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Abstract

In everyday life, people use a large diversity of hands configurations while reaching out to grasp
an object. They tend to vary their hands position/orientation around the object and their fingers
placement on its surface according to the object properties such as its weight, shape, friction
coefficient and the task they need to accomplish. Taking into account these properties, we propose
a method for generating such a variety of good grasps that can be used for the accomplishment of
many different tasks. Grasp synthesis is formulated as a single constrained optimization problem,
generating grasps that are feasible for the hand’s kinematics by minimizing the norm of the joint
torque vector of the hand ensuring grasp stability. Given an object and a kinematic hand model,
this method can easily be used to build a library of the corresponding object possible grasps. We
show that the approach is adapted to different representations of the object surface and different
hand kinematic models.
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1. Introduction

The human hand is an amazing tool. People are capable of grasping a variety of objects of
different shapes and sizes in a variety of ways depending on the task’s requirements. Consider for
example the different grasps in figure (I)) and notice how the placement of the hand and fingers
varies along different tasks. Such variety of grasps is possible in part thanks to the dexterity of
the human hand and its large number of degrees of freedom and in part thanks to our marvellous
control strategy.

Even today, it is difficult to explain how the Central Nervous System (CNS) is able to control
the high number of degrees of freedom of the human hand. Evidence from Neuroscience indicates
that such control is taking place in a reduced dimensional space [28]. While grasping a number
of familiar objects, static hand posture of several subjects were measured by recording their fin-
ger joint angles [28]]. Principal component analysis showed that the first two components account
for more than 80% of the finger joint variance. The remaining components provide information
about the shape of the grasped object. These results imply that the finger joint angles do not vary
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Fi gure 1: Several grasps employed in everyday life. Notice the variation of the hand position/orientation across the different grasps.

independently and thus the control of the hand posture involves two main postural synergies regu-
lating the hand preshape. A finer control mechanism provides afterwards subtle adjustments of the
joints to perform the final grasp. This study did not take into account the hand position/orientation
relatively to the object placement, it only accounts for the finger joints angles.

When such strategies are applied to robotic grasping, they lead to defining preshapes for the
robotic hands inspired from those of the human hand [4, |18, [7]. To perform a grasp, the fingers are
positioned in a pregrasp shape and then closed around the object. The hand starting position and
approach vector are either defined manually according to the object shape [[18]], are learned from
human demonstration [7] or determined through optimization [4]. Such approaches choose first
the hand preshape and then find the hand position/orientation matching this finger posture with the
object shape. An appropriate finger posture, however, needs to be combined with a correct hand
configuration in order to be relevant for a specific task. Take for example the task of flipping and
picking up an object, see last column in figure (I)). A cylindrical hand preshape is used for both
tasks, the only difference is in the hand orientation. Thus, the optimality of the grasp depends on
the placement of the hand relatively to the object as well as on the finger configurations. Notice
as well that a preshape explains only 80% of a grasp finger joint values [28]. The remaining 20%
are related to a fine adjustment of the fingers that depends on the object shape and thus cannot be
obtained by simply closing the fingers around the object.

This paper shows that grasp synthesis can be formulated and solved as a large scale, non-
linear, constraint-based optimization problem taking into account parameters related to the hand
and finger configurations as well as the object shape, weight and friction coefficient. First results
were published in our paper [10] where we synthesized a variety of grasps for a cylindrical object
described as a superquadric shape, using the iCub hand. This paper extends our previous work
by showing the ability of the algorithm to cope with more complex objects (described by a single
function using a probabilistic method) and different hand kinematic models.

2. Related work

Napier, in his paper [22], distinguishes between power grasps and precision grasps. Power
grasps lead to large areas of contact between the palm, the fingers, and the object providing means
of holding an object robustly into one’s palm. Precision grasps are particularly useful during
manipulation since they offer more dexterity. In robotics, when a robot is provided with a hand
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mimicking the human hand dexterity, precision grasps become particularly relevant. Usually,
these hands have a much larger degrees of freedom number than more classical robot grippers.
Using such complex hands to generate a precision grasp requires determining a position and an
orientation for the hand and fingers that are feasible and that guarantee the grasp stability. This
is difficult to achieve given the high-dimensionality of the grasping space and the non-linearity
of the constraints. In the following, we provide an overview of precision grasp synthesis related
literature.

2.1. Determining stable grasps

The force-closure criterion has been extensively used in the grasping literature in order to
guarantee grasp stability [[1, 23]. A grasp is said to achieve force-closure when the fingers can
apply appropriate forces on the object to produce wrenches in any direction [29]. This condition
is equivalent to stating that the origin of the wrench space must lie strictly inside the convex hull
of the finger contact wrenches [21]]. Several approaches have been proposed to compute force-
closure grasps [23], 24, 16, [8]. These methods propose sufficient conditions for computing stable
grasps on 3D objects. However, they rely on a secondary mechanism to test whether the grasping
points can be reached by a particular hand kinematics and do not convey any information about
how good the grasp is. A variety of criteria were introduced to give a measure of the quality of
stable grasps, see [19,131]] for a study on various existing grasp metrics. Several works express this
problem as constraint-based optimization. We briefly review these next.

2.2. Optimizing force-closure grasp synthesis

Mirtich and Canny [17] proposed two optimality criteria to measure a three finger grasp’s abil-
ity to resist moments within or normal to the grip plane defined by the three contacts on the object.
When the first (second) criterion is used, the maximum circumscribing (inscribing) equilateral tri-
angle defines the optimum grasp of a 3D polyhedral object. To determine the optimal grasp, one
can then compute all triples of vertices of a n-vertices polyhedron. This algorithm is efficient when
the number of faces of the object is small. However, commonly used objects are not necessarily
polyhedral and can rarely be modeled with a limited number of faces. Hence, when a polyhedral
grasp synthesis approach is applied to these objects, a huge computational effort is required to
study all combinations across constituent faces.

