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Abstract
Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction or to cultivate

cells in suspension, the “swirling” (or orbital shaking) of a container ensures good mixing

and gas exchange in a simple and intuitive way. Despite being used in such a large variety

of applications, the flow generated in a container subject to orbital shaking is far from be-

ing understood, and presents a richness of patterns and behaviours which has not yet been

reported. While orbital shaken cell cultures are very efficient and productive at small scale,

their increase in scale is hampered by several issues, some of which are thought to have their

origin in the motion of the liquid medium. The present research remedies to this situation,

charting the evolution of the wave behaviour with the operating parameters, highlighting

the importance of the wave regimes and assessing their mixing efficiency. We present here a

mathematical solution, based on the potential hypothesis and on techniques used in sloshing

dynamics, predicting the shape of the free surface and the liquid motion. The validity and

the limits of this model were assessed by comparison with a very large number of free surface

measurement, obtained using a specifically developed automated acquisition system, and

with non intrusive velocity measurements of several shaking configurations. A large variety

of wave patterns (i.e. free surface shapes) were identified, ranging from single and multiple

crested waves to breaking waves and waves having a shape constantly changing as they rotate.

Our research revealed the importance of free surface natural modes and their sub-harmonics

in the behaviour of the waves. From the results of the potential model and the measurements,

we identified four dimensionless groups ensuring hydrodynamic similarity of the flow be-

tween different scales. Moreover, we were able to identify the most efficient waves in terms of

mixing, and to suggest optimal ranges of the operating parameters to enhance the mixing and

oxygenation of the cell cultures.

Keywords: free surface flow, waves, sloshing, orbital shaking, bioreactors
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Résumé
Que ce soit pour aérer un verre de vin, pour accélérer une réaction chimique ou pour cultiver

des cellules en suspension, l’agitation orbital d’un récipient garantit, d’une façon simple et

intuitive, de bonnes performances en terme de mélange et d’échange de gaz. Alors qu’il est

utilisé dans une vaste gamme d’applications, l’écoulement dans un récipient en agitation

orbitale n’est pas encore compris, et présente une richesse de formes et de régimes jusqu’à

maintenant inconnues. Dans le cas des cultures cellulaires plusieurs phénomènes, générés par

le mouvement du liquide, empêchent l’optimisation des cultures de grande taille. Le but de

cette recherche est d’acquérir une compréhension de la physique du mouvement du liquide

suffisante pour garantir une optimisation rigoureuse de des écoulement. Nous présentons

ici un modèle mathématique, fondé sur l’hypothèse d’écoulement potentiel et inspiré des

techniques utilisées dans l’étude du ballottement liquide, qui permet de prédire la forme de la

surface et les champs de vitesse du liquide. La validité du modèle et ses limites sont identifiés

par comparaison avec une grande quantité de mesures expérimentales de la hauteur de la

surface libre, obtenues avec un installation expérimentale spécifiquement développée, et ainsi

qu’avec des mesures de champs de vitesse. Une grande quantité de formes de vagues a été

identifiée : des vagues avec une ou plusieurs crêtes et jusqu’aux déferlantes de même que des

vagues ayant une déformation pendant qu’elles tournent. En utilisant les résultats du modèle

et des expériences nous avons identifié quatre paramètres adimensionnels, garantissant la

similarité hydrodynamique de l’écoulement à différentes échelles. Nous avons aussi identifié

les vagues ayant les meilleures performances en termes de mélange, et nous pouvons proposer

des plages de fonctionnement garantissant le meilleur mélange et la meilleure oxygénation.

Mots clés : écoulement à surface libre, vagues, ballottement, agitation orbitale, bioréacteurs
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Nomenclature

Latin

Ã Amplitude of the wave at the wall [m]

amn(t ) First time dependent coefficient of the free surface solution of the

potential problem, corresponding to the mth mode in the radial di-

rection and to the nth mode in the tangential direction, see Eq.2.65

[m]

ai (t ) Time dependent coefficient of the expansion of the velocity fluctu-

ations, i th mode, in the POD analyses, see Eq. 3.5

[-]

cp Phase velocity, or propagation celerity, of the wave [m/s]

bmn(t ) Second time dependent coefficient of the free surface solution of

the potential problem, see amn

[m]

D Internal diameter of the container [m]

ds Diameter of the shaking circular trajectory [m]

ex , ey , ez Basis vectors of Cartesian coordinates systems [-]

er , eθ, ez Basis vectors of cylindrical coordinates systems [-]

Fc Centripetal force [N]

g Apparent gravitational acceleration [m/s2]

H0 Liquid elevation in the container at rest [m]

Im Moment of inertia [kg m2]

Jm Bessel’s function of the first kind, mth order [-]

k Wave numbers vector, with magnitude ||k|| = k [1/m]

p Pressure [N/m2]

pa Atmospheric pressure [N/m2]

q(x, t ) Velocity vector issued from the potential model, in Eulerian descrip-

tion, with components:

[m/s]

(qx , qy , qz ) Components of the velocity issued from the potential model, Eule-

rian description, in Cartesian coordinates system

[m/s]
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Nomenclature

(qr , qθ, qz ) Components of the velocity issued from the potential model, Eule-

rian description, in cylindrical coordinates system

[m/s]

qL(x0, t ) Velocity vector issued from the potential model, in Lagrangian de-

scription, may be used in Cartesian or cylindrical coordinates sys-

tem

[m/s]

v(x, t ) Velocity vector issued from experimental measurements, with com-

ponents:

[m/s]

(vx , vy , vz ) Measured components of the velocity, in Cartesian coordinates

system

[m/s]

(vr , vθ, vz ) Measured components of the velocity, in cylindrical coordinates

system

[m/s]

x(t ) Vector position of a fluid particle, with components:

(x, y, z) Cartesian coordinates of a fluid particle [m]

(r,θ, z) Cylindrical coordinates of a fluid particle at [m,rad,m]

x0 Vector position of a fluid particle at t=0, with components:

(x0, y0, z0) Cartesian coordinates of a fluid particle at t=0 [m]

(r0,θ0, z0) Cylindrical coordinates of a fluid particle at t=0 [m,rad,m]

Greek

αmn(t ) First time dependent coefficient of the velocity potential solution

of the potential problem, corresponding to the (m, n) mode, see

Eq.2.46

[m2/s]

α Position of the container on its shaking trajectory [rad]

βmn(t ) Second time dependent coefficient of the velocity potential solution

of the potential problem, see αmn

[m2/s]

∆IRMS Root mean squared difference of the light intensity between two

images, used in mixing measurements

[-]

||∆z || Average vertical distance between a group of liquid particles [m]

δ Liquid height measured at the wall [m]

εmn nth root of the derivative of the Bessel’s function of the first kind,

mth order.

[-]

ε Expansion parameter in perturbation series [-]

λ Wavelength [m]

µ Dynamic viscosity [Pa s]

ν Kinematic viscosity [m2/s]
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Nomenclature

ξ Elevation of the free surface predicted by the potential model [m]

ρ Density [kg/m3]

τ Shear stress [N/m2]

Φ Velocity potential of the container and liquid motion [m2/s]

Φ0 Velocity potential of the container motion [m2/s]

Φ̃ Velocity potential of the liquid motion [m2/s]

φi i th POD mode [m]

Ω Shaking frequency. Note that it may sometimes be expressed in

revolutions per minute.

[1/s]

ωmn Natural frequency corresponding to the mode (m, n). [1/s]

Dimensionless

Ãδ = Aδ
D Measured dimensionless amplitude of the wave at the wall

Ãξ = Aξ
D Potentially predicted dimensionless amplitude of the wave at

the wall

Ãb = Ab
D Dimensionless amplitude of the wave at the breaking

d̃s = ds
D Dimensionless shaking diameter

H̃0 = H0
D Dimensionless unperturbed liquid height

F r =
√

dsΩ2

g Froude number

Re = d 2
sΩ

ν
Reynolds number

δ̃= δ
D Measured dimensionless liquid height at the container wall

ṽ = v
dsΩ

Measured dimensionless velocity

q̃ = q
dsΩ

Potentially predicted dimensionless velocity

ξ̃= ξ
D Potentially predicted dimensionless free surface elevation

Acronims

LDV Laser Doppler Velocimetry, see Sec. 3.3.1
PIV Particle Image Velocimetry, see Sec. 3.3.2
POD Proper Orthogonal Decomposition, see Sec. 3.3.3
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1 Introduction

1.1 Orbital shaking

The “orbital shaking” is the motion of a container, maintaining a fixed orientation with re-

spect to an inertial frame of reference, on a circular trajectory at a constant angular velocity.

Underneath this technical, rather cryptic definition, lies the simple and elegant gesture of

“swirling” a glass of wine to release its bouquet, and other countless everyday-life applications.

The same movement has been used in biological, chemical and food industries for its mixing

and gas exchange characteristics, as well as for its ease and low cost of implementation. De-

spite this large use, the flow generated in a container subjected to orbital shaking is far from

being understood, and presents a richness of patterns and behaviours which has not yet been

reported.

a b c d

Figure 1.1 | Example of uses of orbital shaking: a: wine swirling, b: the instructions on the
label of a weizen beer suggest to swirl the bottle to mix the residuals of yeasts and to increase
the foam formation, c: orbital shaking used for chemical reactions or analyses; d: large (200L)
bio-reactor for cell cultures produced by Kuhner AG.

In oenology the orbital shaking is usually called “swirling” and it is employed during wine

tasting, especially for visual and olfactory analyses [52]. Visually, a gentle swirling could be

used to estimate the wine viscosity [96] and to create “wine tears”, which provide a visual

representation of the amount of alcohol in the wine [37, 52]. More considerable is the con-
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Chapter 1. Introduction

tribution of orbital shaking to olfactory assessment: it is usual to swirl the wine between a

first “sniffing”, where the more volatile aromas are detected, and a second one where the

wine releases more substantial aromas thanks to increased agitation and aeration. Therefore,

although no scientific publication has appeared on the subject, wine experts agree that the

swirling motion promotes the release of aromas of the wine [1, 96, 27]. Another beneficial

effect of the swirling is the dissolution of distasteful odors (“off-odors”), e.g. sulphur dioxide in

young and fresh wines [27].

The shape of the glass seems to influence the perception of wine flavours [49], both for its

alleged influence on the stratification and segregation of evaporated aromas and for its effect

on the motion of the swirled wine. Hence it is not surprising that a large amount of shapes

aiming at increasing the volatilization of aromas has been produced. Some examples are given

in Fig. 1.2. However, wine tasting is a delicate matter, where tradition mixes with marketing,

and where it is often unclear if the introduction of a new glass shape is dictated by experience,

researches or mere economical interest.

a b c d e

Figure 1.2 | Wine glasses, some of which have been designed to increase the evaporation of
aroma: a: INAO glass, international reference as testing glass. b: Peugeot “Impitoyable Le Tester”
has an indent (where the thumb is inserted) which creates an obstacle to the wine travelling at
the wall, supposedly breaking the molecules of wine. c: Peugeot “Impitoyable No1” designed
for aeration and stratification of the aromas. d: Riedel Red Wine Swirl, supposedly increasing
aeration in swirling. e: patent US 2006/0249518 A1 also with an indent.

Several other applications require enhancement of gas exchange between a liquid and a

gaseous phase, as well as mixing. It is likely that engineers concerned with the design of early

mixing devices were inspired by the motion of the glass of wine to create the first orbital shaker

for chemical applications. Orbital shaking experienced anyway an incredible diffusion, and

it is nowadays used in laboratories all over the world especially to mix and aerate chemical

reactions, bacterial cultures [75, 38] and more recently cellular cultures [115]. The vessels

typically range from small microtiter plates [32, 31] to Erlenmeyer flasks of a working volume

of less than one litre, as depicted in Fig. 1.3.

Although animal cells cultivation proved to be feasible already a century ago [45], it was only

2



1.1. Orbital shaking

a b c d e

Figure 1.3 | Examples of containers used with orbital shakers: a: microtiter plates used for
screening. b: TubeSpin are small volume (35ml) cylindrical containers designed for use in
centrifuges, could be fitted with vented caps as bioreactor for screening purposes, while c: maxi
tube spin are similar but have increased capacity (600ml). d: Erlenmeyer flask are quite well
characterized for use with orbital shaker. e: modifications have been tried on Erlenmeyer flasks
to increase the mixing efficiency, such as the introduction of buffles.

with the introduction of molecular cloning [28] and DNA delivery [103] that its full potential

in the production of proteins could be exploited [42]. Today 60 to 70 % of pharmaceutical

recombinant proteins (e.g. antibodies) are produced by mammalian cells and the worldwide

demand is still increasing [58]. Cells are cultivated in suspensions of liquid medium, where

they multiply (increasing the size of the culture) and produce the required protein. The main

issue of suspension cultures is the need to provide oxygen to the cells and evacuate the carbon

dioxide without creating harming conditions.

Traditionally, orbital agitation is used for sub-litre scale cell cultures [61] and for screening

of cell lines [30]. As the culture grows, it is transferred to stirred tanks, a technology adapted

from bacteria cultivations [42]. Stirred tanks maintain the cells in suspension by reason of a

convective flow imposed to the liquid by an impeller [81], while gas is injected from bottom-

located spargers (Fig. 1.4a). In this way, O2 is exchanged at the bubbles interface, while CO2 is

evacuated at the free surface. However, animal cells proved to be less resistant than bacteria:

it was found that bursting of gas bubble at the free surface may damage them [44] and that

strong agitation may generate excessive shear stresses, likewise harmful to the cells [59, 82].

These reasons kindled interest in the use of large scale orbital shaken devices up to several

hundred litres [68, 78, 30].

In orbital shaking the suspension is maintained by the wave-like flow generated by the motion

of the vessel, while the gas exchange from and to the liquid phase is ensured at the free surface

(Fig. 1.4b). They present several advantages with respect to stirred tanks, namely smaller

hydrodynamic stresses [22, 99], smaller mixing times [107] and require less control [21, 109].

Moreover, cultures in orbital shaken reactors are usually grown in disposable bags, reducing

contamination risks and the need of components (e.g. the impeller) sterilization.

Thus, a large number of the researches that have been carried out aimed at ensuring the feasi-

bility of this daring size increase. Studies have been performed on the gas exchange [21, 79, 74]

3



Chapter 1. Introduction

Gas injector

Agitation

Gas exchange

a b

Free surface

Figure 1.4 | a: stirred tank in operation: gas and chemicals are injected at the bottom, the
agitation is ensured by the propeller, which also breaks the largest bubbles. Gas exchange
occurs at the interface of the bubbles. b: orbitally shaken bioreactor: the motion is imposed at
the whole vessel, and transmitted to the liquid by the walls, the gas exchange occurs at the free
surface.

and mixing [77, 104, 108]. Global quantities such as the volumetric power consumption [22],

the gas transfer capacity [119, 39] and the mixing time [77, 104, 108] have been investigated

focusing on their effect on cell cultivations. In some cases, correlations have been proposed in

order to quantify the variation of those quantities with the culture scale. Although measure-

ments of the velocity fields have been performed in Erlenmeyer flasks [110] and cylindrical

containers [112], no significant effort has been so far dedicated to the hydrodynamics of the

liquid which carries the cells, and to its influence on the scaling of the cultures.

On the other hand, the physic of free surface liquid in shaken containers has been extensively

studied, especially from the analytical point of view of potential (inviscid) flows [50]. Most of

the early work, at the beginning of the space exploration age, focused on sloshing of spacecraft

propellent in cylindrical or rectangular tanks [16, 70, 69, 4, 3]. More recently, the main problem

investigated is the transport of liquids in naval carriers [66]. Moreover, analytical solutions have

been found for several tank geometries: conical [13], rectangular [18] and, since the main aim

is usually to reduce the sloshing amplitude and the forces it generates, compartmented tanks

[17] or motion of liquids partially covered with elastics or rigid floating covers [14, 15] have

also been investigated. Besides the analytical solutions, several numerical simulations have

been also performed (e.g. [25]), to address various issues such as the collision of liquid carriers

[117]. Surprisingly, researches never considered the use of sloshing for mixing purposes so far.

A lack of knowledge concerning the flow (mixing, velocity field, hydrodynamic stresses) within

a container subject to orbital agitation, as well as a link between the physics of the flow and

the cells cultures, is therefore flagrant, and the present thesis is intended as a remedy to it.
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1.2. Framework of the project

1.2 Framework of the project

The present study arises from the collaboration between three EPFL laboratories, in the

frame of SNSF-Sinergia projects: the Cellular Biotechnology Laboratory (LBTC), the Chair

of Modelling and Scientific Computing (CMCS) and the Laboratory for Hydraulic Machines

(LMH). The LBTC provides the knowledge in cellular suspension cultures, and characterizes

the key factors of the cultures, such as the mixing time, the gas transfer, the power consumption

and the cells viability and productivity [107]. The main contribution of the CMCS is to produce

a numerical simulation of the free surface flow, as well as a model taking into account the cell

growth [89]. The LMH, and therefore the present thesis, studied the physics of the flow within

an orbital shaken bioreactor through analytical and experimental investigation.

1.3 The case study

This work focuses on the hydrodynamics of orbitally shaken circular cylinders with upright

walls. The parameters characterising each shaking configuration are the inner diameter of the

container D , the diameter of the circular shaking trajectory ds , the height of the liquid at the

rest H0 and the shaking frequencyΩ (Fig. 1.5a). The angular location of the container along

its trajectory is defined as α ∈ [0,2π[, thus α =Ωt . A coordinates system is associated with

ds

D

H
0

Fixed vessel 

orientation

Circular shaking 

trajectory

α

Ω O
ex

ey

ez

θ

r

z

a b

Figure 1.5 | a: definition of the operating parameters of the shaking. b: coordinates system
associated with the vessel.

the container, with its origin O at the vessel bottom, and the direction ez collinear with the

revolution axis of the container. Any position within the container is identified as x = (x, y, z)

in Cartesian coordinates or as x = (r,θ, z) in cylindrical coordinates (Fig. 1.5b).

In the following, we will first describe the historical development leading to an analytical

solution for surface waves, and present the use and adaptation of existing models to the
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Chapter 1. Introduction

problem of orbital shaking (Chap. 2). Then, in Chap. 3 the experimental methods used

throughout this work are detailed. Chapter 4 presents the dynamics of the wave, comparing

the experimental results to the analytical model. Finally, in Chap. 5 the application to the

specific field of cell cultures is highlighted.
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2 Analytical approach

The motion of free surface flows within shaken containers may be described analytically when

a series of hypothesis are made: namely that the liquid is inviscid and incompressible and the

flow is irrotational. Flows respecting those conditions are usually known as potential flows [93],

and their governing equations are presented in Sec. 2.1. For the benefit of readers unfamiliar

with wave motion, we present first the traditional solutions for gravity waves (Sec. 2.2). Their

dynamics has been studied by Laplace, Newton and Lagrange among others, and was formally

published for linear waves by Airy [29]. Important advances, especially the extension of the

theory to non-linear waves, was proposed shortly after by Stokes [100]. The method was

further extended with the introduction of moving container at the beginning of space travel

age [50]. Using those techniques, in the third section of this chapter we present the equations

of motion of liquid within orbital shaken containers.

2.1 General governing equations

The motion of fluids in a Cartesian frame of reference is appropriately described by the

equations of conservation of mass:

∂ρ

∂t
+∇· (ρq

)= 0 (2.1)

and the conservation of momentum [64]:

ρ

(
∂q

∂t
+ (

q ·∇)
q
)
=−∇p −∇T− f. (2.2)

where q is the velocity vector, ρ is the density of the fluid, p is the pressure, T is the devi-

atoric stress tensor [93], and f is the resultant of volume forces on the liquid. In a Carte-

sian coordinates system, defined by a reference frame O(ex ,ey ,ez ), the velocity is q(x, y, z, t )

with components q = qi = (qx , qy , qz ) in the directions ex , ey and ez , and the operator

7



Chapter 2. Analytical approach

∇= (∂/∂x,∂/∂y,∂/∂z). Equation 2.2 could be rewritten as:

ρ

(
∂q

∂t
−q× (∇×q

)+ 1

2
∇(

q2
i

))=− 1

ρ
∇p −∇T− f. (2.3)

The only body force considered here is the one induced by the gravitational apparent accelera-

tion: we have therefore f =∇(g z), where g is the apparent gravitational acceleration.

In case of potential flow, various hypotheses are then introduced: the flow is incompressible

(ρ is constant in space and time, but may have different values for different fluids, e.g. water

and air), irrotational (∇×q = 0) and inviscid, the last hypothesis leading to ∇T= 0. Moreover,

if the motion is irrotational, a velocity potentialΦ exists whose gradient defines the velocity

field: q =∇Φ. Under these conditions Eq. 2.1 and 2.3 could be rewritten respectively as:

∇2Φ= 0 (2.4)

∇∂Φ
∂t

+ 1

2
∇(

q2
i

)=−∇p

ρ
−∇(

g z
)

(2.5)

Equation 2.4 is the Laplace’s equation, while integration of Eq. 2.5 lead to the unstationary

Bernoulli equation:

∂Φ

∂t
+ 1

2

(
q2

i

)+ p

ρ
+ (

g z
)=C (t ) (2.6)

where C (t) is any arbitrary function of time. Boundary conditions are introduced to solve

Eqs.2.4 and 2.6. A typical condition is the non penetration of liquid at solid walls: the liquid

velocity at the wall in the direction n normal to the wall must be equal to the velocity of the

wall Ẋ in the same direction:

q ·n = Ẋ ·n. (2.7)

In the usual case where the wall is stationary and its normal vector is collinear to one of the

direction of the frame of reference Eq. 2.7 becomes:

qn = ∂Φ

∂n
= 0 (2.8)

where n is x, y or z in case n=(1,0,0), (0,1,0) or (0,0,1) respectively.

2.2 Gravity waves dynamics

A solution is searched for Eq. 2.4, for a flow having a solid wall as lower boundary and a free

surface as upper boundary. The elevation of the free surface is defined as z = ξ(x, y, t) while

the solid wall is located at z =−H0. More details about the following developments are found

in the books of Lamb [64] and of Phillips [86].
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2.2. Gravity waves dynamics

The velocity of the particles at the free surface is the velocity of the free surface itself. This

condition is called the kinematic condition of the free surface and reads:

wξ =
Dξ

Dt
= ∂ξ

∂t
+q ·∇ξ or

(
∂Φ

∂z

)
ξ

= ∂ξ

∂t
+ ∂Φ

∂x

∂ξ

∂x
+ ∂Φ

∂y

∂ξ

∂y
(2.9)

where the suffice ξ refers to quantities at the free surface. Another condition is that the pressure

at both sides of the free surface could differ only as a results of surface tension. This condition

is called the dynamic condition and it is found by applying Bernoulli’s equation (Eq. 2.6) to

both sides of the free surface:(
∂Φ

∂t

)
ξ

+ 1

2
(∇Φ)2

ξ+
p

ρ
+ gξ= 0 (2.10)

where the arbitrary function C (t ) is incorporated intoΦ. Since

p = pa +γ
(
R−1

1 +R−1
2

)
(2.11)

where pa is the atmospheric pressure, γ is the surface tension to density ratio of the liquid and

R1 and R2 are the radii of curvature of the free surface in the ex and ey directions. Together,

Eq. 2.10 and Eq. 2.11 constitute the dynamic condition at the free surface, as far as pa is

defined.

The free surface dynamic and kinematic boundary conditions could be combined by comput-

ing the material derivative of Eq. 2.10, in order to obtain a non-linear free surface boundary

condition:(
∂

∂t
+q ·∇

)
·
(
∂Φ

∂t
+ 1

2
|q|2 + p

ρ
+ gξ

)
= 0

∂2Φ

∂t 2 +q ·∇∂Φ
∂t

+ 1

2

∂|q|2
∂t

+ 1

2
q ·∇|q|2 + ∂

∂t

p

ρ
+q ·∇p

ρ
+ g

∂ξ

∂t
+ g q ·∇ξ= 0, (2.12)

which is valid at the free surface z = ξ(x, y, t). Thus, neglecting the influence of the surface

tension, for constant atmospheric pressure pa (∇pa = 0 and ∂pa/∂t = 0) and using Eq. 2.9 we

obtain:

∂2Φ

∂t 2 + ∂|q|2
∂t

+ 1

2
q ·∇|q|2 + g

∂Φ

∂z
= 0 at z = ξ(x, y, t ). (2.13)

The Stokes’ approach consists in expanding the free surface condition in a Taylor series around

9



Chapter 2. Analytical approach

z = 0: [
∂2Φ

∂t 2

]
z=0

+ξ
[
∂

∂z

∂2Φ

∂t 2

]
z=0

+
[
∂|q|2
∂t

]
z=0

+ξ
[
∂

∂z

∂|q|2
∂t

]
z=0

+ 1

2

[
q ·∇|q|2]z=0

+ 1

2
ξ

[
∂

∂z
q ·∇|q|2

]
z=0

+ g

[
∂Φ

∂z

]
z=0

+ gξ

[
∂2Φ

∂z2

]
z=0

+·· · = 0. (2.14)

The expansion parameter is the wave slope ak where a is the wave amplitude and k the

wave number. The expansion parameter will become evident as the solutions of the potential

and free surface elevation will be given. The convergence of the expansion series has been

demonstrated for small steepness (low values of ak) in infinite [67] and finite depth [102]

waves [86].

The velocity potentialΦ, as well as the velocity q and the free surface position ξ are expanded

in a perturbation series of the form Φ= εΦ1 + ε2Φ2 + ε3Φ3 + . . . . The free surface kinematic

boundary condition (Eq. 2.9) is thus expressed as:

ε

(
∂Φ1

∂z

)
ξ

+ε2
(
∂Φ2

∂z

)
ξ

+O(ε3) = ε∂ξ1

∂t
+ε2

(
∂ξ2

∂t
+ ∂Φ1

∂x

∂ξ1

∂x
+ ∂Φ1

∂y

∂ξ1

∂y

)
+O(ε3) (2.15)

while the combined free surface boundary condition (Eq. 2.14) becomes:

ε

[
∂2Φ1

∂t 2 + g
∂Φ1

∂z

]

+ε2
[
∂2Φ2

∂t 2 + g
∂Φ2

∂z
+ξ1

∂

∂z

∂2Φ1

∂t 2 + gξ1
∂2Φ1

∂z2 + ∂|q1|2
∂t

]
(2.16)

+O(ε3) = 0 at z = 0.

According to perturbation techniques, solutions are found for each order of ε, starting from

the lower one, and each solution is used in the following order.

For the first order, the set of equations that has to be solved is:

∇2Φ1 = 0, and q1 =∇Φ1 (2.17a)

∂Φ1

∂n
= 0 at the solid surfaces (2.17b)

∂2Φ1

∂t 2 + g
∂Φ1

∂z
= 0 at z = 0 (2.17c)

∂ξ1

∂t
= ∂Φ1

∂z
at z = 0 (2.17d)

where we look for a solution of Laplace equation (Eq. 2.17a) respecting the boundary condi-

tions (Eqs. 2.17b-d). Instead of the kinematic boundary condition, it is possible to use the
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2.2. Gravity waves dynamics

dynamic boundary condition, thus substituting Eq. 2.17d with the first term of the perturba-

tion expansion of Eq. 2.10.

Without loss of generality, the solution for the free surface is expressed in the form of a Fourier

series:

ξ=
∞∑

n=1
an cos(n(k ·x−ω · t )) (2.18)

where an is the wave amplitude, ω is the wave frequency and k is the wave numbers vector.

