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[1] The simplest use of centrifuges to measure soil properties relies on steady state
conditions. Analytical solutions, especially if they are simple, make interpretation of data
more direct and transparent. Previous approximations are simplified and have a greatly
improved accuracy. Using previous examples as a test, the error on pressure is always less
than 1%, compared to about 10% with previous approximations.
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1. Introduction

[2] Starting with the pioneering work of Alemi et al.
[1976], centrifuges have been a convenient tool to measure
quickly soil properties. Effectively increasing the effect of
gravity shortens the duration of experiments, although as a
consequence, care must be taken so that measured capillary
pressures have their static values [Oung et al., 2005]. Most
experiments have been carried out under steady state condi-
tions for simplicity and reliability. Nimmo and coworkers
[Nimmo et al., 1987; Nimmo, 1990; Simunek and Nimmo,
2005; Caputo and Nimmo, 2005] adapted the steady state
results to interpret transient experiments as well. Some
applications are ideally suited for centrifuge, e.g., flow in
fractures [Levy et al., 2002]; colloids transport in porous
media [Sharma et al., 2008]; air sparging [Marulanda et
al., 2000]; geo-environmental problems [Savvidou and
Culligan, 1998]. There have been many other important
contributions to the field which are described in the careful
review of van den Berg et al. [2009].

[3] To transfer results from the centrifuge to the proto-
type, scaling laws are required [Culligan and Barry, 1998;
Barry et al., 2001]. Interpretation of data is not easy and
requires very careful numerical simulations [Ataie-Ashtiani
et al., 2003]. Basha and Mina [1999] pointed out the great
advantage of analytical solutions, when attainable, because
of their simplicity and transparency, and also if they can be

used as a check of the accuracy of the numerical solutions.
Basha and Mina [1999] then offered an analytical approxi-
mation to be used for steady state measurements of unsatu-
rated hydraulic conductivity with a centrifuge. This case is
obviously the most fundamental and they knew full well
that their solution was only a first step as it had only a 10%
precision on the average and it required two different
approximations to cover the whole range of properties.
Parlange et al. [2001] suggested some minor improvement
of the solution with further insight provided by Basha
[2001]. However, the accuracy, though improved, was still
not outstanding with a maximum error around 10%. In this
paper, after several years, we are finally able to cover the
whole range of conditions with a maximum error of less
than 1%.

[4] Following Basha and Mina [1999], we write the
steady state centrifuge equation as

d�

dR
¼ �AR� Dþ C�n ð1Þ

for a Gardner [1958] type of soil water conductivity, k,

k=ko ¼ aþ b�n½ ��1 ð2Þ

[5] We changed the signs of the constants A, C, and D
so they are positive here. � is the pressure relative to the
pressure at the bottom of the column, pb < 0; so �b ¼ 1 at
R ¼ Rb: R is the distance from the axis of the centrifuge
measured in units of the length L of the column so that the
top of the column is closer than the bottom to the axis of
rotation, i.e., Rt < Rb; and ko is a characteristic conductiv-
ity value. With w the angular velocity and q the flux
density,

�A ¼ L2w2=gpb;�B ¼ qL=kopb; D ¼ aB; C ¼ bB ð3Þ

[6] Note that if a ¼ 0; the D term in equation (1) is equal
to zero, if a 6¼ 0; the D term can always be absorbed in the
AR term by changing the position of R ¼ 0. In the follow-
ing, we drop the D term without any loss of generality.

[7] A in equation (3) represents the relative importance
of centrifugal and capillary forces, whereas B or C shows
the impact of the flux density, i.e., with B ¼ C ¼ 0; the
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equilibrium pressure is obtained when centrifugal and cap-
illary forces balance each other with no flow.

