerization Process, I&EC Research, 43(23), 7238-7242, 2004 

 1-ton reactor 
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Conclusions 

Two appoaches involving the NCO 
o  Input-affine corrections to cost and constraints 
o  NCO tracking (optimization via a multivariable control problem) 
o  Key challenge is estimation of plant gradient 

Process optimization is difficult in practice 
o  Models are often inaccurate  use real-time measurements 
o  Repeated estimation and optimization lacks model adequacy  
o  Which measurements? How to best exploit them? 
       NCO (active constraints and reduced gradients) 
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NCO tracking 
New Paradigm for RTO 

Operator-friendly approach 
o  Start with best current operation (nominal model-based solution) and 

push the process until constraints are reached 
o  Know what to manipulate    solution model 
o  Determine how much to change from measurements 

Important features 
o  Two steps: offline (model-based), online (data-driven) 
o  Can test robustness offline by using model perturbations 
o  Approach converges to plant optimum, not model optimum 
o  Complexity depends on the number of inputs (not system order) 
o  Solution is partly determined by active constraints  easy tracking 
o  Price to pay: need to estimate experimental gradients 