If we limit the resolution to the first order, we obtain the solutions for linear waves, or Airy’s

waves.* Solutions for the free surface and the potential, respecting Eqs. 2.17b and 2.17c are

(dropping the suffice 1):

ξ= a cos(k ·x−ω · t ) . (2.19)

Φ= ωa cosh(k(z +H0))

k sinh(kH0)
sin(k ·x−ωt). (2.20)

Those results are injected into Eq. 2.17d to satisfy the kinematic boundary condition, thus

obtaining the relation of dispersion between the wave number and the frequency:

ω2 = g k tanhkH0, (2.21)

where k = ‖k‖. The wave period is T = 2π/ω. The speed at which any phase (e.g. the crest) of

the wave travels is called phase velocity and is given by cp =ω/k or, according to Eq. 2.21:

cp =
√

g

k
tanhkH0, (2.22)

while the wavelength (the distance between two equivalent phases, say the crests) is given by

λ= 2π

k
= 2πcp

ω
. (2.23)

In the case of a bi-dimensional flow propagating along the ex direction, the wave number

becomes k = (k,0,0) and the velocity fields are found integrating the potentialΦ1 (Eq. 2.20):

qx = dx

dt
= ωa cosh(z0 +H0)

sinh(kH0)
cos(kx −ωt ) (2.24a)

qz = dx

dt
= ωa sinh(z0 +H0)

sinh(kH0)
sin(kx −ωt ). (2.24b)

*The first order is usually obtained from perturbation expansion of the kinematic and dynamic boundary
condition without need of introducing the combined boundary condition and its expression as a Taylor series.
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Chapter 2. Analytical approach

It is possible to compute the trajectories followed by hypothetical liquid particles released

into the liquid from an initial location x0 = (x0, y0, z0) calculating iteratively their position after

each increment of time d t as:

x(t +d t ) = x(t )+qx
(
x(t ), y(t ), z(t ), t

) ·d t

y(t +d t ) = y(t )+qy
(
x(t ), y(t ), z(t ), t

) ·d t (2.25)

z(t +d t ) = z(t )+qz
(
x(t ), y(t ), z(t ), t

) ·d t ,

where d t is small enough not to influence the result of the trajectory computations. Three

examples of trajectories followed in different wave conditions are depicted in Fig. 2.1. We

observe that the magnitude of the velocity field as well as the amplitude of the trajectories

rapidly decrease with the depth, while the rate of this reduction depends on the wave charac-

teristics H0 and k. Although the velocity fields have a mean value along ex equivalent to zero,

0 2 4 6 8
−10

−8

−6

−4

−2

0

0 2 4 6 8

−4

−2

0

0 2 4
−10

−8

−6

−4

−2

0

z [m]z [m]
z [m]

x [m] x [m]

x [m]

Wave propagation directiona b c

Figure 2.1 | Linear wave velocity fields and trajectories followed by groups of particles released at
x0 = 0 and various z0 during three periods of the waves, for waves with different characteristics.
The free surface height and the velocity fields are depicted at t = 3T . a: the wave has the
following characteristics: H0 = 10m, k = 0.5, a = 0.7m. b: H0 = 10m, k = 0.2, a = 0.7m. c:
H0 = 2m, k = 0.5, a = 0.7m.

the particles experience a motion in the direction of propagation of the wave, hence displaying

the trocoidal trajectories typical of the wave motion. This displacement in the direction of the

wave propagation is commonly known as the Stokes drift [100]: while the velocity fields aver-

age on a horizontal line is zero, the particles are not moving along horizontal lines. Because

of the definition of the velocity fields, the positive horizontal velocity they experience in the

upper part of the trajectory is greater (in magnitude) than the negative velocity in the lower

part, thus they move in the positive ex direction.

Hence, in order to estimate the value of the Stokes drift, is necessary to estimate the Lagrangian

velocity, which is the velocity experienced by an< liquid particle moving with the flow. By

contrast, the velocity of the flow at a fixed location is known as Eulerian velocity of the flow.

The latter description was used throughout the preceding developments.
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2.2. Gravity waves dynamics

If at t = 0 a particle is at the initial position x0 = (x0, y0, z0), its position at a time t > 0 is

calculated as:

x = x0 +
∫ t

0
qL(x0, t ′)d t ′. (2.26)

where the suffice L indicates the Lagrangian velocity. At any given location and at the same

moment, the Lagrangian qL(x0, t) and Eulerian q(x, t) velocities must be equivalent. Using

Eq. 2.26 we have then:

qL(x0, t ) = q
(

x0 +
∫ t

0
qL(x0, t ′)d t ′, t

)
. (2.27)

Equation 2.27 could be expressed as a Taylor series expansion around x0, and using Eq. 2.26

for x−x0 we obtain:

qL(x0, t ) = q(x0, t )+ (x−x0) ·∇q(x0, t )+ . . . (2.28)

qL(x0, t ) = q(x0, t )+
∫ t

0
qL(x0, t ′)d t ′ ·∇q(x0, t )+ . . . (2.29)

We notice that at the first order the two velocities are equivalent, thus the Lagrangian velocity

in the second term in the right hand side of Eq. 2.29 is approximated at the first order [86],

leading to:

qL(x0, t ) = q(x0, t )+
∫ t

0
q(x0, t ′)d t ′ ·∇q(x0, t ). (2.30)

The average of the Lagrangian velocity, calculated by using Eq. 2.30 with the Eulerian velocity

fields given by Eq. 2.24, is:

qL,x = ωka2 cosh(2k(z0 +H0))

2sinh2(kH0)
and (2.31a)

qL,z = 0, (2.31b)

explaining the drift of the particles. The distribution of the drift velocity as a function of the

depth is shown in Fig. 2.2b, along with the evolution of the Eulerian average.

First order solutions provide an accurate estimation of the wave shape and velocity fields, also

extending to cases of varying liquid depth and wave interaction, as long as the amplitude of

the wave remains small compared to the wavelength [86]. However, as the wave increases in

steepness and approaches the breaking, higher orders are required. The solutions have been

obtained by Stokes [101] up to the fifth order O((ak)5) for deep water waves and up to the third

order for finite depth, when the expansion parameter ak remains small. Solutions have been

obtained also for waves where the wavelength is large compared to the amplitude (known as

cnoidal waves) and waves of infinite wavelength (solitary waves) [94]. As the order of resolution
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Figure 2.2 | a: field of the horizontal velocity u in a wave with H0 = 10, k = 0.5. b: the solid line
represents the evolution of the mean Lagrangian velocity q̄L,z calculated according to Eqs. 2.31a,
the dashed line is the mean velocity q̄z computed only for the liquid phase. We considered that
in the gas phase (above the surface) u=0m/s.

increases, several (and sometimes discording) solutions have been proposed, using different

approaches [91, 35], while numerical solutions have also been suggested [26, 36]. Besides

the increased precision of the estimations, higher order solutions provide estimation of the

limiting steepness of the wave, usually defined as H/λ≈ 0.1412, where H is the crest-to-trough

amplitude [95, 41]. Overviews of the issues mentioned above are found in [94, 113].

2.3 Sloshing dynamics

In case of free surface motion in a confined vessel, the development is somehow similar to the

one followed for gravity waves, but with additional boundary conditions taking into account

the moving walls. A large number of publications present the wave motion of an inviscid

incompressible fluid in a rigid circular tank, e.g. a comprehensive review is found in [50].

The equations of motion derived in the previous section are given for an inertial frame of

reference, e.g. O′e′x e′y e′z in Fig. 2.3a. In case of a moving container, we define a reference frame

Oex ey ez moving with the container . Any time-change in the inertial reference frame has to

be expressed in terms of total derivatives in the moving one:

∂Φ

∂t

∣∣∣∣
O
=

(
∂

∂t
− Ẋ0 ·∇

)
Φ

∣∣∣∣
O′

(2.32)

where Ẋ0 is the velocity of O in the O′ frame of reference. The velocity fields in the moving

reference frame are expressed in Oex ey ez as

q
∣∣
O = q

∣∣
O′ − Ẋ0 =∇Φ− Ẋ0 (2.33)
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2.3. Sloshing dynamics

The orbital shaking motion may be described as a combination of two sinusoidal translations

with a π/2 phase shift (Fig.2.3a), which leads to the following equations for the motion of the

wall:

X0(t ) =


ds
2 ·cos(Ωt ) ·ex

ds
2 · sin(Ωt ) ·ey

(2.34a)

X0(t ) =


ds
2 [cos(Ωt )cos(θ)+ sin(Ωt )sin(θ)]er = ds

2 cos(Ωt −θ)er

ds
2 [−cos(Ωt )sin(θ)+ sin(Ωt )cos(θ)]eθ = ds

2 sin(Ωt −θ)eθ.
(2.34b)

where the displacements are expressed in Cartesian (x = (x, y, z)) and cylindrical (x = (r,θ, z))

coordinates system, as depicted in Fig. 2.3b. The forcing expressed in term of velocity is:

Ẋ0(t ) =


−dsΩ

2 · sin(Ωt ) ·ex

dsΩ
2 ·cos(Ωt ) ·ey

(2.35a)

Ẋ0(t ) =


−dsΩ

2 sin(Ωt −θ)er

dsΩ
2 cos(Ωt −θ)eθ.

(2.35b)

D

Fixed 

orientation ds

ds

2
sin(Ωt)

ds

2
cos(Ωt)

H0

Ω

O ex

ez
ey

ez

O’

’

ex’

ey’

ba

Figure 2.3 | a: decomposition of the orbital shaking into two sinusoidal translations, with
reminder of the definition of the shaking parameters D, H0, ds andΩ. b: position of the two
frame of references, 0 fixed to an inertial frame of reference, 0′ fixed to the moving container.
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Chapter 2. Analytical approach

In the moving reference frame the kinematic (Eq. 2.9) and dynamic (Eq. 2.10) boundary

conditions become respectively:

∂Φ

∂z
= ∂ξ

∂t
+ (∇Φ− Ẋ0

) ·∇ξ at z = ξ(r,θ, t ) (2.36)

∂Φ

∂t
+ 1

2
(∇Φ)2 + p

ρ
+ gξ− Ẋ0 ·∇Φ= 0 at z = ξ(r,θ, t ) (2.37)

while the conditions at the container walls are, according to Eqs. 2.7 and 2.35b:

∂Φ

∂r
=−dsΩ

2
sin(Ωt −θ) at r = D/2 (2.38)

∂Φ

∂z
= 0 at z =−H0. (2.39)

It is usual to separate the potential function Φ into a liquid motion component Φ̃ and a

container motion componentΦ0:

Φ= Φ̃+Φ0. (2.40)

The container displacement potential Φ0 is determined integrating Eq. 2.38 in cylindrical

coordinates:

∇Φ0 = Ẋ0 (2.41)

Φ0 =−dsΩr

2
sin(Ωt −θ)− 1

2

∫
(Ẋ)2 d t . (2.42)

We observe that ∂Φ0/∂z = 0. The free surface boundary conditions (expressed in Eq. 2.37 and

2.36) are modified according to Eq. 2.40, 2.41 and 2.42, and become:

∂Φ̃

∂t
− dsΩ

2r

2
cos(Ωt −θ)+ 1

2
∇Φ̃2 + p

ρ
+ gξ= 0 (2.43)

∂Φ̃

∂z
= ∂ξ

∂t
− ∂ξ

∂r

∂Φ̃

∂r
− 1

r 2

∂ξ

∂θ

∂Φ̃

∂θ
. (2.44)

To obtain solutions at the first order the boundary conditions are linearized, typically by per-

turbation expansion of the quantities Φ̃, q and ξ, as described for gravity waves, or according
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2.3. Sloshing dynamics

to the expressions detailed in the next section. The linearized set of equations is:

∇2Φ̃= 0 (2.45a)

∂Φ̃

∂r
= 0 at r = D/2 (2.45b)

∂Φ̃

∂z
= 0 at z =−H0 (2.45c)

∂Φ̃

∂t
− dsΩ

2r

2
cos(Ωt −θ)+ gξ= 0 at z = ξ(r,θ, t ) (2.45d)

∂Φ̃

∂z
= ∂ξ

∂t
at z = ξ(r,θ, t ) (2.45e)

A general solution for Laplace’s equation in cylindrical coordinates is usually obtained by

combination of separate solutions for each variable, which are composed of exponential

functions in the axial solution, of harmonics functions in the tangential solution and of

Bessel’s functions of the first and second kind in the radial one [51]. Characteristics and

proprieties of the Bessel’s functions are given in Annexe B. In order to obtain finite values of

the potential within the limits of the container, the Bessel’s function of the second kind are

dropped. Moreover, to respect boundary conditions 2.45b and 2.45c the solution takes the

following form:

Φ̃(r,θ, z, t ) =
∞∑

m=0

∞∑
n=1

[
αmn(t )cosmθ+βmn(t )sinmθ

]
Jm(λmnr )

cosh[λmn(z +H0)]

coshλmn H0
(2.46)

whereαmn andβmn are time dependent functions to be determined, Jm is the Bessel’s function

of the first kind, λmn = εmn/(D/2) are the roots of ∂Jm(λmnr )/∂r = 0 at r = D/2, needed to

satisfy the boundary condition of the velocity at the vertical wall (Eq. 2.45b). Those roots are

reported in Annexe B. The free surface conditions Eq. 2.45d and Eq. 2.45e could be combined

in one equation by time differentiating once the dynamic boundary condition and by using

the kinematic boundary condition to obtain:

∂2Φ̃

∂t 2 + g
∂Φ̃

∂z
=−dsΩ

3r

2
sin(Ωt −θ). (2.47)

The natural frequencies of the flow are found supposing αmn = amn cosωmn t and βmn =
bmn sinωmn t and are obtained injecting Eq. 2.46 into Eq. 2.47 in the case of non forced motion

(Ω= 0):

ω2
mn = gλmn tanh(λmn H0) = 2gεmn

D
tanh

(
2εmn H0

D

)
. (2.48)

The natural modes of the free surface ξ are represented in Fig. 2.4, as seen from the top of the

container: black and white regions pulsate in the vertical direction (ez direction), while the

grey regions remains at z = 0 - they are the nodal lines or circles. Depending on the forcing,
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21.90 19.09 21.41 23.41 25.19 26.82 28.32 29.73 31.06 32.33 33.53

26.37 24.16 26.11 27.85 29.44 30.92 32.31 33.62 34.86 36.04 37.18

30.18 28.29 30.01 31.58 33.04 34.40 35.69 36.92 38.10 39.22 40.30

33.56 31.88 33.43 34.87 36.23 37.50 38.72 39.88 41.00 42.07 43.11

ωmn 

[1/s]

Figure 2.4 | Visualization of the natural modes of the free surface ξ. The natural frequencies
ωmn are also given as a way of example, for a container of a diameter D of 0.287m, and a liquid
filling H0 of 0.15m.

different modes are excited, e.g. vertical pulsation is likely to generate m=0 modes, while

lateral acceleration is expected to excite the m=1. In an iconic scene of the film Jurassic Park,

the appearance of concentric wavelets in a glass of water (mode m=0 or 1, n=6-7) is the first

sign of the approaching T-Rex.† An usual way to define a mode, employed throughout the

current work, is to identify it as (m, n).

The orbital shaking generates a displacement of the liquid toward the external wall of the

container, thus exciting the first non-axisymmetric mode, m=1. These modes , with n=1, 2, . . . ,

have also the lowest natural frequencies. Moreover, r ∈ [0;D/2] has to be expressed in terms of

Fourier-Bessel series (see Annexe B.1) as:

r =
∞∑

n=1
cn J1(λ1nr ) (2.49)

where cn = D

(ε2
1n −1)J1(ε1n)

†According to the interview to the film’s special effects supervisor, appearing in the extras of the DVD trilogy
(2011), the effect was achieved playing a guitar string to excite the wanted natural frequency of the glass.
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2.3. Sloshing dynamics

When introducing Eq. 2.46 and Eq. 2.49 into Eq. 2.47 we obtain:

∞∑
n=1

[
α̈1n(t )+ω2

1nα1n(t )+ dsΩ
3cn sinΩt

2

]
J1(λ1nr )cosθ

+
[
β̈1n(t )+ω2

1nβ1n(t )− dsΩ
3cn cosΩt

2

]
J1(λ1nr )sinθ = 0 (2.50)

where ω1n is defined according to Eq. 2.48. Each function α1n(t ) and β1n(t ) must satisfy the

linear set of differential equations. The steady state solutions of this are:

α1n(t ) =− dsΩ
3cn

2(ω2
1n −Ω2)

sinΩt (2.51a)

β1n(t ) =+ dsΩ
3cn

2(ω2
1n −Ω2)

cosΩt . (2.51b)

Introducing Eqs. 2.51a and 2.51b in Eq. 2.46 we obtain:

Φ̃(r,θ, z, t ) =−ds

2
Ω [sinΩt cosθ−cosΩt sinθ]

·
∞∑

n=1

[
D

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr /D)

J1(ε1n)

cosh(2ε1n(z +H0)/D)

cosh(2ε1n H0/D)

]
. (2.52)

The potential is the sum of the liquid motion potential and of the container motion potential

(Eq. 2.40), which is defined by Eq. 2.42. We have then:

Φ(r,θ, z, t ) =−ds

2
Ωsin(Ωt −θ)

·
{

r +
∞∑

n=1

[
D

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr /D)

J1(ε1n)

cosh(2ε1n(z +H0)/D)

cosh(2ε1n H0/D)

]}
(2.53)

The free surface elevation is obtained by using Eq. 2.45d:

ξ(r,θ, t ) = dsΩ
2

2g
cos(Ωt −θ) ·

{
r +

∞∑
n=1

[
D

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr /D)

J1(ε1n)

]}
. (2.54)

We observe that the free surface height increases radially as a combination of a linear and

of a Bessel’s function, while tangentially it has sine distribution. The evolution of the free

surface, for arbitrary experimental setup, is shown in Fig. 2.5, along with the evolution of the

liquid height at the most external location at the container wall ξ(D/2,0,2π/Ω) and of the

crest-to-through amplitude as a function of the shaking frequency. During orbital shaking the

depicted waves rotate around the ez axis, while maintaining a constant shape.

As the shaking frequency is increased toward a natural frequency ω1n the amplitude grows

dramatically, reaching infinite values at the natural frequencies, e.g. at ω11 it is a vertical plane,
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Chapter 2. Analytical approach

a clearly non-physical solution. It is also interesting to notice that whenΩ>ω1n the model

predicts a liquid distribution at the wall which is in opposition to the inertial forces - higher at

the internal than at the external wall.

0 20 40 60 80 100 120 140 160 180 200

Ω [rpm]

ξ [m]

0.4

0.2

0

- 0.2

- 0.4

Figure 2.5 | Examples of free surface shapes for D = 300mm, ds = 75mm, H0 = 150mm atΩ = 40,
70, 92, 130, 167 rpm. The solid line is the vertical displacement of a particle situated at the most
external point of the container ξ(D/2,0,2π/Ω), depicted on the free surface as a black dot. The
dashed line is the evolution of the crest-to-trough amplitude of the wave at the wall.

Considering the forces acting on the liquids, one may expect the free surface to be planar,

tilted with respect to the vertical direction by the balance between the inertial (Ω2ds) and the

gravitational (g ) acceleration. We notice that the linear result includes this intuitive solution,

but it also takes into account the existence of natural modes and it respects the boundary

condition at the walls. Figure 2.6 depicts the solution of the potential model ξ(r,θ) and the

wave created by the balance of accelerations in a vertical x − z plane, thus from a lateral point

of view. Hence, we observe that at low shaking frequency the free surface is indeed close to

a tilted plane, but with a different slope. Moreover, the free surface potential solution has a

greater slope at the bulk of the liquid (at some distance from the wall) than at the wall.
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2.3. Sloshing dynamics

−0.5 0 0.5
−0.04

−0.02

0

0.02

0.04

−0.5 0 0.5
−0.2

−0.1

0

0.1

0.2

−0.5 0 0.5
−1

−0.5

0

0.5

1

ξ (r , θ)

ξ (r = D/2, θ)ξ (r = D/2, θ)
ξ (r = D/2, θ)

ξ (r , θ)ξ (r , θ)

cos(θ)dsDΩ 2

4g

z [-]
D

x/D [-]

cos(θ)dsDΩ 2

4g

cos(θ)dsDΩ 2

4g

z [-]
D

x/D [-]

z [-]
D

x/D [-]

Figure 2.6 | Free surface elevation according to the potential model and according only to the
balance of forces. The elevation at the wall is shown as a solid line, while the liquid bulk is
depicted in grey.

The velocity fields of the liquid are found differentiating Eq. 2.52:

qr (r,θ, z, t ) = ∂Φ̃

∂r
=−dsΩ

2
sin(Ωt −θ)

·
∞∑

n=1

2ε1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J ′1(2ε1nr /D)

J1(ε1n)

cosh(2ε1n(z +H0)/D)

cosh(2ε1n H0/D)
, (2.55a)

qθ(r,θ, z, t ) = 1

r

∂Φ̃

∂θ
= dsΩ

2
cos(Ωt −θ)

·
∞∑

n=1

D

r (ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr /D)

J1(ε1n)

cosh(2ε1n(z +H0)/D)

cosh(2ε1n H0/D)
, (2.55b)

qz (r,θ, z, t ) = ∂Φ̃

∂z
=−dsΩ

2
sin(Ωt −θ)

·
∞∑

n=1

2ε1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr /D)

J1(ε1n)

sinh(2ε1n(z +H0)/D)

cosh(2ε1n H0/D)
. (2.55c)

The velocity fields are depicted in Fig.2.7 for four vertical and four horizontal planes in a

stationary wave (t is fixed). It has to be noted that the colours depict the off-plane velocity,

which is qθ ·sgn(r ) in vertical planes and qz in horizontal ones. We note that the magnitude of

the velocity is similar for the three components, and that the highest velocities are predicted

near the free surface. While in vertical planes the velocity field resembles the one observed in

bi-dimensional waves, in horizontal planes it is similar to the one generated by a potential

dipole. As the container is shaken, the velocity fields rotate around the revolution axis of the

container (ez ). Consequently, it is necessary to compute the trajectories followed by liquid

particles to better understand the motion of the liquid.

The Lagrangian trajectories of liquid parcels submitted to this velocity field are computed
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Chapter 2. Analytical approach

Figure 2.7 | Examples of velocity fields in the liquid for D = 300mm, ds = 75mm, H0 = 150mm,
Ω=70rpm. The velocity fields are displayed at four different vertical and four horizontal planes.
Each vertical plane displays also the position of a horizontal plane, and vice versa. Colours
indicate the off-plane velocity component.
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2.3. Sloshing dynamics

iteratively using Eqs. 2.25 in cylindrical coordinates:

r (t +d t ) = r (t )+qr
(
r (t ),θ(t ), z(t ), t

) ·d t

θ(t +d t ) = θ(t )+ 1

r (t )
qθ

(
r (t ),θ(t ), z(t ), t

) ·d t (2.56)

z(t +d t ) = z(t )+qz
(
r (t ),θ(t ), z(t ), t

) ·d t .

An example of trajectories followed during five revolutions by particles starting from θ0=0 at

several r0 and z0 is depicted in Fig. 2.8, for D=300mm, ds=50mm, H0=150mm andΩ=70rpm.

Since the motion of the particles is three-dimensional and sometimes difficult to understand

from a single point of view, the trajectories are depicted in a three-dimensional space (Fig. 2.8a)
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θ
 [ra

d
]
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0.5

r/D
-0.025

r0=0.07 m

π/80

-0.05

-0.075

-0.01
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r0=0.13 m

π/80 π/4

z0= -0.02 m
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Figure 2.8 | Trajectories followed by particles during five vessel revolutions, from potential
velocity fields, for D=300mm, ds =50mm, H0=150mm andΩ=70rpm. The initial positions of the
particles x0 are at the intersections of the dashed lines (r0=0.01, 0.04, 0.07, 0.1, 0.13m, θ0=0 and
z0=-0.02, –0.07, -0.12m). a: Three-dimensional trajectories from starting locations identical to
those given in b. The free surface shape is also depicted, and the final position of the particles is
depicted as a black dot b: projection of the trajectories in the r − z plane. c: projection of the
trajectories starting from z0=-0.02m in the r −θ plane. d: projections in the θ− z plane, of the
trajectories starting at r0=0.07, 0.1, 0.13.
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and as projections in different planes (Fig. 2.8b-d). We observe that the particles draw tilted

trochoidal trajectories, moving in the three dimensions as they drift in the direction of the wave

propagation. The motion is almost vertical at the wall, while it becomes increasingly horizontal

as we approach the axis of the container (Fig. 2.8b), thus increasing the amplitude of the radial

and tangential motions to the detriment of the vertical one (Fig. 2.8c-d). The dispersion of the

gas exchanged at the free surface is supposed to be due mainly to the transport of gas by the

liquid. These trajectories suggest that the gas exchanged at the free surface descends into the

liquid near the wall and is subsequently advected to the centre of the container.

Analogously to the bi-dimensional waves velocity fields (Eq. 2.24), the trajectories of the

particles display a significant drift in the direction of propagation of the wave. We quantify it

by computing the difference between Lagrangian and Eulerian velocities.

q̄L = 1

2

d 2
sΩ

4r0

[(
A2 +C 2)− D

r0
AB + D2

r 2
0

B 2

]
eθ, (2.57)
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Figure 2.9 | Stokes drift computed according to Eq. 2.57 for D=300mm, ds =75mm, H0=150mm
and Ω=40, 70, 92, 130, 167rpm. The shaking configurations are the same as the one used to
obtain the wave shapes in Fig. 2.5. The drift is displayed as a function of the starting position
r0 ∈ [0,D/2], z0 ∈ [0,−H0], and is given in logarithmic scale.
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where:

A =
∞∑

n=1

2ε1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J ′1(2ε1nr0/D)

J1(ε1n)

cosh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
,

B =
∞∑

n=1

1

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr0/D)

J1(ε1n)

cosh(2ε1n(z +H0)/D)

cosh(2ε1n H0/D)
,

C =
∞∑

n=1

2ε1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr0/D)

J1(ε1n)

sinh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
.

The steps leading to Eq.2.57 are given in Annexe C, and an example of drift encountered by

the particles, as a function of their starting position (r0, z0), is shown in logarithmic scale

in Fig. 2.9 for the same shaking configurations giving the free surface shapes in Fig. 2.5.

We observe that the drift decreases with the depth and with the radius, as already seen in

the trajectories followed by the particles, in Fig. 2.8. Moreover, we notice that the shaking

configuration displaying an overall greater drift is the one closer to the natural frequency

(92rpm, ω11=104rpm). At shaking frequencies above the first natural frequency, the influence

of the second mode is visible in the deformation of the velocity contours at r → D .

2.3.1 Dimensionless formulation

It is possible to rewrite Eq. 2.54 in a scale independent way by introducing the following

dimensionless quantities: r̃ = r /D, z̃ = z/D and ξ̃ = ξ/D. Moreover it is usual in waves

dynamics to identify the Froude number F r as root of the ratio between a characteristic

velocity and the gravitational wave celerity. In the present case, we define the F r 2 = dsΩ
2/g .

Accordingly, we define the following dimensionless operating parameters: d̃s = ds/D and

H̃0 = H0/D . The free surface height is hence defined as:

ξ̃(r̃ ,θ) = F r 2

2
cos(θ−Ωt ) ·

{
r̃ +

∞∑
n=1

[
1

(ε2
1n −1)

F r 2

(F r 2
1n −F r 2)

J1(2ε1n r̃ )

J1(ε1n)

]}
(2.59)

where F r1n is found according to Eq. 2.48:

F r 2
mn = 2εmn d̃s tanh(2εmn H̃0). (2.60)

We see therefore that d̃s , H̃0and F r are sufficient to determine unequivocally the shape of the

free surface. This result is used throughout the rest of this work to describe the behaviour of

the wave in a dimensionless way.

The components of the velocity fields are normalized by the tangential velocity of displacement
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of the shaker: q̃i = qi /(dsΩ) where i = r,θ, z. Hence, we have:

q̃r (r̃ ,θ, z̃) =−1

2
sin(θ−Ωt )

·
∞∑

n=1

2ε1n

(ε2
1n −1)

F r 2

(F r 2
1n −F r 2)

J ′1(2ε1n r̃ )

J1(ε1n)

cosh(2ε1n(z̃ + H̃0)

cosh(2ε1n H̃0)
, (2.61a)

q̃θ(r̃ ,θ, z̃) = 1

2r̃
cos(θ−Ωt )

·
∞∑

n=1

1

(ε2
1n −1)

F r 2

(F r 2
1n −F r 2)

J1(2ε1n r̃ )

J1(ε1n)

cosh(2ε1n(z̃ + H̃0))

cosh(2ε1n H̃0)
, (2.61b)

q̃z (r̃ ,θ, z̃) =−1

2
sin(θ−Ωt )

·
∞∑

n=1

2ε1n

(ε2
1n −1)

F r 2

(F r 2
1n −F r 2)

J1(2ε1n r̃ )

J1(ε1n)

sinh(2ε1n(z̃ + H̃0))

cosh(2ε1n H̃0)
. (2.61c)

2.3.2 Weakly non-linear solution

The results presented in the previous sections are valid for linear waves, i.e. as long as the

amplitude remains small compared to the wavelength. They are therefore not suitable to

describe the flow near the natural frequencies. Several higher order resolutions, inspired by

Stokes expansion method, exist in the case of linear excitation [33, 84], and may be found in

[50] Chap. 4. Those solutions allow a better estimation of the forces acting on the container

[4], as well as a closer agreement to the non-linear behaviour of the wave near the natural

frequencies [92]. Our experimental results suggest that in most cases the linear solution

provides sufficient precision and, knowing its limitations, it is often used throughout this

paper. There are, however, specific phenomena that the linear solution is unable to predict.