[8] A first important step is to reduce the number of pa-
rameters from three (Rb, A, and C) to two by relinquishing
the condition that the length of the column be taken as unit
of length. To do so, we change variables taking:

R ¼ �1r;� ¼ �2 ð4Þ

with
�1 ¼ An�1C

� ��1= 2n�1ð Þ
;�2 ¼ A=C2

� �1= 2n�1ð Þ ð5Þ

d =dr ¼  n � r ð6Þ

with boundary condition,

 ¼  1; at r ¼ r1 ð7Þ

r1 and  1are now the only two parameters entering the
problem.

[9] We take the examples of Basha and Mina [1999],
which cover a wide range of conditions, i.e., A ¼ 1 and 3;
C ¼ 5 and 0.5; with n ¼ 2 and 5, eight cases altogether.
Their boundary condition, equation (3), was for Rb ¼ 4:
Table 1 gives the corresponding values of r1 and  1; as
well as r2; which is the top of the column at Rt ¼ 3:

[10] To solve equation (6), we have to consider two
regions separately, an upper and lower region. Those two
regions are separated by a boundary  ¼ f rð Þ where f still
obeys equation (6) but satisfies the condition

df =dr ¼ 0 as r!1 ð8Þ

[11] For r large, f n ’ r;and using this estimate to calcu-
late df =dr;we obtain to the first order

r ¼ f n
1 �

1

nf n�1
1

ð9Þ

and to the second order, using the first order to calculate
df =dr;

r ¼ f n
2 �

1

nf n�1
2 1þ n�1

n2f 2n�1
2
þ ::::::

h i ð10Þ

[12] Higher-order terms could easily be calculated, but will
not be found necessary. Clearly, equations (9) and (10) should
be accurate when r is large; however, we would like to find
an accurate f rð Þ down to r ¼ 0: Using this value of r ¼ 0 as
a check, we can find f10¼f1 r ¼ 0ð Þ and f20¼f2 r ¼ 0ð Þ:
Table 2 gives those values for n ¼ 2; 3; 4; 5; as well as the
value obtained numerically. We find that f20 is always too
small and f10 too large, suggesting that some ‘‘average’’
would be more accurate. In equation (11), the geometric aver-
age of the second terms in equations (9) and (10) were used,
giving the value f0 at r ¼ 0; shown in equation (12)

r ¼ f n � nf n�1 1þ n� 1ð Þ= n2f 2n�1
� �� �1=2

n o�1
ð11Þ

yielding,

2nf 2n�1
0 ¼ � n� 1

n
þ 4þ n� 1

n

� �2
" #1

2=

ð12Þ

[13] Note that f0; and f in general, are physically posi-
tive; hence the negative solution of equation (11) can only
have a mathematical meaning when n is a positive integer.
Table 2 shows the excellent accuracy of equation (12).
Note that for the two limits, n ¼ 1 and n� 1; equation
(12) predicts the exact value of f0: With the example of n ¼
2; we shall discuss the negative branch later, again for
mathematical interest. The value of n can only be known
approximately so if it were to change from an even integer
value to an infinitesimally close value, the negative branch
would suddenly disappear, confirming that the negative
branch is not relevant physically.

[14] To solve equation (6), either above or below the
boundary, f rð Þ; we consider the case when part of  rð Þ is

Table 1. Parameters Necessary to Plot the Analytical Results for Basha and Mina [1999], Examples in Figure 3 for n ¼ 2 and Figures 5
and 6 for n ¼ 5; With Three Below the Asymptote, f rð Þ; and One Above in Each Casea

n¼ 2
C A f1 r1 �1 r2 g1=gr0

 < f 0.5 1 1.854 3.175 0.630 2.381 0.493
 < f 0.5 3 2.192 4.579 0.437 3.434 0.667
 < f 5 1 2.651 9.864 2.028 7.398 –
 > f 5 3 3.165 6.840 2.924 5.130 0.219

n¼ 5
C A ��1 � f1 r1 �1 r2 10�3g1=gr0

 < f 0.5 1 0.367 79.055 1.304 3.704 0.857 2.777 24.43
 < f 0.5 3 0.393 58.917 1.435 6.035 0.759 4.526 56.55
 < f 5 1 1.371 7.794 1.266 5.846 –
 > f 5 3 0.339 114.267 1.509 4.783 1.430 3.588 5.718

aFor the two cases above, the asymptotes are for, r1 ¼ 7:403 n ¼ 2ð Þ; r1 ¼ 4:899 n ¼ 5ð Þ and f 1 ¼ 2:754 n ¼ 2ð Þ; f 1 ¼ 1:377 n ¼ 5ð Þ:

