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Abstract 11 

The simplest use of centrifuges to measure soil properties relies on steady state conditions.  12 

Analytical solutions, especially if they are simple, make interpretation of data more direct and 13 

transparent.  Previous approximations are simplified and have a greatly improved accuracy.  14 

Using previous examples as a test, the error on pressure is always less than 1%, compared to 15 

about 10% with previous approximations.  16 
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Starting with the pioneering work of Alemi et al. (1976), centrifuges have been a 17 

convenient tool to measure quickly soil properties. Effectively increasing the effect of gravity 18 

shortens the duration of experiments, although as a consequence, care must be taken so that 19 

measured capillary pressures have their static values (Oung et al. 2005).  Most experiments have 20 

been carried out under steady state conditions for simplicity and reliability.  Nimmo and 21 

coworkers (Nimmo, et al, 1987; Nimmo, 1990; Simunek and Nimmo, 2005; Caputo and Nimmo, 22 

2005) adapted the steady state results to interpret transient experiments as well.  Some 23 

applications are ideally suited for centrifuge, e.g., flow in fractures (Levy et al. 2002); colloids 24 

transport in porous media (Sharma et al. 2008); air sparging (Marulanda et al. 2000); geo-25 

environmental problems (Savvidou and Culligan, 1998).  There have been many other important 26 

contributions to the field which are described in the careful review of van den Berg et al. (2009).  27 

 To transfer results from the centrifuge to the prototype, scaling laws are required 28 

(Culligan and Barry, 1998; Barry et al. 2001).  Interpretation of data is not easy and requires very 29 

careful numerical simulations (Ataie-Ashtiani et al., 2003).  Basha and Mina (1999) pointed out 30 

the great advantage of analytical solutions, when attainable, because of their simplicity and 31 

transparency, and also if they can be used as a check of the accuracy of the numerical solutions.  32 

Basha and Mina (1999) then offered an analytical approximation to be used for steady state 33 

measurements of unsaturated hydraulic conductivity with a centrifuge.  This case is obviously 34 

the most fundamental and they knew full well that their solution was only a first step as it had 35 

only a 10% precision on the average and it required two different approximations to cover the 36 

whole range of properties.  Parlange et al. (2001) suggested some minor improvement of the 37 

solution with further insight provided by Basha (2001).  However, the accuracy, though 38 

improved, was still not outstanding with a maximum error around 10%. In this paper, after 39 
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several years, we are finally able to cover the whole range of conditions with a maximum error 40 

of less than 1%. 41 

 Following Basha and Mina (1999), we write the steady state centrifuge equation as 42 

nd AR D C
dR
φ φ= − − +           (1) 43 

for a Gardner (1958) type of soil water conductivity, k, 44 

1
.n

ok k a bφ
−

 = +            (2) 45 

We changed the signs of the constants A, C, D so they are positive here. φ  is the pressure 46 

relative to the pressure at the bottom of the column, 0,bp < so 1bφ =  at .bR R=  R is the distance 47 

from the axis of the centrifuge measured in units of the length L of the column so that the top of 48 

the column is closer than the bottom to the axis of rotation, i.e., ,t bR R<  and ko is a characteristic 49 

conductivity value.  With w the angular velocity and q the flux density,  50 

2 2 ; ; ; .b o bA L w gp B qL k p D aB C bB− = − = = =       (3) 51 

Note that if 0,a =  the D term in Eq. (1) is equal to zero, if 0,a ≠  the D term can always be 52 

absorbed in the AR term by changing the position of R=0. In the following, we drop the D term 53 

without any loss of generality.  54 

 A in Eq. (3) represents the relative importance of centrifugal and capillary forces, 55 

whereas  or B C show the impact of the flux density, i.e., with 0,B C= = the equilibrium 56 

pressure is obtained when centrifugal and capillary forces balance each other with no flow.  57 

 A first important step is to reduce the number of parameters from three (Rb, A and C) to 58 

two by relinquishing the condition that the length of the column be taken as unit of length.  To do 59 

so, we change variables taking: 60 

1 2;R rα φ α ψ= =           (4) 61 
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with 62 

( ) ( )1 2 1 1 2 11 2
1 2;

n nnA C A Cα α
− − −−   = =           (5) 63 

nd dr rψ ψ= −           (6) 64 

with boundary condition, 65 

1,ψ ψ=  at 1,r r=           (7) 66 

1r  and 1ψ are now the only two parameters entering the problem. 67 

 We take the examples of Basha and Mina (1999), which cover a wide range of 68 

conditions, i.e., A=1 and 3; C=5 and 0.5; with n=2 and 5, eight cases altogether.  Their boundary 69 

condition, Eq. (3), was for 4.bR =  Table 1 gives the corresponding values of 1r and 1,ψ as well as 70 