When objects are smooth, such as ellipsoids, the primitive wrenches of the grasp are also
smooth functions of the grasp configuration and different methods are applied for optimizing the
grasp quality [34, 33]. For instance, in [34], a numerical test is proposed to quantify how far a
grasp is from loosing force-closure and is solved through linear programming. Optimal force-
closure grasps are obtained by gradient descent in the grasp configuration space, starting from a
configuration where all the contact points are on the object surface. Zhu and Wang [33]] proposed a
similar algorithm in which gradient descent is performed to determine the minimum of the deriva-
tive of the Q-norm (the Q-norm measures the minimum scale factor required for a convex set to
contain a given point a, i.e. it quantifies the maximum wrench that can be resisted in a predefined
set of directions given by the corresponding convex set).

Because of the complexity yielded by the inclusion of the constraints of kinematic feasibility,
all solutions to force-closure reviewed above did not consider these constraints during optimiza-
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tion. Obviously, doing so is crucial for grasp execution but difficult to achieve considering the
large number of possible hand configurations. In these approaches, the optimal grasp is defined
solely by the locations of the contact points on the object’s surface. Hence, the solution found
through optimization may easily violate the finger joint constraints and thus may not be feasible
for the robotic hand. When trying to optimize the grasp quality by taking into account the hand
kinematics constraints, some approaches start from different initial grasps where the fingers are
in contact with the object and then optimize the grasps according to different criteria using for
example genetic algorithms [S]. Such approaches need, however, to generate these initial grasps.
As we stated previously, this is complex due to the high dimensional grasp space.

2.3. Grasp generation given the hand kinematics

The problem of how to include kinematic constraints in the search for optimal grasp is known
as the configuration issue [26]; given a specific grasp, defined by a number of contact points/regions
on the object surface as well as contact points/regions on the hand surface, find a configura-
tion of the hand permitting contact between each hand region and its corresponding object re-
gion [26, 12} [2]. These approaches solve the grasp synthesis problem in two steps: they first find
contact points locations yielding a good grasp according to a quality criterion, then find the corre-
sponding hand configuration if it exists, otherwise generate another set of contact locations for the
fingers, etc. Searching through each set of contact locations until one finds a feasible grasp may
be a long process. Hence, these methods are not optimal from a computation time point of view.

Instead of directly searching the high dimensional configuration space of robotic hands for a
grasp, other studies reduce this space by generating a set of hand starting positions/orientations
and finding afterwards all possible finger contacts on the object [32, 138]], or by generating a set of
hand preshapes [18, 7] or eigengrasps [4] that can then be tested on the object model. The former
approaches require a good position/orientation of the hand in order to enable the fingers to touch
the object yielding a good grasp, this is not simple to achieve since the grasp quality depends on
both the hand and finger configurations and thus should be taken into account in the early stages
of grasp planning. This applies as well to the latter approaches that need to carefully choose the
initial approach direction of the hand. These approaches also induce a reduction in the accessible
hand postures by reducing considerably the dimensionality of the hand configuration space.

3. The proposed approach

In this paper, we take advantage of novel developments in optimization techniques and pro-
pose a one shot algorithm for grasp synthesis. While this comes at the cost of finding locally
optimal solutions, we show that in practice, this yields, even for simple shaped objects, a variety
of good grasps that can be used for the accomplishment of many different tasks. Having at hand
several locally optimal feasible grasps allows us to compare their quality metrics and pick out the
best one. The originality of the method is that it considers all the variables involved in the grasp-
ing process, from the finger joint angles/torques to the palm position/orientation till the object’s
shape, size, weight and friction coefficient to generate possible grasps. Grasp synthesis can then
be formulated as a non-linear, constraint-based optimization problem that takes into account the
grasp quality from the very first step of the grasp computation procedure and does not rely on a
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Figure 2: The real Barrett hand and its corresponding model in our RoboToolKit simulator.

pre-specification of a particular hand pose, orientation or preshape.

In the following paragraphs, we derive the steps by which we can include the kinematic con-
straints of the robotic hand to describe finger placement on the object surface yielding a grasp
of a good quality. Section 4 details the kinematic structure of the Barrett and iCub hands; Sec-
tion 5 describes our representation of the object surface; Section 6 describes the constraints that
must be satisfied to yield stable and high quality grasps on 3D objects; Section 7 shows that grasp
computation can be formulated as a non-linear optimization problem and gives the corresponding
solution; Section 8 illustrates the performance of the approach; Section 9 concludes.

4. Hand kinematics

Two different robotic hands are employed in our study, the Barrett hand and the iCub anthro-
pomorphic hand. This paragraph details the kinematic structure of each of these hands describing
their corresponding degrees of freedom.

4.1. The Barrett hand kinematics

The Barrett hand is a three-fingered robotic hand. While one finger often called the thumb
is stationary, the other two fingers can spread synchronously up to 180 degrees about the palm.
Each finger has two joints but only the proximal link is actuated. The distal link is coupled to the
proximal one and it moves with it at a fixed rate. This hand has in total 4 degrees of freedom.
The maximum voluntary force that can be applied by one of its fingertip is about 15 N. Figure (2))
shows the real Barrett hand and its corresponding model in our simulator.

4.2. The iCub hand kinematics

The 1Cub robot has an anthropomorphic dextrous hand which can adopt a wide range of con-
figurations and, hence, of grasp typologies. Each finger has three phalanges and their articulations
mimic the MP (Metacarpophalangeal), PIP (Proximal Interphalangeal) and DIP (distal Interpha-
langeal) joints of the human hand (Fig. [3). Moreover, according to this hand physiology, the PIP
and the DIP joints are coupled in each finger. Thus, the thumb, index and middle fingers have
two degrees of freedom each to control for flexion/extension movements. The thumb has one ad-
ditional degree of freedom for its opposition movement. The little and the ring fingers are fully
coupled together. In summary, the iCub hand has 9 degrees of freedom distributed as follows: 3
for the thumb, 2 for the index, 2 for the middle finger, 1 for the ring and little fingers and 1 for
the adduction/abduction movement. The motors used to actuate each finger have a torque limit of
21.5 N x mm. Given that the average length of one finger is about 70 mm, the maximum voluntary
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(a) iCub hand (b) iCub hand in the
RoboToolKit simulator

Fi gure 3: The real iCub hand and its corresponding model in our RoboToolKit simulator.

force that can be applied by the 1Cub fingertip is about 0.3 N. Thus, this hand is only capable of
grasping light weight objects.

Since the little and the ring fingers are fully coupled together, in the remainder of the paper,
we generate grasps using only the thumb, index and middle fingers.