Therefore, we present here a solution of the potential model taking into account the non-

linearity of the free surface boundary conditions, based on the development of the cited

works.

The boundary conditions (Eqs. 2.43 and 2.44) are expressed in terms of a Taylor expansion
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around z = ξ= 0. We obtain:

1

2

[(
∂Φ̃

∂r

)2

+
(

1

r

∂Φ̃

∂θ

)2

+
(
∂Φ̃

∂z

)2
]
+ ∂Φ̃

∂t
− dsΩ

2r

2
cos(Ωt −θ)

+ξ
[

g + ∂Φ̃

∂r

∂

∂z

∂Φ̃

∂r
+ 1

r 2

∂Φ̃

∂θ

∂

∂z

∂Φ̃

∂θ
+ ∂Φ̃

∂z

∂2Φ̃

∂z2 + ∂

∂z

∂Φ̃

∂t

]

+ ξ2

2

[
∂Φ̃

∂r

∂2

∂z2

∂Φ̃

∂r
+

(
∂

∂z

∂Φ̃

∂r

)2

+ 1

r 2

∂Φ̃

∂θ

∂2

∂z2

∂Φ̃

∂θ
+ 1

r 2

(
∂

∂z

∂Φ̃

∂θ

)2

+ ∂Φ̃

∂z

∂3Φ̃

∂z3 +
(
∂2Φ̃

∂z2

)2

+ ∂2

∂z2

∂Φ̃

∂t

]
+O(ξ3) = 0 (2.62)

and

∂Φ̃

∂z
− ∂ξ

∂t
− ∂ξ

∂r

∂Φ̃

∂r
− 1

r 2

∂ξ

∂θ

∂Φ̃

∂θ
+ξ

[
∂2Φ̃

∂z2 − ∂ξ

∂r

∂

∂z

∂Φ̃

∂r
− 1

r 2

∂ξ

∂θ

∂

∂z

∂Φ̃

∂θ

]

+ ξ2

2

[
∂3Φ̃

∂z3 − ∂ξ

∂r

∂2

∂z2

∂Φ̃

∂r
− 1

r 2

∂ξ

∂θ

∂2

∂z2

∂Φ̃

∂θ

]
+O(ξ3) = 0. (2.63)

We have seen that the linear solutions for the velocity potential and free surface height are of

the following form:

Φ̃(r,θ, z, t ) =
∞∑

m=0

∞∑
n=1

[
αmn(t )cos(mθ)+βmn(t )sinmθ

]
Jm(λmnr )

cosh[λmn(z +H0)]

coshλmn H0

ξ(r,θ, t ) =
∞∑

m=0

∞∑
n=1

[amn(t )cosmθ+bmn(t )sinmθ] Jm(λmnr )

where αmn , βmn , amn and bmn are time dependent coefficients to be determined, Jm is the

Bessel’s function of the first kind, mth order and λmn is the normalized nth root of J ′m(r ). In

order to keep a finite number of terms in the solution, we consider only the waves at shaking

frequencies below the first natural frequency,Ω<ω11. We suppose the dominant mode to be

the (1,1) and the secondary ones to be the (0,1) and (1,2). Thus, the potential and free surface
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solutions are:

Φ̃(r,θ, z, t ) = [
α11(t )cosθ+β11(t )sinθ

]
J1(λ11r )

cosh[λ11(z +H0)]

coshλ11H0

+α01(t )J0(λ01r )
cosh[λ01(z +H0)]

coshλ01H0

+ [
α21(t )cos2θ+β21(t )sin2θ

]
J2(λ21r )

cosh[λ21(z +H0)]

coshλ21H0
(2.64)

ξ(r,θ, t ) = [
a11(t )cosθ+b11(t )sinθ

]
J1(λ11r )+a01(t )J0(λ01r )

+ [
a21(t )cos2θ+b12(t )sin2θ

]
J2(λ21r ) (2.65)

Injecting this solution in the boundary conditions and keeping only the order up to O(a2
11) =

O(a01) =O(a21) we obtain, expressing r in a Bessel-Fourier series as expressed in Eq. 2.49:

1

2

[
λ2

11

[
α2

11 cos2(θ)+2α11β11 cosθ sinθ+β2
11 sin2(θ)

]
J ′21 (λ11r )

+ 1

r 2

[
α2

11 sin2(θ)−2α11β11 cosθ sinθ+β2
11 cos2(θ)

]
J 2

1 (λ11r )

+λ2
11

[
α2

11 cos2(θ)+2α11β11 cosθ sinθ+β2
11 sin2(θ)

]
J 2

1 (λ11r ) tanh2(λ11H0)

]
+ [
α̇11 cosθ+ β̇11 sinθ

]
J1(λ11r )+ α̇01 J0(λ01r )

+ [
α̇21 cos2θ+ β̇21 sin2θ

]
J2(λ21r )− dsΩ

2c1 J1(λ11r )

2

[
cos(Ωt )cos(θ)+ sin(Ωt )sin(θ)]

+ g
[
a11 cosθ+b11 sinθ

]
J1(λ11r )+ g a01 J0(λ01r )

+ g
[
a21 cos2θ+b12 sin2θ

]
J2(λ21r )+λ11

[
α̇11a11 cos2θ+ α̇11b11 sinθcosθ

+ β̇11a11 sinθcosθ+ β̇11b11 sin2θ
]

J 2
1 (λ11r ) tanh(λ11H0) = 0 (2.66)
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or

1

4

[
λ2

11 J ′21 (λ11r )+ 1

r 2 J 2
1 (λ11r )+λ2

11 J 2
1 (λ11r ) tanh2(λ11H0)

](
α2

11 +β2
11

)
+ 1

4

[
λ2

11 J ′21 (λ11r )− 1

r 2 J 2
1 (λ11r )+λ2

11 J 2
1 (λ11r ) tanh2(λ11H0)

](
α2

11 −β2
11

)
cos2θ

+ 1

2

[
λ2

11 J ′21 (λ11r )− 1

r 2 J 2
1 (λ11r )+λ2

11 J 2
1 (λ11r ) tanh2(λ11H0)

]
α11β11 sin2θ

+ [
α̇11 cosθ+ β̇11 sinθ

]
J1(λ11r )+ α̇01 J0(λ01r )

+ [
α̇21 cos2θ+ β̇21 sin2θ

]
J2(λ21r )− dsΩ

2c1 J1(λ11r )

2

[
cos(Ωt )cos(θ)+ sin(Ωt )sin(θ)]

+ g
[
a11 cosθ+b11 sinθ

]
J1(λ11r )+ g a01 J0(λ01r )

+ g
[
a21 cos2θ+b12 sin2θ

]
J2(λ21r )+ λ11

2

(
α̇11a11 + β̇11b11

)
J 2

1 (λ11r ) tanh(λ11H0)

+ λ11

2

(
α̇11a11 − β̇11b11

)
cos2θJ 2

1 (λ11r ) tanh(λ11H0)

+ λ11

2

(
α̇11b11 + β̇11a11

)
sin2θJ 2

1 (λ11r ) tanh(λ11H0) = 0 (2.67)

and the kinematic boundary condition becomes:

λ11
(
α11 cosθ+β11 sinθ

)
J1(λ11r ) tanh(λ11H0)+λ01α01 J0(λ01r ) tanh(λ01H0)

+λ21
(
α21 cos2θ+β21 sin2θ

)
J2(λ21r ) tanh(λ21H0)− (

ȧ11 cosθ+ ḃ11 sinθ
)

J1(λ11r )

− ȧ01 J0(λ01r )− (
ȧ21 cos2θ+ ḃ21 sin2θ

)
J2(λ21r )

−λ2
11 J ′21 (λ11r )

(
α11a11 cos2θ+α11b11 cosθ sinθ+β11a11 cosθ sinθ+β11b11 sin2θ

)
− J 2

1 (λ11)

r 2

(
α11a11 sin2θ−α11b11 cosθ sinθ−β11a11 cosθ sinθ+β11b11 cos2θ

)
+λ2

11 J 2
1 (λ11r )

(
α11a11 cos2θ+α11b11 cosθ sinθ

+a11β11 cosθ sinθ+β11b11 sin2θ
)
= 0 (2.68)
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or

λ11
(
α11 cosθ+β11 sinθ

)
J1(λ11r ) tanh(λ11H0)+λ01α01 J0(λ01r ) tanh(λ01H0)

+λ21
(
α21 cos2θ+β21 sin2θ

)
J2(λ21r ) tanh(λ21H0)− (

ȧ11 cosθ+ ḃ11 sinθ
)

J1(λ11r )

− ȧ01 J0(λ01r )− (
ȧ21 cos2θ+ ḃ21 sin2θ

)
J2(λ21r )

− λ2
11 J ′21 (λ11r )

2

(
α11a11 +β11b11

)− λ2
11 J ′21 (λ11r )

2

(
α11b11 +β11a11

)
sin2θ

− λ2
11 J ′21 (λ11r )

2

(
α11a11 −β11b11

)
cos2θ− J 2

1 (λ11r )

2r 2

(
α11a11 +β11b11

)
+ J 2

1 (λ11r )

2r 2

(
α11b11 +β11a11

)
sin2θ+ J 2

1 (λ11r )

2r 2

(
α11a11 −β11b11

)
cos2θ

+ λ2
11 J 2

1 (λ11r )

2

(
α11a11 +β11b11

)+ λ2
11 J 2

1 (λ11r )

2

(
α11b11 +β11a11

)
sin2θ

+ λ2
11 J 2

1 (λ11r )

2

(
α11a11 −β11b11

)
cos2θ = 0. (2.69)

Each linear set of differential equations defined by the trigonometric functions has to be

solved independently. For the order cos(θ) or sin(θ) we have:

α̇11 + g a11 = dsΩ
2c1

2
cos(Ωt ) (2.70a)

λ11α11 tanh(λ11H0) = ȧ11 (2.70b)

β̇11 + g b11 = dsΩ
2c1

2
sin(Ωt ) (2.70c)

λ11β11 tanh(λ11H0) = ḃ11. (2.70d)

Injecting Eqs. 2.70b and 2.70d in the time derivation of respectively Eqs. 2.70a and 2.70c; and

using the definition of the natural frequencies ω11 given in Eq. 2.48, we obtain the equations

for a1n and b1n equivalent to the first term of the linear solution, in Eq. 2.50. The solutions

(given in Eqs. 2.51a and 2.51b) are:

α11(t ) =− dsΩ
3

2(ω2
11 −Ω2)

D

(ε2
11 −1)J (ε11)

sinΩt (2.71a)

β11(t ) =+ dsΩ
3

2(ω2
11 −Ω2)

D

(ε2
11 −1)J (ε11)

cosΩt (2.71b)

and the values of a11 and b11 are found injecting these solutions in the corresponding equa-
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tions of Eq. 2.70:

a11(t ) = λ11dsΩ
2D tanh(λ11H0)

2(ω2
11 −Ω2)(ε2

11 −1)J (ε11)
cosΩt = dsΩ

2c1

2g
cosΩt + dsΩ

4c1

2g (ω2
11 −Ω2)

cosΩt

(2.72a)

b11(t ) = λ11dsΩ
2D tanh(λ11H0)

2(ω2
11 −Ω2)(ε2

11 −1)J (ε11)
sinΩt = dsΩ

2c1

2g
sinΩt + dsΩ

4c1

2g (ω2
11 −Ω2)

sinΩt

(2.72b)

Those results lead to the linear solution for the potential Φ̃ and the free surface ξ given in

Eqs. 2.53 and 2.54, if all the n=1dots ∞ modes are considered. In the other orders, several

combinations of those time dependent coefficients appear and are given in Appendix D. The

equations of the order m=0 are:

1

4

[
λ2

11 J ′21 (λ11r )+ 1

r 2 J 2
1 (λ11r )+λ2

11 J 2
1 (λ11r ) tanh2(λ11H0)

](
α2

11 +β2
11

)
+ α̇01 J0(λ01r )+ g a01 J0(λ01r )

+ λ11

2

(
α̇11a11 + β̇11b11

)
J 2

1 (λ11r ) tanh(λ11H0) = 0 (2.73a)

λ01α01 J0(λ01r ) tanh(λ01H0) = ȧ01 J0(λ01r ). (2.73b)

Using the relations between α11, β11, a11 and b11 given in Appendix D, we rewrite the previous

equations as:

α̇01 J0(λ01r )+ g a01 J0(λ01r ) =

− 1

4

[
λ2

11 J ′21 (λ11r )+ 1

r 2 J 2
1 (λ11r )− ω4

11

g 2 J 2
1 (λ11r )

](
α2

11 +β2
11

)
(2.74a)

ω2
01

g
α01 = ȧ01. (2.74b)

The right hand terms in Eq. 2.74a are expanded in a Fourier-Bessel series of J0, where only the
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first term is retained, all the others being considerably smaller:

α̇01 J0(λ01r )+ g a01 J0(λ01r ) = c01 J0(λ01r ) (2.75a)

where c01 =
∫ D/2

0 r F J0(λ01r )dr∫ D/2
0 J0(λ01r )J0(λ01r )dr

(2.75b)

F =−1

4

[
λ2

11 J ′21 (λ11r )+ 1

r 2 J 2
1 (λ11r )− ω4

11

g 2 J 2
1 (λ11r )

](
α2

11 +β2
11

)
(2.75c)

ω2
01

g
α01 = ȧ01 (2.75d)

the c01 coefficient is determined by applying the definition of the Dini series (Annexe B.1):

c01 =−
(
α2

11 +β2
11

)
2D2

∫ D/2

0
r

[
λ2

11 J ′21 (λ11r )+ 1

r 2 J 2
1 (λ11r )− ω4

11

g 2 J 2
1 (λ11r )

]
dr . (2.76)

All the terms are expressed in dimensionless form (r̃ = r /D) in order to obtain a scale indepen-

dent numerical evaluation of the integrals of the Bessel’s functions.

c01 =−
(
α2

11 +β2
11

)
2D2

[
4ε2

11

∫ 1/2

0
r̃ J ′21 (2ε11r̃ )dr̃

+
∫ 1/2

0

1

r̃
J 2

1 (2ε11r̃ )dr̃ − ω4
11D2

g 2

∫ 1/2

0
r̃ J 2

1 (2ε11r̃ )dr̃

]
(2.77)

After numerical evaluation of the integrals to the 15th decimal, we have

c01 =−
(
α2

11 +β2
11

)
2D2

[
0.404580526766959−0.029836701676641 · ω

4
11D2

g 2

]
(2.78)

thus the following solutions are found:

α01 = 0, (2.79a)

a01 = c01

g
=− d 2

sΩ
6c2

1

8g D2(ω2
11Ω

2)2

[
0.41−0.03

ω2
11D2

g 2

]
. (2.79b)
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The equations for the order of cos2θ in Eqs. 2.67 and 2.69 are:

1

4

[
λ2

11 J ′21 (λ11r )− 1

r 2 J 2
1 (λ11r )+λ2

11 J 2
1 (λ11r ) tanh2(λ11H0)

](
α2

11 −β2
11

)
cos2θ

+ α̇21 cos2θJ2(λ21r )+ g a21 cos2θJ2(λ21r )

+ λ11

2

(
α̇11a11 − β̇11b11

)
cos2θJ 2

1 (λ11r ) tanh(λ11H0) = 0 (2.80)

λ21α21 cos2θJ2(λ21r ) tanh(λ21H0)− ȧ21 cos2θJ2(λ21r )

− λ2
11 J ′21 (λ11r )

2

(
α11a11 −β11b11

)
cos2θ+ J 2

1 (λ11r )

2r 2

(
α11a11 −β11b11

)
cos2θ

+ λ2
11 J 2

1 (λ11r )

2

(
α11a11 −β11b11

)
cos2θ = 0. (2.81)

This equation is rewritten taking into account the relations between the time dependent

coefficients of the dominant mode (1,1) (Appendix D):

α̇21 J2(λ21r )+ g a21 J2(λ21r ) =

− 1

4

[
λ2

11 J ′21 (λ11r )− 1

r 2 J 2
1 (λ11r )+3

ω4
11

g 2 J 2
1 (λ11r )

](
α2

11 −β2
11

)
(2.82)

ω2
21

g
α21 J2(λ21r )− ȧ21 J2(λ21r ) =

1

2

[
λ2

11 J ′21 (λ11r )− J 2
1 (λ11r )

r 2 −λ2
11 J 2

1 (λ11r )

](
α11a11 −β11b11

)
. (2.83)

The left hand side term of both equations is expressed in Fourier-Bessel series of J2 and, again,

only the first term of the series is retained:

α̇21 J2(λ21r )+ g a21 J2(λ21r ) = c21 J2(λ21r ) (2.84)

ω2
21

g
α21 J2(λ21r )− ȧ21 J2(λ21r ) = d21 J2(λ21r ) (2.85)

and the coefficients are determined according to the definition given in Appendix B.1 and with
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the usual normalization of the radius r̃ = r /D :

c21 =− 2ε2
21

(
α2

11 −β2
11

)
D2(ε2

21 −4)J 2
2 (ε21)

·
[

4ε2
11

∫ 1/2

0
r̃ J2(2ε21r̃ ) J ′21 (2ε11r̃ )dr̃

−
∫ 1/2

0
J2(2ε21r̃ )

J 2
1 (2ε11r̃ )

r̃
d r̃ +3

ω4
11D2

g 2

∫ 1/2

0
r̃ J2(2ε21r̃ ) J 2

1 (2ε11r̃ )dr̃

]
(2.86)

d21 =
4ε2

21

(
α11a11 −β11b11

)
D2(ε2

21 −4)J 2
2 (ε21)

·
[

4ε2
11

∫ 1/2

0
r̃ J2(2ε21r̃ ) J ′21 (2ε11r̃ )dr̃

−
∫ 1/2

0
J2(2ε21r̃ )

J 2
1 (2ε11r̃ )

r̃
d r̃ −4ε2

11

∫ 1/2

0
r̃ J2(2ε21r̃ ) J 2

1 (2ε11r̃ )dr̃

]
. (2.87)

The numerical solution is:

c21 =
(
α2

11 −β2
11

)
D2 ·

[
0.894001759862218−0.526203772391958

ω4
11D2

g 2

]
(2.88)

d21 =−6.544826289756327

(
α11a11 −β11b11

)
D2 . (2.89)

Consequently, the differential equations become (keeping only the first two decimals of the

numerical component, to shorten the notation):

α̇21 + g a21 =
(
α2

11 −β2
11

)
D2

[
0.89−0.53

ω4
11D2

g 2

]
(2.90)

ω2
21

g
α21 +6.55

(
α11a11 −β11b11

)
D2 = ȧ21 (2.91)

Time differentiating once the first equation, and inserting the second one in the first we obtain:

α̈21 +ω2
21α21 =−

(
α11a11 −β11b11

)
D2

[
6.55g +1.79

gΩ2

ω2
11

−1.05
ω2

11Ω
2D2

g

]
(2.92)

thus the solutions are:

α21 =
d 2

sΩ
5c2

1ω
2
11

(ω2
11 −Ω2)2D2(ω2

21 −4Ω2)

[
1.64+0.45

Ω2

ω2
11

−0.26
ω2

11Ω
2D2

g 2

]
sin2Ωt (2.93)
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and

ȧ21 =
d 2

sΩ
5c2

1ω
2
11ω

2
21 sin2Ωt

g D2(ω2
11 −Ω2)2(ω2

21 −4Ω2)

[
1.64+0.45

Ω2

ω2
11

−0.26
ω2

11Ω
2D2

g 2 −1.64
(ω2

21 −4Ω2)

ω2
21

]

a21 =
−d 2

sΩ
4c2

1ω
2
11ω

2
21 cos2Ωt

2g D2(ω2
11 −Ω2)2(ω2

21 −4Ω2)

·
[

1.64+0.45
Ω2

ω2
11

−0.26
ω2

11Ω
2D2

g 2 −1.64
(ω2

21 −4Ω2)

ω2
21

]
(2.94)

where the numerical values to the 15th digit are in order of appearance: 1.636206572439082,

0.447000879931109, -0.263101886195979 and -1.636206572439082.

The order of sin2θ are:

β̇21 sin2θJ2(λ21r )+ g b12 J2(λ21r ) =

− 1

2

[
λ2

11 J ′21 (λ11r )− 1

r 2 J 2
1 (λ11r )+3

ω4
11

g 2 J 2
1 (λ11r )

]
α11β11 (2.95)

ω2
21

g
β21 J2(λ21r )− ḃ21 J2(λ21r ) =

[
λ2

11 J ′21 (λ11r )

2
− J 2

1 (λ11r )

2r 2 − λ2
11 J 2

1 (λ11r )

2

](
α11b11 +β11a11

)
. (2.96)

The expansion is done equivalently to the one for the term in cos2θ and the coefficients of the

Fourier-Bessel series are:

β̇21 J2(λ21r )+ g b21 J2(λ21r ) = e21 J2(λ21r ) (2.97)

ω2
21

g
β21 J2(λ21r )− ḃ21 J2(λ21r ) = f21 J2(λ21r ) (2.98)

e21 = α11β11

D2 ·
[

1.788003519724436−1.052407544783917
ω4

11D2

g 2

]
(2.99)

f21 =−6.544826289756327

(
α11b11 +β11a11

)
D2 . (2.100)
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The found solutions are as follows:

β21 =− d 2
sΩ

5c2
1ω

2
11

(ω2
11 −Ω2)2D2(ω2

21 −4Ω2)

[
1.64+0.45

Ω2

ω2
11

−0.26
ω2

11Ω
2D2

g 2

]
cos2Ωt (2.101)

b21 =
d 2

sΩ
4c2

1ω
2
11ω

2
21 sin2Ωt

2g D2(ω2
11 −Ω2)2(ω2

21 −4Ω2)

·
[

1.64+0.45
Ω2

ω2
11

−0.26
ω2

11Ω
2D2

g 2 −1.64
(ω2

21 −4Ω2)

ω2
21

]
. (2.102)

Summarizing the previous results, the order (order O(a2
11) free surface solution, of the weakly

non-linear expansion of the free surface boundary condition is given by:

ξ(r,θ, t ) = A11 cos(Ωt −θ)J1(λ11r )+ A01 J0(λ01r )+ A21 cos(2(Ωt −θ))J2(λ21r ) (2.103)

where the amplitudes are calculated as:

A11 =
dsDΩ2ω2

11

2g (ω2
11 −Ω2)(ε2

11 −1)J (ε11)
(2.104a)

A01 =− d 2
sΩ

6

8g (ω2
11Ω

2)2(ε2
11 −1)J (ε11)2

[
n01,1 −n01,2

ω2
11D2

g 2

]
(2.104b)

A21 =− d 2
sΩ

4ω2
11ω

2
21

2g (ω2
11 −Ω2)2(ω2

21 −4Ω2)(ε2
11 −1)J (ε11)2

·
[

n21,1 +n21,2
Ω2

ω2
11

−n21,3
ω2

11Ω
2D2

g 2 −n21,1
(ω2

21 −4Ω2)

ω2
21

]
. (2.104c)

and the numerical values n have the following value:

n01,1 = 0.404580526766959

n01,2 = 0.029836701676641

n21,1 = 1.636206572439082 (2.105)

n21,2 = 0.447000879931109

n21,3 = 0.263101886195979

We observe that, since the linear solution presented in Eq.2.54 is a series on all m=1, n =
1,2, . . .∞, the expansion of the radius r is equivalent to r . On the other hand, Eq. 2.103 is not a

series on all n, thus the radius is replaced by the first term of its expansion in a Fourier-Bessel

series: c1 = D/(ε2 −1).
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Figure 2.10 | Examples of elevation of the free surface according to the linear (a and d) and
non-linear solution (c and f) atΩ/ω11 = 0.85815 (for a, b, and c) andΩ/ω11 = 0.63885 (for figures
d, e, and f). Figures b and e depict the amplitude at the wall of the container, where the dashed
line is the linear solution, according to Eq. 2.54, while the solid line is the weakly non-linear
solution according to Eq. 2.103.

Figure 2.10 compares the free surface height obtained according to the linear and the non-

linear solution, in situations where a difference between the two is expected. We notice that,

close to the first natural frequency ω11 (Fig. 2.10a-c), the second order terms of Eq. 2.103

increase the slope of the wave, in a behaviour similar to the one observed in breaking grav-

itational waves, where the non-linear terms increase the slope until the wave breaks. Fur-

thermore, in the time coefficients of the second order, a21 and b21, we observe a resonance

behaviour of this mode to the sub-harmonic of the natural frequency ω21: as the shaking fre-

quencyΩ approaches ω21/2 the amplitude increases. This situation is depicted in Fig. 2.10d-f,

where we clearly observe the appearance of a dominant term in cos(2(Ωt −θ)), which is not

predicted by the linear solution.

2.4 Considerations

The potential approach has already proved its validity by correctly predicting several phenom-

ena , both in waves and sloshing dynamics. It is however based on a very strong hypothesis:

the absence of viscosity in the flow. The model is therefore unable to predict the viscous

damping, which will necessarily appear to bound the amplitude of the waves to finite values.
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Chapter 2. Analytical approach

The viscosity acts creating boundary layer at all solid walls of the container: regions where the

dissipation takes place. Depending on the ratio between the boundary layer thickness and the

container size, the influence of the viscous boundary layer becomes non negligible. Our study,

not taking into account the viscosity, is therefore implicitly limited to large scale containers. A

summary of the influence of the viscosity in sloshing flows may be found in [50], Chapter 3,

while a thorough discussion of our observation is given in Sec. 5.1.3.
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3 Experimental setup

The study of liquid sloshing within an orbital shaken container requires several specifically

designed equipments. This chapter describes the tools and methods used to obtain suitable

shaking configurations, to measure the elevation of the free surface and the velocity fields,

and to estimate the mixing efficiency.

3.1 The orbital shaker

To obtain a smooth and steady orbital motion, with minimum shocks and jerks, we made use

of a Kuhner Es-X shaker, which is commonly employed in bioengineering for cell cultivations.

The rotatory motion of an electrical motor is transmitted to the shaken table (420 x 420mm,

25kg of maximum load) through a ball bearings pivot, whose eccentricity from the motor axis

determines the shaking diameter (Fig. 3.1). Partial disassembly of the shaker is necessary to

adjust the shaking diameter to one of the three allowed values (12.5, 25 and 50mm). Four

metallic elastic strips maintain the table to a fixed orientation during operation. The shaking

velocity may be varied between 20 and 500 revolutions per minute (for ds=12.5mm) with an

accuracy of 0.1 rpm.

The original shaker was modified to allow a continuous adjustment of the eccentricity during

operation. The pivot was substituted with a linear rail mounted on the rotor, actioned by a

stepper motor and controlled by a linear potentiometer. The rotary connection to the shaken

table is mounted on the carriage of the linear rail (Fig. 3.2a), and its rotation is ensured by a

couple of ball bearings. Since the whole system rotates with the motor, the power supply and

the control signals are transmitted through a slip ring located in the pivot. Several components

of the shaker had to be adapted to the new system, e.g. the strips structure maintaining the

table orientation was expanded and elevated (the distance between the motor and the table

with the moving pivot system is 90mm, whereas with the original pivot was 48mm).

With this improvement, the shaking diameter could be set at values between 0.1 and 60mm,

with a precision of ± 0.05mm, greatly increasing the number of attainable configurations.
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Table

Rotor of the 
electrical motor

Shaking trajectory

Strips imposing 
the table orientation

Pivot

a b

Figure 3.1 | a: schematic functioning of the Kuhner ES-X Shaker. b: drawing of the shaker,
without the shaking table and the protecting coverage. Note that the structure with the blades,
maintaining the orientation of of the shaken table, is connected to the latter through the two
screw support marked by black arrows.