2 ,r which is the top of the column at 3.tR =  71 

 To solve Eq. (6), we have to consider two regions separately, an upper and lower region.  72 

Those two regions are separated by a boundary ( )f rψ = where f still obeys Eq. (6) but satisfies 73 

the condition 74 

0 as .df dr r= →∞           (8) 75 

For r large, ,nf r and using this estimate to calculate ,df dr we obtain to the first order 76 

1 1
1

1n
nr f

nf −= −            (9) 77 

and to the second order, using the first order to calculate ,df dr  78 

2
1

2 2 2 1
2

1 .
11 ......

n

n
n

r f
nnf

n f
−

−

= −
 −
+ + 

 

        (10) 79 
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Higher order terms could easily be calculated, but will not be found necessary.  Clearly, Eqs. (9) 80 

and (10) should be accurate when r is large; however, we would like to find an accurate ( )f r  81 

down to 0.r =  Using this value of 0r =  as a check, we can find ( )10 1= 0f f r =  and 82 

( )20 2= 0 .f f r = Table 2 gives those values for 2,3, 4,5,n = as well as the value obtained 83 

numerically. We find that 20f  is always too small and 10f  too large, suggesting that some 84 

“average” would be more accurate. In Eq. (11), the geometric average of the second terms in 85 

Eqs. (9) and (10) were used, giving the value 0  at 0,f r =  shown in Eq. (12)  86 

( ) ( )
11

21 2 2 11 1n n nr f nf n n f
−

− −  = − + −   
       (11) 87 

yielding,  88 

1
2 2

2 1
0

1 12 4 .n n nnf
n n

−
 − − = − + +  

   
        (12) 89 

Note that 0 , and f f in general, are physically positive; hence the negative solution of Eq. (11) 90 

can only have a mathematical meaning when n is a positive integer. Table 2 shows the excellent 91 

accuracy of Eq. (12).  Note that for the two limits, 1 and 1,n n=  Eq. (12) predicts the exact 92 

value of 0.f  With the example of 2,n = we shall discuss the negative branch later, again for 93 

mathematical interest. The value of n can only be known approximately so if it were to change 94 

from an even integer value to an infinitesimally close value, the negative branch would suddenly 95 

disappear, confirming that the negative branch is not relevant physically.  96 

To solve Eq. (6), either above or below the boundary, ( ) ,f r  we consider the case when 97 

part of ( )rψ  is close to ( ).f r  For that case, we rewrite Eq. (6) as 98 

[ ] n nd f dr fψ ψ− = −          (13) 99 
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and linearize that equation to obtain 100 

( ) ( )1 1 1n
a a cd f dr f nβ β β β β βψ ψ ψ ψ ψ− − − − = −        (14) 101 

where  and a cψ ψ are between  and ,fψ to be chosen later.  The solution of Eq. (14) can be 102 

written as 103 

1 1exp .
r n

a cf n drβ β βψ βψ λ ψ− −− = ∫         (15) 104 

No lower limit was put in the integral as any change could always be absorbed by a new constant 105 

.λ  We now choose aψ  by a simple interpolation between  and ,fψ e.g., 106 

1 1 1
1 2  a f fβ β βψ ψ λ λ λ λ− − −+         (16) 107 

where 1 2 and λ λ are constants to be obtained later.  Using aψ  from Eq. (16) in Eq. (15) yields 108 

1 1
2

1 1
1

1 exp

1 exp

n

n

f n f dr

f f n f dr

β

β

βλψ
βλ

− −

− −

+
=

−
∫
∫

        (17) 109 

where we used ,c fψ  i.e. the asymptotic approximation for large r when  and fψ can differ the 110 

most. 111 

 To estimate 1 2,  ,  and ,λ λ β we first look at the zeros of the denominator in Eq. (17), 112 

where  at .r rψ ∞→∞ =   Eq. (6) shows that when this happens, ,nd drψ ψ around ,r∞ then 113 

( ) 1r r −
∞ −  behaves like ( )1 1 ,n nψ − − which is only possible if 1nβ = − and Eq. (17) gives for 114 

,r r∞  115 

( )
1 2 11n

r r n
λ λψ −

∞

+
−

           (18) 116 

where we used 1 .ndr df nf −
  Hence, ( )2 11 1n nλ λ+ = −  or  117 

( )1 2 1 .nλ λ = −           (19) 118 
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Using now Eq. (9) to calculate dr in the integral 1nf dr−∫  in Eq. (17) (higher order terms could 119 

also be used) yields 120 

( )
( )