4.3. Finger kinematics

In order to compute the fingertip position of each hand, a kinematic model for each finger is
needed. Figure[d]shows a detailed model of the iCub thumb. The revolute joints are represented as
cylinders aligned with their axes, noted as r} |'| An orthonormal reference frame R! = (e}, m],r])
is attached to each joint, where i = 1,..,¢4/, j=1,..,3 stand respectively for the joint and finger
numbers ¢’ is thus the number of DOFs of the j — th finger. The R! are expressed according to
an orthonormal reference frame, R, = (hy,hy,h3), attached to the hand palm. R, is expressed in
the object reference frame, R, = (01,03,03), which is the origin of the system. A similar model
can be defined for the Barrett hand. In this case, each finger has only two joint angles that are
coupled. We modeled these joint angles separately and then add their coupling as a constraint in
our optimization.

5. Oject modeling

We want to solve grasp synthesis as an optimization problem starting from a position of the
hand away from the object and converging towards a good grasp. An implicit representation of
the object surface is needed in order to test at each step of the optimization whether the fingers are
inside, outside or placed on the object surface. Implicit surfaces are contours or isosurfaces, which
can be described as the set of all the x € 2~ C R for which the function g : 2" — R equals to zero.
Thus g gives a description of the object shape by telling for each location in space, p, whether it is
part or not of the object. A point p is defined by its 3D cartesian coordinates (py, p2, p3):

!'In the rest of this document, we use bold, normal and capital letters to represent respectively vectors, scalars and
matrices.

%In our simulation, we use the D-H (Denavit-Hartenberg) parameters of the iCub’s hand that are available in the
RobotToolkit simulator to compute these quantities, see http://lasa.epfl.ch/RobotToolKit/
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Figure 4: Kinematic structure of the iCub thumb, adapted from [26]. R, = (hy,hy,h3) and R, = (01,02,03) are the reference frdrnes
attached respectlvely to the hand palm and the object. The revolute Jomts are represented as cylinders aligned with their axes, noted as r . The

Rl (e ml/ ,rl/ ) are the reference frames attached to each joint. The m vectors are not shown for simplicity on the display. R’ represents the

revolute joint responsible for the thumb opposition movement. RJ R/ and R/ represent respectively the MP, PIP and DIP joints. nj, is the normal
vector at the contact point. d’ is the finger anchor point defined relative to the hand reference frame. {6’ } are the joint angles with i = 1,..,4 in the
thumb case. v/ is a vector whose orientation is fixed relatively to the palm, it is useful for measuring 9’

g:R> = R; g(p) =g(p1,p2,p3)
<0, pisinsidethe object
= 0, pisontheobject surface
>0, pisoutsidethe object

We use a probabilistic method to represent complex object shapes as a single implicit function.

5.1. Modeling objects using Gaussian Processes

Gaussian Process (GP) is a standard method in machine learning that has been extensively
applied to regression and classification problems [25]. GP have been used as well for object
category recognition [6], or to fuse several sensorial information (visual, tactile, laser) in a prob-
abilistic manner to represent object shape [14]. Starting from a 3D point cloud representing the
object, we use GP to learn the implicit function g that represents the object surface. The different
steps of the training procedure are given in algorithm (T)). We detail next each step of the algorithm.

1- Data collection:

The first step towards learning an implicit function representing the object surface is the collection
of a set of training data {p’ € R3y’ € R}i=1..m by randomly sampling m 3D points p' belonging
to the object cloud model (corresponding y' value is 0) or lying outside or inside the object shape
(corresponding y' values are set to 1 and -1 respectively). Objects in this paper were trained by
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Algorithm 1: Implicit surface reconstruction using GP

1 Data collection
Randomly select a set of training data points {p’,y'}i—1.
2 Model learning
Learn the kernel parameters A and ¢ by minimizing eq.(4)
3 Model testing
Generate a set of testing points {p* € R3}
For All p* that satisfy y* = g(p*) =0
compute s = max cov(y*), refer to eq.(6)
End
If s >Threshold
add a new training data point {p,y} belonging to the object point cloud model
Go to step 2
End
4 End

randomly sampling 20 data points from outside the object surface (sampled from a sphere englob-
ing the object shape) and one data point from inside (object center). The number of data points
belonging to the object surface is incrementally increased until the modelling error is below a
threshold.

2- Model learning:
Given the training data set {p',y'}i—1,.», the implicit surface function representing the object
using GP is given by:

g(p) =Y o'k(p',p) (1)
i=1
L i L2
k(o p)) = 22exp( 1P @
!, ..am = (K+B)ly, with y=[y',....y"] (3)

Where k : R? x R? — R is the gaussian kernel as defined in equation; A and o € R are the
hyperparameters to learn; B € R”*" is a diagonal matrix, representing the noise on the output; K
is a m X m real matrix, composed in each entry of the kernel k(pi,pj),i, j€1,..,m computed at
each pair of points.

The learning procedure consists in determining the parameters A and ¢ by maximizing the likeli-
hood or minimizing the negative log marginal likelihood .Z, [235]:



&z =—logp(y|A,0) 4)
1 1
= log det(K +B) + EyT(1<+B)—‘y
3- Model testing:

Once the parameters A and o are determined, the predicted value y* € R of the implicit function
g at a new testing point p* € R3 and its variance cov(y*) € R can be written as:

*

v =Y o'k(p',p*) =k (K+B) 'y, (5)

on

1
Wlth k* - [k(p*7p1)7"'7k(p*7pm)] E Rm

cov(y*) = k(p*,p*) — k(K +B) " 'k.” (6)

The testing points are generated by uniformly sampling a box englobing the object. The uncer-
tainty of the model is denoted as the maximal variance (equation|6), s, of the testing points belong-
ing to the estimated object surface. If s is larger than a threshold, a new data point is sampled from
the object surface and is added to the training data. The threshold value is set empirically to 0.01.
Figure( [3)) illustrates this notion of uncertainty on a 2D object. Starting from an object illustrated
as a red contour, the learned object model using GP is represented in black. The yellow dots show
the training data points. Notice that the variance, used to check the model accuracy, decreases in
regions where many training data points were sampled and increases in regions where only few
training data points were considered. The uncertainty of the model is the maximum variance along
the object contour. For example an uncertainty of 0.04 in the 2D object example means that the
real contour can be located between the two curves labeled 0.2 and —0.2 in Figure( [3).