Although further increase of the range of operation would have been technically feasible,

the maximum diameter and speed have been limited (to 60mm and 200rpm respectively)

to reduce structural failure risks and parasitic vibrations. During the modification process

several electro-mechanical and magnetic switches were added to provide trigger signals for the

acquisition of data or images. The shaken table was modified in order to host the equipment

used to measure the free surface height and the velocity fields.

Motor

Linear 

Potentiometer

Rail

Rotating part 

of the pivot

Moving carriage

Passage for electrical cables
a b

Figure 3.2 | a: Drawing of the linear rail with its different components. The slip ring is inside the
pivot, hence not visible. b: Positioning of the shaking diameter control system (dark gray) in the
shaker. Note also the differences between the current strips structures and the one in Fig. 3.1b.
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3.2. Free surface visualization and measurement

3.2 Free surface visualization and measurement

The most visible effect of the orbital shaking on a liquid is the deformation of its free surface,

creating a wave-like motion. Moreover, according to the potential model, a free surface shape

uniquely defines a velocity field in the liquid. It is thus necessary to achieve a measurement

of the free surface motion. Several existing optical methods use the diffraction of light to

reconstruct the free surface of a transparent medium [53, 120, 118]. Their application to the

case of orbital shaker (described in Appendix A) is nevertheless hampered by the presence of

bubbles and very short but steep surface wavelets, which increase the number of reflections

and diffractions of the light behind any reconstruction possibility [62]. The measurement

of the free surface elevation is therefore performed only at the container wall, where higher

precision could be achieved.

3.2.1 Wall liquid elevation measurement

The motion of the free surface is filmed with a high speed camera (Photron SA 1.1), while

the contrast of the liquid is increased by the addition of a small amount of white dye. The

external wall of the container is enveloped in a cover leaving only a vertical slit while the liquid

is illuminated at the wall by a narrow beam spotlight. From each frame a column of pixels,

optically centred on the vertical slit, is extracted. Setting side by side those columns of pixels

leads to a reconstruction of the motion of the free surface at a single location of the container

wall (Fig. 3.3). The columns width (in pixels) is adapted as a function both of the shaking

frequency and of the number of frames per seconds in order to obtain images with a constant

number of pixels per revolution.

Moreover, by using an appropriate processing of the images, it is possible to measure the

elevation of the free surface. Light intensity and contrast are analysed in order to identify the

Figure 3.3 | Procedure used to retrieve a single image from a movie of the wave obtained with a
fixed camera. From the images it is also possible to recover the free surface elevation δ(α,θ).
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Chapter 3. Experimental setup

interface of the liquid at the wall. It has to be noted that in Fig. 3.3 the whole free surface

is illuminated (it is thus possible to see the wave on the farthermost side of the wall), while

the employ of a narrower beam of light illuminating only the front wall results in easier

processing of the images. Moreover, the number of frames captured by the camera per second

(fps) is adapted to the shaking frequency in order to guarantee a maximum angular distance

between two consecutive frames of 1.5◦ on the shaking trajectory. Since the camera allows

only predefined values (in our range of operations: 125, 250, 500 and 1000 fps), the actual

angle between two successive measurements varies between 0.68◦ and 1.35◦.

We note that, if the free surface is a rigid shape rotating around the revolution axis of the

container at the shaking frequency, the image reconstructed from the frames of the movie is

equivalent to an image obtained instantaneously at the whole circumference of the container.

We may therefore consider the images obtained with the procedure described above as recon-

structed snapshots of the wave. Similarly, the measurement of the free surface elevation is

assimilated to the measurement of the entire wave at the wall at a specific moment. Hence

measurements taken at the same angular position may be phase averaged: the container

circular trajectory is divided into 90 angular sectors, also called bins, of 4◦ each, and the

average is computed of all the measurements in each bin. Obviously this procedure given

deceitful results if the wave is changing in shape while rotating.

Because of the motion of the shaker, the distance and angle of viewing are constantly changing

Camera sensor 

plane
Focal point

L(θ)

F

H+

H-
H

γ

Target  

γ
F

β−

β+

θ

H+’

H-’

H’

L(θ)

Hs
+

Hs
-

Hs

ds /2

Camera sensor plane

a

b

Figure 3.4 | Relations between the height of a target H and the dimension of its projection on
the camera sensor Hs when the direction of observation of the camera has an angle of γ with
the direction perpendicular to the target.
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during operation both in vertical and horizontal direction. Figure 3.4 depicts the configuration

of an object and its reproduction on the sensor of the camera. Neglecting the non-linear

deformations that could be introduced by the objective, it is possible to geometrically relate

the dimension of the target to the dimension of its image on the sensor plane as:

Hs = F

cosγ

[
tan

(
γ−arctan

(
sinγ− H−

L(θ)

))
+ tan

(
arctan

(
sinγ+ H+

L(θ)

)
−γ

)]
(3.1)

if the target is located at a distance L(θ) from the focal point of the optics, is not centred on the

direction of observation (H+ is not necessary equivalent to H−) and the sensor plane is located

at a distance F from the focal point (note that F is not the focal distance of the objective), as

shown in Fig. 3.4. For vanishing angles of visualization γ, we have:

Hs ≈
F

(
H−+H+)

L
= F H

L
. (3.2)

In a typical setup we have a distance L of 1m, a target of 150mm (camera centred on the target:

H+ = H− = 75mm), a vertical displacement of the camera compared to the centre of the target

of 100mm (thus giving γ ∼= 0.1511 radians) and a length F of 60mm. In this case, by using

Eq. 3.1 we obtain Hs
∼= 8.9561mm, while approximating for γ=0 we obatin H ′ = 9mm. Thus the

error introduced assuming γ =0 is less than 0.5%.

The distance L is related to the experimental setup according to L = L0−ds ·cos(θ(t )), where L0

is the distance from the focal point to the axis of the motor of the orbital shaker. The relation

between the elevation measured in pixels on the image H p
s and the physical dimension H is:

H = H p
s ·pp · L0 −dscos(θ)

F
(3.3)

where pp is the pixel pitch. Since the exact values of L0 and F are difficult to measure with

sufficient precision, they are determined by calibration on a target (rectangle of known H),

followed during one revolution at two different shaking diameters ds , and fitting Eq. 3.3 (in

least mean squares sense) to retrieve the values of F and L0. The results are used to convert all

measurements as long as the position of the camera with respect to the shaker is unchanged.

On the other hand, a new calibration is performed before each new set of measurements. As a

way of example, the resolution obtained during the measurement of a 287mm container is 3

to 4 pixels per millimetre.

43



Chapter 3. Experimental setup

3.2.2 Automated measurements

To allow autonomous measurements of a large amount of shaking configurations in an efficient

way, we have developed a fully automated procedure in Matlab environment, controlling the

agitation rateΩ through a CAN-BUS network, the high speed camera through Gigabit Ethernet

connection and the shaking diameter ds through USB connection as depicted in Fig. 3.5a.

Photron SA 1.1

High Speed Camera Shaker Motor

Linear stepper 

motor

USB

USB-CAN 

Module

Shaker 

Controller

E
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t 
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-B

U
S

Shaking 

Diameter 

Controller

USB

LED Spotlight

set i th ds

set i th Ω

download, process
and save (i-1)th film

capture of
the i th film

set 1st ds set 1st  Ω
capture of 
the 1 st film

i = i +1

download, process
and save last frames

set i th fps

set 1st fps

transitory 
wave motion

a b

Figure 3.5 | a: communication principle of the control of the rotation speed, the shaking
diameter and the high speed camera. b: Schematic flow chart of the measurement routine.

When an operating parameter is changed, the motion of the wave experiences a transitory

behaviour until the new steady motion is established. The transient usually vanishes after

60 to 90 seconds, depending on the start and target conditions. The routine controlling the

acquisition uses this transitory time to download and process the images of the previous

operating parameters, giving the procedure depicted in Fig. 3.5b. Initially, the first operating

parameters (ds , Ω) and the appropriate number of frames per seconds (fps) of the camera

are set, then the movie is acquired. After the second set of operating parameters is set, the

frames of the first movie are downloaded and processed, while the flow goes through the

transitory motion. The image and the measurement of the free surface displacement δ(θ, t )

obtained from the processing of the frame are saved. This operation necessitates typically

between 90 and 150 seconds, allowing the motion to reach the steady state. Since most of the

phenomena observed have a period equivalent to the shaking period, the measurements are

phase averaged. Every wave was typically recorded during 3 to 4 revolutions, thus each bin

opf the phase average contains between 10 and 20 measurements.
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3.2. Free surface visualization and measurement

3.2.3 Free surface measurements operating conditions

Thanks to the automated procedure, the free surface has been measured on a total of 6’612

shaking configurations, which is equivalent (considering a realistic average time of two min-

utes for measurement) to nearly 9 days and 4 hours of round-the-clock operation. Besides the

container diameter D , the filling level H0, the shaking diameter ds and the shaking frequency

Ω, we have also varied the viscosity of the liquid, using different glycerol dilutions. The tested

configurations are depicted in Fig. 3.6, with a separate graph for every value of viscosity, vessel

diameter and liquid height at rest. Each dot represents a set of operating parameters. The

viscosity is given as a ratio to the water viscosity µw . The ranges of the tested configurations

are given in Table 3.1.

µ/µw D [mm] H0 [mm] ds [mm] Ω [rpm] Measurements

1 74 37 2.96 - 44.4 22 - 200 504

1 144 45 5.76 - 57.6 22 - 200 465

1 144 60 5.76 - 57.6 20 - 200 873

1 144 75 2.88 - 57.6 20 - 200 1818

1 144 100 2.88 - 57.6 20 - 200 582

1 287 150 2.87 - 57.4 20 - 200 1586

1 750 355 50 30 - 59 6

2.5 144 75 2.88 - 43.2 21 - 200 293

6 144 75 2.88 - 57.6 20 - 200 485

Table 3.1 | Range of operating conditions whose free surface displacement δ(θ, t) has been
measured. The viscosity of the liquid is given as a ratio to the viscosity of the water µw . The
measurements with D=750mm have been performed with a Kuhner SB200-X(OrbShake) with
fixed ds .
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Figure 3.6 | List of shaking configurations whose wave displacement at the wall δ(θ, t ) has been
measured. The viscosity of the liquid is given as a ratio to the viscosity of the water µw .
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3.2.4 Instantaneous visualization of the free surface height at the entire wall

The method previously presented provides high reliability measurements and images in case of

free surface shapes that are stationary in a frame of reference rotating at the shaking frequency

Ω. In fact, most of the observed waves do respect this hypothesis. We have nevertheless

identified cases of waves continuously changing in shape as they rotate. A different setup,

allowing the simultaneous visualization of the entire wall is thus required. As depicted in

Fig. 3.7, four mirrors are placed around the container, reflecting the image of the free surface

shape to a camera placed on top.

High speed

camera

Light

Mirrors

Shaken table

Mirrors

a b

Figure 3.7 | a: positioning of the camera and mirrors for the capture of images of waves whose
shape is changing while rotating. b: example of reconstruction of the wave from the image
captured by the camera above the vessel.

The images reflected by the mirrors are extracted from the camera image, de-warped (to

account for the circular shape of the container), rotated and assembled to create a single

unfolded view of the wave (Fig. 3.7b). The use of four mirrors guarantees the overlapping of

some observations regions, thus simplifying the reconstruction of a single image from the four

mirror reflections.

Due to limitations of the images resolution and to the deformations introduced by the use

of mirrors, high precision measurements could not be achieved. Furthermore, the use of

illumination on the whole surface increases the difficulty of correct capture of the interface

at the wall. Hence, this method is used only to visualize the waves, without measuring their

elevation.

47



Chapter 3. Experimental setup

3.3 Velocity fields measurements

The velocity field of the liquid within the vessel was measured using both Laser Doppler

Velocimetry (LDV) and Particle Image Velocimetry (PIV). Those methods were chosen for their

precision, non-intrusivity and flexibility. Both measurement techniques are described in the

following sections.

3.3.1 Laser Doppler Velocimetry

The LDV is based on the analysis of the light scattered by seeding particles, which are supposed

to follow the motion of the fluid without perturbing it [7]. The crossing of two converging

polarized laser beams creates a region (called measurement volume) where a series of super-

posed high and low light intensity planes (fringes) appears. Knowing the distance between the

fringes, which is imposed by the laser wavelength, the velocity of a particle crossing the mea-

surement volume is measured by the analysis of the intensity of the scattered light (Fig. 3.8a).

The velocity component in the direction perpendicular to the fringes is thus measured. The use

of couples of laser beams with different wavelengths converging from different planes at the

same location allows the simultaneous measurement of more than one velocity component.

Time

Backscattered light intensity

Particle
V=

∆s
∆t

∆t

∆s

V

Measurement volume Shaken table

LDV probe

Laser beams

a b

Figure 3.8 | a: principle of measurement of the LDV: at the crossing of the two laser beams the
measurement volume, with fringes of high and low light intensity, is created. The analysis of the
light scattered by the particles crossing this region allows retrieving the velocity of the particle
perpendicular to the fringes. b: schematic illustration of the positioning of the LDV probe on
the shaken table.

A two components Dantec LDV probe was used, with a 250mm focal length lens, giving a

control volume of nearly 1.3 x 0.07 x 0.07mm in water. We used 10 µm hollow glass spheres,

with a density of 1100kg/m3, as seeding particles. The probe was mounted on the shaking

table, and moved with the vessel (Fig. 3.8b). The radial component was measured from the

bottom of the container, using a mirror to redirect the laser beams, while the axial and tan-

gential component were measured with the probe fixed laterally, as depicted in Fig. 3.8b. The

measurement location was determined by adjusting the position of the probe with respect to

the container. The four laser beams (two for each component) are disposed on two perpendic-

ular planes, in order to measure perpendicular components of the velocity. However, crossing
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3.3. Velocity fields measurements

the container curved walls, each couple of laser beams is diffracted with different angles,

thus converging at different locations. Simultaneous measurements of two components are

therefore impossible. Only one couple of beams was used, taking into account the diffraction,

to measure independently each component of the velocity at a single location.

The sampling provided by LDV measurements is irregular, and depends on the number of

particles crossing the measurement volume. For this reason the measurements were phase

averaged. The typical angular sector width is 4◦, giving averaged measurements on 90 phases

of the trajectory. This average is representative of the velocity field only if the latter is stationary

in a reference frame rotating at the shaking frequency (see more details in Sec. 4.1.1).

3.3.2 Particle Image Velocimetry

PIV is another optical, non intrusive measurement technique that allows instantaneous recon-

struction of the velocity field in a planar region illuminated by a laser light [5].

Cylindrical lens

Camera

Measurement 

region

Mirror Shaking Table

Laser beam

Cylindrical lens

Left Camera

Measurement 

region

Mirror

Shaking Table

Laser beam

Right Camera

a b

Figure 3.9 | Setup used for the measurement of the velocity fields with Particle Image Velocime-
try. a: three components of the velocity are measured on a bidimensional plane (2D3C-PIV). b:
two components of the velocity (2D2C-PIV).

Two images are captured in succession using a double pulsed laser sheet to illuminate the

particles in the flow. The images are then divided into a large number of small portions, called

interrogations areas. The displacements of the particles in each area is computed by cross-

correlation on the other image. Knowing the time between the two images, the displacement

of each interrogation area, and the relation between pixels and millimetres it is possible to

calculate the velocity of the flow at each interrogation window. When this method is used

in several small interrogation windows, the local velocities are measured in the whole field

of view of the cameras. Thus, we obtain two dimensional measurements (the measurement

region is a plane) of two component of the velocity (horizontal and vertical): 2D2C-PIV. On

the other hand, by using two cameras synchronized to take the pictures at the same moment

from different locations it is possible to reconstruct by stereoscopy the three components of
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the velocity [8, 88]. We refer to this measurements as 2D3C-PIV.

In the present study we used a couple of Dantec FlowSense EO 4M cameras (resolution 2048 X

2048 pixels, 8 to 12 bits intensity depth) and a Litron Dual Power 200-15 laser (pulse power

2x200 mJ, wavelength 532 nm). In both 2D2C and 2D3C measurements the cameras are

mounted on the shaken table, while the laser and the cylindrical lens used to obtain the sheet

of light remain outside it (Fig. 3.9). In 2D3C setup the cameras use Scheimpflug mounts (not

depicted in Fig. 3.9a) to tilt the focal plane and adjust it to be coincident to the laser plane.

The laser sheet is wide enough to ensure the illumination despite the motion of the vessel and

mirror. Since stereo PIV measurements are largely dependent on the quality of the images, it

is preferred to avoid optical deformations due to the refraction while capturing the images

through a non-planar wall. For this reason, a vessel with square external walls and cylindrical

internal wall has been designed and realized. The proximity of the refractive indexes n of

Poly(methyl methacrylate) used for the vessel and of water (n=1.4914 [87] and n=1.33 [43]

respectively) ensures minimal distortion as the light scattered by the particles reaches the

cameras. In order to convert the pixels of the images into physical dimensions a calibration of

the measurement field is necessary. This was performed using dotted targets with third-order

polynomial calibration, which provided the most reliable results in our case.*

The presence of the free surface increases the reflections of the laser in all direction, potentially

misleading the measurements. For this reason, the tracking particles (polyamide particles, 5

- 35µm diameter, density 1.03kg/m3) have been treated with a fluorescent dye (Rhodamine

B), which emits orange light at 625nm when excited at 540nm [60]. This was achieved by

submerging the particles during several months in saturated solutions of rhodamine and

water, in a warm environment (80◦C). Both cameras have been equipped with a long pass

filter, cutting all wavelength shorter than 570nm. Therefore the cameras capture only the light

scattered by the particles and not from other reflections such as bubbles, free surface and

walls.

In most cases, the velocity field rotates with the wave, i.e. it is constant in a reference frame

rotating at the shaking frequency. Measurements on a vertical plane at a fixed position with

respect to the container, along a complete revolution of the vessel, give the velocity field of

the entire liquid (Fig. 3.10a). The measurement location is determined by the delay from a

trigger signal based on the position of the shaker motor. We performed 45 measurements of

the whole vertical plane for each vessel revolution, that is, one every 4◦. Furthermore, the

presence of a free surface may, depending on the shaking configuration, mask a portion of the

measurement plane to one of the two cameras, as depicted in Fig. 3.10b). For this reason, the

velocity field of the upper part of the wave is missing in waves with large amplitude.

*The calibration takes into account also the diffraction deformations that are not entirely corrected by the
vessel geometry.
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Laser plane

Not observable

Free surface

a b

Figure 3.10 | a: measurements on a vertical plane at a fixed position with respect to the container,
performed at different position of the container on its shaking trajectory give the velocity field
of the entire liquid. b: obstruction of a region of the measurement field by the wave.

3.3.3 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a powerful method extracting the most energetic

coherent structures from a turbulent or unsteady flow [48]. It could also be seen as an inho-

mogeneous low pass filter [47, 6]. POD is successfully used in the analysis of various turbulent

flows, such as boundary layer [6], vortices [40, 121] and even stirred tanks [46].

Since the POD deals with the velocity fluctuations, the velocity field at any location x may be

decomposed as:

u = ū+u′ (3.4)

where ū is the time average velocity ans u′ is the fluctuating part. Without loss of generality

the fluctuating part could be expressed as [98, 48]:

u′(x, t ) = ∑
n=1

an(t )φn(x) (3.5)

where an(t) are the time-dependent coefficients of the expansion and φn(x) are the or-

thogonal basis of each component of the velocity. The POD method that we used to ex-

tract the modes is embedded in the Dantec PIV software package, and uses the snapshot

method proposed by Sirovich [97]. In order to determine the POD modes the fluctuations

u′(x, t ) = (u′(x, t ), v ′(x, t ), w ′(x, t )) of all the measurements (snapshots) taken at each time t are
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arranged in a matrix of the following form:

U =



u′(x1, t1) u′(x1, t2) · · · u′(x1, tN )
...

...
...

u′(xM , t1) u′(xM , t2) · · · u′(xM , tN )

v ′(x1, t1) v ′(x1, t2) · · · v ′(x1, tN )
...

...
...

v ′(xM , t1) v ′(xM , t2) · · · v ′(xM , tN )

w ′(x1, t1) w ′(x1, t2) · · · w ′(x1, tN )
...

...
...

w ′(xM , t1) w ′(xM , t2) · · · w ′(xM , tN )



(3.6)

so that each column contains all the measurements of the velocity fluctuations at a given time

t1···N while each row contains all the successive measurements at a given location x1 ···M . N is

the number of measurements in time and M is the number of measurements locations. The

eigenvalues λi and the eigenvectorsΞi of the auto-covariance of the matrix U are computed

as:

CΞi =λiΞi where C =U T U . (3.7)

The POD modes are then computed as the normalized eigenfunctions:

φi =
UΞi

||UΞi ||
(3.8)

Since the total kinetic energy of each mode is proportional to its eigenvalue [9] it is possible

to order the POD modes ensuring that the most contributing in terms of energy are the first.

Moreover, the time dependent coefficients (or POD coefficients) are determined for each

snapshot as the projection of the fluctuating velocities into the corresponding POD mode:

an =ΨT u′
n (3.9)

where Ψ is the tensor composed by all the POD modes φi : Ψ = [φ1φ2 . . . φN−1]. Since the

mean ū(x, t ) is calculated from the snapshots themselves, the N th mode is equivalent to zero

and is usually neglected. The vector an contains the time dependent coefficients an(t ) of all

the snapshots for the nth mode.

The velocity, filtered at the nth mode is therefore determined as:

u(n)(x, t ) = ū(x, t )+
n∑

i=1
ai (t )φ(x) (3.10)

and it is equivalent to the velocity of the snapshot if all the modes are included: n = N −1.
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3.3.4 Operating conditions of the measurements

The velocity fields have been measured with several shaking configurations: in Table 3.2

are given the operating parameters of the LDV measurements, while the ones of the PIV

measurements are given in Table 3.3.

D [mm] H0 [mm] ds [mm] Ω [rpm]

144 100 25 85

144 100 25 113

287 200 50 60

287 200 50 80

287 200 50 100

Table 3.2 | Operating parameters of the LDV measurements.

D [mm] H0 [mm] ds [mm] Ω [rpm]

150 75 15 85

150 75 15 100

150 75 15 120

150 75 15 160

150 75 30 85

150 75 30 100

150 75 30 120

150 75 30 140

150 75 30 160

Table 3.3 | Operating parameters of the PIV measurements.

53



Chapter 3. Experimental setup

3.4 Mixing measurement

The mixing efficiency of the shaker is estimated measuring the number of revolutions required

to homogenize an initially heterogeneous condition. This is usually achieved by releasing a

dye or a chemical reagent (e.g. in Dual Indicator For Mixing Time [24, 104, 108]) in the flow

and following the change in coloration of the liquid. A main drawback of this technique is the

average in the observation direction which is introduced when only one observation location

is used. More accurate measurements are obtained by using tomographic techniques, e.g. if

the concentration of the dye is known in a specific plane inside the liquid bulk. This is usually

achieved by Laser Induced Fluorescence (LIF) [57], an optical measurement technique based

on fluorescent dyes.
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Figure 3.11 | a: setup used to measure the fluorescent dye concentration in a vertical plane. b:
all images are compared to a reference state, and the root mean square difference of the intensity
∆IRMS ) is calculated. Moreover, regions having the same concentration as the reference state
(pixels with similar values) are identified. c: ∆IRMS evolution as a function of the number of
revolutions of the vessel. d: example of mixing map obtained superposing the maps of similar
concentration.

The fluorescent dye, Rhodamine B (for properties see Sec. 3.3.2) has a fluorescent quantum

yield depending both on the concentration and the temperature [56]. The PIV pulsed laser

was used to create a vertical plane of light in which the concentration was measured. The Rho-

54



3.4. Mixing measurement

damine, in water solutions near saturation (~50g/L), was introduced in the flow by injection at

the free surface (Fig. 3.11a), and its transport in the liquid was followed by a FlowSense camera

equipped with a long pass filter (Sec. 3.3.2). The dye was injected at the wall slightly above

the crest of the wave. Quick injection is likely to generate strong jets of dye perturbating the

wave motion, while slow injection may affect initial heterogeneous conditions, thus leading to

misleading results. A good compromise was found injecting 1ml in 3 seconds. Electromechan-

ical triggers were used to acquire the images at four fixed locations on the trajectory of the

orbital shaker. The use of multiple acquisitions per revolution ensured the monitoring of the

tangential homogeneity of the dye dispersion.

The images acquired at each time step are compared to the corresponding reference state

(Fig. 3.11b), i.e. when no perceivable change in concentration is observed over time, at the

end of the experiment. The comparison to the reference state at the end of the mixing has the

advantage of overriding experimental errors introduced by the use of different concentration

or quantities of dye or changes in the temperature of the liquid. During the comparison the

root mean squared difference of the intensity (hereafter called ∆IRMS) is computed using the

following relation:

∆IRMS =
[

1

N 2

N∑
i=1

N∑
j=1

(
I (i , j )− Ir e f (i , j )

)2

] 1
2

(3.11)

where N is the horizontal and vertical number of pixels of the images (in the case of the

FlowSense are N =2048); I (i , j ) and Ir e f (i , j ) are the intensity of the pixel in the i th column

and j th row, of the current and of the reference image respectively. Since the reference state is

homogeneous, ∆IRMS provides a quantitative assessment of the inhomogeneity of the flow at

each moment, thus decreasing with time (Fig. 3.11c). After the injection the value of ∆IRMS

increases due to the high fluorescence of the saturated rhodamine solution.

Furthermore, at each time step the regions having a concentration of dye comparable to

the reference state are identified. We establish thus mixing maps, graphically depicting the

number of revolutions necessary to the dye in order to attain the final concentration in each

location (Fig. 3.11d). It has to be noted that mixing maps as defined here do not show regions

were there is better mixing: they assess the velocity at which the dye, from its initial location,

reaches each region.

Obviously, only measurements obtained with equivalent experiemental setup are comparable:

changing the injection site of the dye lead to different number of revolutions necessary to

obtain homogeneity.
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4 Dynamics of waves induced by orbital
shaking

4.1 Observations

The motion of the container along its shaking trajectory generates a deformation of the

free surface, hereafter called wave pattern, which rotates around the revolution axis of the

container. According to the potential model, each set of operating parameters D , ds , H0 and

Ω leads to a peculiar free surface shape and flow.

The observation of the free surface shape for more than 6000 sets of operating parameters

reveals a remarkable richness of wave patterns, largely outreaching the predictions of the

potential model. We present in Fig. 4.1 the visualizations of the waves reconstructed from the

high speed movies. The images are composed of narrow vertical portions of the frames, taken

at a fixed location on the container periphery as the waves rotate, as described in Sec. 3.2.1.

0 α2π 6π4π 8π 10π

0 α2π 2π0 0 2π

a b c

d e f

g

Figure 4.1 | Wave patterns reconstructed from high speed movies as described in Sec. 3.2.1,
depicted for two (a-f) or six (g) revolutions of the vessel. All waves are travelling from right to
left. a: single crested wave, the most usually observed. b: double crested wave. c: triple crested
wave. d: quadruple crested wave. e: wave drying a portion of the vessel bottom. f: breaking
single crested wave. g: wave whose wave pattern it is not constant in a reference frame rotating
at the shaking frequency.
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Figure 4.2 | Evolution of the interface height at the container wall (H0 +δ(θ) in mm) measured
from movies, as described in Sec. 3.2.1, for a vessel having D = 287mm, H0 = 150mm and
ds = 28.7mm, the shaking frequencies are specified in the image (in rpm). The measurements
are phase averaged over three revolutions: black dots are mean values, the standard deviation is
depicted as the grey surface (e.g. at 70.6rpm). The scale in the vertical direction is not constant
to highlight shape differences. The waves are travelling from right to left.
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The images are thus reconstructed snapshots of the wave at the entire periphery (if the wave is

rotating as a fixed shape at the shaking frequency). Although single crested waves, with one

crest and one trough (Fig. 4.1a) are the most common, more complex shapes featuring multiple

crests and troughs are also observed: double (Fig. 4.1b), triple (Fig. 4.1c) and quadruple crest

waves (Fig. 4.1d). Under specific conditions, the wave may “dry” a portion of the vessel bottom

(Fig. 4.1e) or break (Fig. 4.1f). Another characteristic of a wave is its symmetry: for three

dimensional waves as those encountered in cylindrical containers, we define “symmetric” a

wave having a vertical plane of symmetry, usually passing through the crest and the trough.