1

1

1 1
1

n

n

g n
f g
ψ −

−

+ −
=

−
          (20) 121 

with 122 

( ) ( )
2

2 2 1 2 1exp
2 1

n n nng f f f f
n

− − −
∞ ∞

 
= − − 

       (21) 123 

where f∞  is the value of  at .f r∞  124 

 Since the solution is only physical for 0,ψ >  Eq. (20) applies to the upper region, i.e., 125 

above the boundary given by ( ).f r  126 

 If the boundary condition is below that boundary, no asymptote is available to find .β  As 127 

a result, determination of the solution is more difficult to obtain. We take the boundary condition 128 

as 129 

1 1,  at r rψ ψ= =           (22) 130 

and define g, following Eq. (21) as  131 

( ) ( )
2

2 2 1 2 1
1 1 1exp

2 1
n n nng g f f f f

n
− − − 

= − − 
       (23) 132 

where ( )1 1f f r= and 1g  is a constant, with ( )1 1.g r g=  As in the case above the boundary, we 133 

could try  134 

1

2

1

1/ .
1

gf
g

βλψ
λ

 −
=  + 

          (24) 135 
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Note we change the signs of the 'sλ as ψ can be zero but not infinite in that region.  However,136 

0 00,  at ,  and r r d dr rψ ψ= = = − is finite and non-zero so Eq. (24) can apply only if we keep β  137 

in the denominator only, then  138 

[ ] [ ] 1
1 1ro rof g g g g βψ λ− +         (25) 139 

with 0 1rgλ λ= and 21rog λ=  value of g at 0.r r=  To satisfy the derivative condition at 0 ,r r=  140 

requires at once,  141 

1 nβλ+ =            (26) 142 

which gives λ quite easily once β  is known.  Imposing that Eq. (25) satisfies the derivative of 143 

1 at ,r rψ = gives 144 

1 1
1 1 1 1

1 10

0 0

1 .
1 1

n n n

r

r r

gf nf g gg
g g

λ βψ ψ
λ

−

 
 

− = + 
 − +
  

       (27) 145 

 Starting at ( )1 1, ,rψ  Eq. (11) yields 1f ; then Eqs. (26) and (27) and Eq. (25) at 1,r r= relate 146 

the three unknowns: 1 0,   and rg gλ β (note that 0rg is irrelevant and could be taken equal to 1 147 

without loss of generality).  Note also that if by chance ( )1 1 0,rψ =  i.e., 1 0 ,r r= then Eq. (27) 148 

reduces to Eq. (26) and we are short one equation.  In that case, we would impose that the second 149 

derivative is satisfied at 1 0 ,r r= or 150 

1 1 2.nβ β− =           (28) 151 

Obviously, Eq. (28) would be far easier to use than Eq. (27) but being a second derivative 152 

condition, it is less accurate than a first derivative condition when 1 0.ψ ≠  153 

Application to the examples of Basha and Mina (1999) 154 
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 Examples are for n=2, about the minimum value for a clay, and n=5, typical value for a 155 

sand.  As explained earlier, integer values, especially even ones, give negative branches, 0,ψ <156 

which are not physical, but will be touched upon here for mathematical completeness.  Among 157 

even integers, n=2 has an exact solution expressible in terms of Airy functions.  Others values of 158 

n yielding exact analytical solutions are n=0; ½ and 1 which are not considered here, as they are 159 

too small to have physical meaning. 160 

 For 2,n =  we can write exactly,  161 

( ) ( ) ( ) ( ) ,i i i iA r B r A r B rψ µ µ′ ′= − − +               162 

 (29) 163 

 and i iA B being the two Airy functions, with  164 

[ ] [ ]0 0 0 0 0 0 .i i iA A B Bµ ψ ψ′ ′= − − + +         (30) 165 

Note that here the subscript “0” refers here to values at r=0, and not to values at 0.r r=  166 

 The case n=2 is also unique as Eqs. (26) and (27), together with Eq. (25) at 1,r r= yield 167 

1,λ β= = which is also in agreement with Eq. (28).  168 

 Fig. 1 shows a variety of curves for n=2, differing from their starting value at r=0; from 169 

the top (as indicated on the figure) with 0 0 0 0 0i i i if A A B B′= − = ′170 

( ) 2 2 2
0 0 0 0 0 00 1;  0.729;  ;  0.729; ; - ; -2; - ; 1; 0.729. r f f f f fψ = = ∞ Note that the curves 171 