Table 2. Values of f20 ¼ f2 r ¼ 0ð Þ; f10 ¼ f1 r ¼ 0ð Þ From Equa-
tions (10) and (9) for Various na

n f20 f10 Numerics Equation (12)

2 0.630 0.794 0.7290 0.7309
3 0.644 0.803 0.7521 0.7519
4 0.673 0.820 0.7793 0.7785
5 0.699 0.836 0.8018 0.8008

aThe corresponding numerical results and the predictions of equation
(12) are also given.
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close to f rð Þ: For that case, we rewrite equation (6) as

d  � f½ �=dr ¼  n � f n ð13Þ

and linearize that equation to obtain

d  � � f �
� �

 1��
a

� �
=dr ¼  � � f �

� �
n 1��

a  n�1
c ð14Þ

where  a and  c are between  and f ; to be chosen later.
The solution of equation (14) can be written as

 � � f � ¼ � ��1
a � exp

Z r

n n�1
c dr ð15Þ

[15] No lower limit was put in the integral as any
change could always be absorbed by a new constant �:
We now choose  a by a simple interpolation between
 and f ; e.g.,

 ��1
a ’  �f �1�1=� þ f ��1�2=� ð16Þ

where �1 and �2 are constants to be obtained later. Using
 a from equation (16) in equation (15) yields

 �

f �
¼

1þ ��2f �1exp n

Z
f n�1dr

1� ��1f �1exp n

Z
f n�1dr

ð17Þ

where we used  c ’ f ; i.e., the asymptotic approximation
for large r when  and f can differ the most.

[16] To estimate �1; �2; and �; we first look at the ze-
ros of the denominator in equation (17), where  !
1 at r ¼ r1: Equation (6) shows that when this happens,
d =dr ’  n; around r1; then r1 � rð Þ�1 behaves like
 n�1 n� 1ð Þ; which is only possible if � ¼ n� 1 and equa-
tion (17) gives for r � r1;

 n�1 ’ 1þ �2=�1

r1 � rð Þn ð18Þ

where we used dr=df ’ nf n�1: Hence, 1þ �2=�1 ¼
n= n� 1ð Þ or

�1=�2 ¼ n� 1ð Þ ð19Þ

[17] Using now equation (9) to calculate dr in the inte-
gral

R
f n�1dr in equation (17) (higher-order terms could

also be used) yields

 n�1

f n�1
¼ 1þ g= n� 1ð Þ

1� gð Þ ð20Þ

with

g ¼ f =f1ð Þn�2exp
n2

2n� 1
f 2n�1 � f1

2n�1
� �� 	

ð21Þ

where f1 is the value of f at r1:
[18] Since the solution is only physical for  > 0; equa-

tion (20) applies to the upper region, i.e., above the bound-
ary given by f rð Þ:

[19] If the boundary condition is below that boundary,
no asymptote is available to find �: As a result, determina-
tion of the solution is more difficult to obtain. We take the
boundary condition as

 ¼  1; at r ¼ r1 ð22Þ

and define g, following equation (21) as

g=g1 ¼ f =f1ð Þn�2exp
n2

2n� 1
f 2n�1 � f1

2n�1
� �� 	

ð23Þ

where f1 ¼ f r1ð Þ and g1 is a constant, with g r1ð Þ ¼ g1: As
in the case above the boundary, we could try

 =f ¼ 1� �2g

1þ �1g

� �1
�=

ð24Þ

[20] Note we change the signs of the �0s as  can be zero
but not infinite in that region. However,  ¼ 0; at r ¼
r0; and d =dr ¼ �r0 is finite and nonzero so equation
(24) can apply only if we keep � in the denominator only,
then