The waves depicted in Figs. 4.1a-b are symmetric, while those in Figs. 4.1d and f clearly are

not. Moreover, not all patterns are rigid shapes rotating around the vertical axis of the vessel:

Fig. 4.1g depicts a wave whose amplitude increases over several revolutions, eventually breaks

and returns to a smaller amplitude, repeating this cycle indefinitely.

In Fig. 4.2 we illustrate an example of the evolution of the free surface height at the wall for

D=287mm, ds=28.7mm, H0=150mm and Ω varied between 21.2 and 148.3rpm. Note that

the measurements, retrieved from the high speed movies, are phase averaged over 3 to 4

revolutions, while the scale in the vertical direction is adapted to magnify the features of each

wave. The standard deviations of the averaging is depicted as a grey surface, highlighting the

wave steadiness. To further illustrate the wave pattern, a subset of the measurements shown in

Fig. 4.2 is depicted in Fig. 4.3 projected on its principal planes of inertia, thus giving a side and

a front view of the wave at the wall. Note that in case of symmetric waves one of the planes of

inertia is the symmetry plane. The measurements at the wall are not continuous between α=0

and 2π, hence the phase shift of the principal planes of inertia with respect to the container is

directly visible in the images.

At low shaking frequencies the waves are mostly planar, with a slope increasing with the

shaking frequency, giving a sinusoid distribution of the liquid at the wall (Figs. 4.2 and 4.3).

We may nevertheless discern rare but stable waves with higher number of crests (e.g. five

crests at 21.2rpm) and asymmetric waves (e.g. at 35.3, 45.9 and 53rpm). As the shaking

frequency is further increased we notice flattening of the crest (63.6 to 67.1rpm) which evolves

into a persistent double crested wave (68.9rpm). AtΩ=70.6rpm the wave exhibits a peculiar

behaviour with its shape changing constantly as it rotates, which explains the significant

increase of the standard deviation (in Fig 4.2). Although the wave remains periodic, its period

is different from the shaking one. From 74.2 to 88.3rpm the wave is double crested, asymmetric

and breaking at its front crest. As the shaking frequency is increased (from 95.3rpm) the wave

recover its single crested shape, but it is neither sinusoid nor symmetric: it is more similar to a

jet of liquid impinging at the wall, with enhanced entrainment of air in the liquid phase (as

shown also in Fig 4.1f), whose amplitude increases with the shaking frequency. Changing one

of the operating parameters D , ds or H0 and increasing the shaking frequency would yield to

similar but not identical behaviour: at low shaking frequency we would observe single crested

and discontinued multiple crested waves, whose number of crests decreases with increasing

shaking frequency. At higher shaking frequency we would obtain higher amplitude waves

with occasional persistent triple or double crested waves, followed by breaking and finally
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21.2 rpm 28.2 rpm 35.3 rpm

38.8rpm 42.4 rpm 45.9 rpm

49.4 rpm 53 rpm 56.5 rpm

60 rpm 67.1 rpm

70.6 rpm 77.7rpm 84.7 rpm

98.9 rpm 105.9 rpm 116.5 rpm

125.3 rpm 137.7 rpm 148.3 rpm

63.6 rpm

Figure 4.3 | Evolution of the average interface height at the wall δ(α) projected on the symmetry
plane of the wave, and on the plane perpendicular to the symmetry one, passing through the
revolution axis of the container (right and left respectively in each couple of images). The
measurements are intentionally not continuous between α= 0 and 2π, thus visually assessing
rotation of the symmetry plane with respect to the container.

splashing at the wall.

To illustrate the effect of the operating parameters other than the shaking frequency, we

depict in Fig. 4.4a-b the measurements of the free surface height at the wall δ(θ) as the shaking

diameter ds is changed, while H0, D andΩ are kept constant. Although the amplitude changes,

the pattern is conserved: single crested waves do not evolve into multiple crested and vice-

versa. In some cases the wave may break as ds is increased, but the number of crests is always

preserved. On the other hand, modifications of the unperturbed height of liquid H0 may

influence the wave pattern. In Fig. 4.4c-d we observe that low H0 values affect the wave

patterns especially for multiple crested waves, completely changing the wave morphology

and occasionally breaking the wave (in Fig. 4.4d the almost vertical wave front of H0=45mm is

breaking). Single crested waves seem less dependant on the value of H0 (Fig. 4.4c).
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Figure 4.4 | Evolution of the interface height at the wall (H0 +δ(θ) in mm) phase averaged from
measurements from movies, as described in Sec. 3.2.1. Black dots are mean values, the standard
deviation is depicted as the grey surface. The scale in the vertical direction is adapted to
highlight pattern differences. a-b: the shaking diameter ds is changed while the other operating
parameters are kept constant. c.d: the unperturbed liquid height at rest H0 is varied.
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Chapter 4. Dynamics of waves induced by orbital shaking

4.1.1 The periodicity of the waves

Besides the obvious differences in shape, a main characteristic of the waves is their periodicity,

or synchronicity to the shaking excitation. While most of the waves (Fig. 4.1a-f) are constant

in a frame of reference rotating around the container revolution axis at the shaking frequency,

others (Fig. 4.1g) have a shape continually changing while rotating. The free surface height

and velocity fields of waves of the former kind are related at different arbitrary instants t and

t +τ by the following equations:

δ(r,θ, t ) = δ(r,θ+Ωτ, t +τ) and

v(r,θ, t ) = v(r,θ+Ωτ, t +τ) ∀r ∈ [0,D/2], ∀θ ∈ [0,2π[ (4.1)

We define “synchronous” the waves respecting Eqs. 4.1, and “non-synchronous” those not

respecting them. The potential model predicts only synchronous waves. Moreover, in syn-

chronous waves, measurements of physical quantities at an angular location, fixed with

respect to the container along a complete revolution of the vessel, give the instantaneous value

of the physical quantities at all angular locations. Thus, the measurements of the wave height

as a function of the container position δ(α) are equivalent to δ(θ, t ), and the images, such as

those depicted in Fig. 4.1a-f, are equivalent to unfolded views of the wave at the container wall.

This is not the case in non-synchronous waves, since the wave changes in shape as it rotates.
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Figure 4.5 | a: image and b: height in pixels of two waves, the upper one respecting Eqs. 4.1, the
lower one not. c: phase average of the dimensionless wave height at the wall δ̃(α) = δ(α)/D of
the waves (black dots), standard deviation is shown in grey.

In synchronous waves the measurements are phase averaged to reduce errors: Fig. 4.5c depicts

the phase averaging of a synchronous and of a non-synchronous wave. We observe that the

overall standard deviation is significantly lower in the former case.
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4.1.2 Wave classification

Considering the variety of the wave patterns, and their discontinuous evolution while the

operating parameters are changed, they are most appropriately analysed by categorizing them

according to their morphology, i.e. the number of their crests, their period and their “breaking

state”.

Wave patterns are first subdivided according to their periodicity into synchronous and non-

synchronous. Three main behaviours are identified in synchronous waves: non-breaking

waves, waves at the inception of the breaking (where the breaker is localized at the crest),

and waves where the breaking is generalized to the entire liquid, which impinges at the

wall. Usually, this coarse categorisation corresponds to the evolution of the patterns with

increasing shaking frequency Ω and constant D, ds and H0. Moreover, non-breaking and

inception breaking waves may be single or multiple crested, while spaleshing waves are only

observed single crested. Non-synchronous waves may also be single or multiple crested. The

categorisation is summarized in Fig.4.6 and the structure of the next sections will follow this

classification.

Non-breaking waves Incipient breaking waves Breaking-splashing waves

Synchronous waves Non-synchronous waves

Single crested

Multiple crested

Wave patterns

Single crested

Multiple crested

Single crested

Multiple crested

Figure 4.6 | Summary of the wave patterns categories.
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Chapter 4. Dynamics of waves induced by orbital shaking

4.2 Synchronous waves motion

In this section we present the behaviour of synchronous waves, following their evolution as

the shaking frequency is increased. The influence of the operating parameters is investigated

and the measurements are compared to the solutions of the potential model.

We remind the reader that, under potential hypothesis, the flow equations have been solved

with linear approximation of the free surface boundary conditions (Sec. 2.3) and to the sec-

ond order of non-linear free surface boundary conditions (Sec. 2.3.2). The solutions of this

eigenvalues problem are found for a series of two-dimensional natural modes, identified by

two integers (m, n), with associated natural frequencies ωmn . The first index m defines the

number of the mode in the tangential direction, and is equivalent to the number of nodal

diameters, whereas n is the number of nodal circles and defines the mode number in the radial

direction.* The linear solution is a sum of all the (1, n) modes, where the (1, 1) mode is the

first non-axisymmetric mode and the dominant as long asΩ<ω11. The non-linear solution

is obtained considering the (1, 1) mode as dominant, with (0, 1) and (2, 1) as secondary. The

solution shows that the (2, 1) is the most important of the secondary modes. The experiments

have been obtained in the ranges listed in Table. 3.1 and, since most of the phenomena are

found to be scale independent, the measurements are presented by using the normalizations

introduced in Sec. 2.59.

4.2.1 Non-breaking waves

Figure 4.7 shows the crest-to-trough amplitude of non-breaking waves measured at the wall

with respect to the shaking frequencyΩ (normalized by the natural frequency ω11), for five

values of the shaking diameter d̃s . The amplitude Ãδ is computed as Ãδ ≡ max(δ̃(θ, t))−
min(δ̃(θ, t)) where δ̃(θ, t) = δ(θ, t)/D. Those measurements are compared to the amplitude

predicted by the linear solution of the potential model, which is derived from Eq. 2.59 as

follows:

Ãξ =
dsΩ

2

g
·
{

1

2
+

∞∑
n=1

[
1

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

]}
, (4.2)

and depicted as a solid line for each shaking diameter in Fig.4.7.

Despite the strong hypothesis used in the linear solution of the potential model, we observe

that the experiments and the model agree remarkably well at most of the shaking frequencies,

as far as the wave does not break, and for all shaking diameters. We may also notice regions

where the measured amplitudes are sensibly larger than the model, namely at Ω/ω11=0.5,

corresponding to shaking frequencies at which multiple crested waves are observed (described

and discussed in Sec. 4.2.1.2). To further analyse the liquid dynamics, we will first focus on

single-crested non-breaking waves.

*A graphical representation of the modes is given in Fig. 2.4 on page 18.
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Figure 4.7 | Measured waves amplitudes Ãδ, depicted as markers, compared to the predictions
of the linear potential model depicted as solid lines, for five different shaking diameters d̃s ,
at shaking frequencies below the first natural frequency ω11, H̃0 = 0.5. The amplitudes of the
waves whose velocity fields have been measured and used to compute the trajectories shown in
Fig. 4.9 are highlights by grey circles.

4.2.1.1 Single crest waves

The waves with one crest, one trough and sinusoid liquid height at the wall, follow the predic-

tions of the linear potential model, both concerning the amplitude of the free surface (Fig. 4.7)

and the velocity fields. In Fig. 4.8 we show the radial, tangential and axial velocity compo-

nents as functions of angular position θ, measured using Laser Doppler Velocimetry (LDV,

see Sec. 3.3.1) at two fixed values of radius and depth: r /D=0.348, z/H0=0.5 and r /D=0.104,

z/H0=0.25. We observe a good agreement between the measured velocity fields ṽ and the

potential predictions q̃, and we also notice several characteristic features of the potential

motion: the vertical velocity decreases with the depth (it is zero at the tank bottom to respect

the impermeability conditions), while the tangential velocity increases with the radius. The

radial velocity decreases with the radius and the depth, and it is almost equivalent at the two

measurement locations depicted in Fig. 4.8.

A deeper understanding of the motion is obtained by computing the Lagrangian trajectories

followed by liquid particles released into the flow at the initial location x0 = (r0,θ0, z0). The

positions are calculated iteratively at each successive time t as follows:

r (t +d t ) = r (t )+ vr
(
r (t ),θ(t ), z(t ), t

) ·d t

θ(t +d t ) = θ(t )+ 1

r (t )
vθ

(
r (t ),θ(t ), z(t ), t

) ·d t (4.3)

z(t +d t ) = z(t )+ vz
(
r (t ),θ(t ), z(t ), t

) ·d t ,

where d t is the time interval, whose value has to be small enough not to influence the solution.
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Figure 4.8 | Phase averaged LDV measurements of the three components of the velocity, for
d̃s = 0.174, H̃0 = 0.7 and F r = 0.45 (Ω/ω11 = 0.56). The black dots are the phased means of the
measurements, while the grey area depicts the standard deviation. Velocity predicted by the
potential model are depicted as solid lines. a: measurements at r /D = 0.348 and z/H0 = 0.5. b:
measurements at r /D = 0.104 and z/H0 = 0.25.

The values of vr , vθ and vz are determined at each time step by linear interpolation of the

velocity fields measured by Particle Image Velocimetry (see Sec. 3.3.2). Velocities obtained

by PIV are preferred to those obtained by the LDV since they have a finer measurement

locations grid, decreasing the interpolation errors, and are defined in the whole liquid domain,

thus preventing excessive extrapolations. The amplitude corresponding to the waves whose

trajectories are computed are highlighted in Fig. 4.7.

The trajectories followed during two revolutions by a group of liquid particles are shown in

Fig. 4.9, along with trajectories obtained from linear potential velocity fields (Eqs. 2.56), for

d̃s=0.1 and 0.2. We observe a good agreement of the amplitudes of the motion between the

measurements and the potential model prediction, although at d̃s=0.1 the measurements show

a large displacement of the particles in direction of propagation of the wave, exceeding the

predicted drift. The trajectories reveal other typical features of wave motion when projected

on the θ− z and on the r − z planes, as shown in Figs. 4.9b-c. As predicted by the potential

model the liquid particles follow trochoidal paths, the amplitude of their motion depends on

the shaking diameter d̃s and decreases with the depth. Moreover, while the motion at the wall

is nearly vertical, it is more circular around r̃ = 0.25 and almost horizontal at the centre of the

container.

Nevertheless, the trajectories also reveal discrepancies between the potential prediction and

the measurements. The tangential motion has opposite directions depending on the shaking
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Figure 4.9 | Trajectories of liquid particles from PIV measurements (solid lines) and from linear
potential velocity fields (thin dashed lines), d̃s =0.1 on the left and d̃s =0.2 on the right, for
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Figure 4.10 | Averaged velocity components, calculated for d̃s =0.1, H̃0=0.5 and F r = 0.348
(Ω/ω11 = 0.59) on the left and d̃s =0.2, F r = 0.492 (Ω/ω11 = 0.59) on the right.a: velocity field
calculated using the averages of the radial and axial velocity components (v̄r and v̄z ). b: Values
of v̄θ normalized by the tangential velocity of the container - this ratio could be understood as
the average ratio of rotation of the flow.

diameter: it is negative at d̃s = 0.2, while it is positive at d̃s = 0.1. In addition to this, a

slow upward motion is observed near the container axis, while an even more pronounced

downward motion is detected at the periphery.

This unexpected motion appears both at d̃s = 0.1 and d̃s = 0.2, and is highlighted by averaging

the velocity components over one revolution:

v̄i (r, z) = 1

2π

∫ 2π

0
vi (r,θ, z)dθ (4.4)

where i = r,θ, z. Only the regions having a valid measurement over a complete revolution are

taken into account to compute the average: i.e. all the portion of the velocity fields that are

partially hidden by the wave or that are not in the liquid phase for a portion of the vessel motion

do not contribute to the computation of the averages. Average radial and axial velocities are

shown in Fig. 4.10a as a vector field, for both values of d̃s . The average tangential velocities in

Fig. 4.10b are normalized by the velocity of the shaker, rΩ, hereafter called the “synchronous

velocity”, since it is the velocity the flow would have at solid rotation synchronous with the
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4.2. Synchronous waves motion

shaker. Although the potential model predicts average velocities equal to zero, we observe that

the experiments display small but well defined average flows. An important downward motion

of the liquid at the wall is observed, generating convective motions of different size depending

on the shaking diameter. Although this convective flow also reminds the secondary motion

of rotating liquids, phenomenon also known as the “tea leaf paradox”, already explained by

Einstein [34], the absence of any primary rotary motion waken this hypothesis. We expect this

flow to be generated by the existence of a viscous boundary layer at the external wall of the

container. Moreover, a tangential motion, of the order of 5% of the solid rotation motion, is

observed in opposite direction: positive for d̃s=0.1 and negative for d̃s=0.2, in line with the

trajectories followed by the liquid particles depicted in Fig. 4.10.

0 21 3

4 5

8

6 7

9 10

Vessel revolutions

ds = 0.2 ds = 0.1

Figure 4.11 | Positions of a large number of particles (black dots) after each vessel revolution.
d̃s =0.2, H̃0=0.5 and F r = 0.492 (Ω/ω11 = 0.59). The particles are released at t=0 from two
horizontal planes at z0/H0=0.2 and z0/H0=0.4, depicted in the upper left image. The tenth
revolution compares the position of the particles to those obtained with d̃s =0.1, F r = 0.348
(bottom right). The free surfaces shown above are retrieved from the measurements of the
liquid height at the wall (Sec. 3.2).

The contribution of the average velocity fields to the motion of the liquid is emphasized in

Fig. 4.11, where positions of liquid particles are followed for several revolutions of the vessel.

The starting positions are on two horizontal planes, clearly visible in the first image at zero

revolutions. The position after each revolution is shown for d̃s=0.2, while only the positions at

the tenth revolution are shown for d̃s=0.1. According to the potential model predictions, the

particles should return to the initial plane after each complete revolution. The formation of a

mushroom cloud of particles highlights the motion of the slow convection cell.
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Chapter 4. Dynamics of waves induced by orbital shaking

4.2.1.2 Multiple crested waves

Although the linear potential solution captures the main phenomena of the single crested

waves, it is unable to predict multiple crested waves, as those shown in Fig. 4.1b-d. They

appear at very specific shaking configurations, and may change shape or disappear when the

operating parameters are modified. We observe that the number of crests generally decreases

as the shaking frequency is increased - an example is given in Fig. 4.1.

Amplitude spectra of the raw measurements of the liquid elevation at the wall are depicted in

Fig. 4.12 for several waves with the arbitrarily chosen operating conditions d̃s=0.13, H̃0=0.5

andΩ/ω11 between 0.19 and 0.75. The amplitudes are normalized by the value at f =Ω. The
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Figure 4.12 | Amplitudes spectra of wave amplitudes measured at the container wall, d̃s =0.13,
H̃0=0.5. Spectra of visually recognised multiple crested and asymmetric waves are highlighted
in white. We observe that their spectra show an increase of the amplitude at multiples of the
shaking frequency.

spectra of the asymmetric and multiple crests waves are highlighted in white and clearly

show the appearance of peaks at frequencies multiple of the shaking frequencyΩ. Therefore,

multiple crested and asymmetric waves may be seen as the superposition of two or more

sinusoidal waves with frequencies that are multiple of the shaking frequency.

However, we have presented in Sec. 2.3.2 the non-linear resolution of the potential model

obtained considering the first non-axisymmetric mode (1, 1) as dominant. The solution

predicts a sub-harmonic response of the mode (2, 1) at a half of the natural frequency ω21,

with an amplitude of the order of A2
11 (where A11 is the amplitude of the main mode), as

displayed in Fig. 2.10. Our analysis of the weakly non-linear waves is limited to O(A2
11)†, and

†We use the notation O(. . . ) to express the order of magnitude of a variable.
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4.2. Synchronous waves motion

only the sub-harmonic at a half of the natural frequency ω21 appears. This double crested

wave is the most stable and the one displaying the most important amplitudes.

To determine the dominant modes, and their most relevant sub-harmonics, the waves mea-

sured at the wall δ(θ, t) are decomposed into a single crested part ξ1n(D/2,θ, t), computed

according to the linear prediction, and a sub-harmonic contribution: δsh(θ, t ), fitted (in the

least squares sense) with the following generic wave expression:

δsh(θ, t ) = Ash,p

2
cos

(
p(Ωt −θ)+φsh,p

)
, (4.5)

where p is an integer. The fitting determines the value of p best approximating the experi-

mental data (smallest value of fitting residuals), and the corresponding amplitude Ash,p /D

and phase shift φsh,p . In this way we identify the amplitude and phase shift of the most im-

portant secondary component of the wave. Several examples of the decomposition are given

in dimensionless form in Fig. 4.13 where the measurements are depicted as black dots (with

in grey the standard deviation), the linear solution of the potential model ξ̃1n(D/2,θ,π/Ω)

is a dotted line, the sub-harmonic wave (δ̃sh = δsh(θ,π/Ω)/D) is a dashed line and the com-

position of the two is a solid line. We observe a large variety of wave patterns, generated by

different sub-harmonics of two modes, each with specific value of p, Ash,p and φsh,p . It is

also interesting to notice that equivalent values of p may result in completely different wave

patterns, as illustrated by comparing Figs. 4.13a and 4.13b.
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Figure 4.14 shows the value of Ash,p corresponding to the value of p giving the best fitting to

the measured wave, as a function of the shaking frequency, for d̃s between 0.01 and 0.4. Note

that the graph has three abscissae: corresponding to the shaking frequencyΩ normalized by

three natural frequencies (ω11, ω21 and ω12).
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Figure 4.14 | Amplitude of sub-harmonic waves as a function of Ω, for d̃s∈ [0.01, 0.4] and
H̃0=0.5, expressed as a ratio to the amplitudes predicted by the linear potential model at the
same shaking frequency. Two vessel sizes are represented here: D=144 and 287mm. The value
of p is determined as the one giving the best fitting of Eq. 4.5 to the experimental data.

We notice that not only the sub-harmonics of the secondary mode (2,1) are excited but also

those of the main mode (1, 1) and of the mode (1, 2). In fact, the sub-harmonics of the lowest

natural frequency ω11 are excited as far as the sixth sub-harmonics. In several cases the sub-

harmonic of a mode is close to sub-harmonic of another one, e.g. ω11/3 and ω21/4. In this

case we observe that the lowest natural frequency (i.e. ω11) has a dominant amplitude, but

both sub-harmonics are nevertheless excited. Figure 4.15 shows the amplitude spectra of the

waves aroundΩ=ω11/3, and clearly reveals the presence of both sub-harmonics at very close

values of the shaking frequencies.

The evolution of the phase shift φsh,p is illustrated in Fig. 4.16, at shaking frequencies close to

the sub-harmonics of the first natural frequency, for d̃s between 0.01 and 0.4. We note that the

phase shift value experiences a π change as the shaking frequency crosses a sub-harmonic

frequency, as it is expected from the response of a system excited around its resonance

frequency. However, the value before and after the fraction of the natural frequency appears to

be different in each case: e.g. φsh,p changes from −π/3 to −4π/3 for the double crests waves at

ω11/2 while it changes from 0 to −π for the triple crests waves at ω11/3.
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Chapter 4. Dynamics of waves induced by orbital shaking

Having demonstrated that the multiple crested waves originate from the combination of sub-

harmonics of the natural modes, and having identified the most dominant modes (namely (1,

1), (2, 1) and to a less extent (1, 2)), we are able to compare their behaviour with the predictions

of the non-linear model. Figure 4.17 compares the measured wave height at the wall with the

linear (dashed line) and non-linear (solid line) results of the potential model. We observe that

at low shaking diameter (d̃s=0.06, Fig. 4.17a-d) the non-linear model correctly predicts the

amplitude of the sub-harmonic wave at shaking frequencies both below and above ω21/2. On
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Figure 4.17 | Measurements of sub-harmonic waves atΩ around ω21/2 (depicted as black dots,
with standard deviation depicted in gray) compared to the prediction of the linear (dahed line)
and of the non-linear model (solid line), with H̃0=0.5. a: d̃s =0.06, Ω = 0.478ω21. b: d̃s =0.06,
Ω= 0.489ω21. c: d̃s =0.06,Ω= 0.504ω21, not the change of phase of the wave and the increase.
d: d̃s =0.06, Ω = 0.521ω21. e: d̃s =0.11, Ω = 0.482ω21. f: d̃s =0.11, Ω = 0.49ω21. g: d̃s =0.11,
Ω= 0.501ω21, the non-linear amplitude tends to infinity, hence giving the almost vertical line
depicted. h: d̃s =0.11,Ω= 0.513ω21, note that the measured wave does not change phase.

the other hand, as d̃s is increased, the non-linear model predicts only the behaviour of the

wave at shaking frequencies below the sub-harmonic one, as shown in Fig. 4.17e-f, whereas

above ω21/2 the wave displays a persistence of double crested shape (Fig. 4.17h), and the

change of sign of the amplitude of the sub-harmonic wave predicted by the model is not

observed. The shaking frequency until which the wave remains double crested depends also

an the shaking diameter.

As we have already stated, the non-linear solution of the potential model predicts only one of

the several multiple crested waves observed. We expect the otehrs (namely the subharmonics

of the mode (1, 1)), to be predicted solving the non-linear equations using different hypothesis

on the dominant and secondary modes, and to an higher order.

Considering the influence of the operating parameters on the sub-harmonics waves we notice

that, according to the potential model, the amplitudes of the sub-harmonics are of the order

of the square of the amplitude of the main wave. They hence increase with d̃s
2. On the other
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4.2. Synchronous waves motion

hand, the filling ratio H̃0 has not a direct influence on the amplitude, but affects the value

of the natural frequencies (according to Eq. 2.48). This influence is especially effective when

2εmn H̃0 < 2, whereas above this limit the natural frequencies are almost independent of the

filling ratio.

The influence of the sub-harmonic wave is clearly visible in the trajectories followed by the

particles, computed from PIV measurements, as depicted in Fig. 4.18: the upper part of the

trajectories is deformed by the superposition of linear and sub-harmonic velocity fields. At the

shaking frequency of this wave (Ω>ω21/2) the potential model predicts a single crested wave

with a very high crest, as the one shown in Fig. 4.17c. The trajectories (and the wave pattern)

are nevertheless those of a double crested wave at shaking frequencies smaller than ω21/2.
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Figure 4.18 | Trajectories from PIV measurements followed by particles at d̃s =0.2, H̃0=0.5,
F r =0.58 (Ω/ω11=0.692, Ω/ω21=0.52). Starting points are identified by a black dot. a: view
from above, projected in the r −θ plane, r0/D=1/15, 1/5, 1/3 and 7/15, θ0=0, π/2, π and 3π/2,
z0/D=1/4. b: projection in the θ− z plane, r0/D= 1/3 and 7/15, θ0=0, z0/D=1/15, 1/5, 1/3 and
7/15.

As the shaking frequency is increased above a value of ωmn/p, the sub-harmonic wave should

experience the reported phase shift, then decreases and disappears - the flow returns usually

to the linear behaviour. This is not always the case. Indeed, the most flagrant example is

observed at Ω > ω21/2. For d̃s below 0.1 the wave returns to potential behaviour, while for

d̃s>0.1 remains double crested and increases in amplitude, as we clearly see in Fig. 4.19.

In fact, we are approaching a boundary between two very distinct flow behaviours: non-

breaking and breaking waves. Depending on the value of d̃s , the wave reaches a breaking

condition, which changes the regime of the flow, and prevents the wave to return to potential

behaviour. The breaking of the waves is thoroughly discussed in the next section.
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4.2.2 Toward breaking waves

The breaking of water gravity waves has been extensively studied, from mathematical [101, 41],

experimental [20, 90] and numerical points of view. The resolution of the gravity waves

equations at orders higher than the first demonstrates the existence of a limiting steepness

beyond which no gravity wave can exist, thus introducing a threshold for the breaking of the

wave [95, 41]. As research on wave breaking progressed, it was found that various instabilities

are liable to develop before this limit is attained [105, 71, 85, 72]. Breaking is traditionally

categorized into three types: collapsing (occurring at the water’s edge), spilling (as the wave

steepens, it becomes unstable, with turbulent and aerated water spilling down over the front

face) and plunging (where the upper part of the crest forms a jet plunging ahead of the wave,

the surfer’s waves) [10, 11]. Wave breaking is also an important phenomenon in air-liquid

interaction [76], a consideration which is very interesting in the light of increasing the gas

exchange between the liquid and the surrounding atmosphere.