We tested the GP modelling technique with a simple one-part object, a cylinder, with multi-
part objects such as a light bulb and a bottle, with more complex objects such as a cup, a duck
and a spray bottle which shape has several fine features (Fig. [6). Table (I)) shows the number of
points used for training a GP model for each object as well as its corresponding uncertainty and
computation time on a 8 GB machine with a CPU at 2.4 GHz.

6. Constraints for generating feasible grasps of good quality

This paragraph details the different constraints required for the generation of feasible grasps
of good quality. Such constraints include the fingertip placement on the object surface, stability
of the grasp through the force-closure criterion, collision avoidance and the choice of a quality
measure.
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Figure 5: Tllustration of 2D object GP model uncertainty. 2D object contour is in red. The yellow dots are the learning data points. The learned
GP model is shown in black. The variance along the learned contour is shown in green. The blue contours are the iso-contours of the learned
model. Left: model learned using 10 data points on the object contour. Right: model learned using 40 data points.

Table 1: The number of training data points used to generate a GP model for the object, the GP
model uncertainty and computation time.

objects Number of data points | uncertainty | Time (sec)
cylinder 191 0.0026 7.3
duck 241 0.0075 15.1
bottle 301 0.0075 23.5
cup 211 0.0458 13.4
lightBulb 171 0.0031 13.0
sprayBottle 361 0.0292 26.6

6.1. Computing fingertip locations

Using the hand kinematic model described in section 4, we can express the positions pJ, j =
1,..,3 of the fingertips in the object’s frame of reference:

4
P =dp+R;. ) d (7)
i=0
dp, is the palm’s position in the object’s reference frame and dJ; is the vector connecting two suc-
cessive reference frames R{ and R{ +1- A precision grasp is obtained when a contact is established
between each considered fingertip and the object’s surface. Since we have at our disposal an ana-
lytical function g : R? — R that describes the object’s surface, see Section |5, when each finger is

in contact with the object, each pJ satisfies:

g)=0, j=1,.3 (8)

Equation (8) forms a set of 3 constraints that, if satisfied, guarantee that all three fingers are
in contact with the object. However, this is not sufficient to ensure that the resulting grasp is
feasible for our robot hand. To ensure that this is the case, we need an additional set of constraints
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that take into account the range of motion of each of the joint angles. Since these constraints are
easily derived from standard transformations across frames of reference, we have moved them into

appendix [13.1]

6.2. Generating Force-closure grasps

To recall, a grasp is said to be force-closure when the origin of its wrench space is contained
inside the convex hull of the contact wrenches [21]. Computing force-closure grasps requires to
compute the location of the fingertips on the object surface as well as their corresponding contact
normals. Figure /| shows a force-closure grasp on a bottle. Each finger j, j = 1...3, is described
by its position p! and its normal n,;; at the object’s surface. We assume a frictional contact point
model and thus three contacts are sufficient to achieve force-closure [[17]. The approach, however,
can be easily generalized to compute n-finger grasps. To simplify the expression of the normals
at the surface, we compute the fingertips position relative to a frame of reference attached to the
object. The origin is located at the center of mass and the axes are aligned with the object’s main
axes of symmetry.

Next we briefly redefine the expression of friction cone and wrench for our particular problem
and use this to derive the constraints to guarantee force-closure.

6.2.1. The friction cone

Assuming static friction at all contact points, for each fingertip, we can define a friction cone at
p’ centered about the contact point internal normal n,,;. To ensure that, once in contact, the finger
will not slip along the surface of the object, the force fi applied by the finger at point p! must
satisfy Coulomb’s law [15]. This law states that i must lie within the friction cone. Generally, the
friction cone is linearized by a polyhedral convex cone with m sides. Under this approximation,
the grasp force can be represented as:

m

=Y 21, 2/ >0 ©)

i i
i=1

where 14; represents the ith edge vector of the polyhedral convex cone, see Figure (7. The coeffi-

cients lij are non negative constants and are determined by the friction coefficient i of the surface
material, see Appendix[I3.2]

6.2.2. Contact wrenches
A contact wrench, wi € R®, is the combination of the grasp force f1 and its corresponding

torque:
wj_( v .)-iﬂ( i .>—f/1fwf (10)
pxi ) & e )T

i=1

Where W{ €RS, i=1,..,m, is called a primitive contact wrench associated to the jth contact point
p’. In the case of a three-finger grasp, one has 3 x m primitive contact wrenches.
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6.2.3. Force-Closure criterion
Force-closure is achieved when the origin of the wrench space lies strictly inside the convex
hull of {w/}. This condition can be formulated as follows [21]:

El(PlJ € R7¢[j > 07 Zi,j‘pij - 17 J: 17"737i: 17"'7m (11)
s.t Zi,jd)i] l]:O

Where ¢l.f are positive scalars ensuring that the primitive wrenches can positively span R® and
hence resist any external wrench.

6.3. Force feasibility and Grasp quality criterion

In order to select an optimal grasp among a set of force-closure grasps, the magnitude of
the external wrench that can be equilibrated in the worst direction with unit contact forces is
generally used in the literature as a grasp quality criterion, see [31] for a review. In other words, this
criterion tries to equilibrate external wrenches in all directions. But specific tasks may require the
hand to generate wrenches in particular directions. Hence to allow generating such task-specific
grasps, given a desired external wrench, Wey¢, we use as quality measure the minimum joint torque
required to equilibrate that wrench. Minimizing that measure induces a minimization of the energy
required in the joint space in order to accomplish the corresponding task [20]. This quality can be
formulated as:

o) = Y II< ()l (12)
LJ

Where le stands for the ith joint torque of the jth finger. When considering such a quality crite-
rion, one needs to include constraints related to the limitation of the finger joint torque and force
equilibrium. These can ne written as:

v/ e [17:?,1'1."] (13)
ol =giTgi (14)
Y aiw = —Wex, @ >=0 (1)

i,j A
Where J/ is the jacobian matrix of the jth finger, o are positive scalars and 7/ , 7/ are respec-
tively lower and upper bounds on Tl.] . Note that equation is different from equation in
two aspects: first it balances one specific external wrench instead of trying to equilibrate wrenches
in any direction and second it takes into account the limitation on the finger contact forces instead
of assuming normalized contact forces. The external wrench considered in our case is the one due
to gravity.
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6.4. Collision avoidance

Our objects are described by an implicit surface function. This formulation allows to detect
whether a point is inside, outside or on the surface of the object. Therefore, collision avoidance
between the object and the hand is obtained by sampling several points ¢, on the finger phalanges
and palm; we compute the distance from these points to the object surface and add a new set of
constraints to ensure all points are outside the object’s surfaceﬂ

g(c) >0, forall k (16)

Where k; is the number of sampled points on the jrh finger. Collision avoidance between the
fingers is taken into account in the kinematic feasibility of the hand by considering the finger joint
limits. This condition was enough to avoid collisions between the fingers in the case of the Barrett
and 1Cub hands.