 =f ’ 1� g=gro½ �= 1þ �g=gro½ �
1

�= ð25Þ

with �=gr0 ¼ �1 and gro ¼ 1=�2 value of g at r ¼ r0: To
satisfy the derivative condition at r ¼ r0; requires at once,

1þ � ¼ n� ð26Þ

which gives � quite easily once � is known. Imposing that,
equation (25) satisfies the derivative of  at r ¼ r1; gives

f n
1 �  n

1 ¼ nf n�1
1  1

g1

gr0

1

1� g1

gr0

þ �=�

1þ � g1

gr0

" #
ð27Þ

[21] Starting at  1; r1ð Þ; equation (11) yields f1 ; then
equations (26), (27), and (25) at r ¼ r1; relate the three
unknowns: �; �; and g1=gr0 (note that gr0 is irrelevant
and could be taken equal to 1 without loss of generality).
Note also that if by chance  1 r1ð Þ ¼ 0; i.e., r1 ¼ r0; then
equation (27) reduces to equation (26) and we are short one
equation. In that case, we would impose that the second de-
rivative is satisfied at r1 ¼ r0; or

1� 1=n� ¼ �=2 ð28Þ

[22] Obviously, equation (28) would be far easier to use
than equation (27) but being a second derivative condition,
it is less accurate than a first derivative condition when
 1 6¼ 0:

2. Application to the Examples of Basha and
Mina

[23] Examples are for n ¼ 2, about the minimum value
for a clay, and n ¼ 5, typical value for a sand [Basha and
Mina, 1999]. As explained earlier, integer values, espe-
cially even ones, give negative branches,  < 0; which are
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not physical, but will be touched upon here for mathemati-
cal completeness. Among even integers, n ¼ 2 has an exact
solution expressible in terms of Airy functions. Others val-
ues of n yielding exact analytical solutions are n ¼ 0; 1=2
and 1 which are not considered here, as they are too small
to have physical meaning.

[24] For n ¼ 2; we can write exactly,

 ¼ �A
0
i rð Þ � �B

0
i rð Þ

h i
= Ai rð Þ þ �Bi rð Þ½ � ð29Þ

[25] Ai and Bi being the two Airy functions, with

� ¼ � 0Ai0 � A
0
i0

h i
= þ 0Bi0 þ B

0
0

h i
ð30Þ

[26] Note that here the subscript ‘‘0’’ refers here to val-
ues at r ¼ 0, and not to values at r ¼ r0:

[27] The case n ¼ 2 is also unique as equations (26) and
(27), together with equation (25) at r ¼ r1; yield � ¼ � ¼
1; which is also in agreement with equation (28).

[28] Figure 1 shows a variety of curves for n ¼ 2, differ-
ing from their starting value at r ¼ 0; from the top (as
indicated on the figure) with f0 ¼ �A

0
i0=Ai0 ¼ B0i0=

Bi0 0 r ¼ 0ð Þ ¼ 1; f0
2=0:729; f0; 0:729; f0

2;�f0;�2;�1; 1;
f0

2=0:729: Note that the curves 1; f02½ � and 0:729;½
f0

2=0:729� are such that the product of their  o r ¼ 0ð Þ is
equal to f0

2: In that case, according to equations (20) and
(25), f0 and f1 and hence r0 and r1; should be the same
as long as they are large enough for our asymptotic calcula-
tions to hold. Clearly, this is true when r0 ’ r1 ’ 4 but not
for r0 � r1 � 1 as expected. Figure 2 compares numerical
and analytical solutions for the Basha and Mina cases for
n ¼ 2 (each curve is identified by the value of  1). When
equation (6) is used, the comparison includes the nonphysi-
cal region of  < 0; with essentially no discrepancy. Figure
3 repeats the comparison with equation (1), and D ¼ 0;

showing more details ; of course, the agreement is
excellent.