The theoretical limiting steepness for gravity waves is H/λ∼= 0.1412, where H is the crest-to-

trough amplitude and λ is the wavelength [94]. In the specific case of our orbitally shaken

container we have:

H

λ
= max(δ)−max(δ)

πD
∼= 0.1412 =⇒ max(δ̃)−max(δ̃) ∼= 0.443. (4.6)

This is the upper limit at which waves should break. Figure 4.20a, which is a zoomed view of
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4.2. Synchronous waves motion

Figure 4.20 | a: dimensionless amplitude of the waves around the transition to the breaking,
at four d̃s . Breaking waves are depicted with black markers, while non-breaking with white
markers. The predicted amplitude limit (Eq. 4.6) is depicted as a dashed line. b: images of the
wave, and details of the crest, at the inception (right) and breaking (left). d̃s =0.01,Ω/ω11=1.07
(left), Ω/ω11=1.09 (right). c: d̃s =0.07, Ω/ω11=0.926 (left), Ω/ω11=0.966 (right). d: d̃s =0.13,
Ω/ω11=0.708 (left),Ω/ω11=0.0.724 (right). e: d̃s =0.2,Ω/ω11=0.714 (left),Ω/ω11=0.738 (right).
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Chapter 4. Dynamics of waves induced by orbital shaking

Fig. 4.7, depicts the amplitude of the wave as a function of the shaking frequency. A change of

behaviour is clearly visible when the wave reaches amplitudes between 0.35 and 0.45, hence

when the waves break. The wave breaking is initially visible only at the wave crest (Fig. 4.20b-e

left), in the form of a small splash of water at the wall. In multiple crested waves the breaking

appears at the steepest crest, usually the front one (Fig. 4.20d-e). The breaking then becomes

more generalized (Fig. 4.20b-e right), and we observe spilling breakers, with entrainment of

large air bubbles into the liquid. AsΩ is further increased the “white water” at the crest spreads

down over the front slope and the wave loses its symmetry. The breaking starts at the wall,

where the wave is steeper, and propagates to a limited extent (usually less than one third of

the radius) toward the centre of the container.

We observe that multiple crested waves break at amplitudes lower than single crested ones.

Moreover, although both kinds of waves display similar behaviours at the crest, the liquid bulk

has somehow different reactions to the breaking. It is therefore more convenient to distinguish

between single and multiple crested waves.

4.2.2.1 Breaking of single crested waves

We have seen how the waves are composed by the sum of a main sinusoidal wave (the linear

solution of the potential equations) and several other waves, with amplitude of the order of

a power of the main wave, and with a wavelength which is a fraction of the one of the main

wave. The non-linear solution of the potential model, solved to the second order, predicts one

of those smaller waves, with an amplitude O(A2
11) and a wavelength equivalent to half of the

main wave. As the wave increases in amplitude the ratio between the amplitudes of smaller

waves and of the main one increases. The composition of waves with different wavelengths

and increasing amplitudes leads to a singularity of the free surface, thus to breaking. It is with

this approach that the limiting steepness was estimated in water waves. Figure 4.21 depicts

the liquid height at the wall compared to the linear (dashed line) and non-linear (solid line)

predictions.

We observe (in Fig. 4.21b) that, approaching the natural frequency, the wave becomes steeper

than the linear sinusoid solution. As Ω is further increased, the second-order non-linear

prediction also looses its agreement with the measurements (Fig. 4.21c), and the wave breaks.

When we are even closer to the natural frequency (Fig. 4.21d), the amplitude of both potential

solutions tends to infinity, hence they are visualized in the graph as almost vertical lines.

The wave is clearly breaking. We notice also that after the inception of the breaking the

amplitude of the wave is slightly reduced, e.g. in Fig. 4.20a for d̃s=0.07. This is due to the

increased dissipation in the breaker [106, 10]. As the shaking frequency is further increased

the amplitude restarts growing.

Although during breaking most of the flow remains potential, a rotational region is created

at the crest with a motion in the direction of the wave propagation [80]. Due to the viscosity,

the liquid bulk is also entrained. In the present case of orbital shaken liquids, we observe
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that a swirling motion is imposed to the whole flow. Figure 4.22 shows the tangential velocity

vθ at the transition to the breaking, from PIV measurements. As the tangential velocity is

depicted on a horizontal plane (Fig. 4.22a), we observe a strong rotational (or swirl) motion

that superposes to the sinusoid velocity field of the wave motion, which in turn disappears

toward the axis of the container. The rotation is so strong that the motion of the flow is

unidirectional in the tangential direction: the whole liquid rotates in the direction of the

propagation of the wave, at angular velocities depending on the radius. Figure 4.22b shows

the tangential velocity averaged over one revolution (as described in Eq.4.4) and normalized

by the velocity of solid rotation dsΩ. The values are shown on a vertical plane and we observe

that the rotation is nearly linear from the container revolution axis to r ∼= ds , where it attains its

maximum and then decreases with increasing radius. The rotation is very strong: in average it

surprisingly exceeds the velocity of synchronous rotation.

4.2.2.2 Breaking of multiple crested waves

Breaking of multiple crested waves is observed particularly at the first sub-harmonic of the (2,

1) mode: the double crested wave atΩ=ω21/2. The sub-harmonic perturbation maintains

the double crested shape after ω21/2 if d̃s>0.07 (see also Sec. 4.2.1.2). As the shaking frequency

is increased, those waves display a steepness at the front crest that is larger than the one of

single crested wave at the close operating conditions. The breaking phenomena described for

the single crested wave are thus noticed only at the first crest.

Since the breaking is localized at crest, the rotational part has a smaller influence than in single

crested waves: Fig. 4.23 depicts the LDV measured velocities of a double crested wave whose

front crest is breaking. We clearly observe the perturbation of the velocity fields due to the

sub-harmonic, especially near the free surface (Fig 4.23a), where the velocity profile is given by

the superposition of two sine waves, one having a smaller amplitude and a wavelength double

than the other one. Moreover, we notice that the tangential velocity vθ has a non-zero mean

component. However, the tangential velocity fields (Fig. 4.23c) show that the wave motion is

not completely dominated by the rotation, since we have both positive and negative values.

Moreover, the average tangential velocity (Fig. 4.23d) has values considerably smaller than

those measured at the breaking of the single crest wave.

Figure 4.24 illustrates the trajectories followed by liquid particles in the case of a single crested

at the inception of the breaking (dashed line). We superpose also the trajectories of a double

crested wave (solid line), at a shaking frequency slightly above the breaking threshold. We

notice the strong rotation of the liquid induced by the single crested wave, but also the large

displacement it imposes to the particles in the vertical direction near the container vertical

axis (Fig. 4.24b). Moreover, the radial motion is almost suppressed, while it remains visible in

the double crested wave (Fig. 4.24a). This confirms again the dominance of the swirl motion

on the breaking of single crested waves.

According to the solutions of the potential model, at every sub-harmonic of a natural fre-
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Figure 4.23 | Velocity measurements of double crested wave at breaking inception a: LDV
velocity fields measurements of the three component of the velocity, phase averaged over
several vessel revolution (black dots) and linear potential predictions (solid line), for d̃s = 0.174,
H̃0 = 0.7 and F r = 0.6 (Ω/ω11 = 0.75), at r /D = 0.348 and z/H0 = 0.5. b: LDV measurements at
r /D = 0.104 and z/H0 = 0.25. c: dimensionless tangential velocity ṽθ from PIV measurements in
a horizontal plane at z/D=0.26, for d̃s = 0.2, H̃0 = 0.5 and F r = 0.695 (Ω/ω11 = 0.83). d: average
tangential velocity v̄θ .

quency the amplitude of the concerned mode should increase to infinity, hence we should

observe breaking at every sub-harmonic frequency. However, due to the viscous damping, the

amplitude is (luckily) less than infinity, thus only multiple crested waves with sufficient am-

plitude break. We have identified a critical shaking diameter d̃s ,ω21/2 below which the double

crested wave generated by the sub-harmonics atΩ=ω11/2 disappears and the wave breaks

as a single crested one. Conversely, for shaking diameters above this value the wave breaks

as double crested. Similar behaviour is observed for the double crested waves generated at
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Figure 4.24 | Trajectories from PIV measurements followed by particles released at black dots
locations, followed during one revolution of the container. Solid line are from double crested
wave: d̃s =0.2, H̃0=0.5, F r =0.695 (Ω/ω11=0.83), while dashed lines are from single crested wave:
d̃s =0.1, H̃0=0.5, F r =0.491,Ω/ω11=0.83. a: projection of the trajectories in a horizontal plane at
z0/D=0.25. b: projections on the r −θ plane, from two different starting points: r0/D=1/3 and
r0/D=7/15.

Ω=ω11/2. According to our investigation, these limits may be empirically predicted as:

d̃s,ω21/2 = 0.1349 · tanh2(2.5H̃0) and (4.7)

d̃s,ω11/2 = 0.4281 · tanh2(2.82H̃0). (4.8)

Moreover, low filling values reduce the first natural frequency, thus causing the wave to break

at lowerΩ.

Although all the previous considerations are generally valid regardless the dimension of the ex-

periment, we have observed that, at those particular transitions, the size of the container may

affect the threshold values. Figure 4.25 compares the measurements of the wave amplitude

δ̃(θ) at D=144 and at 287mm, with a filling ratio H̃0=0.52 and a shaking diameter d̃s=0.1, which

is the limit between waves returning to single crested and waves breaking as double crested.

In the smaller experiment (D=144mm) the wave returns single crested before breaking, hence

following the behaviour of a wave having d̃s<d̃s,ω21/2, while in the larger experiment we observe

a persistence of the double crests wave, which breaks. It should be noted that both waves are

non-synchronous atΩ slightly above ω21/2 before becoming synchronous but different.
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Figure 4.25 | Behaviour of the wave at two different scales of the experiment: D=144 and 287mm,
with d̃s =0.1 and H̃0=0.5. The wave in smaller experiment (D=144mm) returns to single crested
before breaking, whereas in the bigger one we observe a persistence of the double crests wave,
which breaks. Both waves are also observed non-synchronous before reaching their respective
synchronous conditions.

4.2.3 After the breaking of the waves

After the breaking of the wave crest, the liquid motion (free surface and bulk) undergoes

deep changes. To highlight the contrast with the potential model, which describes the flow at

shaking frequencies below the breaking inception and appears to be inappropriate above it,

we define the present regime as rotational or swirling.

Figure 4.26a depicts the evolution of the wave amplitude at the wall for four values of d̃s cor-

responding to single crested (d̃s=0.04 and 0.07) and double crested (d̃s=0.13 and 0.2) waves,

while in Figs. 4.26b-c are shown the images of the waves at d̃s=0.04 and 0.2. As already reported,

the amplitude of single crested waves slightly decreases after the breaking, then monotonously

increases with the shaking frequency. Multiple crested waves break al lower amplitudes, and

the amplitude monotonously increases with the shaking frequencies. At shaking frequencies

above the natural frequency ω11 the breaking of single crested wave spreads to the entire

front slope, and the liquid at the wall has a distribution more similar to a splash than a wave

(Fig. 4.26b). On the other hand, the sub-harmonic wave giving the double crests gradually

disappears (Fig. 4.26c), and completely vanishes before reaching ω11. At the natural frequency

ω11 the amplitude of multiple crested waves do not increase, confirming that the flow is not

following the prediction of the potential model. As the shaking frequency increases, the mor-

phology of single and multiple crested waves becomes similar notwithstanding the number of

crests at the breaking transition. The crest and especially the trough of the wave experience a
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Figure 4.26 | a: dimensionless amplitude of breaking waves, at four d̃s . The predicted amplitude
limit (Eq. 4.6) is depicted as a dashed line, and the amplitudes of the waves whose trajectories
are shown in Fig. 4.29 are highlighted by grey circles. b: evolution of the breaking wave with
d̃s =0.4 and c: d̃s =0.2.
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Figure 4.28 | The averaged tangential velocity v̄θ distribution on r−z plane, for H̃0=0.5,a: d̃s =0.2,
Ω/ω11 = 0.969. b: d̃s =0.2,Ω/ω11 = 1.1. c: d̃s =0.1,Ω/ω11 = 1.1.

phase shift, as the propagating front becomes steeper and steeper. The liquid is now mostly at

the wall, and the free surface at the centre of the container is depressed.

Concerning the velocity fields, we notice in Fig. 4.27 that the amplitude of each component

decreases significantly, and the most important velocity is the average of the tangential velocity,

which account for most of the motion of the flow. The rotation of the flow continually increases

with the shaking frequency, as the averages of the tangential velocity, normalized by the solid

rotation velocity, clearly depicts in Fig. 4.28. We observe that the rotation is stronger at a

distance of nearly r =d̃s from the container revolution axis, and rapidly decreases along the

radius toward the external wall. The maximum rotation for multiple crested waves is observed

near the natural frequency, but is nevertheless lower than the one observed at the breaking of

single crested waves. Above the first shaking frequency, the average tangential velocities of the

flow are similar in both single crested and multiple crested waves. Eventually, complete solid
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Figure 4.29 | Trajectories reconstructed from the PIV measurements, followed during two vessel
revolutions atΩ/ω11=1.1 by liquid particles starting from the black dots. Dashed line: d̃s =0.1,
solid lines: d̃s =0.2. a: trajectories at z0/H0=0.5, in the r − z plane, b: trajectories at r0/D=1/3

rotation of the flow is expected, particularly when a portion of the container bottom is dried

by the motion of the flow (Fig. 4.1g). In this case the free surface is expected to be described

by a parabolic shape, due to the balance of inertial and centrifugal forces on the liquid, as

observed in Erlenmayer flasks [23].

From the analyses of trajectories followed during two revolutions by the particles, recon-

structed from the PIV measurements (Fig. 4.29) we observe that the radial motion nearly

disappears - the particles travels along circles. Moreover, since the liquid is advected by the

rotation, it remains in regions of overall upward or downward motion. As a results the path of

the particles is not limited by the wave amplitude: they may be carried from the bottom of

the container to the free surface in less than one revolution. We notice also that the particles

at r0=1/3D have a completely different behaviour after the breaking than at the inception

(shown for one vessel revolution in Fig. 4.24b): at the transition to the breaking the single

crested wave (d̃s=0.1) depicts trajectories with an upward movement, while after the breaking

the particles moves downward, and it is the multiple crested wave (d̃s=0.2) that has an upward

movement. Apart for this difference the amplitude of both motions are comparable after the

natural frequency ω11.

A final surprise awaits us at the end of this journey through the wave behaviours: the behaviour

of the flow after the breaking may depend on the shaking diameter d̃s . A persistence of high

amplitude, rotating regime is observed for d̃s> 0.02 - the wave amplitude increases, and so does

the average tangential velocity. On the other hand for small values of the shaking diameter

(d̃s< 0.02) the wave eventually resume the potential behaviour before reaching the second

natural frequency. The evolution of the crest-to-trough amplitude of the wave at the wall for

d̃s<0.2 is shown in Fig. 4.30, along with four measured liquid elevations at the wall δ̃(θ). We

remind that according to the linear solution of the potential model, forΩ>ω11 the wave at
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Figure 4.30 | Evolution of free surface amplitude of a wave with d̃s =0.01, H̃0=0.5, and varyingΩ.

the wall has its maximum in the direction of the axis of the shaker motor, in opposition to

the inertial forces direction (see also Fig. 2.5). Indeed, we observe (Fig. 4.30d) that the free

surface behaves like predicted, after a persistence of high amplitude rotation waves it returns

to potential regime. Visual observations show that this transition from high to low amplitude is

subject to hysteresis, depending on the increase or decrease of the shaking frequency. Hence,

the transition to swirling regime is not only in one direction, and high shaking frequency does

not necessary entail large amplitude waves.
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4.3 Non-synchronous waves

In the previous section we have listed and described the behaviour of flows whose velocity

field and free surface height are constant in a frame of reference rotating with the wave, at

the shaking frequencyΩ, around the revolution axis of the container. As we have mentioned

at the beginning of this chapter, this is not always the case. Obviously, after each change

of the operating conditions a certain time is necessary before the flow returns steady. This

transitory motion is not considered here, since its existence is limited in time. We will relate

only about those waves whose motion remains indefinitely non-synchronous - waves that are

not unsteady, but have period different from the shaking one.

4.3.1 Continuously changing waves

When measured at a single location, non-synchronous waves are not periodic over one revolu-

tion of the vessel, thus their phase averaging is meaningless, as detailed in Sec. 4.1.1. However,

the time evolution of the liquid height at a single location, shown in Fig. 4.31, already suggests

that various non-synchronous phenomena are possible. We have indeed single (Fig. 4.31a-c)

as well as double crested (Fig. 4.31d-f) non-synchronous waves. Moreover, the period of those

waves may vary, if some have a period of four revolutions or more (Fig. 4.31a-d), others seem

to have a period of nearly two revolutions (Fig. 4.31e-f).

Figure 4.31 | Several examples of visualization of non-synchronous waves from a fixed location
at the container wall, reconstructed from high speed movies (Sec. 3.2.1). Since the shape is
constantly changing, the images are not unfolded views of the wave, but the evolution of the free
surface height at a single location. a: d̃s =0.08, H̃0=0.42, F r =0.4801 orΩ/ω11=0.927 (D=144mm).
b: d̃s =0.09, H̃0=0.52, F r =0.4997 or Ω/ω11=0.8867 (D=287mm). c: d̃s =0.1, H̃0=0.7, F r =0.52 or
Ω/ω11=0.862 (D=144mm). d: d̃s =0.13, H̃0=0.52, F r =0.38 orΩ/ω11=0.56 (D=287mm). e: d̃s =0.09,
H̃0=0.52, F r =0.4 or Ω/ω11=0.71 (D=287mm). f: d̃s =0.09, H̃0=0.52, F r =0.365 or Ω/ω11=0.687
(D=287mm)

We have observed, in the section dedicated to the wave breaking (sec. 4.2.2), that at the

breaking inception the amplitude of single crested waves decreases. An equilibrium is created
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4.3. Non-synchronous waves

between the energy provided by the shaking and the energy dissipated by the breaker, therefore

the amplitude of the wave is adapted to this new balance. If the breaking dissipates more

energy than it requires to be maintained, it disappears and the wave returns to non-breaking

state. Non-synchronous waves are observed to be at this limit. After the disappearing of the

breaker, they require several revolutions to attain the breaking steepness again. It is thus not

uncommon to observe a wave growing in amplitude until it breaks, and restarting to grow,

repeating this cycle indefinitely. The number of revolutions required to the wave to gather

enough energy to break depends on the proximity, in terms of shaking frequency, of the wave

regime to one of the two stable situations.

Although this behaviour is expected at every transition to the breaking, in most of the shaking

configurations the non-synchronous waves occur at a very thin range of shaking frequencies,

and are usually not observable. On the other hand they are observable on a wider range of

shaking frequencies when the breaking mixes with other phenomena: e.g. the transition of

double crested waves to single before breaking. We have reported (Sec. 4.2.2.2) that below a

critical value of the shaking diameter (d̃s,ω11/2) the wave break as single crested, while above

this value they break as multiple crested. Non-synchronous waves are observed at d̃s
∼= d̃s,ω11/2

when the wave is “hesitating” not only between breaking and non breaking, but also between

different number of crests.

An example of single crested non-synchronous wave is depicted in Fig. 4.32a, where the wave

is shown at fifteen positions α of the shaker on its circular trajectory, during two complete

vessel revolutions. The images are reconstructed from the reflection of four mirrors to a high

speed camera placed above the setup, as described in Sec. 3.2.4. We observe not only a change

in the amplitude of the wave, but also a displacement of the crest and, to a less extent, of the

trough. The wave has an advancing movement when increasing in amplitude, and a backward

one during the breaking. The spilling breaker, localized at the crest, may be noticed in the

second (α= 2/7π) and the last (α= 4π) images. The first image is similar (but not identical) to

the last one, hence the periodicity of this particular wave is close to half the shaking frequency.

In the case of double crested waves (Fig. 4.32b) the phenomenon is slightly more complex,

since the increase in amplitude of the first crest leads to a reduction of the second one. We

notice the same forward movement of the wave as the amplitude increases before breaking

(α from 2π to 4π), while the second crest decreases. This behaviour may not be explained

simply by the change in phase shift of two waves with different wavelengths, since this would

not account for the advance and backward motion of the first crest. The period of this

surface perturbation is also close to two revolutions, (a more precise estimation is given in the

following section).

4.3.2 Liquid motion

In synchronous waves the velocity fields are obtained by phase averaging the measurements

at each position of the container on the shaking trajectory. The same procedure in non-

89



Chapter 4. Dynamics of waves induced by orbital shaking

Figure 4.32 | Non-synchronous waves visualized during two revolutions of the container, using
the method described in Sec. 3.2.4. The wave at the farthermost wall has been hidden by a
black cover manually added. a: d̃s =0.1, H̃0=0.5, F r = 0.4975 orΩ/ω11 = 0.838. b: d̃s =0.1, H̃0=0.5,
F r = 0.0.421 orΩ/ω11 = 0.0.709.

synchronous waves would give misleading results, since the velocity fields are different from

one revolution to the next, due to the continuously changing motion. It is therefore necessary

to use the proper orthogonal decomposition (POD, see Sec. 3.3.3) to investigate the flow

motion.

The analyses of non-synchronous velocity fields is performed on the double crested wave

depicted in Fig. 4.32b. As for synchronous waves, the velocity fields are measured on vertical

planes passing through the vessel revolution axis, every 4◦. Separate POD decomposition is

performed on the fluctuating velocity field of each set of measurements. Figure 4.33a depicts

the energy fraction of each POD mode, computed as the radio between the eigenvalue of the

POD mode and the sum of the eigenvalues, for an arbitrary plane of measurement. From the

analyses of the energy of the modes we observe that in almost all measurement locations the

first two modes account for 35 to 45 % of the energy of the perturbations. All the other modes

add singularly less than 5% of the energy.

Furthermore, Fig. 4.33b depicts the variation of the value of the time dependent parameters
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Figure 4.33 | a: energy fraction of each POD mode n, expressed as the ratio between the mode
eigenvalue (λn) and the sum of the eigenvalues. Since 50 measurements were effectuated, the
first 49 modes are computed, the 50th being composed by zeros. b: relation between the value
of the time dependent coefficients an(t ) of the first two modes, for the 50 measurements. The
grey line connects the measurements chronologically.

an(t) of the first two modes. We notice that they depend sinusoidally on time, with a phase

shift of π/2 between them. To compute the trajectories followed by liquid particles in the

non-synchronous velocity fields we generated synthetic velocity fields using the mean velocity

and the first two modes. The other modes were neglected because their contribution is small

compared to the first two, and because the value of their coefficients may be difficult to

determine with sufficient precision. Each measurement position within the container has

its own POD modesφ1(θ) andφ2(θ) and time coefficients a1(t ,θ) and a1(t ,θ). Moreover, we

suppose the intensity of each mode to increase or decrease simultaneously in the whole liquid

domain - the time coefficients are synchronous. The synthetic velocity field filtered to the

second order is determined as:

vPOD = v̄(θ)+a1(t ,θ)φ1(θ)+a2(t ,θ)φ2(θ) = v̄(θ)+ â1(θ)cos(ηt )φ1+ â2(θ)sin(ηt )φ2 (4.9)

where a1(t ,θ) and a2(t ,θ) are expressed as trigonometric functions with amplitudes â1(θ) and

â2(θ) and frequency η, whose values are determined fitting â1(θ)cos(ηt) to a1(t ,θ) at each

measurement location θ. In the present wave the frequency of the POD coefficients is slightly

below half of the shaking frequency (Ω=10.472 1/s, η= 5.07 1/s). It is interesting to notice

that, if η=Ω/2, the reconstruction of the values of â1(t ) and â2(t ) would be more difficult: in

Fig.4.33b only two opposing points on the circle would be identified.

To highlight the effect of the non-synchronous motion we compare trajectories followed by

particles in synchronous velocity fields (only the average flow, v̄(t ), is taken into account) and

those in non-synchronous velocity fields, reconstructed according to Eq. 4.9. The results are

depicted in Fig. 4.34 for particles released at r̃0=1/15, 1/5, 1/3 and 7/15, θ0=0, z̃0=1/15, 1/5, 1/4,
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Figure 4.34 | Trajectories followed during eight (a) or four b-d revolutions by liquid particles
for synchronous (dashed lines) and non-synchronous waves (solid lines),d̃s =0.1, H̃0=0.5, F r =
0.0.421 orΩ/ω11 = 0.0.709. Particles released from the black dots. a: r̃0=1/15, 1/5, 1/3 and 7/15,
θ0=0, z̃0=1/4, projected on r − z plane. b, c, d: r̃0 is given in each image, θ0=0, z̃0=1/15, 1/5, 1/3
and 7/15, projected on θ− z plane.

1/3 and 7/15, during three revolutions. We observe that the multiple crested behaviour domi-

nates - there is no strong rotation of the flow, and both synchronous and non-synchronous

trajectories depict the deformation in the upper part, typical of multiple waves. However, the

non-synchronous motion stretches and compresses the trajectories in the tangential direction,

especially in the internal part of the container. Indeed, we notice in Fig. 4.34b-d that the

distance between the “loops” of the non-synchronous trajectories is not constant. Moreover,

in non-synchronous velocity fields the amplitudes of the motion are increased, especially

in the vertical direction. The eventual enhancing of the mixing due to this motion will be

assessed in the following chapter.
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5 Application to orbital shaken bioreac-
tors

Having presented and thoroughly discussed the wave behaviours and regimes, we apply,

in this chapter, those findings to the industrial case of cells cultivation in suspension in

orbital shaken bioreactors. The cells are living organisms, interacting with the surrounding

environment and responding to the stimuli they receive. They are usually fed with nutrient

(from the culture medium) and oxygen (through the surrounding atmosphere) to multiply

and produce the required protein, whereas the carbon dioxide they produce is evacuated.

Most of these exchange phenomena are directly linked to the motion of the liquid medium.

Therefore, although our investigation was not directly involved with the cells welfare, growth

and productivity, we are able to contribute to several aspects of the cultivation, namely the

scale -up, the evaluation of the mixing efficiency, and the prediction of the flow behaviour.

Moreover, in the light of our study we are able to point out the wave patterns ensuring, from

the hydrodynamics point of view, the most promising results in term of mixing.

5.1 Scale-up

Increasing in size the cell cultures is obviously more complex than simply using a bigger

container: the operating parameters have to be adapted to ensure the required oxygenation

and mixing without harming the cells [77, 119, 108, 107]. Several parameters may be taken

into account, e.g. the gas transfer coefficient [116, 109], the geometric proportions, the power

input [55, 73] or the mixing time [116, 55]. However, enforcing the value of one of the these pa-

rameters during scale-up is likely to generate unsuitable conditions for the cells [65]. From the

hydrodynamics point of view, the flow is maintained in exact hydrodynamic similarity between

two scales (i.e. it is equivalent in a scale-independent representation) if the dimensionless

parameters governing the flow are kept constant.
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5.1.1 Dimensionless parameters

The liquid motion in an orbitally shaken bioreactor is governed by the dimensions and forces

ratios. We define therefore the following dimensionless parameters:

d̃s ≡ ds

D
H̃0 ≡ H0

D

F r 2 ≡ (Ω2ds)

g
Re ≡ ρΩd 2

s

ν
. (5.1)

where ds , D , H0 andΩ are the shaking diameter, the vessel diameter, the height of the unper-

turbed liquid and the shaking angular velocity, ν is the liquid viscosity and ρ the liquid density.

The first two dimensionless parameters are dimensional ratios, F r is the Froude number,

which expresses the ratio between gravity and centrifugal forces, Re is the Reynolds number

expressing the ratio between inertial and viscous forces. We note that the characteristic ve-

locity used in F r and Re numbers is the tangential velocity of the container Ω ·ds , the only

velocity imposed in the entire setup. Those dimensionless groups were identified also in the

potential model in Sec. 2.3.1, except for Re number, since the viscosity is not considered in

potential flows.