2 2
0 01;   and 0.729; 0.729f f       are such that the product of their ( )0o rψ = is equal to 2

0 .f  In 172 

that case, according to Eqs. (20) and (25), 0  and f f∞ and hence 0  and r ,r ∞ should be the same as 173 

long as they are large enough for our asymptotic calculations to hold.  Clearly, this is true when 174 

0 r 4r ∞  but not for 0 r 1r ∞  as expected.  Fig. 2 compares numerical and analytical solutions 175 



10 
 

for the Basha and Mina cases for 2n =  (each curve is identified by the value of 1ψ ). When Eq. 176 

(6) is used, the comparison includes the non-physical region of 0,ψ < with essentially no 177 

discrepancy.  Fig. 3 repeats the comparison with Eq. (1) , and 0,D = showing more details; of 178 

course, the agreement is excellent.  179 

 Fig. 4 shows the general mathematical case for 5n = including 0,ψ < which, again, 180 

would not be present if n was not an integer.  The figure is much simpler than the corresponding 181 

one for 2n = because only positive integers have a solution 0.f <  Fig. 5 shows the comparison 182 

between the numerics and the analysis using Eq. (1) when Eq. (28) rather than Eq. (27) is applied 183 

which greatly simplifies the calculation.  The figure shows that for C small, the maximum error 184 

is around 3%, more than the chosen threshold of 1%. The difficulty of taking either Eq. (27) or 185 

(28) to estimate β did not appear for 2,n = as both gave at once 1.β =  Fig. 6 shows that when 186 

Eq. (27) is applied, the error disappears, which is natural since the derivative condition is applied 187 

where the boundary condition is used rather than a curvature condition at 0.ψ =  188 

 In all cases, Eq. (11) is used to obtain r for a given .f  However, for a given r  to obtain 189 

,f we used an iterative procedure. We start with nf r and use this value to obtain an estimate 190 

of the term in the { }bracket in Eq. (11) and use the new estimate of nf thus obtained to repeat 191 

the procedure.  Numerically, Eq. (6), with ,fψ = is integrated using a Runge-Kutta procedure, 192 

starting with 1/
1 1

nf r= where 1r is very large, larger than any r of interest, e.g., 1 10.r =  Integrating 193 

backwards, the asymptote is approached very quickly, yielding a stable solution. Forward 194 

integration, starting at a point very close to the asymptote, yields an unstable solution which 195 

eventually diverges from the asymptote.  This is clearly seen in Fig. 1, where the curves starting 196 
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at 0r =  with ψ equal to 0.729  and 2
0 0.729,f which are close to the exact value of 197 

0 0.7290111...f = still diverge at the short distance when 3.r >  198 

 The values of  and f r∞ ∞  in Table 1, i.e., the asymptotes when ,fψ   are obtained 199 

starting from the boundary condition 1  at .r rψ ψ= =  As explained above, 1f  is then calculated 200 

and 1g is obtained from Eq. (20). Using those values n Eq. (21) yields  and then f r∞ ∞ from Eq. 201 

(11).  202 

Conclusion: 203 

We have obtained an extremely accurate approximation to predict pressure in a centrifuge for 204 

steady state conditions when conductivity is a power law of pressure.  The accuracy makes the 205 

use of the solution quite reliable to predict soil-water properties. The two difficulties in 206 

previously available approximations, i.e. using two different approximations depending on soil-207 

water properties, and limited accuracy, have been resolved. Here, the form of the approximation 208 

depends only on whether ( )1rψ is greater or less than ( )1 .f r  209 

  210 
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TABLE 1 278 
 279 

n=2 280 
 C A f1 r1 Ψ1 r2 1 0rg g  

fψ <  0.5 1 1.854 3.175 0.630 2.381 0.493 
fψ <  0.5 3 2.192 4.579 0.437 3.434 0.667 
fψ <  5 1 2.651 9.864 2.028 7.398 --- 
fψ >  5 3 3.165 6.840 2.924 5.130 0.219 

 281 
n=5 282 
 C A β-1    λ f1 r1 Ψ1 r2 3

1 010 rg g−  
fψ <  0.5 1 0.367 79.055 1.304 3.704 0.857 2.777 24.43 
fψ <  0.5 3 0.393 58.917 1.435 6.035 0.759 4.526 56.55 
fψ <  5 1 --- --- 1.371 7.794 1.266 5.846 --- 
fψ >  5 3 0.339 114.267 1.509 4.783 1.430 3.588 5.718 