7. Solving Grasp Synthesis as an optimization problem

Given a hand kinematical model and a representation of the object, this paragraph details the
formulation of grasp synthesis as an optimization problem guaranteeing stability through the gen-
eration of force-closure grasps and optimality through choosing a force-related quality measure as
an objective function. In other terms, our objective is to find a hand position/orientation and fin-
gers joints configurations that guarantee a good force-closure grasp on a 3D object approximated
by an implicit function. This yields a constraint-based minimization for the set of parameters
0={¢/,i=1.m,j=1.3,Ry, dn, R}, i=1..¢/, j = 1.3}, given by:

1
argmin Q(p)

6
under the constraints , , , —

While our objective function is convex, the constraints are not linear and hence this becomes
a difficult optimization problem. A number of primal-dual interior-point methods have been pro-
posed to solve such problems. However, most of these methods converge to infeasible solutions
when dealing with problems having two or more equality constraints and a total number of con-
straints exceeding the dimension of the space [36]] (as is the case in our problem). The Interior
Point OPTimizer (IPOPT) method proposed by Wichter and Biegler [36] offers an alternative
method for non-linear optimization that is robust to change in initial conditions (as for instance
when starting a reach and grasp motion very far away from the target and in a very awkward hand
position). We successfully applied this optimization technique on our grasp synthesis problem.
The algorithm is written in the Modeling Language for Mathematical Programming (AMPL) for
the specific case of the iCub and Barrett hand models. Note that by formulating the problem in
AMPL, no analytical gradient computation is required. We exploit the fact that the IPOPT solver
generates locally optimal solutions to generate multiple possible solutions. As stated before, this
diversity in the possible grasps is a richness in manipulation capability that may prove useful in
complex manipulation.

' We sampled, for collision detection, 3 points on each finger yielding a granularity of 23.3mm and one on the
palm.
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8. Experimental Results

The experiments we conducted aimed at testing the algorithm’s ability to generate for one ob-
ject, a variety of grasps that are feasible for the robotic hand and result in a high quality according
to the metric given in Eq. (I12)). This variety of grasps allows the hand to be shaped differently ac-
cording to the task to accomplish. For example, many objects from our daily life have a graspable
cylindrical-shaped part but are grasped differently by this part according to their functionality such
as pens, cups, toothbrushes , wine glasses, frying pans, knifes, tea storage pots, etc. In order to be
able to grasp these different objects accurately, a grasping algorithm should be able to synthesize
this variety of hand/fingers placement. Therefore, we choose to test our algorithm on a cylinder
and make sure that the computed grasps explore the grasps solution space instead of converging
only towards the standard cylindrical grasp (side grasp where the thumb is opposing the other two
fingers and where the palm is placed in a parallel position to the cylinder main axis). In a second
experiment, we test the ability of the algorithm to generate grasps on much more complex shapes.
The experiments were run on an AMD Opteron machine with 47 GB and a CPU at 2.4 GHz.

8.1. Generating a variety of grasps for a cylinder

In order to test the robustness of the algorithm to changes in the initial conditions, we generate
42 orientations of the palm that span uniformly the different directions in space, initialized from
3 different locations (the palm is positioned on the diagonal of the reference system attached
to the center of the object, the palm aligned with the middle of the object height and the palm
placed above the object), for a total of 126 different initial hand postures,(fig. [8)). Starting from
each initial configuration, we computed grasps on a cylinder, for 5 different friction coefficients
varying from 0.1 (corresponds to the coefficient between steel and graphite) to 0.9 (corresponds to
the coefficient between rubber and paving) and 3 different weights, yielding a total of 1890 trials.
For simplicity reasons and to avoid introducing unnecessary imprecision, we use a superquadric
model [9] instead of a GP one to represent the cylinder. We use a 8-sided pyramid to represent a
linear model of the friction cone. In the following, we present the results obtained for the Barrett
and 1Cub hands.

8.1.1. Results for the Barrett hand

The maximum voluntary force and maximum torque that can be applied by each fingertip of
the Barrett hand are respectively about 15 N and 1.92N x m. By varying the object weight from
10 N to 30 N, we vary the weight to maximal force ratio from 0.22 to 0.66. For the 1890 trials,
the algorithm converged to 791 locally optimal solutions that are both force-closure and satisfied
the kinematic constraint of the Barrett’s hand. Many of these grasps were similar in terms of
hand/fingers configurations, thus, in order to have an idea about the variety of grasps configura-
tions obtained, we clustered these into 11 groups, based on the hand position, orientation and joint
angles, using the K-means algorithm. The number of clusters was chosen empirically through
visual inspection of the clusters obtained after training. Figure (9) shows an example of a typical
grasp for each of the 11 clusters. The average computation time to find a solution was 12.14 s with
a standard deviation of 12.27 s. We provide in figure the number of grasps configurations
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Table 2: Quality (minimum torque in N x m) of the grasps generated with the Barrett hand (friction coefficient = 0.9, weight to maximal force
ratio = 0.44)

Label 3 8 4 11
Quality 4.80 4.80 441 | 4.02
Normalized _Quality | 0.83 0.83 0.77 | 0.70

5
Grasp 3 - y

obtained as a function of the friction coefficient for the 3 different weights. Unsurprisingly, more
diversity in the grasps configurations appears when increasing the friction coefficient. For a weight
to maximal force ratio of 0.44 and with a friction coefficient equal to 0.1, the algorithm yielded
only one grasp belonging to the cluster 10. With a friction coefficient of 0.5, two additional grasp
types (clusters 3,7) are obtained. Finally, for a high friction coefficient of 0.9, grasps from cate-
gories 3,4,7,8,10,11 were found. Table [2] summarizes the grasps quality obtained for a friction
coefficient of 0.9. The normalized quality is also given and is the ratio between our quality crite-
rion which is the joint torque required for lifting the object with a specific grasp and the maximum
joint torque the hand is capable of. This is equal to 1.92 x 3 = 5.76(N x m). The optimal grasp in
this case is the one labeled 10 and is the one obtained for a low friction coefficient. As we increase
this coefficient, the algorithm starts to converge to a variety of grasps including the optimal ones
as well as grasps of a lower quality.