The same dimensionless groups are obtained also performing a dimensional analysis on the

physical quantities controlling, for example, the free surface height at the wall: D , ds , H0,Ω, ν,

ρ and the gravitational acceleration g . Viscosity and density of the gas phase are not taken

into account, playing a minor role in the phenomena. The surface tension is supposed to have

limited influence in macroscopic flow, and it is therefore intentionally omitted.*

The physical quantities measured in the container are normalized according to the above

relations, as described in the potential model (in Sec. 2.3.1).

δ̃≡ δ

D
ṽ ≡ v

dsΩ
(5.2)

Moreover, in cell cultures a main issue is the control of the shear stress τi j in the flow, since it

appears to negatively influence the size and viability of the cells [59, 82]. The shear stress is

defined by:

τi j =µ∂vi

∂x j
with i 6= j (5.3)

The evolution of the shaking velocity between two culture scales D1 and D2 in hydrodynamic

similarity goes asΩ1 =Ω2
p

D2/D1 and consequently the ratio between two velocities at the

same location is v1 = v2
p

D1/D2. If adapted, the viscosity scales as µ1 =µ2(D1/D2)3/2. Thus

*Obviously when sloshing in small containers is considered (such as in tube spins, Fig. 1.3 on page 3) the
surface tension must be taken into account.
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the shear stress evolves as:

τi j ,2 = D2

D1
τi j ,1 (5.4)

It has to be considered that the resistance of the cells to the shear stress does not change with

the culture scale. For this reason configurations proving to be optimal for cell cultures at small

scale may reveal themselves catastrophic at larger scale.

Another parameter typically used in the field of shaking cultures is the mixing time, i.e. the time

required to homogenize an initially heterogeneous condition. However, in order to emphasize

the hydrodynamic similarity, it is more appropriate to characterize the mixing by the number

of revolutions required to attain homogeneity, thus adimensionalizing the mixing time by

multiplying it by the shaking frequency. Hence, two shakers in hydrodynamic similarity will

attain the homogeneity after the same amount of revolutions, but not necessarily after the

same lapse of time. More considerations about the mixing efficiency of the different wave

patterns are found in Sec. 5.2.

5.1.2 Parameters validation

The validity of the dimensionless parameters is confirmed by comparing the values of physical

quantities, such as δ̃ and ṽ, measured at various experimental configurations and scales. The

similarity between two measurements δ̃i and δ̃ j , associated with two different experimental

configurations i (D=144mm) and j (D=287mm), is evaluated as the root-mean-square (RMS)

of the difference between δ̃i and δ̃ j at each measurement location, weighted by the average

crest to trough amplitude of the corresponding waves (Ãi and Ã j ):

Ri j = 2

(Ãi + Ã j )

√√√√ 1

N

N∑
k=1

(
δ̃i (αk )− δ̃ j (αk )

)2
, (5.5)

where N is the number of angular measurement locations. Figure 5.1 shows the values of Ri j

calculated for selected pairs of experimental configurations. This matrix is arranged so that on

the diagonal are compared configurations with nearly identical dimensionless parameters

d̃s , H̃0 and F r (yet different overall scales), while off-diagonal are compared configurations

with different dimensionless parameters. The Re values are not kept constant on the diagonal:

all experiments are performed with the same liquid. This is done on one hand because it is

impractical to adapt the viscosity at each experiment, on the other hand because we expect the

Re number to play a minor role in the similarity of the large scale flow. Thorough discussion

of the latter hypothesis is given in the following section.

The diagonal values of Ri j are much smaller compared to the off-diagonal ones. The dimen-

sionless parameters d̃s , H̃0, F r are thus appropriate to describe the behaviour of the free

surface at the wall in a scale-invariant way, despite the non respect of Re similarity. Further-

more, we observe that the similarity is ensured for both potential and swirling regime after the
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Figure 5.1 | Values of RMS difference between measurements Ri j obtained at distinct configu-
rations and scales. We observe a good good agreement (low value of Ri j ) when d̃s , H̃0 and F r
are identical, i.e. at the diagonal of the matrix. The Re number values are not adapted to be
equivalent on the diagonal.
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Figure 5.2 | Comparison of LDV velocity measurements obtained at different scales (D=144mm
as white triangles, D=287mm as black dots) but equivalent dimensionless parameters. The
standard deviations are depicted as grey surfaces, overlapping regions are darker grey. d̃s =0.17,
H̃0=0.695, F r =0.597,Ω/ω11=0.75, measurement effectuated at r̃ =0.38, z̃=0.348. Note that this
wave is double crested althoughΩ>ω21/2, a situation described in Sec. 4.2.1.2 not predicted by
the potential model. a: normalized tangential velocity. b: normalized axial velocity.
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wave breaking.

In Fig. 5.2 are compared the tangential and axial velocities of two different containers (D=144

and 287 mm) with similar d̃s , H̃0 and F r , measured at the same dimensionless location

r̃ = r /D and z̃ = z/D . Comparing the dimensionless velocity fields we find very close values,

confirming the similarity not only of the free surface but of the whole flow field.

5.1.3 Influence of the Reynolds number

While maintaining constant values of d̃s , H̃0 and F r between two scales is relatively easy,

matching the Re number requires viscosity adjustment, which might be difficult in bioengi-

neering implementations. The influence of this dimensionless parameter has thus to be

assessed. The value of the Re number may be controlled by changing the viscosity of the flow

(using glycerol-water solutions), or by changing the scale of the experiments while d̃s , H̃0 and

F r are kept constant.

Figure 5.3a displays the amplitude of the wave measured at the wall as a function of the Re

number, for three sets of operating parameters d̃s , H̃0 and F r . We observe that the wave be-

haviour is affected by Re numbers below 4’000-6’000. Moreover, the effect of low Re numbers

depends on the wave pattern: e.g. for non-breaking waves (F r =0.54, ds=0.18) the increased

viscosity reduces the wave amplitude. This is expected, since the higher viscosity increases the
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Figure 5.3 | Influence of the Re number on the wave, H̃0=0.5. a: amplitude of selected waves
with fixed d̃s , H̃0, F r as a function of Re. b: non-dimensional liquid elevation at the wall δ̃(α) for
selected breaking waves. c: δ̃(α) of selected non-breaking waves, where the change in behaviour
(appearance of multiple crested wave) is highlighted.
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resistance of the flow to the agitation forces. On the other hand, for breaking waves (F r =0.62,

ds=0.1) an increase of the viscosity, hence a reduction of the Re number, leads to smaller

breaking regions and therefore larger amplitudes (Fig. 5.3b). We may be tempted to attribute

this reduction of the breaking to an increase of the surface tension, reducing the intensity

of the spilling. However, the fact that glycerol has a surface tension slightly lower than the

one of water discards this hypothesis. We explain this increase of the amplitudes by a partial

relaminarisation of the breaking region, due to the increase of viscosity, leading to lower dissi-

pation in the breaker. Furthermore, another phenomenon is observed for multiple crested

waves generated by sub-harmonics of natural frequencies ωmn (F r =0.38, ds=0.16). They tend

to disappear as the Re number is reduced. We display an example in Fig. 5.3c, where a single

crested wave at Re values below 5’000 becomes a multiple crested wave above 10’000.

Another interesting effect of low Re numbers is the increased phase shift between the principal

plane of inertia (which, we remind, is the symmetry plane in case of symmetrical waves) and

the direction of the centripetal force: the direction connecting the revolution axis of the

container to the rotation axis of the shaker motor. The measured values are given in Fig. 5.4

for a large range of operating parameters (d̃s from 0.02 to 0.4, H̃0=0.52,Ω/ω11 from 0.136 to

1.345) and three different viscosities expressed as a ratio to the water viscosity µ/µw =1, 2.5

and 6. We remind that, according to the potential model this value should be always equal
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Figure 5.4 | Phase shift of the principal plane of inertia with respect to the centripetal force
direction, for nearly 2600 sets of operating parameters: d̃s from 0.02 to 0.4, H̃0=0.52,Ω/ω11 from
0.136 to 1.345, and three different viscosities:µ/µw =1, 2.5 and 6, where µw is the water viscosity.

to zero. We observe here an increasing phase shift especially at shaking frequencies above

the first natural frequency, for the impinging wave (Sec. 4.1 and Fig. 4.3). This behaviour is

noticed also in Fig. 5.4. Moreover we observe a general tendency of the phase shift to increase
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with the viscosity. Visual observations of very high viscosity liquids confirmed this trend.

For the above mentioned reasons it is not possible to compare directly experiments at very

small scale (e.g. in tube spins) with large scale cultures, while similar results are expected

scaling from middle (some litres) to large sizes (thousands of litres).

5.2 Mixing

Mixing is fundamental in cell cultures, since it ensure homogeneity of the cells distribution

[77, 107]. Moreover, we expect the gas dispersion within the container to be ensured mostly

by liquid transport (rather than by diffusion), thus mixing also ensures homogeneity of the

gasses. However, achieving complete homogeneity, especially in large scale bioreactors, is

very unlikely [65, 116].

The analysis of the liquid motion, reported in the previous chapter, shows that the mixing in

guaranteed by a three dimensional periodic wave motion, which ensures an exchange of liquid

in all directions. We evaluate the global mixing efficiency of the shaker by monitoring the

dispersion of a fluorescent dye (released at the free surface) on a vertical plane passing through

the revolution axis of the container, as described in Sec. 3.4. From the measurements, we

establish maps depicting the number of revolutions necessary to attain the final concentration

in each region of the measurement plane, defined as mixing maps. Figure 5.5a illustrates the

mixing map of a wave in potential regime, single crested, whereas Fig. 5.5b is the mixing map

of a single crested breaking wave, at the natural frequency ω11.

We observe that the transport is very slow in the potential wave, without a clear path followed

by the dye as it moves from the top to the bottom of the liquid phase. On the other hand, in

breaking waves we notice that the dye descend from the free surface along the external walls

of the container, travels to the centre and rises to the top. The number of revolutions required

to attain homogeneity is also considerably lower compared to the non-breaking wave. We

have seen (in Fig. 4.24) that the trajectories of single crested breaking waves reveal a strong

vertical motion at the periphery of the container, explaining the fast advection in this region.

Moreover, we have noticed (in Fig. 4.22) that the flow is in solid rotation in its central part

(r̃ < 0.2d̃s). Due to the strong (and solid) rotation of the central part of the liquid, exchanges in

the radial direction are less efficient, and the dye reaches the central rotating part only through

the motion near the bottom.

Moreover, interesting considerations may be drawn from the comparison of snapshot of

the dye diffusion in the liquid (Figs. 5.5c-d). While in the potential regime (Figs. 5.5c) the

diffusion is mostly done by slow, large eddies and a seemingly laminar motion, at the breaking

(Figs. 5.5d) the presence of small, fast and very likely turbulent eddies homogenizes the

concentration, in those regions that have been reached by the dye. The PIV velocity fields

measurements allow to distinguish between the mixing due to the average velocity field from

the mixing due to the fluctuations, as we will detail in the following sections.
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Figure 5.5 | a: Examples of advection of fluorescent dye from the free surface into the liquid bulk.
The shading indicates the number of revolutions necessary to reach the final (homogeneous)
concentration of dye at any location in the measurement plane, in a single crest non breaking
wave: d̃s =0.087; H̃0=0.52, F r =0.467, Ω/ω11=0.845. b: single crest breaking wave at d̃s =0.087;
H̃0=0.52, F r =0.5569 (Ω/ω11=1). c: concentration of the dye at the 20th vessel revolution of the
wave in a whereas in d: is depicted the dye concentration at the 9th vessel revolution of the wave
in b.

5.2.1 Average flow mixing

During the measurements of the velocity fields, the three component of the velocities are mea-

sured repeatedly (usually 50 times) at each successive revolution of the vessel (see Sec. 3.3.2).

At each measurement location we obtain a field of average velocities and a corresponding field

of standard deviations of the measurements. The mixing induced by the average velocity field

is evaluated computing the increase in distance between the particles of a group released from

a specific location†. Moreover, since the gas exchange occur at the free surface, the vertical

mixing of the flow is the most important to achieve homogeneous concentrations in the liquid

bulk and is therefore estimated computing the mean of the vertical distance between the

†The motion of the particles is computed as Lagrangian trajectories, see more details in Sec. 4.2.1.1.
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Figure 5.6 | Positions reached by particles, released on a horizontal plane at z0/H0=0.2 after
three container revolutions, H̃0=0.52 d:. The waves at the wall are shown on the right hand
side of the figure. a: d̃s =0.1, F r = 0.348 (Ω/ω11 = 0.59); b: d̃s =0.1, F r = 0.49 (Ω/ω11 = 0.83);
c: d̃s =0.1, F r = 0.655 (Ω/ω11 = 1.1)d: d̃s =0.2, F r = 0.492 (Ω/ω11 = 0.59); e: d̃s =0.2, F r = 0.58
(Ω/ω11 = 0.692); f: d̃s =0.2, F r = 0.695 (Ω/ω11 = 0.83); g: d̃s =0.2, F r = 0.81 (Ω/ω11 = 0.969); h:
d̃s =0.2, F r = 0.9265 (Ω/ω11 = 1.1)

particles of a group released from a horizontal plane:

||∆z | | = 1

N 2

N∑
i=1

N∑
j=1( j 6=i )

||zi − z j || (5.6)

where zi and z j are the vertical position of the i th and j th particles and N is the total number

of particles. To highlight the relation between the vertical displacement and the liquid height,

the average vertical distance is normalized by H0.

The position after three revolutions of 709 particles released at z0/H0 = 0.2 with several shaking

configurations are depicted Fig. 5.6. while the associated values of ||∆z | | are shown, normalized

by the liquid filling level at rest H0, in Fig. 5.7. We notice that the potential behaviour, with or
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Figure 5.7 | Average vertical distance ||∆z | | between the liquid particles of each group released
into the flow at z0/H0=0.2 during three container revolutions, normalized by H0, at H̃0=0.52.
Dashed lines are for d̃s =0.1, while solid lines are for d̃s =0.2. The shaking frequencies are given
in the figure.

without the sub-harmonic double crest (respectively Fig. 5.7a and Fig. 5.7d-e), generates very

low mixing. In the potential regime the dispersion of the particles increases with the shaking

frequency: at Ω/ω11=0.83, the first crest of the double wave (Fig. 5.6f) is breaking, and we

observe a larger dispersion. Moreover, the single crested wave slightly before the incipient

breaking (Fig. 5.6b) displays the larger dispersion of the particles, as depicted in Fig. 5.7. Note

that after one revolution some particles leave the measurement domain, and the vertical

dispersion ||∆z | | in Fig. 5.7 is not shown after this point (particles exiting the measurement

regions are not shown in Fig. 5.6 either). After the breaking (Ω>ω11) the dispersion of particles

is somehow similar in all configurations: in the case of single crested waves it is smaller than

the one observed atΩ/ω11=0.83, while for double crested waves there is only a small increase

between the mixing atΩ/ω11=0.969 an 1.1. We observe therefore that, from a mixing point of

view, increasing the shaking frequency does not necessarily entail better results.

The very large dispersion of particles observed for single crested breaking waves is explained

by two factors. First, the maximum velocities of the flow increase approaching the natural

frequency, and are larger for single crested waves than for double crested ones. Indeed,

the composition of various waves reduces the maximum values of the velocities. Secondly,

the swirling behaviour, while not contributing directly to the vertical mixing, enhances the

vertical dispersion of the particles, advecting some of them in regions of upward or downward

motion. Indeed, the maximum mixing is achieved when the swirling motion is at its maximum:
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respectively at the breaking inception for single crested waves and at the first natural frequency

ω11 for multiple crested ones.

5.2.2 Turbulent mixing

Beside the laminar mixing, the particles are dispersed also by the velocity fluctuations. To

estimate this turbulent contribution a large number of particles is released simultaneously

from a single location. The velocity v(xi , t ) at each location xi and each time t is assumed to

be as follows:

v(xi,t) = v̄(xi , t )+ f(xi , t ) ·σ(xi , t ) (5.7)

where v̄(xi , t) and σ(xi , t) are the interpolated average and standard deviation values of the

velocities at the position xi at the time t (from PIV measurements), and f(xi , t) is a vector

of three pseudo-random normal distributed values, determined at each time t and at each

position xi .‡
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Figure 5.8 | a: positions reached by the particles, released at the same location z0/H0=0.5,
r0/D=0.25 (the crossing of the dashed lines), after one container revolution, projected on a
vertical plane passing through the revolution axis of the container. The trajectories of two
particles of each group are depicted as solid lines. b: average vertical distance ||∆z | | between
each group of particles normalized by the unperturbed liquid height H0.

‡The pseudo-random values are determined by the computation software (Matlab). Large quantities of these
values respect thus a normal distribution with average equal to zero and standard deviation equivalent to one.
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The dispersion of the particles subject to these velocity fields is representative of the turbu-

lence only if short time intervals are considered: once the distance between the particles

increases, they become subject to different average velocity fields, thus their relative distance

is increased from the action of both the average and fluctuating velocity fields. For this reason,

the dispersion of the particles is computed only during one revolution of the vessel. The

position of 100 particles, starting from z0/H0=0.5 and r0/D=0.25 after one revolution of the

container are shown in Fig. 5.8a, for H̃0=0.52, d̃s=0.1 and d̃s=0.2 and several shaking frequen-

cies. The average vertical distance between the particles of each group is given in Fig. 5.8b.

We observe two distinct behaviours for breaking and non breaking waves, especially in the

first tenth of revolution. This is not surprising, since the breaking of the wave is known to be a

source of turbulence [12]. On the other hand, no particular difference is noticed between sin-

gle or multiple crested waves, and between waves at the incipient breaking or strong swirling

waves.

5.2.3 Mixing in non-synchronous waves

Non-synchronous waves, thoroughly described in Sec. 4.3, have a motion of the wave continu-

ously changing as it rotates, due to the transition of the wave pattern between two different

synchronous situations. We have identified two main kind of non synchronous waves: single

and double crested. Using the PIV velocity measurements and POD analysis we were able

to reconstruct the motion of the particles in a double crested non-synchronous wave. The

dispersion of a group of particles, released from an horizontal plane at z0/H0=0.2, during

three revolutions of the container is compared in Fig. 5.9 to the dispersions of the particles in

synchronous waves, discussed above.

The mixing is not enhanced in non-synchronous waves: and the overall dispersion is similar

to the one observed for synchronous double crested waves (Ω/ω11 = 0.692, d̃s=0.1). On the

other hand, the mixing efficiency of single crested non-synchronous wave was evaluated

using the fluorescent dye technique, described in Sec. 3.4, which gives both mixing map and

measurement of the inhomogeneity of the flow: ∆IRMS(R). The latter value is computed at

each revolution of the vessel calculating the RMS difference between the dye concentration

at a given moment and the homogeneous state, at the end of the experience. Therefore the

number of revolutions necessary to attain homogeneity (defined as Rh
(
d̃s , H̃0,F r

)
may be

estimated as∆IRMS(Rh) < 0.05·max
(
∆IRMS

)
. Since images of the dye dispersion were taken in

four positions of the vessel on its trajectory, and three measurements were performed for each

shaking configuration (d̃s , H̃0, F r ), the number of revolutions to homogeneity is obtained as

the average of these twelve Rh values, and defined as R̄h . Figure 5.10 depicts the values of

R̄h measured for a vessel with d̃s=0.087, H̃0=0.52 and F r varying between 0.467 and 0.55 or,

Ω/ω11 between 0.84 and 1.

We observe that the mixing in non-synchronous waves is 20 to 50% better than the one of

synchronous waves with slightly different shaking configurations. Therefore, although the
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Figure 5.9 | Average vertical distance ||∆z | |, normalized by the unperturbed liquid height H0,
between the particles of a group released from a horizontal plane at z0/H0=0.2, during three ves-
sel revolutions, with d̃s =0.1, H̃0=0.52, F r = 0.409 andΩ/ω11 = 0.692, gicing a non-synchronous
double crested wave (dashed black line), compared to the dispersions of synchronous waves
(dashed and solid grey lines), already shown in Fig.5.7.
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Figure 5.10 | Average number of rotations necessary to homogenize the dye, for d̃s =0.087,
H̃0=0.52, and several shaking frequencies, depicted as black dots. The errorbars represent the
standard deviation on four measurement locations on the vessel, three tests for each shaking
configuration. The grey line is intended to guide the eye, whereas the wave pattern is also shown
in the figure.
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non-synchronous motion was not bringing any enhancement of the mixing for double crested

waves, we notice that it greatly improves the mixing for single crested waves. It has to be noted

that synchronous single crested waves approaching the breaking, e.g. the one observed at

d̃s=0.1 andΩ/ω11 = 0.83 (see Fig.5.7) have the best mixing efficiency observed in the present

investigation. It is therefore for these ranges of operating conditions, with synchronous or

non-synchronous waves that the best mixing efficiencies are reached.

5.3 Optimal wave pattern

Two main phenomena are crucial in large scale cell cultures: the mixing and the oxygenation.

While the former has been estimated directly from the velocity fields measurements, the latter

depends on the exchange of gas at the free surface and on the homogenization of the gas

concentration within the liquid, which is ensured by mixing. The gas exchange is influenced

by several parameters: the partial pressure of gas near the interface both in the gas and liquid

phase [54] (which is, once again, influenced by mixing), the inclusion of water bubbles in

the liquid phase due to breaking waves [63] and the explosion of bubbles at the surface [19].

Moreover, we have seen in the previous sections that the wave pattern and its performances

does not depend monotonously on any shaking parameter. The optimum conditions are

therefore dictated by the wave pattern rather than by a single shaking parameter (e.g. the

shaking frequency).

Taking into account all these aspects, we expect the best conditions for cell cultivations to be

reached by single crested waves at shaking frequencies slightly above the breaking inception, to

take advantage both of the enhanced mixing and gas exchange. Below this agitation rate non-

breaking weaves are not suitable since they have too small values of mixing and gas exchange,

while swirling regimes (at very high shaking frequencies) may have good gas exchange but

insufficient mixing to homogenize the concentrations within the container. To obtain the

desired wave pattern, the flow has to be predicted for any set of arbitrary operating parameters.

5.3.1 Prediction of the wave pattern and flow regimes

Summarizing the mathematical and experimental results exposed in the previous chapters,

we describe here a “recipe” to predict the breaking inception, expected to be the most efficient

pattern in terms of mixing and oxygenation. Given a set of shaking parameters D , ds , H0 and

Ω, the natural frequencies are calculated using Eq. 2.48:

ω2
mn = gλmn tanh(λmn H0) = 2gεmn

D
tanh

(
2εmn H0

D

)
. (5.8)
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5.3. Optimal wave pattern

The most dominant modes are the (1,1), (2,1) and (1,2) thus the corresponding values of the

roots εmn are§:

ε11 = 1.84118378134065

ε21 = 3.05423692822714

ε12 = 5.33144277352503

The amplitude of single crested waved at the wall is calculated, as long as Ω < ω11, with

sufficient precision using the linear solution of the potential problem (Eq. 2.54), considering

only the first non-axisymmetric mode (1,1) as dominant:

A = dsDΩ2

g
·
(

1

2
+ 1

(ε2
11 −1)

Ω2

(ω2
11 −Ω2)

)
. (5.9)

or, in dimensionless form, according to Eq.4.2:

Ã = F r 2 ·
(

1

2
+ 1

(ε2
11 −1)

F r 2

(F r 2
11 −F r 2)

)
, (5.10)

where F r 2
11 = 2ε11d̃s tanh(2ε11H̃0).

The wave pattern at the breaking depends on the shaking diameter d̃s : the wave is single

crested if d̃s<d̃s,ω21/2 , where d̃s,ω21/2 is defined as (Eq. 4.7):

d̃s,ω21/2 = 0.1349 · tanh2(2.5H̃0), (5.11)

whereas it is double crested if d̃s>d̃s,ω21/2. At shaking diameters very close to the critical one the

wave is liable to be non-synchronous at the breaking inception. The dimensionless amplitude

of incipient breaking (Ãb) is computed as

Ãb =
 0.43 if d̃s < d̃s,ω21/2

0.35 if d̃s > d̃s,ω21/2

(5.12)

Using this relations it is possible to fix the operating conditions of each scale to obtain a wave

at the inception of the breaking, which we expect to be the most favourable regime.

More generally, when the wave is not breaking the height of the free surface, as well as the

velocity fields, are predicted in each location within the container using the linear (for single

crested waves) or the non-linear (for multiple crested waves) solution of the potential model

developed in Chap. 2. The wave is subject to the sub-harmonics excitation, hence a multiple

crested wave with p crest and troughs is expected at each ω11/p, ω21/p and to a less extent

ω12/p, where p=1, 2, . . . 6..

§The list of the nth root of J ′m for m=0, 1, . . . 5 and n=1, 2, . . . 5 is given in Appendix B.
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Chapter 5. Application to orbital shaken bioreactors

5.3.2 Engineering considerations

The relations given in the previous section allow to determine the inception of the breaking

with any set of operating parameters. However, they do not specify in which ranges of the op-

erating parameters it is more convenient, easy or favourable to obtain a wave at the transition

to the breaking. Several other consideration have thus to be taken into account.

According to both the linear and non-linear solutions of the potential model, the velocity fields

of all the modes composing the solution depend on the dimensionless unperturbed liquid

height H̃0 as follows:

qr (r,θ, z, t ) ∝ cosh(2εmn(z̃ + H̃0))

cosh(2εmn H̃0)

qθ(r,θ, z, t ) ∝ cosh(2εmn(z̃ + H̃0))

cosh(2εmn H̃0)
(5.13)

qz (r,θ, z, t ) ∝ sinh(2εmn(z̃ + H̃0))

cosh(2εmn H̃0)
,

where z̃ = z/D . Figure 5.11a depicts the evolution of the radial and tangential velocities of the

dominant mode (1,1) with the normalized depth (z/H0), for H̃0= 0.2, 0.5, 1, 2 and 5, while in

Fig. 5.11b are shown the distribution of the axial velocity. We observe that the value of the

tangential and radial velocity at the bottom is determined by H̃0, while the axial velocity is

always equiivalent to zero (to respect the impermeability condition). We note incidentally

qr (r,θ,z,t)
qr (r,θ,0,t)

qθ (r,θ,z,t)
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Figure 5.11 | a: evolution of the radial and tangential velocities, normalized by the velocity
at z = 0, with the depth (expressed as the ratio to H0), according to the linear solution of
the potential model, for several values of H̃0. b: evolution of the axial (vertical) velocity. c:
Tangential and radial velocities evolution of several of the lowest (m,n) modes.

that in actual flow, which are viscous, the velocity components at all solid walls are zero, and a

boundary layer develops. We neglect here this effect, since the boundary layer thickness is

supposed small compared to the size of all phenomena involved, especially when the potential

velocity at the wall tends to zero.
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5.3. Optimal wave pattern

The contribution of each mode (m, n) decreases with the depth also as a function of the

value of the nth root of the derivative of the Bessel’s function of the first kind, mth order, as

depicted in Fig. 5.11c. Moreover, evaluating the amplitude of the secondary modes and of

the sub-harmonic waves we found them to be smaller than the dominant one. Therefore,

the radial and tangential velocity at the bottom may be estimated with good approximation

considering only the dominant (1,1) mode. We estimate that at the container bottom the

lowest radial and tangential velocities ensuring adequate mixing must be 5% of the velocity at

the unperturbed free surface (z=0). The maximum acceptable filling ratio H̃0,max is therefore:

qi (r,θ,−H0, t )

qi (r,0, z, t )
= 1

cosh(2ε11H̃0)
= 0.05 i = r, θ thus H̃0,max

∼= 1 (5.14)

Furthermore, for each couple of d̃s and H̃0 values a shaking frequency Ω may be found to

have the wave the breaking inception. However, if the unperturbed liquid height H̃0 is smaller

than half of the dimensionless breaking amplitude Ãb the wave would dry the bottom of the

container before breaking. We expect this situation to be undesired for several reasons: first

because a drying bottom wave necessarily entails a very strong rotation of the flow, which does

not contribute to the mixing. Secondly because this kind of wave generate a large displacement

of the liquid centre of mass farther from the axis of the shaker motor. This considerably

increases the eccentric forces, hence requiring stronger mechanical constructions, without

increasing the mixing and oxygenation efficiencies. To avoid the drying of the bottom a

minimum value of H̃0 is identified:

H̃0,mi n = 1

2
Ãb

∼= 0.16 − 0.22. (5.15)

To identify narrower ranges of the operating parameters, we consider their influence on the

shaking frequencies and inertial forces generated by the shaken liquid. Those mechanical

quantities have a direct impact on the size and power of the shaker motor and on the strength

of the supporting structure, especially at large sizes. Assuming an arbitrary culture volume

of a water-like fluid, we may compute the shaking frequency necessary to attain breaking

inception for every couple of d̃s andH̃0 values, using the relations given in Sec. 5.3.1. Moreover,

the moment of inertia Im of a body around an arbitrary axis of rotation is defined as:

Im =
∫

V
ρ(d)d 2 dV (5.16)

where d is the distance of each point of the body from the axis of rotation and ρ(d) is the

density of the volume at each location d . In the case of liquid under orbital shaking, the

distance between the axis of the motor of the shaker and each location within the liquid is:

d(r,θ) =
√(

d 2
s

4
+dsr cosθ+ r 2

)
(5.17)
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Chapter 5. Application to orbital shaken bioreactors

and, since ρ(d) = ρw · (ξ(d)+ H0), where ρw is the constant water density, the moment of

inertia is calculated as:

Im = ρw

∫ D/2

r=0

∫ 2π

θ=0
(ξ(r,θ)+H0)d 2 r dr dθ. (5.18)

The wave shape is approximated using the linear solution of the model, with the breaking

inception amplitude. This crude approximation underestimates the actual moment of inertia

of a wave near the breaking, but approximates with sufficient precision the trends when an

operating parameter is changed. Together, shaking frequency and moment of inertia are

proportional to the power required to the motor, and are therefore to be minimized.