[29] Figure 4 shows the general mathematical case for
n ¼ 5 including  < 0; which, again, would not be present

Figure 2. Four cases for n ¼ 2; following the example of
Basha and Mina [1999]. Numbers for each curve identify
the starting values  1; see Table 1. Solid lines are the nu-
merical results and the dots are the analytical results. The
two asymptotes labeled 6f0 correspond to � ¼ 0 and �!
1 in equation (29). Although the agreement of numerics
and analysis is excellent, between the two asymptotes, only
for  � 0 are the results physically meaningful.

Figure 1. Exact solutions  rð Þ for n ¼ 2 at different
starting points at r ¼ 0; with f0 ¼ �A

0
i0=Ai0: Only values

for  rð Þ � 0 have physical meaning.

Figure 3. Details of the examples of Basha and Mina
[1999] using the variables of equation (1), with D ¼
0; for n ¼ 2: The solid lines are the numerical results and
dots the analytical results.
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if n was not an integer. The figure is much simpler than the
corresponding one for n ¼ 2 because only even integers
have a solution f < 0: Figure 5 shows the comparison
between the numerics and the analysis using equation (1)
when equation (28) rather than equation (27) is applied
which greatly simplifies the calculation. The figure shows
that for C small, the maximum error is around 3%, more
than the chosen threshold of 1%. The difficulty of taking

either equation (27) or (28) to estimate � did not appear for
n ¼ 2; as both gave at once � ¼ 1: Figure 6 shows that
when equation (27) is applied, the error disappears, which
is natural since the derivative condition is applied where
the boundary condition is used rather than a curvature con-
dition at  ¼ 0:

[30] In all cases, equation (11) is used to obtain r for a
given f : However, for a given r to obtain f ; we used an iter-
ative procedure. We start with f n ’ r and use this value to
obtain an estimate of the term in the fg bracket in equation
(11) and use the new estimate of f n thus obtained to repeat
the procedure. Numerically, equation (6), with  ¼ f ; is
integrated using a Runge-Kutta procedure, starting with
f1 ¼ r1

1=n where r1 is very large, larger than any r of inter-
est, e.g., r1 ¼ 10: Integrating backward, the asymptote is
approached very quickly, yielding a stable solution. For-
ward integration, starting at a point very close to the as-
ymptote, yields an unstable solution which eventually
diverges from the asymptote. This is clearly seen in
Figure 1, where the curves starting at r ¼ 0 with  equal to
0:729 and f0

2=0:729; which are close to the exact value of
f0 ¼ 0:7290111::: still diverge at the short distance when
r > 3:

[31] The values of f1 and r1 in Table 1, i.e., the asymp-
totes when  " f ; are obtained starting from the boundary
condition  ¼  1 at r ¼ r: As explained above, f1 is then
calculated and g1 is obtained from equation (20). Using
those values n equation (21) yields f1 and then r1 from
equation (11).

3. Conclusion

[32] We have obtained an extremely accurate approxi-
mation to predict pressure in a centrifuge for steady state
conditions when conductivity is a power law of pressure.

Figure 6. Same cases as in Figure 5 using equation (27),
rather than equation (28). The errors for the cases with C
small have disappeared. The analysis is shown by the dots
and the numerics by the solid lines.

Figure 4. Sketch of two curves for n ¼ 5; identified by
the value of  0; one slightly above f0; one slightly below
(for this last one, only the part with  � 0 is physically
meaningful). In this case, n being an odd integer, there is
only one asymptote f rð Þ starting at f0:

Figure 5. Details of Basha and Mina’s [1999] cases for
n ¼ 5 when the simple equation (28) is used, showing the
significant error when C is small. The analysis is shown by
dots and the numerics by solid lines.

HOGARTH ET AL.: TECHNICAL NOTE

7137



The accuracy makes the use of the solution quite reliable to
predict soil water properties. The two difficulties in previ-
ously available approximations, i.e., using two different
approximations depending on soil water properties, and
limited accuracy, have been resolved. Here, the form of the
approximation depends only on whether  r1ð Þ is greater or
less than f r1ð Þ:
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