Notice that the typical preshape to grasp a cylinder is illustrated in the cluster labeled 5. The
other clusters generate interesting grasps, which exploit the dexterity of the three fingers of the
hand, by orienting/positioning the hand relative to the object to make these finger configurations
feasible. In the following paragraph, we show several computed grasps for the iCub anthropomor-
phic hand. The resemblance between the iCub and human hands will illustrate more clearly the
relevance of the generated grasps to the accomplishment of everyday life tasks.

8.1.2. Results for the iCub hand

The 1Cub hand has 9-dof. Each finger has a torque limit of 21.5 N x mm. Given that the
average length of one finger is about 70 mm, the maximum voluntary force that can be applied
by the iCub fingertip is about 0.3 N. By varying the object weight from 0.2 N to 0.6 N, we vary
the weight to maximal force ratio from 0.22 to 0.66 similarly to the Barrett hand case. For the
1890 trials, the algorithm converged to 612 locally optimal solutions that are both force-closure
and satisfied the kinematic constraint of the iCub’s hand. We clustered these into 20 groups using
the K-means algorithm. Figure [IT]shows an example of a typical grasp for each of the 20 clusters

For some grasps, the finger phalanges seem to penetrate the object. This is normal and does not violate our
collision avoidance constraints, since we sampled, for collisions, points that are located on the finger links without
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Table 3: Quality (minimum torque in N x mm) of the grasps generated with the iCub hand (friction coefficient = 0.9, weight to maximal force
ratio = 0.44)

Label 15 9 7 2 11 5 6 8
Quality 53.2 | 52.7 | 48.0 | 40.9 | 40.6 | 37.5 | 32.9 | 30.3
Normalized_Quality | 0.82 | 0.82 | 0.74 | 0.63 | 0.63 | 0.58 | 0.51 | 0.47

| j | —_—— [ ] ——= | e -
R = - ] Ea_ | OB
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The typical preshape grasp is used in this case in 7 of the 20 clusters. Here are some of the interest-
ing, non-standard grasps generated by the algorithm. Figure |12| shows that the hand configuration
in the grasp number 10 resembles that adopted when we pick a champagne glass. Grasp number
13 is useful when holding a takeaway mug with a lid. Grasp 8 is typically chosen when carrying
a flower pot from the floor. Figure [I3]shows how that the grasp number 4 is used when flipping
an object upside down using only one hand. Figure[I4]illustrates the usability of grasps 19,20 and
16. Grasp 19 is useful when opening a box or a bottle while grasp 20 is a polite hand configuration
when offering something to someone. Grasp 8 is often used by waiters since it enables them to
free the ring and small fingers for holding a second object.

The average computation time to find a solution was 2.65 s with a standard deviation of 1.82 s.
We provide in figure [I5]the number of grasps configurations obtained as a function of the friction
coefficient for 3 different weights. Similarly to the Barrett hand example, the number of grasps
configurations increases with the friction coefficient. For a too high weight ratio and too low fric-
tion coefficient, no feasible solutions were found, (Fig. . As the friction coefficient increases,
more diversity in the grasps appears. Table [3|summarizes the grasps quality obtained for a friction
coefficient of 0.9 and a weight to maximal force ratio of 0.44. The optimal grasps in this case are
the ones labeled 6 and 8.

8.2. Generating grasps on complex objects

At this point, we showed the algorithm ability to compute a variety of grasps on a simple
cylindrical shaped object modeled as a superquadric. In this experiment, we show the ability of
the algorithm of to cope with more complex objects. These objects are modeled using Gaussian
Processes.

Figure shows grasps generated on different multi-part objects modeled with Gaussian
Processes as a single implicit continuous function. The average computation time it takes the
solver to generate a feasible solution on a GP object model is given in table () for the Barrett hand
and in table (5)) for the iCub hand. Notice for example the average computation time for generating
a grasp for the iCub hand on a cylindrical shaped object when modeled using GP with 191 training

taking into account the radius of the cylinders covering them. These cylindrical shapes were included later on into our
RobotToolKit simulator.
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Table 4: Grasp computation time (for Barrett hand) Vs data points number used for modelling the object.

Nb. points | mean (s) | std (s)

Spray_bottle 361 18.13 7.37
Toy _duck 241 12.38 6.35
Cup 271 10.35 6.78

Table 5: Grasp computation time (for iCub hand) Vs data points number used for modelling the object.

Nb. points | mean (s) | std (s)

Cylinder 191 11.80 15.76

bottle 301 29.50 | 23.64

Toy_duck 241 19.83 18.42
Lightbulb 171 5.30 5.05

data points (11.8s) and when modeled using superquadrics with only 5 parameters (2.65s). Notice
as well the variation of this computation time across different object shapes. When a complex
object such as a spray_bottle is modeled using GP, it requires more training data points than a
cylinder and thus more time is required to generate a grasp.

The grasps computed for the cylindrical shaped object in the simulator were very precise, in
the sense that the placement of the hand allowed the fingers to be positioned exactly on the object
surface. No further planning or adjustments were needed to perform the grasp. For complex
objects modeled with GP, we realized that sometimes the fingers may not reach exactly the object
surface. This is due to the imprecision in the object model which is not uniform across the object
shape as shown in Figure (5). In this case, to ensure a contact with the object surface, the finger
joints should be incrementally increased until a good contact with the object is reached. This is
tackled in the next section.