In Fig. 5.12a are shown the shaking frequencies necessary to break the wave generated by a

1000 litres culture of a water-like liquid, for H̃0 ranging from 0.2 to 1 and d̃s from 0.01 and 0.2,

while the corresponding moments of inertia are shown in Fig. 5.12b. We observe, as expected,
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Figure 5.12 | a: shaking frequency necessary to attain incipient breaking of a 1000 litres culture
of water-like liquid, as a function of the dimensionless unperturbed liquid height H̃0 and shaking
diameter d̃s . On the axis are schematic illustrations of the culture proportions according to the
varying of the dimensionless parameters. b: Moment of inertia of the same culture.

that high shaking frequencies are required at very small shaking diameters and large liquid

height. This is due to the fact that the first natural frequency ω11 has high values (due to large

H̃0) and that similar amplitude are obtained with larger shaking frequencies when the shaking

diameter is smaller. Conversely, the smaller values are observed at low H̃0 and large d̃s . The

moment of inertia generally increases with the reduction of H̃0.

Another important structural parameter, affecting the mechanical dimensioning of the shaker,

is the centripetal force necessary to maintain the container on its trajectory, given by

Fc = M ·d ·Ω2 (5.19)

where M is the total mass of the body and d the distance between the axis of rotation and

the centre of mass. Using the same hypothesis than in the case of moment of inertia, the
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5.3. Optimal wave pattern

centre of mass of the liquid is numerically determined. In Fig. 5.13 is depicted the centripetal

force of a 1000 litres culture, at the same ranges of dimensionless parameters used in Fig. 5.12.

As reported before, the present computation underestimates the forces, but preserves the

trends. We notice that the minimum values are observed at small H̃0, regardless of the shaking

diameter d̃s . Thus we suggest to use values of small H̃0, e.g. below 0.4.
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Figure 5.13 | Estimated centripetal force of a 1000 litres culture at the breaking inception, as a
function of the shaking diameter d̃s and the filing ratio H̃0.

5.3.3 The best shaking configuration

Summarizing the previous results, we expect to obtain the best mixing and oxygenation in

the entire container, with minimal inertial forces in the shaker structure and average power

requirement for single crested waves at the incipient breaking, with H̃0 between 0.2 and 0.4,

d̃s = 0.1349 · tanh2(2.5H̃0) (to obtain non-synchronous breaking) or slightly lower (to obtain

synchronous single crested breaking). The shaking frequency is to be adjusted to achieve

waves with breaker localized at the upper part of the crest (values estimated using the relations

in Sec. 5.3.1.

However, we have to consider that mixing is proportional to the velocity gradients in the liquid

phase, as it is the shear stress. The optimal shaking configuration proposed here may thus

generate stresses not acceptable by the cells. In this case, we suggest to adopt breaking double

crested waves, which are obtained for d̃s > 0.1349 · tanh2(2.5H̃0). Using a shaker with fixed

shaking diameter d̃s the different configurations may be obtained changing the unperturbed

liquid height H̃0, and the shaking frequency. Lower mixing efficiency is obtained by non

breaking multiple crested, and lower still by non-breaking single crested. It has to be kept in

mind that sometimes enhanced mixing may be obtained increasing the working volume, or

changing the shaking diameter rather than increasing the shaking frequency.
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6 Conclusions

The cultivation of cells in orbital shaken containers is a promising and expanding technology.

However, it presents several unknowns from the hydrodynamics point of view. In this work

we investigated the physics of free surface liquids within circular cylinder subject to orbital

shaking, with the help of wave height, velocity field and mixing measurements. Summarizing

our results, we have:

• charted the richness and complexity of the wave patterns and their evolution in a large

amount of shaking configurations;

• provided a clear physical explanation of the mixing phenomena;

• established a potential model, predicting linear and weakly non-linear phenomena for

non-breaking, single and double crested waves;

• assessed the validity and limitations of the theoretical model using the flow measure-

ments, highlighting the importance of the modal response of the shaken liquids;

• identified the dimensionless parameters ensuring hydrodynamic similarity between

different scales;

• found the most promising wave shapes in terms of mixing and gas exchange, and

proposed ranges of operations for optimal bioreactors performances.
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7 Perspectives

The motion of liquid under orbital shaking was investigated focusing both on the physics of

the flow and on the application to cellular cultures. The interesting results and finding that we

have obtained, in the filed of wave motion, mixing and optimization, open the way to further

investigations, summarized as follows:

Hydrodynamics issues

• Using the potential model, we have shown that the free surface height and the velocity

fields are predicted for non-breaking. However, the model may be used to investigate

other aspects of the flow, e.g. the stability limits of the potential regime, in a manner

similar to the one presented by Hutton [33]. Moreover, since our analyses focused on

large scale containers, the analytical solution does not take into account the influence

of viscosity or surface tension. In small vessel both properties are expected to play a

dominant role, and the model would need to be adapted. Viscous dumping in sloshing

motion is presented in [50], chapter 3.

• We still lack a characterization of the liquid motion after the breaking of the waves. At

very strong agitation, the flow is expected to be in solid rotation, with the free surface

defined by a paraboloid, but it is not clear how this regime is reached from the incipient

breaking behaviour, and what are the intermediate steps.

• Non-synchronous waves are very interesting phenomena, that we have discovered

in particular shaking configurations. They offer promising performances in terms

of mixing. Although their occurrence and main characteristics were identified, we

still lack a rigorous physical explanation, and their effect on the mixing needs to be

further assessed. We suggest the use of time resolved PIV or of volumetric velocity

measurements (e.g. light fields PIV), coupled with instantaneous measurements of the

wave height at the entire surface (or at least at the entire wall). The use of POD or other

modal filtering techniques is also recommended.
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Bioengineering issues

• We have suggested ranges of shaking parameters ensuring, according to our analyses,

optimal conditions in terms of mixing and (we expect) aeration. Those operating ranges

have to be confirmed by actual cells cultivations, since, as we have discussed, excessive

mixing may also be harmful to cells, especially at large scale. Furthermore, the fine

optimization of the shaking parameters must be performed with living cells cultures.

• We suppose that the dispersion of the gas within the container is mainly due to the

mixing, and that the gas exchange is maximum at the wave breaking. Although several

measurements of the gas transfer have been performed [21, 79, 74, 107], they do not

clearly relate the measured values to the regimes and patterns of the waves. This

investigation has to be performed to further improve the optimization of the operating

parameters.

• The dispersion of the cells, the nutrient and the diluted gasses within the container

obviously depends on the flow and is so far unknown. Substituting the cells by seeding

particles, it would be possible to determinate the segregation of the cells under each

wave regime, and therefore helps establishing numerical or analytical models to predict

the inhomogeneities within the container.
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A Surface from diffraction reconstruction

It is possible to use the surface by diffraction paradigm [53] to reconstruct the entire free

surface three-dimensionally and instantaneously. This is achieved by measuring the apparent

displacement (due to the free surface deformation) of a series of points at the container

bottom, due to the deformation of the free surface. A camera above the container follows the

displacements of the crossing of a grid, using appropriate image processing routines. The

Snell law [114] determines the diffraction angles of the light path caused by the gas-liquid

interface:

sinθ1

sinθ2
= n2

n1
(A.1)

where θ1 is the angle between the incident light-path and the free surface, θ1 between the

diffracted light-path and the free surface, n1 and n2 are the refractive index of the gaseous and

liquid phase, (Fig. A.1a). The geometric relation between the observed displacement ∆, the

local liquid elevation H and the angle of the free surface α take the form:

∆= H · tan

(
arcsin

(
n1

n2
sin(α)

)
−α

)
(A.2)

The previous equation has two unknowns: H and α. Since in each measurements location is

solved in two directions, we have three unknowns for a three dimensional shape reconstruc-

tion, namely H , αx and αy . This system of equation was solved iteratively, with the closure

condition that the total volume of water is conserved. Moreover, the equation actually used

in the calculation took into account also the angle between the observation direction and

the free surface, both at the resting and during operation, adding some further trigonometric

calculation.

Figure A.1b shows the example of the grid from the top of the container, at D=287mm,

ds=50mm, H0=200mm, Ω=60rpm. The reconstruction in this case was accurate to some

millimetres compare to the potential mode, but with a very poor resolution near the wall.

Moreover, the reconstruction of the free surface give acceptable results as long as the interface

was not excessively perturbed, by bubbles or by capillary waves. Figure A.1c depicts an image
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Free surfa
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a b c

Figure A.1 | a: schematic illustration of the dimensions involved with the reconstruction of the
free surface from diffraction. b: Example of image of the grid displacement, for D=287mm,
H0=200mm, ds =50mm,Ω=60rpm. c: Example of image of the grid displacement, for D=287mm,
H0=200mm, ds =50mm,Ω=100rpm.

from the high speed camera when the shaking frequency is increased to 100tpm. Due to the

high number of superficial capillary waves, bubbles and other perturbations, it is impossible

to reconstruct the crossings of the reference grid and to measure the apparent displacements,

hence precluding the reconstruction of the free surface. As the light paths from the grid to the

camera became more and more reflected and refracted the reconstruction of the free surface

increases in complexity, and became in some cases impossible [62].

Several possibilities to improve the present method have been contemplated. For example,

Zhang uses a similar approach [120, 118], where a combination of large lens and coloured

screen is used to determine the slope at each surface location. The use of PIV software to

reconstruct the apparent displacement of an image at the vessel bottom was also considerate.

However, none of the contemplated options improved the precision of the present method

near the container walls, nor was reliable and robust enough to be used in automated mea-

surements. Further development was therefore dropped in favour of the measurement at the

container wall, described in Sec. 3.2.1.
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B Bessel’s functions

The Bessel functions of the first (J±ν(x)), of the second (Yν(x) or sometimes Iν(x)) and of the

third kind (H (1)
ν (x) = Jν(x)+Yν(x) or H (2)

ν (x) = Jν(x)−Yν(x)) are canonical solutions of the

form y(x) of the Bessel’s differential equation [2, 111]:

x2 d 2 y

d x2 +x
d y

d x
+ (x2 −ν2)y = 0, (B.1)

and their values as a function of ν and x are shown in Fig. B.1. They may be expressed in

several integral forms, depending on the value of ν (see [2]). Alternatively the first kind may be

found expanded in a Taylor series around x = 0:

Jν(x) =
(

1

2
x

)ν ∞∑
k=0

(−1/4 · x2)k

k !Γ(ν+k +1)
, (B.2)

where Γ is the Gamma function, while the second kind is usually found according to:

Yν(x) = Jν(x)cos(νπ)− J−ν(x)

sin(νπ)
. (B.3)

In the case of resolution of Laplace’s equation in cylindrical coordinates, it is usual to obtain
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Figure B.1 | a: Bessel’s function of the first kind J±ν(x) and b: of the second kind Yν(x) for ν=0,
1, 2, 3, 4 and 5, computed by the build-in Matlab function which uses Eqs. B.2 and B.3.

separate solution for each variables r , θ and z. The solution in the r direction is a sum of

Bessel’s functions of the first and of the second kind [51]. Since the potential must remain

bounded within the container, the contribution of the second kind must be zero. Some useful
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identities of the Bessel’s function of the first kind used in the present work are:

J−ν(z) = (−1)ν Jν(z) (B.4)

J ′ν(z) = 1

2

(
Jν−1(z)− Jν+1(z)

)
ν 6= 0 (B.5)

J ′0(x) =−J1(x), (B.6)

d

d x

[
xν Jν(x)

]= xν Jν−1(x) (B.7)

d

d x

[
x−ν Jν(x)

]=−x−ν Jν−1(x) (B.8)

∫ b

0
xν+1 Jν(λνn x)d x = bν+1

λνn
Jµ+1(λνnb) (B.9)

νJν(x)−x J ′ν(x) = x Jν+1(x) (B.10)

while the roots ενn of the derivative of the Bessel function of the first kind are the listed in

Table B.1. calculated according [2] or using Matlab approximation.

n=1 n=2 n=3 n=4 n=5
ν=0 3.8317059702 7.0155866698 10.173468135 13.323691936 16.470630051
ν=1 1.8411837813 5.3314427735 8.5363163663 11.706004903 14.863588634
ν=2 3.0542369282 6.7061331941 9.9694678230 13.170370856 16.347522318
ν=3 4.2011889412 8.0152365983 11.345924310 14.585848286 17.788747866
ν=4 5.3175531260 9.2823962852 12.681908442 15.964107038 19.196028800
ν=5 6.4156163757 10.519860873 13.987188630 17.312842488 20.575514521
ν=6 7.5012661446 11.734935953 15.268181461 18.637443009 21.931715018
ν=7 8.5778364897 12.932386237 16.529365884 19.941853367 23.268052926
ν=8 9.6474216519 14.115518907 17.774012367 21.229062623 24.587197486
ν=9 10.711433970 15.286737667 19.004593538 22.501398727 25.891277277
ν=10 11.770876674 16.447852748 20.223031413 23.760715860 27.182021527

Table B.1 | Roots of the derivative of the Bessel’s function of the first kind

B.1 The Fourier-Bessel Series

Let f (x) be a function defined within a domain [0,b], the Fourier-Bessel series is the linear

combination of many orthogonal versions of the same Bessel function of the first kind:

f (x) ≈
∞∑

n=1
cn Jm

(γmn

b
x
)

(B.11)
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where γmn is a root associated with the Bessel function Jm(x). The coefficients are determined

projecting the function f(x) into the respective Bessel funcitons:

cn =
〈

f (x), Jm(γmn x/b)
〉〈

Jm(γmn x/b), Jm(γmn x/b)
〉 (B.12)

where the inner product is defined as:

〈
f (x), g (x)

〉= ∫ b

0
x f (x) g (x)d x. (B.13)

A particular case of the Fourier Bessel series, called Dini series, is used throughout the present

document. When the condition at the limit b is defined as b f ′(b)+c f (b) = 0 where c is any

constant, the series is defined as [111, 83]:

f (x) ≈C0 +
∞∑

n=1
cn Jm

(εmn

b
x
)
=C0 +

∞∑
n=1

cn Jm(λmn x) (B.14)

where εmn is the nth roots of x J ′m(x)+ c J (x) and λmn = εmn/b. The coefficients are:

cn = 2ε2
mn

b2(c2 +ε2
mn −m2)J 2

m(εmn)

∫ b

0
Jm(λmn) x f (x)d x. (B.15)

and

C0(t ) =


0 if c +m > 0

2(m+1)xm

b2

∫ b
0 xm+1 f (x)d x if c +m = 0
λ2

m0 Im (λm0x)

b2(λ2
m0+m2)I 2

m (λm0x)−λ2
m0 I ′2m (λm0)

∫ b
0 x f (x) Im(λm0x)d x if c +m < 0

(B.16)

where Im is the modified Bessel’s function of the first kind. In the particular case of Eq.2.49,

where c=0, b=D/2, m=1, x=r and f (x)=r , C0 = 0 the coefficients become:

cn = 8ε2
1n

D2(ε2
1n −1)J 2

1 (ε1nr )

∫ D/2

0
J1(λ1nr )r 2 dr (B.17)

Using Eqs. B.9 and B.10, and since J ′1(ε1n) = 0 we obtain:

cn = ε1nD

(ε2
1n −1)J 2

1 (ε1n)
J2(ε1n) = D

(ε2
1n −1)J1(ε1n)

(B.18)
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C Three-dimensional drift calculations

The second term of Eq. 2.29 became (omitting the specification (x0, t ′) for each component of

the velocity):

∇qr (x0, t ) ·
(∫ t

0
q(x0, t ′)d t ′

)
= ∂qr

∂r

∫ t

0
qr d t ′+ ∂qr

r∂θ

∫ t

0
qθd t ′+ ∂qr

∂z

∫ t

0
qz d t ′ (C.1a)

∇qθ(x0, t ) ·
(∫ t

0
q(x0, t ′)d t ′

)
= ∂qθ

∂r

∫ t

0
qr d t ′+ ∂qθ

r∂θ

∫ t

0
qθd t ′+ ∂qθ

∂z

∫ t

0
qz d t ′ (C.1b)

∇qz (x0, t ) ·
(∫ t

0
q(x0, t ′)d t ′

)
= ∂qz

∂r

∫ t

0
qr d t ′+ ∂qz

r∂θ

∫ t

0
qθd t ′+ ∂qz

∂z

∫ t

0
qz d t ′ (C.1c)

We have the following relation for the integrals of the velocities:∫ t

0
qr (x0, t ′)d t ′ = ds

2
cos(Ωt −θ0) · A (C.2a)

where A =
∞∑

n=1

2ε1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J ′1(2ε1nr0/D)

J1(ε1n)

cosh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
,

∫ t

0
qθ(x0, t ′)d t ′ = dsD

2r
sin(Ωt −θ0) ·B (C.2b)

where B =
∞∑

n=1

1

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr0/D)

J1(ε1n)

cosh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
,

∫ t

0
qz (x0, t ′)d t ′ = ds

2
cos(Ωt −θ0) ·C (C.2c)

where C =
∞∑

n=1

2ε1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr0/D)

J1(ε1n)

sinh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
.

We have the various derivatives derived from equations 2.3. First component:

∂qr

∂r
=−dsΩ

2D
sin(Ωt −θ0) ·E (C.3a)

where E =
∞∑

n=1

4ε2
1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J ′′1 (2ε1nr0/D)

J1(ε1n)

cosh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
;

∂qr

r∂θ
= dsΩ

2r
cos(Ωt −θ0) · A (C.3b)

∂qr

∂z
=−dsΩ

2D
sin(Ωt −θ0) ·F (C.3c)

where F =
∞∑

n=1

4ε2
1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J ′1(2ε1nr0/D)

J1(ε1n)

sinh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
.
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Second component:

∂qθ
∂r

=
(
−dsΩD

2r 2
0

·B + dsΩ

2r
· A

)
cos(Ωt −θ0) (C.4a)

∂qθ
r∂θ

= dsDΩ

2r 2
0

sin(Ωt −θ0) ·B (C.4b)

∂qθ
∂z

= dsΩ

2r0
cos(Ωt −θ0) ·C (C.4c)

The definitions of A, B and C are given in the previous page. The gradient of the third

component gives:

∂qz

∂r
=−dsΩ

2D
sin(Ωt −θ0) ·F (C.5a)

∂qz

r∂θ
= dsΩ

2r0
cos(Ωt −θ0) ·C (C.5b)

∂qz

∂z
=−dsΩ

2D
sin(Ωt −θ0) ·G (C.5c)

where G =
∞∑

n=1

4ε2
1n

(ε2
1n −1)

Ω2

(ω2
1n −Ω2)

J1(2ε1nr0/D)

J1(ε1n)

cosh(2ε1n(z0 +H0)/D)

cosh(2ε1n H0/D)
.

so for the first component of the speed:

∇qr (x0, t ) ·
(∫ t

0
q(x0, t ′)d t ′

)
=

(
−dsΩ

2D
sin(Ωt −θ0)E

)(
ds

2
cos(Ωt −θ0)A

)

+
(

dsΩ

2r0
cos(Ωt −θ0)A

)(
dsD

2r0
sin(Ωt −θ0)B

)

+
(
−dsΩ

2D
sin(Ωt −θ0)F

)(
ds

2
cos(Ωt −θ0)C

)
=

=−
(

d 2
sΩ

4D
AE − d 2

sΩD

4r 2
0

AB + d 2
sΩ

4D
C F

)
cos(Ωt −θ0)sin(Ωt −θ0) (C.6)
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second component:

∇qθ(x0, t ) ·
(∫ t

0
q(x0, t ′)d t ′

)
=

=
[
−

(
dsΩD

2r 2
0

·B + dsΩ

2r0
· A

)
cos(Ωt −θ0)

](
ds

2
cos(Ωt −θ0)A

)
+ . . .

+
(

dsDΩ

2r 2
0

sin(Ωt −θ0)B

)(
dsD

2r0
sin(Ωt −θ0)B

)
+ . . .

+
(

dsΩ

2r0
cos(Ωt −θ0)C

)(
ds

2
cos(Ωt −θ0)C

)
=

=
[
−d 2

sΩD

4r 2
0

AB + d 2
sΩ

4r0

(
A2 +C 2)]cos2(Ωt −θ0)+ d 2

s D2Ω

4r 3
0

sin2(Ωt −θ0)B 2 (C.7)

and for the third component:

∇qz (x0, t ) ·
(∫ t

0
q(x0, t ′)d t ′

)
=

(
dsΩ

2D
sin(Ωt −θ0)F

)(
ds

2
cos(Ωt −θ0)A

)

+
(

dsΩ

2r0
cos(Ωt −θ0)C

)(
ds

2r 2
0

sin(Ωt −θ0)B

)

+
(

dsΩ

2D
sin(Ωt −θ0)G

)(
ds

2
cos(Ωt −θ0)C

)
=

=
(

d 2
sΩ

4D
AF + d 2

sΩD

4r 2
0

BC + d 2
sΩ

4D
CG

)
cos(Ωt −θ0)sin(Ωt −θ0) (C.8)

where the division by r0 is introduced to obtain the value in radians instead of meters. Aver-

aging the found second approximation of the velocity it t we have vanishing first and third

component of the velocity, and only the second remains:

q̄L = 1

2

[
d 2

sΩ

4r0

(
A2 +C 2)− d 2

sΩD

4r 2
0

AB + d 2
s D2Ω

4r 3
0

B 2

]
eθ =

= 1

2

d 2
sΩ

4r0

[(
A2 +C 2)− D

r0
AB + D2

r 2
0

B 2

]
eθ (C.9)
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D Combination of time coefficients of first order solution

The of the time coefficients of the expansion at the first order are (Eqs.2.71a, 2.71b, 2.72a and

2.72b):

α11(t ) =− dsΩ
3c1

2(ω2
11 −Ω2)

sinΩt (D.1a)

β11(t ) =+ dsΩ
3c1

2(ω2
11 −Ω2)

cosΩt (D.1b)

a11(t ) = dsΩ
2c1ω

2
11

2g (ω2
11 −Ω2)

cosΩt (D.1c)

b11(t ) = dsΩ
2c1ω

2
11

2g (ω2
11 −Ω2)

sinΩt . (D.1d)

We have then the following relations for α11 and a11:

α2
11 =

d 2
sΩ

6c2
1

4(ω2
11 −Ω2)2

sin2Ωt = d 2
sΩ

6c2
1

8(ω2
11 −Ω2)2

(
1−cos2Ωt

)
(D.2a)

α11 ·a11 =− d 2
sΩ

5c2
1ω

2
11

4g (ω2
11 −Ω2)2

sinΩt cosΩt =− d 2
sΩ

5c2
1ω

2
11

8g (ω2
11 −Ω2)2

sin2Ωt (D.2b)

α̇11 ·a11 =− d 2
sΩ

6c2
1ω

2
11

4g (ω2
11 −Ω2)2

cos2Ωt =− d 2
sΩ

6c2
1ω

2
11

8g (ω2
11 −Ω2)2

(
1+cos2Ωt

)
(D.2c)

and for β11 and b11 we have consequently:

β2
11 =

d 2
sΩ

6c2
1

8(ω2
11 −Ω2)2

(
1+cos2Ωt

)
(D.3a)

β11 ·b11 =
d 2

sΩ
5c2

1ω
2
11

8g (ω2
11 −Ω2)2

sin2Ωt (D.3b)

β̇11 ·b11 =− d 2
sΩ

6c2
1ω

2
11

8g (ω2
11 −Ω2)2

(
1−cos2Ωt

)
(D.3c)
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The expression with mixed α11, a11, β11 and b11 are:

α11 ·β11 =− d 2
sΩ

6c2
1

8(ω2
11 −Ω2)2

sin2Ωt (D.4a)

α11 ·b11 =− d 2
sΩ

5c2
1ω

2
11

8g (ω2
11 −Ω2)2

(
1−cos2Ωt

)
(D.4b)

β11 ·a11 =
d 2

sΩ
5c2

1ω
2
11

8g (ω2
11 −Ω2)2

(
1+cos2Ωt

)
(D.4c)

α̇11 ·a11 =− d 2
sΩ

6c2
1ω

2
11

8g (ω2
11 −Ω2)2

(
1+cos2Ωt

)
(D.4d)

β̇11 ·b11 =− d 2
sΩ

6c2
1ω

2
11

8g (ω2
11 −Ω2)2

(
1−cos2Ωt

)
(D.4e)

α̇11 ·b11 =− d 2
sΩ

6c2
1ω

2
11

8g (ω2
11 −Ω2)2

sin2Ωt (D.4f)

β̇11 ·a11 =− d 2
sΩ

6c2
1ω

2
11

8g (ω2
11 −Ω2)2

sin2Ωt (D.4g)

Thus the sums of the previous results are:

α2
11 +β2

11 =
d 2

sΩ
6c2

1

4(ω2
11 −Ω2)2

(D.5a)

α2
11 −β2

11 =− d 2
sΩ

6c2
1

4(ω2
11 −Ω2)2

cos2Ωt (D.5b)

α11a11 +β11b11 = 0 (D.5c)

α11a11 −β11b11 =− d 2
sΩ

5c2
1ω

2
11

4g (ω2
11 −Ω2)2

sin2Ωt (D.5d)

α11b11 +β11a11 =
d 2

sΩ
5c2

1ω
2
11

4g (ω2
11 −Ω2)2

cos2Ωt (D.5e)

α̇11a11 + β̇11b11 =− d 2
sΩ

6c2
1ω

2
11

4g (ω2
11 −Ω2)2

(D.5f)

α̇11a11 − β̇11b11 =− d 2
sΩ

6c2
1ω

2
11

4g (ω2
11 −Ω2)2

cos2Ωt (D.5g)

α̇11b11 + β̇11a11 =− d 2
sΩ

6c2
1ω

2
11

4g (ω2
11 −Ω2)2

sin2Ωt (D.5h)
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Several relations, used throughout the present document, are:

α̇11a11 + β̇11b11 =−(
α2

11 +β2
11

)ω2
11

g
(D.6a)

α̇11a11 − β̇11b11 =
(
α2

11 −β2
11

)ω2
11

g
(D.6b)

α̇11b11 + β̇11a11 =α11 ·β11
2ω2

11

g
(D.6c)

∂
(
α2

11 −β2
11

)
∂t

=−(
α11a11 −β11b11

)2Ω2g

ω2
11

(D.6d)

∂
(
α11β11

)
∂t

=−(
α11b11 +β11a11

)Ω2g

ω2
11

(D.6e)
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