 283 
Parameters necessary to plot the analytical results for Basha and Mina (1999) examples 284 
in Fig. 3 for 2n = and Figs. 5 and 6 for 5,n = with three below the asymptote, ( ) ,f r and 285 
one above in each case. For the two cases above, the asymptotes are for, 286 

( ) ( ) ( ) ( )7.403 2 ;  4.899 5  and f 2.754 2 ;  f 1.377 5 .r n r n n n∞ ∞ ∞ ∞= = = = = = = =  287 
 288 

TABLE 2 289 
 290 

n f20 f10 Numerics Eq. (12) 
2 0.630 0.794 0.7290 0.7309 
3 0.644 0.803 0.7521 0.7519 
4 0.673 0.820 0.7793 0.7785 
5 0.699 0.836 0.8018 0.8008 

 291 
Values of ( ) ( )20 2 10 10 ;  0f f r f f r= = = = from Eqs. (10) and (9) for various .n  The 292 
corresponding numerical results and the predictions of Eq. (12) are also given. 293 

  294 
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Figure Captions 295 
 296 

Fig. 1. Exact solutions ( )rψ  for 2n = at different starting points at 0,r = with 297 

0 0 0 .i if A A′= −  Only values for ( ) 0rψ ≥ have physical meaning. 298 
 299 
Fig. 2. Four cases for 2,n = following the example of Basha and Mina (1999).  Numbers 300 
for each curve identify the starting values 1,ψ see Table 1. Solid lines are the numerical 301 
results and the dots are the analytical results. The two asymptotes labeled 0f± correspond 302 
to 0µ = and µ →∞ in Eq. (29). Although the agreement of numerics and analysis is 303 
excellent, between the two asymptotes, only for 0ψ ≥ are the results physically 304 
meaningful. 305 
 306 
Fig. 3.  Details of the examples of Basha and Mina (1999) using the variables of Eq. (1), 307 
with 0, for n=2.D =  The solid lines are the numerical results and dots the analytical 308 
results. 309 
 310 
Fig. 4. Sketch of two curves for n=5, identified by the value of 0,ψ are slightly above 0,f311 
one slightly below (for this last one only the part with 0ψ ≥ is physically meaningful). In 312 
this case, n being an odd integer, there is only one asymptote ( )f r  starting at 0.f  313 
 314 
Fig. 5.  Details of Basha and Mina’s (1999) cases for n=5when the simple Eq. (28) is 315 
used, showing the significant error when C  is small.  The analysis is shown by dots and 316 
the numerics by solid lines.  317 
 318 
Fig. 6.  Same cases as in Fig. 5 using Eq. (27), rather than Eq. (28). The errors for the 319 
cases with C small have disappeared.  The analysis is shown by the dots and the numerics 320 
by the solid lines. 321 

  322 



16 
 

 323 
 324 
 325 

 326 
 327 
Fig. 1. Exact solutions ( )rψ  for 2n = at different starting points at 0,r = with 328 

0 0 0 .i if A A′= −  Only values for ( ) 0rψ ≥ have physical meaning. 329 
  330 
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 331 
Fig. 2. Four cases for 2,n = following the example of Basha and Mina (1999).  Numbers 332 
for each curve identify the starting values 1,ψ see Table 1. Solid lines are the numerical 333 
results and the dots are the analytical results. The two asymptotes labeled 0f± correspond 334 
to 0µ = and µ →∞ in Eq. (29). Although the agreement of numerics and analysis is 335 
excellent, between the two asymptotes, only for 0ψ ≥ are the results physically 336 
meaningful. 337 
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 339 
 340 
Fig. 3.  Details of the examples of Basha and Mina (1999) using the variables of Eq. (1), 341 
with 0, for n=2.D =  The solid lines are the numerical results and dots the analytical 342 
results. 343 
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 345 
 346 
Fig. 4. Sketch of two curves for n=5, identified by the value of 0,ψ are slightly above 0,f347 
one slightly below (for this last one only the part with 0ψ ≥ is physically meaningful). In 348 
this case, n being an odd integer, there is only one asymptote ( )f r  starting at 0.f  349 
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 351 
 352 
Fig. 5.  Details of Basha and Mina’s (1999) cases for n=5when the simple Eq. (28) is 353 
used, showing the significant error when C  is small.  The analysis is shown by dots and 354 
the numerics by solid lines.  355 
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 357 
 358 
Fig. 6.  Same cases as in Fig. 5 using Eq. (27), rather than Eq. (28). The errors for the 359 
cases with C small have disappeared.  The analysis is shown by the dots and the numerics 360 
by the solid lines. 361 
 362 
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