9. Implementation on the real robots

In the following, we will detail the implementation of the grasping strategy on the real iCub
robot and Barrett hand. Objects are modelled using GP and their position and orientation were
sensed using the OptiTrack Vision system. Note that, the GP model is needed here solely for
computing off-line the object model and feasible grasps (refer to tables [T} [} [5] for the GP model
computation time). For this reason, the markers are needed in order to localize the object in the

scene (Figure [I7).

9.1. Implementation on the Barrett hand

Figure (18| shows the implementation of the computed grasps for the flask bottle on the Barrett
hand mounted on the KUKA LightWeight Robot (LWR) . As discussed in the previous section,
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the fingertips may not be positioned exactly on the object surface due to imprecisions from the
object modeling; Even when all the three fingertips are in contact with the object surface , the
object may still slip or be deformed because of too low or too large contact forces applied at the
fingertips. Thus, a pure position control of the robotic hand is not sufficient for the implementation
of the computed grasps and there is a need for controlling the forces applied at the fingers. Our
optimization algorithm computes the hand position, orientation, finger joint angles and also gives
the optimal grasping forces f/, j = 1..3, that need to be applied by each fingertip on the object
(equation [I4] ). Since it is not possible to precisely control the Barrett hand joint torques, we
mounted the Syntouch tactile sensors on its fingertips [37]. Once calibrated, these sensors allow
us to control the contact forces applied on the object surface enabling a compliant control of the
Barrett hand. The controller for each finger is implemented as:

56/ =K(f]— 1), (17)

Where f j and f/ are respectively the desired and current normal forces at the jth ﬁngertip 0/
is the proximal joint angle of the jth ﬁnger and K is a scalar. The joint angles are controlled
according to a force feedback from the ﬁngertips When f/ is less than fj , 86/ is positive and
the finger keeps closing until the desired contact force is reached.

9.2. Implementation on the iCub hand

The grasps computed for the duck, bottle and lightbulb objects, modelled using GP, were
implemented on the real iCub robot. Once the object configuration is determined using the vision
system, the robot grasps it shaping its hand according to one of the pre-computed optimal grasps.
Notice that in the real world, the robot hand configuration relatively to the object could not be
exactly identical to the precomputed one. We had sometimes to slightly adjust it to match the
one in simulation. This is due mainly to the design of the iCub hand which only gives a rough
estimation of the hand reference frame localisation, to a slack in the iCub wrist joint, and to
cumulative imprecisions in the iCub arm forward kinematic chain. Figure|19|illustrates the grasps
obtained on these real objects. No force control was performed on the iCub hand; on one hand
there is no possibility to control the hand joint torques and on the other hand the syntouch sensors
cannot be mounted on the iCub fingers.

10. Discussion

In spite of the non-linearity and the high-dimensionality of the grasping space, the previous
results illustrate the ability of the proposed algorithm to compute kinematically feasible force-
closure grasps of high quality. This problem was addressed previously through techniques based

3These normal forces correspond to the normal component of f/.

4The proximal and distal joint angles are coupled. Only the proximal one can be controlled.

3 A video showing the reaching and grasping of the flask bottle can be found following this link: lasa.epfl.
ch/-miao/grasp_demo_RAS.wmv,. The reaching algorithm is based on a coupled dynamical system between
the two systems driving the hand position/orientation and finger motions. [30].
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on preshape of the hand [[18} [7]. There, a specific shape of the fingers is predetermined by the
object’s shape, which is known to be close to the optimum. The fingers need only to close on
the object to reach the desired grasping points. Such techniques are intuitive and draw from an
abundant literature on similar control in biology. However, this strategy may not yield successful
grasps when the hand must adopt very particular postures, as shown in our example of Figure
Our approach offers the possibility to generate a large variety of hand/finger postures. Which of
these should be used when, is then to be decided depending on the task requirement. Of course,
this still relies on a controller to bring the hand from its current position to the position found
by our solver. This position may not necessarily be the position that is the closest to the current
robot’s position. This could however be tackled by adding a further term in the objective function
and solve the same way as done here (since IPOPT is not constrained to using convex objective
function). We also developed a simple compliance controller in order to deal with the uncertain-
ties on the object model. For a static grasp, as considered in this paper, this controller is sufficient
to guarantee the grasp stability. However, in a dynamical context, where the object is subject to
a perturbation or when the object weight is changing (pouring water example), a more advanced
compliance controller should be employed. This controller should adaptively change the compli-
ance behavior according to the object properties or external perturbations. This is a topic we are
currently working on.

As for the approach computation time, it is primarily influenced by the complexity of the
search space and the difficulty faced by the optimizer to find a feasible and optimal solution. The
number of degrees of freedom affect the complexity of this search space, but it is not possible to
provide a notion of growth in complexity as an effect of this number. In our study, we computed
grasps for the same cylindrical part modeled with Gaussian Processes (GP) using both the iCub
and the Barrett hand. The Barrett hand has 7 degrees of freedom, 4 of them fully actuated and the
iCub hand has 9 actuated degrees of freedom. The average computation time for the Barrett hand
to find a solution was 12.14 sec and the one for the iCub hand was 11.8 sec. For the two hands
considered in this work, we see that the computation time is not affected by an increase in the
degrees of freedom and reflects primarily the complexity of the search space. Another point worth
mentioning is that the applicability of the method on-line in a real world scenario without using
any markers will depend on the capability to compute GP models or other analytical object models
online (to our knowledge there is no such online object modeling methods). We here chose to use
a slow method to compute optimal grasps. While slow, the method had the advantage to allow us
to express a set of new constraints to take into account the kinematics of the hand. A follow-up
paper of ours developed a technique to build a probability distribution function representation of
these feasible grasps which can then be sampled in real time, [13]. To generate a grasp, one no
longer needs the GP model. Having solely the position and orientation of the object is sufficient
to choose the most appropriate grasp.

Note that, the approach proposed here is used to generate precision grasps. It could in principle
be extended for generating power grasps. In this case, desired contact points on the palm and the
different phalanges of the fingers need to be specified and corresponding constraints need to be
added to the optimization algorithm. This would however increase the complexity of the problem.
This would be a valuable extension of this work.

The reader should notice that [IPOPT does not guarantee convergence to the global optimum
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and consequently different starting configurations result in different grasps. While local optimality
is often seen as a drawback, we saw that in our experiments, this led to a variety of high quality
force-closure grasps. The fact that the algorithm converges to several solutions rapidly is encour-
aging and indicates that one could add task-specific criteria in the objective functions to constrain
further the search. One important detail influencing the computation time is the way we formulate
the constraints. For generating grasps on a cylinder modeled as a superquadric with the Barrett
hand, we use the non-linear functions cosine and sine in the computation of the kinematical chain
permitting us to calculate the fingertip positions. For generating grasps with the iCub hand, we
replaced these non-linear functions with their equivalent inner product between vectors, see ap-
pendix@ for more details. With these two different formulations of the same constraints, we
noticed that the average computation time for generating a grasp with the Barrett hand was of
12.14s, while the one with the iCub hand, having more degrees of freedom, was of 2.65s. Even
though the IPOPT solver is able to handle non-linear constraints, one can accelerate the computa-
tion time by replacing non-linear formulations with their equivalent linear ones when possible.
We showed in this paper grasps computed on two kinematically different hands, the Barrett
and the iCub ones. Our approach is not restricted to a specific hand kinematic structure. The
constraints in Equations could be adapted to describe any other hand kinematics. Sim-
ilarly, the use of superquadrics or Gaussian Processes to describe the object’s surface could be
replaced by other analytical functions describing the shape of the object. Note that, superquadrics
or Gaussian Processes are only an approximation of the object surface and thus the optimization
algorithm will not guarantee the placement of the fingertips exactly on the object surface. How-
ever, in order to have a better approximation of the local contact area between the fingers and the
object surface, one could rely on a meshing of these two surfaces and some heuristics to compute
distances between points in the mesh to determine potential contact. While this may help to rule
out some impossible grasps, this should be balanced with the increased costs in computation while
not giving any true guarantee that there would be a good contact. Consequently, there will be in
all cases an amount of imprecision when it comes to approximating the shape of the fingers and
of the local object surface. As mentioned previously in this section, there will always be a need to
rely on tactile feedback and compliant control for a placement of the fingers guaranteeing stability.

11. Conclusion

This paper shows that a large variety of good grasps can be obtained by formulating and solving
grasp synthesis as a non-linear optimization problem taking into account all the degrees of freedom
involved, those of the hands as well as those related to the object. We performed experiments
on two kinematically different hands based on two different descriptions of the object surface,
showing the ability of the algorithm to cope with any hand kinematic structure and different object
models. In contrast to existing optimal force-closure grasps generation methods that compute first
several grasps and then select the optimal one among a set of these, our approach generates in one
optimization round grasps of high quality that are feasible for the hand kinematics and adapted to
a large set of tasks.
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13. Appendix

13.1. Joint limit and axes orientation constraints

In order to have a grasp that is feasible for the hand, the corresponding joint angles {91-’ bi=
1,...,q¢, j=1,..,3 should be within the joint limits. Two different representations of the joint an-
gles were employed. The first one uses the non-linear functions cosine and sine in the computation
of the kinematical chain. The second one replaces cosine and sine with the inner product between
the relevant vectors. Let ¢! = cos(6/), and s! = sin(6/), we have the following relationships:

c{ = VjT.rj , s{.r{ =v/x ré (18)
cé = ro.eé , sé.ré = r{ X eé (19)
cé = ejT.ej , sé.ré = eé x e/ (20)
cizejT.ej , sﬁ.rizeé x e/ 21

Satisfying joint angle limits induce a limitation on ¢! and s!. Their corresponding lower and upper
bounds are respectively ¢joy, Siow and cyp, Sup:

C{OWSC{SC{;I;, izl;"aqjv .]:1773 (22)

slo<sl<sl,, i=1,.,¢/, j=1,.3 (23)

ow

For each finger j, the revolute joints responsible for flexion/extension have parallel axes and
the abduction/adduction axis, defined by the vector r{ is orthogonal to ré. These constraints can
be expressed by the following equations:

rj=r], j=1,.,3 (24)
=0, j=1,.,3 (25)
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13.2. Friction cone segments
The friction cone is linearized by a polyhedral convex cone with m sides I/. In the reference
frame of the object, l{ is given by:

,u.cos(%)

i :Rh.R;j. 1 . wherei=1,..,m (26)

u.sin(%)

J
L

\Ilfll' That

Where u is the friction coefficient. Vectors ll’ are then normalized as follows: llj =

assumes that all the finger forces have the same limit.
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d) (e) ®

Figure 6: six 3D objects and their corresponding GP representations. The second and fith rows show 3D point cloud object models, (a) a
spray bottle, (b) a toy duck, (c) a cup, (d) a cylinder, (e) a light bulb and (f) a bottle. The third and sixth rows show object modeled using GP. Dots
on the object model are the 3D points on the object surface used to train the GP model.
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Figur e 7. A force-closure grasp on a bottle. The contact point position associated to the j —rh finger is noted as pi and its corresponding
normal as n,;. The friction cone at contact point pl is linearized with m sides, lf

Figure 8: Different initial positions/orientations of the hand are illustrated. In (a), the palm is positioned on the diagonal of the reference
system attached to the center of the object. In (b), it is aligned with the middle of the object height and in (c) it is placed above the object.

Figur € 9: The different Barrett hand configurations to grasp a cylinder, labeled from 1 to 11.
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Figure 10: The number of grasps obtained for the Barrett hand as a function of the friction coefficient for different weight to maximal force

ratio.

Figure 11: The different iCub hand configurations to grasp a cylinder, labeled from 1 to 20.
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Figure 12: Examples showing the importance of grasps labeled 10, 13 and 8 for every day objects manipulation.

Figur e 13: Examples showing the importance of grasp number 4 for flipping an object upside down using only one hand.

Figure 14: Examples showing the importance of grasps labeled 19, 20 and 16 for every day objects manipulation.
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Figur € 15: The number of grasps obtained for the iCub hand as a function of the friction coefficient for different weight to maximal force
ratio.
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Figure 17: Implementation of a computed grasp for the flask bottle on the Barrett hand.
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Figure 18: Implementation of several grasps generated for the flask bottle on the Barrett hand.

Figure 19: Grasps computed for the iCub hand on some real objects modeled with Gaussian
Processes.
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